Développement de techniques analytiques pour l’évaluation des protéines thérapeutiques et des biomarqueurs par spectrométrie de masse

Mathieu Dubois

To cite this version:

HAL Id: tel-00341749
https://tel.archives-ouvertes.fr/tel-00341749

Submitted on 25 Nov 2008
Thèse de Doctorat de l’Université Pierre et Marie Curie
Paris VI

Ecole doctorale Inter///Bio

Spécialité
Chimie Analytique

présentée par
Mathieu DUBOIS

pour l’obtention du grade de
DOCTEUR DE L’UNIVERSITE PARIS VI

Développement de techniques analytiques
pour l’évaluation des protéines thérapeutiques et des
biomarqueurs par spectrométrie de masse

Soutenance prévue le 17 octobre 2008, devant le jury composé de :

Pr Gérard Hopfgartner Rapporteur
Dr Alain Dupuis Rapporteur
Pr Jean-Claude Tabet
Dr François Legay
Dr Eric Ezan Directeur de thèse
Table des matières

Introduction générale et présentation de la thèse

Chapitre I : Introduction aux protéines et à leur quantification

- **I.1. Structure et propriétés des protéines**
 - **I.1.1. Acides aminés, peptides et protéines**
 - **I.1.2. Rôle des peptides et protéines**
 - **I.1.3. Biomarqueurs**
 - **I.1.3.1. Définition et éléments de caractérisation**
 - **I.1.3.2. Validation des biomarqueurs protéiques**
 - **I.1.4. Protéines recombinantes**
 - **I.1.4.1. Systèmes d’expression pour la production des protéines thérapeutiques**
 - **I.1.4.2. Modes d’administration**
 - **I.1.4.3. Immunogénicité des protéines thérapeutiques**
- **I.2. Les immunodosages pour la bioanalyse des protéines**
 - **I.2.1. Antigènes, anticorps et traceurs**
 - **I.2.2. La réaction antigène anticorps**
 - **I.2.3. Principe des immunodosages**
 - **I.2.3.1. Méthodes par compétition**
 - **I.2.3.2. Méthodes sandwich**
 - **I.2.4. Avantages et limitations des immunodosages**
- **I.3. La spectrométrie de masse pour l’analyse des protéines**
 - **I.3.1. La mesure de masse**
 - **I.3.1.1. Les abondances isotopiques**
 - **I.3.1.2. Mesure de masse**
 - **I.3.2. Les sources d’ions par désorption-ionisation**
 - **I.3.2.1. Desorption-ionisation laser assisté par matrice (MALDI)**
 - **I.3.2.2. Les sources électrospray (ESI : ElectroSpray Ionisation)**
 - **I.3.3. Les analyseurs**
 - **I.3.3.1. Généralités et définitions**
 - **I.3.3.2. Les modes d’acquisitions en spectrométrie de masse**
 - **I.3.3.3. Les triples quadrupôles**
 - **I.3.3.4. Les analyseurs à temps de vol (TOF)**
 - **I.3.3.5. L’Orbitrap**
 - **I.3.4. La quantification par LC-MS**
 - **I.3.4.1. La chromatographie en phase liquide des peptides et des protéines**
 - **I.3.4.2. La quantification des peptides et des protéines par LC/MS**
Chapitre II : Evaluation d’un polypeptide thérapeutique - 65 -

II.1. Introduction
- 67 -

II.2. Développement d’un dosage par chromatographie liquide couplée à la spectrométrie de masse
- 68 -

 II.2.1. Introduction à la quantification des protéines intactes par LC-MS - 68 -
 II.2.1.1. Méthodes de quantification des protéines .. - 68 -
 II.2.1.2. Analyse de polypeptides par spectrométrie de masse .. - 69 -
 II.2.1.3. Standard interne .. - 71 -
 II.2.1.4. Effet matrice ... - 73 -
 II.2.1.5. Traitement d’échantillons .. - 74 -

 II.2.2. Approches développées au laboratoire ... - 78 -
 II.2.2.1. Immunodosage enzymatique .. - 78 -
 II.2.2.2. Quantification par chromatographie couplée à la spectrométrie de masse - 78 -

 II.2.3. Développement d’une étape d’immunocapture pour améliorer la sensibilité du dosage de l’Epi-hNE4 .. - 81 -
 II.2.3.1. Immunocapture : considérations théoriques ... - 81 -
 II.2.3.2. Stratégie analytique adoptée ... - 86 -

 II.2.4. Article : Dosage par immuno-spectrométrie de masse appliqué à l’Epi-hNE4, une protéine recombinante inhibiteur de l’élastase humaine .. - 89 -

 II.2.5. Conclusion .. - 99 -

II.3. L’immunogénicité des protéines thérapeutiques
- 102 -

 II.3.1. Réponse immunitaire ... - 102 -

 II.3.2. Effets des anticorps anti-protéines thérapeutiques ... - 105 -

 II.3.3. Evaluation des anticorps anti-protéines thérapeutiques - 106 -
 II.3.3.1. Tests de caractérisation de l’immunogénicité ... - 107 -
 II.3.3.2. Recommandations ... - 108 -
 II.3.3.3. Stratégie analytique .. - 110 -

 II.3.4. Article : Validation d’un test ELISA pour la mesure d’anticorps induits chez le singe dirigés contre Epi-hNE4, un inhibiteur de la neutrophile élastase humaine.... - 113 -

 II.3.5. Conclusion .. - 123 -

Chapitre III : Quantification d’un anticorps thérapeutique par LC-MS - 127 -

III.1. Introduction
- 129 -

 III.1.1. La quantification des macromolécules .. - 129 -
 III.1.1.1. Distribution d’états de charges et digestion enzymatique - 129 -
 III.1.1.2. Choix du standard interne .. - 132 -
 III.1.1.3. Préparation de l’échantillon .. - 136 -
Table des matières

III.1.2. Les anticorps thérapeutiques .. - 138 -
III.1.3. L’anticorps thérapeutique chimérique Cetuximab (Erbitux) - 141 -
 III.1.3.1. Le récepteur du facteur de croissance épidermique - 142 -
 III.1.3.2. Mode d’action de Cetuximab .. - 143 -
 III.1.3.3. Stratégie analytique.. - 145 -

III.2. Article : Immunopurification et quantification de la forme active d’un
anticorps thérapeutique chimérique dans le sérum humain par spectrométrie de
masse ... - 147 -

III.3. Résultats complémentaires .. - 159 -
 III.3.1. Obtention d’une séquence théorique de Cetuximab................... - 159 -
 III.3.2. Analyse peptidique de Cetuximab ... - 161 -
 III.3.2.1. Identification des peptides générés par digestion enzymatique - 161 -
 III.3.2.2. Identification des peptides situés dans les régions hypervariables... - 165 -
 III.3.3. Standard interne pour la quantification - 166 -
 III.3.3.1. Choix du standard interne ... - 166 -
 III.3.3.2. Identification des peptides ... - 168 -
 III.3.3.3. Réduction, dénaturation et dérivation chimique - 170 -
 III.3.3.4. Adsorption non spécifique ... - 172 -

III.4. Conclusions .. - 174 -

Chapitre IV : Quantification d’une famille de biomarqueurs par
LC-MS .. - 179 -

IV.1. Introduction .. - 181 -
 IV.1.1. Importance des biomarqueurs .. - 181 -
 IV.1.2. Spécificités analytiques des biomarqueurs protéiques - 183 -
 IV.1.3. Dosages de peptides endogènes par LC-MS - 185 -

IV.2. Les apélines : une famille de peptides .. - 187 -
 IV.2.1. Le récepteur des apélines .. - 187 -
 IV.2.2. Identification des apélines .. - 188 -
 IV.2.3. Distribution et rôles physiologiques .. - 190 -
 IV.2.3.1. Formes endogènes ... - 190 -
 IV.2.3.2. Distribution des apélines ... - 191 -
 IV.2.3.3. Rôles physiologiques ... - 193 -
 IV.2.4. Dosages plasmatiques des apélines chez l’Homme - 194 -

IV.3. Développements analytiques .. - 197 -
 IV.3.1. Quantification des apélines 12, 13, p13, 17 et 36 - 198 -
 IV.3.1.1. Matériel et méthodes ... - 198 -
Table des matières

IV.3.1.2. Résultats .. - 203 -
IV.3.2. Stabilité des apélines en plasma... - 213 -
 IV.3.2.1. Méthode ... - 213 -
 IV.3.2.2. Résultat ... - 214 -

IV.4. Conclusions .. - 218 -

Conclusion Générale .. - 223 -

Annexe .. - 235 -

Références bibliographiques .. - 247 -
Introduction générale et présentation de la thèse
Depuis une vingtaine d’années, le marché des médicaments connaît une évolution fondamentale. Alors que les principes actifs étaient en majorité, jusqu’à récemment, de petites molécules synthétisées par la chimie organique, de plus en plus de macromolécules, et notamment des protéines, sont reconnues comme bénéfiques et obtiennent une autorisation de mise sur le marché. Ainsi, alors que dans les années 80, seuls 2% des médicaments étaient issus des biotechnologies, ce chiffre s’élèverait à 30% en 2003, et la moitié des médicaments en développement seront des protéines thérapeutiques en 2010. Parmi ces molécules, la première utilisée à des fins thérapeutiques était l’insuline, rejointe aujourd’hui par de nombreuses protéines, ciblant majoritairement le cancer et l’inflammation. Parallèlement, pour améliorer l’efficacité et la sécurité des traitements, les méthodes de diagnostic évoluent, avec notamment l’utilisation de biomarqueurs pertinents dont un grand nombre est d’origine protéique. La recherche et la validation de peptides et de protéines spécifiques d’une pathologie, pouvant être utilisés comme biomarqueurs, sont à ce titre en pleine expansion. Les protéines sont ainsi des molécules incontournables de l’arsenal thérapeutique, que ce soit à travers les médicaments ou les biomarqueurs.

La bioanalyse, employée pour la quantification des médicaments et de leurs métabolites dans les fluides biologiques, joue un rôle fondamental au cours des phases de développement. Elle est particulièrement importante pour évaluer les médicaments et interpréter les résultats obtenus lors des études visant à établir un lien entre pharmacocinétique et pharmacodynamique, lors des études de bioéquivalence, ou encore lors des études de toxicité. Ces études, dont la qualité est directement liée à la qualité des données analytiques, seront ensuite utilisées par les autorités réglementaires pour évaluer le rapport bénéfice/risque du médicament. En outre, le champ d’action de la bioanalyse ne se limite pas au dosage des médicaments, puisque c’est un outil essentiel du diagnostic. La quantification de molécules endogènes (et l’écart de leur taux par rapport à des valeurs normales) est en effet une aide précieuse pour identifier et/ou confirmer une pathologie.

La quantification de ces molécules dans les matrices biologiques constitue donc un sujet essentiel porteur de nouveaux défis. La bioanalyse maîtrise bien le domaine des petites molécules, dont ont longtemps été constitués les médicaments, mais son expérience est moins développée dans le domaine des protéines thérapeutiques dont l’apparition est beaucoup plus récente. En plus de la différence de taille évidente entre petites et macromolécules, il existe des différences fondamentales liées à leur structure conduisant à des problèmes spécifiques...
lors de leur dosage. Les petites molécules sont le plus souvent des molécules organiques, obtenues par synthèse organique, alors que les protéines sont des biopolymères complexes, obtenus biologiquement (synthétisés par des organismes vivants). Les macromolécules ont donc tendance à être hétérogènes, en raison des différentes modifications post-transcriptionnelles telles que les glycosylations et les phosphorylations, alors que les petites molécules sont homogènes et atteignent un fort degré de pureté. Cette différence de structure impose encore des précautions particulières lors de l’évaluation de la stabilité des molécules : si cette évaluation s’effectue aisément en contrôlant l’intégrité de la structure pour les petites molécules, elle devient plus complexe pour les macromolécules et nécessite, en plus d’un test des propriétés physico-chimiques, un test d’activité biologique afin de vérifier que la macromolécule est toujours active. En raison de ces différences fondamentales entre petites et macromolécules, leur quantification dans les milieux biologiques fait appel à des techniques différentes. Les études de pharmacocanalyse des petites molécules se font essentiellement par chromatographie liquide couplée à la spectrométrie de masse, alors que les macromolécules sont quantifiées par des dosages d’affinité de ligands. Les protéines thérapeutiques sont ainsi majoritairement quantifiées par immunodosages, techniques basées sur la reconnaissance de l’analyte par un anticorps, que ce soit par ELISA (*Enzyme Linked Immunosorbent Assay*) ou RIA (*Radio Immuno Assay*).

Au sein du CEA, le Laboratoire d’Etude du Métabolisme et des Médicaments a développé une expertise dans le domaine de la bioanalyse, appliquée au dosage des médicaments tels que les petites molécules et les protéines thérapeutiques, à la détection de toxines, ainsi qu’à la découverte de biomarqueurs par techniques -omiques. Ces activités analytiques reposent sur des outils tels que l’immunoanalyse et la spectrométrie de masse. Dans le cadre de l’évaluation des protéines thérapeutiques, leur quantification est effectuée dans la grande majorité des cas par immunodosage, qui représente à l’heure actuelle la méthode de référence pour cette catégorie de molécules.

L’immunoanalyse est en effet une technique aujourd’hui bien maîtrisée et qui présente de nombreux avantages tels que d’excellentes sensibilités, un haut débit et un faible coût. Cependant, elle pâtit parfois d’une variabilité inter-individus, des interactions anticorps-antigènes en présence de la matrice, et d’un manque de spécificité, en raison de réactions croisées des anticorps avec d’autres composants des fluides biologiques.

L’utilisation de techniques analytiques plus spécifiques, et en particulier de la spectrométrie de masse, représente une alternative aux immunodosages. En effet, depuis le milieu des
années 80, la découverte de deux nouvelles méthodes de désorption/ionisation douces (ESI pour *Electrospray Ionization*, et MALDI pour *Désorption/Ionisation Laser Assistée par Matrice*) a permis le passage en phase gazeuse d’ions de haute masse moléculaire. Ces techniques ont littéralement révolutionné la spectrométrie de masse car elles ont élargi son champ d’application à l’analyse de macromolécules, en particulier d’origine biologique. La spectrométrie de masse, qui connaît depuis de perpétuelles innovations et voit accroître son champ d’investigation, est ainsi devenue la technique de choix pour la caractérisation des protéines ou plus généralement des biomolécules quelles qu’elles soient, avec une précision sans cesse accrue. Toutefois, les analyses quantitatives de protéines dans des matrices biologiques par spectrométrie de masse nécessitent quelques précautions afin de rendre les dosages sensibles et robustes, pour que cette technique puisse se substituer aux immunodosages.

Au début de ce travail de thèse, quelques publications avaient montré la faisabilité de la quantification de protéines par spectrométrie de masse. Cette technique nous a alors paru prometteuse pour améliorer la robustesse et standardiser les dosages dans le domaine de la bioanalyse. Nous avons donc mis à profit la spécificité de la spectrométrie de masse pour quantifier des protéines thérapeutiques de toutes tailles dans le plasma. Nous avons pour cela développé des stratégies analytiques comportant une étape d’extraction spécifique préalable à l’analyse par cette technique afin de la rendre compatible avec l’analyse de taux parfois subnanomolaires des composés.

Nous avons tout d’abord travaillé sur la quantification d’une petite protéine thérapeutique extraite des échantillons plasmatiques par immunoaffinité au moyen d’anticorps immobilisés sur des microbilles magnétiques, l’analyse des protéines extraites étant effectuée par chromatographie liquide couplée à la spectrométrie de masse. Nous avons également étudié l’immunogénicité de cette molécule. En effet, en raison de leur taille, les protéines thérapeutiques sont susceptibles d’induire la production d’anticorps chez les patients à qui elles sont administrées. Ce problème d’immunogénicité peut limiter l’efficacité des protéines thérapeutiques et mettre en jeu la vie des patients. Nous avons donc développé un test immunologique nous permettant de détecter la présence de tels anticorps induits par la protéine thérapeutique.

La deuxième partie de ce travail de thèse s’est attachée à montrer l’applicabilité de la spectrométrie de masse quantitative à une protéine de taille importante. De nombreux
anticorps thérapeutiques sont actuellement en développement ou ont déjà des applications cliniques. Parmi ces anticorps, nous nous sommes intéressés à un anticorps utilisé pour le traitement du cancer colorectal et ciblant spécifiquement le récepteur du facteur de croissance épidermique (EGFR). Cette classe de protéines est actuellement quantifiée par immunodosages, cependant leur mode de production conduit à des composés hétérogènes (par modifications post-traductionelles), et l’analyse par spectrométrie de masse de tels composés est peu sensible. L’enjeu de ce développement analytique a donc été d’extraire les formes actives de cet anticorps thérapeutique du sérum humain, et de les quantifier de manière sensible et spécifique pour les différencier des autres immunoglobulines humaines.

Enfin, notre dernière étude a porté sur la quantification de peptides biomarqueurs dans le plasma. Nous nous sommes ainsi intéressé aux Apelines, famille de peptides impliqués dans le fonctionnement cardiovasculaire. Les méthodes de quantification utilisées jusqu’à maintenant sont basées également sur l’immunoanalyse, méthode ne permettant pas de distinguer les différentes formes d’Apelines. L’utilisation de la spectrométrie de masse nous a donc paru particulièrement judicieuse, en raison de sa spécificité et de sa capacité à quantifier simultanément chacune de ces différentes formes. Cette étude a notamment permis de soulever la question de la nature des formes circulantes de ces biomarqueurs.

Avant de développer ces résultats, nous allons dans un premier temps présenter un rappel de quelques aspects fondamentaux concernant les protéines ainsi que les méthodes analytiques couramment utilisées pour leur quantification.
Chapitre I :

Introduction aux protéines
et à leur quantification
I.1. Structure et propriétés des protéines

I.1.1. Acides aminés, peptides et protéines

Les protéines sont des macromolécules constituées d’un enchaînement d’acides aminés liés entre eux par des liaisons peptidiques. Tous les acides aminés ont la même architecture et sont composés d’un carbone tétraédrique central (α). Sur cet atome de carbone sont fixés un groupement amine, un groupement carboxylique, un hydrogène et un groupement appelé chaîne latérale. Le carbone alpha portant quatre groupements différents (sauf pour la glycine), ce carbone est asymétrique. Les acides aminés sont donc des molécules chirales, qui possèdent deux isomères possibles : l'un de la série D l'autre de la série L. Il se trouve que tous les acides aminés naturels trouvés dans les molécules du vivant sont de la série L (Figure 1).

Une infinité d’acides aminés peuvent théoriquement être générés. Cependant, l’on constate que chez l'Homme, comme chez de nombreuses espèces, seuls vingt acides aminés différents sont incorporés dans les protéines lors de la traduction. Les acides aminés diffèrent les uns des autres par leur chaîne latérale. En raison des différences de longueur et de composition chimique, les chaînes latérales engendrent des propriétés très différentes pour chacun des acides aminés. Celles-ci peuvent être de type aliphatique, aromatique, hétérocyclique, ou peuvent présenter des groupements hydroxyles, sulfhydryles, carboxyliques et amides. En fonction des propriétés physico-chimiques de leur chaîne latérale, les acides aminés peuvent être classés comme hydrophobes, polaires, acides ou basiques (Tableau 1). Un code international de correspondance à une ou trois lettres peut être utilisé pour désigner chacun de ces vingt acides aminés. Pour former un peptide ou une protéine, le groupement α-carboxyle du premier acide aminé se lie avec le groupement α-amine du second, formant ainsi une
Chapitre I : Introduction aux protéines et à leur quantification

La liaison amide ou liaison peptidique par déshydratation. Après ajout successif des acides aminés et les pertes d’eau qui en résultent, il reste au sein de la protéine ce que l’on nomme les résidus acides aminés. La limite entre peptides et protéines est assez floue, puisque le terme protéine est couramment employé quand le nombre de résidus est environ supérieur à 100, et le terme peptide est employé quand il est environ inférieur à 50. Dans cette zone intermédiaire entre 50 et 100, on parlera indifféremment de peptides, de petites protéines ou de polypeptide.

La liaison peptidique est une liaison stable du point de vue cinétique, c'est-à-dire résistante à l’hydrolyse. La double liaison du carbonyle impose aux atomes adjacents d’être dans un même plan, alors que les autres liaisons sont des liaisons simples à libre rotation. Il en résulte un agencement des acides aminés les uns par rapport aux autres spécifique de la protéine pour former une structure tridimensionnelle. La séquence d’acides aminés d’une protéine est

Tableau 1 : Nom, code à 3 et une lettres, et structure des vingt acides aminés.
Chapitre I : Introduction aux protéines et à leur quantification

seulement le premier élément de sa structure. En effet, les protéines ne sont pas des chaînes polypeptidiques linéaires mais adoptent une structure tridimensionnelle qui est critique pour leur fonction. Cette structure tridimensionnelle résulte des interactions entre les chaînes latérales des acides aminés constitutifs de la protéine. L’ajout de certains solvants organiques ou encore de certains composés engendre une déstabilisation de ces interactions entre les acides aminés, aboutissant à une perte de la conformation tridimensionnelle : on parle de dénaturation. Suivant certaines conditions douces de dénaturation, les protéines peuvent retrouver spontanément leur conformation native lorsqu’elles sont replacées dans des solvants adéquats. Du fait de la présence de groupes acides et basiques des acides aminés, les protéines sont des composés amphotères. La charge portée par une protéine dépendra donc du nombre de résidus acides et de résidus basiques ainsi que du pH de la solution dans laquelle elle se trouve. Le pH pour lequel la protéine ne possède aucune charge net correspond au point isoélectrique (pI).

La structure des protéines peut être définie selon quatre niveaux :

La structure primaire d’une protéine est sa séquence d’acides aminés au sein de la chaîne polypeptidique. Elle est par convention écrite de la partie amine terminale (N-terminale) à la partie carboxyle-terminale (C-terminale).

La structure secondaire est constituée des arrangements réguliers des acides aminés dans des zones localisées de la protéine. On distingue deux types de structure secondaire, qui ont été proposées pour la première fois en 1951 par Linus Pauling et Robert Corey : l’hélice α et le feuillet β. Ces deux structures acquièrent leur forme et leur stabilité grâce aux liaisons hydrogènes entre les groupes CO et NH des liaisons peptidiques (Figure 2). L’hélice α se forme lorsque la chaîne polypeptidique s’enroule en hélice et que le groupement CO d’une liaison peptidique se lie avec le groupe NH d’une autre liaison peptidique situé quatre résidus plus loin. Le feuillet β est formé quant à lui de deux segments juxtaposés d’une chaîne polypeptidique, avec des liaisons hydrogènes entre ces deux segments.
La structure tertiaire est le repliement de la chaîne polypeptidique par interactions entre les chaînes latérales des acides aminés se trouvant à divers endroits de la séquence. Pour la plupart des protéines, la structure tertiaire est constituée de domaines. Chaque domaine est un repliement compact d’une combinaison d’hélices α, de feuillets β et de boucles reliant ces structures secondaires. Les petites protéines ne possèdent qu’un seul domaine alors que les plus grosses en possèdent plusieurs, chacun étant associé à une fonction particulière. Le positionnement des acides aminés hydrophobes au cœur de la protéine et des acides aminés hydrophiles en périphérie au contact des molécules d’eau est un paramètre déterminant pour la structure tertiaire de la protéine. De plus, deux groupements thiols de deux cystéines peuvent être oxydés pour former une liaison covalente appelée pont disulfure, et ainsi stabiliser le repliement tridimensionnel de la protéine.

La structure quaternaire, enfin, comprend les interactions entre différentes chaînes polypeptidiques pour les protéines composées de plus d’une chaîne. L’hémoglobine, les anticorps, sont par exemple composés de quatre chaînes polypeptidiques. En résumé, la séquence d’une protéine détermine sa structure tridimensionnelle, qui détermine sa fonction.

I.1.2. Rôle des peptides et protéines

Les protéines sont indispensables aux processus biologiques. Elles sont capables d’interagir avec d’autres molécules, en fonction des propriétés de leur surface (relief, poches capables d’accueillir une petite molécule, charges présentes localement…). Très souvent, une protéine ne pourra être fonctionnelle que lorsqu’elle aura capturé une autre molécule, appelée ligand.

La fixation d’un ligand sur une protéine (ex. : une hormone sur son récepteur, l’oxygène sur l’hémoglobine) peut induire un changement de conformation de la protéine qui peut, selon les cas, stimuler ou inhiber son activité. De plus, l’activité de beaucoup de protéines eucaryotes peut être contrôlée par des modifications post-traductionnelles, la plus commune étant une phosphorylation (ajout d’un phosphate) sur des acides aminés tyrosine, sérine ou thréonine. La charge négative du phosphate peut causer un changement de conformation et d’activité de la protéine.

Les protéines sont présentes dans les fluides biologiques, les membranes, les tissus, les muscles. Cependant, le plasma a été décrit comme étant le plus représentatif de l’ensemble des protéines présentes dans le corps en tant que milieu d’échange, entre les organes, de nutriments, de métabolites et d’hormones. D’autres fluides biologiques, comme le liquide cérébrospinal, le liquide synovial, et l’urine (la destination finale de la plupart des protéines du plasma inférieures à 60 kDa) ont un certain nombre de protéines en commun avec le plasma, et présentent en plus des informations locales intéressantes du point de vue clinique.

Ces fluides peuvent contenir des protéines spécifiques parce qu’elles ne peuvent pas physiquement passer dans le plasma ou parce qu’elles y sont dégradées. Cependant, ces matrices biologiques sont plus difficiles à obtenir ou à standardiser : le prélèvement de liquide cérébrospinal et de liquide synovial nécessite une intervention invasive douloureuse et parfois risquée, alors que l’urine présente une variabilité de composition inter-individuelle.

Le plasma est, pour ces raisons, le liquide le plus étudié pour identifier des protéines, les quantifier, ou encore mettre au point des méthodes analytiques. Il est collecté en très grande quantité pour fractionnement et préparation de protéines thérapeutiques. C’est également le milieu à partir duquel est préparé le plus grand nombre d’échantillons avec des millions de tubes prélevés et analysés à des fins de diagnostic. Les protéines présentes dans le plasma peuvent être classées en huit catégories au vu de leur fonction :
Les protéines secrétées par les tissus et qui ont une action au sein du plasma : les protéines les plus courantes du plasma sont majoritairement sécrétées par le foie et les intestins, elles ont une masse moléculaire supérieure à la taille limite de filtration du rein (45 kDa) et ont donc un temps de résidence dans le plasma relativement long ; l’albumine a par exemple une durée de vie de 21 jours.

Les immunoglobulines : c’est une classe de molécules à part entière. On estime qu’il existe environ 10 millions de séquences différentes d’anticorps en circulation chez un adulte.

Les ligands ayant une action « à longue distance » : sont classées dans cette catégorie les hormones peptidiques et protéiques. De leur taille dépend leur temps d’action et de contrôle ; une action rapide pour les hormones de petite taille comme l’insuline (6 kDa) ou plus lente pour les hormones de taille plus importante, comme l’érythropoïétine (21 kDa).

Les ligands ayant une action « localisée » : ce sont des protéines de faible poids moléculaire (inférieur au seuil de filtration glomérulaire) et donc à faible temps de résidence dans le plasma comme pour les cytokines. Leur action de médiation inter cellulaire est très localisée.

Les protéines passagères : elles correspondent aux protéines qui utilisent le plasma comme transporteur depuis leur site de synthèse pour atteindre leur site de fonctionnement.

Les produits de dégradation des tissus : ce sont des protéines qui sont situées normalement dans les cellules mais qui peuvent être libérées dans le plasma à la suite de dégradation ou de mort cellulaire. C’est une source importante de biomarqueurs pour le diagnostic, comme la troponine, le « Brain Natriuretic Peptide » (BNP), ou encore la myoglobine, utilisée dans le diagnostic des maladies cardiaques.

Sécrétions liées à une pathologie : ces protéines sont sécrétées dans le plasma depuis des cellules cancéreuses ou des tissus malades.

Protéines exogènes : ce sont des protéines produites par des organismes ou des parasites infectieux et qui sont excrétés dans la circulation sanguine.
Le terme protéome, inventé par Mark Wilkins en 1994 et publié en 1995, provient de la fusion des termes «protéine» et «génome». Alors que le génome reflète ce qui est possible, le protéome montre ce qui est fonctionnellement présent. Le protéome n’est pas une caractéristique figée de la cellule ou d’un compartiment, mais évolue en tant que représentation de l’expression fonctionnelle suivant le type de cellule, le stade de développement, les conditions environnementales. Etant donné la diversité des classes et des fonctions des protéines, se pose la question ambiguë du nombre de protéines, et notamment le nombre de protéines différentes dans le plasma. En prenant en compte le nombre de gènes (environ 60 000 gènes), les différentes formes d’expression et de maturation (les précurseurs, les formes matures, les produits de dégradation, les épissages alternatifs, les modifications post-traductionnelles, les produits de clivage et les différentes glycosylations), le nombre de formes de protéines différentes est de l’ordre 500 000. Si l’on ajoute la classe des immunoglobulines, on estime à 10 millions le nombre de séquences différentes.

Le plasma est certainement le milieux humain le plus complexe, mais une quantité d’informations sur l’état d’un individu peuvent être obtenues par son analyse (identification et quantification des composés qui le constituent). Le plasma, qui constitue la partie aqueuse du sang, est une solution contenant des électrolytes, des molécules nutritives, des métabolites, des protéines, des vitamines, des éléments à l’état de trace et des hormones. Le sang est le moyen de transport le plus important de l’organisme, il contribue à maintenir constantes les caractéristiques du milieu intérieur. Il assure les échanges de substance entre les organes et prend en charge dans les différents tissus les produits terminaux du métabolisme. Le sang circule dans tout l’organisme, et un dysfonctionnement d’un organe a des conséquences sur sa composition. L’analyse de la phase liquide du sang (le plasma ou le sérum, pour le sang coagulé) et la mesure de marqueurs biologiques permet alors d’aboutir à un diagnostic sans étude invasive. Lorsqu’un médicament est administré, là encore, le sang joue un rôle essentiel dans la grande majorité des cas. Que la molécule soit administrée par voie orale ou par injection dans la circulation sanguine, c’est le sang qui va se charger de sa distribution aux organes. La mesure de la quantité de médicament dans le sang (plus précisément dans le plasma) permet de contrôler quelle quantité est présente dans l’organisme et de la corrélérer à la progression de l’état physiologique du patient. L’analyse du plasma peut ainsi être effectuée dans différents buts. Que ce soit (à titre non exhaustif) pour identifier des protéines inconnues (approche protéomique), des métabolites (approche métabolomique), pour quantifier des composés caractéristiques d’une pathologie (biomarqueurs de diagnostic) ou encore pour
mesurer l’efficacité d’un médicament (pharmacoanalyse), les analyses du plasma sont difficiles, car les protéines qui le constituent ont une masse moléculaire hétérogène et ont une concentration qui s’étale sur 10 Log_{10} (Figure 3 et Figure 4). La protéine la plus abondante du plasma est l’albumine avec une concentration comprise entre 35 et 50 mg/mL, alors que l’interleukine 6 par exemple a une concentration inférieure à 5 pg/mL. Tous ces composés ont une importance sur le plan physiologique, et des concentrations en dehors des normes sont corrélées à une pathologie. On conçoit alors les difficultés rencontrées pour quantifier aussi bien les protéines les plus abondantes que les ultra minoritaires, ce qui revient à détecter une molécule parmi 100 milliards dans le cas de l’interleukine 6 (utilisée comme marqueur de l’inflammation et de l’infection) ⁷).

![Figure 3 : Intervalle de concentration de 70 protéines du plasma, d’après ⁵.](image)

L’albumine à elle seule représente 55 % des protéines du plasma et les 9 protéines majoritaires constituent 90 % des protéines plasmatiques (Figure 4).
Figure 4 : Neuf protéines majoritaires du plasma représentent 90% de la quantité totale de protéines du plasma

La question de la sensibilité des méthodes d’analyse utilisées est primordiale car, actuellement, ce sont ces techniques qui sont limitantes pour l’exploration du protéome, l’identification (ou confirmation) de nouvelles protéines d’intérêt clinique et leur quantification en vue d’un diagnostic. Ces protéines ultra minoritaires sont autant de biomarqueurs potentiels, et dans le cas de protéines à action locale ou de protéines issues de tissus dégradés, leur très faible concentration est due à leur dilution dans un des fluides corporels ; les détecter et les identifier est un problème lié à la sensibilité des outils analytiques.

I.1.3. Biomarqueurs

I.1.3.1. Définition et éléments de caractérisation

Une définition des biomarqueurs (condensé de « marqueurs biologiques ») a été donnée par la FDA 8 en 2004 et stipule qu’un biomarqueur est une caractéristique qui peut être mesurée objectivement comme indicateur d’un processus biologique normal, d’un processus pathogène ou comme réponse pharmacologique à une intervention thérapeutique.
Les industries pharmaceutiques sont entrées dans une période critique, où il est urgent de développer de nouveaux outils pour réduire le temps et les coûts de développement de médicaments. Une solution à ce goulot d’étranglement est de rendre plus prédictables les issues des tests, et donc surtout d’éviter les échecs tardifs par l’utilisation de marqueurs biologiques judicieux dès les premières phases de développement.

La recherche amont commence à tirer parti des innovations technologiques et de l’explosion des données biologiques, il serait donc judicieux que les phases de développement en fassent de même. Derrière le terme volontairement ou involontairement trop vaste de biomarqueurs, se dessinent de nombreuses applications avec des risques et des enjeux différents. L’éventail de mesures biologiques pouvant être mises en œuvre est si large qu’il est important d’identifier et d’ajuster les moyens disponibles par rapport au but recherché. Ces biomarqueurs peuvent être utilisés pour cibler un échantillon de personnes, pour obtenir de nouveaux critères de substitution ou encore pour assurer la sécurité des produits commercialisés.

Parmi les biomarqueurs, les marqueurs biologiques moléculaires sont les plus prometteurs car ils bénéficient des innovations technologiques en génomique, protéomique et métabolomique. Ils peuvent être classés dans quatre grandes catégories :

• L’ADN : la cartographie du génome humain a servi de base au développement de plusieurs types d’analyses : les prédispositions génétiques, les mutations génétiques et l’analyse des Single Nucleotide Polymorphism (SNP).

• L’ARN : son hybridation sur puce à ADN permet une analyse comparative par rapport à un profil sain du transcriptome.

• Les protéines : leur utilisation est applicable tout au long du processus de recherche et développement d’un médicament et permet à un instant donné de visualiser l’ensemble des éléments fonctionnels.

• Les "petites molécules" : elles regroupent les métabolites, les hormones, ainsi que toute autre molécule organique et inorganique présente dans l’organisme humain.
Les biomarqueurs reflètent un état physiologique de la cellule à un moment spécifique : c’est la signature moléculaire. Des peptides et des protéines sont actuellement utilisés en tant que biomarqueurs, comme par exemple le PSA (Prostate Specific Antigen) dans le cas du cancer de la prostate, l’insuline et le peptide-C dans le diabète, des fragments de collagène pour l’ostéoporose, l’hormone parathyroïde, la calcitonine, le pro-GRP (Gastrin Releasing Peptide) dans le cancer du poumon à petites cellules, les peptides β amyloïdes dans la maladie d’Alzheimer, la résistin dans l’obésité,…

Le plasma reste la matrice biologique de choix pour la mesure de biomarqueurs, en tant que milieu physiologique circulant représentatif de la composition des tissus et de processus pathologiques. Les biomarqueurs peuvent être des protéines excrétées, ils peuvent être également soit d’origine transmembranaire puis tronqués comme le CEA (Carcino Embryonic Antigen) ou les peptides β amyloïdes, soit d’origine intracellulaire puis clivés, comme la protéine DMBT (Deleted in Malignant Brain Tumors). Cette protéine est protéolysée et son fragment peptidique C-terminal de 3KDa est sécrété. Cette protéine est connue pour ses propriétés «suppresseur de tumeur» du cerveau et du tube digestif.

I.1.3.2. Validation des biomarqueurs protéiques

Un biomarqueur, à l’image d’un médicament, suit un certain nombre d’étapes pour être considéré comme validé. Rifai et al. ont récemment décrit un processus complet et détaillé de la validation de biomarqueurs à travers six étapes successives : découverte, qualification, vérification, optimisation, validation clinique et commercialisation. De la découverte à la validation de biomarqueurs protéiques, trois obstacles majeurs doivent être surmontés : tout d’abord, la complexité et la gamme dynamique étendue des protéines plasmatiques et des autres fluides biologiques, ensuite, la très faible concentration présumée de nombreux biomarqueurs spécifiques de maladies, et enfin la variabilité des individus et des pathologies. Aujourd’hui, aucune technique analytique utilisée seule n’a la capacité de surmonter ces trois obstacles simultanément, c’est pourquoi un tel processus de validation a été présenté, étape par étape, en combinaison avec des approches expérimentales et des outils analytiques adaptés à chaque phase du développement.
La première étape de découverte vise à identifier les biomarqueurs potentiels, par analyse différentielle semi quantitative entre différents états (basiquement sain versus malade). Cette étape est effectuée à partir de tout type de milieux biologique afin de faciliter l’identification de protéines sur- ou sousexprimées ou encore modifiées. En effet, il est parfois plus judicieux d’utiliser des fluides ou des tissus à proximité des organes cibles des pathologies pour identifier les biomarqueurs correspondants, afin de limiter l’effet de dilution de ces protéines dans tout le volume corporel (le liquide céphalorachidien pour le cerveau). Cette étape utilise un nombre réduit d’échantillons mais avec un processus d’analyse long et des techniques comme la spectrométrie de masse. Il en résulte une liste de plusieurs milliers de protéines, qui nécessitent une réévaluation pour prouver qu’elles présentent bien une différence d’expression suivant différents états. Du fait du nombre de ces faux positifs et de la sensibilité des techniques d’identification parfois insuffisante, cette liste de biomarqueurs potentiel est souvent enrichie de protéines de la littérature ou d’autres approches comme le transcriptome.

Les étapes de validation qui succèdent à la première identification sont des approches ciblées et quantitatives, permettant d’utiliser des méthodes analytiques spécifiques et sensibles. Après l’étape d’identification, la qualification sert, d’une part, à confirmer les différences d’expression des protéines identifiées avec une autre méthode analytique, et, d’autre part, à vérifier que cette expression différentielle se retrouve dans le fluide biologique où sera

Figure 5: Étapes de développement d’un candidat biomarqueur (traduit de 12)
développé le test final (la plupart du temps dans le plasma) dans le cas où l’identification a nécessité l’utilisation d’un autre milieu biologique.

Dans l’étape de « vérification », l’analyse est étendue à un plus grand nombre d’échantillons plasmatiques, et prend en compte des critères environnementaux, génétiques et biologiques pour grouper les échantillons. Ainsi, à travers cette étape de vérification, la sensibilité du candidat biomarqueur est confirmée (la capacité du test à être positif pour un échantillon malade), et sa spécificité commence à être évaluée (la capacité du test à être négatif pour un échantillon sain).

En vue des dernières étapes, la méthode de dosage utilisée acquiert sa version définitive à travers une étape d’optimisation, en privilégeant les techniques haut débit comme les immunodosages par exemple. En effet, la validation des quelques biomarqueurs qui répondent favorablement aux critères de vérification se fait sur plusieurs milliers d’échantillons, reflétant la variabilité interindividuelle de la population concernée par ce biomarqueur.

Les protéines endogènes utilisées comme biomarqueurs ne sont pas les seules protéines à avoir un intérêt clinique. La pharmacopée s’est enrichie depuis quelques décennies d’une nouvelle classe de médicaments : les protéines thérapeutiques. Elles sont utilisées pour substituer une protéine défaillante (comme l’insuline pour les diabétiques), ou pour interagir avec une autre molécule à l’origine d’une pathologie. Ces protéines thérapeutiques sont majoritairement produites par recombinaison de l’ADN et sont donc appelées également protéines recombinantes. Leur quantification est indispensable à l’ajustement de la posologie ainsi qu’à l’établissement d’une corrélation entre effet et dose administrée, lors de l’évaluation de ces molécules avant leur autorisation de mise sur le marché, procédure commune à tous les médicaments.

I.1.4. Protéines recombinantes

Boyer transforme des cellules de *Escherichia coli* avec des plasmides recombinants, et fonde *Genetic Engineering Technology* (Genentech). En association avec Eli Lilly, il produit la première protéine recombinante humaine, l’insuline (Humulin) en 1982. Les protéines thérapeutiques sont actuellement en passe de devenir la plus grande classe de médicaments en développement par l’industrie pharmaceutique. Plus de 250 produits biopharmaceutiques (protéines recombinantes, anticorps monoclonaux et acides nucléiques) ont obtenu leur autorisation de mise sur le marché et quelques 2500 produits biotechnologiques étaient en cours de développement en 2006 (soit 44% des produits pharmaceutiques en cours de développement), dont 900 en phase préclinique et 1600 en tests cliniques. Le cancer et l’inflammation sont les principales cibles thérapeutiques, et les catégories de médicaments les plus représentées sont les anticorps et les vaccins. Contrairement aux petites molécules qui sont synthétisées par voie chimique, la plupart des protéines sont trop complexes pour ce type de synthèse et nécessitent une production dans des systèmes vivants modifiés par génie génétique.

I.1.4.1. Systèmes d’expression pour la production des protéines thérapeutiques

Jusqu’au milieu des années 1990, les bactéries étaient le système d’expression de choix pour produire une protéine recombinante. Cette position dominante découlait essentiellement de leurs propriétés de croissance rapide, de leur faible coût de production, de leur génétique très étudiée, et des règles de sécurité imposées pour la manipulation de l'ADN recombinant. Actuellement, il existe différents systèmes d’expression permettant de produire les protéines thérapeutiques : les bactéries, les levures, les cellules d’insectes et les cellules de mamifères. Le choix du système d'expression est guidé par les modifications que la protéine doit subir pour être biologiquement active, et surtout par le rendement de la production.

Les protéines thérapeutiques peuvent être séparées en deux catégories suivant qu’elles ont besoin ou non de modifications post-traductionnelles (majoritairement des glycosylyations) pour avoir une activité biologique. Les protéines non glycosylées sont généralement produites par culture de bactéries (*E. coli*) ou de levures (*Saccharomyces cerevisiae*), et représentent 40% des protéines thérapeutiques (en termes de valeur commerciale). Certaines sont même exprimées dans les deux systèmes, comme par exemple l’insuline recombinante qui est produite dans *E. coli* (Humulin, Eli Lilly, Indianapolis, IN, USA) et dans la levure
(Novolog, Novo Nordisk, Bagsvaerd, Denmark). Les systèmes d’expression procaryotes comme E. coli ne glycosylent pas les protéines, et les systèmes tels que les levures ou les cellules d’insectes sont incapables de recréer les glycosylations humaines. D’autre part, les protéines produites par gènes génétique qui ne possèdent pas les mêmes modifications post traductionnelles que les protéines endogènes ont tendance à modifier leur structure tridimensionnelle, perdre leur activité biologique et être éliminées plus rapidement. C’est pour ces raisons que les protéines recombinantes, qui doivent être glycosylées pour être dans leur état natif, sont exprimées, pour la plupart, dans des cellules animales, qui ont la capacité de mimer les glycosylations humaines. Ce type de cellules (notamment les cellules d’ovaires de hamster chinois ou CHO) est utilisé pour produire des protéines recombinantes complexes nécessitant l’ajout de glycanes. Les cultures de cellules animales sont certes très complexes, lentes et coûteuses, mais nécessaires pour l’efficacité voire la sécurité d’une large gamme de protéines thérapeutiques comme les anticorps, les hormones et les cytokines. Une autre voie récemment décrite consiste à modifier génétiquement une bactérie pour qu’elle puisse réaliser les glycosylations de protéines recombinantes.

Bien que ces processus de production biologique soient complexes, il est essentiel, d’un point de vue sécuritaire, légal et économique, de commercialiser un produit identique à celui ayant obtenu l’agrément des autorités compétentes (autorisation de mise sur le marché). Ainsi, le contrôle de production des protéines recombinantes thérapeutiques est primordial. Un lot contenant une protéine recombinante ne peut être caractérisé uniquement par une séquence d’acides aminés correspondant à une et une seule protéine idéalement pure. La réalité à l’échelle moléculaire de la production biologique est bien plus complexe. En effet, lors de la production d’un type de protéine possédant une glycosylation bien définie, se retrouvent finalement en solution quantité de protéines, certes minoritaires, mais différentes de celle attendue soit par leur séquence, soit par un profil de modification post-tractusionnel hétérogène. Ce sont ces formes minoritaires qui présentent potentiellement un risque (tel que le déclenchement d’allergies), en raison d’une modification post-tractusionnelle inadéquate. A ces processus complexes de production et de purification des protéines recombinantes, sont liées deux contraintes. La première concerne la reproductibilité des techniques de production. En effet, le simple changement d’échelle de production peut provoquer des modifications qualitatives et quantitatives sur les protéines, ce qui n’est pas sans conséquences. La seconde contrainte est analytique, et constitue un réel défi puisqu’elle a pour objectif de donner une photographie la plus précise possible de ce qui est présent dans un échantillon. Plusieurs
techniques physico-chimiques comme l'électrophorèse, la spectrométrie de masse, la résonance magnétique nucléaire et le dichroïsme circulaire, peuvent être utilisées pour tester l'intégrité, l'homogénéité et la qualité des structures protéiques, mais les tests d'activités biologiques représentent la meilleure sonde de la structure native. Seules des analyses complémentaires permettent d’appréhender la complexité de ces échantillons où la multitude de composés ultra minoritaires est aussi importante, à l’image du plasma humain, que le ou les quelques composés largement majoritaires.

I.1.4.2. Modes d’administration

D’autres modes d’administration comme la voie intra-nasale ou l’inhalation sont également utilisés. Ces méthodes sont extrêmement faciles d’emploi et permettent de profiter de zones d’absorption fortement vascularisées de grande surface (environ 75 m² pour la méthode par inhalation). Comme toute méthode d’administration, elle présente également des inconvénients puisque des protéases sont également présentes dans la muqueuse pulmonaire, et certaines protéines peuvent avoir des effets indésirables sur les tissus des poumons. Enfin, des résultats encourageants ont été obtenus pour améliorer la biodisponibilité de protéines thérapeutiques administrées par voie orale. De nombreux obstacles sont inhérents à cette voie d’administration, comme par exemple la stabilité des composés dans la sphère gastro-intestinale, le temps de transit ou encore le taux d’absorption en fonction de la taille de la protéine et de la perméabilité des membranes. Pour contourner ces obstacles, des stratégies ont été développées pour augmenter l’absorption des protéines soit en affaiblissant...
temporairement la barrière intestinale, en utilisant des transporteurs qui créent un complexe avec la protéine, ou encore en encapsulant les produits dans des micro- ou nano particules résistantes aux dégradations enzymatiques.

Un autre problème, l’immunogénicité, tend à limiter l’action des protéines thérapeutiques : dans certains cas extrêmes, la réaction allergique peut aller jusqu’au choc anaphylactique qui met en jeu la vie du patient.

I.1.4.3. Immunogénicité des protéines thérapeutiques

L’immunogénicité d’une protéine est sa capacité à entraîner une réaction immunitaire. La formation d’anticorps dirigés contre les protéines thérapeutiques est fréquemment observée lors de traitements à administrations répétées, notamment s’il s’agit d’une protéine animale. Cette immunogénicité est recherchée dans le cas des vaccins, mais dans les autres cas, on cherche à l’éviter. La présence de ces anticorps peut modifier la biodisponibilité, la vitesse d’élimination et le profil pharmacocinétique de la protéine thérapeutique, en formant un complexe anticorps-protéine dont la durée de vie dans le plasma sera différente de celle de la protéine seule. Le mode d’administration de ces protéines recombinantes est connu pour influer sur l’immunogénicité, et les injections extravasculaires sont davantage susceptibles d’induire la production d’anticorps que les injections intraveineuses, certainement en raison de la formation d’agrégats ou de précipités dans la zone d’injection. Outre l’attention apportée aux glycosylations et autres modifications post-traductionnelles pour mimer au mieux les protéines endogènes, une autre approche pour réduire l’immunogénicité utilise une modification chimique en couplant la protéine au polyéthylène glycol (PEG) : c’est la "PEGylation". Ces polymères modifient la taille des protéines et engendrent une gêne stérique qui perturbe la reconnaissance par le système immunitaire.

I.2. Les immunodosages pour la bioanalyse des protéines

Les immunodosages regroupent l’ensemble des méthodes analytiques quantitatives mettant en jeu la réaction antigène-anticorps. Depuis la première description du dosage de l’insuline en 1959 par Rosalyn YALOW et Solomon BERSON, de nombreux développements ont intervenues, donnant un essor important à ces méthodes. Les progrès de l’immunologie ont permis, dans un premier temps, d’obtenir des anticorps polyclonaux de bonne qualité, dirigés...
Chapitre I : Introduction aux protéines et à leur quantification

I.2.1. Antigènes, anticorps et traceurs

Les techniques immunologiques sont basées sur la formation de complexes antigènes-anticorps. Un antigène est une substance étrangère à l’organisme qui, lorsqu’elle est injectée, induit une réponse immunitaire. Les antigènes peuvent être des microorganismes ou des macromolécules. Pendant l’immunisation, les anticorps produits reconnaissent différentes parties structurales de l’antigène, ce qui permet à un antigène d’établir des interactions avec plusieurs anticorps. Ces zones de reconnaissance sur l’antigène sont nommées épitopes (Figure 6). Des molécules de plus petite taille peuvent être impliquées dans les interactions avec des anticorps. Cependant, ces composés sont incapables d’engendrer une réaction immunitaire lorsqu’ils sont injectés seuls. Pour y remédier et obtenir des anticorps, ces molécules sont liées à des macromolécules immunogéniques transportrices. Parmi ces haptènes, on retrouve des molécules naturelles et synthétiques comme les hormones, les toxines, les médicaments et les pesticides par exemple. Contrairement aux macromolécules antigéniques, les haptènes ne peuvent lier qu’un seul anticorps du fait de leur petite taille, ce qui implique que tous les formats de dosage ne leur sont pas applicables.
Le deuxième élément clé des immunodosages est l’anticorps. Celui-ci fait partie de la classe des immunoglobulines. Les anticorps sont des glycoprotéines exprimées à la surface des lymphocytes B. Les sites d’un anticorps qui réagissent avec un antigène ou un haptène sont appelés paratopes. La forme la plus simple d’un anticorps, représentée par la lettre Y, a deux paratopes spécifiques au même épitope. La purification d’anticorps a permis à Edelman de proposer la première structure d’une immunoglobuline en 1975. La molécule d’anticorps est composée de deux chaînes lourdes identiques, liées entre elles par des ponts disulfures, et de deux chaînes légères identiques, chacune étant liée à une chaîne lourde par des ponts disulfures (Figure 7).
La papaïne hydrolyse la molécule en trois parties : deux parties identiques Fab incluant les deux paratopes et une partie Fc (fragment cristallisable, constitué uniquement de chaînes lourdes). La partie de reconnaissance des anticorps est située du côté N-terminal de chaque fragment Fab, alors que la fonction de liaison à des récepteurs est située du côté C-terminal. Chaque chaîne lourde et légère possède une partie constante et une partie variable. La partie constante de la chaîne lourde définit la classe des immunoglobulines. Chez les mammifères, on dénombre cinq classes d’immunoglobulines (IgG, IgM, IgA, IgD et IgE) avec des types de chaînes lourdes différentes (γ, µ, α, δ et ε), et deux types de chaînes légères différentes (κ et λ). Les IgA et les IgM existent respectivement sous forme dimérique et pentamérique, présentant ainsi quatre et dix paratopes spécifiques du même épitope. Les immunoglobulines les plus utilisées pour les immunodosages sont les IgG, qui représentent 75% des immunoglobulines totales du sérum. Les principales caractéristiques des immunoglobulines humaines sont résumées dans le Tableau 2.
Tableau 2 : caractéristiques des différentes immunoglobulines humaines

Le dernier élément essentiel pour mettre en place un immunodosage consiste à utiliser un traceur. C’est une entité chimique (atome, molécule, ion…) liée à une molécule d’antigène ou d’anticorps et délivrant un signal quantitativement mesurable. Il existe plusieurs méthodes de marquage, dont les plus utilisées sont le marquage radioactif, le marquage enzymatique et le marquage luminescent. Pour les marqueurs radioactifs, on utilise surtout de l’iode 125 qui, en se désintégrant, fournit un rayonnement γ, et du tritium, qui fournit un rayonnement β. Parmi les différentes méthodes d’immunodosage, les techniques faisant appel aux traceurs radiomarqués restent globalement très compétitives par leur sensibilité et leur facilité de mise en oeuvre. Les traceurs enzymatiques utilisent une enzyme comme marqueur. Au cours de ces enzyomo-immunodosages, après la réaction immunologique, une réaction enzymatique avec un substrat approprié donne naissance à une espèce chimique quantifiable par photométrie, par absorption, ou par émission. Le marquage d’un anticorps ou d’un antigène consiste à lier de façon covalente la molécule à marquer avec l’enzyme ; cette réaction chimique fait intervenir...
Chapitre I : Introduction aux protéines et à leur quantification

principalement les groupements amines et sulphydryles des protéines. Parmi les enzymes les plus utilisées, on compte la peroxydase de raifort (HRP pour *horse-radish peroxidase*), la phosphatase alcaline, la glucose oxydase et l’acétylcholinesterase. L’addition d’un substrat de l’enzyme, à la dernière étape du dosage, permet la formation d’un composé soluble et coloré, dont l’absorbance est mesurée par un spectrophotomètre. Les marqueurs luminescents offrent une alternative aux méthodes colorimétriques. Ces traceurs permettent de réaliser des dosages au moins aussi sensibles que ceux utilisant des techniques radiométriques tout en présentant l’avantage de ne pas nécessiter l’utilisation de marqueurs radioactifs.

I.2.2. La réaction antigène anticorps

La réaction antigène anticorps est à la base de tous les imunodosages. Cette réaction peut être décrite schématiquement comme une interaction entre une protéine constituée par l’immunoglobuline et une autre molécule pouvant être de nature protéique ou non. A l’échelle atomique, des interactions de type hydrogène, hydrophobes, de Van der Walls, ou ioniques, entre les acides aminés des anticorps et de l’antigène sont mises en jeu. L’énergie de ces liaisons varie entre 4 et 30 kJ/mol: elle est du même ordre de grandeur que l’énergie d’agitation thermique à 37°C (3.9 kJ/mol). Ceci explique la réversibilité de ces liaisons. Le complexe sera stable si le nombre de liaisons qui interviennent est suffisant. A l’échelle macroscopique, ces interactions peuvent être décrites simplement par la loi d’action des masses :

\[
Ag + Ac \rightleftharpoons k_1 \rightarrow Ag - Ac
\]

où Ag représente l’antigène, Ac l’anticorps et Ag-Ac le complexe antigène-anticorps formé.

La constante de dissociation est définie par

\[
K_D = \frac{k_2}{k_1} = \frac{[Ac][Ag]}{[Ag - Ac]},
\]

où les crochets désignent les concentrations des espèces. Cette constante physico-chimique ne dépend que des molécules en présence, du milieu dans lequel a lieu la réaction, et de la température. Cette grandeur reflète l’affinité (la force de l’interaction) de l’anticorps pour son antigène. Cette affinité sera d’autant meilleure que les interactions au niveau moléculaire seront nombreuses et que leur agencement spatial sera le plus approprié pour assurer une parfaite complémentarité entre l’antigène et l’anticorps (modèle de la clé dans la serrure). Les facteurs essentiels qui influencent ces liaisons sont ceux que l’on retrouve de manière générale pour
toutes les interactions entre protéines ou entre protéines et ligands. Citons en particulier une forte influence du pH, de la concentration ionique, et des solvants qui perturbent les sphères de solvatation et déstabilisent les liaisons hydrogènes.

I.2.3. Principe des immunodosages

I.2.3.1. Méthodes par compétition

Lorsque l’on met en présence un anticorps (Ac), son antigène (Ag) et ce même antigène marqué (Ag*), il peut se créer deux types de complexe selon que l’anticorps se fixe à l’antigène ou à l’antigène marqué : Ac-Ag et Ac-Ag*. Le principe de ce dosage réside donc dans la compétition entre les deux formes d’antigène. Pour rendre cette technique quantitative, la concentration en anticorps et en molécule marquée est maintenue fixe, et l’augmentation de la concentration en antigène entraîne l’augmentation de la concentration en complexe antigène-anticorps, au détriment de la formation du complexe antigène marqué-anticorps.

\[
\begin{align*}
\text{Ac}^{(\text{fixe})} + \text{Ag}^{(\text{fixe})} & \rightleftharpoons \text{Ag} - \text{Ac}^{(\text{fixe})} \\
\text{Ag}^*^{(\text{fixe})} & \rightleftharpoons \text{Ag}^* - \text{Ac}^{(\text{fixe})}
\end{align*}
\]

Si l’on dispose d’une méthode permettant de séparer, sans modifier l’équilibre de la réaction, les composés libres des complexes antigènes-anticorps et antigènes marqués-anticorps, on peut déterminer, grâce au signal délivré par le marqueur, la concentration de l’antigène marqué dans sa forme libre et/ou dans sa forme complexée à l’anticorps. Suivant la nature du dosage, on peut être amené à ne pouvoir conserver que l’une des deux fractions (antigène libre ou antigène lié). En établissant une courbe d’étalonnage avec des concentrations connues d’antigène, on détermine la concentration en antigène pour une solution inconnue par comparaison au signal mesuré.

La valeur portée en ordonnée peut être soit l’intensité du signal (désintégration nucléaire, absorbance) correspondant à la molécule marquée libre (F*) ou liée à l’anticorps (B*), soit un
ratio d’intensité (B*/F*, B*/B₀ où B₀ est le signal obtenu en absence d’antigène non marqué).

L’avantage essentiel du dosage par compétition est de pouvoir s’appliquer à n’importe quel type d’antigène, quelle que soit sa taille. C’est en particulier la seule technique permettant de doser les haptenes ne possédant qu’un seul épitope. Cependant, cette méthode nécessite un nombre de sites anticorps constant et identique entre chaque échantillon pour avoir une bonne précision, puisque c’est l’anticorps introduit en défaut qui génère la compétition entre les antigènes. Un deuxième élément limitant pour cette méthode à un seul site de liaison concerne les métabolites et les interférents qui sont susceptibles d’être liés à l’anticorps, et donc de générer un signal qui surestime la quantité d’antigène. Ce manque de spécificité est réduit dans les méthodes immunométriques à deux sites, comme par exemple les méthodes de type sandwich.

1.2.3.2. Méthodes sandwich

Contrairement aux méthodes par compétition, les méthodes de type sandwich utilisent un excès d’anticorps pour lier l’antigène, puis un second anticorps marqué vient se fixer également sur l’antigène pour révéler la liaison entre le premier anticorps et l’antigène. Le premier anticorps peut être par exemple fixé à un support solide (par liaison covalente ou par simple adsorption), et la quantité doit être telle que le nombre de sites de liaison soit supérieur au nombre de molécules d’antigènes présentes dans les solutions étalons ou inconnues. L’antigène va ainsi se fixer sur les sites spécifiques. L’anticorps marqué est ajouté, soit simultanément, soit après une première incubation et un lavage, et se fixe sur l’antigène, préalablement fixé au premier anticorps. L’antigène se trouve ainsi pris en sandwich entre les deux anticorps. Un simple lavage permet de séparer les complexes anticorps-antigène-anticorps marqués des anticorps marqués libres en excès. Pour que l’anticorps marqué puisse se lier à l’antigène déjà engagé dans une réaction avec le premier anticorps, il est nécessaire que les deux anticorps réagissent contre des épitopes différents de l’antigène. On peut employer, à la fois comme anticorps liants et comme anticorps marqués, des anticorps polyclonaux multivalents, ou utiliser des anticorps monoclonaux spécifiques différents. De même que pour les dosages par compétition, les molécules marquées peuvent l’être par exemple par l’intermédiaire de la radioactivité ou par une enzyme. Dans les différents cas de
marquage, le signal correspondant au complexe anticorps-antigène-anticorps marqué est un signal croissant en fonction de la quantité d’antigène, alors que pour un dosage par compétition, le signal correspondant au complexe est une fonction décroissante de la quantité d’antigène.

Les avantages des méthodes de type sandwich sont liés à l’utilisation de deux anticorps (monoclonaux si possibles) dont la spécificité de la reconnaissance pour deux sites différents de l’antigène assure la spécificité de la méthode. Pour fournir un « faux positif » correspondant à une autre molécule confondue avec l’antigène, cette molécule doit posséder les deux même épitopes. En choisissant bien les épitopes, les interférences avec d’autres molécules présentant une forte homologie peuvent être réduites. Cependant, ces interférences restent possibles. Dans un dosage par compétition, les antigènes et les antigènes marqués entrent en compétition pour un nombre limité de sites de fixation portés par les anticorps. La sensibilité maximale est obtenue lorsque la concentration de l’anticorps et de l’antigène marqué tend vers zero, alors que pour le format en sandwich, la sensibilité est maximale lorsque la concentration de ces réactifs tend vers l’infini. Pour cette dernière technique, les réactifs étant introduits en excès, ces conditions favorisent (sur le plan thermodynamique et cinétique) la formation du complexe et améliore la sensibilité. Bien que la méthode sandwich soit plus sensible, elle est cependant moins bien adaptée aux haptenes qui sont souvent trop petits pour pouvoir présenter deux épitopes et réagir avec deux anticorps à la fois, même si un dosage sandwich avec deux sites de fixation pour les anticorps a pu être obtenu avec des peptides comprenant seulement 8 acides aminés. Pour les peptides ne comportant que quelques acides aminés, un format de dosage proche du sandwich peut être utilisé. Il consiste à lier covalentement le peptide à l’anticorps après immobilisation (par le glutaraldehyde), puis à rompre la liaison anticorps-antigène pour libérer l’épitope. Le peptide lié au support solide est ensuite révélé par le même anticorps marqué.
Figure 8 : Principe du dosage ELISA par compétition et par sandwich.
I.2.4. Avantages et limitations des immunodosages

Les immunodosages sont actuellement les méthodes de choix pour la bioanalyse, ceci étant lié à leur facilité de mise en œuvre, le faible coût d’analyse et le haut débit associé à ces techniques. En effet, cette méthode utilise couramment des plaques de titration permettant l’analyse simultanée de 96 ou 384 échantillons sur le même support. Les volumes d’échantillons sont également faibles puisque 50µL d’échantillon suffisent pour effectuer l’analyse (l’échantillon est même très souvent dilué). La sensibilité obtenue au regard du volume d’échantillon consommé est également un atout majeur : ceci s’explique par la sensibilité des compteurs de rayonnement γ utilisés pour détecter les traceurs radioactifs ou par la capacité d’amplification des enzymes fixées sur les traceurs enzymatiques, par conversion chimique de leur substrat en produits colorés.

Cependant, la présence d’une molécule possédant un épitope semblable à l’épitope de l’antigène à analyser peut entraîner une réaction avec l’anticorps utilisé, et ceci quelque soit le format de dosage. Deux cas sont possibles : la molécule interférente se lie soit avec l’anticorps liant, soit avec l’anticorps marqué (dans un dosage de type sandwich). Dans ces deux cas, les interférences aboutissent à une sous estimation de la concentration de l’analyte. Une autre source d’erreur apparaît lors de liaisons non spécifiques entre les réactifs, par l’intermédiaire de substances pontant les réactifs 42, ou simplement par adsorption, aboutissant à une surestimation de l’analyte. La quantification des protéines thérapeutiques, qui ont pour certaines un caractère immunogène et sont donc susceptibles d’engendrer une réponse immunitaire chez les patients traités, présente une difficulté supplémentaire pour la bioanalyse 43;44. Les anticorps endogènes se lient à l’antigène, constitué ici de la protéine thérapeutique, et inhibent la formation des complexes anticorps-antigène du dosage. Il s’ensuit une sous-estimation de la concentration en antigène. Enfin, des interférences avec les métabolites 45 des antigènes sont également susceptibles de se former, aboutissant là encore à des résultats erronés.

Malgré une très forte sensibilité et une facilité de mise en œuvre, les immunodosages ne permettent pas d’identifier formellement et sans ambiguïté le composé qui est analysé, et la spécificité des anticorps utilisés ne permet pas toujours d’éliminer les réactions croisées avec des molécules interférentes. Il est alors nécessaire de se tourner vers des techniques alternatives permettant d’identifier les molécules analysées. Parmi ces techniques, la
spectrométrie de masse est un outil en plein essor pour la bioanalyse car elle présente un gain en spécificité. Déjà largement utilisée pour la quantification de petites molécules, elle tend à se développer pour l’analyse des protéines thérapeutiques et des biomarqueurs.

I.3. La spectrométrie de masse pour l’analyse des protéines

La spectrométrie de masse occupe une place privilégiée parmi les techniques d’analyse. Elle présente des applications variées depuis la physique atomique et la chimie physique (pour la détermination de paramètres thermochimiques par exemple) jusqu’à la médecine. Ces diverses applications, tant qualitatives que quantitatives, sont liées à ses caractéristiques : sensibilité et spécificité. Depuis une vingtaine d’années, des progrès marquants ont été réalisés dans ce domaine. Tanaka s’est ainsi vu attribuer le prix Nobel de chimie en 2002 pour les travaux qu’il avait réalisés sur la désorption douce par laser (SLD). Suite à des travaux menés parallèlement, M. Karas a introduit une méthode proche du SLD, la désorption/ionisation assisté par matrice (MALDI), qui est en fait la méthode la plus utilisée aujourd’hui. Un bond spectaculaire a eu lieu également en 1988 avec le développement de l’électrospray (ESI) par le Pr. John Fenn, qui a lui aussi obtenu le prix Nobel de chimie en 2002. Ces avancées permettent aujourd’hui l’étude de macromolécules du vivant, ouvrant de nouvelles perspectives pour la compréhension de leurs fonctions biologiques. Depuis longtemps, la spectrométrie de masse est reconnue (avec la résonance magnétique nucléaire) comme un outil incontournable pour éclaircir la structure de molécules organiques car elle donne accès à la masse moléculaire. Les nouvelles conditions d’ionisation par désorption ont considérablement élargi le nombre de composés analysables. La spectrométrie de masse offre aujourd’hui la possibilité d’analyser des biopolymères naturels, protéines, oligonucléotides ou polysaccharides : l’enchaînement en acides aminés, en nucléotides, ou en monosaccharides peut ainsi être déchiffré, et les interactions inter- et intramoléculaires caractérisées dans le cas d’associations supramoléculaires.

Les analyseurs ont également évolué, grâce au perfectionnement de ceux existant ou au développement de nouveaux instruments hybrides. Un nouveau concept d’analyseur basé sur un champ électrostatique quadrilogarithmique, baptisé Orbitrap, a été développé par Makarov en 1999 et donne un accès facile à la très haute résolution, permettant d’améliorer la spécificité de ces détecteurs et d’augmenter le potentiel d’identification de molécules.
inconnues grâce à la détermination de leur composition élémentaire. Les perfectionnements des instruments ont ainsi conduit à des améliorations spectaculaires de la sensibilité et de la résolution, dont la biologie a profité à travers l’essor d’applications variées telles que la protéomique, la peptidomique, la glycomique, la lipidomique ou la métabolomique. De plus, le couplage aisé avec des techniques chromatographiques ou électrophorétiques a permis d’améliorer rapidement les limites de détection, trouvant ainsi d’autres applications comme l’analyse de produits pharmaceutiques lors de contrôles de qualité ou encore la quantification de produits actifs pour des études pharmacocinétiques.

Un spectromètre de masse comprend fondamentalement les éléments suivants : un système d’introduction de la substance à analyser, une source (sous vide ou à pression atmosphérique, par ionisation ou par désorption) permettant le passage de cette substance sous la forme d’ions à l’état gazeux, un ou plusieurs analyseurs pour séparer les divers ions produits, un détecteur pour compter les ions et enfin, un système de pilotage de l’instrument et de traitement des données acquises fournissant le spectre de masse.

Dans le cadre de ce travail relevant de l’analyse physico-chimique de biomolécules (les protéines), donc d’édifices moléculaires à caractère polaire, non volatiles ou thermolabiles, nous nous sommes logiquement dirigés vers deux techniques actuelles de désorption-ionisation dites douces, que sont les sources d’électrospray (ESI) et de désorption/ionisation assisté par matrice (MALDI). Les paragraphes suivants, à vocation instrumentales et techniques, décrivent ces deux méthodes d’ionisation et de transfert des ions en phase gazeuse, ainsi que les configurations instrumentales associées pour les spectromètres de masse mis à contribution pour ces études.

I.3.1. La mesure de masse

Le spectre de masse est représenté sous forme d’un diagramme bidimensionnel : le rapport masse/charge est porté en abscisse et l’abondance des ions est portée en ordonnée. Notons ici que l’abondance indiquée est souvent relative, la hauteur des pics étant exprimée en pourcentage de celle du pic le plus intense (pic de base) trouvé dans le spectre de masse. Suivant la résolution de l’analyseur, la masse moléculaire mesurée par spectrométrie de masse peut correspondre à la masse moyenne ou aux masses précises des ions isotopiques.
I.3.1.1. Les abondances isotopiques

Les isotopes sont des atomes qui ont le même nombre de protons mais diffèrent par leur nombre de neutrons. Cette différence entraîne une différence de masse atomique comme par exemple pour le ^{12}C et ^{13}C. Ces isotopes font apparaître des pics dans le spectre de masse sous forme d’amas isotopiques, caractéristiques de la composition élémentaire. L’abondance relative du ^{12}C est de 98,9% et celle du ^{13}C est de 1,1% (ces abondances peuvent varier suivant l’origine de la molécule), et comme le carbone est présent en grande quantité dans les molécules biologiques comme les protéines, la contribution du ^{13}C est significative. Les autres isotopes (^2H, ^{15}N, ^{18}O, …) modifient de la même manière la forme de l’amas isotopique. Plus il y a d’atomes dans une molécule, plus l’influence des isotopes est visible sur les spectres de masse. Plus le nombre de carbones est élevé, plus la contribution du carbone ^{13}C est importante : la probabilité de ne trouver aucun ^{13}C dans une molécule (pic monoisotopique) diminue (Figure 9). Le massif isotopique d’une espèce donnée va donc dépendre de sa composition élémentaire, et les abondances relatives observées des différents pics isotopiques peuvent être confirmées par simple calcul statistique des occurrences de ces isotopes. Enfin, l’écart entre chaque pic du massif isotopique est dû à la différence de masse des isotopes mais également à l’état de charge de la molécule. Par exemple, pour un peptide monochargé, l’écart m/z entre chaque isotope sera environ de 1 ; si ce peptide était dichargé, l’écart m/z serait environ de 0,5 et s’il était trichargé, l’écart m/z serait de 1/3.

![Figure 9](image_url)

Figure 9 : Simulation de l’effet du nombre d’atomes sur les abondances relatives des isotopes. Exemple pour trois « molécules fictives » de 10, 100 et 500 carbones, avec une résolution R=100 000. La flèche indique le pic monoisotopique.
I.3.1.2. Mesure de masse

Le type de masse mesuré par spectrométrie de masse dépend de la résolution de l’analyseur. Si l’instrument est peu résolutif et ne peut pas résoudre les isotopes, les différents pics de l’amas isotopique vont se combiner et former un seul pic. La masse déterminée par le spectromètre correspondra à la masse moyenne. En revanche, si la résolution est assez importante, la masse déterminée par le spectromètre correspondra à la masse monoisotopique (Figure 10). La résolution influence également la précision en masse en raison de l’incertitude de mesure sur le maximum du pic.

![Figure 10 : Simulation de l’effet de la résolution sur le spectre de masse pour un peptide de 12 acides aminés : RPRLSHHKPMPF, avec une résolution de 1000, 2000 et 10 000.]

I.3.2. Les sources d’ions par désorption-ionisation

L’analyse de molécules par spectrométrie de masse passe par une étape incontournable qui est leur ionisation, seules leurs formes ionisées pouvant être séparées et analysées selon leur rapport masse/charge à l’aide d’un champ électrique, variable ou non, ou magnétique, selon le type d’analyseur. Cette étape fait éventuellement suite à une séparation des molécules par chromatographie en phase gazeuse ou liquide dans le cas de mélanges complexes comme ceux rencontrés en bioanalyse. La production des ions en phase gazeuse implique, au préalable, l’évaporation de l’échantillon dans le vide. Si cette approche est adéquate pour les molécules organiques qui sont des systèmes volatiles, il n’en est pas de même pour les biomolécules. En fait, celles-ci étant généralement très polaires et thermiquement fragiles, leur évaporation est impossible sans les dégrader par pyrolyse.

Différentes méthodes d’ionisation-désorption ont été introduites au cours des développements de la spectrométrie de masse. La première, qui est à l’origine des autres méthodes de
désorption sous vide est la désorption par champs développée par Beckey en 1968 (FD, field desorption 47). Elle a été suivie par le bombardement par particules rapides, en utilisant soit des atomes rapides (FAB, fast atom bombardment 48), ou des ions (LSIMS, Liquid Secondary Ion Mass Spectrometry), puis est apparue la désorption douce par laser en mode UV et utilisant une matrice (SLD, soft laser desorption 49) ainsi que la desorption-ionisation laser assistée par matrice (MALDI, matrix assisted laser desorption ionisation 50). De même, la succession d’innovations technologiques sur la production d’aérosols et de leur ionisation par décharge électrique pour ioniser les molécules organiques (APCI, atmospheric pressure chemical ionisation 51) a ouvert la voie à la découverte du mode électronébulisation (ESI, electrospray 52) par J.B. Fenn.

Ces deux techniques d’ionisation largement utilisées pour l’analyse des macromolécules biologiques ont comme point commun le processus de desorption. Toutes deux conduisent à des espèces quasi microscopiques, les agrégats, mais qui résultent de conditions différentes utilisant: (1) des gouttelettes chargées formées sous un champ électrique à partir de nébulisation pour l’ESI; et (2) d’un panache de matière excitée engendré par ablation laser d’une surface où est déposée une matrice pour le MALDI et le SLD. Ces agrégats sont constitués d’un grand nombre de molécules de solvant en mode ESI ou de matrice pour le SLD. Ils stabilisent une (ou plusieurs) biomolécules multichargées selon leur taille et leur forme. Par le jeu de transferts d’énergie, une cascade de désolvatations conduit à la libération d’ions quasi moléculaires désolvatés, avec le minimum d’énergie interne 46.

1.3.2.1. Desorption-ionisation laser assisté par matrice (MALDI)

L’ionisation par technique MALDI se déroule en deux étapes. Dans la première, la substance à analyser est mélangée à une solution de petites molécules organiques, appelées matrices, possédant une forte absorption dans l’ultraviolet. Cette solution est déposée sur une surface métallique, appelée la cible MALDI (Figure 11). L’évaporation du solvant avant analyse aboutit à la formation d’un dépôt de matrice/analyte cocristallisé où les cristaux de matrice
Chapitre I : Introduction aux protéines et à leur quantification

sont dopés en molécules d’analyte dispersées (10^5 à 10^6 fois plus de molécules de matrice que d’analyte).

![Photographie d’une cible MALDI (Applied Biosystems). La cible est une plaque métallique, en acier inoxydable. Celle présentée sur la photographie peut supporter jusqu’à 100 dépôts différents et mesure 5 cm x 5cm.](image)

La deuxième étape se produit sous vide après transfert de la plaque MALDI dans la chambre d’ionisation du spectromètre. Le dépôt est irradié par des impulsions laser intenses. La majorité des lasers utilisés sont à azote et émettent à une longueur d’onde de 337 nm (laser à azote). La durée des impulsions laser est de l’ordre de quelques nanosecondes. Ces impulsions sont répétées à une fréquence de quelques Hertz. L’acquisition d’un spectre de masse se fera donc par accumulation d’un certain nombre d’impulsions laser, de l’ordre de plusieurs centaines. L’énergie transmise par le laser est absorbée par la matrice, et cette irradiation induit l’accumulation d’énergie dans la phase condensée sous la forme d’excitation des molécules de la matrice. Cet apport d’énergie très localisé cause l’ablation d’une portion de la surface du cristal et/ou la sublimation des cristaux, suivie de l’expansion d’agrégats de la matrice en phase gazeuse (Figure 12), entraînant l’analyte intact dans le panache d’expansion.

Le mécanisme le plus largement admis pour la formation des ions implique le transfert de protons soit avant désorption en phase solide, soit dans le panache d’expansion en phase gazeuse. Ce dernier modèle explique l’ionisation de l’analyte par un mécanisme en plusieurs étapes. Une molécule de matrice est ionisée dans l’agrégat, formant ainsi un cluster protoné (dont l’affinité protonique est supérieure à celle de l’analyte). Après désolvatation de l’agrégat, le proton est transféré à l’analyte (par coopérativité des molécules de la matrice). Les ions formés sont alors accélérés à l’aide d’un champ électrostatique vers l’analyseur.

<table>
<thead>
<tr>
<th>Nom</th>
<th>Structure</th>
<th>λ d’absorption (nm)</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acide α-cyano-4-hydroxycinnamique (HCCA)</td>
<td></td>
<td>337, 355 et 266 (UV)</td>
<td>Peptides, protéines, oligonucleotides, glycoprotéines</td>
</tr>
<tr>
<td>Acide 3,5-diméthoxy-4-hydroxycinnamique (ácide sinapinique = SA)</td>
<td></td>
<td>337, 355 et 266 (UV)</td>
<td>protéines</td>
</tr>
<tr>
<td>Acide 2,5-dihydrobenzoïque (DHB)</td>
<td></td>
<td>337, 355 et 266 (UV) 2,94 et 10,6 μm (IR)</td>
<td>Peptides, oligosaccharides, glycolipides, glycoprotéines</td>
</tr>
</tbody>
</table>

Tableau 3 : Exemples de matrices employées en spectrométrie de masse MALDI

La méthode de désorption et d’ionisation laser assistée par matrice est à l’heure actuelle couramment utilisée lors des analyses protéomiques et est devenue une méthode
incontournable pour l’analyse de molécules de haut poids moléculaire comme les biopolymères (peptides, protéines, oligonucléotides, oligosaccharides…). L’obtention majoritaire d’espèces mono-chargées permet de générer des spectres de masses simples et facilement interprétables. Quelques ions multichargés, quelques multimères et une faible fragmentation peuvent également être observés en fonction des matrices utilisées.

L’innovation se poursuit avec le développement de nouvelles techniques : le DIOS (desorption-ionisation on porous silicon) pour les molécules de faibles masse moléculaires, le SALDI (surface activated laser desorption ionisation) qui utilise le graphite comme surface, le SELDI (surface Enhanced Laser Desorption Ionization) pour la purification d’échantillons biologiques à même la cible qui est fonctionnalisée par des anticorps, et l’AP-MALDI (atmospheric pressure-MALDI) qui permet d’appliquer cette méthode d’ionisation à pression atmosphérique. Enfin, le MALDI permet de réaliser une cartographie de la répartition de certains peptides ou protéines dans un organe. L’imagerie moléculaire par MALDI de coupes de biopsie ou de tissus va devenir un outil clé pour étudier les pathologies, en fournissant des cartes moléculaires des échantillons.

I.3.2.2. Les sources électrospray (ESI : ElectroSpray Ionisation)

L’électrospray (ou électronébulisation) est une source d’ions à pression atmosphérique (Figure 13) qui peut facilement être couplée à la chromatographie liquide. Cette technique, proposée par M. Dole en 1968, a été développée par J.B. Fenn au milieu des années 80 et est utilisée en spectrométrie de masse pour produire des ions à partir de composés en solution. Considérée au début comme une source de désorption-ionisation dédiée à l’analyse de polymères, et appliquée ensuite aux protéines, son utilisation s’est rapidement étendue non seulement à d’autres biopolymères, mais également à l’analyse de petites molécules. Cette technique d’ionisation-désorption, n’induit quasiment pas de fragmentation. C’est la raison pour laquelle la méthode électrospray est considérée comme une technique d'ionisation-désorption douce.
Les mécanismes conduisant à la formation d’ions en phase gazeuse par électrospray peuvent être résumés en trois étapes principales: (1) la formation de gouttelettes chargées à partir de l’extrémité d’un capillaire métallisé, (2) l’évaporation du solvant et les explosions coulombiennes, (3) formation d’agrégats chargés, (4) et finalement obtention d’ions désolvatés en phase gazeuse (positifs, négatifs et adduits, en fonction du mode d’ionisation).

Formation de gouttelettes chargées à l’extrémité d’un capillaire métallisé:
L’électrospray est produit par application à pression atmosphérique d’un fort champ électrique sur un liquide traversant un tube capillaire métallique (ou une aiguille métallisée) avec un faible débit (0,1 à 500 µL.min⁻¹). Le champ électrique est obtenu par application d’une différence de potentiel de plusieurs kilovolts (de 2 à 6 kV) entre le capillaire et la contre électrode. La grande différence de potentiel induit une séparation des charges à l’intérieur du liquide par un phénomène électrophorétique de migration des électrolytes (cations et anions). Lorsque le capillaire représente l’électrode positive, les espèces cationiques vont alors s’accumuler à son extrémité, tandis que les anions vont effectuer un déplacement inverse en s’accumulant à l’intérieur, jusqu’à s’oxyder à la surface du capillaire ⁶¹.
L’accumulation de charges à la surface du liquide situé à l’extrémité du capillaire va créer une déformation de ce dernier, déformation qui met en jeu un équilibre entre les forces électrostatiques et la tension de surface de ce liquide. Lorsque les forces électrostatiques atteignent la valeur de la tension de surface du liquide, la déformation est conique et porte le nom de cône de Taylor. Une faible augmentation du champ électrique suffit alors pour déstabiliser le cône qui se rompt à son extrémité, dispersant la solution en nombreuses gouttelettes fortement multichargées. Après cette étape, les gouttelettes se déplacent sous l’influence du champ électrique intense mais également sous celle du gradient de pression créé entre la source et l’entrée du spectromètre de masse. C’est au cours de ce trajet qu’a lieu l’évaporation du solvant des gouttelettes pour produire des agrégats chargés.

Processus d’évaporation du solvant et explosions coulombiennes :
Dans l’espace entre l’extrémité du capillaire et la contre-électrode, les gouttelettes chargées issues du cône de Taylor vont être au contact de l’azote chauffé et vont subir une évaporation du solvant. La diminution du rayon R des gouttelettes possédant une charge constante q conduit à l’augmentation de la densité de charge et à la répulsion électrostatique jusqu’à ce que les gouttelettes atteignent la limite de stabilité, liée à la tension de surface et donnée par l’équation de Rayleigh:

Figure 14 : Schéma simplifié du fonctionnement d’une source électrospray
Équation 1 : équation de Rayleigh, avec ε_0 permittivité du vide, R le rayon de la gouttelette et γ la tension de surface

Cette équation donne les conditions pour lesquelles les forces de répulsion électrostatiques deviennent égales à celles de la tension de surface. Ainsi, la gouttelette chargée devient instable et une cascade d’explosions coulombiennes se produit (fission des gouttelettes) \(^63;64\). Ce phénomène se reproduit jusqu’à ce que les nouvelles gouttelettes aient à nouveau atteint la limite de Rayleigh.

Formation d’ions désolvatés en phase gazeuse à partir de petites gouttelettes fortement chargées :

Deux mécanismes principaux sont proposés pour expliquer ce phénomène. Le premier, le modèle des résidus chargés ou « charged residue model » (CRM) a été décrit par Dole \(^60\) en 1968. Celui-ci a fait l’hypothèse que la succession d’explosions coulombiennes conduit à des gouttelettes de plus en plus petites jusqu’à ce que la dernière « gouttelette » ne possède plus qu’un seul et unique ion (Figure 15). La désolvatation du solvant résiduel présent sur les ions permet de ce fait l’obtention d’ions multichargés en phase gazeuse.

![Figure 15 : Deux théories de l’obtention d’ions désolvatés en phase gazeuse à partir de gouttelettes chargées – (a) Modèle des résidus chargés par Dole – (b) Modèle de l’évaporation ionique par Iribarne et Thomson](image)

En 1979, une seconde théorie, le modèle de l’évaporation ionique ou « ion evaporation model » (IEM), basée sur de nouveaux mécanismes, est proposée par Iribarne et Thomson \(^65\). Leur théorie repose, comme celle de Dole, sur une succession initiale de fissions de type coulombiennes qui réduit la taille des gouttelettes en augmentant leur densité de charge. La
différence avec la théorie de Dole tient au fait qu'Iribarne et Thomson proposent que lorsque les gouttelettes atteignent un rayon très petit (de l’ordre de 10 nm) et une densité de charge très élevée, le champ électrostatique à leur surface est assez intense pour expulser directement des ions en phase gazeuse (Figure 11b). Ce phénomène, appelé "évaporation ionique", suggère que l’explosion coulombienne ne constitue pas le seul mécanisme majoritaire pour les petites gouttelettes de rayon \(R \leq 10 \) nm.

D’autres modèles basés sur les précédents existent, mais aucun d’entre eux n’est aujourd’hui considéré comme la théorie unique qui permettrait de modéliser le passage de gouttelettes de solvant contenant des analytes à des ions en phase gazeuse \(^6^6\). Cependant, il semble actuellement établi que le modèle de Dole \(^6^7-6^9\) expliquerait le processus de désorption/ionisation pour les macromolécules et le modèle d’Iribarne et Thomson celui des molécules de petite taille \(^6^5\). Quel que soit le mécanisme responsable de la formation des ions en phase gazeuse, l’électrospray est aujourd’hui une méthode d’ionisation-désorption couramment utilisée, dans des domaines variés (biologie, chimie, pharmacie…) et notamment dans l’étude des peptides et protéines.

Les particules chargées ainsi produites dans la source sont accélérées vers l’analyseur, alors que les molécules non chargées sont éliminées. Il existe différentes géométries de source, où le capillaire porté à haute tension fait un angle avec la contre électrode. La géométrie Z-spray est assez répandue chez un type de constructeur par exemple (Waters). Suivant les appareils, cet angle peut être variable ou constant, et il est parfois possible de désaxer le spray par rapport à l’entrée de l’analyseur. Ainsi seules les molécules ionisées sont déviées de leur trajectoire pour rentrer dans l’analyseur. Les molécules non chargées ne viennent pas se déposer, ce qui évite l’encrassement de la contre électrode et des lentilles de transfert. Ces paramètres sont importants dans les applications de routine et en couplage chromatographique à haut débit, où le premier échantillon d’un lot doit être analysé dans des conditions similaires au premier, sans perte de rendement d’ionisation ou de transmission des ions.

Les ions multichargés :
Après ionisation à partir de gouttelettes chargées, les macromolécules telles que les protéines sont libérées à l’état gazeux après désolvatation. Le processus conduit à la formation d’une multiplicité d’ions portant un nombre variable de charge. Cette distribution de charges porté par une macromolécule dépend du nombre de sites acides ou basiques, de la conformation de
la protéine (globulaire ou dépliée), de la nature du solvant et de son pH. La complexité du
spectre est en fait un avantage car la précision de la mesure en est accrue, et la formation
d’ions multichargés permet l’analyse de molécules de masse moléculaires très élevées à l’aide
d’analyseurs ayant une faible valeur limite en masse nominale. En effet, les principes
physiques de séparation des ions par spectrométrie de masse font que la grandeur mesurée ne
correspond au rapport masse sur charge (m/z). Les spectres de masse ESI de macromolécules
 correspondent à une distribution d’états de charges dont les pics correspondent à des états de
charge consécutifs obtenus par protonation $(M+z\text{H})^{z+}$ ou déprotonation $(M-z\text{H})^{z-}$. Dans le cas
d’une ionisation en mode positif, deux pics consécutifs ont des rapports m/z

\[
(m/z)_1 = \frac{M + z \times m_{\text{H}}}{z} \quad \text{et} \quad (m/z)_2 = \frac{M + (z+1) \times m_{\text{H}}}{z+1},
\]

où M est la masse moléculaire de la
molécule, m_{H} la masse du proton et z l’état de charge du pic considéré. La résolution de ce
système permet d’accéder facilement à z et surtout à M. Des algorithmes de déconvolution ont
ont été développés pour transformer l’échelle des spectres de masse en masses réelles. L’état
de charge peut être également déterminé par l’écart entre chaque pic de l’amas isotopique. Les
isotopes du 12C et 13C diffèrent d’une unité de masse, la distance observée sur un spectre entre
deux pics isotopiques consécutifs correspond à $1/z$. Cette manière de déterminer la charge
d’un ion est importante pour les ions fragments obtenus dans les expériences de MS/MS.

Grâce à l’ionisation-désorption par MALDI ou par ESI, la spectrométrie de masse a pu être
appliquée à l’étude des macromolécules biologiques. La méthode MALDI se fait sur matrice
solide, sous vide et a le principal avantage de créer des ions peu chargés. C’est une méthode
d’ionisation séquentielle, très souvent couplée avec un analyseur de type temps de vol
(configuration MALDI-TOF), dont le mode de fonctionnement est également séquentiel et
requiert un vide poussé. L’ESI est une méthode d’ionisation en continu et à pression
atmosphérique, produisant des ions avec une plus grande distribution de charges qu’en
MALDI. L’ESI est une interface permettant de coupler beaucoup plus facilement que le
MALDI la chromatographie liquide avec divers analyseurs.
I.3.3. Les analyseurs

L’analyseur est situé dans une enceinte à basse ou très basse pression (10^{-4} à 10^{-10} mbar) assurée par un système de pompage progressif. Pour les sources à pression atmosphériques, les ions doivent être transféré dans l’analyseur tout en conservant ces faibles pressions. Le problème d’écart de pression est résolu en intercalant un très petit orifice entre les deux compartiments, suffisamment large pour permettre d’introduire le plus grand nombre d’ions possibles tout en maintenant un vide correct dans l’appareil pour permettre l’analyse. Une technique de pompage différentiel sur un ou plusieurs étages de pompage, séparés entre eux par des skimmers, est utilisée pour maintenir cette différence de pression. Une pompe mécanique primaire assure en général une première diminution de la pression dans les premiers compartiments. Puis une ou plusieurs pompes turbomoléculaires en série assurent le pompage dans les autres compartiments afin d’atteindre un vide secondaire plus poussé. Cette pompe turbo ressemble à un moteur d’avion : une série de rotors, chacun avec de multiples lames coudées est entraînée à une vitesse de rotation très élevée (30000 à 90000 tours par minute).

Le rôle de l’analyseur est de trier les ions selon leur rapport m/z. Ce tri se fait de manière différente selon l’analyseur utilisé. Par exemple, dans un analyseur de type "temps de vol" (TOF) les ions seront séparés en fonction du temps qu’ils mettent pour traverser le tube de vol. Au fur et à mesure que les ions sont triés, ils atteignent sélectivement le détecteur du spectromètre de masse.

I.3.3.1. Généralités et définitions

Tout comme il existe une grande variété de sources, il existe différents types d’analyseurs. Ils sont classés en deux catégories :

- **les analyseurs à faisceaux d’ions**: comme le quadripôle qui stabilise la trajectoire que d’un ion de rapport m/z, les autres sont éjectés du faisceau ; ou encore l’analyseur à temps de vol (time of flight, TOF), qui mesure le temps de parcours des ions.

- **les analyseurs à piégeage d’ions** (ion trap, IT) : parmi lesquels il est possible de citer le piège à ions comme le piège de Paul (3D), où les ions sont piégés physiquement par des potentiels électriques et décrivent grossièrement un huit. Le
Chapitre I : Introduction aux protéines et à leur quantification

Piège linéaire (Q-trap ou LTQ suivant les constructeurs) impose aux ions des allers et retours sur une ligne au milieu de quatre barres alimentées par des potentiels (2D). Le piège de Paul et le piège linéaire détectent les ions expulsés du piège à une valeur de rapport m/z. Enfin, les analyseurs à ultra haute résolution avec l’analyseur à résonance cyclotronique ionique et transformée de Fourier (FT-ICR) et l’Orbitrap piègent des paquets d’ions et mesurent des fréquences de rotations pour le FT-ICR et d’oscillation pour l’Orbitrap.

Chacun d’entre eux possède des caractéristiques et des performances analytiques qui lui sont propres. Quelques une sont présentées dans le Tableau 4. D’une manière générale, ils peuvent être définis par ces différents paramètres :

La gamme de rapport m/z qui correspond aux limites minimales et maximale de m/z au-delà desquelles l’analyseur ne pourra plus mesurer de signal. Les temps de vol n’ont pas de limite haute.

La sensibilité qui correspond à la quantité d’échantillon nécessaire pour détecter un signal (interprétable) dans le spectre de masse. L’intensité du pic est comparée à l’intensité du bruit de fond (intensité du signal autour du pic d’intérêt), et l’on considère qu’un ion est détectable pour une valeur de signal/bruit (S/N) supérieur à 3.

La vitesse de balayage qui est le temps que va mettre l’analyseur à établir un spectre pour une gamme de m/z donnée. Des analyseurs comme les quadripôles, les pièges à ions effectuent un balayage de la gamme de masse, et la résolution dépend de la vitesse à laquelle est effectué ce balayage. En revanche, les analyseurs à temps de vol n’effectuent pas de balayage, le FT-ICR et l’Orbitrap ont quant à eux une résolution qui dépend du temps d’acquisition (de l’ordre de la seconde) en raison du principe de la transformée de Fourier.

La résolution, qui représente la capacité de l’analyseur à séparer deux composés de m/z voisins, et qui est donnée par \(R = \frac{m}{\delta m} \). Une mesure de la résolution pour un ion isolé consiste à prendre sa largeur à x % de son maximum, le plus souvent à mi-hauteur.
La précision sur la mesure de m/z qui représente la faculté de mesurer une masse la plus proche possible de la masse théorique de la molécule analysée. Cette précision s’exprime le plus souvent en « partie par million » (ppm) calculée selon :

\[\text{Erreur (ppm)} = \frac{|M_{\text{exp}} - M_{\text{théo}}|}{M_{\text{théo}}} \times 10^6 \]

où \(M_{\text{exp}} \) représente la masse mesurée expérimentalement et \(M_{\text{théo}} \) la masse monoisotopique réelle de la molécule analysée. Cette précision en masse est liée à l’étalonnage de l’appareil d’une part, et à la résolution d’autre part comme illustré Figure 10.

<table>
<thead>
<tr>
<th>Analyseur</th>
<th>Limite en rapport m/z</th>
<th>Résolution (FWHM)</th>
<th>Exactitude en masse (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadripôle</td>
<td>4000</td>
<td>3000</td>
<td>200</td>
</tr>
<tr>
<td>Piège à ions (2D/3D)</td>
<td>6000</td>
<td>5000</td>
<td>200</td>
</tr>
<tr>
<td>Temps de vol</td>
<td>Illimitée</td>
<td>5000-20 000</td>
<td>20-200</td>
</tr>
<tr>
<td>Orbitrap</td>
<td>4000</td>
<td>30 000-100 000</td>
<td><5</td>
</tr>
<tr>
<td>Résonnance cyclotronique</td>
<td>8000</td>
<td>50 000-10 000 000</td>
<td><2</td>
</tr>
</tbody>
</table>

Tableau 4 : Comparaison des performances des différents analyseurs (FWHM : Full Width at Half Maximum)

1.3.3.2. Les modes d’acquisitions en spectrométrie de masse

On distingue deux principaux modes d’acquisition : le mode de spectrométrie de masse simple (MS) et le mode de spectrométrie de masse en tandem (MS/MS) ou à fragmentation successives (MS\(^n\)).

Pour le mode MS, les spectres peuvent être acquis en mode balayage (scan) ou en mode de détection d’ions sélectionnés (selected ion monitoring, SIM). En mode balayage, des spectres de masse sont acquis sur une plage de rapport m/z. Le mode SIM a pour but de détecter des substances cibles avec un maximum de sensibilité en ne détectant que les ions sélectionnés à un m/z caractéristique des substances à analyser.

Les modes d’acquisition MS/MS et MS\(^n\) impliquent une activation des ions de laquelle va résulter la fragmentation des molécules. Il existe différents moyens d’activation : la collision par gaz (CID, collision induced dissociation), la technique SORI (sustained off resonance Irradiation), les techniques ECD (Electron capture dissociation) et ETD (electron transfer...
dissociation) et la technique IRMPD (infra red multi photon dissociation). Mis à part la CID, les autres techniques ne sont disponibles que sur les spectromètres de masse FT-ICR. On obtient alors le spectre des ions produits résultant de la fragmentation.

Pour le mode MS/MS, une première étape consiste à isoler les ions d’un même rapport m/z (ion parent), de les fragmenter, puis d’analyser les ions produits par fragmentation (ions fils) soit en mode balayage, soit en ne sélectionnant qu’un seul ion fragment (SRM, selected reaction monitoring). Le mode SRM permet d’obtenir un gain de sensibilité (en diminuant le bruit de fond) et de spécificité (peu de molécules possèdent le même couple de valeurs m/z à la fois pour l’ion parent et l’ion fils). Le mode MS^n consiste à sélectionner un ion, le fragmenter, sélectionner un ion fils, le fragmenter,…n fois. Le mode MS/MS en mode balayage est un moyen de caractériser et d’identifier une molécule, car des informations d’ordre structurales sont obtenues (séquence peptidique, groupements chimiques). Le mode SRM est plutôt dédié à la quantification de molécules déjà caractérisées.

Différentes combinaisons d’analyseurs ont été développées suivant leurs performances pour les modes précités. Là encore ces appareils peuvent être classés en trois catégories : (1) les analyseurs à faisceaux d’ions comme le triple quadripôle ou le TOF-TOF, (2) à piégeage d’ions comme les pièges linéaires, les pièges 3D ou le FT-ICR, et (3) les instruments hybrides, combinant des analyseurs à faisceaux couplés à des analyseurs haute résolution, comme le Q-TOF ou Q-FT-ICR, et des analyseurs à piégeage d’ions couplés à des analyseurs haute résolution comme l’IT-TOF ou le LTQ-Orbitrap.

Les travaux présentés dans les chapitres suivants comportaient deux approches, l’identification d’une part et la quantification d’autre part. Des spectromètres de masse de type triple quadripôle ont été utilisés pour effectuer les approches quantitatives, alors qu’un MALDI-TOF, un Q-TOF ainsi qu’un LTQ-Orbitrap ont été utilisés lors des approches d’identification. Les paragraphes suivants ont donc pour objet une description succincte des triples quadripôles, des analyseurs à temps de vol (dans la configuration MALDI-TOF et Q-TOF) et de l’Orbitrap.
I.3.3.3. Les triples quadripôles

- Le quadripôle
Il utilise la stabilité des trajectoires dans un champ électrique oscillant pour séparer les ions selon leur rapport \(m/z \). Il est constitués de quatre barres parallèles, ayant idéalement une section hyperbolique, auxquelles on applique une tension continue additionnée d’un potentiel modulé en radio fréquence, déphasés de 180°. L’application de ces potentiels crée un champ alternatif quadripolaire superposé à un champ constant entre les électrodes. Les ions extraits de la source, sont accélérés et focalisés par un jeu de lentilles électrostatiques jusqu’à leur entrée dans l’analyseur quadripolaire. Seuls les ions dont le rapport \(m/z \) permet une trajectoire stable dans l’analyseur (par résonance) atteignent le détecteur. Les autres, dont la trajectoire n’est pas stable, entrent en contact avec les barres et s’y déchargent avant d’atteindre l’extrémité de l’analyseur et ne sont pas détectés (Figure 16).

![Figure 16 : Filtre de masse quadripolaire : le potentiel appliqué à ces barres permet de stabiliser la trajectoire d’un ion de rapport \(m/z \) donné (d’après 71).](image)

- Les triples quadripôles (TQ ou QqQ)
La Figure 17 donne le schéma de principe d’un appareil à trois quadripôles : le triple quadripôle (TQ ou QqQ). Dans le quadripôle central, qui est souvent remplacé par un hexapôle pour des raisons de transfert optimal d’ions, on peut introduire un gaz de collision à une pression telle qu’un ion entrant dans la cellule de collision subisse en moyenne une collision. La fragmentation dans les quadripôles est donc obtenue par CID. Dans le triple quadripôle, l’énergie de fragmentation est transmise à l’ensemble des ions contenus dans la cellule par application d’une différence de potentiel.
Les triples quadripôles permettent diverses configurations d’analyse : les balayages d’ions fragments d’un parent constant, d’ions précurseurs d’un fragment constant, de perte de neutre (perte d’un fragment de rapport m/z constant) et SRM qui fixe les analyseurs pour isoler un ion précurseur et un ion fragment. Cette dernière configuration est la plus utilisée pour la quantification puisqu’elle permet d’atteindre une grande spécificité à partir de mélange complexe comme les matrices biologiques. En effet, même si les analyseurs de type quadripôle sont de faible résolution, la probabilité pour que deux composés aient un rapport m/z identique à la fois pour leur ion précurseur et pour un ion fragment est faible. Si une séparation chromatographique est appliquée en amont, le paramètre temps de rétention permet d’augmenter la spécificité de l’analyse.

1.3.3.4. Les analyseurs à temps de vol (TOF)

La nécessité d’identifier des protéines ou des peptides d’intérêt biologique justifie l’utilisation d’appareils à haute résolution. En effet, la complexité et le nombre de molécules biologiques imposent une caractérisation précise des molécules d’intérêt. Les appareils de faible résolution sont dans l’incapacité de fournir une mesure de masse suffisamment précise (résolution à ± 0.5 Da pour les triples quadripôles) pour permettre l’interrogation des bases de données biologiques et de discriminer des centaines de candidats potentiels. Ceci justifie l’intérêt porté à la spectrométrie de masse à haute résolution. Ces appareils de haute résolution permettent d’identifier la masse monoisotopique des composés et de déterminer leur état de charge. Bien que la précision en masse soit liée à l’étalonnage de l’appareil, une résolution accrue diminue l’incertitude de la mesure. Des analyseurs à temps de vol ont été utilisés au cours de ces travaux, soit dans la configuration MALDI-TOF soit dans la configuration ESI-Q-TOF.
Le principe de l’analyseur à temps de vol, désigné TOF pour *Time-of-flight*, a été décrit en 1946 par Stephens. Wiley et McLaren ont élaboré le premier TOF dans un but commercial en 1955. L’analyseur à temps de vol est une zone où règne une basse pression (~5.10^{-11} bar). Les ions sont accélérés vers le tube de vol par une différence de potentiel appliquée entre une électrode et la grille d’extraction. Comme tous les ions acquièrent la même énergie cinétique, des ions caractérisés par une distribution en masse présentent une distribution de leur vitesse (Équation 2).

\[
E_c = \frac{1}{2}mv^2 = qV = zeV
\]

Équation 2 : Energie cinétique d’un ion de masse m, de vitesse v et de charge q soumis à un potentiel V

Lorsque ces ions passent ensuite dans le tube de vol qui est libre de champ, ils sont séparés en fonction de leur vitesse acquise (Figure 18). Pour un tube de vol de longueur L, les ions ayant acquis une vitesse v vont mettre un temps \(t = \frac{L}{v} \) pour arriver au détecteur. v et t sont déduits de l’équation suivante :

\[
v = \sqrt{\frac{2zeV}{m}} \quad \text{et} \quad t = L\sqrt{\frac{m}{2zeV}}
\]

Équation 3 : vitesse et temps de parcours des ions dans un tube de vol

Les ions les plus légers ont une plus grande vitesse et arrivent au détecteur plus rapidement que les plus lourds de plus faible vitesse. L’analyseur à temps de vol peut être couplé aux sources ESI et MALDI. En théorie, le domaine de masse d’un instrument TOF n’a pas de limite supérieure, ce qui le rend particulièrement bien adapté aux techniques d’ionisation douce comme les sources MALDI qui produisent des ions de rapport \(m/z \) élevé. Cette dernière configuration MALDI-TOF est la plus courante, notamment en analyse protéomique et peptidomique.

Les sources pulsées comme le MALDI sont bien adaptées à l’analyseur TOF, mais la qualité des faisceaux d’ions pulsés est insuffisante pour obtenir une haute résolution et permettre de déterminer la masse avec une bonne précision. Cette résolution très moyenne est en réalité due à un élargissement des pics dont la cause principale est une distribution en énergie cinétique non homogène pour des ions de même rapport \(m/z \). Deux développements ont permis d’améliorer très nettement la situation : l’extraction retardée et le réflectron.
L’extraction retardée ou delayed extraction (DE), consiste à introduire un délai ou un retard entre la formation des ions et leur extraction de la source, afin de réduire la dispersion du temps de vol des ions possédant le même rapport m/z. La désorption est un phénomène temporel, où les ions ne sont pas tous formés en même temps et avec une énergie cinétique différente. L’impulsion d’extraction appliquée après un laps de temps transmettra une énergie plus importante dans la zone d’accélération aux ions qui initialement possédaient moins d’énergie cinétique et qui sont restés plus proches de la cible. Les ions formés ayant un même rapport m/z acquièrent ainsi une énergie cinétique plus homogène. Des optimisations ont également été effectuées sur les grilles d’extraction, toujours dans le but de diminuer la dispersion en énergie cinétique, et donc d’augmenter la résolution ainsi que la précision en masse.

L’analyse de molécules en mode linéaire est particulièrement bien adaptée pour l’étude des molécules de haute masse moléculaire, mais cette technique présente un faible pouvoir résolutif de l’ordre de 500 à 1000. Afin d’augmenter la résolution en masse des analyseurs à temps de vol, une deuxième amélioration a été mise au point : le réflectron. Cette technique est indépendante du type de source et est applicable à tous les analyseurs de type temps de vol. Elle consiste à utiliser un miroir ou réflecteur électrostatique qui permet la focalisation temporelle au niveau du détecteur des ions quittant la source avec le même rapport m/z, mais présentant une dispersion en énergie cinétique. Ce réflecteur électrostatique est composé d’une série d’électrodes annulaires portées à des potentiels croissants, et qui agissent comme un miroir électrostatique. Le champ électrique résultant de ce réflectron s’oppose à la progression des ions à l’extrémité du tube de vol. Les ions qui rentrent dans le réflectron sont ralentis et finissent par s’arrêter, puis font demi-tour et sont renvoyés dans le tube de vol. Ainsi, la différence de temps de vol lié à une distribution d’énergie cinétique sera compensée par la différence de parcours dans le réflectron ; il en résulte une refocalisation au niveau du détecteur et un gain en résolution (Figure 18). Cette refocalisation permet d’obtenir une résolution de l’ordre de 20 000 dans une gamme de rapport m/z compatible avec l’utilisation du réflectron (m/z < 10 000).
Figure 18 : Schéma d’un MALDI-TOF équipé d’une lentille d’extraction retardée (DE pour Delayed Extraction) et d’un réflectron. Les énergies cinétiques de deux ions de même masse sont compensées par une trajectoire différente dans le réflectron.

Des instruments hybrides ont été développés, notamment des analyseurs Q-TOF (Quadripole-Temps de vol) en 1995. Ils combinent un analyseur de type quadripolaire suivi d’une cellule de collision, et d’un analyseur à temps de vol à injection orthogonale. Ce type d’appareil peut être vu comme un triple quadripôle où le dernier analyseur (quadripôle) est remplacé par un tube de vol. La sensibilité est comparable aux triples quadripôles mais avec une résolution en masse bien supérieure $R = 10 000$, facilitant l’identification de composés inconnus. Ce type d’analyseur est très utile pour des applications de protéomique puisqu’il permet d’identifier facilement les états de charge des ions fragments produits par collision, et donc de lever certaines ambiguïtés lors d’identifications de séquence de biopolymères ou de peptides. Le gain de sensibilité est dû à la capacité du TOF à mesurer simultanément et avec précision la masse des ions sur un large domaine de masse alors que le triple quadripôle doit effectuer un balayage au cours du temps.
Figure 19 : Spectromètre de masse hybride Q-TOF composé d’un analyseur quadripolaire (Q1), d’une cellule de collision (q2, qui est souvent un hexapôle) et d’un tube de vol orthogonal.

I.3.3.5. L’Orbitrap

L’orbitrap est constitué de deux électrodes coaxiales. L’électrode centrale a la forme d’un fuseau, et l’électrode extérieure a la forme de deux cloches (Figure 20) identiques séparées par un espace étroit. Des tensions continues sont appliquées aux électrodes. Les ions sont injectés tangentially par l’interstice avec une énergie cinétique de quelques keV. La géométrie du piège et les tensions continues qui y sont appliquées génère entre les deux électrodes un champ de type quadrilogarithmique (en coordonnées cylindriques). Les ions ont alors une trajectoire circulaire autour de l’électrode centrale tout en oscillant latéralement suivant l’axe z (Figure 20). La fréquence de ces oscillations est liée au rapport m/z ($\omega = \sqrt{\frac{z}{m}} k$, où k est une constante géométrique du piège). Le courant induit par les ions est mesuré de manière différentielle entre les deux moitiés de l’électrode externe. Ce courant est converti en masses et en intensité par transformée de Fourier, produisant ainsi un spectre.
de masse. La résolution étant fonction du temps d’acquisition du courant induit, le vide dans le piège est poussé (10^{-13} \text{ Bar}) pour augmenter le libre parcours moyen des ions.

Figure 20 : Piège électrostatique ou « orbitrap ».

L’orbitrap permet d’accéder à l’ultra haute résolution (>30 000) sans utilisation de champ magnétique et sans les contraintes qui y sont associées en terme de refroidissement des bobines. Elle a été couplée par la société Thermo Scientific avec un piège linéaire pour former un spectromètre de masse hybride, le LTQ OrbitrapTM, permettant une détection rapide et sensible. La résolution de cet analyseur atteint 100 000 FWHM à 400 m/z, et donne ainsi accès à la mesure de masses précises puisque, dans des conditions de bonne calibration externe, l’exactitude est inférieure à 5 ppm, ce qui simplifie l’identification de peptides et de protéines lors d’expériences de protéomique83.

I.3.4. La quantification par LC-MS

I.3.4.1. La chromatographie en phase liquide des peptides et des protéines

Grâce à l’avènement de méthodes de désorption-ionisation à pression atmosphérique comme l’électrospray, les analyses par spectrométrie de masse ont pu être appliquées aux macromolécules telles que les protéines. Cependant cette technique reste délicate à mettre en œuvre en bionalyse, en raison de la complexité des échantillons étudiés. En effet, le phénomène d’ionisation des macromolécules est un processus au rendement faible et variable. Si, de plus, d’autres molécules sont présentes en solution, celles-ci vont également s’ioniser,
ce qui a pour effet non seulement de complexifier le spectre de masse mais en plus de diminuer le rendement d’ionisation du composé à analyser (on parle dans ce dernier cas de suppression d’ionisation).

Pour palier ces problèmes, il est ainsi nécessaire de séparer les analytes des autres composants de la matrice avant leur introduction dans le spectromètre de masse. Pour cela, la chromatographie en phase liquide haute performance (HPLC, *high performance liquid chromatography*) apparaît comme un outil de choix, en raison de son fort pouvoir séparatif et de sa simplicité de couplage avec les sources électrospray. La LC-MS (*liquid chromatography-mass spectrometry*) est d’ailleurs devenue une des techniques les plus employées pour la bioanalyse des composés de faible masse moléculaire, et elle est en fort développement pour le dosage des molécules de taille plus importantes telles que les peptides ou les protéines.

Dans le cas de l’analyse de peptides ou de protéines, il faudra bien évidemment tenir compte de leur propriétés physico-chimiques spécifiques, tels que leur taille importante ou leur caractère amphotère. En fonction de la phase stationnaire utilisée, plusieurs types d’interactions peuvent être mises en œuvre lors de la séparation chromatographique. Cependant, la chromatographie de partage à polarité de phases inversées est le plus souvent employée. Elle est en effet particulièrement bien adaptée au couplage à la spectrométrie de masse car elle ne nécessite pas l’utilisation de sels à forte concentration et permet de travailler avec des pourcentages importants de solvants organiques, paramètres favorables à la bonne ionisation des composés dans une source électrospray. Alors que ce type de chromatographie met en jeu pour de petites molécules un partage de la molécule entre la phase stationnaire et la phase mobile, pour les peptides et les protéines elle est principalement basée sur leur adsorption sur la phase hydrophobe. Leur éluition a alors lieu pour une concentration critique en solvant organique, et c’est pourquoi les applications HPLC utilisent de faibles pentes de gradients en solvants organiques (méthanol ou acétonitrile) pour la désorption consécutive des peptides puis des protéines.

En chromatographie de partage à polarité de phases inversées, les phases stationnaires les plus employées sont constituées de billes de silice greffées par des chaînes alkyle (le plus souvent C18, mais aussi C8 ou parfois plus courtes). Des phases stationnaires polymériques (*PLRP*) peuvent également être utilisées. Les particules de phase stationnaire ont des diamètres compris entre 1 et 5 µm, la taille des pores variant entre 80 et 300 Å. Une diminution du
diamètre des particules ou de la taille des pores entraîne une diminution de la porosité, ce qui a pour effet d’améliorer la résolution mais d’augmenter la surpression dans la colonne chromatographique.

Les colonnes utilisées ont des longueurs variant entre 5 et 15 cm, et un diamètre interne généralement compris entre 1 et 4,6 mm. En fonction de ce diamètre, les débits de phase mobile varient entre 50 µL/min et 1 mL/min. Une longueur de colonne accrue permet d’améliorer les séparations, mais augmente les temps d’analyse et diminue les efficacités. De façon similaire, un diamètre de colonne (ou un débit de phase mobile élevé) diminue les temps d’analyse, mais augmente les volumes d’élation, ce qui a pour effet de diminuer la concentration des analytes dans le solvant d’élation (et donc de dégrader la sensibilité). Cette dernière est en effet inversement proportionnelle au carré du diamètre interne de la colonne utilisée. Ainsi, des colonnes capillaires de 50 à 100 µm ont été introduites : on parle alors de nanochromatographie. Couplée à des spectromètres de masse à ultra-haute résolution, cette technique séparative est devenue incontournable pour les analyses protéomiques et permet un gain théorique en sensibilité (un facteur de plusieurs centaines en comparaison avec des colonnes classiques de 2,1 mm) pour quelques microlitres d’échantillon injectés.

Les phases mobiles utilisées sont constituées d’une phase aqueuse d’une part, et d’une phase organique éluante (acétonitrile ou méthanol) d’autre part. Les analyses sont le plus souvent effectuées en augmentant au cours du temps le pourcentage de solvant organique dans la phase mobile. L’utilisation de gradients permet en effet de moduler la séparation en fonction des besoins : une faible pente de gradient conduira à de meilleures séparations, au détriment du temps d’analyse. Le couplage à la spectrométrie de masse réduit les additifs de phase mobiles utilisables. Ainsi, l’utilisation de sels est à proscrire, ces derniers pouvant former des adduits avec les analytes et polluer la source électrospray. Toutefois, les phases mobiles sont généralement acidifiées par des acides organiques volatils tels que le TFA (acide trifluoroacétique), l’acide acétique ou l’acide formique afin d’augmenter la résolution des pics chromatographiques. Ces agents interagissent avec les analytes et augmentent leur hydrophobie en formant des paires d’ions. Cependant, si le TFA est le plus efficace pour augmenter la rétention des composés sur les phases stationnaires hydrophobes, les paires d’ions qu’il forme avec les analytes ne sont pas totalement dissociées dans les sources électrospray, d’où une diminution du rendement d’ionisation. C’est pourquoi le TFA est généralement remplacé par l’acide acétique ou l’acide formique.
I.3.4.2. La quantification des peptides et des protéines par LC/MS

En spectrométrie de masse, la molécule est analysée sous une forme ionisée et pour la quantifier, le détecteur enregistre l’intensité du signal associé à cette espèce (de rapport m/z) en fonction du temps. On obtient alors un chromatogramme dont l’abscisse est le temps et l’ordonnée est l’intensité de l’ion considéré. Différents modes peuvent être utilisés, comme détaillé dans la partie I.3.3.2 : le mode MS/MS (SRM), ou le mode MS simple.

Comme pour tous les détecteurs, la quantification est réalisée au moyen d’une droite d’étalonnage, en prenant garde à se restreindre à des concentrations en analyte comprises dans le domaine de linéarité du spectromètre de masse. En raison de la complexité de ce dernier, il existe de nombreux paramètres susceptibles de faire varier l’intensité d’un ion au cours des différentes analyses, et ce détecteur est donc moins robuste que d’autres pour la quantification. Pour pallier ces variations, une molécule ayant des caractéristiques physico-chimiques aussi proches que possible de l’analyte est utilisé : le standard interne. Son rôle est de s’affranchir des fluctuations d’une analyse à l’autre. Il est introduit en quantité constante dans les échantillons à analyser et les points de gammes. Pour réaliser la quantification, l’aire absolue du pic chromatographique de l’analyte n’est pas utilisée directement mais est normalisée par l’aire du pic chromatographique du standard interne.

Toute méthode analytique doit être caractérisée et validée pour garantir la robustesse des résultats obtenus. Dans le cadre de l’évaluation des médicaments en phase de développement, ces résultats font parti des données soumises aux autorités réglementaires, et doivent donc être acquises conformément aux bonnes pratiques de laboratoires (BPL), et les méthodes utilisées doivent suivre les recommandations formulées par la FDA (Food and Drug Administration) 87,88.

La courbe de calibration doit ainsi contenir un minimum de cinq points de gamme (sans compter le blanc), et doit être obtenue à partir de solutions préparées dans la même matrice biologique que les échantillons pour lesquels la méthode sera appliquée.

La limite basse de concentration (LLOQ pour lower limit of quantification) est la concentration la plus basse pour laquelle il est possible de faire une mesure avec une précision et une justesse statistiquement acceptables. Le plus haut point de gamme définit la ULOQ (upper limit of quantification). Toute concentration obtenue en dehors de ces limites basses et hautes ne peut être acceptée (pas d’extrapolation possible).
La justesse et la précision de la méthode pour analyser des échantillons de concentration connue sont évaluées à l'aide de contrôles de qualité (CQ). Trois concentrations réparties sur toute l'amplitude de la gamme sont testés : un CQ bas (à une concentration inférieure à 3× la LLOQ), un CQ moyen (au milieu de la gamme) et un CQ haut (près de la ULOQ). Lors de la validation d’une méthode, précision et justesse sont déterminées en utilisant un minimum de cinq répétitions par niveau de concentration. Leur valeur moyenne ne doit pas dévier de plus de 15 % par rapport à la valeur théorique, excepté pour la LLOQ, où elle ne doit pas dévier de plus de 20 % par rapport à la valeur théorique. Quant à la précision, le coefficient de variation de la valeur obtenue ne doit pas dépasser 15 %, excepté à la LLOQ, où la tolérance est là encore de 20 %. Il est également recommandé, lors du développement d’une méthode devant satisfaire les recommandation BPL, d’évaluer la stabilité de la molécule dans la matrice biologique, dans les conditions de stockage mais aussi à température ambiante, d’évaluer l’effet de congélation et de décongélation répétées sur la stabilité du produit, ainsi que d’estimer la spécificité du dosage en utilisant plusieurs sources de la même matrice (des plasma de donneurs différents par exemple). Par la suite, lors de l’application de la méthode à des échantillons inconnus, une courbe de calibration dans la même matrice doit être générée pour chaque lot d’échantillons, et les CQ sont utilisés pour accepter ou rejeter l’analyse.

Dans les chapitres suivants, nous avons développé des méthodes analytiques adaptées à différentes protéines thérapeutiques et à des biomarqueurs. Nous avons évalué les méthodes à l’aide de certains critères présentés ici. Cependant, le principal but de ces développements étant de prouver la faisabilité des méthodes analytiques développées, certaines recommandations n’ont pas été appliquées. En particulier, lorsque des dosages des molécules cible avaient déjà été développées, les études de stabilité n’ont pas été réalisées de nouveau.
Chapitre II :

Evaluation d’un polypeptide thérapeutique
II.1. Introduction

Dans le cadre de l’évaluation des protéines thérapeutiques, nos premiers travaux ont porté sur l’étude dans le plasma d’une petite protéine : l’Epi-hNE4 (Engineered protein inhibitor of human Neutrophil Elastase)89,90. Cette protéine, également dénommée DX-890, est un inhibiteur spécifique de l’élastase leucocytaire humaine (hNE), découvert et conçu par Dyax. Elle est actuellement en développement, et testée sous licence en Europe par Debiopharm.

L’élastase leucocytaire humaine (hNE) est une protéase produite dans le cadre d'une réponse inflammatoire d'une catégorie de leucocytes, appelés neutrophiles, qui combattent l'infection en dégradant les protéines de surface de certaines bactéries. Une accumulation excessive de hNE dans les liquides et tissus pulmonaires de patients atteints de mucoviscidose peut compromettre la structure et le fonctionnement des poumons car cette enzyme est capable de dégrader les macromolécules constitutantes de la matrice extracellulaire des poumons, et est susceptible d’induire des inflammations91.

L’EPI-hNE4 est une petite protéine de 56 acides aminés, ayant une masse moléculaire de 6237 Da. Sa structure dérive d’un inhibiteur endogène humain de protéases (inhibiteur inter α). C’est un inhibiteur rapide et de forte affinité pour son récepteur hNE, avec une constante de dissociation K_d de $5,45 \times 10^{-12} \text{M}$ et une constante cinétique K_{on} de $8 \times 10^6 \text{M}^{-1}\text{s}^{-1}$.

Sa séquence d’acides aminés est la suivante :

\begin{verbatim}
 1 EACNLPIVRG PCIAFFPRWA FDAVKGKCVL FPYGGCQGNG
 41 NKFYSEKECR EYCGVP
\end{verbatim}

Nous nous sommes intéressés à deux aspects de la bioanalyse de cette protéine dans le plasma, dans le but de mieux caractériser sa pharmacologie. Nous avons ainsi, dans un premier temps, effectué sa quantification dans des échantillons obtenus lors d’une étude clinique. Pour cela nous nous sommes basés sur une méthode de dosage mise au point au laboratoire, dont nous avons voulu augmenter la sensibilité via une étape d’immunocapture. Ce travail a été publié dans Rapid Communication in Mass Spectrometry92. Nous avons ensuite travaillé sur un problème majeur dans le domaine des médicaments biopharmaceutiques : l’immunogénicité. Nous avons alors développé un dosage immunologique pour détecter la présence d’anticorps anti-Epi-hNE4 dans le sérum de singe.
lors d’une étude de toxicité menée chez cette espèce. Cette étude a été publiée dans *Journal of Pharmaceutical and Biomedical Analysis* 93.

II.2. Développement d’un dosage par chromatographie liquide couplée à la spectrométrie de masse

II.2.1. Introduction à la quantification des protéines intactes par LC-MS

En recherche pharmaceutique, les analyses quantitatives sont nécessaires pour mener à bien certaines études essentielles portant sur la pureté et la qualité des lots de production, sur la stabilité des formulations ainsi que sur la recherche de métabolites dans des matrices biologiques. Plus important encore, la détermination de paramètres pharmacocinétiques comme la distribution, la liaison à des protéines transporteuses, et l’élimination, nécessitent une mesure quantitative de la concentration des médicaments dans la circulation sanguine.

II.2.1.1. Méthodes de quantification des protéines

La quantification des protéines en milieu biologique peut être effectuée par diverses méthodes. Des méthodes séparatives conventionnelles telles que la chromatographie liquide ou l’électrophorèse capillaire sont généralement couplées à une méthode de détection par UV, mais la technique la plus courante est l’immunoanalyse. Les méthodes immunologiques demeurent les méthodes de référence pour la bioanalyse des protéines thérapeutiques en raison de la sensibilité qui caractérise cette technique (détectation de concentrations de l’ordre du picomolaire), de sa sélectivité, de son haut débit, et des faibles coûts associés. Cependant, la sélectivité de ces dosages dépend des épitopes reconnus par les anticorps, or ces épitopes ne représentent qu’une partie de la protéine, d’où les possibilités d’interférences. De légères modifications telles que des pertes d’acides aminés du côté N- ou C-terminal peuvent ne pas être différenciées. Les immunodosages mesurent ainsi la quantité totale de protéines possédant l’épitope reconnu par les anticorps. Les autres méthodes analytiques, basées sur une séparation chromatographique ou électrophorétique couplée à une détection UV, ont une portée limitée lorsqu’elles sont appliquées à l’analyse de matrices biologiques complexes telles que le plasma. Ces méthodes de détection n’étant pas spécifiques et moins sensibles, les
protéines à quantifier doivent être en forte concentration, ou la méthode séparative en amont doit être très résolutive afin de s’affranchir des nombreuses protéines de la matrice 85.

Avec le développement des techniques de désorption-ionisation douces, la spectrométrie de masse apparaît comme une alternative intéressante aux techniques analytiques énoncées précédemment. Les différents types d’analyseurs disponibles ainsi que les modes d’acquisition permettent de l’appliquer à différentes problématiques, notamment pour l’identification de composés inconnus ou de métabolites, et pour la quantification de produits thérapeutiques. Les analyses quantitatives par technique MALDI sont possibles, mais la majorité des quantification sont effectuées par des techniques API (atmospheric pressure ionisation, comprenant en particulier la photoionisation, l’ionisation chimique et surtout la désorption électrospray). La désorption-ionisation par électrospray permet en effet de coupler facilement des méthodes séparatives comme la chromatographie liquide à différents types d’analyseurs, et le nombre de molécules analysées par cette technique ne cesse d’augmenter. Initialement développée pour l’ionisation des macromolécules, l’électrospray a été appliqué à tous types de composés, et la LC-MS s’est finalement imposée comme la méthode de référence pour la quantification des molécules de faible masse moléculaire en recherche pharmaceutique 94,95.

II.2.1.2. Analyse de polypeptides par spectrométrie de masse

La grande variabilité des séquences d’acides aminés rencontrés et les possibilités de modifications structurales font qu’il est très difficile de prédire le comportement des peptides et des protéines vis-à-vis de leur solubilité dans les différents solvants, de leur adsorption sur les parois des tubes et tubulures, ainsi que de leur désorption-ionisation, paramètres importants pour l’analyse chromatographique suivie de celle en spectrométrie de masse. Pour les peptides, la proportion de résidus acides ou basiques orientera l’ionisation en mode négatif ou positif. Les protéines sont généralement ionisées en mode positif, après acidification de la phase éluante à un pH voisin de 3, et, dans ce mode d’ionisation, les résidus basiques en surface améliorent la protonation de la protéine. La technique d’ionisation par électrospray, appliquée aux protéines, conduit à la formation de plusieurs espèces ionisées de distribution d’états de charges variable, contrairement aux molécules de faibles masses moléculaires généralement monochargées. Ce profil d’états de charges peut être modifié par les réactifs
utilisés tels que la proportion des solvants organiques, l’acidité des phases mobiles, ainsi que les différents paramètres de sources (potentiel du capillaire, potentiel du cône, température de la source, débit des différents gaz…) du spectromètre de masse. Une variabilité de cette répartition des états de charges peut empêcher une quantification fiable des protéines.

Les concentrations auxquelles les protéines thérapeutiques doivent pouvoir être quantifiées sont très variables. Les protéines thérapeutiques par exemple présentent une large amplitude de concentration entre le moment de l’injection et au cours de l’élimination du produit (dont la concentration doit tendre vers zéro après un certain temps). Les biomarqueurs protéiques ont en revanche un comportement différent, qui correspond à une augmentation ou à une diminution de leur taux, par rapport à une concentration stable, en prévision ou à la suite d’événements cliniques. Les méthodes analytiques doivent donc s’adapter aux besoins de la bioanalyse, qui requiert parfois des limites de quantification basses. Ces dernières peuvent être atteintes grâce à des instruments sensibles, ou en améliorant le rapport signal sur bruit. Il existe deux approches classiques pour la quantification par spectrométrie de masse : la MS et la MS/MS (présentées au chapitre I).

La technique de spectrométrie de masse en tandem (MS/MS) est habituellement utilisée pour améliorer ce rapport signal sur bruit. Après une activation dans le spectromètre de masse qui augmente les constantes de vitesse de dissociation de l’ion précurseur, un ou plusieurs ions produits permettent la quantification de la protéine. Bien que l’intensité des ions fragments produits soit inférieure à celle initiale de l’ion précurseur, la réduction drastique du bruit de fond permet un gain en sensibilité. Il a été montré par ailleurs que certains acides aminés en particulier orientaient les processus de fragmentation, comme les acides aminés acides et basiques, ainsi que la proline. Un ou plusieurs ions fragments sont alors favorisés, ce qui permet un gain en sensibilité lors d’une analyse MS/MS, même pour des peptides de taille importante. La taille de la protéine influence également la fragmentation à travers deux aspects : pour une même protéine présentant une distribution d’états de charges, la sélection d’espèces moléculaires fortement protonées conduit à des fragmentations différentes des espèces moléculaires faiblement protonées, le choix de l’espèce moléculaire la plus intense ne donnera alors pas forcément la transition la plus intense. D’autre part, l’augmentation du nombre de degrés de liberté liée à l’augmentation de la taille de la protéine diminue la quantité d’énergie par liaison (il n’y a alors pas de dissociation). Une activation et une dissociation inefficace qui aboutit à la formation d’aucun ion fragment spécifique n’est pas
compatible avec les sensibilités requises, et l’approche par analyse de type MS simple est alors effectuée 101,102.

Bien qu’une sensibilité inférieure soit obtenue avec une analyse par balayage de toute la gamme de masse en comparaison des autres modes plus spécifiques de suivi d’un ion (SIM) ou d’une transitions (SRM), c’est la seule méthode permettant de détecter des métabolites ou des interférents. L’étalement et la variabilité du profil d’états de charges peut également nécessiter à une analyse en mode balayage. La déconvolution des spectres de masses en rapport m/z permet d’obtenir un spectre des masses moléculaires (m), et la protéine est alors quantifiée sur la base de l’intensité de l’espèce moléculaire d’intérêt dans le spectre déconvolué. Cette méthode a été appliquée à la quantification de l’IGF1 103 et de la β-lactoglobuline 104. Les protéines ayant tendance à former de nombreux états de charges en électrospray peuvent également être quantifiées par ionisation MALDI qui se caractérise par la formation de peu d’états de charges. Cette approche a notamment été appliquée pour la quantification de polypeptides tels que la Myotoxine a (4822 Da) 105, les peptides amyloïdes Aβ (~4500 Da) 106, l’IGF1 (7649 Da) 107 ou encore la résistine (19105 Da) 108, avec des sensibilités comparables à celles obtenues par des dosages utilisant la technique ESI, comme indiqué dans le Tableau 5.

II.2.1.3. Standard interne

Afin de rendre robustes certains processus sujets à variabilité comme l’extraction de la protéine, le volume injecté, l’ionisation dans la source du spectromètre de masse, ou la dissociation dans la cellule de collision, un standard interne est introduit dans l’échantillon au début du dosage. L’analyse en parallèle de l’analyte et de son standard interne, qui ont si possible des propriétés physico-chimiques quasiment identiques, permet de normaliser les analyses successives d’échantillons et de réduire la variabilité du dosage. La spectrométrie de masse a la capacité d’analyser plusieurs composés simultanément en les discriminant par leur rapport masse sur charge. La standardisation des analyses par ajout d’une molécule dont la masse est différente de celle de la molécule à quantifier est un des avantages de la spectrométrie de masse par rapport à l’immunoanalyse. L’analyse de composés par LC-MS ne se fait pas directement par mesure d’intensité d’un signal, mais par comparaison à la molécule de référence qu’est le standard interne. Celui-ci est ajouté en quantité fixe dans tous les échantillons à analyser lorsque la quantification se fait par le biais d’une droite d’étalonnage.
Pour les polypeptides, plusieurs possibilités sont envisageables : le marquage isotopique, les modifications chimiques et l’utilisation d’analogues.

Le marquage isotopique de la protéine par des isotopes stables tels que le 13C, 15N et le D représente actuellement la méthode de référence. Ce marquage isotopique ne modifie pas les propriétés physico-chimiques de la protéine marquée ou non. Les paramètres tels que le temps de rétention chromatographique, le rendement de désorption-ionisation et les fragmentations seront identiques pour les deux molécules. Les progrès de la synthèse peptidique permettent aujourd’hui de synthétiser des peptides jusqu’à 100 acides aminés et donc de produire des standards marqués pour une grande partie des petites protéines. A titre d’illustration, Kippen et al. utilisaient de l’$[^{15}\text{N}]$-Insuline (expression de la protéine dans un milieu contenant $^{15}\text{NH}_4\text{Cl}$) 109 ; Gobom et al., de la $[^{13}\text{C}]$-neurotensine 110 ; Ji et al., de la $[^{15}\text{N}]$-rK5 (recombinant Kringle 5) 111 ; Hawkridge et al., de la $[^{13}\text{C}_{10},^{15}\text{N}_5]$-BNP-32 112 ; Oe et al., le peptide $[^{15}\text{N}_5]$-$\text{A}\beta_{1-42}$ 113, et la liste est loin d’être exhaustive. De tels exemples sont nombreux dans la littérature en raison du parfait mimétisme de ces composés pour leur analogue non marqué, permettant un contrôle rigoureux de la variabilité des dosages. Cependant, le coût d’une telle synthèse est le principal frein à son utilisation.

D’autres approches sont alors développées, telles que les modifications chimiques de certains groupes réactifs de la protéine comme les cystéines, les amines et les acides aminés aromatiques. Ce qui est recherché ici, c’est surtout le moyen de différencier la molécule modifiée de celle intacte par une augmentation ou une réduction de sa masse moléculaire, et ceci de manière simple, que ce soit par alkylation, par modification ou remplacement d’un acide aminé. Bunk et al. 114 ont ainsi généré un standard interne de la HSA par ajout de biotine sur la cystéine libre de cette même protéine. Dai et al. 115 ont modifié un peptide thérapeutique (Sifuvirtide) par addition de deux atomes d’iode 127 sur chacune des deux tyrosines. Enfin, Wolf et al. 116 ont modifié les peptides GIP$_{1-42/3-42}$ par substitution de deux acides aminés (une histidine remplacée par une arginine et un acide aspartique remplacé par un acide glutamique), et plus récemment, Bredehöft et al. ont fait de même sur l’IGF$_1$ (l’acide glutamique en position 3 a été substitué par une arginine) 117.

Enfin, l’utilisation d’analogues de la protéine est également une solution envisageable, l’analogue pouvant être d’une espèce différente (comme la Ghréline de rat utilisé comme standard interne pour la quantification de la Ghréline humaine par Rauh et al. 118) ou
synthétique (comme la résistine humaine recombinante utilisée lors du dosage de la résistine endogène par l’équipe de Nelson R.108).

A travers ces différents procédés, une variation de la masse moléculaire peut être obtenue sans complètement modifier le comportement de la molécule (temps de rétention, rendement d’ionisation, profil de fragmentation, voire même la reconnaissance par des anticorps lors d’étape d’extraction spécifiques), ce qui permet de quantifier ces peptides avec une précision et une fiabilité compatibles avec les normes de validation.

Il.2.1.4. Effet matrice

On désigne sous le terme effet matrice, l’influence du milieu analysé sur l’élément dosé. Les composés du milieu peuvent modifier le comportement de l’analyte à chaque étape du dosage, lors de l’extraction, de la séparation chromatographique et de l’ionisation dans la source du spectromètre de masse. Celui-ci est capable de discriminer l’analyte d’interférents, soit par la mesure précise de la masse moléculaire, soit par la mesure de la masse d’un ou plusieurs ions produits après activation en MS/MS. Ces informations d’ordre structural permettent de réduire les ambiguïtés et augmentent la spécificité de l’analyse. Cependant, le principal défaut des techniques LC-MS par rapport aux immunodosages est lié à leur manque de sensibilité (facteur 10 à 100 suivant les composés). Plusieurs paramètres permettent de moduler la sensibilité. Le plus simple, mais pas le moins onéreux, consiste à se doter d’un spectromètre de masse performant (suivant leurs générations, le facteur de sensibilité varie de 10 à 50). D’autres facteurs, comme la diminution du diamètre des colonnes HPLC, permettent d’obtenir un gain substantiel, notamment grâce à l’utilisation de colonnes nanométriques qui, avec un diamètre de 75 µm par exemple donnent un gain théorique d’environ 800 comparé à une colonne de 2,1 mm pour un même volume d’échantillon injecté. La diminution des débits associés à ces réductions de diamètre (200 nL/min contre 200 µL/min, pour l’exemple précédent) concentre d’autant plus les analytes lors de l’élution.

Cette étape de séparation des composés par chromatographie liquide est une étape indispensable à la sensibilisation des dosages par LC-MS. En effet, des composés de la matrice injectés dans le système chromatographique peuvent être coélués et rentrer en compétition lors de la désorption-ionisation dans la source du spectromètre de masse,
aboutissant à un phénomène de "suppression d’ionisation". Un tel phénomène a des répercussions sur le dosage en augmentant la variabilité et en altérant la sensibilité119. Cet effet dépend fortement de la molécule à analyser, et si la sensibilité et la précision du dosage restent acceptables, il n’y a pas lieu de s’en inquiéter. Dans la plupart des cas, des standards internes adaptés tels que des molécules marquées par isotopes stables, permettent de compenser cet effet. Dans le cas contraire, un traitement préalable de l’échantillon ou une amélioration de la séparation chromatographique est nécessaire, au détriment du débit d’analyse120. Les matrices biologiques utilisées pour la bioanalyse des composés, telles que l’urine, le plasma, le sérum ou des tissus, sont si complexes que cette étape de séparation chromatographique est souvent insuffisante pour analyser les molécules les moins concentrées. Il est pour cela nécessaire de préparer les échantillons.

\textit{II.2.1.5. Traitement d’échantillons}

Deux objectifs peuvent justifier une préparation des échantillons :
- réduire les interférences85 (capacité limitée des colonnes, diminution de la solubilité des protéines de haute masse moléculaire en solvants organiques)
- concentrer les analytes

Ainsi différentes méthodes sont appliquées lors de dosages LC-MS pour extraire et concentrer les protéines d’intérêt, ou encore simplifier les matrices biologiques. Trois approches se dégagent de la littérature : la précipitation des macromolécules majoritaires par un solvant organiques, l’extraction sur phase solide (SPE), et l’immunoextraction. L’extraction liquide liquide n’est pas mentionnée en raison de l’application limitée aux peptides hydrophobes, ainsi que la chromatographie d’exclusion de taille qui est caractérisée par une mauvaise résolution et une dilution des analytes85.

\textit{Précipitation des protéines}

La précipitation des protéines est certainement l’une des techniques les plus faciles à mettre en œuvre, et elle consiste à mélanger la matrice biologique avec un solvant organique tel que l’acétonitrile ou le méthanol, un acide, un sel ou des ions métalliques121. La solubilité des protéines de hautes masses moléculaire étant réduite en présence de ces solvants, celles-ci précipitent sous forme dénaturée. Une étape de centrifugation permet alors de récupérer le surnageant qui est évaporé puis reconstitué dans un solvant compatible avec l’injection.
Chapitre II : Evaluation d’un polypeptide thérapeutique

HPLC. Cependant, la capacité de cette méthode à concentrer des protéines minoritaires dans les matrices biologiques complexes reste limitée. Cette approche réduit la complexité des matrices biologiques de manière simple, mais elle est applicable à condition que les protéines d’intérêt ne soient pas elles aussi précipitées, ou co-précipitées. Une telle approche a donc des applications limitées aux protéines de faible masse moléculaire, telles que la motilin (2700 Da) ou l’Epi-hNE4 (6237 Da). D’autre part, cette technique ne permet pas de gagner en sensibilité en concentrant les analytes avant l’analyse LC-MS.

L’extraction sur phase solide

L’extraction sur phase solide offre un degré de spécificité supplémentaire. En se basant sur les propriétés physico chimiques des molécules (interactions hydrophobes, interactions ioniques, acidité, et basicité), les protéines d’intérêt sont retenues dans la colonne d’extraction. Celle-ci est lavée puis éluée avant injection dans le système LC-MS. En ajustant les compositions des solvants lors du lavage (pour éliminer un maximum de composés sans éluer la protéine d’intérêt) et de l’éluition (pour éluer peu de molécules en plus de la protéine d’intérêt), cette technique permet de purifier la protéine. Là encore, la portée est limitée puisque les protéines sont nombreuses dans les matrices biologiques et les similitudes physico chimiques entre ces protéines sont courantes. La purification obtenue est donc relative, et la séparation par chromatographie liquide étant la plupart du temps opérée sur la base d’interactions hydrophobes, il sera donc judicieux de choisir une dimension de séparation orthogonale (ionique par exemple). Après éluition, une étape supplémentaire d’évaporation est nécessaire afin que le solvant dans lequel se trouve la protéine soit compatible avec le système chromatographique, ce qui pose des problèmes pour les peptides et les protéines qui ont une certaine tendance à s’adsorber sur les surfaces, diminuant ainsi le rendement de l’étape d’extraction. Bien que cette technique présente un débit d’analyse élevé et soit facilement automatisable par couplage en ligne, elle est difficilement applicable aux protéines de très faible concentration.

L’immunoextraction

La troisième technique d’extraction, l’extraction par immunoaffinité, utilise des anticorps immobilisés sur une phase solide. L’affinité des anticorps et leur spécificité permettent alors d’extraire la protéine à quantifier. Les lavages successifs permettent d’éliminer un maximum de composés adsorbés de manière non spécifique de la phase solide, et l’éluition en milieu acide et/ou organique dissocie le complexe et libère la protéine qui est injectée par la suite.
Chapitre II : Evaluation d’un polypeptide thérapeutique

dans le système LC-MS. Les travaux pionniers de R. Nelson 105 en 1995 visant à coupler l’extraction par anticorps à la spectrométrie de masse ont été suivis de plusieurs autres (Wang et al. sur les peptides beta amyloïdes 106, Kippen et al. sur l’insuline 109), démontrant l’efficacité de cette approche pour isoler, concentrer et quantifier des protéines minoritaire exogènes ou endogènes dans des milieux biologiques complexes. Deux modes opératoires se dégagent : le premier immobilise les anticorps sur un gel placé dans une colonne chromatographique permettant un couplage direct avec le système LC-MS ; le second privilégie le temps d’incubation et la facilité de mise en œuvre à travers l’utilisation de microbilles fonctionnalisées par les anticorps, directement en suspension dans l’échantillon biologique, l’élution et le transfert de la protéine dans le système LC-MS se faisant manuellement. L’immunoaffinité permet d’obtenir des sensibilités de quelques picomoles par litre 116;122;123.

Le Tableau 5 résume les sensibilités obtenues lors de la quantification de protéines intactes, en utilisant les trois principales techniques de traitement d’échantillon, en regard de la taille de la protéine et du volume d’échantillon utilisé. Le type d’instrument utilisé a été indiqué en raison de son influence sur la sensibilité. A noter que certains développements ont été effectués par ionisation MALDI 105-108, type d’ionisation appliquée aux protéines de masse moléculaire élevé comme la resistine 108 pour s’affranchir des nombreux états de charge générés.
<table>
<thead>
<tr>
<th>Protéine</th>
<th>MW (Da)</th>
<th>Matrice biologique</th>
<th>Sensibilité (pM)</th>
<th>Méthode d'extraction</th>
<th>Volume de l'échantillon</th>
<th>Spectromètre de masse</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myotoxine α</td>
<td>4822</td>
<td>Sang humain</td>
<td>10 000<sup>q</sup></td>
<td>IA</td>
<td>50 μL</td>
<td>MALDI-TOF</td>
<td>Nelson et al. 1995<sup>105</sup></td>
</tr>
<tr>
<td>Aβ<sub>1-40</sub></td>
<td>4514</td>
<td>Milieu de culture cell.</td>
<td>100<sup>q</sup></td>
<td>IA</td>
<td>1000 μL</td>
<td>MALDI-TOF</td>
<td>Wang et al. 1996<sup>106</sup></td>
</tr>
<tr>
<td>GIP<sub>1-42/3-42</sub></td>
<td>~ 4800</td>
<td>Plasma humain</td>
<td>5<sup>q</sup></td>
<td>IA</td>
<td>1900 μL</td>
<td>Quadripole (SIM)</td>
<td>Wolf et al. 2001<sup>116</sup></td>
</tr>
<tr>
<td>rK5</td>
<td>10464</td>
<td>Plasma humain</td>
<td>5000<sup>q</sup></td>
<td>SPE</td>
<td>1000 μL</td>
<td>TQ (SRM)</td>
<td>Ji et al. 2003<sup>111</sup></td>
</tr>
<tr>
<td>motilin</td>
<td>2699</td>
<td>Plasma de rat</td>
<td>3700<sup>q</sup></td>
<td>PP</td>
<td>150 μL</td>
<td>TQ (SIM)</td>
<td>Delinsky et al. 2004<sup>102</sup></td>
</tr>
<tr>
<td>IGF-1</td>
<td>7649</td>
<td>Plasma humain</td>
<td>1000<sup>q</sup></td>
<td>IA</td>
<td>40 μL</td>
<td>MALDI-TOF</td>
<td>Nelson et al. 2004<sup>107</sup></td>
</tr>
<tr>
<td>GLP<sub>7,369,36</sub></td>
<td>~ 3200</td>
<td>Plasma humain</td>
<td>10<sup>q</sup></td>
<td>IA</td>
<td>1000 μL</td>
<td>Quadripole (SIM)</td>
<td>Wolf et al. 2004<sup>122</sup></td>
</tr>
<tr>
<td>Sifuvirtide</td>
<td>4727</td>
<td>Plasma de singe</td>
<td>1000<sup>q</sup></td>
<td>SPE</td>
<td>100 μL</td>
<td>LTQ (SRM)</td>
<td>Dai et al. 2005<sup>115</sup></td>
</tr>
<tr>
<td>BN32</td>
<td>3477</td>
<td>Plasma humain</td>
<td>150<sup>d</sup></td>
<td>SPE-IA</td>
<td>1000 μL</td>
<td>FT-ICR</td>
<td>Hawkridge et al. 2005<sup>112</sup></td>
</tr>
<tr>
<td>Epi-hNE4</td>
<td>6237</td>
<td>Plasma de singe</td>
<td>800<sup>q</sup></td>
<td>PP</td>
<td>100 μL</td>
<td>TQ (SRM)</td>
<td>Becher et al. 2006<sup>100</sup></td>
</tr>
<tr>
<td>NET2C</td>
<td>1239</td>
<td>Urine de rat</td>
<td>80<sup>q</sup></td>
<td>IA</td>
<td>500 μL</td>
<td>TQ (SRM)</td>
<td>Berna et al. 2006<sup>124</sup></td>
</tr>
<tr>
<td>Peptide C</td>
<td>3020</td>
<td>Sérum humain</td>
<td>50<sup>q</sup></td>
<td>SPE</td>
<td>2500 μL</td>
<td>TQ (SRM)</td>
<td>Cabaleiro et al. 2006<sup>125</sup></td>
</tr>
<tr>
<td>Aβ<sub>1-40 / 1-42</sub></td>
<td>4330 et 4514</td>
<td>LCR humain</td>
<td>90<sup>q</sup></td>
<td>IA</td>
<td>1000 μL</td>
<td>LTQ (SRM)</td>
<td>Oe et al. 2006<sup>113</sup></td>
</tr>
<tr>
<td>Synacthen</td>
<td>2933</td>
<td>Plasma humain</td>
<td>100<sup>q</sup></td>
<td>IA</td>
<td>2000 μL</td>
<td>LTQ (SRM)</td>
<td>Thevis et al. 2006<sup>126</sup></td>
</tr>
<tr>
<td>Resistine</td>
<td>19105</td>
<td>Plasma humain</td>
<td>130<sup>d</sup></td>
<td>IA</td>
<td>400 μL</td>
<td>MALDI-TOF</td>
<td>Tubbs et al. 2006<sup>108</sup></td>
</tr>
<tr>
<td>uTIINE</td>
<td>4154</td>
<td>Urine humaine</td>
<td>37<sup>q</sup></td>
<td>IA</td>
<td>1000 μL</td>
<td>TQ (SRM)</td>
<td>Li et al. 2007<sup>127</sup></td>
</tr>
<tr>
<td>Ghrelin</td>
<td>3371</td>
<td>Plasma humain</td>
<td>20<sup>q</sup></td>
<td>SPE</td>
<td>1000 μL</td>
<td>TQ (SRM)</td>
<td>Rauh et al. 2007<sup>118</sup></td>
</tr>
<tr>
<td>Insuline</td>
<td>5808</td>
<td>Sérum humain</td>
<td>12<sup>q</sup></td>
<td>IA-SPE</td>
<td>4000 μL</td>
<td>TQ (SRM)</td>
<td>Cabaleiro et al. 2007<sup>123</sup></td>
</tr>
<tr>
<td>IGF-1</td>
<td>7300</td>
<td>Plasma humain</td>
<td>6800<sup>q</sup></td>
<td>IA</td>
<td>60 μL</td>
<td>TQ (SRM)</td>
<td>Bredehoft et al. 2008<sup>117</sup></td>
</tr>
</tbody>
</table>

Tableau 5 : exemples de développements analytiques de 1995 à 2008 pour la quantification de protéines intactes dans des matrices biologiques. ^q indique que des considérations statistiques ont été utilisées pour établir la limite de quantification ; ^d indique qu’une limite de détection a été évaluée (rapport signal sur bruit). PP indique une précipitation des protéines, SPE une extraction sur phase solide, et IA une extraction par immunoaffinité de la protéine d'intérêt.
II.2.2. Approches développées au laboratoire

Deux méthodes de quantification de l’Epi-hNE4 avaient été développées au laboratoire lors d’études précédentes. La première consiste en un immunodosage enzymatique et la seconde utilise la chromatographie liquide couplée à la spectrométrie de masse.

II.2.2.1. Immunodosage enzymatique

La méthode de quantification par immunodosage enzymatique a nécessité l’obtention d’anticorps dirigés contre cette molécule. L’Epi-hNE4 a été couplée à de la BSA puis administrée à des lapins. Le traceur enzymatique a été obtenu en couplant de l’acétylcholinesterase (AChE) à de l’EPI-hNE4. Le dosage est ensuite effectué dans des plaques au format 96 puits, dont la paroi a été greffée aux anticorps monoclonaux de souris, spécifiques des immunoglobulines de lapin. Le format du dosage étant compétitif, les anticorps de lapin anti-Epi-hNE4 sont incubés avec des échantillons contenant de l’Epi-hNE4 et avec le traceur enzymatique. Le réactif d’Ellman (un substrat de l’AChE) est ensuite utilisé pour l’étape de révélation. Toutefois, afin d’éliminer au maximum les interférences et les anticorps induits, il s’est avéré nécessaire de purifier l’Epi-hNE4 par extraction sur phase solide (Sep-Pak C18). Avec cette méthode, la limite de quantification de l’Epi-hNE4 est de 5 ng/mL.

II.2.2.2. Quantification par chromatographie couplée à la spectrométrie de masse

Pour améliorer la spécificité du dosage, une méthode de quantification d’Epi-hNE4 a été mise au point par spectrométrie de masse. La séparation chromatographique était effectuée en phase inverse sur une colonne de type C18 (Zorbax SB-C18 ; 150 × 2,1 mm d.i., 5 µm de taille de particules, 80 Å de porosité). L’Epi-hNE4, ainsi que le standard interne introduit dans l’échantillon plasmatique, étaient extraits par précipitation à l’acétonitrile des protéines majoritaires. L’appareil utilisé était un triple quadrupôle (Quattro LCZ, Waters) couplé à la chromatographie en phase liquide par une interface électrospray. L’Epi-hNE4 est ionisé en mode positif et présente un profil d’états de charges de 4 à 7 protons (Figure 21). L’ion le plus intense à un rapport masse sur charge de 1040 (6+) est sélectionné, activé et dissocié dans la cellule de collision.
Chapitre II : Evaluation d’un polypeptide thérapeutique

Figure 21 : Spectre de masse ESI-MS de l’Epi-hNE4, infusé à 10µg/mL à 10µL/min dans une solution eau/acétonitrile (50/50) et comportant 0,1% d’acide formique. La potentiel du capillaire est de 3 kV et le potentiel du cone est de 30 V.

Le spectre CID est indiqué en Figure 22. L’ion produit majoritaire (m/z 1224,5) possède 5 charges, après avoir perdu une proline protonée à partir de l’ion parent. La détection de l’Epi-hNE4 par spectrométrie de masse se fait donc en mode SRM (selected reaction monitoring) en fixant le premier quadripôle sur l’ion m/z 1040 et le troisième sur l’ion produit m/z 1224,5 pour suivre la transition de l’ion précurseur à l’ion produit.

Figure 22 : Spectre de masse ESI-MS/MS de l’ion chargé (6+) à m/z 1040. Un fragment majoritaire (b55)5+ est généré par fragmentation induite par collision à une énergie de 30 eV.

La préparation du standard interne adopté pour cette méthode consistait à réduire les trois ponts disulfures de l’Epi-hNE4, puis à faire réagir les thiols libres (−SH) sur l’idoacétamide.
Un décalage de la masse de la protéine (+ 348 Da) est ainsi introduit sans modifier son temps de rétention et sa fragmentation dans le spectromètre de masse. La protéine réagit entièrement puisque après réaction, le spectre de masse ne présente aucun pic au rapport m/z de l’EPI-hNE4 natif (Figure 24). La réaction est en revanche moins homogène puisque l’on observe des protéines ayant réagit avec 4, 5 ou 6 molécules d’iodoacétamide. Le pic majoritaire correspond à la protéine portant 6 groupement acétylamides. Les spectres de masse et CID correspondants sont présentés en Figure 23. Dans ces conditions, une limite basse de quantification (LLOQ) à 5 ng/mL avait été obtenue. Cette LLOQ, identique à celle de obtenue par méthode ELISA, ne permet de suivre la pharmacocinétique que sur des temps courts (< 24 heures).

Figure 23 : a) Spectre de masse ESI-MS du standard interne et b) spectre de masse ESI-MSMS de l’ion m/z 1097 obtenu par fragment induite par collision à une énergie de 30 eV. L’ion fragment majoritaire est un ion (b₅₅)⁵⁺. Les conditions d’obtention du spectre de masse sont identiques à celles de la Figure 21.
Figure 24 : Spectre MALDI-TOF de l’EPI-hNE4 analysé sous sa forme native (a), et après réduction des ponts disulfures par le DTT et réaction des thiols sur l’iodoacétamide (b). Un pic majoritaire à m/z 6587,5 correspond à la réaction des 6 cystéines et à l’ajout de 6 groupements acétamides. Deux autres pics ont un écart consécutif de 57,5 m/z, et correspondent à une protéine fonctionnalisée par 4 et 5 groupements acétamides.

Une nouvelle approche pour la quantification de l’EPI-hNE4 par chromatographie liquide couplée à la spectrométrie de masse a été réalisée dans le cadre de cette thèse afin de sensibiliser ce dosage en conservant des critères de reproductibilité et de répétabilité acceptables, et en tenant compte de l’existence potentielle dans les échantillons à doser d’anticorps anti-EPI-hNE4. L’approche basée sur une extraction sélective par des anticorps nous a parue la plus prometteuse au vu des résultats de quelques équipes (Kippen et al., Wolf et al.) pour sensibiliser les dosages LC-MS. Lorsque cette méthode a été développée, en 2005, très peu d’exemples utilisaient cette approche d’immunocaptivité pour la quantification absolue des protéines.

II.2.3. Développement d’une étape d’immunocapture pour améliorer la sensibilité du dosage de l’EPI-hNE4

II.2.3.1. Immunocapture : considérations théoriques

Comme indiqué précédemment, l’extraction spécifique des protéines à partir de matrices biologiques se fait à l’aide d’anticorps immobilisés à la surface d’une phase solide telle que des billes magnétiques, des billes de polystyrène ou un gel. Il se forme alors un complexe antigène-anticorps, lui aussi immobilisé, permettant un lavage des composés adsorbés de manière non spécifique. Les interactions entre protéines, et en particulier les interactions antigènes-anticorps, font intervenir à l’échelle moléculaire des interactions entre les acides
Chapitre II : Evaluation d’un polypeptide thérapeutique

aminés de chacune des espèces, et peuvent être décrites simplement à l’échelle macroscopique par la loi d’action des masses. L’efficacité d’une étape d’immunocapture sera conditionnée par deux paramètres décrivant la liaison entre l’anticorps et sa cible : la cinétique et la thermodynamique. La cinétique décrit la vitesse à laquelle la protéine est captée par l’anticorps, et la thermodynamique détermine quelle quantité de protéine pourra être extraite. Nous avons étudié ce dernier point par une approche théorique pour savoir quelle quantité de protéine pouvait être extraite à partir d’un anticorps d’affinité donné.

Pour modéliser ces effets, nous avons pris comme peptide modèle l’Epi-hNE4 (6237 Da), à une concentration variant entre 0,1 et 1000 ng/mL. Les anticorps utilisés proviennent d’un sérum de lapin, et sont polyclonaux. Leur concentration et leur affinité étant inconnues, l’effet sur l’immunocapture de ces deux paramètres a été étudié.

Pour simplifier, nous avons considéré les anticorps comme monovalents, afin de ne pas avoir deux équilibres successifs, et caractérisés par une affinité unique (cas d’un anticorps monoclonal). Ce qui est recherché dans cette approche de modélisation simple n’est pas un aspect quantitatif mais qualitatif de l’influence des différents paramètres.

La loi d’action des masses s’écrit alors :

\[Ag + Ac \rightarrow AgAc \quad \text{avec} \quad K_D = \frac{[Ag][Ac]}{[AgAc]} \quad K_D \text{ constante de dissociation} \]

en posant :

\[AgT = [AgAc] + [Ag] \quad \text{(concentration totale en antigène libre et lié)} \]

\[q = [AgAc] + [Ac] \quad \text{(concentration totale en anticorps)} \]

\[B = [AgAc] \quad \text{(concentration en antigène lié à l’anticorps)} \]

L’équation devient :

\[K_D = \frac{(AgT - B)(q - B)}{B} \]

\[B^2 - B(q + AgT + K_D) + AgT \times q = 0 \]

\[B = \frac{(q + AgT + K_D) - \sqrt{(q + AgT + K_D)^2 - 4 \times AgT \times q}}{2} \]
Cette solution de l’équation est en effet la seule acceptable, la seconde conduisant à une concentration en complexe antigène-anticorps supérieure à la concentration totale introduite en anticorps au départ. Cette relation qui lie la concentration de l’antigène complexé à la constante de dissociation, aux concentrations totales en anticorps et en antigène, a été utilisée par la suite pour les exemples numériques.

Les anticorps obtenus par immunisation ont des affinités variables en fonction du protocole utilisé. De plus, les différents clones d’anticorps polyclonaux présentent des affinités variables. Des anticorps ayant une constante moyenne de dissociation de 10^{-9}M sont par exemple considérés comme des anticorps très affins, alors qu’une constante de 10^{-6}M est associée à des anticorps de faible affinité. Les quantités d’anticorps utilisées sont également variables suivant les différents exemples de la littérature. Une concentration finale en anticorps dans l’échantillon à immunopurifier de 2,5 µg/mL a par exemple été utilisée pour quantifier les peptides β amyloïdes et leurs variants par Wang et al. Avec une concentration similaire (2 µg/mL), Wolf et al. isolaient les peptides hormonaux GIP et GLP du plasma, alors que Hawkridge et al. utilisaient une concentration de 7,5 µg/mL pour extraire le peptide BNP du plasma. D’autres exemples montrent une concentration encore plus élevée, avec notamment 16 µg/mL pour la capture de peptides β amyloïdes par Oe et al., et jusqu’à 45 µg/mL par Bredehoft et al. dans le cadre de la quantification de l’IGF-1 et de ses analogues dans le plasma humain. Ces quelques exemples nous ont servi de base numérique pour les calculs suivants.

La Figure 25 montre la fraction d’antigène liée à des anticorps en fonction de la quantité d’antigène introduite et de l’affinité des anticorps. Pour effectuer cette simulation, la concentration en anticorps est fixée à 10 µg/mL (valeur intermédiaire inspirée des exemples précédents). Ce graphique montre l’importance de l’affinité des anticorps utilisés : si celle-ci est trop faible, une fraction seulement de l’antigène peut être liée à l’anticorps (6 % avec une affinité de 10^{-6}M contre 98 % avec une affinité de 10^{-9}M). Dans ce même exemple, aux fortes concentrations en antigène, la fraction d’antigène liée diminue en raison de la saturation des sites de fixation des anticorps : ces derniers sont en défaut. Ce phénomène se traduit par une saturation des courbes de calibration qui présentent un plateau comme celles présentées par Wolf et al., et comme nous l’avons également observé lors du dosage de l’EPI-hNE4 (Figure 6 de la publication insérée ci-après).
Chapitre II : Evaluation d’un polypeptide thérapeutique

Figure 25 : Simulation numérique montrant l’influence de l’affinité des anticorps sur la fraction de peptidé liée aux anticorps. La masse du peptidé est de 6237 Da, et la concentration en anticorps est de 10 µg/mL.

Cependant, la mauvaise affinité d’un anticorps peut être compensée par la quantité introduite, ceci permettant de déplacer l’équilibre en faveur de la formation du complexe comme illustré dans la Figure 26. Une affinité de l’anticorps à 10^{-7} M, et une concentration à 2 µg/mL permet d’immobiliser environ 10 % des peptidés en solution, alors qu’une concentration 50 fois plus grande (100 µg/mL) permet d’en immobiliser environ 9 fois plus que précédemment (86 %).

Figure 26 : Simulation numérique montrant l’influence de la concentration en anticorps sur la fraction de peptidé liée aux anticorps. La masse du peptidé est de 6237 Da, et l’affinité des anticorps est de 10^{-7} M.

Cette simulation simple nous a ainsi permis de mettre en évidence l’influence de l’affinité et de la concentration en anticorps sur la complexation. Ainsi, dans le cadre de dosages de protéines thérapeutiques nécessitant une gamme dynamique étendue, le rendement
d’extraction peut varier en fonction de la concentration en protéine et être inférieur à 100 % (anticorps en quantité limitante et/ou de faible affinité), c’est pourquoi un standard interne permettant de contrôler ces rendements d’extraction doit être alors utilisé. Les caractéristiques des anticorps guident le choix du format d’extraction : il est par exemple nécessaire d’immobiliser davantage d’anticorps de faible affinité que de forte affinité, et se pose alors la question de la capacité du support solide.

La méthode la plus simple inspirée des dosages immunologiques consisterait à utiliser les mêmes outils, c'est-à-dire une plaque de microtitration possédant des anticorps adsorbés sur les parois des puits. L’adsorption monocouche la plus dense d’anticorps sur la surface d’un puit est de l’ordre de 300 ng/cm², pour un volume de 200 µL et une surface de 1,5 cm². La concentration des anticorps est alors de l’ordre de 2 µg/mL lors de l’incubation avec 200 µL d’échantillon (valeur maximale dans l’hypothèse où tous sont fonctionnels), ce qui d’après les simulations serait limitant pour des concentrations en peptide supérieure à 100 ng/mL (Kd = 10⁻⁹ M). En réalité, l’adsorption des anticorps est rarement si optimale, les affinités peuvent être plus faibles, et hormis les anticorps monoclonaux, ceux-ci ne sont pas purs. Il est alors nécessaire de prendre un support solide avec une grande surface de capture. Quelques études ont opté pour un format de microbilles polystyrène ou magnétique, et d’autre pour des colonnes d’affinité. A titre de comparaison, la surface de 40 µL de microbilles magnétiques utilisées dans le dosage présenté ci-après est de 1800 cm² (plus que la surface d’une feuille de papier format A3) alors que le puits d’une plaque de dosage (format 96 puits) présente une surface de 1,5 cm². Ces billes ont une plus grande souplesse que les colonnes d’affinité en terme d’ajustement de la capacité aux besoins du dosage, mais leur utilisation est majoritairement manuelle. A noter que des robots dédiés à ces tâches d’incubation, lavage et élution de billes magnétiques ont fait récemment leur apparition comme par exemple le "KingFisher", développé par la société thermo et déjà utilisé dans des applications de type protéomique, et permettant d’avoir un parallélisme dans le traitement des échantillons, point important pour le débit et la robustesse du dosage. Les colonnes d’affinité ont quant à elles l’avantage de pouvoir être couplées directement à la colonne analytique permettant une automatisation totale du dosage. L’analyse de longues séries d’échantillons sur la même colonne d’immunoaffinité requiert une bonne stabilité de l’anticorps fixé. Les billes fonctionnalisées ne sont en effet pas réutilisées, alors que les colonnes d’affinité sont reconditionnées après élution en vue d’une nouvelle injection. Berna et al. ainsi que Radabaugh et al. ont néanmoins décrit des dosages par colonne d’immunoaffinité couplée
à une analyse LC-MS et ont rapporté plus de 2000 injections sur la même colonne d’affinité avant de constater une baisse de l’intensité du signal.

Le choix du support est également lié au type d’anticorps utilisé, ces derniers pouvant être monoclonaux ou polyclonaux. Les anticorps monoclonaux ont l’avantage d’être sélectionnés pour leur affinité et d’être les seules molécules en solution : la liaison à un support solide par réaction chimique (comme sur les colonnes d’affinité) permet de fixer uniquement des anticorps spécifiques à l’analyte sur le support solide. Les anticorps polyclonaux, quant à eux, sont obtenus à partir de saignées d’animaux immunisés, et doivent donc être purifiés (par leur cible ou par leur fragment Fc) avant d’être immobilisés par couplage chimique. L’ensemble des immunoglobulines contenues dans le sérum d’animaux immunisés peuvent être directement immobilisées sur un support solide (bille ou colonne), préalablement fonctionnalisé avec des protéines A/G, ou des anticorps anti-espèces. Dans ces conditions, de nombreux anticorps avec des paratopes différents (pas seulement dirigés contre l’analyte) sont alors immobilisés (contrairement aux anticorps monoclonaux), ce qui explique la nécessité d’augmenter les surfaces de capture.

II.2.3.2. Stratégie analytique adoptée

La première étape de notre démarche analytique a consisté à immobiliser des anticorps anti-Epi-hNE4 sur des billes magnétiques fonctionnalisées par de la protéine G (Dynabeads), qui possède une affinité pour le fragment Fc des immunoglobulines G. Cette stratégie a été adoptée pour faciliter les manipulations. Le noyau des billes étant paramagnétique, ces billes sont regroupées d’un côté du tube par action d’un champ magnétique, permettant une récupération quasi-totale de la phase liquide, point important lors des lavages (pour éliminer un maximum de composés) et de l’élution (pour récupérer l’analyte).

Les paramètres de séparation chromatographique, de spectrométrie de masse, et le standard interne utilisés étaient identiques à ceux développés auparavant. Une attention particulière a ici été apportée au contrôle de l’ensemble du processus, depuis l’immunoextraction jusqu’à l’analyse LC-MS grâce au standard interne. Pour que cette approche soit compatible avec les critères de répétabilité et de reproductibilité requis pour la quantification de molécules par LC-MS \(^7\), ce standard interne devait être lui aussi reconnu par les anticorps.
Différents volumes d’échantillon plasmatiques humains ont ensuite été extraits par les deux méthodes (précipitation des protéines et immunocapture) afin de mettre en évidence l’intérêt de cette approche à la fois sur la sélectivité de l’extraction (absence d’effet matrice) et sur l’effet de concentration en utilisant des volumes d’échantillon croissants, le but étant de gagner en sensibilité par rapport à la méthode de précipitation des protéines. D’autre part, l’Epi-hNE4 étant une protéine recombinante exogène, son administration est susceptible d’engendrer une réponse immunitaire. Des anticorps circulants se lient alors à la protéine, et inhibent la formation du complexe anticorps-antigène lors de la quantification par immunodosage ou lors de l’étape d’extraction par immunocapture, faussant les mesures de concentration en protéine. Pour évaluer la robustesse de la méthode dans le cas d’échantillons présentant une réponse immune, des anticorps de lapin anti-Epi-hNE4 ont été introduits dans les échantillons plasmatiques à différentes dilutions, afin de mimer des anticorps endogènes induits lors de réactions immunitaires. Une étape supplémentaire de dissociation des interactions protéine-protéine par un traitement acide, puis une neutralisation parallèlement à l’ajout du standard interne avant l’étape d’immunocapture, a été optimisée dans le but de minimiser l’erreur induite par la présence de ces anticorps lors de la quantification d’Epi-hNE4.

Le protocole expérimental ainsi que les résultats de cette étude sont présentés dans l’article inséré ci-après.
Chapitre II : Evaluation d'un polypeptide thérapeutique
II.2.4. Article : Dosage par immuno-spectrométrie de masse appliqué à l'Epi-
hNE4, une protéine recombinante inhibiteur de l'élastase humaine
Immuno-mass spectrometry assay of EPI-HNE4, a recombinant protein inhibitor of human elastase

Mathieu Dubois, François Becher*, Amaury Herbet and Eric Ezan
CEA, Service de Pharmacologie et d’Immunologie, 91191 Gif-sur-Yvette, France

Received 10 October 2006; Revised 23 November 2006; Accepted 23 November 2006

In order to increase the sensitivity of liquid chromatography/mass spectrometry (LC/MS) assays of recombinant proteins for pharmacokinetics studies, we have developed an immuno-mass spectrometry assay for EPI-hNE4, a 6237 Da protein currently developed for respiratory distress syndromes. After immunocapture of the analyte in human plasma with magnetic beads coated with anti-EPI-hNE4 antibodies, the intact protein was eluted and separated in reversed-phase LC and then analysed by tandem mass spectrometry (MS/MS) in selected reaction monitoring (SRM) mode. The problem of analytical interference due to endogenous binding antibodies was addressed by successive steps of acidification and neutralisation before immunocapture. Furthermore, potential variations in the recovery of analyte during sample extraction were compensated for by addition of an internal standard recognised by the antibodies. The precision of the assay remained therefore below 15%. A significant increase in assay sensitivity was achieved since the extraction step allowed sample concentration and removal of matrix components interfering with the electrospray ionisation process. Using 0.4 mL of plasma, a limit of quantification at 0.5 ng/mL (80 pM) was reached, which represents a 10-fold improvement in sensitivity over our previous work using sample precipitation. This technique was able to monitor EPI-hNE4 kinetics in the plasma of human subjects for 36 h after an intravenous administration of 0.125 mg/kg. Copyright © 2007 John Wiley & Sons, Ltd.

Biopharmaceuticals are a new class of therapeutics in various diseases such as cancers, growth disturbances, and diabetes. According to a recent survey some 165 products have now gained approval,¹ the largest class being of recombinant proteins and monoclonal antibodies. Their pre-clinical and clinical assessment requires sensitive analytical techniques to observe their behaviour in the circulation and tissues. To our knowledge, all pharmacokinetic studies involving recombinant proteins have so far relied on immunological methods. This is because immunoassays have already been largely used for endogenous proteins and because the combination of antigen-antibody affinity and high specific-activity labels enables sensitivities in the subnanomolar range.

However, immunoassays may suffer from non-specific binding and cross-reactivity with metabolites,² which decrease their robustness and reproducibility. Another limitation is the potential presence of endogenous binding antibodies in the sample due to immunogenicity of the analyte protein,³ ⁴ which can lead to major interferences. These potential drawbacks drive the search for alternative techniques such as the use of mass spectrometry (MS). In the past five years, some groups have demonstrated the feasibility of this new approach,⁵ ⁶ ⁷ and the resulting assays have sensitivities that are acceptable but one order of magnitude more than immunoassay. Recently, we have developed and validated a liquid chromatography tandem mass spectrometry (LC/MS/MS) assay for EPI-hNE4,⁸ a 56-amino-acid protein which is in clinical development for respiratory distress syndromes.³ We have demonstrated that the use of a specific internal standard (IS) and appropriate sample preparation result in an assay free of interference and in a sensitivity of approximately 1 nM (5 ng/mL) in monkey plasma. However, the clinical development of EPI-hNE4 involves lower doses than those used in animals during toxicological studies and a detection limit of 0.1 nM would be required.

This may be obtained through alternative approaches which may combine immunoassay and MS. Compared to methods using protein precipitation, immunoaffinity extraction can be applied to a wider molecular weight range of proteins and allows a real increase in assay sensitivity due to sample concentration and removal of coeluting substances which might reduce electrospray ionisation (ESI) efficiency. Following pioneering work on insulin¹⁰ and venoms,¹¹ various applications of this approach have been proposed mainly for endogenous proteins and biomarkers such as amyloid-related polypeptides,¹² human chorionic gonadotropin,¹³ and incretins.¹⁴ However, when applied to recombinant proteins, specific problems such as the presence of endogenous binding antibodies should be addressed.

We took advantage of our initial development and the need for a sensitive assay for EPI-hNE4 in human plasma to demonstrate the potential of immuno-mass spectrometry...
assay for pharmacokinetic studies of recombinant proteins. We used a dissociating sample pre-treatment followed by an extraction step with polyclonal antibodies. This gave a sensitivity at least ten times higher than that of our previous work, without interference from binding endogenous antibodies.

EXPERIMENTAL

Chemicals and reagents EPI-hNE4, a 6237 Da protein (EACNLPIVRCIAFFPRW-AFDAVKGKCLVFYYGG CQGNGKNPSEKECREEYCVGP) which contains three disulphide bridges, was discovered by Diax Corporation (Cambridge, USA) and produced in a genetically modified strain of the yeast Pichia pastoris GS115. The protein was provided as a liquid solution at 12.2 mg/mL by Debiopharm (Lausanne, Switzerland). Iodoacetamide (IAA) was from Sigma Aldrich (Milwaukee, WI, USA). Eppendorf 1.5 mL safe lock tubes were used in sample handling (Eppendorf, Germany). Human plasma from healthy subjects was obtained from EPS (Rungis, France). Nitrogen HP45 was from Air Liquide (Paris, France). Ultrapure water was from a Milli-Q plus 185 purifier (Millipore, France), gradient-grade methanol from Merck (Darmstadt, Germany), HPLC-quality acetonitrile from SDS (Peypin, France), and analytical formic acid from Sigma (Sigma Chemical Co., St Louis, MO, USA). Dynabeads protein G magnetic beads were from Invitrogen (Dynal Biotech, Oslo, Norway). Anti-EPI-hNE4 antibody was obtained by immunising rabbits. Followed by booster injections, 1 mg each in Freund adjuvant) in rabbits.

The IS was prepared as described previously. Briefly, EPI-hNE4 was alkylated with IAA after reduction of disulphide bridges. This results in the carbamidomethylation of the sulphhydryl groups present in the protein. The mass shift is 57 Da for each alkylated sulphydryl group.

Immunoaffinity extraction Magnetic beads (40 μL suspension per 400 μL sample) with covalently bound protein G were washed three times with 0.5 mL Na-acetate buffer at pH 5 following the protocol provided by the supplier. The beads were separated from solution using a magnetic particle concentrator for microcentrifuge tubes (Dynal MPC-S, Dynal Biotech, Oslo, Norway). After removal of washing solution, the beads were incubated for 1 h at room temperature with gentle shaking with 40 μL of a rabbit blood sample containing high-affinity polyclonal immunoglobulin anti-EPI-hNE4 diluted two-fold in Na-acetate buffer, pH 5. After washing (three times with 0.5 mL Na-acetate, pH 5), the magnetic beads were resuspended in 20 μL of phosphate-buffered saline (PBS), pH 7.4, and transferred to the samples for immunoaffinity precipitation.

Standard samples for calibration curves were obtained by diluting EPI-hNE4 solution in pooled human plasma to the following concentrations: 200, 100, 50, 10, 5, 1, 0.5 ng/mL. Quality control samples (QCs) were prepared at the expected lower limit of quantification (LLOQ) at 0.5 ng/mL, and in the low, medium and high part of the calibration curve (1.5, 15, 150 ng/mL). The standard solutions and QCs were stored at −20°C. Samples, QCs and standards were centrifuged for 10 min at 3500 g at 4°C prior to use.

Volumes of 400 μL of plasma, QCs or standards were mixed with 80 μL of 1 M HCl to give pH 2.5, and incubated for 15 min at room temperature with gentle shaking to prevent antibody-antigen binding. Then 1 M NaOH was added to neutralise the mixture (pH around 7.5). The IS (10 μL of stock solution diluted 50-fold in PBS) was immediately added, followed by 20 μL of magnetic beads with captured IgG prepared as described previously. Samples were incubated for 1 h at room temperature with gentle shaking. After washing (three times with PBS, pH 7.4) to remove weak non-specific binding, EPI-hNE4 and the IS were eluted with methanol (50 μL) containing 5% formic acid for 15 min while vortexing. Deionised water (20 μL) was added for LC injection compatibility (final composition methanol/water, 70/30, v/v). The supernatant was transferred into an HPLC vial and injected (40 μL) into the chromatographic system.

In order to characterise the interference of endogenous antibodies during analysis of EPI-hNE4, pooled normal plasma samples were spiked with 50 ng/mL EPI-hNE4 and increasing dilutions (1/200, 1/1000, 1/5000, 1/10000) of rabbit blood containing antibodies to EPI-hNE4. Plasma was left for 24 h at room temperature in the dark and was then frozen at −20°C until analysis.

Chromatographic and mass spectrometry conditions Chromatography was performed on a C18 guard column followed by a Zorbax SB-C18 column (150 × 2.1 mm i.d., 5 μm particle size, 80 Å porosity) as described previously. Briefly, the column was eluted at a flow rate of 0.3 mL/min using a gradient as follows: mobile phase A was water/methanol (95/5, v/v) and mobile phase B was acetonitrile/water (80/20, v/v), both containing 0.1% formic acid. After 1.5 min at 100% A, a linear gradient was started and reached 20% A at 5 min, which was maintained for 2 min. Then from 7 to 10 min, a linear gradient was set to reach 0% A. The column was washed with 100% B for 2 min and the equilibration time before the next analysis was set at 4 min, so that the time lapse between two cycles was 16 min. Column temperature was 50°C and injection volume was 40 μL. Under these conditions, the retention time was 6.6 min for EPI-hNE4 and the IS.

The triple-quadrupole mass spectrometer was a Quattro LCZ (Waters, Manchester, UK) coupled to the HPLC column via an ESI interface. Nitrogen was used as nebulising gas (115 L/h) and drying gas (900 L/h). The ionisation source was operated in the positive ESI mode and the molecular species produced were selected to be submitted to low-energy collision processes for MS/MS experiments (selected reaction monitoring, SRM). Collision-induced dissociation (CID) was achieved with argon at a pressure of 2.2 × 10⁻³ mbar. The ion transitions monitored were m/z 1039 → 1224 and m/z 1097 → 1293 for EPI-hNE4 and the IS, respectively. The dwell time for each CID transition was 0.7 s. The interchannel delay was 10 ms. For maximum sensitivity of EPI-hNE4, the mass spectrometer parameters were
optimised as follows: capillary voltage 3.5 kV, cone voltage 38 V (40 V for IS), collision energy 28 eV (34 eV for IS), source block temperature 100°C, and desolvation temperature 350°C.

Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometric (MALDI-TOFMS) analyses were performed with a DE-STR instrument (Applied Biosystem, Les Ulis, France). Samples investigated were co-crystallised in 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid) and analysed in linear mode.

Optimisation and validation of the LC/MS/MS method

Calibration curves
EPI-hNE4 was calibrated by establishing a quadratic regression function after 1/x weighting of the analyte/IS peak area ratio versus analyte concentration of the seven standards (0.5–200 ng/mL).

Accuracy and precision
QCs (1, 5 and 150 ng/mL) were processed and analysed four times in the same run (intra-run precision or repeatability). The accuracy was calculated at each concentration as the ratio of the measured concentration to the nominal concentration multiplied by 100.

Limit of quantification
The limit of quantification (LOQ) at 0.5 ng/mL, using 400 μL of plasma, was determined during method development as the concentration leading to a signal-to-noise (S/N) ratio over 10, and validated using statistical criteria of acceptance. The QCs at 0.5 ng/mL were processed and analysed four times in the same run. The coefficient of variation (CV) for accuracy and precision should be lower than 20%.15

Sample volume effect
Sample volume effect on sensitivity was studied by increasing the volume of human plasma (100, 200, 400, 600, 800 μL) spiked with 15 ng/mL EPI-hNE4. In each sample, 10 μL of a 50-fold dilution of IS in PBS was added, and was followed by addition of prepared beads, as described in the immunoaffinity extraction section, in a volume proportional to the sample volume (5, 10, 20, 30, 40 μL). To assess further the potential sensitivity using 1 mL of plasma, a limit of detection (LOD) was determined. This value is given by the concentration leading to a S/N ratio of 3. A blank plasma sample spiked with IS and a plasma sample spiked with IS and EPI-hNE4 at 0.1 ng/mL were analysed. The peak intensity of EPI-hNE4 was measured and compared with that of background noise in MRM chromatograms.

Overall extraction recovery
Recovery experiments were performed at three concentrations (1, 5 and 50 ng/mL). Ratios of the peak area of EPI-hNE4 and that of the IS were compared between samples spiked before immunoaffinity extraction and elution solution spiked with the same amount of EPI-hNE4 and IS.

The assay was applied to human samples, which were obtained after intravenous administration of 0.125 mg/kg EPI-hNE4. Blood samples were collected on heparin lithium and approximately 1.5 mL of plasma was obtained after centrifugation. All samples were stored at −20°C.

Enzyme immunoassay
The enzyme immunoassay of EPI-hNE4 in monkey plasma has been described elsewhere6 and was not modified for its application to human samples. The LLOQ was 10 ng/mL for monkey and human plasma.

RESULTS AND DISCUSSION

The principle of the assay is described in Fig. 1. In a first step, EPI-hNE4 and IS are captured by antibodies coated on magnetic beads. After removal of unbound plasma components, EPI-hNE4 and IS are eluted and submitted to LC/MS/MS detection. In the following sections we describe the optimisation and validation of immunoassay, taking into account the potential binding of endogenous antibodies.

Sample preparation by immunoaffinity extraction
Sample preparation with immobilised affinity antibodies is one of the most specific means of separating an analyte from plasma.16 Moreover, coated magnetic beads allow rapid, easy-to-handle and efficient purification of the sample.14 However, interferences could arise due to cross-reactivity of antibodies or non-specific binding to magnetic beads. These points were investigated. Protein G beads bearing immobilised antibodies were incubated in blank human plasma, and after elution the captured proteins were analysed by MALDI-TOFMS. The affinity extraction step allowed subsequent elimination of plasma proteins. However, a significant number of proteins are present in the immuno-extracted and eluted sample, as shown in Fig. 2. Although we cannot totally exclude the possibility that the antibodies recognise common epitopes on endogenous proteins, it is likely that they represent proteins bound non-specifically to the magnetic beads that are not detected in SRM mode (Fig. 3).

We investigated the effect of sample volume on assay sensitivity. As shown in Fig. 4, a proportional increase in EPI-hNE4 signal was observed with higher sample volumes in contrast to protein precipitation. Following this result, an LOD of 0.1 ng/mL was achieved using 1 mL of plasma (Fig. 3(B)), with a S/N ratio of 3.6. However, the assay was then optimised with a sample volume of 0.4 mL owing to possible limitations in sample volume during clinical studies.

Conditions of elution were investigated (elution solvent, acidity) and methanol containing 5% formic acid was found to give the highest signal of EPI-hNE4. In order to determine more precisely the recovery of the immunoextraction step, plasma samples (400 μL) spiked with EPI-hNE4 (to final concentrations of 1, 5, 50 ng/mL) were immunoabsorbed and treated as described in the Experimental section. The response was compared to that of control solutions prepared by adding EPI-hNE4 directly to 70 μL of methanol/water.
(70/30, v/v, 0.5% formic acid). Taking into account the concentration effect of the immunoextraction (5.7 factor), concentrations of the control solution were 5.7, 28.6 and 285.7 ng/mL.

The recovery of the immunoextraction step was estimated to be between 76% and 88% for EPI-hNE4 and between 80% and 107% for the IS (see Table 1). In contrast to protein precipitation,8 immunoaffinity extraction avoids a significant loss of analyte.

Effects of endogenous binding antibodies

The assay of recombinant proteins raises a specific problem, which is not faced with endogenous proteins. The administration of such recombinant proteins to animals and humans induces antibodies that may alter the elimination phase or sometimes reduce efficiency.17–20 These antibodies are present in the samples and may generate major interferences in the analytical method,21 and, more particu-

![Diagram of immunoaffinity extraction method](image-url)

Figure 1. Principle of the immunoaffinity extraction method.

Since we have previously shown that EPI-hNE4 induces an immune response in human subjects (unpublished work), we set up a model to evaluate the effect of binding antibodies on the accuracy of our method. We analysed human normal plasma with the targeted protein at 50 ng/mL after 24-h incubation at room temperature with rabbit antibodies at different dilutions (from 1/100 to 1/10 000). It should be pointed out that in this experiment we used high-affinity rabbit antibodies since no purified human antibodies were available. However, we estimated that rabbit antibodies at significant dilution, for example above 1/500, are likely to mimic the binding capacity of induced antibodies in humans, since these endogenous antibodies occur at low concentration and are, from our experience, of low affinity. As can be seen in Fig. 5, interferences by endogenous antibodies during immunoaffinity extraction occurred, and loss of sensitivity was proportional to anti-serum addition. We used
Figure 2. Magnetised beads bearing immobilised antibodies were incubated with human plasma (A) with 50 ng/mL of EPI-hNE4 and (B) without EPI-hNE4. Elutions were analysed by MALDI-TOFMS.

Figure 3. LC/MS/MS chromatogram of (A) blank plasma sample and (B) 0.1 ng/mL EPI-hNE4 immunocaptured from 1 mL of plasma. LC/MS/MS chromatogram of 5 ng/mL EPI-hNE4 from 400 μL plasma incubated with beads (C) without immobilised antibodies or (D) with immobilised antibodies.
this model to find methods that would avoid underestimation of analyte. One possibility was to increase greatly the quantity of immobilised antibody by adding a greater volume of beads with immunoglobulins on the surface. However, we found this procedure to be too reagent-consuming and so used an alternative method designed to dissociate the endogenous antibody-antigen complexes before performing the extraction step with beads. Such a procedure has been developed elsewhere for immunogenecity testing.22 We tested the effects of various reagents and temperature, and found that acidification of samples with 80 μL 1 M HCl for 15 min at 20°C dissociated the immune complexes. The samples were then neutralised with 80 μL 1 M NaOH and immediately spiked with antibody-coated beads. As shown in Fig. 5, the dissociation/neutralisation procedure significantly reduced interferences by endogenous antibodies and allowed quantitative recovery until 1/500 dilution of the high-affinity rabbit antibodies.

Since re-association of EPI-hhNE4 with endogenous antibodies cannot be excluded, IS was also added immediately after neutralisation to compensate for complex formation with endogenous antibodies. This IS was selected as it was recognised by the antibodies and therefore involved in the immunoaffinity extraction. This can be explained by the closely related primary structure of the IS and the analyte. Thus, the IS added before extraction can be used to check the whole analytical process, fluctuation of the immunoaffinity extraction step included.

Assay validation

Calibration curves over the concentration range 0.5–200 ng/mL (corresponding to 80 fmol/mL to 32 pmol/mL) were generated between the ratio of the peak area of EPI-hhNE4 to that of the IS versus the corresponding spiked concentration. The data can be fitted to a quadratic function of the type $y = Ax^2 + Bx + C$, weighted $1/x$. A representative calibration curve for human plasma is shown in Fig. 6. Due to the concentration of immobilised antibody, a saturation effect is observed in the upper range of the calibration curve. This explains the best description by a quadratic function. However, at low concentration, the curves show linearity.

Intra-day precision of the assay was checked with samples spiked with EPI-hhNE4 at concentrations within the calibration curve range. QCs (n = 4) containing EPI-hhNE4 were assayed at four concentrations. Accuracy and precision of the immunoextraction step was assessed. As summarised in Table 1, the CVs were between 7.4% and 15.2% (mean at 10.4%). Accuracy was between 98.4% and 114.2%. The LOQ

Figure 4. Effect of sample volume on sensitivity. Sample volume was increased while keeping the same concentration (15 ng/mL) of EPI-hhNE4. Magnetic beads bearing immobilised antibody were added proportionally to sample volume (full line, n = 2), as acetonitrile for protein precipitation (dotted line, n = 1).

Figure 5. Effect of free antibodies on immunoaffinity extraction performance (response is given by the peak area ratio of EPI-hhNE4 and the IS). Diluted (from 1/100 to 1/10 000) rabbit blood samples containing high-affinity anti-EPI-hhNE4 antibody were added to human samples spiked with 50 ng/mL EPI-hhNE4 and IS. Each set of samples was treated with and without acid dissociation prior to immunoaffinity extraction and LC/MS/MS analysis.

Figure 6. Calibration curve of EPI-hhNE4 in the 0.5–200 ng/mL range in human plasma after immunoaffinity extraction.

Table 1. Accuracy (% error) and precision (% CV) of quality control samples (QCs) at and above the lower limit of quantification (LLOQ)

<table>
<thead>
<tr>
<th>LLOQ</th>
<th>QCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyte concentration (ng/mL)</td>
<td>0.5</td>
</tr>
<tr>
<td>Calculated concentration (ng/mL)</td>
<td>0.53</td>
</tr>
<tr>
<td>mean (n = 4)</td>
<td>106.2</td>
</tr>
<tr>
<td>Accuracy (%)</td>
<td>12.7</td>
</tr>
<tr>
<td>Precision (% CV)</td>
<td>6.2</td>
</tr>
</tbody>
</table>

was 0.5 ng/mL for human samples of 400 μL (S/N ratio was 10).

The assay was then applied to human samples obtained after administration of 0.125 mg/kg EPI-hNE4. The values were compared with those obtained by an immunoassay already validated in our laboratory. We found a good agreement between the two methods, as shown in Fig. 7. Mean of differences calculated on samples assessed by both methods was 8.8%. It should be pointed out that the immunoassay was a competitive format and required 10-fold dilution of the sample, which resulted in a relatively poor sensitivity (10 ng/mL). Therefore, the comparison for concentrations between 0.5 ng/mL (the LOQ of the immuno-mass spectrometry assay) and 10 ng/mL could not be established. A final observation is that the mass spectrometry assay enabled 36-h monitoring of EPI-hHE4 in plasma at the lowest dose, compared to 12-h monitoring by immunoassay.

CONCLUSIONS

The application of mass spectrometry to the quantification of therapeutic proteins in pharmacokinetic studies depends mainly on its sensitivity compared to immunoassays. We demonstrate here that a method that combines the specificity of antibody immunorecognition and the sensitivity and specificity of chromatography coupled to mass spectrometric separation can quantify the targeted therapeutic protein at concentration as low as 0.1 ng/mL (16 fmol/mL), with a reasonable sample volume of 1 mL, thus reaching the sensitivity of the best immunometric assay formats. An appropriate IS is absolutely necessary to control the variability of such combinations. Iodoacetamide labelling of the protein provided an IS that was bound to antibodies and involved in the immune complexes. It enabled monitoring of all steps of the assay from immunoaffinity extraction to mass spectrometric detection, and maintained the lower variability of the bioanalytical LC/MS methodologies. Despite the fact that endogenous antibodies remain a potential source of interference in ELISA and LC/MS assays, we have demonstrated the possibility to quantify a recombinant protein in the presence of antibodies without loss of accuracy using a dissociating sample pretreatment and an appropriate IS.

REFERENCES

II.2.5. Conclusion

La complexité des fluides biologiques et en particulier du plasma représente un véritable challenge pour la bioanalyse des protéines de faible abondance, ce qui peut être le cas de protéines thérapeutiques dont la concentration est devenue faible en raison du temps écoulé entre le moment de l’injection et l’analyse. La méthode analytique développée ici nous a permis de sensibiliser la quantification de l’Epi-hNE4 dans des échantillons de plasma humain grâce à un traitement d’échantillon adapté. Parmi les méthodes d’extraction communément utilisées, l’immunocapture nous semblait la plus prometteuse et s’est révélée très performante pour extraire sélectivement et concentrer la protéine d’intérêt. Cette méthode est basée sur le même principe que les immunodosages : un anticorps anti-protéine permet l’extraction spécifique de la protéine à partir de la matrice biologique, seule change la méthode de détection. La chromatographie en phase liquide couplée à la spectrométrie de masse, contrairement aux immunodosages, permet une caractérisation moléculaire de la protéine détectée. En effet, le temps de rétention chromatographique, le rapport m/z de la protéine et le rapport m/z d’un ion produit sont trois éléments caractéristiques de la protéine qui assurent un minimum d’interférence. La valeur ajoutée de cette technique est donc considérable pour s’assurer des molécules réellement quantifiées. Les protéines thérapeutiques peuvent en effet être dégradées in vivo, et ces métabolites peuvent interagir avec les anticorps utilisés lors du dosage, aboutissant à un mauvais résultat.

En développant cette étape d’immunocapture, un gain d’un facteur dix sur la sensibilité a pu être obtenu par rapport à la méthode développée précédemment, basée sur une précipitation des protéines à l’acétonitrile. Nous avons utilisé des microbilles magnétiques fonctionnalisées avec des anticorps polyclonaux anti-Epi-hNE4, plutôt qu’une colonne d’immunoaffinité, en raison de la facilité de mise en œuvre de cette technique et de la latitude disponible sur les volumes d’échantillons et les volumes d’élution. Pour obtenir un facteur de concentration compatible avec la sensibilité recherchée, un grand volume d’échantillon a dû être utilisé (ici 400 µL), et la protéine a dû être élue dans un volume aussi faible que possible (40 µL dans notre cas). Le facteur de concentration et la sensibilité seront donc dépendants du volume d’échantillon initialement utilisé. Nous avons ainsi pu démontrer que la quantité de protéine extraite était proportionnelle au volume d’échantillon utilisé par cette méthode, alors
qu’un traitement de l’échantillon par précipitation des protéines montrait un fort effet matrice ne permettant pas d’augmenter le signal LC-MS/MS alors que le volume de plasma utilisé augmentait. Un tel phénomène est certainement lié aux nombreux composés endogènes du plasma extraits de manière concomitante à l’Epi-hNE4 et provoquant une compétition lors de l’ionisation dans la source du spectromètre de masse.

La méthode présentée possède une sensibilité comparable aux tests immunologiques développés pour cette protéine. Cependant, les volumes d’échantillon utilisés sont très différents. Les immunodosages nécessitent un très faible volume d’échantillon, et dans le cas des immunodosages enzymatiques, pour une protéine immobilisée, de nombreuses molécules avec un groupement chromophore sont générées par amplification. La spectrométrie de masse quant à elle ne possède pas une telle amplification spécifique, et au contraire, l’ionisation des protéines est défavorable. Il est donc nécessaire d’extraire un plus grand nombre de protéines, ce qui nécessite un volume d’échantillon supérieur. Pour cette raison notamment, le format d’extraction par microbilles est bien adapté à cette approche puisque la surface totale de ces billes est considérable.

Enfin, nous avons pris en considération la présence d’éventuels anticorps endogènes anti-Epi-hNE4 lors du développement de la méthode. Lors du dosage développé initialement par Becher et al. 100, ce point avait été étudié, et l’acidification du milieu avant précipitation des protéines montrait une récupération quasi-totale de la protéine d’intérêt, même en présence d’une forte concentration d’anticorps anti-Epi-hNE4. Cette approche simple est spécifique de la spectrométrie de masse et ne gêne pas l’analyse qui suit. L’utilisation d’une étape d’immunocapture pour le dosage développé ici rend plus difficile la prise en compte de ces anticorps endogènes. En effet, l’immunocapture et l’immunogénicité sont basées sur des interactions avec des anticorps. Favoriser l’une au détriment de l’autre, à défaut de l’inhiber, est plus subtil. Une étape d’acidification pour rompre les interactions antigène-anticorps, suivie d’une neutralisation avant immunocapture en présence du standard interne, a néanmoins permis de s’affranchir de l’effet de ces anticorps endogènes, et ceci pour deux raisons. Tout d’abord, le standard interne constitut de Epi-hNE4 réduit et alkylé est reconnu par les anticorps endogènes et de capture. La reformation de complexes impliquant l’Epi-hNE4 après neutralisation s’accompagne également de complexes avec le standard interne. La quantification étant basée sur le ratio des signaux d’Epi-hNE4 et de standard interne, ce dernier remplit son rôle en mimant le comportement de la protéine, une baisse du signal.
d’Epi-hNE4 étant ainsi contrôlée par une baisse du signal de son standard interne. Le deuxième effet est lié à la thermodynamique et permet de favoriser la liaison de l’Epi-hNE4 avec les anticorps liés aux billes magnétiques plutôt qu’aux anticorps endogènes : le complexe anticorps-antigène est un équilibre, et en introduisant un large excès d’anticorps immobilisés à la surface des billes, l’équilibre est déplacé vers l’immunocapture. En accélérant ce processus par une dissociation préalable des complexes formés in vivo avec les anticorps endogènes, la quasi-totalité de la protéine d’intérêt peut être récupérée.

Ce problème existe également avec les dosages immunologiques. La présence d’anticorps endogènes ayant une affinité pour la protéine à quantifier peut gêner la réaction anticorps-antigène du dosage et fausser les résultats. Ce problème est également plus difficile à résoudre dans le cas des immunodosages, car aucun standard interne ne peut être utilisé pour compenser une perte des analytes. D’autre part, le déplacement d’équilibre de la réaction antigène-anticorps en faveur de l’immobilisation sur la plaque est plus faible que dans le cas de billes fonctionalisées, en raison de la différence de surface, beaucoup plus faible dans le cas d’un puit de plaque d’immunodosage. Pour ces raisons, il est parfois nécessaire de séparer physiquement les anticorps de la protéine avant le dosage immunologique, par extraction de la protéine ou par extraction des anticorps. La présence d’anticorps anti-protéine thérapeutique est un problème pour la fiabilité des résultats des immunodosage, et la LC-MS apparaît comme un outil promoteur pour pallier ce problème.

La nécessité ou non de rompre les liaisons non covalentes antigène-anticorps en solution pour des protéines thérapeutiques dépend également du type d’information recherché lors du dosage. Si la quantité totale de protéine recombinante est recherchée, la dissociation est nécessaire. Si en revanche, c’est la quantité de protéine thérapeutique active in vivo qui est recherchée (afin de corréler l’effet à l’exposition thérapeutique), la réponse est moins évidente. En présence d’anticorps neutralisants, la protéine perd son efficacité et le complexe accélère son élimination. Si les anticorps ne sont pas neutralisants, le complexe peut avoir une efficacité résiduelle et la dissociation n’est pas nécessaire. L’immunogénicité est un problème majeur pour l’analyse des protéines thérapeutiques, et afin de minimiser les effets secondaires qui y sont associés, ces réponses immunitaires sont étudiées lors de tests précliniques et cliniques. Nous avons d’ailleurs mis à profit l’évaluation de l’Epi-hNE4, objet de ces travaux, pour étudier son immunogénicité.
II.3. L’immunogénicité des protéines thérapeutiques

L’utilisation de protéines thérapeutiques a révolutionné le traitement d’un certain nombre de maladies. Cependant, le problème majeur lié à leur utilisation concerne les réactions immunes induites par l’administration de ces protéines thérapeutiques et à la formation d’anticorps dirigés contre ces médicaments. Quasiment toutes les protéines thérapeutiques sont susceptibles d’induire la formation d’anticorps, mais leur incidence et les conséquences cliniques varient d’un produit à l’autre avec, dans de rares cas, des effets secondaires sérieux et une perte d’efficacité. L’immunogénicité des protéines thérapeutiques est un problème complexe qui dépend de nombreux facteurs et concerne à la fois laboratoires pharmaceutiques, cliniciens et autorités de contrôle des médicaments pour garantir une efficacité et une sécurité d’utilisation de ces molécules. L’évaluation de l’immunogénicité de ces produits implique une détection et une caractérisation des anticorps induits lors de leur administration, que ce soit lors d’études pré-cliniques, cliniques ou de surveillance.

II.3.1. Réponse immunitaire

Du fait de leur spécificité, les protéines thérapeutiques complètent efficacement l’arsenal thérapeutique avec un minimum d’effets secondaires. L’une des utilisations les plus importantes de ces protéines consiste à corriger la déficience d’une protéine endogène. L’insuline est, par exemple, utilisée pour le traitement du diabète, et l’érythropoïétine recombinante est utilisée pour le traitement de l’anémie. Les protéines thérapeutiques peuvent être également utilisées pour bloquer des processus pathogènes avec, par exemple, l’utilisation d’interférons recombinants. Cependant, ces bénéfices sont accompagnés dans certains cas d’effets indésirables dus au caractère immunogène de ces protéines recombinantes. Le système immunitaire est capable de détecter des modifications infimes de la structure tridimensionnelle entre des protéines introduites et des protéines endogènes, pour lesquelles il possède une tolérance. Ainsi, toute protéine étrangère introduite dans le corps peut potentiellement induire la production d’anticorps, et plus la protéine est différente de la protéine endogène, plus elle est susceptible d’engendrer une telle réaction. C’est pourquoi le problème de l’immunogénicité a été initialement identifié lors de l’utilisation de protéines.
obtenues par purification de tissus animaux à des fins thérapeutiques comme l’insuline porcine et bovine dans le traitement du diabète \(^{132}\). Par la suite, avec l’utilisation d’anticorps monoclonaux de souris, des anticorps humains anti-souris ont souvent été observés \(^{133}\). Les protéines thérapeutiques recombinantes étant produites par des bactéries, des plantes et des systèmes mammifères non humains, elles possèdent un caractère immunogène. Aujourd’hui, de plus en plus de protéines ont des séquences d’origine humaine, ou sont humanisées comme c’est le cas pour les anticorps monoclonaux thérapeutiques, sans pour autant faire disparaître ces problèmes d’immunogénicité.

L’apparition d’une réponse immunitaire ainsi que son amplitude dépend de différents facteurs. La réponse immunitaire des protéines thérapeutiques entièrement étrangères, ou qui contiennent des fragments étrangers, est similaire à la réponse d’un vaccin. Des anticorps sont générés contre différents épitopes de la protéine, et plusieurs cas de figure apparaissent en fonction de la localisation de l’épitope au sein de la protéine. Lorsque des anticorps qui se lient au site actif de la protéine sont générés et inhibent (neutralisent) l’action de la protéine en empêchant la liaison à sa cible, de tels anticorps sont dits neutralisants. Les anticorps sont également dits neutralisants s’ils se lient à un autre domaine que le site actif de la protéine, provoquant par leur interaction une modification structurale de cette protéine qui la rend inactive \textit{in vivo}. Les anticorps qui ne se lient pas au site actif de la protéine ou n’induisent pas d’inactivation de la protéine thérapeutique sont appelés anticorps non-neutralisants. Bien que ces anticorps n’inhibent pas l’activité de la protéine, ils modifient néanmoins son comportement biologique, comme par exemple sa biodisponibilité en augmentant sa vitesse d’élimination. Le résultat est similaire à celui observé pour les anticorps neutralisants, c'est-à-dire une diminution de l’efficacité du médicament \(^{15}\).

A l’origine, les protéines thérapeutiques utilisées étaient d’origine animale \(^{134}\), et le caractère étranger de ces protéines était considéré comme la cause de réactions immunitaires. Plus tard, l’utilisation de protéines purifiées à partir de tissus ou de sérum humain telles que l’hormone de croissance et le facteur VIII ont également induit une réponse immunitaire \(^{135}\). Ces produits étant donnés à des personnes déficientes, l’absence de tolérance pour les protéines humaines a été reliée à cette déficience. Plus récemment, l’utilisation des technologies recombinantes pour produire des protéines identiques ou quasiment identiques aux protéines endogènes humaines a permis d’accroître considérablement leur nombre. Malgré cette similité, le problème de l’immunogénicité persiste. La réponse immunitaire des protéines thérapeutiques qui sont structurellement identiques aux protéines endogènes implique un second processus, basé sur la rupture de la tolérance immunitaire. C’est le mécanisme qui aboutit à la formation...
d’anticorps dirigés contre des homologues humains comme les interférons, les interleukines et l’Erythropoïétine (Epo). Le mécanisme impliqué dans la rupture de la tolérance n’est pas totalement élucidé, mais les administrations répétées ainsi que les doses semblent moduler cette réponse immunitaire.

De manière générale, de nombreux facteurs semblent influer sur l’immunogénicité d’une protéine. La séquence de la protéine est le premier facteur à prendre en compte, car les protéines comportant des chaînements d’acides aminés d’origines non humains sont susceptibles d’être plus immunogènes que les protéines dont la séquence est identique à la protéine endogène, et d’être rapidement identifiés comme étrangers à l’organisme. Des facteurs autres que la séquence de la protéine modulent également l’immunogénicité. La glycosylation, notamment, semble jouer un rôle important en masquant des sites antigéniques, ou en augmentant la solubilité des protéines. Les systèmes d’expression utilisés pour la production des protéines sont dans ce cas invoqués comme étant responsables de l’induction de la réponse immunitaire, à travers les modifications post-traductionnelles susceptibles de trahir la nature exogène de la protéine. La présence de contaminants ou d’impuretés, la formulation et la stabilité au cours du stockage, la voie d’administration, la dose administrée et la durée de traitement sont autant de facteurs impliqués dans ce processus d’immunogénicité des protéines thérapeutiques.

Figure 27 : Résumé des différents facteurs influençant l’immunogénicité des protéines thérapeutiques.
II.3.2. Effets des anticorps anti-protéines thérapeutiques

Pour la plupart des protéines recombinantes administrées chez l’homme, les anticorps anti-protéines ne sont pas détectés, ce qui n’implique pas qu’il n’y en ait pas. En effet, une recherche systématique d’anticorps n’est pas effectuée chez tous les patients traités, et d’autre part, les méthodes d’analyses peuvent ne pas détecter des anticorps de faible affinité et de faible concentration (point discuté plus loin dans ce chapitre). De plus, pour de nombreux médicaments, la présence d’anticorps n’a aucune conséquence. Occasionnellement, la réponse immunitaire en réaction à l’administration de protéines thérapeutiques peut avoir de graves conséquences cliniques. Des événements comme l’anaphylaxie ou d’autres réactions allergiques moins violentes sont devenues plus rares lors de l’administration de protéines d’origine bactérienne ou animale, grâce à l’utilisation de produits mieux purifiés. A côté de ces cas extrêmes, l’une des conséquences la plus couramment rencontrée est une perte d’efficacité due à des anticorps liant la protéine et neutralisant son action ou accélérant son élimination. Les anticorps ont surtout un effet sur la biodisponibilité de la protéine en accélérant son élimination. Le complexe anticorps-protéine formé est rapidement éliminé par le système réticuloendothélial. Ceci présente un inconvénient majeur pour l’efficacité du médicament mais est sans conséquence du point de vue de la sécurité des patients.

Ce point doit cependant être nuancé selon la nature de la protéine. Dans le cas des protéines qui n’ont pas d’équivalent humain, c’est-à-dire pas de protéine endogène identique ou partiellement identique, l’apparition d’anticorps neutralisants induit une liaison à la protéine, ce qui inhibe son activité et réduit ou annule son efficacité. En revanche, dans le cas de protéines ayant un équivalent endogène, l’action des anticorps neutralisants fait courir des risques au patient, puisque ces anticorps sont susceptibles de se lier aux protéines endogènes, d’inhiber leur mode d’action normal, et de créer un syndrome de déficience. Ainsi, l’administration de la protéine ne fait qu’empirer la pathologie qu’elle était censée traiter. De tels événements ont été observés dans de rares cas où les anticorps anti-protéines thérapeutiques ont engendré des réactions cliniques sévères, comme une aplasie des globules rouges chez certains patients traités par de l’Epo (les anticorps neutralisants éliminaient les lignées de globules rouges) ou une thrombocythopénie à la suite d’un traitement avec une forme recombinante modifiée de la thrombopoïétine (MGDF).
Chapitre II : Evaluation d’un polypeptide thérapeutique

A l’inverse, et bien que cela soit rare, un effet positif des anticorps anti-médicament a été rapporté lors d’une étude sur l’hormone de croissance, dont l’efficacité a été améliorée en présence d’anticorps 140. Les inconvénients liés aux réponses immunitaires sont néanmoins plus répandus que ce cas exceptionnel, et l’on cherche en général à minimiser l’immunogénicité d’une protéine thérapeutique. Ces trois principales conséquences des anticorps anti-protéines thérapeutiques ont été résumées dans le Tableau 6.

<table>
<thead>
<tr>
<th>Conséquence des anticorps</th>
<th>Protéine thérapeutique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perte d’efficacité</td>
<td>Insuline 141</td>
</tr>
<tr>
<td></td>
<td>Streptokinase 142</td>
</tr>
<tr>
<td></td>
<td>Staphylokinase 143</td>
</tr>
<tr>
<td></td>
<td>Adenosine Deaminase (ADA) 144</td>
</tr>
<tr>
<td></td>
<td>Calcitonine 145</td>
</tr>
<tr>
<td></td>
<td>Facteur VIII 135</td>
</tr>
<tr>
<td></td>
<td>Interféron-α2, Interféron-β 146;147</td>
</tr>
<tr>
<td></td>
<td>Interleukine-2 148</td>
</tr>
<tr>
<td></td>
<td>Gonadolibérine (GnRH) 149</td>
</tr>
<tr>
<td></td>
<td>Hormone chorionique gonadotrope (HCG) 150</td>
</tr>
<tr>
<td>Amélioration de l’efficacité</td>
<td>Hormone de croissance (GH) 151;152</td>
</tr>
<tr>
<td>Neutralisation des protéines endogènes</td>
<td>Erythropoietin (EPO) 43;153</td>
</tr>
<tr>
<td></td>
<td>Thrombopoietin (THPO) 139</td>
</tr>
</tbody>
</table>

Tableau 6 : conséquences cliniques des anticorps anti-protéines thérapeutiques 137.

II.3.3. Evaluation des anticorps anti-protéines thérapeutiques

A priori, le contrôle de l’immunogénicité et la mesure des anticorps neutralisants pendant les phases de développement des médicaments doivent permettre de prédir le niveau de réponse immunitaire attendu lors de l’utilisation clinique. Cette évaluation comporte toutefois de nombreuses incertitudes car ces tests se font initialement sur des espèces animales et la transposition à l’homme de certains événements comme la réponse immunitaire reste délicate. De plus, la réalité après mise sur le marché de la protéine thérapeutique est plus complexe que lors des phases de développement, car les études cliniques contrôlées ne reflètent pas toujours de manière fiable l’incidence des anticorps neutralisants et anti-protéines, ceci en raison du nombre largement supérieur de patients traités comparé au nombre de patients inclus dans les tests cliniques, des polymédications possibles, et des prises répétées sur le long terme 15. Cependant, l’évaluation de l’immunogénicité des protéines thérapeutiques à travers.
notamment la mesure des anticorps neutralisants et non neutralisants est une partie importante de l’évaluation de cette classe de médicaments lors des étapes de développement.

II.3.3.1. Tests de caractérisation de l’immunogénicité

Deux catégories de tests existent pour l’évaluation des anticorps anti-protéines thérapeutiques. La première évalue l’immunoréactivité en détectant les anticorps, et utilise des techniques comme les radio-immunodosages, la résonance de plasmons de surface (SPR), ou les immunodosages enzymatiques sur phase solide. La deuxième catégorie évalue le caractère neutralisant de ces anticorps à travers des tests utilisant des cellules fonctionnalisées, ou des immunodosages enzymatiques où les anticorps neutralisants inhibent la liaison entre la protéine thérapeutique et sa cible biologique. Les deux catégories de tests sont utilisées pour caractériser une réponse immunitaire dirigée contre la protéine thérapeutique.

Les tests d’immunoréactivité des anticorps peuvent être effectués en trois étapes : la première consiste à effectuer un dépistage d’échantillons potentiellement positifs en anticorps anti-médicament. La deuxième étape utilise un test spécifique pour confirmer que les échantillons déclarés positifs par le premier test de dépistage ne sont pas des faux positifs. Enfin, la troisième partie consiste à évaluer le caractère neutralisant de ces anticorps. Une détection sensible combinée à une caractérisation des anticorps dirigés contre la protéine thérapeutique permettrait ainsi d’obtenir des informations, d’une part, sur le caractère immunogénique du médicament et, d’autre part, sur les processus de réaction immunitaire.

L’objectif principal des différents acteurs que sont les laboratoires pharmaceutiques, les agences de contrôle des médicaments, et cliniciens, dans l’intérêt des patients, est de corréler l’immunogénicité des produits administrés aux effets secondaires rencontrés. Cependant, les techniques utilisées sont parfois limitantes lors de la détection des anticorps anti-médicaments de très faible affinité puisque l’ensemble de ces techniques est basé sur des interactions entre les anticorps et leurs cibles. D’autre part, la standardisation des tests de bioanalyse fait défaut et des solutions étalons d’anticorps sont rarement disponibles, ce qui rend les résultats obtenus entre les laboratoires et entre différentes études difficilement comparables. Malgré ces difficultés, des recommandations ont été publiées par un consortium composé de la FDA.
(food and drug administration) et différents laboratoires pharmaceutiques pour tenter de standardiser la détection d’anticorps dirigés contre les produits biotechnologiques 154.

II.3.3.2. Recommandations

Mire-Sluis *et al.* 154 ont ainsi proposé une procédure détaillée pour développer des immunodosages applicables lors d’études cliniques et précliniques, afin de détecter des anticorps induits par administration de produits biotechnologiques. Les concepts développés ont été repris par Geng *et al.* 155 et appliqués de manière détaillée à la validation par immunodosages. Ces recommandations se focalisent en particulier sur la conception d’un test de dépistage, car ce test est le premier filtre utilisé qui permettra de discriminer les échantillons positifs (ayant des anticorps anti-protéine thérapeutique) des échantillons négatifs (n’ayant pas d’anticorps anti-protéine thérapeutique). Ce test doit donc spécifiquement détecter les immunoglobulines, doit être sensible, précis et reproductible. Il est préférable également de développer plusieurs formats de dosage (direct, pontant ou indirect), et d’optimiser les différents paramètres tels que la dilution minimale, la quantité de produits adsorbés sur la phase solide, la concentration des différents réactifs, et un nombre de lavages approprié lorsque les constantes de dissociation anticorps-antigènes sont rapides. Les principales recommandations formulées et spécifiques de ce type de test de dépistage sont les suivantes :

Contrôle positif :

Un contrôle positif peut être obtenu par immunisation chez une espèce identique à celle de l’étude. Dans le cas d’études cliniques, l’immunisation chez les primates est une alternative en raison de la similitude entre les répertoires immunologiques primates et humains. Ce contrôle positif est utilisé à des fins d’optimisation.

Contrôle négatif :

Afin d’évaluer le bruit de fond dû aux interactions non spécifiques avec d’autres composés et pour obtenir un contrôle négatif, des échantillons provenant d’individus avant traitement ou non traités doivent être collectés.
Contrôle de qualité :
Le but de ce contrôle de qualité est de suivre les performances et l’acceptabilité du test tout au long de l’étude. Il peut être différent du contrôle positif. Il est nécessaire d’avoir un contrôle de qualité bas (juste au dessus de la valeur de discrimination des échantillons positifs et négatifs) et un contrôle de qualité haut.

Valeur seuil (appelée également cut-off point) :
C’est la valeur du test pour laquelle un échantillon ayant une réponse inférieure à cette valeur sera considéré comme négatif.
Cette valeur seuil est ainsi déterminée statistiquement à partir du niveau du bruit de fond dû au signal non spécifique, en prenant comme valeur de risque de première espèce 0,05. Ainsi, 95 % des échantillons négatifs seront réellement déclarés négatifs, et le test de dépistage générera 5 % de faux positifs. Pour obtenir cette valeur, des échantillons considérés comme négatifs (non traités, ou obtenus avant l’administration du médicament) sont analysés. Dans le cas où la distribution statistique des signaux suit une loi normale de moyenne m et d’écart type σ, la fonction de répartition indique alors que 95 % des échantillons ont une valeur inférieure à $[m + 1,645 \times \sigma]$ (Figure 28).

Figure 28 : Densité de probabilité théorique de la densité optique obtenue pour une série de mesures donnée. Dans le cas où la distribution suit une loi normale, de moyenne m et d’écart type σ, 95 % des résultats de mesure sont inférieurs à $m+1,645 \sigma$.

Ce premier test de dépistage ne permet pas de déclarer qu’un échantillon est positif, mais permet de s’assurer que ce test qui génère 5 % de positifs dus uniquement aux liaisons non spécifiques (faux positifs) est capable de détecter les échantillons positifs de plus faibles abondances.
Chapitre II : Evaluation d’un polypeptide thérapeutique

Normalisation de la valeur seuil :

La réponse des échantillons étant variable d’un test à l’autre, il est nécessaire d’en tenir compte et d’ajuster cette valeur seuil à chaque test. Cette variabilité inter-test est normalisée grâce à un facteur correctif, qui est le rapport entre la valeur seuil et la valeur obtenue pour le contrôle négatif. Une moyenne de ce facteur correctif est obtenue en répétant plusieurs fois le même test. Lors des analyses suivantes, seul le contrôle négatif est analysé, et la valeur seuil intrinsèque du test réalisé est obtenue en appliquant le facteur correctif au contrôle négatif comme illustré en Figure 29.

![Figure 29 : Détermination de la valeur seuil permettant d’éliminer 95 % des échantillons négatifs. Le facteur de correction X par rapport au contrôle négatif permet de normaliser cette valeur sur l’ensemble des tests. Inspiré de 154.](image)

II.3.3.3. Stratégie analytique

L’Epi-hNE4, comme d’autres protéines thérapeutiques, est susceptible d’induire une réponse immunitaire. Lors d’études précliniques de toxicité menées chez le singe, nous avons eu la possibilité de mettre en œuvre les recommandations présentées précédemment pour développer une méthode analytique d’évaluation de l’immunogénicité de l’Epi-hNE4.

La caractérisation des anticorps anti-Epi-hNE4 a été effectuée en deux étapes. La première consistait à éliminer 95 % des échantillons négatifs. La linéarité, la reproductibilité, la stabilité ainsi que la spécificité de ce test ont été évaluées. Dans un second temps, les échantillons déclarés positifs à l’issue du premier test ont été soumis à un test de confirmation, basé sur une inhibition de la fixation de l’anticorps sur la plaque ELISA, par ajout en solution de l’antigène. Un contrôle négatif a pu être obtenu en mélangeant des
échantillons négatifs prélevés avant traitement, et un contrôle de qualité haut a été constitué en mélangeant des échantillons positifs.

II.3.4. Article : Validation d'un test ELISA pour la mesure d'anticorps induits chez le singe dirigés contre Epi-hNE4, un inhibiteur de la neutrophile élastase humaine
Validation of an ELISA for determination of antibodies induced in monkeys against Epi-hNE4, a recombinant protein inhibitor of human neutrophil elastase

Mathieu Dubois a, Valérie Delaunay b, Laurent Delestre a, Eric Ezan a,∗

a CEA, Service de Pharmacologie et d’Immunologie, CE Saclay, 91191 Gif-sur Yvette, France
b Spi-Bio, 78180 Montigny-Le Bretonneux, France

Received 26 July 2006; received in revised form 9 October 2006; accepted 17 October 2006
Available online 21 November 2006

Abstract

The engineered protein inhibitor of human neutrophil elastase, Epi-hNE4, is being developed for the treatment of cystic fibrosis. Like many recombinant proteins, Epi-hNE4 may induce antibodies in pre-clinical species and in humans. The aim of this report was to validate an ELISA to assess its immunogenicity in monkeys. We have designed and optimized a classical ELISA in which Epi-hNE4 was coated directly on microtitre plates and the antibodies were detected using a secondary antibody labelled with peroxidase. We report implementation of the recent recommendations proposed for the validation of immunogenicity assessment. The cut-off point was determined by means of statistical analysis of negative samples. Linearity, reproducibility, stability and specificity were estimated using quality control samples obtained from a pool of positive samples. The method was applied to monkeys given Epi-hNE4 by inhalation. A confirmation test and a neutralization assay were developed in order to further assess positive samples. In conclusion, we present here one of the first examples of validation in application of recent recommendations [A.R. Mire-Sluis, Y.C. Barrett, V. Devanarayan, E. Koren, H. Liu, M. Maia, T. Parish, G. Scott, G. Shankar, E. Shores, S.J. Swanson, G. Taniguchi, D. Wierda, L.A. Zuckerman, J. Immunol. Methods 289 (2004) 1–16].

Keywords: Immunogenicity; ELISA; Validation; Recombinant; Epi-hNE4

1. Introduction

Biopharmaceuticals represent more than 25% of new products brought to market [2,3]. Although recombinant therapeutic proteins and monoclonal antibody-based products are designed to closely resemble their endogenous form, they may be identified as foreign by the immune system thus leading to the generation of specific antibodies. The incidence and characteristics of antibodies may depend on the structure of the therapeutic protein, its mode of administration and other factors which have been reviewed elsewhere [4,5]. Apart from some rare significant adverse reactions [6], unwanted antibodies usually affect the efficacy of drugs either by modifying their pharmacokinetic properties or by neutralizing their therapeutic activity [7–10]. Since this can impaire clinical responses to treatment, the assessment of immunogenicity has become a safety and regulatory concern.

Induced antibodies may be characterized through a combination of analytical methods including binding assays such as ELISA (enzyme-linked immunosorbent assay) which is the technique of choice because of its sensitivity and high throughput [11]. ELISA relies on the detection of antibody bound to solid phase antigen adsorbed by a secondary reagent (classical ELISA) or by the labelled antigen (bridging ELISA). Irrespective of the format, these assays are semi-quantitative and their validation is an issue which has been addressed very recently in a consortium paper published in order to provide scientific background to standardization of immunogenicity assays [1]. So far, few papers have proposed examples of data or discussed issues related to these recommendations [12,13].

Epi-hNE4 is a 56-amino-acid recombinant protein derived from the second Kunitz-type domain of inter-alpha-inhibitor
protein (ITI-D2) which is able to inhibit human neutrophil elastase with a K_i of 10^{-12}M [14]. The molecule was developed by Dyax Corp. (Cambridge, MA) using its proprietary phage display technology. In vitro and in vivo pharmacological studies have demonstrated its capacity to inhibit human neutrophil elastase (hNE) and to afford protection against lesions induced by hNE of sputum from children with cystic fibrosis [15]. Therefore, Epi-hNE4 represents a new class of cystic fibrosis medication differing from mucolytics like DNAAse and from antibiotics like tobramycin. In order to assess its clinical efficacy, various preliminary toxicological studies in different species are currently underway. The opportunity to participate in the toxicological evaluation of this new biopharmaceutical offered us the possibility to apply the recommendations in the development of immunogenicity testing in monkey serum samples. Here we present and discuss the results of the development and validation of assays intended to assess the presence of antibodies to Epi-hNE4.

2. Materials and methods

2.1. Materials and reagents

Epi-hNE4, a 6237Da protein (EACNLPIVRGCPIAFF-PRAWFDAVKGKCVLFPGYGGC QGNNKFYSEKECREY-CGVP) which contains three disulphide bridges, was discovered by Dyax Corp. (Cambridge, USA) and produced in a genetically modified strain of the yeast *Pichia pastoris* GS115. The protein was provided as a 12.2 mg/ml liquid solution by Debiopharm (Lausanne, Switzerland). Unless otherwise indicated, all reagents were from Sigma (St. Louis, MO). Purified monkey IgG and goat antiserum to monkey IgG (whole molecule) were from MP Biomedical (France). The peroxidase-conjugated goat IgG fraction to monkey IgG (whole molecule) was from Organon Technika (Durham, NC) and was used for the validation at 100 ng/ml (10,000-fold dilution). Peroxidase-conjugated protein G and protein A were from Pierce (Rockford, IL). The saturation buffer contained 0.1 M phosphate pH 7.4 (monobasic and dibasic potassium phosphate), 0.15 M NaCl, 0.1% BSA, 3 M EDTA and 0.1% Tween-20. The washing buffer contained 0.1 M NaCl, 0.1% BSA, $5 \times 10^{-3} \text{M EDTA}$ and 0.1% Tween-20. The washing buffer contained 0.01 M, phosphate pH 7.4 plus 0.05% Tween-20. Washing was performed using an Autowasher 96 (Labsystems, Eragny, France). The dilution buffer was the same as the saturation buffer but without Tween-20. Staining was performed with tetramethylbenzidine TMB (MP Biomedical, France) for secondary peroxidase-labelled reagent and with the Ellman reagent (Spi-Bio, France) for acetylcholinesterase-labelled reagents. Plates were read with a Multiskan RC (Labsystems, Eragny, France).

2.2. Assay design and development

Owing the availability of specific reagents, two ELISA formats (direct and bridging) were tested. The direct format (which was further selected for assay validation) was performed using microtitre plates (Nunc, Denmark) coated with Epi-hNE4 at the concentration of 5 μg/ml in 0.05 M potassium phosphate buffer, pH 7.4, in a volume of 200 μl per well. After overnight incubation at room temperature and one wash cycle, 0.3 ml of the saturation buffer was added to all wells. The plates were then stored at about 4°C for up to 2 months with good stability. Before use, the plates were washed and 50 μl of diluted monkey serum in assay buffer were added in duplicate to the wells before overnight incubation at approximately +4°C. Then, the plates were incubated with 100 μl of a goat anti-monkey immunoglobulin labelled with peroxidase (or other reagents in the initial steps of assay development), at the concentration of 100 ng/ml at room temperature during 4 h. After a final washing step, 200 μl of substrate (TMB) were added and the enzymatic reaction was stopped by addition of 50 μl of 1 M hydrochloric acid after 30 min of incubation. Absorbances were measured at 450 nm. All measurements were made at least in duplicate. Assay optimization involved the study of various parameters such as sample dilution, incubation time, the choice and concentration of secondary reagent (goat anti-monkey immunoglobulin, peroxidase-labelled protein A or G). The selection of optimal conditions was based on the degree of non-specific binding and the signal obtained for a pool of positive samples.

For the bridging format, all the initial steps were identical to the previous format excepted that after sample incubation, an enzymatic tracer (acetylcholinesterase-labelled Epi-hNE4, 100 μl at 200 ng/ml, Spi-Bio, France) was added overnight at 4°C. At the end of the reaction, the plates were washed and 200 μl of Ellman reagent (Spi-Bio, France) were added to each well and the enzymatic reaction was monitored at 414 nm.

2.3. Assay validation

Assay validation was conducted following as closely as possible suggested recommendations [1]. This included determination of the cut-off point, and study of matrix interference, specificity, precision, stability and linearity. Positive samples were obtained from an initial pre-clinical study in which animals received Epi-hNE4 by inhalation: the absorbances obtained from samples taken at different times until 28 weeks were compared to pre-administration values (negative samples). Each sample whose absorbance was at least four times the pre-dose absorbance was considered positive. Pre-dose samples ($n=28$) were pooled in order to obtain a negative control (QC−) which was used for the validation. Positive samples ($n=44$) were pooled in order to obtain a high QC (quality control) which was diluted 20- and 80-fold in the pool of negative sample (QC−) in order to obtain a mid QC and low QC, respectively.

The cut-off point was determined after measuring the variability of 28 individual negative samples which were assayed on three different days. The cut-off point was obtained by a normalization approach to account for inter-assay variability. An upper negative limit at 95% was calculated on each day and was obtained as the mean of the absorbances of 28 samples plus 1.645 S.D. [1]. On each day, a normalization factor was calculated as the ratio between the mean plus 1.645 S.D. and the absorbance value of the negative control (QC−). The mean value of the normalization factor obtained on the three different days was then used to determine a cut-off point value for in-study runs, i.e. the
absorbance above which an individual result will be considered positive. Precision was studied by calculating the intra-day and inter-day variability (n = 4) of the negative control and the three QCs (high, mid and low).

Matrix effects were determined by studying the variability of 10 individual negative samples spiked with the high QC at a 2- or 10-fold dilution. In the absence of purified monkey antibodies, an indirect approach was to calculate a recovery using polyclonal rabbit antiserum spiked in the pool of negative controls or in buffer. Rabbit immunoglobulins were detected with a mouse monoclonal antibody against rabbit immunoglobulin labelled with acetycholinesterase [16]. Stability was assessed as the variability of the absorbances of the high QC which were tested after incubation for 24 h at −20 °C, three freeze-thaw cycles and after 1 month and 6 months at −20 °C. Linearity was obtained by serially diluting the high QC sample in the negative control.

In order to assess possible interference due to the endogenous protein potentially present in the samples, the high QC sample was tested in the presence of Epi-hNE4 at the concentrations of 0, 0.1, 1 and 100 μg/ml. The result of this test formed the basis for the development of a confirmation test for any positive sample obtained at the primary screen.

Samples which signal was inhibited of at least 50% when incubated with 100 μg/ml of antigen (compared to signal obtained in absence of competitor) were confirmed as positive. To validate this level of 50% we have applied the confirmation test to samples known to be negative (pre-dose samples) but that gave a signal above the cut-off in the screening assay.

2.4. Enzyme immunoassay of Epi-hNE4 in samples

Epi-hNE4 was administered (one primary injection followed by boost injections, 1 mg each in complete Freund’s adjuvant) to rabbits in order to obtain antibodies. An enzymatic tracer was obtained by conjugation of Epi-hNE4 to acetylcholinesterase as indicated above. In order to remove interfering antibodies, plasma samples were assayed after acidification with 0.1% TFA and extraction with a Sep-Pak cartridge (Waters, France). After washing and elution with acetonitrile, the eluate was dried and diluted in 0.1 M phosphate buffer pH 7.4 with 0.15 M NaCl, 5 mM EDTA, 0.1% bovine serum albumin and 0.01% sodium azide. The assays were then performed in 96 well microtitre plates coated with mouse monoclonal antibodies specific for rabbit immunoglobulins (Spi-Bio, Montigny-Le-Bretonneux, France) and the enzymatic activity was recorded using Ellman reagent. Unknown concentrations were calculated from a standard curve modelled with a cubic spline transformation (Immunonit, Beckman, Gagny, France). All measurements for standards and samples were made in duplicate. The limit of quantification was 5 ng/ml.

2.5. Animal studies

The method was applied to monkey samples which were obtained from a subchronic toxicity study in which the animals (groups of 4–7 males and females for all doses) were treated at 0, 0.75, 1.8 and 3 mg/kg by daily 30-min inhalation for 25 weeks. Serum samples were obtained before administration and at weeks 4, 13 and 25 post-initial dosing and were stored at −20 °C before analysis. All samples were tested for their anti-body content by ELISA and the Epi-hNE4 concentration was measured by the enzyme immunoassay described above.

3. Results

The immunogenicity of Epi-hNE4 was assessed in three steps: a binding assay as a screening assay, a confirmation test for positive samples using an indirect immunodepletion step, and finally a neutralization assay (not described in this report) using a bioassay based on its inhibition of human neutrophil elastase, the biological target of Epi-hNE4.

3.1. Screening assay

3.1.1. Optimization of direct ELISA assay

Two ELISA formats (direct and bridging) were developed for the initial screen and confirmation assay. Initial assays demonstrated that the responses of positive samples were lower in the bridging format, which led us to develop a direct ELISA format. Reagent concentrations (i.e. coated antigen and secondary labelled reagent) were optimized using either Epi-hNE4 or monkey immunoglobulins coated on microtitre plates and tracers consisting of either protein A, protein G or goat anti-monkey IgG conjugated to peroxidase. The criteria of optimal conditions were based on non-specific binding, the respective signals of the high QC and the QC− (negative control) and their ratio. Although the absorbances were higher with peroxidase-labelled proteins A and G, we found that these reagents gave higher non-specific binding and greater variability in the results. Fig. 1 shows the effect on assay responses of the concentration of peroxidase-labelled goat anti-monkey immunoglobulins and sample dilution. Based on the absorbances for the negative control which we chose to maintain below 0.2, a concentration of 100 ng/ml was selected for the secondary reagent (Fig. 1A). The absorbances for serial dilution of the high QC in assay buffer indicated that the maximal response was obtained for dilutions between 1/50 and 1/200 (Fig. 1B) and the 100-fold dilution was then selected for assay validation as a compromise between signal intensity and sensitivity. The effect of the number of plate washing cycles (at each step) was also studied and we found that between 2 and 20 cycles, no modification of the assay response was observed (data not shown).

3.1.2. Statistical approach

The first step of the validation was to determine the assay cut-off point, i.e. the level of response at which a sample is defined as positive or negative. This was obtained statistically using negative samples and a normalization approach based on an inter-day analysis of variability. Twenty-eight serum samples from untreated monkeys and a serum pool from negative animals were analyzed on three different days (Table 1). The mean and the standard deviation were calculated for each day (homogeneity of variance checked using a Bartlett’s test). On
each day, an upper negative limit (i.e. the cut-off point) was calculated as the mean plus 1.645 S.D. which consists in eliminating 95% of negative samples. The mean cut-off point had a reasonable variability (mean of 0.095 with a CV of 16%). In order to correct the inherent inter-day drift, the cut-off point was normalized by comparing it to that of a pool of negative samples to be used for the assay of real samples. The mean ratio (cut-off point/negative pool, Table 1) was 1.11 ± 0.10 which represents a variability significantly lower than that obtained for the inter-day cut-off points. In-study samples were assayed using this normalized factor. The precision of the assay was assessed by studying the intra-day and inter-day variability of the response of the high, mid and low QCs. The results shown in Table 2 indicate signal variabilities for either the absorbances or the absorbance ratio in the range of 4–13%. A supplementary experiment was performed using a polyclonal rabbit antiserum which was serially diluted either in buffer or in the negative control (monkey serum) and further assayed after a 100-fold dilution.

![Graph](image)

Fig. 1. Optimization of the secondary reagent concentration and sample dilution. (A) Specific signal (pool of positive samples, ●) and non-specific signal (pool of negative samples, ○) as a function of the concentration of the secondary reagent (anti-monkey immunoglobulins labelled with peroxidase). (B) Effect of sample dilution (in assay buffer) on the specific signal (pool of positive samples, ●) and non-specific signal (pool of negative samples, ○).

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.027</td>
<td>0.035</td>
<td>0.025</td>
</tr>
<tr>
<td>2</td>
<td>0.015</td>
<td>0.018</td>
<td>0.015</td>
</tr>
<tr>
<td>3</td>
<td>0.016</td>
<td>0.018</td>
<td>0.011</td>
</tr>
<tr>
<td>4</td>
<td>0.018</td>
<td>0.017</td>
<td>0.015</td>
</tr>
<tr>
<td>5</td>
<td>0.025</td>
<td>0.019</td>
<td>0.019</td>
</tr>
<tr>
<td>6</td>
<td>0.025</td>
<td>0.021</td>
<td>0.022</td>
</tr>
<tr>
<td>7</td>
<td>0.020</td>
<td>0.022</td>
<td>0.027</td>
</tr>
<tr>
<td>8</td>
<td>0.024</td>
<td>0.022</td>
<td>0.026</td>
</tr>
<tr>
<td>9</td>
<td>0.017</td>
<td>0.018</td>
<td>0.021</td>
</tr>
<tr>
<td>10</td>
<td>0.040</td>
<td>0.045</td>
<td>0.039</td>
</tr>
<tr>
<td>11</td>
<td>0.034</td>
<td>0.046</td>
<td>0.050</td>
</tr>
<tr>
<td>12</td>
<td>0.029</td>
<td>0.049</td>
<td>0.038</td>
</tr>
<tr>
<td>13</td>
<td>0.028</td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>14</td>
<td>0.046</td>
<td>0.048</td>
<td>0.053</td>
</tr>
<tr>
<td>15</td>
<td>0.065</td>
<td>0.098</td>
<td>0.083</td>
</tr>
<tr>
<td>16</td>
<td>0.045</td>
<td>0.064</td>
<td>0.066</td>
</tr>
<tr>
<td>17</td>
<td>0.070</td>
<td>0.092</td>
<td>0.100</td>
</tr>
<tr>
<td>18</td>
<td>0.053</td>
<td>0.066</td>
<td>0.059</td>
</tr>
<tr>
<td>19</td>
<td>0.070</td>
<td>0.098</td>
<td>0.081</td>
</tr>
<tr>
<td>20</td>
<td>0.028</td>
<td>0.036</td>
<td>0.038</td>
</tr>
<tr>
<td>21</td>
<td>0.048</td>
<td>0.063</td>
<td>0.046</td>
</tr>
<tr>
<td>22</td>
<td>0.061</td>
<td>0.081</td>
<td>0.060</td>
</tr>
<tr>
<td>23</td>
<td>0.042</td>
<td>0.049</td>
<td>0.039</td>
</tr>
<tr>
<td>24</td>
<td>0.104</td>
<td>0.124</td>
<td>0.103</td>
</tr>
<tr>
<td>25</td>
<td>0.071</td>
<td>0.111</td>
<td>0.089</td>
</tr>
<tr>
<td>26</td>
<td>0.087</td>
<td>0.127</td>
<td>0.103</td>
</tr>
<tr>
<td>27</td>
<td>0.033</td>
<td>0.037</td>
<td>0.034</td>
</tr>
<tr>
<td>28</td>
<td>0.040</td>
<td>0.061</td>
<td>0.057</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean absorbance (CV)</th>
<th>High QC</th>
<th>Mid QC</th>
<th>Low QC</th>
<th>Negative pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-day</td>
<td>0.628 (4.9%)</td>
<td>0.287 (7.9%)</td>
<td>0.141 (7.0%)</td>
<td>0.063 (9.6%)</td>
</tr>
<tr>
<td>Ratio*</td>
<td>8.5 (10.0%)</td>
<td>4.6 (7.8%)</td>
<td>2.2 (7.1%)</td>
<td>2.0 (7.1%)</td>
</tr>
<tr>
<td>Inter-day</td>
<td>0.679 (10.0%)</td>
<td>0.328 (7.6%)</td>
<td>0.172 (8.7%)</td>
<td>0.076 (12.2%)</td>
</tr>
<tr>
<td>Ratio*</td>
<td>9.0 (9.4%)</td>
<td>4.0 (7.4%)</td>
<td>2.3 (7.0%)</td>
<td>2.0 (7.1%)</td>
</tr>
</tbody>
</table>

* Absorbance of the QC divided by absorbance of the negative pool, n = 4 for all determinations.
dilution. Although, the best test would have been the use of purified monkey antibodies, this experiment was also used as an indicator of recovery since it was considered to reflect the possible inhibition of serum components on binding of antibodies to antigen-coated solid phase. As shown in Table 3, the ratios of absorbances between monkey sample and assay buffer were above 68%, indicating that at the tested concentration there was no significant inhibition of binding. Matrix interferences were also tested by diluting the high QC in 10 different negative samples and at two dilutions (2- and 10-fold). As shown in Table 4, a CV of 12.6% was obtained with the highest dilution. Although this was higher than the intra-assay variability (Table 2), it was considered to be indicative of the absence of important sample-to-sample matrix interference. The results of the linearity study are shown in Fig. 2. Serial dilution of the high QC sample in the negative control (QC−) gave absorbances which increased with the sample concentration with a tendency to a plateau at low dilutions.

3.2. Confirmation test

Finally, the effect of the presence of the antigen itself was assessed to discard the theoretical 5% of false positive generated by the screening assay. The high QC was diluted 100-fold and then spiked with increasing concentrations of the antigen. The experiment was repeated on three different days and the results are shown in Fig. 3. The lowest concentration (0.1 µg/ml) decreased the signal obtained in the absence of Epi-hNE4 (signal of reference) by only 14%, while the highest concentration tested (100 µg/ml) gave an absorbance still above the assay cut-off point and decreased the signal of reference by 75%. These results were not changed if, in order to mimic an in vivo situation, the samples were pre-incubated with the antigen for 24 h. We used this information to implement an indirect immunodepletion test used to confirm the binding assay [13]. The aim was to identify false-positive results obtained with the screening assay by analyzing them in the presence of 100 µg/ml Epi-hNE4. A decrease by 50% was chosen as a limit to identify false positives from positive samples: any sample above the cut-off during the screening assay that is not inhibited by more than 50% in the presence of 100 µg/ml of Epi-hNE4 was considered as false-positive in a confirmation test.
We have applied the confirmation test to samples known to be negative (pre-dose samples) but which produced a positive response in the screening test. The two samples of the study (see Table 1) spiked with 100 μg/ml of Epi-hNE4 showed a maximum decrease of their signal by 30%. Further data were obtained from another study: samples taken before the administration of the recombinant protein were screened with the first test. Seven of them were above the cut-off (i.e. they were false positive), but after antigen depletion, the signal reduction was 21 ± 28%. Owing this variability, we choose 50% as a security level (which correspond to the mean plus one standard deviation, or two-fold the signal reduction). It should be pointed out that there is currently no accepted guideline for determining the minimum reduction signal in the confirmative assay, and this issue has been recently discussed [17].

3.3. Stability assessment

Stability was assessed by assaying the high QC and a pool of negative control samples and comparing their signal and ratio. No significant (>15%) variation from initial values was found under the tested conditions (24 h at 20°C and 1 month and 6 months at −20°C, three freeze-thaw cycles).

3.4. Pre-clinical results

Following this validation, the assay was applied to samples from monkeys given different doses of Epi-hNE4 by inhalation. The results presented in Fig. 4 indicate that antibodies to Epi-hNE4 were present at the first sampling time (4 weeks). Whatever the dose, sex and sampling time, more than 75% of animals were positive (not shown in the figure). There was no significant difference between males and females and the lowest dose tended to higher antibody contents. The mean concentrations of Epi-hNE4 of each group were less than 300 ng/ml, indicating the absence of potential interference by the endogenous antigen in the antibody assay. It should be pointed out that the immunoassay was free of interference by endogenous antibodies. This was done using a specific sample preparation procedure which involved the denaturation of endogenous antibodies by trifluoroacetic acid and extraction with the Sep-Pak cartridge.

4. Discussion

The recent exponential growth of recombinant proteins and antibodies has raised issues such as the assessment of their immunogenicity. Assay developments have already been described [12,18–20] and specific recommendations have been proposed [1]. We tried to follow these recommendations for the assessment in monkey serum of antibodies to Epi-hNE4, a recombinant protein being developed for the treatment of cystic fibrosis. The data presented in this paper illustrate how the validation may be applied in classical assay situations. Among the various techniques used to monitor antibodies to biopharmaceuticals, we chose a direct ELISA format which has the advantage of sensitivity and high throughput [11,13].

A first point to consider is the choice of a standard or a positive control in order to monitor assay performance. Chimeric antibodies or purified rabbit polyclonal antibodies used as standards allow true quantitative assay only if the affinity or isotypes are the same as those of polyclonal antibodies present in the sample [21]. A second difficulty is that these standards may be unavailable for initial pre-clinical studies. Finally, and despite the fact that they may be only used for quantification, standards may not be good candidates for validation of long-term stability and linearity, or for assay steps such as plate washing where high-affinity antibodies may provide better reproducibility than real samples.

For these reasons, a positive control obtained in animals after immunization with the protein represents a better alternative, when available. Owing to the natural maturation of antibody affinity with time or after repeated administration, it is likely that polyclonal antibodies of various affinities may be obtained. In the phases of our development, we had the opportunity to obtain samples from monkeys given Epi-hNE4 daily by inhalation. We developed an initial screening using an unvalidated assay by comparing the assay response for the same animal before and after selected times after administration.

For immunogenicity testing, the absence of a standard means that the classical estimation of a quantification limit must be replaced by the evaluation of a cut-off point. We followed the recommended strategy of establishing an upper negative limit which results in a 5% false-positive rate, and then a normalization approach which aims to study inter-assay drift in the cut-off point. The mean ratio between the cut-off point and the value for a pool of negative samples gave a mean normalization factor which was used as a criterion of positivity for the assays of toxicological samples. In our example, we demonstrated that this gave better reproducibility than that obtained using a fixed absorbance.
The positive QCs and the negative pool samples were used for tests of stability, linearity, repeatability and reproducibility. Typically, we found intra-day and inter-day variabilities below 12% which provided a basis for in-study criteria of acceptance. So far, there is no specific recommendation, but we estimate that QC values or the QC/negative ratio around ±25% of their validated value can be accepted for the validation of in-study assays.

Assay specificity, linearity and matrix interference were assessed by various methods owing to the absence of standards. Our first approach consisted of the dilution of the high QC in different negative samples in order to assess both selectivity and matrix interference. Interference by the drug itself has to be considered in the specificity study. ELISA cannot be specific in immunogenicity testing since any response can be decreased by the antigen. The amount of antigen to be added in order to inhibit the response is dependent on many parameters, such as the affinity and concentration of the antibodies present in the samples or the concentration of the antigen coated on the solid phase.

Using the high QC, we found that the specific binding was 50% inhibited with a concentration of 8 μg/ml, which is largely superior to that found in the samples (300 ng/ml). It should be pointed out that any evaluation of antigen interference requires that the method used to quantify the protein in biological fluids be free of interference from induced antibodies, a difficulty which has rarely been addressed. In contrast, antigen interference in ELISA can be circumvented by special sample preparation [22]. Finally, and in the now commonly applied strategy of immunogenicity testing which consists of stepwise screening/confirmation/neutralizing assays, the use of a competitor mixed with the sample allows an indirect immunodepletion procedure that can be used to eliminate the statistically 5% false-positive samples [13]. Furthermore, the levels of competitor used to inhibit the binding of antibodies to microtitre plates can also be used as an indicator of the mean affinity of the antibodies present in the samples [23]. However, the exact determination of affinity and concentration remains an interesting challenge since it will allow calculating the concentration of therapeutic protein bound to the induced antibodies.

In conclusion, this report describes one of the first applications of the recent recommendations. Most of the technical issues that we faced (absence of standards, determination of the cut-off point, classical ELISA format, low-affinity animal samples, etc.) are typical situations for numerous proteins undergoing pre-clinical trials. Our report should provide data for future implementation of new validations.

Acknowledgement

The authors wish to thank Debiopharm (Lausanne, Switzerland) for their financial support.

References

II.3.5. Conclusion

Au cours de l’évaluation de la toxicité de la protéine recombinante Epi-hNE4 chez le singe, nous avons pu développer des tests de caractérisation de l’immunogénicité de cette protéine. Les tests développés reprennent des formats classiques d’immunodosages et la spécificité de ce travail a été de suivre les récentes recommandations formulées par un groupe de travail constitué des principaux laboratoires pharmaceutiques et des autorités réglementaires américaines (FDA), ces résultats en sont donc une des premières illustrations.

Tout d’abord, la manière de détecter les échantillons positifs est ici assurée par un premier test de dépistage qui utilise une valeur seuil pour discriminer les échantillons possédant ou non des anticorps induits dirigés contre l’Epi-hNE4. En effet, des anticorps anti-Epi-hNE4 purifiés de concentration connue permettent d’obtenir une quantification absolue des anticorps induits seulement s’ils possèdent une affinité identique. La réponse immunitaire étant polyclonale, les anticorps ont vraisemblablement des affinités différentes avec parfois des affinités très faibles. Cette approche de caractérisation des anticorps induits par quantification absolue est donc difficilement réalisable, et il a donc été préféré une approche statistique basée sur la réponse d’échantillons négatifs. Les faux positifs générés par cette première étape sont ensuite éliminés par un second test dit de confirmation. L’ajout d’Epi-hNE4 dans les échantillons crée des complexes antigènes-anticorps induits qui inhibent la fixation des anticorps avec l’antigène adsorbé sur la plaque ELISA, diminuant ainsi le signal. Une inhibition d’au moins 50 % a été utilisée pour identifier les échantillons positifs.

La grande difficulté pour l’évaluation de l’immunogénicité est liée à l’absence de standard. Les anticorps induits ont en effet la particularité d’être différents d’un individu à l’autre, or les méthodes de bioanalyse ont besoin de standards (en concentration connue) pour caractériser les performances des tests (robustesse, sensibilité) et surtout les rendre quantitatifs. L’utilisation d’anticorps polyclonaux d’une autre espèce comme "pseudo standards" peut être envisagée, à condition d’utiliser un format de dosage indépendant de l’espèce d’origine de l’anticorps comme le format bridging. En effet, les immunodosages de type sandwich utilisent un anticorps anti-espèce pour détecter les anticorps induits alors que les dosages de type bridging utilisent la divalence de l’anticorps pour lier à la fois la protéine immobilisée et la protéine marquée pour la détection, ce format est donc transposable d’une espèce à l’autre.
Néanmoins, le problème de l’affinité des anticorps utilisés comme standards n’est pas résolu et une différence d’affinité entre standard et anticorps endogènes engendre une erreur sur la détermination de la concentration. La portée de ces tests d’immunogénicité restera donc limitée à de la détection tant qu’ils ne seront pas quantitatifs. La prédiction d’effets et le lien avec des modèles pharmacocinétiques et pharmacodynamiques sont en effet dépendant d’une caractérisation complète de ces anticorps.

D’autres techniques basées sur l’électrochemiluminescence, développées par Mesoscale Discovery et BioVeris, ont montré un gain en sensibilité et une capacité à détecter des anticorps de faible affinité. Ces techniques ont donc un potentiel pour améliorer l’évaluation de l’immunogénicité. D’autre part, des outils comme la chromatographie liquide couplée à la spectrométrie de masse semblent être des alternatives intéressantes car ces techniques de quantification ne requièrent pas d’information sur l’affinité des anticorps, c’est la molécule elle-même qui est analysée et non pas l’interaction mais là encore, en l’absence de standard, il paraît difficile d’identifier quels anticorps parmi les immunoglobulines sont liés au phénomène d’immunogénicité. Son extraction est nécessaire par l’intermédiaire d’un large excès de protéine thérapeutique immobilisés sur une phase solide (pour déplacer l’équilibre) puis de quantifier l’anticorps après dissociation. Une seconde approche indirecte est également envisageable. Après capture de l’anticorps par la protéine immobilisée sur phase solide, un excès de cette même protéine est introduit en solution. La divalence de l’anticorps permet de capter une protéine libre qui peut être alors quantifiée par LC-MS après dissociation du complexe. En supposant que l’excès de protéine suffise à saturer les sites libres des anticorps, la quantification de la protéine reflète alors la concentration en anticorps.

La formation d’anticorps est une réaction couramment rencontrée lors de thérapies utilisant les protéines thérapeutiques. Elle peut induire des effets indésirables tels qu’une diminution de l’activité du médicament, voire des effets néfastes. Dans la majorité des cas, ces réactions immunitaires sont bénignes, mais dans certains cas, comme le traitement à l’EPO par exemple, les anticorps induits ont réagi avec l’érythropoïétine endogène, aboutissant à des cas graves d’aplasie des globules rouges (rapporté en 2002 par Casadvall et al.43). Bien que les causes de ces réactions graves ne soient pas totalement élucidées, il est probable qu’une modification du produit ait pu être apportée lors du changement de la méthode de production ou de formulation quelques années auparavant. L’évaluation de l’immunogénicité doit donc se faire à la fois lors des premières études pré cliniques et tout au long de la
commercialisation du produit. Les techniques physico chimiques actuelles ne permettant pas de prévoir le comportement biologique et clinique des produits biopharmaceutiques, une attention particulière est à apporter aux processus de fabrication pour que l’utilisation des protéines thérapeutiques soit sans risques, au moment où les brevets de certains produits arrivent à échéance, ouvrant ainsi la voie aux protéines thérapeutiques génériques156.
Chapitre III :
Quantification d’un anticorps thérapeutique par LC-MS
III.1. Introduction

III.1.1. La quantification des macromolécules

La quantification des protéines thérapeutiques est le plus souvent faite par immunodosage en raison de la sensibilité et du haut débit associé à cette technique. Dans l’optique de trouver des alternatives à l’immunoanalyse qui peut parfois présenter des problèmes de spécificité, l’attention s’est tournée vers la spectrométrie de masse, devenue un outil incontournable pour la caractérisation et l’identification des protéines. Cette technique présente en effet des avantages pour la bioanalyse, en raison de sa spécificité, de sa capacité à analyser un grand nombre de composés en parallèle (multiplexage), ainsi que l’utilisation généralisée de standards internes permettant d’améliorer la robustesse des dosages. Elle fait également preuve d’une certaine flexibilité puisqu’elle est utilisée aussi bien pour analyser un composé que ses métabolites. Cependant, un certain nombre de défis restent à relever pour que la spectrométrie de masse soit robuste et facile à mettre en œuvre pour l’analyse des protéines de haute masse moléculaire, et puisse remplacer systématiquement l’immunoanalyse lors de leur quantification dans le cadre d’études de pharmacoanalyse. Trois points essentiels développés par la suite nécessitent ainsi une attention particulière : la taille de ces macromolécules constitue tout d’abord un handicap pour leur quantification, le choix d’un bon standard interne est également déterminant pour la robustesse du dosage, et enfin la sensibilité, qui constitue le problème majeur de la spectrométrie de masse pour ce type d’application, peut être améliorée par un traitement d’échantillon efficace.

III.1.1.1. Distribution d’états de charges et digestion enzymatique

Plus la protéine va être importante en taille, plus elle sera protonée lors du processus de formation des ions par électrospray, et cette protéine ne présentera pas qu’un seul état de charge, mais une distribution d’états de charge : chaque molécule ne portera pas le même nombre de protons à l’issue du processus de desorption-ionisation. Il en résulte une perte de sensibilité puisque les composés sont répartis sous différentes espèces moléculaires protonées (plusieurs dizaines), alors que les peptides ne présentent en comparaison que états de charge.
en fonction de leur séquence. La technique de désorption-ionisation par MALDI génère nettement moins d’états de charges, y compris pour les protéines de haute masse moléculaires, mais l’électrospray est souvent utilisé en raison des facilités de couplage avec la chromatographie en phase liquide. Un autre facteur vient s’ajouter à la distribution d’états de charge et concerne le mode de production des protéines thérapeutiques. En effet les protéines de haute masse moléculaire sont produites dans des systèmes d’expression qui effectuent des modifications post-traductionnelles de la protéine, comme par exemple les glycosylations. Ces modifications ne sont pas homogènes, et il en résulte une hétérogénéité de la masse des protéines, ce qui se traduit sur les spectres de masse par des dédoublements de pics, diminuant d’autant leur intensité, et donc augmentant la quantité de produit nécessaire pour atteindre le seuil de détection.

Une alternative consiste à cliver les protéines par l’intermédiaire de réactifs chimiques ou par des enzymes afin de produire des peptides, et de les quantifier. Ces peptides présentent un spectre de masse simplifié par rapport à la protéine intacte, car leur faible masse moléculaire provoque peu d’états de charge lors du processus d’ionisation par électrospray et la plupart ne possèdent pas de site de glycosylation. En général, des peptides avec des résidus hydrophobes ayant une masse comprise entre 500 et 2000 Da et un nombre d’états de charge limité (typiquement 2) sont les plus favorables. Le choix du peptide est un élément clé pour la spécificité du dosage, et un peptide qui est unique et spécifique de la protéine cible doit être sélectionné. Les peptides possédant des homologies de séquence avec d’autres protéines sont donc à éviter, de même que les peptides ayant des séquences susceptibles de contenir des sites de glycosylation et d’oxydation. Depuis les années 1970, cette approche de digestion enzymatique couplée à une analyse par spectrométrie de masse a surtout été utilisée dans le but d’identifier des protéines. Un premier exemple utilisant une étape de protéolyse afin d’obtenir une information quantitative d’une protéine data de 1989 et a été développé par Dass et al. avec l’endorphine β comme protéine modèle. Cette équipe avait également développé des approches de quantification de neuuropeptides en utilisant des standards internes non marqués, marqués par voie enzymatique ou encore des peptides synthétiques ayant des acides aminés marqués par isotopes stables. Cette approche, qui utilise la même molécule, où certains atomes sont remplacés par leur isotopes afin d’obtenir un décalage sur l’échelle du spectre de masse, est utilisée pour avoir une analyse quantitative : c’est le principe de la dilution isotopique (IDMS lorsqu’elle est appliquée à la spectrométrie de masse pour isotope dilution mass spectrometry). La molécule marquée (peptide ou protéine) est
Chapitre III : Quantification d’un anticorps thérapeutique par LC-MS

alors introduite dans l’échantillon à une concentration connue, et la réponse des molécules marquées et non marquées est comparée, permettant ainsi de calculer la concentration de l’espèce non marquée. Idéalement, plusieurs aliquotes sont réalisés avec des niveaux de concentration de la molécule marquée permettant d’encadrer la concentration de la molécule non marquée pour affiner la justesse et la précision de l’analyse.

La première application de la protéolyse pour la quantification absolue d’une protéine par spectrométrie de masse date de 1996 et a été développée par Barr et al., en prenant comme protéine modèle l’Apolipoprotéine A-I165. L’idée fondamentale consistait à utiliser un peptide généré par protéolyse de la protéine intacte, et d’utiliser la concentration de ce peptide comme représentation de la concentration de la protéine entière, en supposant que la digestion soit complète et donc qu’un ratio molaire 1 :1 soit obtenu entre la protéine entière et le peptide formé. Des peptides marqués par isotopes stables étant introduit en quantité connue, la quantification était effectuée par IDMS, permettant ainsi de calculer la concentration du peptide, qui est représentative de la concentration de la protéine. Les résultats ont montré que l’approche utilisant une digestion enzymatique couplée à une quantification par dilution isotopique et une analyse par spectrométrie de masse était une approche prometteuse pour standardiser les quantifications de protéines. D’autres exemples ont prouvé l’utilité d’une telle approche, comme par exemple la quantification de la rhodopsine, récepteur couplé à la protéine G, à partir de préparations de membranes hydrolysées par la trypsine166, ou encore la quantification absolue de protéines de levures167. La quantification d’une protéine particulière à partir d’une matrice biologique aussi complexe que le plasma constitue un défi supplémentaire puisque les concentrations des peptides et des protéines constituant le plasma s’échelonnent sur plus de 10 logs5, avec notamment des taux très élevés à plusieurs dizaines de milligrammes par millilitres pour les composés majoritaires. Les premiers exemples de quantification absolue d’une protéine dans le plasma ont été apportés par Kuhn et al sur la protéine C-réactive168, et par Barnidge et al. en utilisant comme protéine modèle le PSA (Prostate Specific Antigen)169.

Deux méthodes de quantification des protéines sont envisageables. La première s’adresse davantage aux protéines endogènes (type biomarqueurs) qui possède un taux fixe, la méthode IDMS sera alors la plus adaptée (surtout si aucune matrice vierge de protéine n’est disponible). La deuxième s’adresse aux protéines thérapeutiques lors d’étude pharmacologique où une large gamme de concentration est nécessaire, la quantification se
Chapitre III : Quantification d’un anticorps thérapeutique par LC-MS

fera alors par comparaison avec une courbe de calibration effectuée avec cette même protéine. Que ce soit pour l’approche IDMS ou pour l’approche par courbe de calibration, le choix du standard interne est déterminant pour la qualité du dosage. Dans le premier cas il détermine directement le niveau de concentration, et dans le second, il permet de normaliser et de comparer échantillons inconnus et points de gamme.

III.1.1.2. Choix du standard interne

Les sources de variabilité sont nombreuses lors des analyses de protéines par digestion enzymatique couplée à la LCMS à partir de milieux biologiques complexes, et différentes approches standard interne ont été développées afin d’améliorer justesse et précision des dosages. La première méthode abordée au paragraphe précédent utilise des peptides marqués par isotopes stables dont la séquence est identique à ceux générés par protéolyse de la protéine à quantifier (stratégie AQUA pour absolute quantification, terme défini à partir de l’étude de Gerber et al. 167). Cette méthode de dosage consiste en fait à cliver dans un premier temps la protéine, et d’appliquer aux peptides formés des stratégies de standardisation interne présentées dans le chapitre II portant sur la quantification de protéines de faible masse moléculaire. Cette approche a été largement utilisée pour la quantification de protéines par digestion enzymatique, notamment la protéine C-réactive 168;170, les protéines d’abondance intermédiaire 171, l’IGF1 172, la Zn-α2 Glycoprotein 173, la chaîne légère de la myosine (Myl3) 174, la partie N-terminale du peptide cérébral natriurétique (NTproBNP) 175 et les apolipoprotéines 176. De tels peptides sont disponibles commercialement et sont facilement produits par synthèse chimique, ce qui explique la facilité de mise en œuvre de cette méthode.

L’utilisation de ces peptides marqués par isotopes stables comme standard interne présente cependant quelques limitations : ils ne permettent pas de contrôler le rendement de l’étape de digestion enzymatique ainsi que l’étape de traitement de l’échantillon. Sur ce point, un élément de réponse a été apporté par Barnidge et al. 177 : cette équipe a comparé deux types de standard interne. Le premier était un peptide marqué de structure identique à l’un des peptides trypsiques de la protéine cible ; le second était similaire au précédent mais comportait des acides aminés supplémentaires en N-terminal et C-terminal, de telle sorte que les deux sites de coupure par la trypsine soient introduits dans le standard interne. Cette étude a ainsi montré
qu’aucune différence significative dans la précision du dosage n’avait été observée en utilisant l’un ou l’autre des peptides - clivable ou non - comme standard interne.

Des améliorations ont néanmoins été apportées à ces standards internes pour obtenir des composés susceptibles de mimer le comportement de la molécule à quantifier, que ce soit pendant les étapes de traitement des échantillons, la séparation chromatographie, la désorption-ionisation par électrospray, et enfin lors de la dissociation dans la cellule de collision. Avec l’apparition des standards internes appelés QconCAT, une étape supplémentaire vers le haut débit a été franchie. Cette stratégie a été initialement décrite par Beynon et al.178 en 2005. Cette protéine QconCAT est un assemblage de peptides marqués par isotopes stables juxtaposés dans une même séquence. Après digestion enzymatique, les peptides marqués sont générés et utilisés pour la quantification. Ce concatémère est élaboré par construction génétique, puis la protéine marquée est produite par des systèmes d’expression cultivés sur un milieu enrichi par isotopes stables179. Cette technique permet de rassembler en une protéine tous les peptides marqués nécessaires à la quantification de plusieurs protéines, avec la possibilité d’insérer plusieurs peptides spécifiques d’une même protéine (Figure 30). Deux applications ont consolidé cette approche, comme la quantification de 47 protéines d’abondance intermédiaire du plasma humain par Anderson et al.180, ou encore la quantification de 20 protéines de muscles ovins par Rivers et al.181. Ces quelques exemples ont réellement démontré le potentiel et l’efficacité de cette technique pour le multiplexage en association avec la spectrométrie de masse.
D’autres approches plus intégratives utilisent des protéines entières comme standard interne. L’intérêt de ces approches est de prendre en compte toutes les étapes, et de coller au mieux à la réalité du traitement de l’échantillon et notamment des premières extractions ainsi que de l’hydrolyse enzymatique, qui présentent rarement des rendements de 100%. Ces standards sont généralement aussi ressemblants que possible à la protéine à quantifier et doivent générer, par digestion enzymatique, des peptides qui seront coélusés et qui pourront être distingués des peptides à quantifier par spectrométrie de masse. Des analogues de la protéine ayant pour origine une autre espèce animale et possédant quelques différences ponctuelles dans la séquence d’acides aminés peuvent être utilisés : Mayr et al. ont ainsi utilisé de la myoglobine de cheval comme standard interne pour quantifier la myoglobine dans le sérum humain.

L’approche la plus rigoureuse consiste finalement à utiliser une protéine entière, marquée par isotopes stables. Elle présente tous les avantages requis pour être utilisée comme standard interne. Sa séquence, et donc ses propriétés physico-chimiques, sont identiques à la protéine à quantifier. Leur comportement sera donc identique lors des différentes étapes de l’analyse. Van den Broek et al. ont ainsi quantifié un peptide thérapeutique de 4500 Da : l’inhibiteur de fusion du VIH, enfuvirtide. Ce peptide est clivé par la chymotrypsine avant d’être quantifié par LC-MS/MS. Le standard interne utilisé est de l’enfuvirtide synthétique où toutes les
Chapitre III : Quantification d’un anticorps thérapeutique par LC-MS

leucines sont marquées par 10 deutériums ; il est ajouté aux premières phases de l’analyse. Les étapes d’extraction sur phase solide et la protéolyse de l’enfuvirtide ont ainsi été contrôlées par le peptide marqué. Dans cet exemple, la molécule marquée pouvait être produite par synthèse chimique étant donné la faible masse moléculaire du peptide. La transposition aux macromolécules a finalement été permise par les techniques de production de protéines recombinantes, grâce auxquelles la protéine entière, marquée par isotope stable, est obtenue par production dans un milieu enrichi (avec un acide aminé marqué par des isotopes stables par exemple). Cette approche, dénommée PSAQ pour Protein Standard Absolute Quantification, a été décrite par Brun et al. en 2007 [182]. Cette étude a notamment comparé la précision de la quantification en utilisant les trois grandes approches de standardisation interne (AQUA, QconCAT et PSAQ). Les résultats montrent clairement l’intérêt des protéines entières marquées pour la précision de la quantification. L’efficacité du clivage par l’enzyme pour former les peptides est ainsi parfaitement contrôlée dans ce cas particulier où les toxines quantifiées sont peu sensibles aux protéases. Les peptides générés par digestion sont identiques aux peptides de la protéine cible et sont différentiables en spectrométrie de masse par leurs isotopes stables. Cette technique a également été utilisée par Janecki et al. pour quantifier des isoformes de l’alcool déshydrégénase ADH1C1 dans des foies humains [185]. Ces standards internes sont incontestablement les mieux adaptés pour la quantification des macromolécules, surtout si la protéine porte des modifications post-traductionnelles et que ces standards sont produits dans des conditions identiques à la protéine, la question du rendement et du coût d’une telle approche est cependant posée.

En marge des standards usuels utilisés pour la quantification absolue des protéines, il est intéressant d’ajouter que trois autres approches ont été développées pour la quantification relative des protéines, mais celles-ci ont surtout été appliquées à la protéomique et à l’identification de biomarqueurs en raison de la facilité avec laquelle des expressions différentielles peuvent être mesurées. La première, dénommée ICAT [186;187] pour isotope-coded affinity tags, consiste à lier de manière covalente à la protéine une petite molécule organique composée de trois parties. La première partie de la molécule permet la liaison aux cystéines réduites (réaction sur les thiols libres) ; la deuxième partie de la molécule est un bras de liaison sur lequel est placé ou non le deutérium, donnant ainsi un incrément de masse pour différencier les deux molécules par un spectromètre de masse ; et enfin la troisième partie de la molécule est une biotine qui possède une forte affinité pour l’avidine et la streptavidine (K_D = 10^{-15} M) pour extraire par affinité le peptide lié au réactif, la biotine ayant ici le rôle d’une
La deuxième approche développée pour la quantification relative des protéines est dénommée iTRAQ pour *isotope tags for relative and absolute quantification*. Elle consiste à faire réagir de manière covalente sur les amines libres une molécule (parmi quatre) qui possède également trois zones\(^{188}\). Ces quatre molécules possèdent une première zone commune qui permet de réagir sur les peptides. La deuxième zone est clivable par fragmentation et sert de rapporteur (chaque molécule possède un rapporteur de masse différente), et la troisième zone a une masse variable complémentaire du rapporteur pour que les quatre molécules ait la même masse totale. La dernière approche, SILAC\(^{189}\) pour *stable isotope labeling by amino acids in cell culture*, consiste à faire croître des cellules dans des milieux contenant un acide aminé marqué par des isotopes stables et à comparer les intensités des protéines marquées et non marquées produites par des cellules sur les deux types de milieux. Ces approches (ICAT, iTRAQ et SILAC) ont surtout remporté un succès pour l’analyse protéomique, et sont donc majoritairement utilisées pour effectuer une quantification relative et corrélér différents niveaux d’expression à différents facteurs.

III.1.1.3. Préparation de l’échantillon

La complexité des matrices biologiques utilisées pour la quantification des protéines, notamment le plasma, est telle que des préparations d’échantillons sont effectuées afin de simplifier les matrices avant analyse par chromatographie liquide couplée à la spectrométrie de masse. Deux approches se dégagent de la littérature : la première consiste à diminuer la complexité de l’échantillon avant digestion enzymatique alors que la seconde consiste à extraire les peptides formés après l’étape de digestion.

La première approche vise donc à isoler la protéine des autres éléments de la matrice. Plusieurs méthodes ont été appliquées aux peptides, comme par exemple l’extraction sur phase solide (SPE), l’extraction liquide-liquide, la précipitation de protéines, l’ultrafiltration, la chromatographie d’exclusion de taille ou encore l’immunoaffinité. Parmi les possibilités énoncées précédemment, une manière rapide et peu coûteuse pour extraire les protéines thérapeutiques de petite taille ou les peptides, consiste à faire une extraction liquide-liquide par précipitation des protéines avec un solvant organique. De même que pour la SPE et la chromatographie d’exclusion de taille, si cette approche est facilement applicable pour les peptides et les petites protéines d’une masse moléculaire inférieure à quelque dizaines de kDa,
elle ne l’est pas pour les protéines thérapeutiques de haut poids moléculaire, puisque ces protéines sont de taille comparable à celle des protéines majoritaires du plasma comme l’albumine (66 kDa) ou les immunoglobulines (150 kDa). Ainsi, une extraction liquide-liquide par ajout de solvant organique précipite la protéine d’intérêt avec celles du plasma ; de même que la SPE et la chromatographie d’exclusion de taille ne seront pas assez sélectives pour la différencier des quelques protéines ultra majoritaires du plasma. C’est pourquoi des approches plus ciblées comme la déplétion spécifique de protéines majoritaire du plasma ou du sérum par colonne d’immunoaffinité semblent mieux adaptées. Ainsi, Kuhn et al. ont utilisé trois colonnes d’immunoaffinité en série pour éliminer l’albumine, les immunoglobulines G et l’haptoglobuline du plasma humain pour quantifier la CRP. Lin et al. ont éliminé les six protéines les plus abondantes du plasma pour quantifier quatre protéines (le facteur V de coagulation, l’adiponectine, la CRP, la globuline liant la thyroxine). Les travaux d’Anderson et Hunter quant à eux visait à quantifier 47 protéines du plasma (en suivant 137 transitions SRM) après déplétion des six protéines les plus abondantes du plasma.

Un autre approche ciblée pour isoler la protéine avant l’étape de digestion utilise l’immunoaffinité, non plus pour éliminer les protéines majoritaires du plasma, mais pour extraire sélectivement la protéine cible avec des anticorps dirigés contre elle. Cette stratégie utilise la complémentarité des deux méthodes analytiques que sont les immunodosages et la spectrométrie de masse, les premiers étant très sensibles et permettant d’immobiliser les analytes d’intérêt, la seconde présentant une spécificité importante. L’utilisation d’anticorps pour isoler la protéine permet tout d’abord de simplifier de manière drastique la complexité biologique, et de limiter l’effet matrice lors de la séparation chromatographique et de l’ionisation dans la source du spectromètre de masse. D’autre part, cette étape présente l’avantage de pouvoir concentrer l’analyte lorsque sa concentration est trop faible pour la sensibilité intrinsèque des appareils. Cette stratégie a été utilisée par Gam et al. pour l’analyse d’hormone, la gonadotropine chorionique, à partir d’urine, par Berna et al. pour la quantification de la chaine légère de la myosine dans le sérum de rat et le peptide cérébral natriurétique (NTproBNP), ou encore par Kulasingam et al. pour l’analyse du PSA dans le sérum. Pour une telle approche, le rendement d’extraction est fortement dépendant de l’affinité de l’anticorps utilisé. Ainsi, des considérations théoriques à partir de la loi d’action des masses, montrent qu’une protéine à faible concentration (1 ng/mL, 100 kDa) ne peut être extraite qu’à 6% avec un anticorps de faible affinité (Kd = 10⁻⁶ M, introduit à 10 µg/mL), alors qu’un anticorps de forte affinité (Kd = 10⁻⁹ M, 10 µg/mL) permet d’en extraire 98%. Ce calcul montre que pour une finalité quantitative, un tel dosage doit utiliser un standard interne.
adapté permettant de contrôler cette étape. Ainsi, les stratégies AQUA ou QconCAT ne permettent pas de normaliser le processus d’extraction par des anticorps puisque ces molécules ne sont pas générées cette étape. Les standards internes tels que des analogues de la protéine cible ou mieux, la même protéine marquée, sont les plus adaptés pour contrôler cette étape.

La deuxième stratégie communément utilisée vise à simplifier la complexité de l’échantillon après une digestion de l’ensemble des protéines de la matrice (plasma, sérum ou urine). Les peptides générés peuvent alors être séparés directement par chromatographie liquide avant l’analyse par spectrométrie de masse, ou l’échantillon peut être purifié par des approches classiques énoncées dans le chapitre II, comme par exemple une extraction sur phase solide suivant plusieurs dimensions (hydrophobes, ioniques). Cependant, ces approches non sélectives ne permettent pas de concentrer des peptides de faible abondance. C’est pourquoi l’utilisation d’anticorps a également été employée afin d’enrichir sélectivement les peptides. Anderson et al. ont développé des anticorps dirigés contre des fragments tryptiques sélectionnés pour leur spécificité des protéines d’intérêt. Quatre protéines du plasma (l’hémopexine, l’α1 antichymotrypsine, l’interleukine 6 et le TNFα) ont ainsi été quantifiées par cette méthode dénommée SISCAPA pour *stable isotope standards and capture by anti-peptide antibodies*. Cette méthode nécessite cependant le développement d’autant d’anticorps que de peptides suivis, alors que l’immunoaffinité appliqué à la protéine entière permet, après digestion, de suivre plusieurs peptides avec un seul anticorps. De plus, certaines protéines endogènes ou thérapeutiques possèdent une cible pour laquelle elles ont une forte affinité, comme c’est le cas pour les anticorps thérapeutiques; il est alors possible d’utiliser cette cible pour l’étape d’immunocapture.

III.1.2. Les anticorps thérapeutiques

Comparés aux petites molécules utilisées comme médicaments, les anticorps monoclonaux thérapeutiques présentent de nombreux avantages. Le premier est lié à leur forte affinité pour une cible spécifique, les autres sont liés à la possibilité de moduler et d’optimiser des paramètres tels que l’affinité, la biodistribution, les fonctions effectrices et leur demi-vie. Tous ces éléments font des anticorps monoclonaux des agents thérapeutiques très attractifs.
Ils représentent actuellement la majorité des protéines recombinantes en développement clinique, avec plus de 150 produits en évaluation 196. A la suite d’idées novatrices émanant du milieu académique, des entreprises de biotechnologie ont jeté les bases technologiques et techniques pour produire des anticorps thérapeutiques. La plupart des entreprises pharmaceutiques ont été initialement réticentes à adopter cette technologie, mais la plupart d’entre elles possède actuellement un ou plusieurs anticorps en étude clinique.

La première méthode développée pour produire des anticorps monoclonaux utilisait la fusion de cellules de lymphocytes avec des cellules de myélome. La première étape de la préparation des anticorps monoclonaux est l’immunisation, en général de souris ou de rats. Les lymphocytes sont récupérés à partir de la rate des animaux, testés au préalable pour leur production d’anticorps. Dans la mesure où, in vitro, la prolifération lymphocytaire est impossible, les lymphocytes sont fusionnés avec des cellules de myélome, qui ne sont pas capables de produire des lymphocytes, mais peuvent se maintenir indéfiniment en culture. La cellule d’hybridome résultante conserve les propriétés des cellules « mères », en particulier la capacité de croître indéfiniment. Elle donne ainsi naissance à un clone produisant des anticorps identiques, ayant la même spécificité et la même affinité pour un épitope donné. La première description pour l’obtention d’hybridomes par Kohler et Milstein 34 date de 1975 à la Medical Research Council Laboratory of Molecular Biology (Cambridge, UK).

Les premiers anticorps monoclonaux de souris à visées thérapeutiques sont entrés en phase d’études cliniques dans les années 1980. Cependant, ces premiers essais ont rapidement montré un manque d’efficacité et une élimination rapide liée à la production par les patients d’anticorps humains anti-souris (HAMA pour human anti-mouse antibodies). A la suite de ces problèmes, la technologie pour produire les anticorps thérapeutiques a évolué : l’utilité potentielle des anticorps thérapeutiques était évidente, mais la première réalisation pratique a été infructueuse. Les développements technologiques suivants se sont attachés à réduire la fraction de séquence d’origine murine responsable de réactions immunitaires. Deux voies ont été développées en parallèle pour augmenter leur efficacité et diminuer leur immunogénicité : la production d’anticorps monoclonaux dérivant à la fois d’ADN humain et murins (chimériques ou humanisés), ou encore la production d’anticorps monoclonaux entièrement humains (Tableau 7). Dans le cas d’anticorps chimériques issus à la fois d’ADN murin et humain, des techniques d’ingénierie génétique sont utilisées pour remplacer le fragment Fc de
souris par un fragment de séquence humaine \(^{197,198}\). Le remplacement du seul fragment Fc semble être suffisant pour améliorer l’efficacité en diminuant la production d’anticorps humains anti-souris pour certains. La seconde voie applique la technique d’hybridomes aux cellules humaines \(^{199,200}\) pour obtenir un anticorps humains. Cependant, la formation d’hybridomes humains et la production en quantité suffisante d’anticorps depuis des lignées cellulaires humaines semble plus difficile \(^{199,201}\). L’application de techniques d’ingénierie génétique à la production d’anticorps monoclonaux n’a pas donné que les anticorps chimériques. Un degré supplémentaire de similitude avec les anticorps humains a été obtenu avec les anticorps humanisés. Ces anticorps, où seules les parties impliquées dans la reconnaissance des antigènes (CDR pour complementary-determining regions, Figure 31) sont d’origine murine, ont été décrits peu de temps après le développement d’anticorps chimériques \(^{193}\). L’idée consistait à prendre uniquement les fragments d’ADN murin codant pour les parties clé que sont les zones de reconnaissance des anticorps, et de les insérer dans une séquence d’ADN codant pour un anticorps humain à la place des CDR humains. Parmi tous les anticorps monoclonaux thérapeutiques mis sur le marché, les différents types d’anticorps sont représentés, comme résumé dans le Tableau 7.

Figure 31 : Structure tertiaire d’une chaîne légère d’anticorps. Les trois boucles hypervariables, responsables des interactions antigène-anticorps sont indiquées en rouge (CDR) \(^4\).
Cette volonté de réduire au maximum la fraction de séquence d’origine murine dans ces anticorps n’a cependant pas éliminé l’immunogénicité des anticorps monoclonaux thérapeutiques car le système immunitaire humain est potentiellement capable de développer une réponse contre n’importe quelle protéine thérapeutique. La FDA a également noté que l’identification d’anticorps anti-anticorps monoclonaux dépend de la technique analytique utilisée, de sa sensibilité et de sa spécificité.

<table>
<thead>
<tr>
<th>Anticorps monoclonal de souris (-momab)</th>
<th>Anticorps entièrement dérivé de source murine</th>
<th>Muromomab-CD3, Tositumomab-I131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticorps monoclonal chimérique (-ximab)</td>
<td>Anticorps construit à partir de domaine variable murin et de domaine constant humain</td>
<td>Abciximab, Rituximab, Infliximab, Cetuximab</td>
</tr>
<tr>
<td>Anticorps monoclonal humanisé (-zumab)</td>
<td>Anticorps construit avec pour seules fractions d’origine murine les régions de liaison à l’antigène (CDR), les autres régions variables et constantes étant d’origine humaine</td>
<td>Daclizumab, Palivizumab, Trastuzumab, Alemtuzumab, Omalizumab</td>
</tr>
<tr>
<td>Anticorps monoclonal humain (-mumab)</td>
<td>Anticorps dérivant entièrement de source humaine, provenant actuellement de souris transgéniques.</td>
<td>Adalimumab</td>
</tr>
</tbody>
</table>

Tableau 7 : Les différents types d’anticorps thérapeutiques monoclonaux (origine humaine ; origine murine), d’après Reichert J.M.

III.1.3. L’anticorps thérapeutique chimérique Cetuximab (Erbitux)

Parmi les anticorps thérapeutiques, nous nous sommes intéressés à un anticorps chimérique, Cetuximab, commercialisé sous le nom Erbitux, qui cible le récepteur du facteur de croissance épidermique. A travers cette opportunité de développer un dosage par spectrométrie de masse d’un anticorps thérapeutique, cette approche analytique a valeur de modèle pour l’ensemble
des anticorps en développement à des fins thérapeutiques, ainsi que pour les protéines de haute masse moléculaire.

III.1.3.1. Le récepteur du facteur de croissance épidermique

Le récepteur du facteur de croissance épidermique, dont l’acronyme anglais est EGFR, fait partie de la famille des récepteurs de surface cellulaires ayant une activité Tyrosine Kinase. Ce sont des récepteurs transmembranaires, avec, du coté extracellulaire, un domaine d’affinité pour le ligand, et du coté intracellulaire une activité enzymatique (Figure 32). Il existe plusieurs ligands capables de se lier à l’EGFR, dont l’EGF (pour facteur de croissance épidermique). Lorsque le ligand se fixe sur son récepteur, ce dernier change de conformation permettant une dimérisation. L’association de deux molécules de récepteurs engendre une activation du site tyrosine kinase et une autophosphorylation du récepteur. Ces transformations induisent une cascade de signalisation utilisant successivement différents médiateurs aboutissant à la synthèse d’ADN et à la prolifération cellulaire.

Figure 32 : Structure du récepteur du facteur de croissance épidermique (EGFR)

Le dérèglement dans la cascade de signalisation peut induire des transformations au niveau cellulaire, et la corrélation entre EGFR et cancer a été établie. La dérégulation de l’EGFR peut être liée à une surexpression du récepteur, une mutation ou une suractivation. Ce
récepteur est impliqué dans un large spectre de cancers de l’épithélium, notamment le sein, le colon, la tête, le cou, les poumons, les reins, le pancréas et la prostate\(^\text{207}\).

III.1.3.2. Mode d’action de Cetuximab

Au début des années 1980, a été émise l’idée de bloquer la cascade de signalisation de l’EGFR et la prolifération cellulaire par l’interaction d’un anticorps avec la partie extracellulaire du récepteur, afin d’empêcher aux ligands de venir se fixer et de l’activer. De tels anticorps ont été développés depuis les années 1980 par immunisation de souris avec des cellules cancéreuses surexprimant EGFR. Parmi ces anticorps, ont été sélectionnés ceux se liant au domaine extracellulaire du récepteur permettant d’inhiber l’action du ligand EGF\(^\text{208-210}\). Des études ont permis de mettre en évidence que de tels anticorps stoppaient la prolifération cellulaire *in vitro* et *in vivo*\(^\text{211}\). L’un d’entre eux, mAb 225, a été produit\(^\text{212}\) sous forme d’anticorps chimérique (humain : souris). Cet anticorps, Cetuximab (IMC-C225), est commercialisé sous le nom d’Erbitux depuis Février 2004 pour le traitement du cancer colorectal avancé surexprimant EGFR.

Les données structurales publiées ont permis de mieux comprendre comment la liaison du ligand EGF avec le récepteur régulait cette voie de signalisation\(^\text{213,214}\), et comment un anticorps qui se liait au domaine extracellulaire du récepteur pouvait bloquer l’activité intracellulaire de l’EGFR. La dimérisation de l’EGFR est entièrement médiiée par la fixation du ligand, mais ce ligand n’intervient pas en tant que liaison entre les deux molécules de récepteur : en se liant simultanément à deux sites différents du récepteurs (dans le domaine I et le domaine III), l’EGF stabilise l’EGFR dans une configuration dépliée. Ce changement de conformation permet d’exposer une région critique du récepteur, cachée dans la forme repliée. Cette région est essentielle pour les interactions entre deux molécules de récepteur. La liaison de l’EGF permet donc, en stabilisant une conformation particulière, de favoriser la formation du dimère comme présenté dans la Figure 33.
L’anticorps thérapeutique Cetuximab possède une affinité pour le domaine III du récepteur (Figure 34), et son site de fixation est commun avec celui de l’EGF. Il inhibe ainsi le déploiement du récepteur et entre en compétition avec les ligands : le récepteur est bloqué dans sa forme inactive. De plus, l’affinité de l’anticorps pour le récepteur est supérieure à celle du ligand EGF: une constante de dissociation (K_D) de 2.3 nM a été obtenue entre le fragment Fab de Cetuximab et la partie soluble (extracellulaire) de l’EGFR, alors que l’EGF présente une constante de dissociation de 130 nM avec le même fragment.²⁰⁷
Figure 34 : L’anticorps thérapeutique Cetuximab se lie au domaine III de l’EGFR. La partie variable de la chaîne légère (V_L) est indiquée en jaune et la partie variable de la chaîne lourde est indiquée en orange (V_H).

III.1.3.3. Stratégie analytique

Un immunodosage au format sandwich avait été développé et validé pour la quantification de Cetuximab dans des échantillons de sérum humain par l’"Institute of Drug Metabolism and Pharmacokinetics" (Merck KGaA, Grafing, Allemagne). Après incubation des échantillons de plasma dans des plaques de microtitration sur lesquelles l’EGFR est adsorbé, les plaques sont lavées et incubées avec un anticorps de lapin anti-IgG humaines, marqué à la peroxydase de raifort. Ces anticorps de lapins se lient à Cetuximab, et l’ajout de TMB (tétraméthylbenzidine), un substrat de la peroxydase de raifort, induit une coloration par réaction enzymatique sur le substrat. La limite de quantification était alors de 100 ng/mL.

Le format de dosage présente des risques d’interférences avec les immunoglobulines humaines, en raison du mode de détection par un anticorps anti-espèce. Une dilution des échantillons est donc requise afin de diminuer l’adsorption non spécifique des IgG humaines, ce qui explique partiellement la limite de quantification de ce dosage. Au moment où a été élaborée une stratégie de dosage par LC-MS pour cette protéine thérapeutique de haut poids moléculaire qu’est l’anticorps Cetuximab, quelques exemples décrivaient l’analyse qualitative dans un but de caractérisation d’anticorps par chromatographie liquide couplée à la spectrométrie de masse, mais aucun n’en faisait une quantification absolue en raison de problèmes de sensibilité, reproductibilité et exactitude des analyses. Dans ce contexte, nous
avons développé une stratégie d’analyse pour quantifier spécifiquement l’anticorps thérapeutique Cetuximab par LC-MS dans le sérum humain. Le développement d’une analyse quantitative mettant en œuvre la chromatographie liquide couplée à la spectrométrie de masse présente ici deux difficultés majeures : la taille et l’hétérogénéité de l’anticorps thérapeutique (150 kDa) d’une part et sa similarité avec les IgG endogènes humaines d’autre part. Cetuximab présente en effet différents motifs de glycolsylation (21 structures différentes), et les parties constantes de ses chaînes lourdes et légères sont communes à certaines immunoglobulines humaines, dont la concentration est voisine de 10 mg/mL alors que l’anticorps thérapeutique présente une concentration très variable entre le moment de l’injection (quelques centaines de µg/mL) et des concentrations très faibles plusieurs jours après l’injection, en raison de l’élimination du produit et des processus de dégradation. Nous avons donc cherché à atteindre la meilleure sensibilité en travaillant sur trois aspects du dosage.

1. Le volume de l’échantillon constitué de sérum a été défini en faisant un compromis entre la quantité nécessaire pour atteindre la meilleure sensibilité (plus le volume est important, meilleure est la sensibilité) et la compatibilité avec un prélèvement sanguin conventionnel.

2. Etant donné le volume de sérum utilisé, une approche par digestion totale de la matrice puis une extraction non spécifique qui n’aurait pas éliminé les interférents nous a semblée mal adaptée. De plus, ayant à disposition la cible de l’anticorps, le récepteur du facteur de croissance épidermique, une étape d’extraction par immunoaffinité s’est imposée comme la méthode la mieux adaptée pour éliminer l’effet matrice, concentrer l’échantillon, et confirmer notre approche stratégique de la quantification des protéines thérapeutiques en faible abondance par immunoaffinité couplée à la LC-MS.

Ainsi, le développement analytique présenté ci-après constitue l’un des premiers exemples de quantification des anticorps thérapeutiques par immunoaffinité, impliquant la cible de l’anticorps, suivi d’une quantification par chromatographie liquide couplée à la spectrométrie de masse.
III.2. Article : Immunopurification et quantification de la forme active d'un anticorps thérapeutique chimérique dans le sérum humain par spectrométrie de masse
Chapitre III : Quantification d’un anticorps thérapeutique par LC-MS
Immunopurification and Mass Spectrometric Quantification of the Active Form of a Chimeric Therapeutic Antibody in Human Serum

Mathieu Dubois,† François Fenaille,† Gilles Clement,‡ Martin Lechmann,§ Jean-Claude Tabet,∥ Eric Ezan,† and François Becher*†‡

CEA, Service de Pharmacologie et d’Immunoanalyse, 91191 Gif-sur-Yvette, France, INRA, Laboratoire d’Immuno-Allergie Alimentaire, 91191 Gif sur Yvette, France, Institute of Drug Metabolism and Pharmacokinetic, Merck KGaA, Merck Serono, 85567 Grafing, Germany, and Laboratoire de Synthèse, Structure et Fonction de Molecules Bioactives, CNRS UMR 7613, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France

In this study, we show that liquid chromatography coupled with tandem mass spectrometry provides a sensitive, specific, and accurate absolute quantification of Erbitux, a human:mouse chimeric mAb used for the treatment of colorectal cancer. Micrometric magnetized beads, fractionalized with soluble epidermal growth factor receptor (sEGFR), the pharmacological target of Erbitux, were used for specific immunoprecipitation of Erbitux allowing assessment of the antibody’s biological potency and sample purification. Following digestion with trypsin, specific peptides from light and heavy chains were monitored in the selected reaction monitoring (SRM) mode. Assay variability below 20% was provided through optimization of the digestion step and rigorous monitoring of the whole analytical process using an appropriate internal standard. The 20 ng/mL lower limit of quantification was similar to that of ELISA methods. These results show that this mass spectrometric approach is a potential alternative for pharmacokinetic evaluation of mAbs during clinical development.

Targeted therapies using monoclonal antibodies (mAbs) have been used increasingly in recent years. Fourteen mAbs are currently on the market in various therapeutic areas, such as oncology, inflammation, infectious, and cardiovascular diseases. This number will likely increase in the years to come as more than 100 mAbs are currently in clinical development.1

The preclinical and clinical developments of mAbs require accurate and specific bioanalytical methods for pharmacokinetic assessments. One analytical difficulty is that chimeric or humanized mAbs are similar to endogenous immunoglobulins, one of the most abundant proteins in plasma with concentrations around 10 mg/mL. This is 1000- to 10 000-fold greater than that of circulating therapeutic antibodies and may represent a potential source of analytical interference. Assay development should also take into account structural modifications occurring during manufacturing or storage, such as deamidation, oxidation, and variable N-glycosylation. These modifications, associated with the in vivo elimination processes, may generate heterogeneity in the mAb structure that can affect its biological activity.2–5 Hence, the assay should be able to specifically determine the therapeutic active form of the mAb in the biological matrix.

Bioanalytical methods developed for the pharmacokinetic study of mAbs are mainly based on immunosay approaches. Generally, after reaction with the therapeutic target bound on microwell plates, the monoclonal antibodies are revealed by labeled anti-Fc antibody. These assays have high sensitivity but lack signal specificity, especially in human samples, since secondary antibodies may also detect nonspecifically bound endogenous antibodies. This interference leads to both matrix effects and selectivity issues, which require sample dilution and cause lack of sensitivity.6

Another approach would be the application of mass spectrometry methodologies and more particularly the use of electrospray (ESI) ionization allowing the coupling of liquid chromatography with tandem mass spectrometry (LC–ESI-MS/MS), which is a useful tool for drug quantification in biological fluids.7 The absolute quantification of proteins by LC–ESI-MS/MS in the selected reaction monitoring (SRM) mode can be carried out either on the intact protein or on specific peptides released by enzymatic digestion of the protein. Intact therapeutic protein quantification, without digestion, using LC–ESI-MS/MS is emerging and is applicable to pharmacokinetic studies with sufficient sensitivity and reproducibility.8,9 So far, the methods have only been applied

10.1021/ac7021234 CCC: $40.75 © 2008 American Chemical Society Published on Web 01/29/2008
to small proteins of molecular weight up to ~10 kDa. Extension to large proteins, such as mAbs, appears challenging. Protein characterized by high molecular weight (around 150 kDa) leads to complex ESI mass spectra with a huge number of charge states which would lower sensitivity. Furthermore, acceptable chromatographic peak resolution for such large molecules implies the use of trifluoroacetic acid, which leads to mass spectrometric signal loss.

An alternative strategy may consist of enzymatic digestion of the whole protein in the biological samples and SRM quantification of particular peptides. Whereas no application to mAbs has been published, a few examples of quantitative applications were recently presented for smaller proteins. This approach is, however, hampered by lack of sensitivity due to ionization suppression effects caused by the presence of endogenous species or tryptic peptides resulting from abundant proteins. A second potential disadvantage is that the biological potency of the antibodies cannot be assessed when only a peptide portion of the protein is monitored.

In order to circumvent some of these problems, immunocapture appears to be the most suitable isolation solution as previously described for proteins in biological matrices. Here, we propose an immunocapture/mass spectrometry assay which targets Erbitux (Cetuximab), a mAb used for the treatment of colorectal cancer. This mAb (153 kDa) is a human/murine chimeric antibody which specifically binds to the extracellular region of epidermal growth factor receptor (EGFR) and inhibits cellular proliferation in vitro and in vivo. The assay was designed to selectively measure the active form of Erbitux. An immunocapture step employing soluble epidermal growth factor receptor (sEGFR), the Erbitux target, was set up to extract and concentrate the mAb from human serum. The antibody is then chemically released, enzymatically digested, and analyzed by LC–ESI-MS/MS through monitoring of specific peptides. The use of an appropriate internal standard which monitors the whole analytical process enables sensitive and accurate quantification of Erbitux in human serum.

MATERIALS AND METHODS

Chemicals and Reagents. Erbitux and sEGFR were obtained from Merck KGaA (Darmstadt, Germany) as aqueous 2 mg/mL solutions. The mouse monoclonal antibody to human EGFR was from R&D Systems (Minneapolis, MN). Sequencing grade modified trypsin was from Promega (Madison, WI). A 15-mer synthetic peptide corresponding to the light chain of the therapeutic antibody tryptic fragment (LT3, ASQSGTNHWYQQK) was synthesized by Genepet (Montpellier, France), and two other tryptic fragment of the heavy chain (HT4, GLEWLGVWSSGNTRYNPFITSR, and HT23, VVSLVLYLHQDWLNGK) were synthesized in-house using an Applied Biosystems biosynthesizer. Human serum from healthy subjects was obtained from Biopredic (Rennes, France). Gradient grade methanol from Merck (Darmstadt, Germany), HPLC quality acetonitrile from SDS (Peypin, France), and analytical formic acid from Sigma (Sigma Chemical Co., St. Louis, MO) were the solvents used. Tosylactivated magnetic beads (Dynabeads M-280) were from Invitrogen (Carlsbad, CA). All other reagents were from Sigma-Aldrich (St. Louis, MO).

Sample Preparation. Calibration standards were prepared by diluting Erbitux in pooled human serum to 2, 1, 0.5, 0.2, 0.1, 0.05, and 0.02 µg/mL. The 2 µg/mL (13 nM) calibration standard was prepared by spiking 2 mL of human serum with 40 µL of a 100 µg/mL solution in Tris buffer. The other calibration standards were prepared by serial dilution in human serum. Quality control samples (QCs) were used to evaluate the accuracy and precision during the validation and were prepared in the same way as calibration standards at 1.5, 0.4, 0.06, and 0.02 µg/mL. The 1.5 µg/mL QC was prepared by adding 45 µL of a 100 µg/mL solution of Erbitux to 3 mL of serum, and the other QCs were prepared by serial dilution. A mouse monoclonal antibody to human EGFR used as internal standard (IS) was added to calibration standard and QCs. An amount of 10 µL of 25 µg/mL mouse antibody in Tris buffer was added to 500 µL of serum to give a final concentration of 0.5 µg/mL. Aliquots of 500 µL were used for analysis. All samples were submitted to the immunocapture and digestion steps prior to LC–MS/MS analysis.

Immunocapture and Digestion. M-280 tosylactivated magnetic beads (30 µL suspension equivalent to 0.9 mg of beads per 500 µL of serum sample) were washed with 500 µL of borate buffer (0.1 M, pH 9.5) following the protocol provided by the supplier. The beads were separated from solution using a magnetic particle concentrator for microcentrifuge tubes (Dynal MPC-S, Dynal Biotech, Oslo, Norway). After removal of the washing solution, the beads were incubated for 4 h at room temperature with gentle shaking with sEGFR (diluted to 100 µg/mL in borate buffer) at a ratio of 3 µg of protein per mg of beads. sEGFR was covalently bound to the beads by reaction of the protein amino groups with the beads’ tosylate groups. Following incubation, noncovalently linked sEGFR was removed by washing twice with PBS buffer (pH 7.4, 0.1% BSA), and the magnetic beads were resuspended in Tris buffer (0.2 M, pH 8.5, 0.1% BSA) and incubated overnight at 4 °C to block free tosylate groups. The beads were washed with PBS buffer (pH 7.4, 0.1% BSA) and then resuspended in Tris-buffer.
HCl (50 mM, pH 8.5, 100 μg/mL BSA) at a concentration of 90 mg of beads per mL.

Functionalized beads (0.9 mg in 10 μL) were added to serum samples containing Erbitux and IS for immunocapture, and incubation was performed at room temperature with gentle rotation for 2 h. After washing twice with 500 μL of Tris-HCl (50 mM, pH 8.5, 100 μg/mL BSA) to remove weak nonspecific binding, Erbitux and IS were eluted under acidic conditions with 50 μL of Tris-HCl (50 mM, pH 2, 100 μg/mL BSA) for 15 min while vortexing.

Whole supernatant (50 μL) was transferred for denaturation and enzymatic digestion. Reduction was performed by adding to the supernatant 10 μL of basic dithiothreitol (10 mM in 250 mM NaOH) to ensure pH 8.5 after addition of this reducing buffer and to optimize enzyme activity. After 30 min at 60 °C to denature the antibodies, 0.1 μg (5 μL) of trypsin was added. Samples were then incubated for 3 h at 40 °C, and methanol with 10% formic acid (10 μL) was added at the end of the reaction. Methanol was used to avoid nonspecific binding of tryptic peptides. Samples were transferred into an HPLC vial and injected (40 μL) into the chromatographic system.

Quantitative Mass Spectrometry. Quantitation of Erbitux was performed on a triple-quadrupole mass spectrometer, Quattro LCZ (Waters, Manchester, U.K.) coupled to an HPLC Alliance. Chromatography was performed on a C18 guard column followed by a Zorbax SB-C18 column (150 mm × 2.1 mm i.d., 5 μm particle size, 80 Å porosity). The column was eluted at a flow rate of 0.3 mL/min using as mobile phase A water/butanol (99/1, v/v) and as mobile phase B acetonitrile, both containing 0.1% (v/v) formic acid. The analytical gradient profile was as follows (min/% of mobile phase B in A): 0.0/5, 4.0/25, 12.0/37, 12.1/100, 13.0/100, 13.1/5, and 17.0/5. The column temperature was 50 °C, and the injection volume was 40 μL. A mouse monoclonal antibody was immunoprecipitated and digested as Erbitux. One peptide from the variable region of the mouse antibody used as the internal standard was coeluted with LT3 (tryptic peptide from the light chain, see the Results section) and was then used as a surrogate measure of IS. Under these conditions, the retention time was 5.9 min for LT3 (tryptic peptide from the light chain) and IS, 9.1 min for HT23, and 11.6 min for HT4 (tryptic peptides from the heavy chain, see the Results section).

The HPLC column was coupled to the API source of the tandem mass spectrometer via an electrospray interface. Nitrogen was used as the nebulizing gas (115 L h⁻¹) and drying gas (900 L h⁻¹). The ESI source was operated in the positive ion mode using 3500 V as the high voltage for ionization, and the produced protonated molecular species were selected for low-energy collision processes in MS/MS experiments in the SRM acquisition mode. Collision-induced dissociations (CID) were achieved with argon at a pressure of 2.2 × 10⁻² mbar. Two SRM transitions were performed from each peptide as reported in Table 1. The dwell-time for each SRM transition was 0.2 s. The two reconstructed chromatograms obtained for each peptide were summed for integration to increase signal-to-noise ratio and to take into account possible variability of charge state distribution according to the source conditions. Moreover, it was checked that the ratio of the two SRM transitions for each peptide was constant in each run. To maximize sensitivity, the cone voltage and collision energy were optimized for each transition (Table 1). Other parameters were optimized by LT3 peptide infusion. Source block temperature was set to 100 °C and drying temperature to 350 °C. Measurement of the therapeutic antibody concentration in serum was based on quantification of the LT3 fragment. The HT4 over LT3 area ratio was also measured. HT4 was used in this study as a confirmation

Table 1. Transitions Selected for Quantification of Triply and Doubly Protonated Peptides, the Corresponding Cone Voltage Values at Optimized Collision Energy of the LT3, HT4, HT23, and IS⁺ Peptides Are Reported

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Transition</th>
<th>Cone Voltage (V)</th>
<th>Collision Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT3</td>
<td>(3+)</td>
<td>597.3 → 622.1</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>(2+)</td>
<td>858.1 → 1303.1</td>
<td>36</td>
</tr>
<tr>
<td>HT4</td>
<td>(3+)</td>
<td>857.5 → 908.7</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>(2+)</td>
<td>1286.2 → 1703.1</td>
<td>40</td>
</tr>
<tr>
<td>HT23</td>
<td>(3+)</td>
<td>603.8 → 805.8</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>(2+)</td>
<td>904.8 → 997.8</td>
<td>40</td>
</tr>
<tr>
<td>IS⁺</td>
<td>(3+)</td>
<td>603.7 → 766.4</td>
<td>25</td>
</tr>
</tbody>
</table>

* IS: internal standard.
peptide. HT23 was also monitored to evaluate nonspecific binding for each sample.

Quantification of Erbitux by the LC–MS/MS Method in Spiked Human Serum. Calibration curves were established as a quadratic regression function after 1/X weighting of the LT3/IS peak area ratio versus Erbitux concentration of the seven standard samples (from 0.02 to 2 µg/mL).

Accuracy and precision of the method were evaluated during 3 days by analyzing the four QC samples (0.02, 0.06, 0.4, and 1.5 µg/mL) in four replicates. Intra- and interday assay accuracy (ratio of the measured concentration to the nominal concentration multiplied by 100) and precision (percent coefficient of variation, % CV) were calculated at each concentration.

The recovery of the immunocapture step and the stability in the autosampler was estimated as follow. Two sets of 10-fold more concentrated solutions were prepared in elution buffer at 20, 10, 5, 2, 1, 0.5, and 0.2 µg/mL. These samples were submitted not to immunocapture but directly to denaturation and enzymatic digestion. This 10-fold concentration factor was used since the volume of the samples in serum was 500 µL and the elution volume after immunocapture was 50 µL. The signal of the immunocapture samples in serum was compared to the signal of the concentrated solutions in elution buffer. One set was analyzed by LC–ESI-MS/MS first, before the immunoextracted samples, and the second set was analyzed at the end of the run in the same conditions to check the stability of tryptic products in the autosampler. The first curve obtained by plotting the first set of control samples should superimpose on the curve of the second set to match stability criteria. Efficiency of trypsinization was also monitored using these control samples.

RESULTS AND DISCUSSION

Selection of Peptides for Quantification. The strategy for quantification involved the selection of tryptic peptides representative and specific to the variable regions of both the light and heavy chains. The corresponding sequences were submitted to similarity searches (BLAST) to ensure detection specificity. These different peptides were monitored by LC–ESI-MS/MS.

The first step of the development was to identify specific peptides with the most intense signal in mass spectrometry, among those produced by digestion with trypsin after reduction with dithiothreitol. Their molecular weights were determined by both the nanoLC–ESI-TOF-MS and MALDI-TOF-MS techniques and were compared with predicted peptides from theoretical digestion (Mass Lynx version 4.0) (59 expected peptides). Both techniques were used since they gave complementary information for peptide identification owing to their different ionization potencies. On the one hand, peptides identified by MALDI-TOF-MS (31 peptides) covered 88% of the sequence of the light chain and 65% of the heavy chain. Some peptides were not detected (8% of the light chain and 22% of the heavy chain) since they were outside the acquisition m/z range (500–5000 amu) used during the MALDI-TOF-MS experiments. They were denoted from LT1 to LT20 for the light chain and from HT1 to HT39 for the heavy chain, as reported in Table 2. The peaks from the mass spectrum were assigned to tryptic peptides by matching measured to expected molecular weights with less than 40 ppm of mass accuracy. On the other hand, nanoLC–QTOF-MS experiments provided 83% of sequence coverage of the light chain and 56% of the heavy chain for a total of 31 peptides identified. It should be noted that the amino acid sequence of Erbitux contains three potential N-glycosylation sites based on the presence of the N–X–S/T–Y consensus sequence, i.e., LT4, HT8, and HT22 peptides. Proline at X or Y is highly unfavorable to glycosylation, which explains the detection of the LT4 peptides containing the NGSP sequence (see Table 2 for peptides sequence). It has recently been demonstrated that the two potential sites in the heavy chains are glycosylated, which could explain the absence of HT8 and HT22 as nonglycosylated peptides.

Peptides identified by both the ESI-TOF-MS and MALDI-TOF-MS experiments were kept for potential use in quantification. ESI-TOF-MS and MALDI-TOF-MS gave overlapping information since 27 peptides (out of the 59 theoretical tryptic peptides, 62% sequence coverage) were identified by both techniques. First, 31 peptides were identified by ESI-TOF-MS (65% sequence coverage), and then 31 were identified by MALDI-TOF-MS (73% sequence coverage). Two high molecular weight peptides identified only by MALDI-TOF-MS explain this significant increase in sequence coverage. The MALDI-TOF mass spectrum obtained after reduction and digestion of Erbitux with trypsin is shown in Figure 1.

Since Erbitux is a human:murine chimeric mAb, its Fc fragment is identical to human IgG1, for which the concentration in human plasma is around 10 mg/mL. To reach the required sensitivity, a unique peptide sequence is a key prerequisite to avoid interference with human IgG. Hence, for mAb quantification, specificity criteria can be met by selecting peptides in variable regions located in the Fab fragments. The Erbitux Fab fragment binds exclusively to domain III of sEGFR, and both heavy and light chains of the antibody are involved. Nine amino acids located within the LT3, LT6, LT7, HT4, and HT9 peptides are involved in this binding. Among these potential candidates for quantification, those without miscleavage and showing higher desorption and ionization efficiency were selected. This led to the choice of one peptide from the light chain (LT3) and another from the heavy chain (HT4). Although the LT3 peptide contains a Trp residue that might be sensitive to oxidation, we have never observed the corresponding peptide bearing an oxidized Trp residue even after prolonged storage. To estimate nonspecific binding of endogenous human IgG to magnetic beads during the immunocapture step, a third tryptic peptide (HT 23) of the Fc region was monitored, chosen for its high ionization efficiency. NanoLC–QTOF-MS/MS spectra of these three peptides are shown in Figure 2.

Optimization of Trypsin Digestion. Digestion had to be carefully optimized since many factors, such as pH, ionic strength, temperature, and incubation time, can influence the efficiency of proteolysis. We chose Promega trypsin, which exhibits limited self-digestion and retains its activity over a long period. With previous work in mind, the optimal protein digestion was obtained at pH 8.5 in a 50 mM Tris-HCl buffer with 1 mM CaCl₂ and 100 µg/mL BSA at a temperature of 40 °C with 0.1 µg of trypsin.

In order to decrease the number of steps in the analytical process, the need for protein denaturation, reduction, and alkyl-
Protein denaturation is required to break tertiary structures of the protein and to increase accessibility of trypsin to its cleavage sites. Temperature, dithiothreitol, and 8 M urea were tested as denaturing agents. These experiments led to Table 2. Tryptic Peptides from Erbitux Identified by MALDI-TOF-MS and NanoLC–ESI-QTOF-MS

<table>
<thead>
<tr>
<th>fragment</th>
<th>sequence</th>
<th>calculated mass</th>
<th>experimental mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1 (1–5)</td>
<td>pQVQLK</td>
<td>597.35</td>
<td>597.35</td>
</tr>
<tr>
<td>HT2 (6–38)</td>
<td>QSCGPGLYQPSQLSTICVTSGSLTNYYGWMVR</td>
<td>3504.75</td>
<td>3504.62</td>
</tr>
<tr>
<td>HT3 (29–43)</td>
<td>QSGPK</td>
<td>515.27</td>
<td>515.27</td>
</tr>
<tr>
<td>HT4 (44–66)</td>
<td>GLEWGVWSGGNTDYNTPFTSR</td>
<td>2569.22</td>
<td>2569.15</td>
</tr>
<tr>
<td>HT5 (67–71)</td>
<td>LSINN</td>
<td>573.35</td>
<td>573.35</td>
</tr>
<tr>
<td>HT6 (72–75)</td>
<td>DNSK</td>
<td>462.21</td>
<td>462.21</td>
</tr>
<tr>
<td>HT7 (76–81)</td>
<td>QSVPPFK</td>
<td>754.40</td>
<td>754.40</td>
</tr>
<tr>
<td>HT8 (82–97)</td>
<td>MNSLSQNDTARYCAR</td>
<td>1848.81</td>
<td>1848.81</td>
</tr>
<tr>
<td>HT9 (98–123)</td>
<td>ALITYDYFAYWGYGTLTVAASSTK</td>
<td>2904.39</td>
<td>2904.37</td>
</tr>
<tr>
<td>HT10 (124–135)</td>
<td>GSPVPLPSK</td>
<td>1185.64</td>
<td>1185.63</td>
</tr>
<tr>
<td>HT11 (136–149)</td>
<td>STSGAALGCLVK</td>
<td>1263.65</td>
<td>1263.64</td>
</tr>
</tbody>
</table>

The peaks from the mass spectrum were assigned to tryptic peptides by matching measured to expected molecular weights with a 40 ppm mass accuracy. Peptides were denoted from HT1 to HT39 for the heavy chain and from LT1 to LT20 for the light chain.
the conclusion that addition of dithiothreitol to a final concentration of 1.5 mM combined with heating at 60 °C for 30 min leads to effective denaturation. Urea addition did not further improve the peptide signal and was therefore not used during denaturation (data not shown).

A second treatment commonly used in proteomics is derivatization of cysteines with alkylating agents. We compared the signals obtained without a derivatization step and with an increased concentration of iodoacetamide. No signal increase was obtained for HT4 and HT23, whereas a slight decrease in peak intensity was observed for LT3 (Figure 3a). No derivatization was finally performed in the assay.

The kinetics of the Erbitux peptide formation (LT3, HT4, and HT23) were then assessed after stopping the digestion at various incubation times with 10 μL of methanol containing 10% formic acid, which lowered the pH to 2. The efficiency of this stop solution was first investigated. Before the addition of trypsin, 10 μL of

Figure 1. MALDI-TOF mass spectrum obtained after reduction and enzymatic digestion of mAb Erbitux with trypsin. Monitored peptides for quantification (LT3 at m/z 1788.88 and HT4 at m/z 2570.16) and for nonspecific binding estimation (HT23 at m/z 1807.97) are indicated.

Figure 2. Product ion spectra of the triply charged tryptic peptides LT3 at m/z 597.00, HT4 at m/z 857.80, and HT23 at m/z 603.60, obtained by nanoLC–ESI-QTOF-MS/MS. Parent ion masses and selected daughter ions for SRM transitions are labeled, respectively, by □ and □. The amino acid sequence of the parent ion peptides is indicated.

Figure 3. (A) LT3 formation with increased concentration of iodoacetamide (0.3, 1.5, 6 mM final concentration) and DTT (0.15, 0.75, 1.5 mM). (B) Kinetics of Erbitux (at 20 μg/mL) digestion, through measurement of peptides LT3, HT4, and HT23 formation between 0 and 22 h with no derivatization step. Digestion is performed in 50 mM Tris-HCl buffer with 1 mM CaCl2 and 100 μg/mL BSA at 40 °C.

methanol (10% formic acid) was added to a sample of denatured and reduced Erbitux. This acidified sample was then incubated for 4 h at 40 °C, and no tryptic peptide was observed. Then, the kinetic profiles of the three peptides were determined as shown in Figure 3b, with a 20 μg/mL Erbitux solution. A time of 15 min is sufficient to reach a plateau for LT3, whereas formation of the two other peptides is slower, as 2 h is required for HT4 and at least 6 h for HT23. A 3-h incubation was subsequently used for quantification of the two specific peptides (LT3 and HT4). A 100% release of HT23 upon digestion was not considered as mandatory to shorten the analytical process. Moreover, this peptide was not used for quantification, and the variability induced by this kinetic interruption is far below variability induced by nonspecific binding. In conclusion to this digestion step optimization, maximum intensity was obtained with a denaturation step at 60 °C under reducing conditions (1.5 mM DTT final concentration) before addition of 5 μL of trypsin (0.1 μg) followed by a 3-h incubation at 40 °C.

Immunocapture of Erbitux. Sample preparation for LC–MS/MS experiments allows concentration of the analyte and removal of components that reduce ionization efficiency. Traditional methods rely on solid-phase extraction or protein precipitation. These approaches are suitable for polypeptides and small proteins but are not sufficiently selective or are incompatible with larger proteins such as antibodies.

Here, we selected immunocapture to measure specifically the antibody form that binds its pharmacological target and thus constitutes the most selective purification of the active mAb from other IgG. For ease of assay development and as described previously, we used magnetic beads that were covalently linked to sEGFR. The immunocapture was performed on 500 μL of plasma, a volume which is compatible with usual blood sampling during human pharmacokinetic studies.

Erbitux can be eluted from the beads using organic solvents, high ionic strength solutions, or low pH solutions. Elution was developed keeping in mind that the buffer must be compatible with the optimized conditions for digestion with trypsin. Tris buffer at pH 2 was used for elution, and the pH was raised to ~8.5 by NaOH addition prior to trypsin digestion. Addition of organic solvent, i.e., methanol and acetonitrile, was tested but not used since a decrease in Erbitux peptide signal was observed, especially when the percentage of organic solvent was increased. The main hypothesis is that the mAb is partially precipitated under these experimental conditions.

Finally, a 10-fold increase in sensitivity was obtained thanks to this immunocapture step (Figure 4) since the elution volume was set at 50 μL.

Internal Standard and Calibration Curves. The use of an internal standard (IS) is required for accurate and reproducible quantification, especially when sample preparation involves numerous steps. Although tryptic peptides labeled with stable isotopes are often used, this does not allow for checking of the sample preparation steps, such as immunocapture and enzymatic digestion. A more suitable approach consists in the introduction of stable isotope residues in the whole protein backbone and the further monitoring of one (or more) labeled tryptic peptides. Although this has already been applied to several proteins (RK5, ADH, insulin), the production of labeled proteins is a highly complex and time-consuming process.

Surrogate internal standards, such as analogue proteins from other species and recombinant proteins differing by a few amino acids or chemical derivatization, have been reported. In the present method, we chose another alternative by monitoring the

whole analytical process, especially the immunocapture step. This internal standard consists of a commercial mouse monoclonal antibody specific to human sEGFR. Assuming that such an immunoglobulin structure will behave similarly to Erbitux during the enzymatic digestion, specific tryptic peptides can be selected as described previously for Erbitux and further used for the LT3 area standardization. A peptide from the variable region of the IgG light chain with the same retention time as LT3 was chosen to monitor the IS concentration. Erbitux quantification is then performed by measuring LT3 over the IS peptide area ratio. In addition, the area ratio of HT4 over LT3 was determined to enhance confidence in the Erbitux determination. The SRM transitions of HT4 was used in this study as a surrogate measure of the heavy chain (Figure 5).

In the initial steps of the immunocapture development, we found that the standard curve determined directly in the elution buffer (Tris-HCl) presented an exponential response with Erbitux concentrations. We found that this was due to nonspecific adsorption, most probably of the intact Erbitux rather than tryptic peptides. To circumvent this problem, we added bovine serum albumin (BSA) to the buffer solution before the enzymatic digestion. Since high quantities of BSA caused ion suppression, we selected the concentration of 100 μg/mL for which the maximum response of LT3 was obtained. Under these conditions, the linearity of the response was obtained in elution buffer between 0.2 and 20 μg/mL (Figure 6a) without immunocapture.

The calibration curve obtained after immunopurification of Erbitux from serum samples is shown in Figure 6b and ranged between 20 and 2000 ng/mL, consistent with the 10-fold increase in sensitivity. The tendency of nonlinearity observed at high Erbitux concentrations was related to the saturation of binding sites, i.e., sEGFR coated on the beads. A 2-fold increase in the amount of functionalized beads was not sufficient to change this behavior significantly. In order to obtain a higher linear range of the calibration curve, a superior amount of beads would be required. However this will not be compatible with a low elution volume. Nevertheless, the amount of sEGFR coated allows a quantification range of 2 logarithms. The HT4 over LT3 area ratio was constant over the whole range of Erbitux concentrations, as described in Figure 6c. The mean area ratio was observed at 0.75, CV = 8%, which implies that the ratio of these two peptides, LT3 and HT4, that belong, respectively, to the light and to the heavy chain, can be measured with an acceptable robustness.

Method Applicability to Human Serum. Selectivity was first checked, for peptides LT3, HT4, and HT23, with pooled blank human serum from different individuals. No signal was found at the retention time and SRM transitions of LT3 and HT4. However, in the absence of Erbitux, a significant response was observed for the SRM transitions of HT23 with a signal roughly equivalent to an immunoglobulin concentration of 2 μg/mL, this corresponds to the nonspecific binding of IgG to the beads. This effect, shown in Figure 5c at the LLOQ, keeps one from performing a reliable quantification using such a peptide located in the constant region of mAb. This result highlights the need to monitor peptides from the variable domains of the mAb for accurate quantification of low concentrations of therapeutic antibodies.

In order to determine the extraction recovery, we compared the signals from control solutions and in spiked serum by means of the area ratio of LT3 and internal standard. Overall extraction recovery was between 45% and 100% for Erbitux, with a lower percentage at the highest Erbitux concentration. A constant recovery of 45% (CV = 9%) over the whole Erbitux concentration range was observed for the internal standard.

Finally, spiked QC samples in human serum at four concentrations were analyzed repeatedly over 3 days for determination of intra- and inter-run precision of the assay. Above the lower limit of quantification (LLOQ), CV% were between 6% and 17% for intra-assay (n = 4) and between 9% and 18% for inter-assay precision (n = 12 over 3 days). Accuracy was between 85% and 105%. The LLOQ was determined to be at 20 ng/mL. At this level, intra- and
inter-assay CVs were 17% and 12%, respectively; whereas the intra-and inter-assay accuracy was 97%, and signal-to-noise ratio of LT3 transition was 10. In the absence of the internal standard, intra- and inter-assay performance data do not significantly change except for the highest QC at 1500 ng/mL, for which significant losses of precision and accuracy could be observed with CV% and accuracy dramatically decreasing from 9% to 17% and from 86% to 75%, respectively. Results are summarized in Table 3 and show the applicability of the method to quantification of Erbitux in human serum.

Additionally, the stability of LT3, HT4, and HT23 peptides in the injection buffer was checked in the autosampler for up to 24 h. Peak area ratio was between 90% and 97%. This result showed that all three peptides were stable during the analysis.

CONCLUSION

This work presents for the first time an alternative to ELISA methods for quantification of a monoclonal antibody in biological fluids during clinical development. The approach is based on immunocapture and mass spectrometry. The initial step of the analytical process resembles that used for ELISA, where the interactions between the adsorbed target on the plate and the mAb allow its extraction from complex biological matrix as serum. This immunorecognition of the target used in our immuno-LC–MS/MS approach is crucial, since it allows assessment of the biological potency of the antibodies. Added value is derived from mass spectrometry quantification of peptides from the variable regions and involved in the binding to sEGFR, which is highly specific since nonspecifically bound endogenous antibodies do not hamper quantification. The simultaneous monitoring of an Fc region peptide (HT23) shows the importance of this interfering phenomenon in human serum. The possibility of monitoring the whole analytical process with an appropriate internal standard is another advantage of the present mass spectrometry-based approach. Consequently, variability of the assay was below 20%. The limit of quantification of the assay at 20 ng/mL compares favorably with ELISA sensitivity, which is in the 5–5000 ng/mL range, depending upon the sample dilution required by nonspecific binding. Although this assay may appear more time-consuming than ELISA, it could be fully automated by using an online immunocapture cartridge and trypsin chamber as already developed for other analytical applications. This will imply that the stability of the covalently coupled antigen should be assessed. Other possible methodological improvements are possible. For instance, mass spectrometric quantification could be done using the more sensitive linear ion trap LTQ coupled to an Orbitrap. The high resolution provided by this equipment enhances sensitivity and specificity. MS/MS experiments would not be necessary and could be replaced by full MS scan experiments, allowing quantification of a huge number of tryptic peptides, ensuring mAb integrity. Further identification and quantification of structural heterogeneity within the active mAb structure, such as pyroglutamic acid formation and glycosylation, are currently in progress.

ACKNOWLEDGMENT

The authors would like to gratefully thank Dr. Hervé Bernard, from INRA-Laboratoire d’Immuno-Allergie Alimentaire (CEA-Saclay, Gif sur Yvette, France), for providing the synthesized peptides; Dr. Elmar Wimmer and Berend Neuteboom for their valuable review of the manuscript; and Mrs. Sigrid Liehr, from Merck DMPK, Grafing, Germany, for providing sEGFR.

Received for review October 16, 2007. Accepted December 7, 2007.

AC7021234

Table 3. Assay Performance Data of Spiked QC Samples in Human Serum at Four Levels after Immunocapture, Digestion and Measurement of LT3 over IS Area Ratio

<table>
<thead>
<tr>
<th></th>
<th>intra-run (n = 4)</th>
<th>inter-run (n = 12 over 3 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV (%)</td>
<td>accuracy (%)</td>
<td>CV (%)</td>
</tr>
<tr>
<td>LLOQ (20 ng/mL)</td>
<td>17</td>
<td>97</td>
</tr>
<tr>
<td>low QC (60 ng/mL)</td>
<td>17</td>
<td>101</td>
</tr>
<tr>
<td>mid QC (400 ng/mL)</td>
<td>6</td>
<td>105</td>
</tr>
<tr>
<td>high QC (1500 ng/mL)</td>
<td>9</td>
<td>85</td>
</tr>
</tbody>
</table>

a Except mid QC (n = 8 over 2 days).
III.3. Résultats complémentaires

Le mode opératoire ayant permis de mettre en œuvre cette méthode de dosage, ainsi que les principaux résultats, sont décrits dans la publication précédente. Néanmoins, certains points méthodologiques et quelques résultats intermédiaires ont été cités, sans pour autant être présentés dans l’article. Ils seront développés ici.

III.3.1. Obtention d’une séquence théorique de Cetuximab

La séquence entière de l’anticorps n’ayant pas été publiée, il a fallu dans un premier temps reconstruire cette structure primaire. Le fragment Fab cocristallisé avec sa cible, c'est-à-dire la partie soluble du récepteur du facteur de croissance épidermique (sEGFR) a été publiée en 2005 par Li S. La séquence de ce fragment de l’anticorps est donc accessible. Ce fragment Fab possède des parties variables d’origine murine, la quasi-totalité du fragment constant de la chaîne légère d’origine humaine, ainsi que la quasi-totalité du domaine C_H1 de la chaîne lourde d’origine humaine également. Cetuximab est un anticorps chimérique dont la partie constante correspond à un anticorps humain de type IgG1. La partie constante de la chaîne lourde de Cetuximab est donc une chaîne \(\gamma_1 \) humaine. En l’absence d’information sur la séquence de Cetuximab, celle-ci a été reconstruite par alignement de la partie C-terminale du fragment Fab avec la partie N-terminale de la chaîne lourde d’IgG1 humaine.

La séquence peptidique du fragment Fab est accessible dans la base de données du NCBI sous le numéro gi : 66361247 (chaîne A) pour la chaîne légère et le numéro gi : 66361248 (chaîne B) pour la chaîne lourde. La partie constante de la chaîne \(\gamma_1 \) est également accessible dans les bases de données et notamment dans la base de données Swiss-Prot sous le numéro P01857 (gi : 121039 ; http://expasy.org/uniprot/P01857). L’alignement a été effectué à l’aide du logiciel Clustalw (http://www.expasy.org/tools/).
Figure 35 : Alignement de séquence entre le fragment Fab de Cetuximab et la partie constante de la chaîne lourde des immunoglobulines γ, humaines.

Le résultat de l’alignement (Figure 35) donne une très bonne concordance entre la partie C-terminale de la chaîne lourde du fragment Fab et la partie N-terminale de la partie constante de la chaîne γ, excepté pour un acide aminé en position 216 de la chaîne lourde du fragment Fab. De même, l’alignement effectué entre la chaîne légère du fragment Fab (gi : 66361247, chaîne A) et la partie constante de la chaîne kappa des immunoglobulines humaines (gi : 125145, P01834) donne également une très bonne concordance (Figure 36).

Figure 36: Alignement de séquence entre le fragment Fab de Cetuximab et la partie constante de la chaîne légère κ des immunoglobulines humaines.
Une séquence peptidique de l’anticorps Cetuximab a ainsi pu être obtenue par juxtaposition de séquences publiées et de séquences connues de parties constantes d’anticorps humains, mais avec cependant des incertitudes en partie C-terminale pour la chaîne légère et en position 216 pour la chaîne lourde. En effet, le dernier acide aminé de la chaîne légère est une cystéine pour permettre la liaison à la chaîne lourde par un pont disulfure, mais l’acide aminé en position 212 est soit une alanine soit un acide glutamique.

Ces résultats ont servi de base de travail pour identifier dans l’étape suivante les différents peptides obtenus par digestion enzymatique.

III.3.2. Analyse peptidique de Cetuximab

III.3.2.1. Identification des peptides générés par digestion enzymatique

Le but de ce développement analytique était d’obtenir une méthode de quantification spécifique de l’anticorps thérapeutique. La masse moléculaire élevée de l’anticorps ainsi que les différentes glycosylations empêchent d’appliquer une stratégie d’analyse par protéine entière. Une étape de digestion enzymatique permet de générer des peptides de masse moléculaire beaucoup plus faible, présentant une faible distribution d’états de charge, et donc d’augmenter la sensibilité du dosage, ainsi que de s’affranchir des différentes glycosylations qui génèrent une diversité en masse de l’anticorps. Cette carte peptidique a été effectuée à la fois par MALDI-TOF et par ESI-Q-TOF. Ces deux techniques de spectrométrie de masse présentent l’avantage d’être à haute résolution par l’utilisation d’analyseur de type « temps de vol », et sont également complémentaires par l’utilisation de deux techniques d’ionisation différentes. Les peptides générés ayant des caractéristiques physico-chimiques différentes, certains présentent un meilleur rendement d’ionisation avec l’une ou l’autre des techniques. Le spectromètre de masse MALDI-TOF permet d’obtenir une meilleure précision et une meilleure résolution que notre spectromètre de masse de type ESI-Q-TOF utilisé pour ces expériences. Ceci est principalement dû à la différence de longueur de tube de vol (le double d’un appareil à l’autre). Les expériences menées avec un MALDI-TOF ont donc permis d’identifier plus précisément les peptides, alors que celles menées avec un ESI-Q-TOF ont permis d’obtenir des informations sur les peptides présentant une meilleure ionisation par technique électrospray. Cette dernière information est d’importance car le format de dosage
final doit utiliser un appareil de type triple quadripôle possédant également une source électrospray. La technique ESI-Q-TOF a également de confirmer la séquence des peptides par MS/MS.

Figure 37 : Spectre de masse obtenu par MALDI-TOF de l’anticorps Cetuximab après réduction par le DTT et digestion par la trypsine

Conditions expérimentales : Cetuximab : 50 µL à 500 µg/mL en tampon Tris-HCl 50 mM ; DTT : 0,15 mM 30min à 60 °C ; trypsine : 0,1 µg ajouté 3h à 40 °C ; matrice : HCCA ; dépôt : 0,5 µL ; mode d’ionisation : positif ; détection : réflectron ; potentiel d’accélération = 20 kV ; potentiel de grille d’extraction = 66 % ; délai d’extraction retardée = 140 ns ; signal accumulé après 500 tirs lasers.

La Figure 37 correspond au spectre MALDI-TOF obtenu après réduction et digestion enzymatique par la trypsine de l’anticorps, annoté de tous les peptides identifiables. Pour un maximum de précision, la calibration du spectre a été effectuée après acquisition en utilisant les peptides d’autoprotéolyse de la trypsine. En effet, malgré les modifications chimiques apportées à cette enzyme, elle présente une activité résiduelle d’autolyse. Les deux pics les plus abondants ont un rapport m/z de 842,51 et 2211,1046. Les peptides identifiés sont indiqués en vert sur la séquence (Figure 38). Etant donné les conditions d’analyse, certains peptides sont en dehors de la gamme de masse d’acquisition du spectromètre de masse, comprise entre 500 et 5000 en rapport m/z pour l’utilisation du mode réflectron. Ces peptides sont indiqués en rouge dans la séquence. La dénomination de ces peptides par LTx (x=1…20) et HTy (y=1…39) correspond à la localisation de ces peptides sur la séquence de l’anticorps : L pour la chaîne légère (*light*), H pour la chaîne lourde (*heavy*), et T pour l’enzyme utilisée, la trypsine.
Figure 38 : Identification des peptides après digestion par la trypsine et analyse par MALDI-TOF. Les peptides surlignés en vert ont été identifiés, alors que ceux en rouges sont en dehors de la gamme de masse d’acquisition.

L’identification des peptides par une méthode d’ionisation de type électrospray a été menée grâce à une chromatographie liquide à nano débit couplée à un spectromètre de masse de type ESI-QTOF. Pour un couplage efficace entre ces deux instruments, le spectromètre de masse a été équipé d’une source nano-électrospray. L’anticorps a subi une digestion enzymatique comme précédemment, puis 5 µL ont été injectés par l’intermédiaire du passeur au tomatique de la chaîne chromatographique. L’échantillon, après injection à un débit de 200 µL/min, est retenu par une colonne de chargement, puis élué dans une colonne analytique capillaire (150 mm × 0,75µm de diamètre interne) à 200 nL/min.

Chainé légère

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT1</td>
<td>DILLTQSPVI LSVSPGERVS FS</td>
</tr>
<tr>
<td>LT2</td>
<td>CRASQS</td>
</tr>
<tr>
<td>LT3</td>
<td>IG TNIHWYQQRT NGSPRLLIKY ASESISGIPS</td>
</tr>
<tr>
<td>LT4</td>
<td>LT5</td>
</tr>
<tr>
<td>LT7</td>
<td>LT8</td>
</tr>
<tr>
<td>LT10</td>
<td>LT11</td>
</tr>
<tr>
<td>LT13</td>
<td>LT14</td>
</tr>
</tbody>
</table>

Chainé lourde

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1</td>
<td>pQVQLKQSGPG LVQPSQSLSI TCTVSFGSLT NYGVHVIWGS PGK SLEWLGV IWSGGNTDYN</td>
</tr>
<tr>
<td>HT2</td>
<td>HT3</td>
</tr>
<tr>
<td>HT5</td>
<td>HT6</td>
</tr>
<tr>
<td>HT8</td>
<td>HT9</td>
</tr>
<tr>
<td>HT11</td>
<td>HT12</td>
</tr>
<tr>
<td>HT14</td>
<td>HT15</td>
</tr>
<tr>
<td>HT17</td>
<td>HT18</td>
</tr>
<tr>
<td>HT20</td>
<td>HT21</td>
</tr>
<tr>
<td>HT23</td>
<td>HT24</td>
</tr>
<tr>
<td>HT26</td>
<td>HT27</td>
</tr>
<tr>
<td>HT29</td>
<td>HT30</td>
</tr>
<tr>
<td>HT32</td>
<td>HT33</td>
</tr>
<tr>
<td>HT35</td>
<td>HT36</td>
</tr>
<tr>
<td>HT38</td>
<td>HT39</td>
</tr>
</tbody>
</table>

L’identification des peptides par une méthode d’ionisation de type électrospray a été menée grâce à une chromatographie liquide à nano débit couplée à un spectromètre de masse de type ESI-QTOF. Pour un couplage efficace entre ces deux instruments, le spectromètre de masse a été équipé d’une source nano-électrospray. L’anticorps a subi une digestion enzymatique comme précédemment, puis 5 µL ont été injectés par l’intermédiaire du passeur au tomatique de la chaîne chromatographique. L’échantillon, après injection à un débit de 200 µL/min, est retenu par une colonne de chargement, puis élué dans une colonne analytique capillaire (150 mm × 0,75µm de diamètre interne) à 200 nL/min.
Figure 39 : Chromatogramme obtenu par nanoLC-ESI-TOF-MS après réduction et digestion par la trypsine de l’anticorps Cetuximab

Conditions expérimentales : Cetuximab : 50 µL à 50 µg/mL en tampon Tris-HCl 50 mM ; DTT : 0,15 mM 30min à 60 °C ; trypsine : 0,1 µg ajouté 3h à 40 °C ; les conditions d’analyse nanoLC-ESI-TOF-MS sont décrites dans l’article au paragraphe "qualitative mass spectrometry for tryptic peptide identification"

Le chromatogramme obtenu pour l’analyse de l’anticorps après réduction et digestion enzymatique est indiqué Figure 39. Les peptides identifiés par cette technique sont indiqués par annotation des pics chromatographiques correspondants. Ainsi, 31 peptides sur les 59 peptides théoriques ont été identifiés par ESI-QTOF permettant de couvrir 65% de la séquence totale. Trente et un peptides ont également été identifiés par MALDI-TOF, donnant un taux de couverture de 75 % de la séquence totale de l’anticorps. Vingt sept de ces peptides sont identifiés par les deux techniques, ce qui explique le taux de couverture de 78 % en combinant les deux modes d’analyse utilisés.
Chapitre III : Quantification d’un anticorps thérapeutique par LC-MS

III.3.2.2. Identification des peptides situés dans les régions hypervariables

La spécificité du dosage est liée à l’unicité des séquences des peptides choisis pour effectuer la quantification. Le choix des peptides a été influencé par deux facteurs : le premier favorise les peptides ayant un signal intense par désorption-ionisation électrospray dans l’optique de sensibiliser le dosage, le second favorise les peptides spécifiques de l’anticorps. Les peptides situés dans les régions hypervariables de l’anticorps, et notamment dans les CDR (complementary determining regions), ont une plus forte probabilité d’être uniques en raison de la variabilité de séquence intrinsèque à cette partie des anticorps. Les parties variables de l’anticorps ayant été cristallisées en présence du récepteur, une attention particulière a été portée aux peptides possédant des acides aminés impliqués dans les interactions avec le récepteur. La Figure 40 montre la position de ces CDR sur la séquence des parties variables de l’anticorps, ainsi que les acides aminés présentant des interactions avec l’EGFR (Figure 34). Ainsi, le choix des peptides LT3 et HT4 pour quantifier l’anticorps découle de ces considérations.

Chaîne légère :

1. DILLTQSPVI LSVSPGERVS PSCRASIG TNIHWQQT NGSPRLLLH ASESISGIPS
2. RFSGSOGTD FTLSINSVES EDIAADYQQ QNNNPTTFGA GTKLEKRTV AAPSVFIFPP
3. SDEQLKSGTA SVVCPLLNNFY PEAKQVWV DNSALQSGNSQ ESVTEQDSKD STYSLLSTLT
4. LSKADYERHK YVACEVTHQG LSSPVTKSFI RGA

Chaîne lourde :

1. pQVQLKQSGPG LVQPSQLSLI TCTVSGFSLT NVGVRWVRQG PGKGLEWLGV HSGNTTVPN
2. TPFTSRLSIS KDNSKSVQSF RMNLSQSNDT AIFYCARALT YPDZFAYWQ QGTLVTVAAS
3. STKGPSVFPL AFSKSTSGS TAALACLVKQ YFPEPVTVSN NGSALTSGVH TFPAVLQSSG
4. LYSLSVVTI FSSSLGTQTI ICHVNHKPSN TKVDKRLVEPK SCDKTHTPFP CPALPELLGGP
5. SVLFPPFPPKDT ITMISRTPE VCTVUVVDSNL EPVEVKNWQ VDGSVEVHANAK TCPPRCEQYS
6. TLYRUVVTVCN LQQDWNKKE YRCKVSNLAP PAPIEKTISAK QKQRPQERQV YTLPPSRDEL
7. TKNVQVLCTL VKGFPYPSDIA VEWESENGQPE NNYKTPFLV DSDGSSFLYS KLTVDKSRWQ
8. QGNVFSCSVIM HEALNNHYTQ KSSLSSPGK

Figure 40 : Position des CDR (en orange) au sein de la séquence de l’anticorps Cetuximab ainsi que des acides aminés impliqués dans les interactions avec le récepteur EGFR (en vert) d’après Li et al. Les parties constantes de l’anticorps sont en gris.
Chapitre III : Quantification d’un anticorps thérapeutique par LC-MS

III.3.3. Standard interne pour la quantification

III.3.3.1. Choix du standard interne

Le choix du standard interne (SI) a été discuté dans la publication précédente. La volonté de suivre toutes les étapes constituant le dosage depuis l’immunocapture jusqu’à l’analyse en LC-MS/MS, a guidé notre choix : ce SI devait être extrait du sérum par affinité avec l’EGFR, subir l’étape de digestion enzymatique, et enfin, l’un des peptides formés devait être coélué avec LT3. La solution idéale aurait été d’utiliser un second anticorps chimérique dirigé contre EGFR, sachant que de nombreux anticorps ont été générés lors du développement d’anticorps thérapeutiques capables de se lier à la partie extracellulaire du récepteur et d’inhiber la liaison avec l’EGF. Une autre possibilité, qui n’était malheureusement pas à notre disposition aurait été l’utilisation de l’anticorps Cetuximab, mais produit dans un milieu contenant un acide aminé marqué avec des isotopes stables. De tels anticorps n’étant pas disponibles au laboratoire, l’utilisation d’un anticorps monoclonal de souris anti-EGFR commercial s’est imposée comme la solution permettant de contrôler toutes les étapes, et en particulier celle d’immunocapture (mAb 1095 IgG₂B, dirigé contre le domaine extracellulaire d’un EGFR humain recombinant, R&D systems). Cet anticorps a alors été réduit puis digéré par la trypsine. Les peptides obtenus ont été analysés par chromatographie liquide couplée à un spectromètre de masse (triple quadripôle utilisé en mode balayage). La séparation des peptides se fait par un gradient de 0 à 100 % d’acétonitrile à 0,1 % d’acide formique en 50 min. Dans ces conditions, le peptide LT3 de Cetuximab possède un temps de rétention de 13,07 minutes (Figure 41).
Figure 41 : Chromatogramme comparé de Cetuximab trypsé en A (le temps de rétention de LT3 est de 13,07 min) et de l’anticorps de souris en B pour la recherche de peptides coélués avec LT3. Le spectre de masse correspondant à la zone rouge est indiqué en Figure 42.

Conditions expérimentales : Cetuximab : 50 µL à 500 µg/mL en tampon Tris-HCl 50 mM ; Anticorps de souris : 50 µL à 500 µg/mL en tampon Tris-HCl 50 mM ; DTT : 0,15 mM 30 min à 60 °C ; trypsine : 0,1 µg ajouté 3h à 40 °C ; gradient chromatographique : de 0 % à 100 % de phase mobile B (ACN, 0,1 % HCOOH) en 47 min (la phase mobile A est constitué d’eau et 0,1 % HCOOH) ; les autres conditions chromatographiques sont identiques à celles décrites dans l’article au paragraphe "quantitative mass spectrometry" ; l’analyse MS est effectuée sur un Quantum Discovery (Thermo), opéré en mode positif ; potentiel d’ionisation = 4,5 kV ; ° capillaire de transfert = 250 °C ; gaz desséchant = 35 u.a. ; gaz auxiliaire = 5 u.a. ; acquisition en mode balayage Q1MS [200-1500] ; temps de balayage = 1,35 s ; résolution Q1 = O,7.

Le chromatogramme du SI présente différents peptides à des temps de rétention proches. Le spectre de masse correspondant au pic chromatographique coélué avec LT3 est présenté en Figure 42. Quatres espèces majoritaires sont présentes. L’ion ayant un rapport m/z de 432,5 étant monochargé, il n’a pas été retenu pour standardiser les aires de LT3. Les trois autres espèces (α, β et γ) se répartissent en ions di- et tri chargés.
Figure 42 : Spectre de masse de l’anticorps monoclonal de souris trypsiné correspondant aux temps de rétention entre 12,85 et 13,28 min.

Le même échantillon a par ailleurs été analysé en MALDI-TOF afin d’obtenir une masse exacte de ces trois peptides (Tableau 8). Dans un premier temps, les deux peptides les plus intenses et ayant un profil d’état de charge (2+ et 3+) comparable au peptide LT3 ont été retenus (α et γ).

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Temps de rétention (min)</th>
<th>Intensité (ESI)</th>
<th>m/z (ESI)</th>
<th>monoisotopique m/z (MALDI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>12,9</td>
<td>2.10⁷</td>
<td>665,6 (3+) et 998,2 (2+)</td>
<td>1994,094 (1+)</td>
</tr>
<tr>
<td>β</td>
<td>13</td>
<td>3.10⁶</td>
<td>796,6 (2+)</td>
<td>1592,719 (1+)</td>
</tr>
<tr>
<td>γ</td>
<td>13,1</td>
<td>7.10⁶</td>
<td>603,5 (3+) et 905,3 (2+)</td>
<td>1807,905 (1+)</td>
</tr>
</tbody>
</table>

Tableau 8 : caractéristiques de trois peptides de l’anticorps monoclonal de souris utilisé comme standard interne, ayant un temps de rétention le plus proche de LT3 (13,07 min dans les conditions précitées).

III.3.3.2. Identification des peptides

L’étape suivante consistait à optimiser les paramètres d’analyse par spectrométrie de masse pour un peptide choisi comme standard interne (tension de cône, énergie de collision et rapport m/z des ions parents et fils). Il était pour cela nécessaire de disposer d’une solution relativement pure de ce peptide. En raison du coût élevé de l’anticorps choisi comme SI, l’obtention du peptide par chromatographie préparative à partir de la solution de digestat trypsique de l’anticorps n’était pas envisageable. Ce peptide a donc été identifié en vue de sa synthèse.

Ne disposant pas de la séquence de l’anticorps commercial, il était nécessaire d’identifier les peptides à partir des bases de données. L’analyse par MALDI-TOF de cet anticorps après
digestion enzymatique donne accès aux masses monoisotopiques de ces peptides. L’interrogation des bases de données (NCBI), à l’aide du logiciel Mascot, pour de telles masses donne les réponses suivantes avec une erreur inférieure à 50 ppm, en se restreignant à l’espèce souris et aux immunoglobulines :

<table>
<thead>
<tr>
<th>Peptide mAb 1095</th>
<th>Protéine ID</th>
<th>Origine</th>
<th>Ecart</th>
<th>Séquence</th>
</tr>
</thead>
<tbody>
<tr>
<td>α: 1994,094</td>
<td>837307</td>
<td>Ig chaîne lourde, région variable (1-19)</td>
<td>1 ppm</td>
<td>EVQLQQSGPELVKPGASVK</td>
</tr>
<tr>
<td></td>
<td>284946</td>
<td>Ig chaîne Kappa, région variable (33-51)</td>
<td>47 ppm</td>
<td>SPQLLIYGATNLADGMSSR</td>
</tr>
<tr>
<td>γ: 1807,905</td>
<td>284903</td>
<td>Ig chaîne légère, région variable (16-30)</td>
<td>-4 ppm</td>
<td>NYLAWYQQKPGQSPK</td>
</tr>
<tr>
<td></td>
<td>4633336</td>
<td>Ig chaîne lourde, région variable (75-90)</td>
<td>49 ppm</td>
<td>LNSVTTEDTATYYCAR</td>
</tr>
<tr>
<td></td>
<td>663214</td>
<td>Ig chaîne lourde, région variable (1-18)</td>
<td>48 ppm</td>
<td>VQLQQPGSVLVGPGDSDKV</td>
</tr>
</tbody>
</table>

Tableau 9 : Séquences des peptides provenant d’immunoglobulines de souris et ayant une masse proche de celle de α et γ. Résultats obtenus avec le logiciel Mascot.

Pour déterminer, parmi ces réponses, lesquelles correspondaient aux séquences des peptides α et γ, une expérience de MS/MS a été réalisée afin de fragmenter les peptides et d’obtenir d’autres informations structurales. Les spectres obtenus sont présentés en Figure 43. Bien que cette expérience ne nous ait pas permis de déterminer la séquence complète du peptide, elle permet de discriminer parmi les différentes possibilités. Les deux séquences fournies avec une erreur de 1 et 4 ppm dans le Tableau 9 ont ainsi pu être confirmées :

\[
\alpha : EVQLQQSGPELVKPGASVK \ et \ \gamma : NYLAWYQQKPGQSPK
\]
III.3.3.3. Réduction, dénaturation et dérivation chimique

La conformation des anticorps est très structurée grâce à la présence de nombreux feuillets beta et de ponts disulfures qui rigidifient la molécule. Une digestion enzymatique est efficace
Chapitre III : Quantification d’un anticorps thérapeutique par LC-MS

sur une telle macromolécule si les sites d’hydrolyse sont accessibles. Différentes étapes sont généralement effectuées pour rompre cette structure tertiaire et quaternaire et diminuer la gêne stérique. La première étape consiste à dénaturer par chauffage la molécule en présence d’urée et de DTT. L’élévation de température rompt les interactions faibles au sein de la protéine, et l’urée diminue les barrières énergétiques de rupture des interactions en modifiant la constante diélectrique du milieu223,224. Le DTT réduit les ponts disulfures en réduisant les cystéines, et les quatre chaînes constitutives de l’anticorps sont ainsi séparées. Une seconde étape est souvent ajoutée et consiste à bloquer les cystéines afin d’éviter leur oxydation et la reformation des ponts disulfures. En ajoutant de l’iodoacétamide, les groupements thiols (-SH) sont protégés par substitution nucléophile sur le carbone en alpha de l’iode. La trypsine est enfin ajoutée pour générer les peptides. Si le DTT ne semble pas nuire au bon fonctionnement de la trypsine, il n’en est pas de même pour l’urée. Cet agent dénaturant doit être introduit en forte concentration (8M) pour avoir effet dénaturant, mais sa concentration ne doit pas excéder 1M pour être compatible avec l’activité de la trypsine. Appliquées à notre dosage, ces différences de composition auraient imposé une dilution de l’échantillon d’un facteur 8, difficilement compatible avec les efforts fournis pour le concentrer d’un facteur 10 grâce à l’immunocapture.

De même, l’ajout d’iodoacétamide pour protéger les cystéines impose une étape supplémentaire susceptible d’augmenter la variabilité du dosage. Lors de la digestion par la trypsine, le milieu est toujours réducteur en raison de la présence de DTT. Par ailleurs, la Figure 44 ne montre pas d’augmentation du signal correspondant aux trois peptides d’intérêt. Pour ces raisons, l’urée en tant qu’agent dénaturant ainsi que l’iodoacétamide n’ont pas été utilisés dans ce dosage.
Figure 44 : Effet de l’alkylation des cystéines par l’iodoacédamide, après réduction de l’anticorps Cetuximab introduit à une concentration de 50 µg/mL.

III.3.3.4. Adsorption non spécifique

Les premières courbes d’étalonnage obtenues en tampon Tris-HCl après dénaturation, réduction et digestion enzymatique présentaient un comportement non linéaire en fonction de la concentration en anticorps (Figure 45, courbe en pointillés). La rupture de pente obtenue pour une concentration en anticorps de 5µg/mL semblait due à une adsorption non spécifique sur les parois des tubes en polypropylène. La concentration à laquelle on observe cette rupture de pente correspond à une occupation de tous les sites d’adsorption sur les parois, d’où une augmentation de la pente de la courbe aux fortes concentrations. L’ajout de BSA dans le tampon Tris-HCl a permis d’éliminer cet effet (Figure 45).
Chapitre III : Quantification d’un anticorps thérapeutique par LC-MS

Figure 45 : Effet de l’adsorption non spécifique de l’anticorps sur les parois des tubes. Une rupture de pente à 5µg/mL est visible en absence de BSA. L’ajout de BSA permet de réduire cette adsorption.

Avant d’utiliser la BSA, deux paramètres ont été vérifiés. Le premier consiste à vérifier qu’aucun peptide issu de la digestion de la BSA par la trypsine n’interfère avec les transitions MS/MS de chacun des trois peptides d’intérêt LT3, HT4 et HT23 de Cetuximab. Le deuxième vise à optimiser la concentration de BSA permettant de réduire l’adsorption, tout en évitant l’effet matrice, notamment la compétition à l’ionisation dans la source du spectromètre de masse qui induirait une diminution du signal. Un compromis entre ces deux phénomènes a été trouvé en utilisant 100 µg/mL de BSA lors de la digestion enzymatique, comme indiqué dans l’article précédent.

Figure 46 : Effet de la concentration de BSA pour réduire l’adsorption. Cetuximab est introduit à faible concentration (0,5 µg/mL), pour laquelle l’adsorption se traduit par une perte quasi-totale de l’anticorps.
III.4. Conclusions

La quantification absolue des macromolécules par chromatographie liquide couplée à la spectrométrie de masse présente un certain nombre de difficultés. Tout d’abord, les protéines ont une masse moléculaire telle que les phénomènes d’ionisation de type électrospray aboutissent à la formation de distribution d’états de charge. Ces distributions sont, d’une part, variables en fonction de la nature de la protéine et des solvants utilisés lors de l’ionisation, et, d’autre part, contribuent à diminuer la sensibilité de l’analyse puisque l’ensemble des molécules sont réparties en plusieurs espèces de charges différentes. De plus, des glycosylations hétérogènes s’ajoutent à ces distributions d’états de charge dédoublant chacun des pics autant de fois qu’il y a de glycosylations différentes. Quantifier une protéine entière présentant ce type d’hétérogénéité devient rapidement inefficace en termes de sensibilité. La solution apportée depuis quelques décennies consiste donc à hydrolyser la protéine en peptides par digestion enzymatique. En divisant par 100 la taille de la molécule analysée, le profil d’état de charge passe de plusieurs dizaines (chacun dédoublés par autant de types glycanes fixés à la protéine) à un ou deux états de charges (non dédoublés). L’hétérogénéité de la molécule se trouve ainsi fortement simplifiée, et l’information concentrée en quelques pics de masse. De même que les immunodosages reconnaissent un épitope particulier de cette protéine, l’analyse quantitative par spectrométrie de masse quantifie quelques peptides particuliers issus de cette protéine, améliorant ainsi la sensibilité. La spécificité, quant à elle, dépend des peptides choisis. Là encore, une analogie avec les immunodosages est possible puisque le choix d’un anticorps spécifique, c'est-à-dire ne reconnaissant que la protéine d’intérêt pour le dosage, revient à choisir un épitope spécifique. Si l’épitope peut être constitué d’acides aminés répartis au sein de la structure quaternaire de la protéine, la spectrométrie de masse doit se contenter d’une séquence d’acides aminés contigus dans la structure primaire de la protéine, engendrée par des protéases, ce qui restreint le choix de peptides uniques et spécifiques de cette protéine. La recherche de tels peptides sera donc orientée vers des régions connues pour leur variabilité, comme c’est le cas pour les anticorps. En effet, le nombre de combinaisons génétiques pour la formation des parties variables des anticorps contribue à la spécificité des séquences qui les constituent, ce qui a été montré dans le dosage de Cetuximab décrit dans ce chapitre, à travers le choix des peptides HT4 et LT3.

Différentes stratégies existent pour limiter l’effet matrice lors d’analyses par chromatographie couplée à la spectrométrie de masse, comme indiqué en introduction de ce chapitre. Une
première méthode consiste à simplifier les échantillons avant digestion enzymatique, soit par immunoextraction de la protéine, par extraction sur phase solide (peu efficace dans le cas des macromolécules) ou encore par déplétion d’une ou plusieurs protéines majoritaires du plasma. La deuxième méthode consiste quant à elle à extraire les peptides de la protéine d’intérêt après digestion enzymatique de l’ensemble des constituants du plasma, soit par extraction sur phase solide, soit par immunoextraction des peptides.

Depuis la soumission de cet article à la revue *Analytical chemistry*, trois autres études portant également sur la quantification absolue des anticorps thérapeutiques en milieu plasmatique ont été publiées 225-227. De manière intéressante, deux procèdent à une digestion enzymatique de l’ensemble des protéines du plasma, après une étape de dénaturation, réduction et alkylation des cystéines avec de l’iodoacétamide, l’extraction des peptides d’intérêt se faisant après digestion. Cette extraction se fait sur phase solide (SPE). Pour encore diminuer l’effet matrice, Yang *et al.* ont mis en place deux extractions successives suivant différentes dimensions de séparation physico-chimiques : une première extraction utilise l’hydrophobicité des peptides (SPE C18) suivie d’une extraction par échange de cations (MCX). Hagman *et al.* ainsi que notre équipe ont suivi la deuxième stratégie, dont le but est de diminuer la complexité de la matrice biologique avant l’étape de digestion enzymatique. Ici, un prétraitement de l’échantillon a été effectué et consiste à retirer la protéine majoritaire du plasma (l’albumine), alors que nous avons cherché à extraire les anticorps fonctionnels par l’intermédiaire de son affinité pour sa cible. Les protéines restantes (lorsqu’il y a eu déplétion) ou les protéines extraites (après immunoextraction) sont hydrolysées par la trypsine, puis le digestat est analysé directement par LC-MS/MS. Ces quatre exemples portant sur la quantification d’un anticorps monoclonal thérapeutique reflètent les différentes possibilités analytiques qui peuvent être développées. Différentes limites basses de quantification ont été obtenues pour ces quatre développements analytiques. Il est toujours délicat de comparer des méthodes analytiques portant sur des produits différents puisque les peptides analysés possèdent des caractéristiques propres aboutissant à des intensités pas toujours comparables. Néanmoins, les deux méthodes qui effectuaient une digestion enzymatique du plasma puis une extraction sur phase solide ont obtenu une limite basse de quantification à 5000 227 et 500 ng/mL 225 pour des volumes des plasma de 50 et 10 µL respectivement. Celle utilisant une première étape de déplétion de l’albumine avant digestion enzymatique a permis d’obtenir une limite basse de quantification à 2000 ng/mL à partir de 50 µL de sérum 226. Notre étude, quant à elle, montre un gain en sensibilité puisque la limite de quantification se
situe à 20 ng/mL. Cependant, le volume d’échantillon initialement nécessaire est dix fois plus important puisque 500 µL de sérum étaient nécessaires pour atteindre cette sensibilité.

Un autre élément clé du dosage, intéressant à comparer, porte sur le type de standard interne utilisé. Le suivi simultané de plusieurs molécules dans le même échantillon est un des avantages de la spectrométrie de masse par rapport aux immunodosages. Le choix de ces molécules est crucial car elles suivront chaque étape du dosage de la même manière que la protéine à doser, et permettront de compenser toutes les variations apportées par les traitements. De nombreux exemples de quantification par hydrolyse enzymatique utilisent un peptide synthétique marqué par des isotopes stables (ce peptide ayant la même séquence que celui substituant la protéine pour l’analyse) et effectuent une quantification soit par courbe de calibration soit par dilution isotopique (IDMS). C’est cette stratégie qui a été suivie par Hagman et al.. Ce type de standard par marquage isotopique est le mieux adapté pour contrôler les séparations chromatographiques ainsi que l’ionisation et la fragmentation en spectrométrie de masse, car le décalage de masse moléculaire apporté par les isotopes pour les peptides marqués ne modifie pas les caractéristiques physico-chimiques. Cependant, la critique associée à ce type de standard interne porte sur le fait de contrôler uniquement la partie extraction des peptides (par SPE par exemple) et leur analyse dans le système LC-MS ; or les traitements d’échantillons avant analyse, digestion incluse, sont tout aussi variables. Un standard interne adapté doit contrôler l’ensemble du processus analytique, depuis les premiers traitements de l’échantillon jusqu’à son analyse. L’utilisation de protéines analogues présente cet avantage. Contrairement à un peptide marqué, la protéine est introduite au début du dosage et subit chacune des étapes, y compris la digestion enzymatique. Comme les peptides d’une protéine sont généralement élues à différents temps de rétention, il est alors possible d’en sélectionner un dont le temps de rétention est proche de celui du peptide spécifique de la protéine analysée. Yang et al. ont utilisé cette approche et ont pu également comparer l’utilisation d’un peptide synthétique marqué et d’une protéine comme standard interne. Il en résulte une meilleure précision du dosage avec un standard interne de type protéique (la fétuine bovine) qu’avec un peptide synthétique marqué. C’est également cette approche que nous avons développée pour le dosage de Cetuximab, mais avec une restriction puisque notre première étape du dosage consiste à extraire l’anticorps du sérum humain grâce à son affinité pour la partie soluble du récepteur EGFR. Le contrôle de l’ensemble du processus impliquait donc de choisir comme protéine un anticorps reconnaissant également l’EGFR. Une meilleure solution aurait consisté à utiliser d’autres anticorps chimériques développés contre la partie
soluble du récepteur, ou encore mieux, le même anticorps marqué par des isotopes stables. C’est cette dernière stratégie, certainement la plus élégante et la plus robuste pour la quantification des macromolécules, qui a été appliquée pour la quantification d’un anticorps thérapeutique par Heudi et al. L’anticorps utilisé comme standard interne est identique à celui à quantifier, excepté le fait qu’il a été produit dans un milieu ne contenant que de la thréonine marquée par du 13C et 15N. Cette approche ne soulève aucune critique puisque le produit ajouté avant la première étape du dosage contrôlera toutes les variations (rendement de digestion, d’extraction) du fait de la conservation des propriétés physico-chimiques du standard interne par rapport au produit à analyser, et surtout lors de l’analyse LC-MS où le peptide issu du standard interne aura la même séquence que le peptide issu de l’anticorps à quantifier contrôlant parfaitement cette dernière étape.

La sensibilité obtenue pour ce dosage est certes surdimensionnée pour les besoins des études de pharmacocinétique, car les concentrations minimales plasmatiques après la troisième perfusion hebdomadaire (400 mg/m² lors de la première injection puis 250 mg/m²/semaine) sont comprises entre 40 et 85 µg/mL, et les temps de demi-vie de Cetuximab sont proches d’une centaine d’heures 215. Cependant, les anticorps thérapeutiques ne sont pas les seuls anticorps qu’il est pertinent de quantifier, et notre approche se différencie par une étape d’immunoextraction, qui pourrait être mise à profit pour la caractérisation de l’immunogénicité d’une protéine thérapeutique, dépassant ainsi la simple quantification d’anticorps thérapeutiques. En effet, cette étape d’immunoextraction par immobilisation de la cible de l’anticorps peut être transposée à d’autres couples antigène-anticorps. La fixation d’une protéine thérapeutique afin d’isoler des anticorps anti-protéine endogènes présente un intérêt pour les études de pharmacotoxicité. Le gain en sensibilité, qui a été démontré par cette approche d’immunocapture, est ici un avantage non négligeable afin de pouvoir détecter ces anticorps anti-protéine à de faibles concentrations. L’anticorps après extraction serait digéré par une protéase, et des peptides des fragments constants de l’anticorps seraient analysés. Il est en effet impossible de quantifier des peptides spécifiques de l’anticorps puisque ceux-ci restent inconnus. Une telle méthode analytique présente cependant quelques limitations. La première est l’influence de l’adsorption non spécifiques d’immunoglobulines sur le support d’extraction (de la même manière que pour les tests immunologiques). Si celles-ci sont de la même classe que les anticorps-anti-protéines, l’immunogénicité sera surévaluée. Le deuxième obstacle à la caractérisation de tels anticorps est encore liée à l’absence d’anticorps servant de standard et ayant une affinité connue pour contrôler les rendements d’extraction, car les tous
premiers anticorps produits par réaction immunitaire sont souvent de faible affinité. La spectrométrie de masse appliquée à l’évaluation de l’immunogénicité paraît certes prometteuse mais nécessite encore quelques développements.
Chapitre IV :

Quantification d’une famille de biomarqueurs par LC-MS
IV.1. Introduction

Un biomarqueur est une caractéristique qui peut être mesurée objectivement comme indicateur d’un processus biologique normal, d’un processus pathogène ou comme réponse pharmacologique à une intervention thérapeutique. Les marqueurs biologiques peuvent prendre une grande variété de formes telles qu’une mesure physique, de l’imagerie, des molécules, et ce terme est aujourd’hui appliqué surtout aux marqueurs biologiques moléculaires. De nombreuses stratégies ont été développées pour découvrir et mesurer ces biomarqueurs, à travers des approches transcriptionnelles ou métabolomiques par exemple. Le protéome est une des sources potentielles de biomarqueurs. Leur découverte et leur quantification dans les milieux biologiques constituent de nouveaux enjeux pour le suivi des pathologies et les développements pharmaceutiques. La mesure de ces biomarqueurs (principalement de type protéique) repose traditionnellement sur les méthodes de type immunologique (méthodes ELISA). Cependant, l’avènement des techniques de spectrométrie de masse récentes offre une alternative avec un avantage en particulier en termes de spécificité. C’est cette approche que nous avons développée pour la quantification d’une famille de biomarqueurs peptidiques : les apélines.

IV.1.1. Importance des biomarqueurs

Les mutations technologiques de la recherche permettent actuellement un accroissement du nombre des médicaments candidats, et parallèlement, les critères de sélection de ces candidats ont peu évolué. Les besoins en nouvelles stratégies sont réels afin de guider le processus de développement jusqu’aux critères d’évaluation incontournables : efficacité et sécurité.

Il est de l’intérêt des industries pharmaceutiques de développer et d’utiliser des biomarqueurs pour améliorer les procédures de développement clinique 228. Leur utilisation en tant que preuves cliniques permettre en effet de réduire la taille des échantillons et la durée des dernières phases. Il est également certain qu’une large gamme de marqueurs biologiques est une aide précieuse à la prise de décision de poursuivre ou de suspendre le développement d’un médicament candidat, et peut ainsi réduire les coûts de développement grâce à des signes précurseurs de toxicité ou de manque d’efficacité. En fait, très peu de biomarqueurs ont atteint
Chapitre IV : Quantification d’une famille de biomarqueurs par LC-MS

aujourd’hui le statut de critère de substitution\(^1\) (la pression artérielle ou le cholestérol par exemple), et ceci s’explique par la complexité biologique qui rend improbable la détection d’effets bénéfiques et secondaires par un seul biomarqueur d’une manière prédictive et quantitative. Ceci ne réduit en rien le potentiel des biomarqueurs en phase de développement, au contraire, ils doivent être utilisés d’une manière plus pertinente.

Le développement de biomarqueurs, lors d’essais cliniques ou pendant la phase de commercialisation d’un médicament, peut être abordé de différentes manières. Ils peuvent être utilisés pour cibler un échantillon de personnes, pour obtenir de nouveaux critères de substitution ou encore pour assurer la sécurité des patients. Ainsi, les enjeux en terme de réduction des coûts et des délais en phase de développement sont énormes.

Utilisation des biomarqueurs comme critère d’inclusion

L’utilisation des marqueurs biologiques comme éléments prédictifs de réponse à un traitement permet de favoriser l’efficacité du médicament en incluant dans les groupes d’étude les personnes les plus prédisposées à répondre positivement au médicament. Alors que l’on assiste à une augmentation de la taille des essais cliniques\(^2\) et à des taux de réponse de plus en plus controversés, cette utilisation des biomarqueurs est d’autant plus pertinente qu’elle va dans le sens des réquisitions des organismes payeurs et des institutions de santé, pour prouver sans ambiguïté l’efficacité du médicament et offrir une sécurité accrue. De plus, la mise en évidence d’un biomarqueur spécifique et sa validation peuvent être valorisées par l’association au médicament d’un test de diagnostic, intégré dans le développement clinique et dans la stratégie marketing du produit, à l’image de l’identification d’une surexpression du gène HER2 par le test "HercepTest" (Dako) qui prédispose à une réponse clinique avec Herceptin (trastuzumab, Roche).

Obtention de critères de substitution

Un biomarqueur peut être utilisé comme critère de substitution (surrogate endpoint) à un critère clinique pour évaluer les bénéfices ou les risques d’un traitement. Cette application des biomarqueurs reste toutefois délicate, et ne se justifie que dans quelques cas particuliers,

\(^1\) Critère de substitution (surrogate endpoint) : critère de jugement prédictif d’évolution d’un critère clinique. Le critère de substitution peut remplacer le critère clinique quand l’emploi de ce dernier se révèle difficile, voire impossible (notamment pour des raisons de taille d’échantillon, de durée d’étude ou d’éthique).
notamment pour des raisons de taille d’échantillon, de durée de traitement et d’éthique. Il est communément admis qu’un critère de substitution n’est acceptable que si :

- son évolution est fiable, non ambiguë et reproductible,
- il existe une relation claire et bien établie entre ce critère de substitution et le critère clinique pertinent,
- il a été démontré que son évolution est corrélée de façon réciproque à celle du critère clinique pertinent. Ceci signifie qu’une évolution favorable ou défavorable du critère de substitution est prédictive d’une évolution de même sens du critère clinique pertinent.

Si les biomarqueurs utilisés comme critères d’inclusion permettent potentiellement de réduire la taille de l’échantillon, ceux utilisés comme critères de substitution ont un effet immédiat sur la durée des tests cliniques. C’est pourquoi les enjeux liés à l’identification et à la quantification de tels biomarqueurs sont importants, bien que leur développement et leur validation reste une étape critique.

Amélioration de la sécurité

Les biomarqueurs peuvent également permettre d’améliorer la sécurité des patients, par exemple en ciblant les populations pour lesquelles un médicament présente un risque accru d’effet secondaire ou indésirable. Ceci reste compliqué à mettre en place dans le cadre des essais cliniques, la taille des populations incluses dans ces essais restant limitée. Les biomarqueurs, en détectant potentiellement ces effets secondaires et en apportant des éléments prédictifs, ont ainsi depuis longtemps été très utiles pour limiter les risques associés aux produits (comme le cytochrome P450, l’alanine amino transférase, la bilirubine ou encore la troponine). En effet, dans le contexte actuel, si des demandes d’enregistrements fondées sur une efficacité prouvée sont facilement acceptées, les retraits du marché peuvent quant à eux être aussi rapides pour raisons de sécurité.

IV.1.2. Spécificités analytiques des biomarqueurs protéiques

Alors que les protéines thérapeutiques présentent une large gamme dynamique lors des analyses pharmacocinétiques par exemple, la quantification des biomarqueurs consiste davantage à identifier une variation par rapport à une concentration jugée normale. La première difficulté lors du développement de dosages de biomarqueurs est de trouver une
métodologie analytique adaptée à leurs concentrations. Les protéines du plasma susceptibles d’être utilisées comme biomarqueurs ont souvent des concentrations très faibles (les interleukines par exemple) nécessitant des sensibilités entre pico et nanogrammes par millilitre. Les méthodes les plus sensibles comme les immunodosages sont pour ces raisons largement utilisées pour la quantification de ces protéines, à titre d’exemple 0,15 pg/mL d’interleukine IL-6 peuvent être quantifiés par ELISA. La quasi-totalité des dosages de biomarqueurs protéiques se font actuellement par immunodosage pour des raisons de coût et de facilité de mise en œuvre. Cependant, ces techniques basées sur les interactions non covalentes anticorps-antigènes manquent de standardisation et rencontrent des problèmes de variabilité lors des analyses à cause d’effets matrices inter-individus, de réactions croisées des anticorps et de protocoles d’extraction non standardisés d’un laboratoire à un autre (dont le rendement n’est pas contrôlé par un standard interne). La variabilité provient également du couple anticorps/traceur utilisé puisque les laboratoires effectuent souvent eux-même la synthèse des traceurs pour les immunodosages ou utilisent des dosages commerciaux différents, ce qui augmente encore les sources de variabilité pour comparer des études. Les immunodosages de l’Insuline par exemple existent depuis bientôt 50 ans et nécessitent encore d’être standardisés \(^{230}\) puisque la comparaison de 11 tests commerciaux réalisée par Manley et \(^{231}\) al. montrent une grande variabilité de résultats pour l’analyse d’un même échantillon de contrôle comme illustré en Figure 47.

Figure 47 : Valeurs mesurées pour un même échantillon de faible concentration par 11 tests différents de dosage de l’insuline humaine, d’après les résultats publiés par Manley et al. \(^{231}\). RIA : Radio Immunoassay ; EIA : Enzyme Immunoassay ; CIA : Chemiluminescent ImmunoAssay ; ECIA : ElectroChemiluminescent ImmunoAssay.

- 184 -
Chapitre IV : Quantification d’une famille de biomarqueurs par LC-MS

Une seconde particularité de la quantification des biomarqueurs est liée au choix de la matrice pour effectuer la validation du dosage. Pour des raisons de robustesse, la bioanalyse utilise habituellement comme matrice de validation le même fluide biologique que celui utilisé pour effectuer le dosage des échantillons. Il est en particulier nécessaire d’avoir à disposition une matrice vierge d’analyte, notamment pour évaluer l’effet matrice et pour construire une courbe de calibration. Cependant, les biomarqueurs sont généralement présents à des taux normaux ou pathologiques, et une telle matrice vierge n’est pas disponible. Plusieurs solutions sont alors envisageables. Les courbes de calibration peuvent être générées dans une solution tampon additionnée ou non d’autres composés comme de l’albumine bovine afin de mimer la matrice réelle. Le fluide biologique d’une autre espèce peut être également utilisée si les anticorps n’interagissent pas avec le biomarqueur de l’espèce considérée. Enfin, une matrice vierge peut être obtenue par extraction du biomarqueur sur des colonnes d’immunoaffinité ou par dégradation de celui-ci (par chauffage ou action de protéases). Aucune de ces solutions n’est parfaite et la différence de matrice entre les échantillons et les points de gamme en l’absence de standard interne diminue la robustesse du dosage. Il est également à remarquer qu’une source de variabilité, indépendante de la technique d’analyse, est liée au moment et au mode de prélèvement des échantillons. Certaines protéines endogènes produites in vivo sont effectivement sujettes à des variations journalières. La stabilité des protéines dans le plasma est aussi un facteur pouvant influer sur les résultats du dosage, la CRP (C-reactive protein) est par exemple une protéine très stable (20 ans à -20 °C) alors que le TNFα (Tumor necrosis factor α) doit être prélevé sur la glace et conservé à -70 °C.

Les immunodosages manquant parfois de robustesse, de plus en plus de groupes se tournent ainsi vers une autre technique analytique : la LC-MS.

IV.1.3. Dosages de peptides endogènes par LC-MS

La technique d’analyse par chromatographie en phase liquide couplée à la spectrométrie de masse représente une alternative aux immunodosages en raison de sa forte sélectivité et de son débit d’analyse élevé. Son champ d’application inclue notamment l’analyse en routine de médicament et la quantification de stéroïdes et d’hormones thyroïdiennes dans les laboratoires cliniques (Hortin, Clin chem 2007). La détection n’est pas basée sur la spécificité des anticorps comme c’est le cas en immunoanalyse mais sur des paramètres physiques offrant une grande spécificité, même dans les matrices complexes telles que le plasma. Les analyses
en mode MS/MS augmentent encore cette spécificité grâce à la sélection d’ions précurseurs combinée à l’analyse d’ions fragments spécifiques après activation de l’ion précurseur dans la cellule de collision. Les analyses de médicaments et d’hormones dans le sang ont montré que cette technique était capable de mesurer des composés ayant des concentrations subnanomolaires. Le traitement de l’échantillon appliqué (immunoaffinité ou toute autre extraction spécifique) pour extraire et concentrer les composés recherchés permet d’améliorer encore ces sensibilités afin de quantifier des biomarqueurs présents à des taux très faibles.

Il faut également noter que cette technique de référence en analyse protéomique n’a pas seulement un intérêt pour la recherche mais apporte également des nouvelles méthodes de référence pour la standardisation des dosages des protéines. Des exemples récents ont proposé des méthodes pour standardiser la mesure d’hémoglobine A1C, du peptide-C et de l’insuline.

La robustesse de cette méthode de dosage est liée également à l’utilisation de standards internes et en particulier de molécules marquées par isotopes stables dont la séquence est identique à celle de l’analyte. Les propriétés physico-chimiques identiques des molécules marquées et non marquées assurent un comportement identique dans l’échantillon, notamment lors de l’extraction. D’autre part, l’absence de matrice vierge pour la validation du dosage ne présente plus de réel problème pour les méthodes LC-MS car l’utilisation de ces standards internes marqués permet de contourner cette difficulté analytique.

Quelques exemples de quantification de protéines endogènes ont été développés par approche LC-MS avec succès. Une très bonne sensibilité avait notamment été obtenue par Wolf et al. pour la quantification des hormones GIP1-42/3-42 et GLP7-36/9-36 (~4800 Da) dans le plasma humain. Ces quatre peptides étaient extraits du plasma par immunoaffinité, et quantifiés avec une sensibilité de 10 pg/mL par spectrométrie de masse. Le standard interne utilisé lors de cette étude avait été obtenu par substitution de deux acides aminés (H→R et D→E). La quantification des peptides Aβ40/1-42 (~4500 Da) dans le liquide céphalo-rachidien par Oe et al. a également montré qu’une bonne sensibilité (90 pg/mL) pouvait être obtenue par cette méthode (les standards internes utilisés ici étaient les peptides Aβ marqués 15N). Les peptides étaient également extraits par immunoaffinité avant leur analyse par LC-MS. Plus récemment, Rauh et al. ont proposé une méthode de quantification des peptides Ghréline et desacyl-Ghréline (~3300 Da) dans le plasma, par LC-MS après une extraction sur phase solide, avec une sensibilité de 20 pg/mL (une troisième approche de standardisation a été utilisée ici, avec l’utilisation d’un analogue du peptide chez une autre espèce : la Ghréline de rat). Dans ces
exemples, le volume initial de l’échantillon était de 1 mL, volume important en comparaison de ceux couramment utilisés pour les études pharmacocinétiques, généralement proches de 100 µL.

Comme illustré ici, la spectrométrie de masse permet une quantification spécifique de peptides biomarqueurs faiblement concentrés dans des matrices biologiques complexes, à condition d’effectuer une extraction des composés à partir d’un volume d’échantillon élevé, et d’utiliser une méthode de concentration et de purification spécifique.

Les apélines, sujet de cette étude, avaient déjà été identifiées et étaient quantifiées uniquement par immunodosages dans les différents publications. Notre approche a donc consisté à développer une méthode de dosage alternative aux méthodes immunologiques, permettant de quantifier spécifiquement chacun de ces biomarqueurs par spectrométrie de masse avec pour objectif d’atteindre une limite de quantification de quelques pg/mL (ou quelques pM), en s’inspirant des méthodes développées au cours de cette thèse et présentés dans les chapitres précédents.

IV.2. Les apélines : une famille de peptides

IV.2.1. Le récepteur des apélines

La plupart des hormones peptidiques et des neuropeptides actuellement connus exercent leur activité biologique par l’intermédiaire de récepteurs couplés aux protéines G (GPCRs)\(^{234}\). Cependant, un grand nombre de ces récepteurs sont dépourvus de ligand connu et sont, pour cette raison, qualifiés d’« orphelins ». Parmi eux, les récepteurs à sept domaines transmembranaires (7TMRs) forment une large famille de récepteurs, traversant la membrane cellulaire à sept reprises. Aujourd’hui, plus de mille clones de 7TMRs sont enregistrés pour les eucaryotes dans la base de données GenBank/EMBL, dont plus de 270 ont une origine humaine\(^{235}\). Ces récepteurs et leurs ligands jouant souvent un rôle prépondérant dans la régulation de phénomènes physiologiques, l’identification de ligands naturels des 7TMRs s’avère cruciale pour la compréhension de ces mécanismes de régulation\(^{235}\).

Le récepteur APJ est l’un de ces récepteurs couplés aux protéines G à sept domaines transmembranaires. Il a été identifié dans le génome humain par O’Dowd *et al.* en 1993\(^{236}\). Il
est composé de 380 acides aminés et possède une homologie de séquence de 30 % avec le récepteur de l’angiotensine II. Cependant, cette dernière n’interagit pas avec le récepteur APJ.

IV.2.2. Identification des apélines

Cinq ans après l’identification du récepteur APJ, le ligand endogène de ce récepteur a été partiellement identifié par Tatemoto et al. en 1998. Cette équipe a extrait le ligand à partir de tissus d’estomac bovin, grâce à une succession de différentes purifications (précipitation des protéines à l’acétone, chromatographie en phase inverse, et chromatographie échangeuse d’ions). La présence du ligand dans les fractions d’élution était contrôlée par un test cellulaire impliquant la liaison de la molécule au récepteur APJ. La partie N-terminale du peptide obtenu après purification a ensuite été séquençée, révélant les 17 premiers acides aminés du peptide. Le peptide ainsi identifié a été nommé apéline (ape LIN en anglais) pour « APJ endogenous ligand », et sa masse moléculaire a été évaluée par chromatographie d’exclusion de taille à plus de 3000 Da. Des extractions d’ARN ont ensuite permis de montrer que la partie séquencée du peptide provenait d’une préproprotéine de 77 acides aminés (la préproapéline), et que le peptide isolé devait correspondre à la partie C-terminale de la préproapéline par déduction de la masse évaluée du peptide et de sa séquence partielle.

La préproapéline de 77 acides aminés est très conservée entre de nombreuses espèces. En particulier, les 27 acides aminés C-terminaux sont identiques chez le rat, la souris, les bovins et l’Homme comme l’illustre la Figure 48.

![Figure 48](image_url)

Figure 48 : Séquence de la préproapéline chez quatre espèces. Les acides aminés identiques pour au moins deux espèces sont en noir. Le site de clivage entre le peptide signal et la protéine sécrétée est indiqué par une flèche noire, et la séquence correspondant à l’apéline 36 est présentée.
Sa partie N-terminale est riche en acides aminés hydrophobes et semble correspondre à un peptide signal de sécrétion : un site de clivage de ce peptide a été prédit entre les positions 22 et 23. La partie de l’apéline séquencée par Tatamoto et al. (1998) coïncide avec les acides aminés des positions 42 à 58 de la préproapéline, ce qui semble indiquer que cette forme d’apéline provient d’une dégradation de ce précurseur. Par convention, les peptides constitués des acides aminés C-terminaux de la préproapéline sont appelés apéline n. Afin de vérifier l’interaction du peptide identifié avec le récepteur APJ, les apélines 36, 17, 13 et p13 ont été synthétisées. L’apéline p13 dérive de l’apéline 13, où la glutamine N-terminale (Q) est modifiée en acide pyroglutamique pE. Cette modification fréquemment observée provient de la déshydratation de la glutamine, aboutissant à la formation d’un acide aminé cyclique. Ces quatre peptides synthétiques ont montré une activité spécifique à l’aide du test cellulaire basé sur la reconnaissance par le récepteur APJ, et plus surprenant, les formes courtes présentaient une activité 8 à 60 fois supérieure à celle de l’apéline 36. Dans le but de compléter les résultats précédemment obtenus, l’activité de quatre fragments d’apélines synthétiques, correspondant à l’apéline 17, p13, 10 et 5, sur le récepteur APJ a été étudiée. Les résultats obtenus ont montré que les formes d’apéline 10 et 5 avaient une activité 104 fois inférieure aux deux autres.

Afin de préciser les interactions apélines-APJ, l’affinité du ligand pour son récepteur a été évaluée par un test cellulaire compétitif : une concentration fixe d’apélines marquée par un élément radioactif est mise en compétition avec des concentrations croissantes d’apélines non marquée pour se fixer sur le récepteur APJ exprimé à la surface de cellules CHO, et des mesures de radioactivité permettent de déduire l’affinité du ligand pour son récepteur. Ainsi, l’apéline 36 synthétique possède une affinité très importante pour le récepteur APJ, avec une constante de dissociation Kd de 6,3 pM, et l’apéline 13 synthétique présente une affinité plus faible avec un Kd de 22,3 pM. Les résultats de ces études ne permettent pas de corrêler activité in vitro et affinité pour le récepteur.

Le récepteur APJ semble donc posséder plusieurs ligands ayant des affinités et des activités in vitro différentes. Par convention, nous appellerons les apélines l’ensemble des formes dérivant du précurseur commun.
IV.2.3. Distribution et rôles physiologiques

IV.2.3.1. Formes endogènes

Hormis les travaux pionniers de Tatemoto et al. aucune caractérisation complète (séquençage ou analyse par spectrométrie de masse) des différentes formes d’apéline n’a été faite. De nombreux auteurs ont cependant estimé la nature des fragments présents dans différents tissus et organes pour plusieurs espèces. Après extraction des peptides, ceux-ci sont séparés par chromatographie en phase inverse ou par chromatographie d’exclusion de taille, et les fractions d’élution sont récoltées. La détection d’apélines est enfin effectuée par immunodosage.

Chez les Bovins

Les peptides extraits à partir de tissus bovins (cerveau, estomac, ...) et capables d’induire une réponse des cellules CHO exprimant le récepteur APJ, semblent posséder une masse moléculaire comprise entre 3000 et 5000 Da, ce qui peut correspondre à de l’apéline 36 (M = 4195 Da). De plus, une méthode de détection semblable a permis de mettre en évidence que les peptides extraits à partir de colostrum bovin possèdent une masse moléculaire proche de celle des apélines 13 et 36 synthétiques.

Chez le Rat

Il apparaît que les apélines détectées par des techniques de chromatographie d’exclusion de taille et immunologiques (apélines immunoréactive) extraits à partir de poumon, de testicules ou d’utérus de rat possèdent une masse moléculaire proche de celle de l’apéline 36 synthétique. Cependant, dans les glandes mammaires de rat, deux formes ont été détectées avec des masses proches des apélines 13 et 36. De plus, le plasma de rat semble majoritairement contenir des formes ayant des masses proches des apélines 13 et 17.

Chez l’Homme

Un premier groupe a montré que les apélines immunoréactives présentes dans le plasma humain possédaient une masse plus élevée que l’apéline 36. Cependant, une seconde étude a déterminé que ce même fluide contenait majoritairement des apélines ayant des masses comprises entre celle des apélines 16 et 13 synthétiques. Enfin, une troisième équipe a mis
en évidence que le plasma humain contenait majoritairement des formes ayant des masses proches des apélines p13 et 17, et qu’une fraction plus faible de ces apélines immunoréactives semble présenter une masse correspondant à celle de l’apéline 36245.

Ces études montrent que les apélines sont une famille de peptides, dont le nombre d’acides aminés varie en fonction du tissu et de l’organe considéré. Cependant, les formes proches des apélines 36, 17, 13 et pyro13 apparaissent prépondérantes chez l’Homme dans une majorité d’études.
Il est possible d’envisager, du fait de la faible activité de l’apéline 36, que celle-ci constitue un intermédiaire entre la préproapeline et des formes plus courtes (apéline 17 et 13 notamment), générées \textit{in vivo} lors de mécanismes encore inconnus.246

\textit{IV.2.3.2. Distribution des apélines}

La découverte d’une nouvelle protéine, ligand d’un récepteur membranaire, soulève la question de son rôle physiologique. Afin de mieux appréhender les modes d’actions possibles des apélines, les premières études ont donc porté sur la répartition tissulaire de cette famille de peptide et de son récepteur.

\textbf{Répartition du récepteur APJ}

La répartition du récepteur APJ sur les différentes cellules de l’organisme a été évaluée grâce à la mesure de son ARNm. Celui-ci semble être exprimé dans une grande majorité des tissus chez le rat, avec un niveau d’expression très variable. Les taux d’expression les plus importants sont détectés dans les poumons, le cœur, ou encore les reins, et des taux modérés sont observés dans l’ensemble des tissus périphériques et dans certaines zones du système nerveux central237,238,240,247. Chez l’Homme, le récepteur APJ est également exprimé dans un grand nombre d’organes, parmi lesquels la rate, le thymus, la prostate, les testicules, les ovaires, l’intestin ou encore certaines zones du cerveau248. De plus, la présence de ce récepteur a été vérifiée au niveau des cellules endothéliales cardiaques, rénales et pulmonaires, ainsi qu’à la surface des cardiomyocytes et des cellules des muscles lisses vasculaires246.
Cette vaste répartition tissulaire du récepteur APJ est en fait à relier à celle de ses ligands, les apélines, comme illustré en Tableau 10.

<table>
<thead>
<tr>
<th></th>
<th>APJ</th>
<th>apélines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rat</td>
<td>Homme</td>
</tr>
<tr>
<td>Cerveau</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Hypophyse</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Moelle épinière</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Cœur</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Estomac</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Poumon</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Intestin</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Foie</td>
<td>+</td>
<td>nd</td>
</tr>
<tr>
<td>Pancréas</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Reins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Testicule</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Prostate</td>
<td>nd</td>
<td>+</td>
</tr>
<tr>
<td>Ovaire</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Utérus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Placenta</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Glande mammaire</td>
<td>+</td>
<td>nd</td>
</tr>
<tr>
<td>Muscles</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

Tableau 10 : Répartition tissulaire du récepteur APJ et des apélines chez le rat et l’Homme. (nd : non déterminée). Simplifié de 246 et d’après 236;238;248-251

Répartition du ligand
Dans le but de mettre en évidence les tissus à l’origine de la production des apélines, deux approches complémentaires ont été développées. La première consiste à quantifier son ARNm par PCR quantitative, alors que la seconde repose sur la quantification des apélines au moyen de techniques immunologiques.

L’ARNm de la préproapéline semble être exprimé dans de nombreux tissus chez le rat. Ainsi, les niveaux d’expression les plus élevés sont détectés dans les poumons et dans les glandes mammaires des femelles gestantes et lors de la parturition. Un niveau moins élevé est observé dans le cœur, le tissu adipeux, les reins, les testicules, les ovaires, ou encore dans certaines zones du cerveau 238;241;252. De manière similaire, la transcription d’ARNm de la preproapelin a lieu dans de nombreux organes chez l’Homme, avec de forts niveaux d’expression dans certaines zones du système nerveux central, dans le placenta, les reins, le cœur, les poumons et les glandes mammaires 251.
Chapitre IV : Quantification d’une famille de biomarqueurs par LC-MS

La deuxième méthode pour évaluer la répartition des apélines utilise les dosages immunologiques pour quantifier directement les peptides. Les apélines immunoréactives sont également présentes dans de nombreux types de tissus chez le rat. Ainsi, des apélines sont détectées dans les tissus adipeux, le cerveau, les ovaires, les testicules, l’utérus ou encore le cœur, à des concentrations inférieures à 2 pmol/g de tissu, ainsi qu’au niveau de l’endothélium vasculaire et cardiaque. Cependant, les plus fortes concentrations sont retrouvées dans les glandes mammaires (10 à 55 pmol/g de tissus) et dans le colostrum (45 pmol/mL). Enfin, une quantité significative d’apélines est également détectée dans le plasma chez le rat et l’Homme.

Ces deux méthodes complémentaires développées dans les études précédentes, PCR et immunodosages, visant à évaluer respectivement la quantité d’ARNm et de peptides, ont permis d’obtenir une répartition tissulaire des apélines (Tableau 10). La confrontation des résultats de ces deux techniques indique que la traduction de l’ARNm en apélines est peu régulée. En effet, les tissus exprimant fortement l’ARNm sont ceux possédant les concentrations d’apélines les plus élevées.

D’autre part, il est intéressant de constater que les apélines et leur récepteur APJ sont co-exprimés dans de nombreux tissus, tels que le cœur, les reins ou encore les endothéliums vasculaires. Cette co-localisation laisse supposer un mécanisme d’action autocrine ou paracrine. De plus, la présence d’apélines circulantes dans le plasma permet d’envisager une implication dans les systèmes endocriniens.

IV.2.3.3. Rôles physiologiques

La première preuve fonctionnelle du rôle des apélines dans le système cardiovasculaire a été fournie en 2000, par l’équipe de O’Dowd, qui a mis en évidence une diminution de la pression sanguine après injection intraveineuse d’apéline 13 synthétique chez le rat. De même, une action hypotensive des apélines 12, 13 et 36 a été démontrée chez le rat, par un mécanisme d’action impliquant l’endothélium et les muscles lisses vasculaires. L’injection d’apéline 16 peut également induire une augmentation de la contractilité du cœur. Enfin, ces effets sont abolis chez des souris transgénique ne possédant pas le récepteur APJ (souris knockout pour APJ), confirmant ainsi la spécificité des apélines pour ce dernier.

Ces résultats indiquent ainsi une double action des apélines sur le système cardio-vasculaire. Premièrement, elles permettent de moduler de manière très efficace la force de contraction du muscle cardiaque. Deuxièmement, il semble que les apélines régulent la vasotonicité du système vasculaire via le récepteur APJ par deux mécanismes antagonistes : elles activent d’une part la contraction des muscles lisses vasculaires, et agissent d’autre part sur les cellules endothéliales, activant la production de monoxyde d’azote. Ce dernier diffuse alors de l’endothélium vers les cellules musculaires lisses sous-jacentes, provoquant la relaxation des muscles correspondants.

Les patients humains atteints d’insuffisance cardiaque (cardiomyopathie dilatée ou cardiopathie coronaire), présentent une surexpression d’un facteur 3 à 5 de l’ARNm de l’apéline au niveau du cœur. De plus, la concentration d’apélines plasmatiques semble être augmentée chez les patients au premier stade de l’insuffisance cardiaque, et diminuée chez les patients atteints d’insuffisance sévère. Ces résultats semblent suggérer que le système APJ/apélines est temporairement capable d’induire une action inotrope positive, aidant à compenser une capacité cardiaque diminuée.

Ces résultats sont toutefois à considérer avec précaution car une équipe a démontré que la concentration plasmatique d’apélines n’est pas significativement différente entre patients atteints de cardiomyopathie dilatée et sujets sains.

IV.2.4. Dosages plasmatiques des apélines chez l’Homme

Les dosages plasmatiques des apélines sont des immunodosages au format compétitif, qui utilisent un traceur enzymatique (EIA, Enzyme Immuno Assay) ou un traceur radiomarqué.

La spécificité des dosages immunologiques est apportée par l’utilisation d’anticorps dirigés contre un antigène donné. Afin de vérifier ce paramètre, les auteurs déterminent la réactivité croisée des anticorps avec l’antigène (sous ses différentes formes éventuelles) et avec d’autres molécules susceptibles d’être reconnues. La sensibilité du dosage dépend directement de l’affinité de l’anticorps pour l’antigène.

Parmi les quelques dosages immunologiques des apélines publiés, les dosages de type EIA sont basés sur un kit commercialisé par Phoenix Pharmaceuticals, alors que les dosages de type RIA utilisés sont de nature plusvariée (anticorps de chèvre anti-apélines, anticorps de lapin anti-apélines). Cependant, il semblerait que les dosages par RIA sont caractérisés par une sensibilité plus importante que ceux effectués par EIA, avec des limites de détection jusqu’à dix fois moindres. Tous ces dosages utilisent des anticorps ayant une affinité pour les apélines 12, 13 et 36. Lorsqu’aucun traitement des échantillons plasmatiques n’est effectué avant le dosage pour séparer les différentes formes d’apéline, c’est l’ensemble des formes qui est quantifié.

La Figure 49 représente certaines concentrations plasmatiques humaines publiées. Alors que tous les dosages reposant sur la technique EIA utilisent le même kit, il est intéressant de constater la forte variabilité des concentrations d’apélines présentées. En effet, les valeurs correspondant aux populations de contrôle varient de 3580 pg/mL à 304 pg/mL. De plus, les concentrations obtenues par dosage RIA sont globalement inférieures à celles obtenues en EIA. Cet effet n’est pas spécifique des apélines et l’absence de standardisation des dosages immunologiques rend difficile les comparaisons de résultats interlaboratoires. Ceci s’explique par la technique utilisée (EIA, RIA), par la nature de l’anticorps utilisé, ou encore par les méthodes de préparation d’échantillons mises en place. Dans le cas des apélines où les études utilisent majoritairement le même dosage, la préparation des échantillons ainsi que l’effet matrice est très certainement à l’origine de ces variabilités. En effet, certaines études font une extraction des apélines plasmatiques avant le dosage immunologique, là où d’autres réalisent la quantification directement en plasma. En cas d’extraction des peptides, elle est effectuée sur phase solide (SPE) par interaction hydrophobe (SEP-PAK C18).
Certains résultats apparaissent contradictoires puisqu’une première étude indique une concentration en apélines plus élevée chez les patients atteints d’insuffisance cardiaque que chez la population de contrôle (6220 pg/mL contre 3580 pg/mL, respectivement)\(^\text{268}\), alors qu’un second groupe présente une réduction importante de cette concentration dans les mêmes conditions (850 pg/mL pour les patients en insuffisance cardiaque contre 3760 pg/mL pour la population témoin)\(^\text{269}\).

La quantification de chacune des différentes formes d’apéline plasmatiques nécessite à l’heure actuelle un fractionnement préalable de l’échantillon par chromatographie préparative, suivi du dosage des différentes fractions par une méthode immunologique. Ce protocole est long et laborieux, ce qui est difficilement compatible avec les débits nécessaires lors d’études impliquant un grand nombre d’échantillons. Pour ces raisons, une quantification globale des apélines est généralement effectuée. En outre, nous avons vu que les résultats présentent une variabilité importante d’une étude à l’autre. Ces observations nous ont ainsi poussé à développer une méthode de dosage alternative, capable d’apporter un niveau de spécificité supplémentaire.
Chapitre IV : Quantification d’une famille de biomarqueurs par LC-MS

Le dosage des peptides apélines constitue de plus un cas d’école pour démontrer le potentiel de la spectrométrie de masse appliquée à la quantification de peptides biomarqueurs, et ceci pour trois raisons :

- tout d’abord, la spectrométrie de masse est un outil spécifique, capable de discriminer les composés par mesure de leur rapport masse sur charge. De plus, cette technique a la capacité d’analyser un grand nombre de composés en parallèle, ce que ne permettent pas les immunodosages. La spectrométrie de masse appliquée au dosage des apélines présente donc l’intérêt d’apporter des informations supplémentaires, par quantification de chacune de ses formes.

- le second avantage de cette technique, face à la forte variabilité des résultats publiés, réside dans la possibilité d’utiliser un standard interne afin de contrôler la variabilité des étapes du dosage, depuis l’extraction des peptides jusqu’à l’analyse par LC-MS. C’est cette standardisation qui peut parfois limiter la robustesse des analyses immunologiques.

- le dernier point nous ayant poussé à utiliser cette technique est lié aux faibles concentrations des apélines dans le plasma. Ceci représente un véritable défi, la spectrométrie de masse étant reconnue comme une technique moins sensible que les immunodosages. L’objectif était donc ici de montrer que, sous réserve d’une préparation de l’échantillon adaptée, la quantification par LC-MS de composés ultra minoritaires était possible, alliant ainsi sensibilité et spécificité.

IV.3. Développements analytiques

Nous avons développé dans un premier temps une méthode permettant d’extraire les apélines du plasma, puis de les quantifier par chromatographie liquide couplée à la spectrométrie de masse. La phase la plus délicate en termes de développement a été de préconcentrer les apélines. Leur faible concentration endogène (25 à 700 pg/mL) est en effet inférieure à la sensibilité atteintes par les instruments. Pour effectuer la quantification des 5 formes d’apéline décrites (12, 13, p13, 17, 36), nous avons choisi un appareil de type triple quadripôle. Ces instruments à faisceaux d’ions sont particulièrement sensibles et bien adaptés à la quantification de nombreux composés, en se focalisant uniquement sur leur masse. Cette approche ciblée, visant à analyser uniquement les formes précitées, a été développée en utilisant des standards internes permettant de contrôler toutes les étapes du dosage, et ceci.
Chapitre IV : Quantification d’une famille de biomarqueurs par LC-MS

pour chacune des formes d’apéline. La méthode de référence pour ces standards internes consiste à utiliser des peptides marqués par isotopes stables. Nous avons donc utilisé pour chacune des apélines (12, 13, p13, 17, 36) leur équivalent marqué et de concentration connue afin d’obtenir une méthode quantitative.

IV.3.1. Quantification des apélines 12, 13, p13, 17 et 36

IV.3.1.1. Matériel et méthodes

Réactifs :
Les apélines synthétiques (12, 13, p13, 17 et 36) ont été obtenues lyophilisées chez NeoMPS (Strasbourg, France). Les apélines marquées (12, 13, p13, 17 et 36) par des isotopes stables ont été obtenues lyophilisées chez Bachem. Le marquage a été effectué sur les prolines ([13C5;15N]Pro) en positions 2 et 9 pour l’apéline 12 ; 3 et 10 pour l’apéline 13 et p13 ; 7 et 14 pour l’apéline 17 ; et 13, 26 et 33 pour l’apéline 36. L’accroissement de masse moléculaire obtenu est de 12 Da pour les apélines 12, 13, p13, 17 et de 18 Da pour la 36. La trypsine modifiée a été obtenue chez Promega (Madison, WI, USA). Des anticorps polyclonaux anti-apélines ont été obtenus chez NeoMPS (Strasbourg, France) par quatre injections chez deux lapins d’un immunogène constitué d’apéline17 à laquelle a été ajouté une tyrosine du côté N-terminal afin de la lier à la BSA. Les solvants utilisés proviennent de Merck (Darmstadt, Allemagne), SDS (Peypin, France), et Sigma (Sigma Chemical Co., St. Louis, MO, USA), respectivement pour le méthanol, l’acétonitrile et l’acide formique, tous de qualité HPLC. Les billes fonctionnalisées par des groupements carboxyliques (Dynabeads® MyOne™ Carboxylic acid) et par la protéine G (Dynabeads® Protein G) ont été obtenues chez Invitrogen (Carlsbad, CA, USA). Les colonnes d’extraction sur phase solide (SEP-PAK C18 1cc, 50mg) proviennent de chez Waters (Milford, MA, USA). Tous les autres réactifs utilisés ont été obtenus chez Sigma-Aldrich (St. Louis, MO, USA).

Echantillons :
Deux types de plasma humain ont été obtenus : du plasma « EFS » provenant de l’Etablissement Français du Sang (Rungis, France) et du plasma « EDTA » provenant de l’Hôpital Européen Georges Pompidou (Centre d’Investigation Cliniques, Pr M. AZIZI, Paris). Le plasma EFS a été obtenu sous forme de prélèvements individuels (12 individus) et
ne contient pas d’antiprotéase. Le respect de la chaîne du froid pour ces échantillons n’est pas garanti. Ces plasmas ont ensuite été mélangés, répartis par aliquotes de 4 mL et conservés à -20 °C. Les conditions de prélèvement non contrôlées ainsi que l’absence d’antiprotéases du plasma « EFS » permettent de supposer qu’une dégradation des apélines endogènes à eu lieu (confirmé par la suite). Le plasma «EDTA», a été obtenu dans des conditions contrôlées sous forme d’un mélange de neuf plasmas individuels répartis en aliquotes de 4 mL. Ce plasma provient de prélèvements sanguins centrifugés à 4°C, avant d’être immédiatement congelé à -80°C. Il contient de l’EDTA, inhibiteur des métallo-protéases. Lors de leur utilisation, les échantillons de plasma «EDTA» ont été décongelés sur glace puis traités immédiatement.

Traceur enzymatique et caractérisation des anticorps :
Deux traceurs enzymatiques ont été préparés en collaboration avec Spi-Bio (Montigny le Bretonneux, France) par conjugaison de l’apéline p13 (et de l’immunogène Tyr- apéline 17 pour le second) à l’acétylcholinestérase (AChE) par réaction sur le N-Succinimidyl-S-acétylthioacétate (SATA). Ces traceurs ont été ensuite purifiés par chromatographie d’exclusion de taille sur une colonne de dimensions 90×1,5 cm contenant un gel de filtration Bio-Gel A 1.5-m (Bio-Rad, Paris, France).
Pour mesurer les IC\textsubscript{50} de chacune des formes d’apéline, des courbes de déplacement ont été générées. Les anticorps (saignée finale diluée au 1/100 000 pour la première et au 1/20 000 pour la seconde) ont été incubés en présence de différentes concentrations d’apélines (pour chacune des formes séparément) et de chacun des deux traceurs. Les dilutions ont été réalisées dans du tampon EIA (phosphate de potassium 0,1 M, NaCl 0,4 M, BSA 0,1 % et azide de sodium 0,01 %, pH 7,4). L’incubation est effectuée à température ambiante pendant une quinzaine d’heures dans des plaques de microtitration au format 96 puits (Nunc, Thermo Fisher Scientific, Rochester, NY, USA) à la surface desquels des anticorps de souris spécifiques aux anticorps de lapin (Spi-Bio, Montigny le Bretonneux, France) sont adsorbés comme illustré en Figure 50. Le réactif d’Ellman (substrat de l’AChE) a été utilisé pour la révélation par mesure d’absorbance à 414 nm.

Figure 50 : Dosage immunologique par compétition.
Méthodes d’extraction :
Trois méthodes d’extraction ont été développées. La première est identique à la méthode d’extraction développée dans le chapitre II lors du dosage de l’EPI-hNE4. Les billes magnétiques fonctionnalisées par la protéine G (50 µL pour 500 µL de plasma) sont lavées trois fois par 500 µL de tampon acétate de sodium à pH 5 comme indiqué par le fournisseur. Les billes sont séparées de la solution en utilisant un portoir aimanté (Dynal MPC-S, Invitrogen). Après avoir retiré la solution de lavage, les billes sont incubées avec la saignée de lapin (25 µL de saignée pour 50 µL de billes) dilué au demi avec un tampon acétate de sodium (pH 5) pendant 45 min à température ambiante sous agitation. Après lavage des billes (trois fois par 500 µL de tampon acétate de sodium), celles-ci sont reprises dans 20 µL de tampon PBS (pH 7,4) puis transférées dans l’échantillon plasmatique (500 µL). Après un 4h d’incubation en chambre froide (4 °C), les billes sont à nouveau lavées (trois fois par 500 µL de tampon PBS) puis éluées par une solution aqueuse (50 µL) contenant 10 % d’acétonitrile et 0,5 % d’acide formique (Figure 51). La solution d’élution est transférée dans un flacon HPLC pour injection dans le système LC-MS.

La deuxième méthode utilise les propriétés physico-chimiques des apélines pour les extraire par échange de cations. Les billes magnétiques fonctionnalisées par des groupements carboxyliques sont préalablement lavées à deux reprises par 100 µL de Tampon PBS pH 7,4 pour 100 µL de billes. Trente microlitres de billes sont incubés pendant 2 min pour 500 µL de plasma, et ces proportions sont conservées lorsque le volume de l’échantillon est supérieur. Les billes magnétiques sont ensuite immobilisées sur le côté du tube à l’aide d’un portoir magnétique. Le surnageant est éliminé, et les billes sont lavées avec 400 µL puis 200 µL de tampon PBS pH 7,4, et finalement avec 100 µL d’eau MilliQ. Un volume de 50 µL de

Figure 51 : Méthode d’extraction des apélines par billes magnétiques fonctionnalisées par des anticorps.
solution d’élution (eau/acétonitrile, 90/10 v/v, 1% v/v d’acide formique) est ensuite ajouté. Après quelques minutes sous agitation, les billes magnétiques sont immobilisées par un aimant, et le surnageant est transféré dans un nouveau tube pour être analysé.

La troisième méthode d’extraction est une extraction sur phase solide (SPE), avec ajout au préalable d’acide trifluoroacétique (TFA) qui permet d’une part de rompre les interactions non covalentes protéines-protéines, et d’autre part de former une paire d’ions par ponts salins avec les apélines, facilitant les interactions hydrophobes avec la phase C18 des colonnes de SPE. L’échantillon de plasma est dilué avec un volume égal d’eau MilliQ à 2% v/v de TFA. La colonne SEP-PAK C18 est conditionnée par 1 mL de méthanol, et équilibrée par 2 mL d’eau à 1% v/v de TFA. Un millilitre d’échantillon est alors déposé et extrait. La colonne est ensuite lavée par 1 mL d’eau à 1% v/v de TFA, puis par 2 mL d’eau. La cartouche est asséchée après chacun des deux derniers lavages. L’élution est réalisée avec 1 mL d’un mélange eau/méthanol (50/50 v/v). Six microlitres de soude 0,125 M sont finalement ajoutés à l’éluat afin d’ajuster le pH à une valeur proche de 7, puis 30 µL de billes magnétiques fonctionnalisées par des groupements carboxyliques et préalablement lavées sont ajoutés. L’échantillon est ensuite traité comme décrit précédemment.

Digestion enzymatique par la trypsine

Afin d’augmenter la sensibilité du dosage, la trypsine a été utilisée pour digérer les apélines extraites du plasma par échange de cations seul. Après éluion des billes, 12,5 µL d’une solution de neutralisation (400 µL de tampon Tris-HCl 0,7 M, CaCl₂ 1 mM, pH 8,5 et 100 µL de soude 6 M) est ajouté, puis 5 µL de trypsine à 20µg/mL, préalablement incubé 15 minutes à 30 °C. Après 3 heures d’incubation à 45 °C sous agitation, la réaction est finalement arrêtée par ajout de 7 µL d’acide formique.

Analyse quantitative par chromatographie liquide couplée à la spectrométrie de masse :

L’analyse quantitative des peptides apélines est effectuée par un spectromètre de type triple quadrupôle TSQ Quantum Ultra (Thermo, San José), couplé à une HPLC Agilent 1100 Series (Agilent, USA). La séparation chromatographique a été réalisée sur une précolonne de type C18 (Polaris 3 C18-A, Varian) suivie d’une colonne Polaris 3 C18-A (150mm × 2mm de diamètre interne, taille des particules = 3µm, Varian). Différentes colonnes de dimensions identiques greffées par des chaînes octadécyle ont été testées (Zorbax Stable Bond, Xterra, Symmetry) ainsi que des colonnes de type polymérique ayant différentes porosités (PLRP-S).
Chapitre IV : Quantification d’une famille de biomarqueurs par LC-MS

Toutes permettaient une rétention avec une bonne résolution des apélines 12, 13 et p13, mais seule la phase de type Polaris C18-A est efficace pour l’analyse des apélines 17 et 36. La colonne chromatographique est eluée à un débit de 200 µL/min, avec une phase mobile A composée d’eau et de 0,1 % d’acide formique et une phase mobile B composée d’acétonitrile et de 0,1 % d’acide formique. Le profil du gradient d’élution est indiqué dans le Tableau 11. La colonne est maintenue à une température de 50°C et le volume d’injection est de 30 µL.

<table>
<thead>
<tr>
<th>Temps (min)</th>
<th>% de A</th>
<th>% de B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>7,5</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>13,5</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
<td>5</td>
</tr>
</tbody>
</table>

Tableau 11 : Profil du gradient d’élution pour l’analyse quantitative par LC-MS des apélines

Le système HPLC est couplé au spectromètre de masse par une source électrospray (ESI, ElectroSpray Ionisation) utilisée en mode positif. La tension d’ionisation est de 3,9 kV. Les débits du gaz de désorption, du gaz rideau et du gaz auxiliaire ont été optimisés respectivement à 30, 20, et 20 (unités arbitraires). L’énergie de collision pour les dissociations "in source CID" est fixée à 8 V, et la température du capillaire de transfert est de 350 °C. L’acquisition est effectuée en mode MS/MS (SRM, Selected Reaction Monitoring). La fragmentation de faible énergie est réalisée dans la cellule de collision avec une pression en argon de 1,7 mTorr. Une transition a été suivie pour chaque forme d’apéline et son standard interne. La fenêtre d’isolement pour l’ion précurseur et l’ion produit est de 0,7 Da. Ces transitions sont reportées dans le Tableau 12, ainsi que les valeurs de Tube-lens et d’énergie de collision, optimisées pour chaque transition dans le but de maximiser la sensibilité. A noter que lorsque la masse moléculaire du peptide augmente, l’énergie de collision calculée au centre de masse diminue et donc l’énergie d’activation par liaison diminue aussi, mais ceci est compensé par une charge plus élevée (et donc une plus forte répulsion coulombienne) des espèces de masse moléculaires plus importante. Initialement, deux transitions par composé étaient suivies, mais l’élution de ces apélines étant rapide (~10 s), le nombre de transition a été réduit pour obtenir un nombre de points suffisants pour définir le pic chromatographique.
Tableau 12 : Transitions choisies pour la détection et la quantification des apélines. Les valeurs correspondantes d’énergie de collision et de tube lens sont indiquées.

IV.3.1.2. Résultats

Caractérisation des anticorps et extraction par immunoaffinité

L’incubation des apélines à différentes concentrations en présence des anticorps anti-apélines et du traceur enzymatique permet d’obtenir des courbes de déplacement par compétition entre les apélines et le traceur pour la liaison à l’anticorps immobilisé. La concentration en apélines nécessaire pour réduire de 50 % l’intensité du signal due à la fixation du traceur (IC₅₀) est caractéristique de l’affinité des anticorps. Les deux traceurs ont donné des résultats comparables avec des valeurs d’IC₅₀ qui diminuent lorsque la taille de l’apéline augmente (Tableau 13).
Méthode d’extraction par échange de cations

Les apélines ayant un point isoélectrique voisin de 12, alors que le pKa de l’acide carboxylique est de 4,5 (Figure 52), une extraction par échange de cations faibles est particulièrement adaptée. Nous avons donc utilisé des microbilles magnétiques fonctionnalisées par des groupements acides carboxyliques pour extraire et concentrer les apélines du plasma. De plus, l’utilisation de microbilles magnétiques permet une concentration des peptides, puisque l’élution des éléments fixés sur les billes se fait dans un volume plus faible que celui de l’échantillon initial (10 fois plus faible).

![Figure 52 : Zone de prédominance des espèces chargées en fonction du pH](image)

Afin de vérifier l’efficacité de la méthode d’extraction par échange de cations, les rendements d’extraction à partir de 500 µL de plasma « EFS » des différentes formes d’apéline synthétiques ont été calculés, et ce, pour deux concentrations proches des concentrations endogènes publiées (500 pg/mL et 2 ng/mL). Cette matrice ne donnant aucun signal détectable pour les apélines endogènes après extraction et analyse par LC-MS/MS, elle a été utilisée pour optimiser la méthode d’extraction. Les rendements, présentés dans la Figure 53, dépendent des formes d’apéline et sont notamment plus faibles pour les apélines 13 et p13.
La sensibilité de la méthode a également été évaluée. Des échantillons de plasma « EFS » (500 µL) auxquels différentes concentrations d’apélines sont ajoutées, ont été analysés par cette méthode. Les standards internes sont ajoutés, puis les apélines et leur standard interne sont extraits par échange de cations. Des sensibilités comprises entre 10 et 160 pg/mL ont été obtenues (Tableau 14). De manière surprenante, lorsque cette méthode est appliquée à des échantillons de plasma «EDTA», aucune des apélines 12, 13, p13, 17 ou 36 endogènes n’est détectable, alors que les standards internes introduits dans le plasma à des concentrations de 500 pg/mL sont clairement visibles avec des intensités comparables aux échantillons « EFS ». Il faut alors supposer que la sensibilité permise par la méthode d’extraction est insuffisante pour détecter les apélines endogènes. En effet, les concentrations minimales détectables pour les apélines 13, 17 et 36 restent légèrement supérieures aux concentrations des apélines les plus faibles décrites dans la littérature (24 pg/mL pour l’ensemble des apélines immunoréactives, cf. Figure 49).

Amélioration de la sensibilité

Trois solutions peuvent être envisagées pour améliorer la sensibilité de la méthode : augmenter le rendement d’extraction, diminuer le volume d’élution de l’échantillon, et augmenter le volume de plasma utilisé. Le rendement de la méthode étant lié aux caractéristiques physico-chimiques des apélines, il ne peut être facilement modifié. Hormis pour l’apéline 13 et p13, les rendements sont supérieurs à 60 %, la marge de progression est donc faible. De même, le volume d’élution de l’échantillon ne peut être diminué pour des raisons pratiques (volume minimum injectable en HPLC). La seule solution acceptable pour accroître significativement la sensibilité consiste donc en une augmentation du volume de
plasma utilisé, à condition de vérifier qu’une augmentation du volume s’accompagne d’un gain en signal.

Nous avons donc vérifié dans un premier temps que les quantités d’apélines extraites par la méthode d’échange de cations sont proportionnelles au volume de plasma utilisé, et que cette augmentation du volume n’augmente pas l’effet matrice. En effet, cette extraction n’étant pas spécifique des apélines, d’autres composés du plasma sont également extraits en plus grande quantité, risquant de perturber la séparation chromatographique et de réduire le rendement d’ionisation dans la source du spectromètre de masse. Une gamme volumique (de 500 à 3500 µL) de plasma a été réalisée, à concentration d’apélines et rapport volume de plasma/volume de billes utilisées constants. Les résultats obtenus montrent un gain en intensité proportionnel au volume de plasma ($r^2=0,99$) pour l’apéline 12 (Figure 54). Des résultats similaires ont été obtenus pour les apélines p13, 13, 17 et 36.

![Figure 54 : Linéarité entre la quantité d’apéline 12 extraite par échange de cations faibles et le volume de plasma utilisé (n=2)](image)

En prenant par la suite un volume de plasma de 4 mL et un volume d’élution de 50 µL, les échantillons sont concentrés au maximum 80 fois. De même que précédemment, la sensibilité expérimentale de cette méthode a été évaluée en utilisant 4 mL de plasma « EFS ». Les sensibilités obtenues sont présentées dans le Tableau 14 et sont comprises entre 1,25 et 5 pg/mL pour les apélines 12, 13, p13 et 17, et une sensibilité de 20 pg/mL a été obtenue pour l’apéline 36.
Tableau 14 : Sensibilité de la méthode d’extraction par échange de cations faibles en fonction du volume de plasma utilisé.

<table>
<thead>
<tr>
<th>Sensibilité à partir de</th>
<th>apéline 12</th>
<th>apéline 13</th>
<th>apéline p13</th>
<th>apéline 17</th>
<th>apéline 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 µL de plasma (pg/mL)</td>
<td>10</td>
<td>40</td>
<td>20</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>4000 µL de plasma (pg/mL)</td>
<td>1,25</td>
<td>5</td>
<td>1,25</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

Ces sensibilités expérimentales sont inférieures aux concentrations les plus faibles d’apélines endogènes recensées dans la littérature (24 pg/mL), et montrent donc que la méthode d’extraction est adaptée pour la détection des apélines endogènes. Là encore, lorsque cette méthode a été appliquée à l’extraction de 4 mL de plasma «EDTA» humain, aucune forme endogène d’apéline 12, 13, p13, 17 et 36 n’a été détectée, alors que la présence des standards internes (introduits immédiatement après décongélation des échantillons) révèle le bon fonctionnement de la méthode d’extraction (Figure 55). Etant donné que la sensibilité obtenue par cette méthode est compatible avec la détection d’apélines aux concentrations publiées dans la littérature, nous avons supposé que les apélines endogènes étaient liées à une protéine plasmatique. La méthode d’extraction précédente permet cependant d’extraire les standards internes ajoutés dans le plasma, ce qui suppose une cinétique de liaison aux protéines endogènes lente. Les interactions entre peptides et protéines sont fréquentes dans le plasma et l’albumine humaine, composante majoritaire du plasma (50 mg/mL), est par exemple connue pour sa capacité à fixer de nombreuses molécules, telles que certaines hormones (progestérone et testostérone par exemple)\(^{274,275}\). Dans l’hypothèse d’une telle interaction, les apélines ne peuvent être extraites par échange de cations. Nous avons donc développé une seconde méthode d’extraction, identique à celle couramment utilisée lors des dosages immunologiques publiés, qui consiste à extraire les peptides par extraction sur phase solide, avec une acidification préalable des échantillons pour mieux retenir ces peptides sur la phase hydrophobe, et rompre les interactions peptide-protéine.
Méthode d’extraction sur phase solide (SPE)

Après acidification du plasma à l’acide trifluoroacétique (1 % TFA), les apélines contenues sont extraites par interactions hydrophobes sur des colonnes SPE (Sep-Pak C18, 1 cc), et l’éluion des peptides est effectuée en solvant organique. L’acidification du plasma a pour but d’améliorer la rétention des apélines sur la phase hydrophobe, et également de déstabiliser les liaisons ioniques entre protéines. Après éluion, une première approche consiste à évaporer l’éluat, puis à resolubiliser les composés dans un faible volume de solvant, ce solvant devant être compatible avec la méthode de détection. En partant d’un volume de plasma de 500 µL, des rendements d’extraction entre 40 % et 90 % ont été obtenus pour les apélines 12, 13, p13 et 17, et inférieurs à 10 % pour l’apéline 36 (Figure 56a). L’étape d’évaporation est souvent citée pour justifier de mauvais rendements (certains peptides ayant tendance à s’adsorber sur les parois des tubes), mais ce n’est pas le cas pour les apélines puisqu’un rendement de 100 % pour l’étape d’évaporation seule a été obtenu et ceci, pour chacune des formes. Appliquée à des échantillons plasmatiques « EDTA » de 500 µL, cette méthode n’a permis de déteeter aucune forme endogène. Un volume supérieur (4 mL) ainsi qu’une approche autre que l’évaporation, après l’extraction par SPE, a donc été développée pour mieux concentrer les apélines. Lorsque plusieurs millilitres de plasma doivent être extraits, ceci pose quelques
problèmes pour condenser l’éluat dans un volume aussi faible que quelques dizaines de microlitres par évaporation. Si cette étape d’évaporation est adaptée pour des volumes tels que celui utilisé précédemment (500 µL), ce n’est pas le cas pour des volumes importants. Le problème est lié à la quantité de protéines également extraites par cette technique car plus le volume de plasma est important, plus l’échantillon est visqueux après reprise par un faible volume, ce qui est difficilement compatible avec une injection dans le système chromatographique. Pour augmenter le volume de plasma tout en conservant un faible volume final, une seconde étape permettant de concentrer ces peptides a été ajoutée. La méthode d’extraction par échange de cations précédemment caractérisée, qui est complémentaire à l’extraction sur phase solide, a été employée.

Afin de vérifier l’efficacité de cette méthode d’extraction sur phase solide couplée à une extraction par échange de cations, les rendements obtenus, à partir de 500 µL de plasma « EFS », pour les différentes formes d’apéline synthétiques ont été calculés, et ce, pour deux concentrations (500 et 2000 pg/mL). Ces rendements, présentés dans la Figure 56b, sont proches de 50 % pour les apélines 12, 13 et p13, mais sont inférieurs à 10 %, pour l’apéline 17, et l’apéline 36 n’est pas détectable à ces concentrations. Ces rendements sont plus faibles que ceux correspondant à l’étape d’extraction sur phase solide seule en raison de la présence de solvants organiques après l’élution, ce qui diminue certainement le potentiel d’extraction des apélines par les groupements carboxyliques.

![Figure 56](image)

Figure 56 : Rendement de la méthode de SPE suivie a) d’une évaporation et b) d’une extraction par échange de cations sur microbilles magnétiques (n=3). Le volume de plasma extrait est ici de 500 µL.

En raison de ces rendements d’extraction, la sensibilité obtenue par extraction de 500 µL de plasma est acceptable pour les apélines 12, 13, p13 (30 pg/mL) mais nettement insuffisante pour les apélines 17 et 36 (>2 ng/mL). Etant donné les rendements plus faibles obtenus par cette méthode d’extraction, nous avons cherché à augmenter la sensibilité du dosage en
Chapitre IV : Quantification d’une famille de biomarqueurs par LC-MS

travaillant sur des volumes de plasma importants. Le volume de plasma pouvant être chargé sur les colonnes SPE (SEP-PAK C18, 1cc) étant limité à 1 mL, l’extraction de volumes supérieurs impose d’effectuer plusieurs extractions sur phase solide en parallèle (Figure 57). Les élutions des colonnes sont alors rassemblées, puis extraites par les billes échangeuses de cations. Nous avons également vérifié, pour cette méthode, que le gain en signal est proportionnel au volume de plasma utilisé.

Figure 57 : Extraction par SPE suivie d’une extraction par échange de cations

Ce protocole d’extraction a été appliqué à des échantillons de plasma humain « EDTA » de 4 mL. Comme précédemment, la présence des standards internes (SI), introduits dans le plasma à des concentrations de 500 pg/mL, révèle le bon fonctionnement de la méthode d’extraction. Seul le standard interne de l’apéline 36 n’est pas visible, ce qui est cohérent avec son faible rendement d’extraction. Là encore, de façon inattendue, les apélines 12, 13, p13 et 17 endogènes restent indétectables.

Malgré leurs sensibilités, les deux méthodes présentées précédemment n’ont pas permis de mettre en évidence la présence dans le plasma d’apélines 12, 13, p13, 17 et 36 endogènes. La première approche basée sur une extraction par échange de cations a permis d’atteindre une sensibilité de quelques pg/mL mais ne tenait pas compte d’une liaison potentielle des apélines à des macromolécules du plasma. La deuxième approche, en revanche, intègrait une étape dissociante par une forte acidification du plasma. Sa sensibilité était moins bonne mais était compatible, en théorie, avec la détection des formes plus courtes que l’apéline 36. Deux
hypothèses peuvent justifier ces résultats : soit la concentration d’apélines dans le plasma est inférieure aux taux annoncés, soit les formes quantifiées ne sont pas les formes réelles circulantes. En effet, nous nous étions focalisés sur la sensibilité du dosage, et pour cette raison, nous avions développé l’analyse sur un spectromètre de masse de type triple quadrupôle, utilisé en mode SRM. Seules les transitions correspondant aux apélines 12, 13, p13, 17 et 36 ainsi qu’à leur standard interne étaient suivies.

Détection de fragments trypsiques communs aux apélines

Dans le but de mettre en évidence la présence d’apélines dans le plasma, une méthode basée sur la détection de fragments trypsiques communs aux différentes formes d’apéline a été développée. L’analyse de fragments peptidiques situés dans la région C-terminale permet ainsi de s’affranchir des différentes formes possibles des apélines, et de concentrer ces différentes espèces en un unique fragment.

Les sites potentiels d’hydrolyse de l’apéline 36 par la trypsine sont présentés dans la Figure 58. Les peptides AT1, AT2 et AT3 sont spécifiques de l’apéline 36, le peptide AT8 est commun aux apélines 13, 17 et 36, et enfin les peptides AT9 et AT10 sont communs aux cinq formes. La détection de AT9 et AT10 présente un avantage, car étant communs à l’ensemble des formes d’apéline décrites dans la littérature, leurs concentrations molaires devraient être égales à la somme des concentrations molaires des formes d’apéline présentes dans le plasma, permettant ainsi un gain en sensibilité. De plus, une étude ayant caractérisée les formes plasmatiques d’apéline par HPLC en phase inverse (C4) couplée à une détection par RIA \(^{245}\), utilisait des anticorps incapables de reconnaitre des formes d’apéline ayant un acide aminé tronqué en C-terminal. Ce résultat laisse supposer qu’au moins une partie des apélines présentes dans le plasma possède une extrémité C-terminal intacte, d’où l’intérêt de détecter ces fragments peptidiques.

Figure 58 : Sites d’hydrolyse de l’apéline 36 par la trypsine. Ces sites théoriques sont indiqués par des flèches. Les peptides générés sont désignés par ATn (n=1 à 10) pour apéline Trypsinée.
Les apélines 17 et 36 étant décrites comme majoritaires dans le plasma humain, nous avons évalué la sensibilité de cette approche en utilisant des gammes de concentrations (entre 40 et 2560 pg/ml) en plasma « EFS » (500 µL) de ces deux peptides. Seul le peptide AT10 est détectable pour les concentrations testées, avec une sensibilité de 40 pg/mL pour l’apéline 17 et de 2000 pg/mL pour l’apéline 36. Ces résultats pourraient s’expliquer par une conformation différente des apélines en fonction de leur taille impliquant une différence d’efficacité de la Trypsine pour l’hydrolyse des apélines 17 et 36. Deux types d’échantillons ont alors été préparés. Le premier correspond à 4 mL de plasma « EDTA » contenant 1 ng/mL d’apéline 36 synthétique, permettant de contrôler l’efficacité du processus d’extraction et de digestion. Le second ne contient pas d’apéline synthétique et permet la recherche d’apélines endogènes. La Figure 59 présente les chromatogrammes représentatifs de plusieurs expériences, obtenus après application du protocole précédé sur 4 mL d’un pool de plasma «EDTA» humain (n= 9).

![Figure 59](image-url)

Figure 59 : Analyse par LC-MS/MS de deux échantillons plasmatiques « EDTA » de 4 mL, après extraction par échange de cations faibles et protéolyse par la trypsine. De l’apéline 36 a été ajoutée dans le premier échantillon (chromatogrammes a et b) à une concentration de 1 ng/mL, alors que pour le second échantillon (chromatogrammes c et d), aucune apéline synthétique n’a été ajoutée. Les chromatogrammes a et c correspondent à la transition de l’apéline 36 intacte (525,47→570,1), et les chromatogrammes b et d correspondent à la transition du fragment AT10 (548,1→263,1).
La présence d’apéline 36 intacte dans l’échantillon analysé révèle à la fois le bon fonctionnement de la méthode d’extraction et une digestion incomplète de ce peptide par la trypsine (l’intensité du pic chromatographique correspond à une concentration résiduelle d’environ 20% de la concentration initiale). L’action de la trypsine est également confirmée par la présence du fragment AT10 pour l’échantillon contenant de l’apéline 36 synthétique. En revanche, ce fragment n’est pas observé dans l’échantillon sans ajout d’apélines synthétiques. Là encore, plusieurs hypothèses sont envisageables pour expliquer ces résultats : les concentrations en apélines endogènes peuvent être inférieures à la limite de détection de la méthode, ou bien elles possèdent des modifications de la partie C-terminale de leur séquence (dégradation, hydroxylation, oxydation...) n’empêchant pas leur reconnaissance par les anticorps utilisés lors d’immunodosages.

Malgré toutes les précautions prises lors des prélèvements et lors du développement du dosage (centrifugation des prélèvements sanguins à 4 °C, conservation à -80 °C), une dégradation des apélines dans le plasma peut être à l’origine de ces résultats. Nous avons alors évalué la stabilité des apélines par incubation avec du plasma in vitro.

IV.3.2. Stabilité des apélines en plasma

IV.3.2.1. Méthode

Les réactifs ainsi que la méthode d’analyse par LC-MS sont identiques à ceux décrits au paragraphe IV.3.1.1. A 4mL de plasma « EDTA » ou « EFS », sont ajoutées les cinq formes d’apéline à une concentration de 5 ng/mL. Avant de placer le plasma à incuber sous agitation à 25°C, un premier volume de 500 µL est prélevé et extrait par échange de cations \(t_0 \). Le volume est prélevé et extrait dans les mêmes conditions aux temps \(t_0 + 20 \) min, \(t_0 + 40 \) min, \(t_0 + 60 \) min, \(t_0 + 120 \) min et \(t_0 + 210 \) min.

Le même protocole est utilisé avec une incubation à 4°C, ou à 25°C après ajout dans 4 mL de plasma « EDTA » de 160 µL d’un cocktail d’inhibiteurs de protéases. Ce dernier est composé de 0,5 mg/mL d’Aprotinine, de Leupeptine, et de Pepstatine ainsi que de 31 mg/mL de Benzamidine et de 17,5 mg/mL de PMSF.
IV.3.2.2. Résultat

Cinétique de dégradation des apélines

Afin de vérifier la stabilité in vitro des apélines dans le plasma, nous avons effectué des mesures de cinétique de disparition, à température ambiante, d’un mélange d’apélines 12, 13, p13, 17 et 36 synthétiques. Les résultats obtenus sont présentés dans la Figure 60. Ainsi, à 25°C, la concentration de l’ensemble des apélines diminue rapidement avec le temps, selon une tendance exponentielle décroissante. Les demi-vies des différentes formes d’apéline calculées à partir des régressions exponentielles sont résumées dans le Tableau 15.

<table>
<thead>
<tr>
<th></th>
<th>Temps de demi-vie (min) , (IC 95 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>apéline12</td>
</tr>
<tr>
<td>Plasma « EFS »</td>
<td>40 (35 ;48)</td>
</tr>
<tr>
<td>Plasma « EDTA »</td>
<td>28 (21 ;44)</td>
</tr>
</tbody>
</table>

Tableau 15 : Temps de demi-vie des apélines calculés après incubation dans du plasma « EFS » et « EDTA » à 25 °C, et à partir des courbes de la Figure 60. Les courbes de régression sont du type \(Y = Y_0 \times \exp(-kX) \).

Malgré la présence d’EDTA (inhibiteur des métalloprotéases) dans le plasma «EDTA», les concentrations de toutes les formes d’apéline synthétiques diminuent, à 25°C, au cours du temps. L’EDTA augmente uniquement la stabilité de l’apéline 36 de manière significative. Les cinétiques obtenues permettent d’envisager une dégradation de type protéolyse et de supposer que l’apéline 36 est dégradée par une protéase différente, vraisemblablement une métalloprotéase. Les temps de demi-vie sont courts pour les autres formes d’apéline, notamment pour l’apéline 13 avec \(t_{1/2} = 5 \text{ min} \). La différence de stabilité observée entre les apélines 13 et p13 est plus complexe à expliquer. En effet, deux hypothèses sont envisageables : (1) la forme cyclique du résidu N-terminal (acide pyroglutamique pour l’apéline p13 au lieu de la glutamine de l’apéline 13) peut augmenter sa stabilité en diminuant la vitesse de protéolyse du peptide \(^{276}\), et (2) l’apéline 13 peut se cycliser in vitro en apéline p13, augmentant artificiellement le temps de demi-vie de cette dernière. Pour départager ces deux hypothèses, il aurait fallu étudier les cinétiques de chacune des formes d’apéline introduites séparément dans le plasma, ce qui n’a pu être réalisé en raison des quantités limitées de plasma EDTA disponibles.
Chapitre IV : Quantification d’une famille de biomarqueurs par LC-MS

Figure 60 : Cinétique de dégradation des apélines en plasma « EFS » (×) et « EDTA » (●) à 25 °C (n=2 à chaque temps de cinétique). Les apélines sont introduites à 5 ng/mL et 500 µL de plasma sont prélevés pour extraction. Les apélines marquées sont introduites après extraction pour normaliser les aires des pics chromatographiques lors de l’analyse par LC-MS.

Effet d’inhibiteurs de protéases
L’effet de l’ajout d’un cocktail d’inhibiteurs de protéases ainsi que le maintien du plasma à 4°C sur la cinétique de disparition des apélines en mélange a été testé pour confirmer une activité de protéases sur les apélines. Pour cette expérience, seul le plasma « EDTA » a été utilisé, car nous connaissions son mode de prélèvement et ses conditions de stockage (à – 80 °C). Le but de cette expérience étant de démontrer une activité de protéases ou d’enzymes...
Chapitre IV : Quantification d’une famille de biomarqueurs par LC-MS

modifiant les apélines, un plasma conservé dans les meilleures conditions est essentiel. Les résultats obtenus sont présentés dans la Figure 61. Deux types de comportement se dégagent :

- le premier groupe, constitué des apélines 12, p13 17 et 36, a un comportement similaire en présence d’anti-protéases et à 4 °C. Dans ces deux conditions, leur stabilité dans le plasma est augmentée, puisque après 210 minutes d’incubation, les concentrations de ces quatre peptides restent supérieures à 60% de leur concentration initiale, alors qu’à 25 °C, il en reste moins de 10 %.

- l’apéline 13 possède un comportement à part : sa vitesse de disparition est rapide, et le cocktail d’inhibiteur de protéases n’a aucun effet sur sa stabilité. Seul le maintien à 4 °C augmente faiblement sa stabilité. Ce qui semble indiquer une transformation principalement d’origine chimique. Le taux d’apéline p13 n’augmentant pas, il est difficile de conclure à la transformation d’apéline 13 en p13.
Figure 61 : cinétique de dégradation des apélines introduites à 5 ng/mL dans du plasma « EDTA ». Trois conditions ont été testées : une incubation à 25 °C (), une incubation sur de la glace (), et une incubation à 25 °C en présence d’inhibiteurs de protéases ().

Différents processus interviennent dans la disparition des apélines en plasma, et l’hypothèse d’une protéolyse peut être raisonnablement formulée pour expliquer la chute des concentrations des apélines 12, p13, 17 et 36. L’apéline 13 semble être soumise à un processus de dégradation différent, probablement d’origine chimique. Cependant, l’existence d’une protéolyse in vitro ne suppose pas nécessairement un mécanisme de dégradation identique in vivo. Les processus de formation et de dégradation des apélines sont certainement plus complexes, et les demi-vies de ces peptides dans le plasma in-vitro sont à comparer à leur vitesse de clairance et à la vitesse de formation des différentes formes aujourd’hui inconnues. Une attention particulière est à apporter aux méthodes de prélèvements et au stockage des échantillons plasmatiques car la stabilité limitée des apélines en plasma peut engendrer un biais des analyses. Les échantillons obtenus étaient conservés à -80 °C et ont été décongelés dans de l’eau glacialée (0 °C). La durée de cette étape est de l’ordre de 30 minutes. Les résultats
obtenus montrent que pendant ce laps de temps, seule l’apéline 13 est susceptible de se
dégrader de manière significative. L’étape d’extraction par échange de cations est rapide (5
min) et se déroule également sur la glace, les dégradations au cours de ce traitement sont
négligeables (hors pour l’apéline 13). De même, l’extraction par SPE (d’une durée de 20
minutes environ), nécessite une forte acidification du plasma, aboutissant à un pH où les
protéases ne sont généralement plus actives. Seule l’apéline 13 est là encore susceptible de se
dégrader. Après extraction, la séparation des peptides des composés du plasma et la présence
de solvant organique acidifié assurent leur stabilité. En revanche, la méthode de prélèvement
e d’obtention du plasma est une étape critique pour la stabilité des apélines endogènes. Pour
le plasma EDTA, les échantillons étaient immédiatement refroidis après prélèvement, et le
sang était centrifugé à 4 °C pour dissocier le plasma de cellules. Il est donc difficile
d’envisager une dégradation des apélines pendant cette étape.

IV.4. Conclusions

La famille de peptides ligands du récepteur APJ, les apélines, est impliquée dans de nombreux
mécanismes physiologiques et pathologiques. En particulier, ces molécules ont un rôle dans la
régulation du système cardiovasculaire, et leur utilisation comme biomarqueur de
l’insuffisance cardiaque a été envisagée 269. Cependant, les dosages de ces peptides par les
méthodes immunologiques, actuellement disponibles, ne permettent pas à eux seuls de
discriminer les différentes formes existantes. Ces techniques, couplées à des séparations
chromatographiques, ont révélé la présence majoritaire dans le plasma humain d’apélines p13,
17 et 36 245, à des concentrations très variables suivant les études, comprises entre 24 et
3700 pg/mL 269 245 244. Le contexte analytique de ces peptides était donc idéal pour développer
une méthode alternative de dosage, permettant à la fois de confirmer les formes circulantes et
de déterminer, pour chacune d’entre elle, la concentration plasmatique correspondante.
Récemment, la spectrométrie de masse a été appliquée avec succès à la quantification
spécifique de familles de peptides se différenciant par quelques acides aminés ou par une
modification chimique (les peptides Aβ 106;113, les peptides GIP et GLP 116;122, la Ghréline 118,
où les peptides du collagène de type II 124;127;277), et ayant des concentrations inférieures à 1
ng/mL. Ils ont pu être mesurées en ajoutant une étape d’extraction et de préconcentration des
analytes.
Nous avions envisagé de développer une étape d’extraction basée sur l’immunoaffinité, mais les anticorps obtenus n’ayant pas l’affinité escomptée, le potentiel d’extraction de ces anticorps s’est avéré insuffisant pour atteindre les concentrations rapportées. Nous avons alors développé une méthode capable d’extraire les apélines 12, 13, p13, 17 et 36, par échange de cations à partir d’un volume important de plasma (4 mL), avec des rendements compris entre 20 et 90 %. La quantification finale par spectrométrie de masse atteint des sensibilités allant de 1,25 à 20 pg/mL suivant les différents fragments et aurait dû permettre de détecter les apélines endogènes correspondantes. Cependant, la présence de celles-ci n’a pu être révélée alors que les 5 formes d’apéline précitées, marquées par des isotopes stables et introduites dans les échantillons plasmatiques étaient détectées. Nous avons donc remis en cause le potentiel de notre méthode à extraire ces peptides endogènes. De nombreux dosages immunologiques des apélines mettent en œuvre une extraction préliminaire de ces peptides du plasma \(245;278\). Ces techniques utilisent une forte acidification de la matrice, suivie d’une extraction sur phase solide. Nous avons alors émis l’hypothèse d’une liaison non covalente entre des composés du plasma et les apélines endogènes, que notre étape d’extraction par échange de cations décrite précédemment ne permettait pas de dissocier.

Un troisième procédé d’extraction et de concentration, inspiré par la littérature, a donc été développé afin de tester cette possibilité. L’extraction des apélines a cette fois été réalisée par une première acidification au TFA suivie d’une extraction sur phase solide de type hydrophobe. Des rendements de 50 % pour les apélines 12, 13 et p13 synthétiques, de 10 % pour l’apéline 17 ont été obtenus, alors que l’apéline 36 n’est pas extraite. Néanmoins, cette méthode montre des sensibilités de l’ordre de 4 pg/mL pour les apélines 12, 13, p13 et 200 pg/mL pour la forme de 17 résidus. De manière surprenante, ces 5 formes d’apéline endogènes ne sont pas détectables. Afin de diminuer la spécificité du dosage et pour tenter de détecter ces formes d’apéline, nous avons également effectué une protéolyse par la trypsine des peptides extraits, et recherché le fragment C-terminal commun aux différentes formes d’apéline. Après extraction de 4 mL de plasma par échange de cations faibles et digestion enzymatique, aucun signal correspondant à ce fragment terminal n’a pu être observé.

Ces résultats indiquent que les apélines quantifiées aux taux annoncés dans la littérature ne sont pas les apélines 12, 13, p13, 17 et 36. Néanmoins, les différentes études publiées ont apporté la preuve que des peptides très proches de ces 5 formes étaient présents dans le plasma. Ces peptides endogènes possèdent en effet des temps de rétention chromatographiques identiques aux apélines synthétiques, et sont surtout reconnus par des anticorps dirigés contre les apélines. Il est en fait possible d’envisager que les apélines...
circulantes correspondent à des formes modifiées, soit par l’ajout de groupements sur la chaîne d’acides aminés (oxydation des méthionines, hydroxylation des prolines...), soit par des dégradations mineures de type protéolytique. Ces hypothèses ne sont pas incompatibles avec les caractérisations décrites dans la littérature. En effet, les séparations de type exclusion de taille ou HPLC utilisées ne permettent d’obtenir que des indications quant à la masse et à la structure des composés étudiés. Ainsi, il est probable que des modifications mineures telles que celles citées précédemment ne soient éventuellement pas décelées.

Dans le but de mieux caractériser ces produits endogènes, nous avons mis en évidence, in vitro, que la concentration des apélines dans du plasma incubé à 25°C diminuait avec le temps. En effet, les demi-vies de ces peptides dans ces conditions sont comprises entre 5 et 180 minutes. De plus, ces demi-vies sont fortement prolongées par l’ajout d’inhibiteurs de protéases ou par une incubation sur la glace. Ces résultats suggèrent une activité des protéases du plasma sur les apélines in vitro, que l’EDTA seul ne peut inhber. Il a d’ailleurs été démontré lors d’une autre étude, que l’apéline 17 synthétique était un substrat, in vitro, de l’enzyme de conversion de l’Angiotensine ACE2 (Angiotensin Converting Enzyme 2) ²⁷⁹.

Bien qu’il soit impossible de transposer directement ces résultats in vivo, il serait intéressant d’identifier des formes dégradées des apélines. A l’aide d’un spectromètre de masse haute résolution, l’identification des produits de dégradation serait une indication des formes circulantes d’apéline.

Cette étude qui se voulait un cas d’école pour la quantification multiplexée de biomarqueurs peptidiques présentant des concentrations très faibles, montre cependant le potentiel de la spectrométrie de masse pour une telle application. Le schéma de dosage que nous avons développé ici a prouvé sa faisabilité et comporte trois éléments clés : les standards internes tout d’abord sont les mêmes peptides que ceux à quantifier, mais marqués par des isotopes stables afin de contrôler parfaitement toutes les étapes du dosage. L’extraction, ensuite, est basée sur les propriétés physico-chimiques des peptides (échange de cations) ou basée sur l’immunoaffinité (dans le cas d’anticorps de bonne affinité) et permet une concentration quasiment sélective des analytes, indispensable pour obtenir une sensibilité adaptée aux très faibles concentrations. Enfin, une séparation par chromatographie liquide couplée à un spectromètre de masse permet d’accéder à la concentration de chacun des peptides quantifiés. La quantification des biomarqueurs possède une particularité comparée à la quantification de molécules exogènes puisque la matrice biologique utilisée contient le biomarqueur à un taux basal. La LC-MS a l’avantage de pouvoir distinguer lors de l’analyse des molécules marquées
par isotopes stables de leur équivalent endogène et le problème lié au choix de la matrice de validation exempt d’analyte est simplifié par l’utilisation de ces molécules marquées. Cependant, aucune recommandation des autorités réglementaires n’a encore été émise à ce sujet alors que des approches insatisfaisantes telles que l’utilisation de plasma d’une autre espèce, d’un plasma « reconstitué » ou immunodéplété sont parfois évoquées. Dans le cas des apélines, aucune des formes supposées n’a été détectée et la question de la matrice vierge ne posait donc plus. Dans l’hypothèse où des peptides apélines auraient été identifiés, nous avions envisagé de quantifier les apélines par dilution isotopique : des concentrations connues de standards internes auraient été introduites et auraient permis de quantifier les peptides endogènes par comparaison des réponses des composés marqués et non marqués. Les apélines marquées introduites à différentes concentrations nous auraient également permis de définir la limite de détection dans du plasma contenant les peptides endogènes comme cela a été développé précédemment par l’équipe de R. Nelson pour quantifier la résistine \(^{108}\) (une forme recombinante de la résistine était dans ce cas utilisé comme standard interne).

Cet exemple des apélines montre également l’importance de la validation des biomarqueurs présentée en introduction, et la répercussion du choix de la méthode analytique. Chaque méthode présente ses avantages et ses inconvénients, et ici la spectrométrie de masse peut être utilisée non seulement pour quantifier des composés mais également comme moyen de confirmer des méthodes préexistantes. L’immunoanalyse soulève souvent la question de ce qui est réellement quantifié lorsqu’elle est appliquée à des échantillons complexes tels que le plasma et les apélines constituent sur ce point un exemple et une mise en garde.
Conclusion Générale
Conclusion générale

Les protéines thérapeutiques constituent une classe émergente de médicaments, elles sont issues des développements biotechnologiques de ces dernières décennies. Les progrès effectués dans ce domaine permettent de produire ces polymères biologiques dans des systèmes d’expression (bactéries, cellules d’insectes, cellules de mammifères…) en quantité et en qualité suffisantes pour qu’ils puissent être utilisés comme médicaments. La recherche de biomarqueurs, notamment ceux d’origine protéique, est également en plein développement et présente un intérêt pour diverses applications, dont le diagnostic (la présence d’une ou plusieurs protéines spécifiques d’une pathologie permettant de l’identifier sans ambiguïté), le suivi de l’efficacité et de la toxicité des médicaments (avec des marqueurs de substitution ou des critères cliniques).

Les biomarqueurs et les protéines thérapeutiques sont couramment quantifiés à partir de fluides biologiques et en particulier du plasma, car c’est un lieu de passage obligé des médicaments pour la distribution aux organes. Ce fluide biologique est néanmoins très complexe avec des milliers de composés présents à des concentrations très hétérogènes s’échelonnant sur dix logs, ce qui n’est pas sans poser de problèmes à la bioanalyse car les protéines pertinentes sur le plan thérapeutique sont souvent ultra minoritaires. D’autre part, les protéines thérapeutiques et les biomarqueurs sont deux classes de composés qui doivent être quantifiés sur des plages de concentrations différentes. Alors que les protéines thérapeutiques présentent une large amplitude de concentration en raison des phénomènes d’élimination du médicament après son administration, les biomarqueurs sont caractérisés par un niveau basal peu fluctuant (qui peut être nul) et un niveau représentatif du phénomène associé (niveau pathologique, niveau de toxicité…). Les techniques analytiques utilisées en bioanalyse doivent ainsi s’adapter aux caractéristiques des protéines thérapeutiques et des biomarqueurs, et le dosage de ces molécules dans des fluides biologiques aussi complexes que le plasma requiert deux qualités essentielles : sensibilité et spécificité. La similarité de ces protéines à d’autres composés endogènes constitutants de la matrice se traduit dans les dosages par des risques d’erreur en cas de faible spécificité. Ceci est parfois le cas avec les immunodosages, techniques les plus utilisées pour la bioanalyse des protéines (thérapeutiques et biomarqueurs), lorsque des réactions croisées ont lieu entre les anticorps utilisés par l’immunoanalyse et des molécules autres que l’analyte.

Au cours des différentes études développées dans cette thèse, nous avons cherché à montrer le potentiel de la spectrométrie de masse pour la bioanalyse des protéines qui présentent un
intérêt sur le plan thérapeutique et biomarqueurs. Les développements récents de techniques de désorption/ionisation douces telles que le MALDI et l’ESI ont en effet révolutionné la spectrométrie de masse et ont permis l’application de cet outil puissant à l’étude des macromolécules du vivant. Initialement utilisée pour des molécules volatiles ou devenues volatiles par réaction chimique, la spectrométrie de masse possède maintenant les moyens d’analyser des polymères biologiques en phase aqueuse, et en particulier les protéines.

L’analyse quantitative des protéines par spectrométrie de masse peut être réalisée sur une large gamme d’instruments combinant une des deux techniques de désorption-ionisation douce (MALDI ou ESI) et différents types d’analyseurs. Le choix de l’instrument dépend alors de paramètres tels que la nature de la protéine, la sensibilité requise ou encore le débit d’analyse. Les échantillons obtenus à partir de fluides biologiques sont souvent trop complexes pour être analysés tels quels. Un traitement d’échantillon est alors effectué pour éliminer une partie des composés de la matrice ne présentant pas d’intérêt pour le dosage. Cette première étape n’est généralement pas suffisante et une séparation chromatographique en phase liquide est ensuite réalisée pour mieux isoler le composé et l’analyser dans des conditions optimales pour la sensibilité et la robustesse du dosage. Pour des raisons de simplicité, une source de type électrospray est alors souvent utilisée pour faire le couplage entre la chromatographie en phase liquide et la spectrométrie de masse. D’autre part, les développements technologiques menés sur les analyseurs ont permis d’augmenter la résolution et donc la spécificité des instruments. Cependant, les analyseurs à très haute résolution de type Orbitrap ou FT-ICR sont des outils très performants pour l’identification de protéines inconnues mais sont surdimensionnés pour le dosage de produits déjà identifiés. Les analyseurs à faisceaux d’ions de type triples quadripôles sont les plus couramment utilisés en bioanalyse car ils offrent actuellement la meilleure sensibilité. Leur rapidité d’analyse en mode SRM pour des composés déjà identifiés (20 ms par transition contre 1,5 s d’acquisition pour l’Orbitrap à une résolution de 30 000) peut être mise à profit pour des applications de multiplexage. Ces appareils possèdent également la spécificité requise pour l’analyse de molécules à partir de matrices complexes, grâce à la sélection d’ions précurseurs dans le premier analyseur et à la sélection d’ions fragments spécifiques après leur passage dans la cellule de collision. Ils ont en plus l’avantage d’être largement répandus dans les laboratoires cliniques, ce qui facilite alors la standardisation des analyses. La question de la sensibilité est un peu plus délicate en raison du comportement unique de chaque peptide ou protéine, mais d’après notre expérience et les exemples publiés, la sensibilité des appareils permet d’analyser...
Conclusion générale

des protéines à des taux de 1 nmol/L. Pour les protéines de faible abondance (avec une concentration inférieure à 1 nmol/L) il est nécessaire d’effectuer un fractionnement ou une concentration plus élaborée de la protéine par une extraction spécifique sur un plus grand volume d’échantillon.

Au début de ces travaux de thèse, peu d’exemples de quantification de protéines thérapeutiques par spectrométrie de masse avaient été publiés, alors que cet outil est utilisé de manière quasi exclusive pour la bioanalyse des petites molécules utilisées comme médicaments. Nous avons donc cherché à évaluer cette technique appliquée à la classe des protéines thérapeutiques (toutes tailles confondues), et nous avons identifié trois paramètres essentiels pour réaliser un dosage sensible et robuste : le choix d’une analyse de la protéine entière ou de fragments peptidiques spécifiques, le choix de la méthode de purification-concentration de la protéine, et le choix du standard interne.

a) Analyse de la protéine intacte ou d’un fragment peptidique :
La quantification des protéines par spectrométrie de masse peut être effectuée de deux manières, soit par analyse de la protéine intacte, soit par analyse d’un peptide spécifique de cette protéine, obtenu par protéolyse (généralement avec la trypsine). Les deux facteurs déterminants pour le choix de l’une de ces deux stratégies sont la sensibilité requise et l’homogénéité structurale de la protéine à analyser.
L’analyse des protéines intactes par désorption-ionisation électrospray génère des espèces moléculaires multichargées, dont le nombre de charges et l’étalonnage du profil de distribution d’états de charges augmentent avec la taille de la protéine. La deuxième technique de désorption/ionisation qu’est le MALDI conduit certes à la formation d’espèces beaucoup moins chargées, mais comme énoncé précédemment, la nécessité d’effectuer une séparation chromatographique oriente préférentiellement vers la technique électrospray. Les protéines de haute masse moléculaire qui forment ainsi de nombreux états de charge (jusqu’à plusieurs dizaines) se retrouvent réparties entre différentes espèces moléculaires portant un nombre variable de protons, ce qui conduit à une sensibilité insuffisante pour leur quantification.
En fonction de leur mode de production, certaines protéines thérapeutiques peuvent posséder des modifications post-traductionnelles, indispensables à leur bon fonctionnement. Toutefois, ces dernières ne sont pas toujours homogènes. Dans le cas des glycosylations, différents enchaînements de sucres peuvent ainsi être liés à la protéine, formant des espèces de masses moléculaires différentes. La protéine active présente alors une hétérogénéité et l’analyse des
formes intactes par spectrométrie de masse conduit à un spectre de masse complexe, comportant un grand nombre de pics. Ceci nécessite une meilleure sensibilité des appareils utilisés car l’intensité du signal est répartie sur ces différents pics. En outre, à moins de caractériser la pharmacocinétique des différentes isoformes de la protéine cible, le suivi spécifique de ces dernières n’est pas nécessaire.

Ce problème de sensibilité lié à l’étalement de la distribution d’états de charges et à une hétérogénéité de la protéine ne pouvant pas toujours être résolu, même avec les appareils les plus performants, une solution alternative consiste à générer des peptides à partir de cette protéine. Ces derniers présentent peu d’états de charge par desorption-ionisation électrospray ce qui permet d’augmenter l’intensité du signal en comparaison d’une analyse de la protéine entière. De plus, en choisissant un peptide qui ne porte pas les modifications post-traductionnelles de la protéine, l’ensemble des formes de la protéine se retrouve concentré en une seule espèce, permettant là encore un gain en intensité. Les informations structurales perdues par l’analyse d’un fragment de la molécule au lieu de sa forme intacte sont compensées par le gain en sensibilité. Les critères permettant de décider d’une analyse de la forme intacte de la protéine ou de fragments peptidiques sont une combinaison des facteurs précités. L’expérience prime sur la théorie en raison du caractère unique de chaque protéine, et le choix d’une digestion enzymatique dépendra de la présence ou non de modifications post-traductionnelles hétérogènes, de la séquence d’acides aminés formant plus ou moins d’états de charge et enfin de la sensibilité requise.

Le premier exemple de cette thèse portait sur la quantification d’un peptide de 6237 Da, l’EPI-hNE4, pour lequel nous avons développé une analyse sous sa forme intacte puisque seulement cinq états de charges étaient formés lors de l’ionisation. La deuxième application portait sur un anticorps thérapeutique, Cetuximab, dont la masse moléculaire était proche de 150 000 Da. Cette protéine combinait à la fois une hétérogénéité de glycosylation et une distribution d’états de charge très étalée en raison de la taille de la molécule. Une digestion enzymatique par la trypsine a alors été développée, puis trois des peptides générés ont été suivis par spectrométrie de masse après une séparation chromatographique. Deux de ces peptides étaient spécifiques de la chaîne lourde et de la chaîne légère de l’anticorps (étant situés dans la partie CDR des régions variables), le troisième a été choisi dans la partie constante de la chaîne lourde (plus précisément dans la partie Fc) afin d’évaluer la quantité d’IgG humaine extraite de manière non spécifique lors du dosage. Dans le cas de Cetuximab, et d’une manière générale pour tous les anticorps thérapeutiques, un dosage de la protéine entière par spectrométrie de masse n’est pas envisageable. Par contre, une autre approche qui
aurait pu être testée consiste à réduire l’anticorps afin de dissocier les chaînes lourdes et les chaînes légères, puis à quantifier uniquement la chaîne légère. Ce fragment de l’anticorps ne porte en effet pas de glycosylations, et présente une dizaine d’états de charges (pour une masse moléculaire d’environ 24 000 Da), ce qui aurait abouti très certainement à une moins bonne sensibilité de la méthode.

Cette approche par analyse des peptides apporte un gain incontestable en sensibilité mais un doute subsiste sur l’intégrité de la protéine quantifiée. En effet, l’analyse de quelques peptides ne garantit pas le fait que la protéine soit entière dans le fluide biologique ou que l’espèce quantifiée soit un métabolite. Il est en théorie possible de quantifier la totalité des peptides formés mais en pratique, seuls quelques peptides sont analysés et d’autres situés à divers emplacements au sein de la séquence de la protéine sont utilisés pour confirmer son intégrité. Les autres peptides ne sont pas mesurés soit parce que leur signal est trop faible soit parce qu’ils ne sont pas spécifiques de la protéine car leur séquence ne se retrouvent pas uniquement dans cette protéine comme c’est le cas pour les peptides générés à partir des parties constantes des anticorps dont la séquence est commune à toutes les immunoglobulines de la même classe. L’analyse de ces peptides non spécifiques introduirait alors un biais dans la quantification. Dans beaucoup de cas, la protéine n’est quantifiée que par seulement un ou deux peptides issus de la protéolyse, ce qui ne garantit pas l’intégrité de la protéine et encore moins sa fonctionnalité. Une méthode d’extraction peut alors être mise à profit afin d’extraire les protéines fonctionnelles par des interactions de type ligand récepteur.

b) La purification-concentration des analytes

Le deuxième aspect de la quantification des protéines par spectrométrie de masse concerne le traitement des échantillons comme moyen de sensibiliser les dosages car il est reconnu que les limites de quantification par LC-MS sont environ cent à mille fois supérieures à celles des immunodosages. Différentes approches sont applicables avec plus ou moins d’efficacité pour l’extraction et la concentration des protéines. Les plus couramment utilisées sont la précipitation des grosses protéines par l’ajout de solvants organiques, l’extraction sur phase solide, et les extractions par interactions spécifiques (protéines-protéines, récepteur-ligand …). Les deux premières sont largement utilisées pour les dosages de petites molécules, et sont aussi applicables aux peptides ou polypeptides. En revanche, elles ne sont pas adaptées aux protéines de haute masse moléculaire car elles précipitent en présence de solvant organique, et que l’extraction sur phase solide (de type hydrophobe ou ionique) permet certes de retenir les protéines mais différencie difficilement la protéine d’intérêt des autres protéines du plasma.
Conclusion générale

très abondantes. Au cours de ces études, nous avons développé une approche pour augmenter la sensibilité des dosages par spectrométrie de masse. Nous nous sommes inspirés des immunodosages en mettant en place une étape d’immunocapture des protéines. Nous avons ainsi évalué la sensibilité et la robustesse d’une immunocapture combinée à une analyse LC-MS par une validation simplifiée de ces méthodes analytiques. L’immunoaffinité constitue en effet un moyen efficace pour améliorer la sensibilité des dosages des protéines par LC-MS. La sensibilité du spectromètre de masse étant figée, l’amélioration des limites de quantification repose sur la méthode de traitement d’échantillon utilisée, qui doit d’une part spécifiquement extraire la protéine et d’autre part la concentrer. Cette extraction sélective permet tout d’abord d’éliminer les autres constituants du plasma en partie responsables de la variabilité et de l’effet matrice du dosage, et ensuite de concentrer la protéine en utilisant un volume plasmatique supérieur au volume d’éluition. Ce dernier étant imposé par le système LC-MS, le volume initial est le paramètre à prendre en compte pour améliorer la sensibilité du dosage. Ainsi, pour les trois développements analytiques effectués au cours de cette thèse, un volume initial de plasma ou de sérum 8 à 80 fois supérieur au volume d’éluition a été utilisé, ce qui correspond à des facteurs de concentration du même ordre de grandeur.

Pour la quantification du peptide EPI-hNE4, des anticorps dirigés contre ce peptide avaient été produits par immunisation de lapins. Les anticorps ont été immobilisés sur microbilles magnétiques fonctionnalisées par des protéines G. Ce format sur billes est assez souple d’utilisation, et permet une bonne maîtrise des conditions d’incubation et de lavage, que ce soit lors de l’immobilisation des anticorps ou lors de l’incubation avec les échantillons plasmatiques. L’emploi de microbilles permet également d’augmenter la surface de capture tout en conservant un faible volume de billes, paramètre important puisque ce volume détermine aussi le volume minimum d’éluition des protéines captées par les anticorps (pour des raisons de solubilisation des billes). Par cette méthode, nous avons pu démontrer que l’intensité du signal correspondant au peptide extrait par immunoaffinité était proportionnelle au volume d’échantillon, alors qu’une extraction par précipitation des protéines ne permet pas d’obtenir ce gain en intensité en raison de l’effet matrice. Ainsi, en partant d’un volume de plasma de 400 µL, une limite de quantification de 0,5 ng/mL a été obtenue, ce qui correspond à une amélioration d’un facteur 10 en comparaison des dosages développés précédemment, puisque le dosage par LC-MS utilisant une précipitation des protéines (pour un volume d’échantillon de 100 µL) ainsi que le dosage immunologique avaient une limite de quantification de 5 ng/mL.
Lors du deuxième exemple, l’anticorps thérapeutique Cetuximab a été extrait spécifiquement des échantillons plasmatiques par interaction avec sa cible biologique, le récepteur du facteur de croissance épidermique (EGFR) qui était lié de manière covalente aux microbilles magnétiques. L’utilisation de la cible de l’anticorps pour son extraction permet de quantifier la forme active de cet anticorps, son mécanisme d’action étant basé sur sa liaison à l’EGFR. Cetuximab a été ensuite digéré par une protéase en raison de sa taille et de l’hétérogénéité de la glycosylation. Seuls trois peptides ont été analysés pour la quantification, ce qui ne permet pas de s’assurer de l’intégrité de l’anticorps contrairement à l’EPI-hNE4 analysé sous sa forme entière. Cependant, la quantification des 59 peptides formés lors de la digestion par la trypsine n’est pas envisageable, puisque seulement 31 ont été identifiés et que parmi ces 31 peptides, 20 sont communs aux IgG humaines. L’extraction par interactions non covalentes avec la cible biologique EGFR est en fait la seule manière de s’assurer de la fonctionnalité de l’anticorps. La limite de quantification obtenue pour cet anticorps est de 20 ng/mL en partant de 500 µL de plasma et est comparable à la sensibilité du dosage immunologique (100 ng/mL). La forte affinité de l’anticorps pour sa cible a permis d’obtenir des rendements d’extraction proches de 100 %. Le gain en sensibilité est alors égal au rapport des volumes d’échantillon et d’élution, soit un facteur dix. Les anticorps thérapeutiques ayant généralement une très forte affinité pour leur cible biologique, cette méthode d’extraction est bien adaptée à cette classe de protéines thérapeutiques. La sensibilité obtenue pour le dosage de Cetuximab est bien inférieure aux besoins de la bioanalyse pour suivre des profils de cinétique de cet anticorps, dont la demi-vie est de 5 jours et dont la concentration à l’équilibre (une injection par semaine) est supérieure au microgramme par millilitre. Cette approche montre néanmoins le potentiel en terme de sensibilité d’une combinaison immunocapture LC-MS.

Le troisième exemple illustre encore mieux la nécessité de purifier-concentrer les analytes avant analyse par LC-MS. Les cinq peptides biomarqueurs Apelines étant décrits à des taux inférieurs au nanogramme par millilitre, nous avons développé dans un premier temps une immunocapture mais les anticorps n’étaient pas assez affins et cette approche n’aurait pas permis d’atteindre la sensibilité requise. Une seconde méthode d’extraction de ces peptides a alors été mise au point par échanges de cations sur microbilles magnétiques, aboutissant à une limite de détection de quelques picogrammes par millilitre en partant de 4 mL de plasma. La purification-concentration avant l’analyse par LC-MS des protéines faiblement concentrées
est nécessaire pour pouvoir les quantifier par cette méthode : "purification" en raison de la complexité du plasma, et "concentration" en raison des taux supposés ultra minoritaires de ces protéines. Au cours de cette étude et malgré des limites de détection très basses, les formes supposées circulantes d’Apelines n’ont pas été détectées.

c) Choix du standard interne

Le dernier aspect indispensable à une analyse sensible et robuste des protéines par spectrométrie de masse concerne l’utilisation d’un standard interne. La spectrométrie de masse a en effet l’avantage de pouvoir analyser en parallèle de nombreuses molécules et l’une en particulier, le standard interne, sert à normaliser l’ensemble des données, depuis les points de calibration jusqu’aux échantillons inconnus. Afin de mimer au mieux le comportement de l’analyte, ce standard interne doit avoir des caractéristiques proches de celles de l’analyte. Différentes étapes lors du dosage nécessitent une normalisation, de la première étape qu’est l’extraction à l’analyse par LC-MS, en passant par la protéolyse enzymatique. Suivant le standard interne choisi, une partie seulement ou la totalité de ces étapes seront contrôlées. Différentes approches tirées de la littérature ont été présentées au cours des chapitres précédents et parmi celles-ci, nous en avons utilisé trois lors des trois exemples développés dans cette thèse : la modification chimique de la protéine, l’utilisation d’une protéine similaire, et l’utilisation de peptides marqués par isotopes stables. Un standard interne pour le dosage du peptide EPI-hNE4 a ainsi été obtenu par modification chimique, en réduisant les trois ponts disulfures du polypeptide et en modifiant les thiols par l’iodoacétamide. Malgré le changement de conformation induit par cette modification, une interaction avec les anticorps avait toujours lieu, ce qui nous a permis de contrôler l’ensemble des étapes du dosage. Cette méthode est certainement la plus simple à mettre en œuvre, mais les changements de conformation induits peuvent modifier les affinités pour les anticorps de capture, ainsi que toutes les autres caractéristiques de l’analyse (temps de rétention, ionisation, dissociation…), compromettant l’utilisation de la protéine modifiée comme standard interne. Un autre type de standard interne a été utilisé lors de la quantification de Cetuximab et correspond à un anticorps d’une espèce différente mais dirigé contre la même cible biologique afin de contrôler l’immunocapture. Cette approche diffuse de l’utilisation des analogues puisque la séquence est ici totalement différente, et que seule la fonction est identique. Malgré une séquence peptidique totalement différente entre analyte et standard interne, des résultats de validation compris entre 15 et 20 % pour la justesse et la précision ont été obtenus. Un tel standard interne risque cependant de mal contrôler l’effet matrice et d’augmenter la variabilité
du dosage inter-individus en raison de la différence d’affinité pour la cible qui ne permet pas de contrôler parfaitement les étapes d’immunocapture. Le standard interne idéal pour la quantification des protéines consiste en fait à utiliser la même protéine mais marquée par des isotopes stables. C’est cette dernière approche que nous avons mise en œuvre pour la quantification multiplexée des peptides biomarqueurs Apelines. Chacune des formes possédant son propre standard interne, nous avons ainsi pu démontrer l’efficacité de notre approche visant à extraire les Apelines synthétiques et leur standard interne du plasma et à les analyser à des taux de quelques picogrammes par millilitre. Ces standards marqués par isotopes stables peuvent être obtenus soit par synthèse peptidique pour des polypeptides soit par expression de micro-organisme en culture dans des milieux nutritifs enrichis par isotopes stables pour les protéines de haute masse moléculaire. Ce type de standard interne constitué de la protéine marqué par isotopes stables est sans nul doute la méthode de référence pour obtenir un dosage robuste. C’est en effet la seule manière de s’affranchir totalement de la variabilité intra- et inter-individus et de contrôler parfaitement les différentes étapes de dosage, surtout lorsque leur rendement n’est pas de 100 %. La seule limitation à l’utilisation de ces molécules est liée à leur coût ou aux compétences de biologie moléculaire que requiert leur production.

La quantification des protéines par spectrométrie de masse peut ainsi être sensible et robuste à condition d’intégrer ces trois aspects : une étape d’immunoextraction, permettant dans un premier temps de purifier-concentrer (avec des anticorps de forte affinité) les protéines lorsqu’elles sont présentes à des faibles concentrations, combinée à l’utilisation d’un standard interne constitué si possible de la protéine marquée par isotopes stables, pour apporter un contrôle de la variabilité du dosage, et enfin, une étape de protéolyse et le choix de peptides spécifiques (par l’unicité de leur séquence) pour substituer la protéine lors de l’analyse, afin d’étendre la sensibilité de cette méthodologie aux protéines de haute masse moléculaire. Cette stratégie est illustrée dans un article qui sera publié dans Journal of Pharmaceutical Technology et présenté en annexe.

Au cours de cette thèse, les trois exemples de dosages par spectrométrie de masse ont montré une sensibilité comparable voire même meilleure que celle des dosages immunologiques correspondants. Ces développements analytiques ainsi que d’autres exemples de la littérature montrent que la LC-MS est une méthode de dosage sensible applicable à la bioanalyse des protéines thérapeutiques et des biomarqueurs, quelle que soit la taille de la protéine, et ce
mème dans le cas où cette dernière est présente dans des matrices complexes à des taux subnanomolaires. Des préparations d’échantillon sélectives combinées à la spécificité de la spectrométrie de masse, que ce soit par des analyses MS/MS ou par l’utilisation d’instruments à ultra haute résolution, permettent également de minimiser les erreurs engendrées par des composés de la matrice. L’utilisation d’un standard interne, méthodologie propre à cette technique, augmente quant à elle la robustesse des analyses en s’affranchissant de l’effet matrice intra- et inter-échantillons. Le fait de discriminer les analytes en fonction de leur masse permet également à la LC-MS de quantifier facilement plusieurs composés au cours de la même analyse. Ces propriétés de multiplexage permettent par exemple de réaliser des études de pharmacocinétique comparant les paramètres de chaque molécule d’un produit hétérogène. De plus, les analyses par spectrométrie de masse sont plus faciles à standardiser que les immunodosages, en raison de la robustesse de l’instrumentation, et là encore de l’utilisation d’un standard interne.

La spectrométrie de masse permet également de s’affranchir de la présence d’anticorps interférents liée à l’immunogénicité de l’analyte, car contrairement aux techniques immunologiques, les traitements dissociant les interactions analyte-anticorps sont compatibles avec une analyse LC-MS. L’utilisation d’un standard interne, dont le signal va diminuer en présence d’anticorps endogènes, permet également de limiter ce problème.

Toutefois, la mise au point d’un dosage par spectrométrie de masse reste parfois délicate. L’obtention d’un bon standard interne peut en particulier se révéler longue et onéreuse, surtout lorsque ce dernier est une protéine marquée par isotope stable. De plus, la sensibilité est obtenue au détriment du volume d’échantillon utilisé, et les extractions sélectives par immunoaffinité des protéines ultra minoritaires sont encore dépendantes de la production d’anticorps, augmentant les délais de mise au point.

Néanmoins, nos exemples ainsi qu’un nombre croissant de publications démontrent que cette technique peut se révéler très performante pour résoudre des problèmes analytiques complexes et devenir la méthode de référence en bioanalyse.
Bioanalysis of recombinant proteins by mass spectrometry

Article accepté dans Pharmaceutical Technology

Eric Ezan*, Mathieu Dubois and François Becher

*CEA, IBITECS, Service de Pharmacologie et d'Immunoanalyse, 91191 Gif-sur-Yvette France. Phone: 33-1-69-08-73-50; Fax: 33-1-69-08-59-07; e-mail: eric.ezan@cea.fr
Introduction

Biotechnological developments have led to an increased number of recombinant proteins or antibodies in drug development which offer high potential in various diseases such as cancer, growth disturbances, and diabetes. This class of compound represented more than 30% of the drugs approved in the last few years and nearly 200 products have now gained approval 1280. Study of the pharmacokinetics of recombinant proteins is essential during their preclinical and clinical evaluation. *In vivo* transformation, binding to circulating targets, immunogenicity are some examples of their pharmacokinetic properties which drive the selection of bioanalytical assays for assessing blood level of these proteins. Current methods for pharmacokinetic evaluation of proteins are mainly based on immunoassays. However, these sensitive methods involve a time-consuming step to obtain polyclonal or monoclonal antibodies and are susceptible to cross-reaction with metabolized fragments, circulating receptors or endogenous analogous proteins. Moreover, recombinant proteins are often immunogenic and lead to endogenous antibodies present in blood samples. This generates major interferences in both competitive and sandwich immunoassays leading to false-positive or negative results depending on the immunoassay format 2.

There is no doubt that increased regulatory requirements for recombinant proteins or therapeutic monoclonal antibodies will necessitate a large panel of different analytical strategies. Among the various alternatives, liquid chromatography coupled to mass spectrometry (LCMS) is potentially useful since it may offer rapid development and improved assay specificity. LCMS methods constitute already the technique of choice for small molecular weight drugs and start to be of interest for recombinant proteins. A few LCMS methods have been used for preclinical toxicity evaluation and clinical pharmacokinetics. The recent literature demonstrates that these methods can satisfy the requirements of specificity, reproducibility and sensitivity (Table 1). The most sensitive techniques use an immunoaffinity extraction as sample pre-treatment and allow limit of detection close to 10-100 pM, one or two-log above immunoanalytical methods, but largely satisfactory for drug monitoring in biofluids.
Analytical strategies

Two main alternatives are possible although they offer different levels of sensitivity (Figure 1). A first one is a direct strategy in which the sample preparation step is reduced to protein precipitation or direct trypsination and a second one in which the analyte is specifically extracted by immunoconcentration with specific antibodies or antigens in the case of recombinant antibodies. An interesting feature of the second approach is the increase of sensitivity up to 10-100-fold owing to sample concentration and removal of matrix interferences in the mass spectrometer. It has to keep in mind that proteins with a molecular weight above 10-15 KDa generally has to be submitted to trypsin digestion.

The first approach is preferred when the required sensitivity is above 10-100 nM. The sample preparation may consist only in protein precipitation or removal of abundant proteins. However, a main drawback is related to remaining endogenous compounds in the extracted plasma, leading to significant matrix effects which induce a lower sensitivity. When the sensitivity requirement is high, the second alternative may be chosen. Here, a specific step such as an immunocapture affords sample concentration and removal of matrix interferences. For ease of assay development, magnetic beads coated with G proteins that bind the monoclonal or polyclonal antibody can be used. After binding, the targeted protein is eluted from the beads using organic solvents, high ionic strength solutions, or low pH solutions. At this step, a ten- to one-hundred-fold increase in sensitivity can be obtained thanks to sample concentration since a plasma volume of 1 ml may be reduced to less than 0.1 ml after extraction. Furthermore, this sample pretreatment allows the removal of unrelated proteins thus reducing the ionization efficiency in the mass spectrometer.

In the literature, the two strategies are illustrated as reported in Table 1. Analysis of small therapeutical proteins by a direct approach like solid phase extraction followed by mass spectrometry quantification, as described for rK5 by Ji et al or for Sifuvirtide by Dai et al, resulted in poorer sensitivity (10 000 and 1000 pM respectively) than analysis performed with immunoaffinity. The application of the second strategy to Synacthen by Thevis et al, or to rhEPO by Guan et al, lead to better sensitivity (100 and 10 pM respectively). In our laboratory we recently have the opportunity to compare these two alternatives for a small therapeutic protein comprising 56 amino-acid (MW=6256 Da) (Figure 1). Extraction was performed with protein precipitation
(first alternative) or by immunocapture (second alternative), followed by liquid chromatographic separation of the intact protein and ions at m/z 1039 to m/z 1225 were monitored. The internal standard consisted of a chemical analog (cystein derivatization with iodoacatamide) which was introduced at the beginning of the sample treatment in order to monitor the entire process. A ten fold higher sensitivity was observed with the immunocapture approach (limit of quantification at 0.5 ng/mL vs 5 ng/mL), giving a sensitive assay of the protein able to monitor plasma concentration up to 72 hours after injection (3). Methods with both extraction processes were validated according to FDA recommendation and compared to the original ELISA assay, showing very good agreement.

A second example is related to monoclonal antibody (mAb) quantification. One difficulty for therapeutic monoclonal antibodies is their similarity to human endogenous immunoglobulins, one of the most abundant proteins in plasma with concentration around 10 mg/mL. This is 1000- to 10,000-fold greater than that of circulating therapeutic antibodies and may represent a potential source of analytical interference. A second difficulty is that the assay should be able to specifically determine the therapeutic active form of the mAb in the biological matrix, i.e. the form able to bind its endogenous target. Using the first alternative, with either solid phase extraction or albumin depletion, Yang et al, Hagman et al and Heudi et al recently published quantification of mAb with a sensitivity ranging from 3000 to 33 000 pM. At the opposite, we used the second strategy for the quantification of Erbitux, a mAb used for the treatment of colorectal cancer. We used magnetic beads covalently linked to the extra cellular region of EGFR (sEGFR), the target of Erbitux, which were used to extract the mAb from human serum. After binding and elution, the antibody was submitted to trypsin digestion and tryptic peptides representative of the variable regions of both the light and heavy chains were selected for quantification (Figure 1). These peptides (LT3 and HT4) were monitored by LCMS. The method allowed a limit of detection of 20 ng/ml which is even better than most of Elisa for therapeutic antibodies (5). In this case, the internal standard consisted of a mouse monoclonal antibody specific to EGFR.

Specific problems
Although the examples provided in the literature demonstrated that LCMS approaches for the assessment of recombinant proteins in biological fluids may
provide sensitive and specific assays, few companies so far use this technique for their pharmacokinetic studies. A few technical difficulties remain to be fully solved. Among them is the use of specific capture step amenable to assay automation using on-line extraction columns or easy-to-perform manual steps.

A second problem is the need of internal standard for accurate and reproducible quantification, especially when sample preparation involves numerous steps. Although tryptic peptides labeled with stable isotopes are often used, they do not allow checking of the sample preparation steps, such as the immunocapture and the enzymatic digestion. As demonstrated above, analogs to the targeted protein may be used but they do not represent the ideal situation. In the field of bioanalysis of small molecular weight drugs, the current strategy is the use of a drug labelled with stable isotopes. On the same way, isotope-labelled forms of the entire proteins would obviously constitute the ideal internal standard for the quantification. Considering this concept, colleagues from the CEA (EDyP Laboratory at CEA/Grenoble, France) have recently developed a new methodology which was named Protein Standard Absolute Quantification (PSAQ)\(^6\). This methodology uses isotope-labeled full-length proteins as standards. These standards are produced and labeled in “cell-free” systems, which allow an efficient labeling and facilitate the purification step. As those standards perfectly match the biochemical properties of the target proteins, they can be directly added into the samples at the very first step of the analysis process. In head-to-head comparisons with previous quantification strategies (labeled tryptic peptides), PSAQ more accurately detected the quantities of two *Staphylococcus aureus* toxins that were present in drinking water and urine. Applications of the PSAQ strategy for recombinant proteins but also in very different research domains like disease biomarker evaluation, quality control of vaccines, allergens and toxins detection, can be anticipated.

Conclusion

Mass spectrometry approaches and technologies derived from proteomic studies are readily to be implemented for absolute quantification of therapeutic proteins in biological fluids. Table 2 summarizes the advantages and disadvantages of mass spectrometry compared to Elisa. It is expected that in a few years, LCMS methods which are already the reference for the determination of the pharmacokinetic profiles of small molecular weight drugs will also gain importance for biotech drugs.
Reference List

Figure 1: Analytical strategies and applications to a small molecular weight protein and to a monoclonal antibody.
<table>
<thead>
<tr>
<th>Compound</th>
<th>MW (kDa)</th>
<th>Biological Matrix</th>
<th>Sensitivity (pM)</th>
<th>Sample preparation</th>
<th>Sample Volume</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synacthen</td>
<td>2.9</td>
<td>Human plasma</td>
<td>100</td>
<td>IA(^a)</td>
<td>2000 µL</td>
<td>Thevis et al, RCM (2006), 20, 3551-3556</td>
</tr>
<tr>
<td>Enfuvirtide</td>
<td>4.5</td>
<td>Human plasma</td>
<td>1000</td>
<td>na(^b)</td>
<td>na</td>
<td>Zhang et al., Clin Pharmacol Ther (2002), 72, 10-19</td>
</tr>
<tr>
<td>Sifuvirtide</td>
<td>4.7</td>
<td>Monkey plasma</td>
<td>1000</td>
<td>SPE(^c)</td>
<td>100 µL</td>
<td>Dai et al, RCM (2005), 19, 1273-1282</td>
</tr>
<tr>
<td>EPI-hNE4</td>
<td>6.2</td>
<td>Human plasma</td>
<td>800</td>
<td>PP(^d)</td>
<td>100 µL</td>
<td>Becher et al., Anal Chem (2006), 78, 2306-2313</td>
</tr>
<tr>
<td>I IGF1GF1</td>
<td>7.6</td>
<td>Human plasma</td>
<td>6500</td>
<td>IA</td>
<td>60 µL</td>
<td>Bredehöft et al, RCM (2008), 22, 477-485</td>
</tr>
<tr>
<td>rK5</td>
<td>10.4</td>
<td>Monkey plasma</td>
<td>10000</td>
<td>SPE</td>
<td>50 µL</td>
<td>Ji et al, Anal Chem (2003), 75, 7008-7014</td>
</tr>
<tr>
<td>Resistin</td>
<td>19.1</td>
<td>Human plasma</td>
<td>130</td>
<td>IA</td>
<td>400 µL</td>
<td>Tubbs et al, Anal Chem (2006), 78, 3271-3276</td>
</tr>
<tr>
<td>Erbitux (mAb)</td>
<td>150</td>
<td>Human plasma</td>
<td>130</td>
<td>IA</td>
<td>500 µL</td>
<td>Dubois et al, Anal Chem (2008), 80, 1737-1745</td>
</tr>
<tr>
<td>Human mAb</td>
<td>150</td>
<td>Rat plasma</td>
<td>3000</td>
<td>SPE</td>
<td>10 µL</td>
<td>Yang et al, Anal Chem (2007), 79, 9294-9301</td>
</tr>
<tr>
<td>Human mAb</td>
<td>150</td>
<td>Monkey serum</td>
<td>13000</td>
<td>Albumin depletion</td>
<td>25 µL</td>
<td>Hagman et al, Anal Chem (2008), 80, 1290-1296</td>
</tr>
<tr>
<td>Human mAb</td>
<td>150</td>
<td>Monkey serum</td>
<td>33000</td>
<td>SPE</td>
<td>50 µL</td>
<td>Heudi et al, Anal Chem (2008), 80, 4200-4207</td>
</tr>
</tbody>
</table>

\(^a\) Immunoaffinity; \(^b\) not available; \(^c\) Solid Phase Extraction; \(^d\) Protein Precipitation

Table 1: Recent analytical developments for the quantification of recombinant proteins or antibodies
<table>
<thead>
<tr>
<th>Limit of quantification</th>
<th>ELISA</th>
<th>LC-MS/MS</th>
<th>IC-LC-MS/MS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-10 pM</td>
<td>1-100 nM</td>
<td>50-1000 pM</td>
</tr>
<tr>
<td>Specificity (vs metabolites)</td>
<td>Low/Medium</td>
<td>Medium/High</td>
<td>High</td>
</tr>
<tr>
<td>Precision</td>
<td>Medium, no internal standard possible</td>
<td>High, with addition of internal standard</td>
<td>High, with addition of internal standard</td>
</tr>
<tr>
<td>Time for development</td>
<td>≈ 8 months (monoclonal antibody)</td>
<td>Less than 1 month (polyclonal antibody)</td>
<td>≈ 4 months</td>
</tr>
<tr>
<td>Throughput</td>
<td>High</td>
<td>High</td>
<td>Low/Medium, possibility of IC automatization (robot).</td>
</tr>
</tbody>
</table>

Table 2: Comparison between ELISA and mass spectrometry quantification approaches
Références bibliographiques

37. J. Daussant and F. X. Desvaux, Introduction to immunochemical techniques for medical diagnosis, food quality control and environmental testing, Institute of chemical technology, Prague, ICT Press, Prague, **2007**.

47. H. D. Beckey, Principles of Field Ionization and Field Desorption in Mass Spectrometry, Pergamon, Oxford, **1977**.

55. E. de Hoffmann and V. Stroobant, Spectrométrie de masse, Dunod, 2005.

63. Rayleigh Lord, On the equilibrium of liquid conducting masses charged with electricity, Philosophical Magazine 14, 184-186. 1882.

111. Q. C. Ji, E. M. Gage, R. Rodila, M. S. Chang, and T. A. El-Shourbagy, Method development for the concentration determination of a protein in human plasma utilizing 96-well solid-phase

Si la chromatographie liquide couplée à la spectrométrie de masse est un outil de bioanalyse largement utilisé pour la quantification des molécules de faible poids moléculaire dans les fluides biologiques, il n’en est pas de même pour les macromolécules. Au cours de ce travail, nous avons exploré les possibilités et les difficultés d’une méthode d’extraction par immunoaffinité couplée de la spectrométrie de masse pour la quantification des protéines recombinantes et des biomarqueurs. Cette stratégie a tout d’abord été appliquée à une petite protéine thérapeutique, Epi-hNE4, un inhibiteur de l’élastase humaine et pour lequel nous avons obtenu une sensibilité de 80 pM. Cette méthode a également été appliquée à un anticorps thérapeutique utilisé pour le traitement du cancer colorectal, Cetuximab, pour lequel une sensibilité de 130 pM a été obtenue grâce à une extraction par l’EGFR, sa cible biologique. Ce dernier développement offre des perspectives pour évaluer l’immunogénicité des protéines thérapeutiques. La méthode de référence est la technique ELISA, que nous avons appliquée à la détection d’anticorps anti-Epi-hNE4, mais les difficultés rencontrées suggèrent que la spectrométrie de masse serait une alternative intéressante. Enfin, une dernière application de la spectrométrie de masse pour la quantification multiplexée des biomarqueurs a été menée sur les apelines, une famille de peptides de 12 à 36 acides aminés jouant un rôle crucial dans le système cardiovasculaire. Une limite de détection de l’ordre de 25 pM a été atteinte, et de façon intéressante, cette méthode nous a permis de conclure à l’absence des formes supposées circulantes.

Although liquid chromatography coupled to mass spectrometry is a commonly used technique for low molecular weigh compounds quantification in biological matrixes, it is no longer the case for macromolecules. The aim of this work was to evaluate immunoaffinity extraction coupled to mass spectrometry possibilities and difficulties in recombinant proteins and biomarkers quantification. This approach was first applied for absolute quantification of an intact small therapeutic protein, Epi-hNE4, an inhibitor of human neutrophil elastase. Immunoaffinity extraction from plasma led to a lower limit of quantification of 80 pM. The method was then applied to a therapeutic monoclonal antibody used for the treatment of colorectal cancer, Cetuximab. A lower limit of quantification of 130 pM was achieved through an extraction from plasma involving recognition of its biological target, EGFR. This last development offer possibilities for the immunogenicity testing of therapeutic proteins. The golden standard remains ELISA technique, which we implemented in a screening test for immunogenicity testing of Epi-hNE4, but difficulties encountered suggested that mass spectrometry is a potential alternative. Finally, multiplexed quantitative mass spectrometry was applied to apelins, a peptide biomarkers family between 12 and 36 amino acids, involved in cardiovascular functions. A limit of quantification of 25 pM was achieved, and interestingly, this method brought evidence of the absence of presupposed circulating forms.

Mots clés

Protéines thérapeutiques, immunogénicité, biomarqueurs, immunoextraction, chromatographie liquide couplée à la spectrométrie de masse