
HAL Id: tel-00340109
https://theses.hal.science/tel-00340109

Submitted on 19 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree-Representation of Set Families in Graph
Decompositions and Efficient Algorithms

Binh-Minh Bui-Xuan

To cite this version:
Binh-Minh Bui-Xuan. Tree-Representation of Set Families in Graph Decompositions and Efficient
Algorithms. Computer Science [cs]. Université Montpellier II - Sciences et Techniques du Languedoc,
2008. English. �NNT : �. �tel-00340109�

https://theses.hal.science/tel-00340109
https://hal.archives-ouvertes.fr

Université Montpellier II Sciences et Techniques du Languedoc

Thesis Dissertation

for the grade of Docteur de l’Université Montpellier II

Doctoral School École Doctorale Information, Structures, et Systèmes
Doctoral Program Informatique

with a public presentation and defence on September 9th 2008

Tree-Representation of Set Families

in

Graph Decompositions and Efficient Algorithms

by

Binh-Minh Bui-Xuan

Thesis committee

Thomas Erlebach (rapporteur) Professor at University of Leicester
Michel Habib (supervisor) Professor at Université Paris VII
Pavol Hell (rapporteur) Professor at Simon Fraser University
Christophe Paul Chargé de Recherche at Cnrs, Lirmm

Stéphan Thomassé Professor at Université Montpellier II
Ioan Todinca (president) Professor at Université d’Orléans

The dissertation was prepared at the research group “Visualisation and Algorithms for Graphs”
of the “Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier”

Foreword and Acknowledgements

This thesis is conducted within the “École Doctorale Information, Structures, et Systèmes”

at the University Montpellier II, France. It is written in English, and an extended abstract

of its contents is given in French at the end.

Also, and most importantly, this thesis would not have been possible without the

priceless help of many people. As well, for most of them not only I am grateful as being

the author of the thesis, but also as being the lucky person who had the privilege to meet

– and for a few cases to live with – them here below. (I can only speak for “most of them”

because there are some I have never met in real life.) These are important encounters to

me and have many consequences to, among other things, the very current dissertation as

I strongly believe my perspectives would have never become what they are now if ever

these meetings have differed, for better or for worse that is.

Of course it is impossible to make an exhaustive enumeration of such acknowledging

declarations, and it is by no means the purpose of the following lines since I fail in seeing

how thanks could be expressed by mere words. However, this kind of acknowledgement

sections is usually said to be the only place in thesis dissertations where Ph. D. students

could feel free to put anything inside (isn’t it!). Then, according to the common practice,

I would like to take the opportunity and sketch some personal feelings here.

Firstly, I am grateful to Michel Habib for, well, an unbounded amount of topics (and

also of beer). Among other things, Castelnau-le-Lez is a pleasant town, Palavas-les-Flots

a good haven, Café de la Mer a strange place, Men Meur III a suntanning sailboat (at

least it is for lazy me), and the baby-bed still in use. Besides these important checkpoints

and matters, I am also grateful for his supervision calibre despite the geographical distance

between Montpellier and Paris. On the one hand, it was particularly nice during some

everlasting months a year ago or so to still trust, work together, and give encouragements

when no other sensible person I know seemed to be willing to continue to believe any

further in the project I was working on at that time. I acknowledge this as a kind of

seldom magic which I personally would take into account in those now-trendy discussions

around the strange concept of a “chercheur vs. trouveur”, should I ever have to consider

funny such discussions. On the other hand, I was also particularly impressed that day,

some years ago now, by how well the piece of advice was given against some research

ventures I was to commit, leaving no place there to be taken as an administering action.

This probably vindicates true instances of leadership, also I would acknowledge it as is.

Finally, though I will ever – and ever again – be surprised by the eventually quite low

frequency in which we meet for working purposes, I am willing to acknowledge this fact as

a unique opportunity for feeding my personal topics of interest – as well as some beliefs,

from a certain point of view.

I am grateful to the other members of the committee: Thomas Erlebach, Pavol Hell,

Christophe Paul, Stéphan Thomassé, and Ioan Todinca, and especially to the rapporteurs.

This is not only for their interest in my work and the subsequent refereeing, but also for

numerous comments which help improving greatly the thesis at many planes.

I would like to send a special thank to all those who did the big favour of reading

some early versions of the thesis and giving feedback on them. They are, in lexicographic

order: Attila Bernáth, Paul Bonsma, Bùi Xuân Ha
?
i, David Coudert, Serge Gaspers, Erik

Jan van Leeuwen, Daniel Meister, Adèle Mennerat, Fabien de Montgolfier, Michaël Rao,

and Jan Arne Telle. I cannot even think about what the thesis would look like without

their great help.

I am also specially grateful to those who helped me in finding, probably not the

best, but at least the most acceptable way for presenting the thesis in 45 minutes. For

this I thank, in addition to the previously mentioned persons: Vincent Berry, Olivier

Cogis, Jean Daligault, Sylvain Durand, Philippe Gambette, Daniel Gonçalves, Vincent

Limouzy, Jérôme Palaysi, Anthony Perez, Alexandre Pinlou, Chedy Räıssi, Guillaume

Verger, and Marie-Catherine Vilarem. A second thank to Vincent Limouzy for more

suntanning sessions on sweet and swift Maderka II.

I had the opportunity to learn a lot of things from working sessions and occasional

discussions with very good fellow researchers. Sometimes the discussions consisted of

unfamiliar concepts, most of the time they were just plainly strange. For these unexpected

adventures, I am also grateful to: Sandeep Bhadra, Pierre Charbit, Christophe Crespelle,

Benoit Darties, Afonso Ferreira, Aubin Jarry, Marc Plantevit, Martin Vatshelle, and

Yngve Villanger.

Teaching has been a dear exercise to me, and I have learned much from such experience.

Thus, I am grateful to those who provided me with teaching duties for broadening my

perspectives. Here, the additional names will be: Stéphane Bessy, Norbert Kern, Frédéric

Koriche, Gaël Isoird, Pierre Pompidor, and Richard Terrat. A second and specially-big

thank to Pierre Pompidor for some quasi-ritual sessions. I would also like to thank my

past students for unfailingly forcing me to find better explanations (again, and still again),

no matter what the topic is about. Somehow, this thesis would have never been the same

without their efforts.

I am also grateful to the other colleagues of the Lirmm for some fun moments during

the thesis period. An additional but not exhaustive list is: Maxime Collomb, Emeric

Gioan, Flavio Guinez, Mountaz Hascoët, Philippe Janssen, Nancy Rodriguez, and Gilles

Simonin.

I would like to send esteems to my past teachers, and especially to Thâ`y Trâ`n Văn

Ha.o and Richard Antetomaso. I am grateful to Thâ`y Ha.o for the monthly assignments he

gave. They probably settled the most solid basis for my current mathematical standpoint.

I am grateful to Richard “Toto” for excessive training and for letting me know one can

at the same time “do maths”, be a fan of Olympique de Marseille, and drink soda at the

blackboard. I am also grateful to Thâ`y Ha.o for making me realize that outranking several

contests does not necessarily imply being good at the exercise, and to Richard “Toto” for

making me realize that some contest just has to be won.

I thank Yann Palu and François Simenhaus for some badminton contests a decade

ago, and more recently for some refreshing phone calls on linear algebra. For purely

scientific reasons (perhaps), I would like to thank my long-lasting friend Minh Ngo.c, who,

I believe, was the first person to make me realize that some generic algorithms just won’t

work properly, and the automatic reflexes I had at that time with occidental chess would

not let me beat her at oriental chess. Another person who has been doing the same job

as winning a lot on me is Quang Hiê
?
n. I thank him for that. I am grateful to Paven

Byzov for saving my life and making me realize that some research ventures are simply

not meant to be committed, especially when it comes to a half-frozen lake.

Thank Gram’p for, among other things, a sample of Ginette Mathiot’s La cuisine pour

tous, the only programming language I am willing to bring back home. Thank Bà Ngoa. i

and Tat’ for demonstrating their art in that discipline. Thank Ông Nô. i for his verses, even

if they include some strange grammar sometimes. Thank Me. for bringing me up without a

word about computers, despite her expertise on the matter. Somehow I think she showed

me the way... Thank Ba for never being the first of us to talk about mathematics, for

always answering to my questions with delight and enthusiasm, and for making me take

mathematics as a cheeriness, not a burden, as a trick, not plainly magick, finally – and

most importantly – as a job, not a life. I thank him also for providing me with the Moka

of Buôn Mê Thuô. t district, without the use of which this dissertation would have never

started. I am afraid to say, but thank Bé Hà and Ngay for serving the rice spirits∗ of Phát

∗This is not to be mistaken with the quite fashionable sake, which comes originally from Japan.

Diê.m district at their wedding, as ever since I have been hoarding its alike, and without

the use of which this dissertation would have never ended.

Not that I expect to meet them someday (nor that I am willing to, perhaps), nor

that I am positive on whether this is the proper place for such a purpose but I have to

thank Christophe Arleston, René Goscinny, Jean-Louis Mourier, Jacques Rouxel, and Bill

Watterson for without some of their compilations, it would have been very difficult for

me to produce mine.

Thank Adèle for a great amount of things. Part of them simply cannot be listed here,

and for the remaining I’d keep them private anyway.

To be frank, Juliette was of no help at all. Not to mention the contrary. However, as

a matter of fact, more than half my scientific activities so far has been conducted and/or

concluded after her arrival here around. I am grateful for the motivations she brought.

It is said that times, places, and events could split people, sometimes forever. Should it

be needless to say, I would like to let all the people who have – or had – been accompanying

my interests and perspectives to attain this current state know that there was, is, and

will be a humble, but favoured place to host them in my mind. And sometimes also in

my heart.

Bùi Xuân B̀ınh Minh

to my grand mother Bà Nô. i who left when I was to be born

to my unborn child

Contents

Introduction to the Thesis 1

Part I. Representation of Set Families and Decomposition 7

1 A General Representation Method 15

1.1 The Baseline: Cross-Free Families . 16

1.2 How to Represent an Arbitrary Family . 18

1.3 Brief Notes on Two Simple Cases . 25

2 Fundamental Representations 35

2.1 Intersecting and Crossing Families . 37

2.2 More Specific Families . 41

2.2.1 Partitive Families – the Classical Approach 42

2.2.2 Partitive Families – a New Viewpoint 46

2.2.3 Symmetric Crossing and Bipartitive Families 54

2.3 Applications in Graph Theory . 56

2.3.1 Modular Decomposition and Clan Decomposition 56

2.3.2 Genuine-Modules and Unordered-Modules 63

2.3.3 Split Decomposition, Bijoin Decomposition, and Decomposition of

Symmetric Submodular Functions 64

3 Representable Generalizations 69

3.1 Partitive Crossing Families . 71

3.1.1 A Linear-Size Representation Theorem 72

3.1.2 Between Crossing Families and Linear-Size Representable Families? 76

3.2 Union-Difference Families . 77

3.2.1 A Quadratic-Size Representation Theorem 78

3.3 Applications in Graph Theory . 84

3.3.1 Sesquimodular Decompositions . 86

Part II. Decomposition and Divide-and-Conquer Algorithms 95

4 Common Connectivity 103

4.1 Some Structural Aspects of Common Connected Components 104

4.2 Some Algorithmic Aspects . 106

4.2.1 Divide-and-Conquer Algorithmic Framework – the Basics 106

4.2.2 Competitive Graph Searches . 108

4.3 Common Connected Component Enumeration 110

4.4 Application to Cograph Sandwiches . 115

5 Uno-Yagiura Algorithm Revisited 121

5.1 Some Structural Aspects of Common Intervals 123

5.1.1 Common Interval Decomposition 123

5.1.2 Intersecting Submodularity of Common Intervals, with Generaliza-

tion to Modules and to Genuine-Modules 124

5.1.3 Right-Free Intervals . 126

5.2 Common Interval Enumeration . 128

5.3 Application to Modular Graph Decomposition 132

6 H -join Decomposition and Dynamic Programming 139

6.1 Some Structural Aspects of Cuts . 142

6.2 Computing Enhanced Information for an H -join Decomposition 144

6.3 Dynamic Programming . 149

6.3.1 MaxClique of H -join Decomposable Graphs 149

6.3.2 MaxClique of Graphs of Bounded Rankwidth 153

Concluding Remarks 159

Bibliography 163

Index 175

Notation and Abbreviation 179

Résumé de la thèse 183

Introduction to the Thesis

Modelling is fundamental to mathematics as it allows the very basic act of defining a

problem. In computer science, modelling in most cases means modelling some discrete

structure. For this, at the first level of investigation one can consider collections of objects.

This allows to define not only basic operations such as the addition of a member or the

inversion to the complementary, but also simple properties such as being a member, being

non-empty, disjoint, included, overlapping or crossing. Then, for deeper details, collections

of objects that are themselves collections of objects will obviously allow the modelling of

more information. For instance, the collection of a certain number of collections of exactly

two objects defines a graph. This, since the publication of L. Euler’s paper in 1736 (known

as the Seven Bridges of Königsberg paper), has been acting as the seminal notion for a very

well-studied and fruitful theory called graph theory (e.g., Figure 1). The first objective

of this thesis is the study of some structural properties of the former and more general

notion of a collection of arbitrary collections of objects, a so-called set family.

Craig

Bob

Alice

Polymerase

Promoter

Male Lark

Female Lark

Romeo

Juliet

Nutella

Honey

C. J.

Mitch

Caroline

Stephanie

MattJimmy

Shauni

Figure 1: Modelling summer data (from July 1st to August 31st) of some polls.

2 Introduction to the Thesis

a b

c d

e

gf

a
b

c
d

e

g
f

Figure 2: Modelling a laminar family.

The focus is to find efficient representations for a given set family. A mathematical

motivation could be seen as follows. Starting from a ground set X of n elements, one

clearly has 22n

choices of a family of subsets of X. However, if the family satisfies some

simple axioms, the situation could be completely different. For instance, let us say that

two subsets A and B overlap if they have a non-empty intersection A∩B 6= ∅, as well as

two non-empty differences A \B 6= ∅ and B \A 6= ∅. Then, a family is said to be laminar

(or overlap-free) if no two of its members overlap. By elimination, two members of such a

family can only be either disjoint, or included one in the other. Therefore, ordering them

by inclusion will result into a (partial) subgraph of a tree, with a root corresponding to

X, with leaves corresponding to the singletons {x} (for all x ∈ X), and with internal

nodes having at least two children each (e.g., Figure 2). This clearly states that a laminar

family over X cannot have more than 2n members (and hence there are no more than 22n

choices of a laminar family over X). In classical complexity theory for computer science,

such exponential jumps are important for computational purposes. Accordingly, we would

like to study some such situations, where a set family has a representation using not an

exponential, but a polynomial space encoding.

Our biggest applicative motivation for such a study comes from a graph theory point

of view. This could seem quite strange given the aforementioned fact that graphs are

particular instances of set families: how about just studying graphs instead? However,

many graph decompositions make intensive use of particular families of vertex subsets.

This is, for instance, the case for modular and split decompositions: the corresponding

notions of a module and a split are basically some subsets of the vertex set. Then, it is

now a quite well-known fact that the family of modules of a graph meets the axioms of a

so-called partitive family while the family of splits of a connected graph meets the axioms

of a so-called symmetric crossing family. Under this standpoint, both modular and split

decompositions can be seen as corollaries of some well-known results for representing the

corresponding families. To give another example, the use of set families intervenes also

in tree decomposition and clique decomposition via their respective alternatives: branch

3

1 :

σ : 3 5 7 21 6 8 9 4

1 2 3 4 5 6 7 8 9

1 :

σ : 3 21 9 457 8 6

1 2 3 4 5 6 7 8 9

Figure 3: In both examples, {5, 6, 8, 7} is a common interval.

decomposition and rank decomposition. Here, the more general framework is the so-

called branch decomposition of a symmetric and submodular function. The focus therein

is the family of subsets of the ground set where the function has a value lower than some

given threshold. Then, the decomposition can be seen as a tree-like representation of a

sub-family of the previous family.

Beside graph theoretic matters, combinatorial optimization is another well-studied

area in combinatorics. A fundamental issue therein is to compute the minimizers of a

given submodular function. This helps with, among other things, computing a maximum

flow in some networking concerns (the corresponding equivalence is well-known under the

name of min-max duality). Here, the family of non-empty minimizers of the function meets

the axioms of a so-called intersecting family. Then, efficiently representing such a family

has been acting as a crux for a class of solutions to the submodular function minimization

problem. This is for instance the case for the so-called tree-of-posets decomposition.

Set families find also applications in computational biology. For instance, they help

with handling particular instances of some computational problems around the concept of

a gene cluster. Indeed, let us restrict the modelling of a genomic sequence to the case of a

permutation over the set X of all genes it contains. Therein, an interval is a set of genes

which come successively in the sequence (the permutation can be seen as a total order).

Then, a set C of genes is called a common interval of a given group of several genomic

sequences if C is an interval for every sequence in the group (e.g., Figure 3). This is among

the first attempts to formalize the notion of a gene cluster. Now, the family of common

intervals of a set of permutations over X meets the axioms of a so-called weakly partitive

family. As a consequence, one can use a well-studied representation result on weakly

partitive families to give a decomposition scheme of the genomic sequences into their

4 Introduction to the Thesis

gene clusters. Under this framework, one can handle not only the efficient computation

of those gene clusters but also their behaviour through successive modifications on the

genomic sequences. While the former fact gives motivations for the computation of the

very gene clusters, the latter fact helps with computing the so-called reversal distance

between two species in evolutionary sorting.

Other decompositions of discrete structures where the representation of particular

families of sets plays a central role include: canonical decomposition of symmetric and

submodular functions [56], decomposition of submodular functions and decomposition of

matroids [40], clan decomposition of 2-structures [48], block decomposition of inheritance

graphs [76] (see also [23, 66] for some English versions), bimodular decomposition of bipar-

tite graphs [55], bijoin decomposition of graphs [93], and decomposition of tournaments

into unordered-modules [18].

At the same time, if efficiently representing set families finds its applications in the

decomposition of several discrete structures, then it is also a related motivation to look into

some applications of the decomposition paradigm itself. For instance, the decomposition

philosophy intervenes in algorithm design at a quite basic level: the conception. Here,

given a problem that one wishes to solve by an autonomous system, say a computer,

wouldn’t the first thing to do be to understand the problem, analyse how it behaves, figure

out all the configurations it can lead to, etc? In other words, one would like to find an

underlying structure. Then, a way to achieve that aim consists of decomposing the given

problem into simple configurations. Now, if the decomposition itself is simple enough,

one gives birth to simple, and efficient algorithms. The simplicity here refers to the use of

regular and conventional algorithmic schemes: all technical difficulties have to be done by

theoretical work during the structural analysis and should not figure in the proper use of

the algorithm. In practice, simple algorithms are desirable to avoid implementation errors,

while efficient algorithms are required when one wishes to manipulate huge amounts of

data and cannot allow the extra cost that a naive approach might bring.

The second part of the thesis follows this philosophy. By means of exemplifications,

we will try to defend how the use of decomposition approaches may help to design not

only efficiently competitive algorithms, but also algorithms answering to some criterion

of simplicity. The latter claim is motivated by the fact that we intensively follow the

divide-and-conquer approach, widely recognized as one of the most fundamental and

conventional algorithmic schemes. Note however that, beside the common point of using

decomposition approaches to solve discrete problems, each chapter of the second part is

rather case specific. For each of them, we study how to decompose and simplify the input,

then show how to solve each thus decomposed situation, as well as how to subsequently

5

solve the global problem.

We now shape more specifically the structure of the thesis. As previously mentioned,

we divide the composition into two main parts. Though highly related, the two subjects we

discuss are not absolutely dependent on each other, and sometimes can be quite severed.

For convenience, we start each part of the thesis with a specific overview of its contents.

Beside introductory matters, a more detailed summary of each chapter can be found

in those two overview sections. Roughly, the first part of the thesis focuses on some

combinatoric issues on set families in general. It addresses also some applications of

those issues into a branch of graph theory called graph decomposition. The second part

of the thesis is oriented towards algorithmic graph theory. The leading idea is to use

the connection between divide-and-conquer algorithms on graphs and some structural

decomposition on them.

Our activities so far have brought to fruition references [14, 15, 16, 17, 18, 19, 20,

21, 22] (details are below). In this composition, we develop [15, 19, 20, 21, 22]. We also

mention [16, 17, 18] but do not go into their details. We do not address [14] here.

Last but not least, we highlight that all discrete structures in this thesis are finite.

[14] B. Bui Xuan, A. Ferreira, and A. Jarry. Computing Shortest, Fastest, and Foremost Journeys in Dynamic Networks.
International Journal of Foundations of Computer Science, 14(2):267–285, 2003.

[15] B.-M. Bui-Xuan and M. Habib. A Representation Theorem for Union-Difference Families and Application. In 8th Latin
American Theoretical Informatics (LATIN’08), volume 4957 of LNCS, pages 492–503, 2008.

[16] B.-M. Bui-Xuan, M. Habib, V. Limouzy, and F. de Montgolfier. Algorithmic Aspects of a General Modular Decom-
position Theory. Discrete Applied Mathematics: special issue of the 3rd conference on Optimal Discrete Structures and
Algorithms (ODSA’06), to appear.

[17] B.-M. Bui Xuan, M. Habib, V. Limouzy, and F. de Montgolfier. Homogeneity vs. Adjacency: generalising some graph
decomposition algorithms. In 32nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG’06),
volume 4271 of LNCS, pages 278–288, 2006.

[18] B.-M. Bui-Xuan, M. Habib, V. Limouzy, and F. de Montgolfier. Unifying two Graph Decompositions with Modular
Decomposition. In 18th Annual International Symposium on Algorithms and Computation (ISAAC’07), volume 4835 of
LNCS, pages 52–64, 2007.

[19] B.-M. Bui Xuan, M. Habib, and C. Paul. Revisiting T. Uno and M. Yagiura’s Algorithm. In 16th Annual International
Symposium on Algorithms and Computation (ISAAC’05), volume 3827 of LNCS, pages 146–155, 2005.

[20] B.-M. Bui-Xuan, M. Habib, and C. Paul. Competitive Graph Searches. Theoretical Computer Science, 393(1-3):72–80,
2008.

[21] B.-M. Bui-Xuan, M. Habib, and M. Rao. Representation Theorems for two Set Families and Applications to Combina-
torial Decompositions. Extended abstract in Proceedings of the International Conference on Relations, Orders and Graphs:
Interaction with Computer Science (ROGICS’08), Nouha editions, pages 532–546, 2008.

[22] B.-M. Bui-Xuan and J. A. Telle. H-join and dynamic programming on graphs of bounded rankwidth. Abstract presented
in the Workshop on Graph Decomposition: Theoretical, Algorithmic and Logical Aspects, 2008.

Part I

Representation of Set Families

and

Decomposition

“A natural beauty is a beautiful thing;

artificial beauty is a beautiful representation of a thing.”

Immanuel Kant, 1892.

(Kant’s Critique of Judgement, translated with Introduction and Notes

by J. H. Bernard, 2nd ed. revised, London: Macmillan, 1914.)

Overview of Part I

Representing a given finite set, and more specifically finding a bijective mapping for it, has

always been one of the fundamental issues in combinatorics. It is related to many other

areas of mathematics, such as algebra, probability theory, ergodic theory and geometry,

as well as to applied subjects in computer science and statistical physics. The issue has

a long history throughout the five continents, with the probably first written mention

appearing no later than some three hundred years Before Christ in an Indian text. In

theoretical computer science, it is mostly used to obtain estimates on the number of

elements of certain sets, with “estimates” being the key word of the sentence.

For instance, the Kolmogorov-Chaitin complexity is a theoretical formalization of the

computational resources needed to specify a given object. It is roughly the minimum

number K(s) of bits required to encode a program which outputs the object s. However,

the exact value of such a definition is hard to find. Moreover, one usually does not need to

know exactly such a measure, but an upper bound for the value. The naive upper bound

for the complexity of a family over a given set X is a priori exponential on the number

of elements in X since the family might count that many members. Now, studying the

problem of representing some set families can help lowering the bound. Indeed, whenever

a representation theorem is known for some class of set families, the complexity of every

family of that class is lowered to that of the representation, to a multiplicative factor.

This phenomenon is the direct application of the folklore fact where every loss-less data

compression method leads to an upper bound for the corresponding Kolmogorov-Chaitin

complexity of the compressible data. Accordingly, representing efficiently a given set

family can also be seen as an approach for reaching its complexity.

We in fact will have little discussion on the actual Kolmogorov-Chaitin complexity,

and define, with some abuse, the complexity of a set family as the space complexity

to represent the family. This is abusive in the sense that space complexity is usually

used with some abuse itself: one does not necessarily count at the bit-level. To give

an example, the space complexity to represent the linked list containing all integers of

the set X = {1, 2, . . . , n} is commonly accepted as in O(n). However, to represent each

10 Overview

integer bound to each element of the linked list, one may need log n bits, namely the

description of an integer smaller than n in binary numeral system. Then, the actual

space to be used for storing the set X should be in Θ(n log n) bits. The abusive counting

of the space complexity of X as in O(n) space complexity is widely known as the log n

neglect. Likewise, a graph on n labelled vertices and m edges is commonly regarded as of

O(n + m) space complexity while the actual space to store such a structure by adjacency

list is in Θ(m + n log n). Even more strange, if the graph is a tree, then, from the Cayley

formula, there are exactly nn−2 = 2(n−2) log n trees on n labelled vertices. Therefore, it

is asymptotically impossible to represent such a tree with a number of bits proportional

to n. Even so, the space complexity of this case is still commonly regarded as in O(n).

For this reason, one says that the popular counting of space complexity in theoretical

computer science is subject to the log n neglect.

An attempt to defend the log n neglect could come from the fact that, in practice, the

base unit of a computer is more likely an octet (a.k.a. byte), and can already represent

up to 28 = 256 integers (octet: “eight bits”). Moreover, if one considers that accessing

to “some hundreds” of bytes (read/write) is a unit operation, then there are O(n) unit

operations to create the above linked list, corresponding to X, with already a relatively

large n. Also, there will be that many unit operations to read the contents of the list.

This abusive log n neglect is not that far from reality given that the actual computers do

not follow exactly the Turing Machine model, and follow more likely the Random Access

Machine one. For a side note, the situation is different when counting the time complexity

of running a loop log n times. Here, one will have to repeat the same set of operations

log n times, which cannot be neglected.

In this part of the thesis, a major concern is to apprehend the distance of a family to its

ground set. Recall the remark in the introduction where a laminar family behaves roughly

the same manner as its ground set X (space-wise), namely it has no more than 2× |X|

members. Then, an equivalent purpose could be to settle laminar families as standards and

apprehend the distance of a family to them. Now, we will see in the upcoming chapter

that, from the Edmonds-Giles theorem, laminar families can be bijectively mapped to

trees. Then, another equivalent purpose could be to apprehend the distance of a set

family to a tree structure. Besides, we have briefly seen in the introduction that the

representation problem and the decomposition problem are closely related. Accordingly,

we will also discuss in detail some decomposition issues in an “on-the-fly” manner: the

discussion about a decomposition scheme will be given at about the same place where a

representation theorem responsible for that scheme is presented.

For convenience, we will take into account the abusive counting of space complexity

Part I. Representation of Set Families and Decomposition 11

when evaluating a set family. We also make the convention that the complexity of a

ground set X is in O(|X|) space. Thus, the log n neglect will intervene from the very root

of our question, namely in the standard defined by the ground set of the input family.

Then, it will not change much to count the neglect in the space complexity of the set

family itself. Finally, if one’s concern is only to know if some family can be polynomially

representable or not, then the log n neglect does not change any result.

We now specify more the contents of the first part.

The opening Chapter 1 builds the basis for representing set families in general. To

this purpose we present new tools and techniques to find a tree-like representation for

an arbitrarily given set family. They capture and extend many well-known concepts in

different branches of combinatorics, ranging from Edmonds-Giles’s tree-representation of

cross-free families to Ehrenfeucht-Harju-Rozenberg’s framework for graph decompositions.

The technique we develop in Chapter 1 will be crucial for almost all other results on set

families that will be presented in the thesis. Beside this, we also give in Chapter 1 a brief

discussion on some preliminary results of the representation problem. Finally, we end the

chapter with a synopsis in Figures 1.4 and 1.5 of all representation results involved in the

whole composition.

In Chapter 2 we recall some known results in the topic of representing set families,

as well as some applications. In particular, the chapter includes the review of results

on the so-called intersecting and crossing families. They are important for submodular

function minimization purposes. The chapter includes also a detailed review of well-known

results on the so-called partitive families and symmetric crossing families. While partitive

families are seminal for the modular decomposition of graphs, symmetric crossing families

are important for symmetric submodular function minimization studies. At the same time,

we revisit a well-known result for representing partitive families using a linear encoding

space. More precisely, we give an alternative approach for obtaining the same result.

The motivation is that, unlike the classical approach, our alternative follows the general

framework developed in Chapter 1. Then, the approach of Chapter 1 can be seen among

other things as a unification under a same framework of various schemes for representing

different classes of set families. Chapter 2 ends with a series of applications of the above

mentioned results in an important branch of graph theory called graph decomposition.

Here, the application list includes no fewer than seven decomposition schemes of various

discrete structures (a list can be found in the table of contents). While most cases come

from previous works in the topic, two of them derive from our activities during the thesis

period. However, we will not go into their details in this composition.

The third and last chapter of the current part is devoted to two recent results. For their

12 Overview

introduction, recall from the definitions given in the introduction that two sets overlap

if they have a non-empty intersection, as well as two non-empty differences. Here, we

say moreover that two subsets of a given ground set cross if they overlap and so do their

respective complements in the ground set. Then, a set family is called weakly partitive

crossing if it is closed under the union, the intersection, and the difference of its crossing

members. Besides, a set family is called a union-difference family if it is closed under the

union and the difference of its overlapping members. In Chapter 3, we give linear and

quadratic space representation for weakly partitive crossing families and union-difference

families, respectively. These results rely on the framework given in Chapter 1. We close

Chapter 3 with the presentation of two new combinatorial decompositions. Both of them

come under the common name of sesquimodular decomposition. One of the two is a

strict generalization of the modular decomposition of digraphs, while the other is a strict

generalization of the clan decomposition of so-called 2-structures. Both decompositions

are polynomially computable.

Most of the ideas presented in Chapter 1, the alternative approach for partitive families

in Chapter 2, two of the decomposition schemes at the end of Chapter 2, as well as all

results presented in Chapter 3, are based on [15, 16, 17, 18, 21]. However, we will not go

into the details of [16, 17, 18].

Part I. Representation of Set Families and Decomposition 13

Chapter 1

A General Representation Method

This is a very short chapter which, nonetheless, will settle the main basis for the current

part of the thesis. We present here some tools that will be fundamental to represent

almost all set families related to our composition. The ideas are mainly based on [15,

pages 493–495].

We address three abstraction levels: elements, sets, and families. They are concisely

defined as follows. Let X be a finite set. Those that belong to X are called elements, sets

included in X are subsets, and sets of subsets of X are families. For more clarity, elements

of a family are called members. The ground set of a family is the minimum set of which

members of the family are subsets. When the ground set is not mentioned, families are

also called set families. Notice that a finite family always admits a finite ground set. The

converse is a triviality.

Among the subsets of X, the universal set X and singletons {x} (for all x ∈ X)

are called the trivial subsets of X. By abusive notations, we may sometimes denote the

singleton {x} by x. Without loss of generality (w.l.o.g.) in the representation problem,

a family is always supposed to exclude the empty set and include all trivial subsets of

the ground set, which we denote by a proper and connected family. Indeed, starting from

an arbitrary family, we can obtain a proper and connected family just by removing and

adding the corresponding subsets. This process will not increase the space complexity

any higher than that of the ground set. Then, as far as the representation problem is

concerned, supposing a family proper and connected does not change the asymptotic space

complexity of the family. When dealing with such a family, we refer to the trivial subsets

of the ground set as the trivial members of the family. Besides, the power set of X will be

denoted by 2X . For instance, 2{a,b} = {∅, {a}, {b}, {a, b}}. Then, a minor remark would

claim here that representing a proper and connected family over a ground set X with

|X| < 3 is trivial since it would mean the family is exactly 2X \ {∅}. For convenience we

suppose, unless otherwise stated, that the ground set of a family includes at least three

16 Chapter 1. A General Representation Method

a b

c d

e

gf

i. ii.

a
b

c
d

e

g
f

Figure 1.1: i. An overlap-free (laminar) family. ii. Its tree representation.

elements, that is

Remark 1.1 (Conventions) Unless otherwise stated explicitly, not only all set families

in this thesis are supposed to cover a ground set of at least three elements, but they are

also supposed to be proper and connected, namely they exclude the empty set, and include

all trivial subsets of the ground set. In particular, sentences like “Let F be an arbitrary set

family. . . ” refer in reality to “Let F be a set family which is proper and connected. . . ”.

We refer to the complexity of a set family as the space complexity to represent the

family. The counting of the space complexity is subject to the log n neglect, for which we

refer the reader to the overview section for a short presentation and discussion. The aim

of this part of the composition is to compare the complexity of a set family to that of a

tree. We start with giving an explanation why trees are selected as unit of our measure.

1.1 The Baseline: Cross-Free Families

We start with the representation problem of a simple class of families, so-called cross-

free families in combinatorial optimization related literature (e.g., [106]). Let us recall

that two subsets A and B of a ground set X overlap, denoted by A©©B, if none among

A ∩B, A \B, and B \ A is empty. They cross, if we have both A©©B and A©©B, where

A = X \A. Then, a set family is called overlap-free (resp. cross-free) if no two members of

the family overlap (resp. cross). Note that overlap-free families are more widely known

under the name of laminar families. Besides, as crossing clearly implies overlapping, an

overlap-free family is also cross-free. Finally, that cross-free families are basic for tree-like

representations of set families is due to J. Edmonds and R. Giles’s characterization of

them as ones in bijection with unrooted trees [46], which can be summarized as follows.

In a (proper and connected) overlap-free family, two members are either disjoint, or

included one in the other. Then, their ordering by inclusion will result in a tree, with the

Section 1.1. The Baseline: Cross-Free Families 17

c

g

h

i

j

.

double arc

c

d

e
f

g

h
i

j

a

b

a
b

i. ii.

d

e f

Figure 1.2: i. A cross-free family. ii. Its tree representation.

root corresponding to the ground set, and with the leaves corresponding to the singletons

(e.g., Figure 1.1). Now let F ⊆ 2X be a cross-free family. Let x ∈ X, we consider

G = {A | A ∈ F ∧ x /∈ A} ∪ {A | A ∈ F ∧ A 6= X ∧ x ∈ A}, which is a proper and

connected, overlap-free family over the ground set X \ {x}. Then, applying the previous

tree representation on G results in a tree whose root corresponds to X \ {x}. Let us add

x to the children of the root and unroot the tree.

Remark 1.2 Such a tree has no degree 2 nodes as long as |X| ≥ 3.

The set of leaves is now in bijection with X: by some abusive notations we confound

the two sets. In this tree, deleting any edge gives rise to two connected components. If

each component is regarded as the set of its leaves, then at least one of them is a member

of F . Thus, edge orientation can denote which ones belong to F (see Figure 1.2). On

the other hand, it is straightforward to prove that each member of F corresponds to one

edge of the tree. It follows that

Theorem 1.1 (Edmonds-Giles [46]) A set family is overlap-free (resp. cross-free) if

and only if it has a rooted (resp. unrooted) tree representation.

Remark 1.3 If a set family is overlap-free (hence cross-free), then either its cross-free

tree representation (as described in the above) has one and only one source, or there is

in that tree a unique double-arc and setting a source in between the subdivision of the

double-arc results into a tree with one and only one source. In both cases, inverting the

orientations will result into a rooted tree. Furthermore, this rooted tree turns out to be

exactly the overlap-free tree representation of the initial family.

18 Chapter 1. A General Representation Method

Accordingly, we would say that the distance from overlap-free and cross-free families to

a tree structure is almost null. Notice for the sake of rigour that the above transformation

is not necessarily a bijection between the set CX of all cross-free families over X and the

set TX of all trees whose leaves are in bijection with X. Regardless, it is still a bijection

between the set CX and a subset of TX , namely the image of the transformation over the

domain CX . This clearly gives an upper bound for the size of CX . Now, from the fact

that an overlap-free family is also cross-free, we can unify their complexity statements as

Corollary 1.1 The complexity of a cross-free family on a ground set X is in O(|X|).

Roughly, handling overlap-free families is a more convenient task than that with cross-

free families. However, cross-free families are clearly a strict generalization of overlap-free

families. This situation will be all the more emphasized in the upcoming discussion around

the definition of a decomposition tree.

1.2 How to Represent an Arbitrary Family

To represent a set family in a unique manner, we would like to find an injective function

which maps every set family to some object. Then, the injection can be seen as a bijection

between the set of all set families and the image of the function. We will build this injection

step by step, starting with a function which is not necessarily injective.

Decomposition Tree: Extraction Approach

In this thesis, we use decomposition as a general name for associating a first category

of objects with a second category of objects. The only requirement is that the second

category object should have some cutting ability with respect to (w.r.t.) the first category

object. In the following, we will define such an association for arbitrary set families. The

cutting ability will appear from the subsequent notion of a quotient.

At the same time, a set family might be complex. Then, we would also like to perform

some simplifications upon it. For instance, the terminology of uncrossing usually refers

to methods which transform a family into a cross-free family by the repeated application

of some easy steps. It is widely used in combinatorial optimization as a pre-processing

step. Here also, we will see how, for decomposition purposes, one can use a very naive

method to uncross the input family. Indeed, one can obtain the cross-free property simply

by some greedy extraction (without transformations) of qualified members as follows.

A member A ∈ F is an overlap-free member of F ⊆ 2X if A does not overlap any

B ∈ F . Likewise, A ∈ F is a cross-free member of F if it does not cross any B ∈ F . Let

Section 1.2. How to Represent an Arbitrary Family 19

S ⊆ F be the family of cross-free members of F . For the sake of simplicity, X is excluded

from S although it is clearly cross-free. Clearly, S is a cross-free family.

Definition 1.1 (Decomposition Tree and Cross-free Decomposition Tree)

The cross-free decomposition tree of a family F ⊆ 2X is defined as the Edmonds-Giles’s

representation [46] of its cross-free members, where X is excluded. Throughout the first

part of the thesis, unless otherwise stated, a decomposition tree always refers to a cross-free

decomposition tree.

Remark 1.4 Associating a set family with its cross-free decomposition tree results in a

well-defined function.

Before continuing, note that for uncrossing purposes, one can of course consider the

overlap-free members of F as well: they form clearly an overlap-free (hence cross-free)

family and, more importantly, have also a tree-representation. Indeed, a more detailed

discussion on the overlap-free alternative will be given around Definition 2.5 in the next

chapter. However, since an overlap-free member is also a cross-free member, it is clear that

addressing cross-free members allows to define a finer decomposition tree. This being said,

some cases of set families, such as those bound to modular decomposition, prefer using the

overlap-free members in order to define the decomposition tree. A bit more precisely, the

modular decomposition of a graph is essentially an efficient representation of the family

of modules of the graph. For this purpose, one defines the (modular) decomposition tree

of the graph using the Edmonds-Giles’s representation of the sub-family of overlap-free

members of the previous family, namely the sub-family containing all modules of the

graph which do not overlap another module of the graph. At least this is one of the most

common points of view to approach modular decomposition (some further details are

given in Section 2.3.1). This could be intriguing given what has just been said. However,

as long as modules are concerned, there is a very simple reason for using overlap-free

members instead of cross-free members: their corresponding trees coincide, except for the

root and orientations (cf. Lemma 2.2 in the next chapter). Then, for the sake of terseness,

overlap-free terminologies are used at the expense of generality. This is by no means a

general situation.

Decomposition & Cutting Property: the Notion of a Quotient

In the cross-free decomposition tree, the deletion of an internal node u gives rise to

k = d(u) connected components, which can also be seen as a k−partition of X. Let

{X1, X2, . . . , Xk} denote this partition (e.g., Figure 1.3). Notice that if |X| ≥ 3 then

k ≥ 3. Let us consider Y = {X1, X2, . . . , Xk} as a set.

20 Chapter 1. A General Representation Method

X1

X3

X4

X2

c

ha

b

d g

e f

i

j

Figure 1.3: The ground set {X1, X2, X3, X4} of a quotient, with X1 = {c}, X2 = {d},
X3 = {e, f, g, h, i, j}, and X4 = {a, b}.

Definition 1.2 (Quotient and Cross-free Quotient) Keeping the same notation of

Y = {X1, X2, . . . , Xk} as above, we define the cross-free quotient of F with respect to

node u as the family Q(u) ⊆ 2Y such that
{
{Xi} belongs to Q(u) for all 1 ≤ i ≤ k,
Q = {Xi | i ∈ I} with |Q| 6= 1 belongs to Q(u) ⇔

⋃
i∈I Xi belongs to F .

Throughout the first part of the thesis, unless otherwise stated, a quotient always refers

to a cross-free quotient.

Notice that Q(u) is a proper and connected family over the ground set Y , and Y

has at least three elements as long as X has at least three elements. The main point of

defining the decomposition tree and the various quotients bound to the internal nodes of

the tree could be informally seen as follows. In an arbitrary set family, every cross-free

member in some sense “splits” the other members of the family by its very definition: no

other member crosses the cross-free member. Then, the definition of a quotient allows to

somehow classify the members of the initial family with respect to the various cross-free

members. We come to the most important claim of this chapter:

Essential fact: As it will be showed next (in Remark 1.7) and also exemplified in the

next two chapters (e.g., partitive families, symmetric crossing families, union-difference

families, and partitive crossing families), characterizing the various quotients of F will be

the only left-over work if one wishes to represent a set family F .

This is what we referred to as the cutting ability of the decomposition tree. Of course,

this is by no means a concise point of view. The informal cutting ability, nonetheless,

will be crucial for various situations in the next part of the thesis, when we would like to

properly “divide-and-conquer” a problem. For the current objective, namely obtaining a

bijection over arbitrary set families, let us highlight that

Section 1.2. How to Represent an Arbitrary Family 21

Remark 1.5 Let f be the function mapping a set family to its decomposition tree. Then,

for every set family F , the function gF over the domain {u, u is an internal node of f(F)},

which maps every node u to the quotient gF(u) of F with respect to node u, is well-

defined. One consequence is that the function h, mapping a set family F to the pair

h(F) = (f(F), gF), is well-defined.

In the following, the objective is to prove that the function h, defined in the above

remark, is injective. Turning our attention back to the quotient Q(u), notice that the

membership of Xi in F (resp. exclusion of Xi from F) can already be stored by the edge

orientation of the decomposition tree. Roughly, each member Q of the quotient Q(u)

corresponds to one and only one member of F , except for the singletons {Xi}. Moreover,

it is not so obvious but quite popular that the converse holds as well.

Proposition 1.1 Let A be a member of a family F ⊆ 2X. If A is not a cross-free member

of F , then, there exists one and only one node u in the decomposition tree of F such that

A corresponds to a member of the quotient Q(u) of F with respect to node u.

Proof: There are many ways to prove this fact. A graphical one, extending the ideas

of [94, proof of Lemma 1], is as follows. With respect to the member A ∈ F , we will define

a special orientation on the arcs of the decomposition tree T of F . Let us consider an arc

a of T which links a (not necessarily internal) node u to node v of T . Let Su and Sv be

the 2-partition of X induced by the leaves of the two connected components of T −a, the

forest obtained by removing arc a from T . Notice that if A crosses one among Su and Sv,

then A crosses both. Since at least one among Su and Sv is a cross-free member of F , A

does not cross any of them. Hence, there are only two cases, which are self-exclusive:

• either Su or Sv is strictly included in A: w.l.o.g. suppose it was Su, then the special

orientation is defined to be from u to v.

• A is strictly included in either Su or Sv: w.l.o.g. suppose it was Su, then the special

orientation is defined to be from v to u.

We claim that the special orientation has one and only one sink (i.e. it defines a rooted

tree). Indeed, let uv be an arbitrary arc in T with the special orientation from u to

v. For the claim, it suffices to prove that, for every arc st belonging to the connected

component which contains u when we remove arc uv from T , the special orientation is

from the further node s (w.r.t. u) to the nearer node t (w.r.t. u). This can be proved for

example with a straightforward case analysis. Let now u be the unique sink defined by

the special orientation. Let {X1, X2, . . . , Xk} be the ground set of the quotient Q(u) of F

22 Chapter 1. A General Representation Method

w.r.t. node u. Here, A cannot be included in some Xi, otherwise the special orientation

from Xi to the sink u would be reversed. By elimination, the only case left possible is

when every Xi is either included in A or included in the complement of A. We can then

conclude by applying Definition 1.2 on Q(u). �

Corollary 1.2 The function h defined in Remark 1.5 is injective.

Proof: Let F and G be two set families such that h(F) = h(G). By symmetry it suffices to

prove that F ⊆ G. Let A ∈ F be a member of F . If A is a cross-free member of F then we

can conclude using f(F) = f(G) and Theorem 1.1. Otherwise, from Proposition 1.1, there

exists an internal node u of f(F) = f(G) such that, there exists a member Q ∈ gF(u) of

the quotient of F with A =
⋃

S∈Q S and |Q| 6= 1. Now, h(F) = h(G) also implies gF = gG.

We then have: u is an internal node of f(G), Q ∈ gG(u), A =
⋃

S∈Q S, and |Q| 6= 1. This,

by Definition 1.2, implies A ∈ G. �

A stronger claim than that of Corollary 1.2 is as follows. Its proof is straightforward.

Remark 1.6 In order to represent a family F , it is sufficient to represent the quotient

family Q(u), for every node u of the decomposition tree of F .

How to Represent a Class of Set Families

According to Remark 1.6, in order to represent every family of a class K of set families,

it suffices to represent the class L of every family Q which is the quotient of some node

appearing in the decomposition tree of some family F ∈ K. However, it is not so obvious

how to describe the class L. Instead, we will focus on a super-class of L. Let us say that

a member A of a family F ⊆ 2X is quasi-trivial if |A| = |X| − 1. Clearly, trivial and

quasi-trivial members of F are also cross-free members. Then, one can notice a second

non obvious but folklore fact that

Proposition 1.2 Let F ⊆ 2X be a family (such that |X| ≥ 3). Then, for every node u

of the decomposition tree of F , all cross-free members of the quotient Q(u) with respect

to u are either trivial or quasi-trivial with respect to the ground set of Q(u). Besides, the

ground set of Q(u) contains at least three elements.

Proof: Recall the notation where S denotes the set of all cross-free members of F , but

the ground set X. Here, any cross-free member of Q(u), except for its ground set, cor-

responds to a member of S. Then, a cross-free member of Q(u) that is neither trivial

nor quasi-trivial w.r.t. Q(u) would lead to a member of S which is not present in the

tree representation of S. This contradicts Theorem 1.1. Finally, the fact that Q(u) has a

ground set of at least three elements is straightforward. �

Section 1.2. How to Represent an Arbitrary Family 23

Definition 1.3 (Quotient property) We say that a set family satisfies the (cross-free)

quotient property if all its cross-free members are either trivial or quasi-trivial.

Straight from Proposition 1.2, every family Q ∈ L of the above mentioned class

L satisfies the quotient property. Obviously, the converse does not necessarily hold.

However, we will still study all the families which satisfy the quotient property since,

in all situations described in this thesis, the relaxation will not increase the difficulty in

representing the family. This leads us to the definition of a quotient-hereditary class of

set families.

The Case for Quotient-Hereditary Classes of Set Families

Basically, all the classes addressed in this thesis turn out to have an intrinsic property

that makes the description of their quotients even more convenient (cf. Proposition 1.3

below).

Definition 1.4 (Quotient-Hereditarity) A class K of set families is quotient-hereditary

if, for every family F ∈ K in this class, the quotient family Q(u) with respect to every

node u of the decomposition tree of F belongs also to the class: Q(u) ∈ K.

If a class of set families is quotient-hereditary, all what has been said leads to the

following essential fact.

Remark 1.7 (Main Tool) In order to represent a class K of set families which is

quotient-hereditary, it suffices to represent the sub-class K′ ⊆ K containing every family

F ∈ K which satisfies also the quotient property.

Note that, in Remark 1.7, K′ is a super-class of L, the class of every quotient of

some node appearing in the decomposition tree of some family F ∈ K. Let us attempt to

informally explain why the remark is important. Basically, another aspect of the notion of

a quotient is to eliminate all non-trivial cross-free members from a set family (according to

Proposition 1.2). This can roughly be seen as the exact opposite of an uncrossing process.

However, in order to do so, the heavy weaponry of a quotient may not make much sense at

first glance: how about just simply removing the non-trivial cross-free members whenever

they are not desired? Actually, the drawback of simply removing undesirable members

when studying a set family belonging to some special class is that one might end up with

a family that does not belong to the special class anymore. On the other hand, when

a class of set families is quotient-hereditary, the notion of a quotient allows to, at the

same time, eliminate the non-trivial cross-free members and stay inside the class. In the

24 Chapter 1. A General Representation Method

next two chapters, our study ranges over the classes of families which are closed under

a number of set operations on their overlapping, or crossing, members. All of them are

quotient-hereditary, and we will intensively exploit the notion of a quotient, as well as the

quotient-hereditary property.

Definition 1.5 (Overlap-X , Cross-X , and X Closure) Let X be a set of operations

over sets. A set family is called an X closed family if it is closed under all operations

belonging to X . Given a set X of binary operations over sets, a set family is called an

overlap-X closed family (resp. a cross-X closed family) if it is closed under the action

of any operation of X on a pair of its overlapping (resp. crossing) members. For more

convenience, we refer to overlap-X closed and cross-X closed families simply as overlap-X

and cross-X families.

Proposition 1.3 For every set X of arbitrary operations over sets, the class of X closed

families satisfies the quotient-hereditary property. This is also the case for overlap-X and

cross-X families, when X contains only binary operations. Finally, this also holds for an

arbitrary number of intersections of the above classes.

We will focus more particularly on X being a subset of the set of basic operations:

complementation, intersection, union, difference, and symmetric difference. Note that,

for the sake of generality, we introduce the above (and heavy!) notations of overlap-X

and cross-X families. However, most cases have specific interests and own a different

(and sensible) designation. An overview of some known results, as well as some new

results, is given at the end of this chapter. Figure 1.4 will capture the instances of the

representation problem with some known applications. It also gives the corresponding

designation of the involved families in each case. The subsequent Figure 1.5 presents in

detail the possible combinations of overlap-X , cross-X , and X closed families with X

being a subset of Z = { ∩,∪, \, ∆ }.

Remark 1.8 For inclusion reasons, if a Z closed family is not representable in polyno-

mial space complexity, neither will be the overlap-X , cross-X , and X closed families, for

every X ⊆ Z. On the other hand, a representation of a cross-Y family of size τ gives a

representation of the same size τ for overlap-X , cross-X , and X closed families, for every

X ⊇ Y.

Representing an Arbitrary Family

We now have the necessary ingredients to finally picture the general representation of an

arbitrary family F ⊆ 2X . Assume that we already know how to represent every member

Section 1.3. Brief Notes on Two Simple Cases 25

of a set FOO containing only families satisfying the quotient property. More precisely we

know how to map bijectively every member of FOO to a small object. For instance, let us

consider a family which is both bipartitive and quotient, where bipartitivity denotes the

property of being both cross-{ ∩,∪, \, ∆ } closed and closed under the complementation.

Then we know from a lemma in [39] that one can represent them in O(1) space. (More

precisely, we know that there are only two such families: 2X and {X} ∪ {{x}, x ∈ X}.)

Thus, the bipartitive quotient families figure in the list FOO. We can represent the family

F as follows.

• Compute the decomposition tree T of F .

• For every internal node of T , do

– Ask whether the corresponding quotient ranges over the known ones from the

list FOO. This requires a recognition algorithm.

– If the answer is yes, represent it accordingly. The representation is supposed

to be of small space.

– Otherwise, represent the quotient by itself. This increases the used space, due

to the amortised storage of T .

• Return the annotated decomposition tree.

Roughly, the more representable quotient families we know, the more efficient this

compression method is. Clearly, this is a lossless compression method. A consequence

is that representing a random set family will more likely result in compressing ratio null

(and even negative, due to the storage of the decomposition tree). Notwithstanding, set

families in the applications occur mostly in specific situations, coming along with specific

structural properties. Then, it could be worth checking the representation paradigm. We

will meet such situations throughout the thesis in various graph decompositions (part I)

and also in the algorithmic solution of several graph problems (part II).

1.3 Brief Notes on Two Simple Cases

This section is suggested by S. Thomassé.

A Non-Polynomial Case

Sometimes it is simply impossible to represent set families in a reasonable way. Presuming

that “reasonable” in computer science refers to some polynomial size assumption, it is

26 Chapter 1. A General Representation Method

actually more accurate to claim the previous statement most of the time. Indeed, let

us consider a ground set of n elementary objects. We will count how large may be the

universal class containing every family over this ground set.

Obviously, there are 2n choices for each member of a family in this class. Therefore,

there are Ck
2n choices for each family of size k. This implies 22n

= C0
2n + C1

2n + · · ·+ C2n

2n

choices for each family of the universal class. However, there are only 2P (n) distinct ways

to encode something from P (n) bits. Then, if P (n) is polynomial on n, it is obviously

not sufficient to cover 22n

families with P (n) bits when n gets an arbitrarily high value.

We deduce that an arbitrary family over a ground set of size n cannot be encoded in a

number of bits that is asymptotically polynomial on n.

There are actually many ways to consider the universal class. Basically, its cardinal is

exactly that of the power set of the boolean lattice of dimension n. In other words, and

for a more graphical intuition, one can also address the number of vertex subsets of the

hypercube of dimension n. We will use the point of view of a lattice to give a proof for

the following Proposition 1.4.

Let us define a strict subclass of the universal class, denoted by SQL (as in “still

quite large”). We begin with a special family, that we call Trunk. For instance, Trunk

could be the family of all subsets of the ground set of cardinality strictly less than
⌊

n
2

⌋
.

We then consider another family, that we call (potential) Branches. The requirement is

that no member of Branches belongs to Trunk. For the same example, let us say that

Branches is the collection of all subsets of the ground set of cardinality exactly equal

to
⌊

n
2

⌋
. Obviously, adding some members of Branches to the family Trunk results in a

family over the same ground set. We define SQL as the class of all families that can be

obtained by adding some members of Branches to the Trunk. Then, it follows directly

from definition that there are as many families in SQL as there are subsets of Branches.

In the above example, the cardinality of Branches is C
⌊n

2
⌋

n ≥ 2⌊
n
2
⌋ (it is asymptotically

equivalent to the width – the maximum size of an anti-chain – of the boolean lattice of

dimension n; equivalently, it is also roughly the size of a diagonal of the hypercube of

dimension n). Hence, there are at least 22⌊
n
2 ⌋

pairwise distinct families in our special SQL

class. Then, the previous size argument implies that such a family cannot be encoded

with a number of bits asymptotically polynomial on n. Notice also that every family

belonging to SQL is closed under the intersection and the difference. In other words, the

{ ∩, \ } closed families form a superclass of SQL, hence cannot be represented with a

number of bits asymptotically polynomial on n. Now, replacing the Trunk by the family

of all subsets of the ground set of cardinality strictly greater than
⌊

n
2

⌋
while keeping the

same Branches yields the same property for { ∪ } closed families. We sum up with

Section 1.3. Brief Notes on Two Simple Cases 27

Proposition 1.4 It is not possible to represent an arbitrary { ∩, \ } closed family in an

asymptotically polynomial space on the size of the ground set. Neither that is possible for

an arbitrary { ∪ } closed family.

A Polynomial Case

From a similar point of view of what has just been said, the following polynomial result

can be obtained, which is somewhat strange. We already saw that the universal class is in

bijection with the family of vertex subsets of a hypercube of dimension n. Alternatively, it

can also be seen as the family of subsets of vectors of a space of dimension n over the field

GF (2) of integers modulo 2 (informally: fix an origin, then every points of the hypercube

can be seen as a vector). More concisely, we can just address every singleton as a vector of

the basis, define them to be linearly independent, and consider there are no other vectors

in the basis. It is then straightforward that every subset of the ground set is a GF (2)-

linear combination of vectors of the basis: just choose scalar 1 for members of the subset

and scalar 0 for non-members. This is usually called the “bit vector representation” of a

subset, and is also the reason why the power set of X is usually denoted by {0, 1}X, or

simply by 2X .

In this vector space, the symmetric difference operation (over sets) is exactly the

addition operation (over vectors) of the space. Then, it follows directly from definition

that any { ∆ } closed family is a subspace of the vector space. Since any subspace can be

represented with a basis, namely a set of at most n vectors (of exactly n bits each), the

existence of a representation with at most n2 bits follows. It is noteworthy to highlight

that, as long as the ground set is already encoded, those n2 bits are exact: there is no

“log n neglect”! Now, on the other hand, each subspace of the previous vector space

gives rise to a distinct { ∆ } closed family. Since their number∗ is asymptotically greater

than a constant times 2
n2

4 , it is not possible to have a representation requiring less than

quadratic space, that is

Proposition 1.5 Let F be an arbitrary { ∆ } closed family which is not necessarily

proper and connected. Then, it is possible to represent F with at most n2 bits, where n is

the size of the ground set of F . It is not possible to represent F using an encoding space

that is asymptotically sub-quadratic on n.

Firstly, compared to the exponential cases of the difference operation (cf. { \ } closed

families), this result is surprising by its compactness: at most n2 bits “cash”, and none

∗This number is (in-)famous in the area of enumerative combinatorics under the different names of
q-binomial coefficients, Gaussian coefficients, and Gaussian binomials.

28 Chapter 1. A General Representation Method

of an O(n2) asymptotic analysis. Roughly, any “cash-result” is somehow similar to the

case of overlap-free families, where the linear space complexity is obtained from a direct

counting of their cardinality (at most 2n). Secondly, it is clear that the slight relaxation

to overlap-{ ∆ } families ruins totally the result. For a side note, it is from my personal

feelings that the structural behaviour of an overlap-{∆ } family is rather counter-intuitive.

However, as the compactness of the above result means there are quite few families which

are { ∆ } closed, we still conjecture that

Conjecture: Cross-{ ∆ } families are polynomially representable.

Proving this conjecture will imply a positive answer to most of the open questions in

Figure 1.5 at the end of this chapter: the only case left open would be cross-{ ∪, \ }.

Section 1.3. Brief Notes on Two Simple Cases 29

30 Chapter 1. A General Representation Method

A general note: The consequential work reviewed in [47] by A. Ehrenfeutch, T. Harju

and G. Rozenberg includes a framework for graph decomposition. This relies on a solution

for the representation problem of a particular class of set families, the so-called class of

weakly partitive families or siba’s, a shortcut for semi-independent boolean algebras. The

latter result was established by several authors in the early 1980s: cf. M. Chein, M. Habib

and M.-C. Maurer [27], and also R. Möhring and F. Radermacher [91, 92]. Actually, one

can slightly modify the framework described in [47] in order to obtain another general

method for representing an arbitrary set family, namely to obtain an alternative to this

chapter. More precisely, the result on weakly partitive families investigates the overlap-

free members of the input family. It can lead to what can be qualified as a framework for

representing set families via an “overlap-free decomposition tree” (see Definition 2.5 in the

upcoming chapter), as opposed to the “cross-free decomposition tree” of previously seen

Definition 1.1. We borrowed much on the ideas presented in [47]. For instance, they are

seminal for the very approach presented in this chapter itself! Actually, we will also revise

the overlap-free framework in Section 2.2.2. We show how, for weakly partitive families,

the overlap-free and cross-free approaches coincide. However, we will see further how the

overlap-free approach fails on some cases, including the symmetric crossing families (see

Corollary 2.4), while the cross-free approach results in polynomial representations in these

cases. Accordingly, the cross-free approach is a strict generalization of the overlap-free

approach. Then, the framework we have presented in this chapter can also be seen as a

strict generalization of the framework described in [47].

Note on Edmonds-Giles Theorem 1.1: The so-called Edmonds-Giles theorem [46]

in the area of combinatorial optimization is a much stronger result, which was among the

seminal works of an important theory in modern combinatorial optimization, so-called

min-max duality. However, a proper introduction to duality is beyond the purposes of

our composition (see for example [106] for more details). This note only gives some

information in order to avoid possible misunderstandings. In [46], Theorem 1.1 acted as a

preliminary lemma for more complex results. Also, it can be enhanced in order to result

in trees of smaller size (roughly, some arcs in the corresponding trees can be contracted).

This is the case for the versions explained in [46], in [57, 105], and also in [78, Chapter

2, Section 2.1.1]. For this kind of “enhanced” trees, we recommend the latter reference,

which is a good (and also recent) introduction. The version we gave for Theorem 1.1

follows from [106, page 215]. It does not necessarily result in the most space-efficient

tree. However, the asymptotic space complexity is the same, and this (detailed) version

is much more suited for the purposes addressed in our composition, in particular with the

notion of a quotient.

31

Note on the terminologies of a cross-free/overlap-free member: In topics

around modular graph decomposition, a – and probably the – seminal result, due to

T. Gallai, denotes an overlap-free member by the terminology of a strong member [62,

cited in [85]]. One of the most consequential references on those topics [47] also follows

this terminology, as well as various recent studies [38, 81, 94, 101, 103]. For cross-free

members, the first reference to our knowledge denotes them by good members [39, cited

in [41]]. Some recent studies [38, 94, 103] denote abusively overlap-free and cross-free

members by strong members. However, such an abuse hides important insights for the

purposes of representation. Among other things, both views provided by the dual result of

Edmonds-Giles theorem are important for our discussion, this will especially be the case

for Sections 2.2.1 and 2.2.2. Accordingly, we opt for overlap-free/cross-free terminologies

for more concision. Last but not least, doing this provides us with a broader view over

binary set relations.

32 Chapter 1. A General Representation Method

description known as representable in applicable for

cross-{ ∩,∪ } crossing family O(n2) [58] minimum s, t-cuts of a network,

umodules of a digraph

overlap-{ ∩,∪ } intersecting family O(n2) [58] minimum cuts of a network

closed under the

complementation and symmetric crossing O(n) [39] symmetric submodular function

cross-{ ∩ } closed family minimization

closed under the splits of a graph,

complementation and bipartitive family O(n) [39] bijoins of a graph,

cross-{ ∩, ∆ } closed canonical bimodules of a

bipartite graph

modules of a digraph,

overlap-{ ∩,∪, \ } weakly partitive O(n) [27] clans of a 2-structure,

family common intervals of permutations

modules of a graph,

overlap-{ ∩,∪, \, ∆ } partitive family O(n) [27] modules of a symmetric

2-structure

cross-{ ∩,∪, \ } weakly partitive O(n) [21] sesquimodules of a digraph

crossing family (cf. Section 3.1)

overlap-{ ∪, \ } union-difference O(n2) [15] sesquimodules of a 2-structure

family (cf. Section 3.2)

Figure 1.4: Applications of the representation problem of set families. The size of the
ground set is denoted by n.

33

X X closed overlap-X cross-X

{ ∪ } N.R.P. from Proposition 1.4 ←− ←−

{ ∩ } ↓ ↓ ↓

{ ∩, \ } N.R.P. from Proposition 1.4 ←− ←−

{ \ } ↑ ↑ ↑

{ ∪, ∆ } ↓ – OPEN – – OPEN –

{ ∆ } ≤ n2 bits from Proposition 1.5 – OPEN – – OPEN –

{ ∩, \, ∆ } ↑ – OPEN – – OPEN –

{ \, ∆ } equivalent to { ∩, \, ∆ } equivalent to { ∩, \, ∆ } equivalent to { ∩, \, ∆ }

{ ∩, ∆ } equivalent to { ∩, \, ∆ } equivalent to { ∩, \, ∆ } equivalent to { ∩, \, ∆ }

{ ∩,∪ } −→ O(n2) [58] O(n2) [58]

{ ∪, \ } −→ O(n2) [15] – OPEN –

(cf. Section 3.2)

{ ∩,∪, \ } −→ O(n) [27] O(n) [21]

(cf. Section 3.1)

{ ∩,∪, \, ∆ } −→ O(n) [27] O(n) [21]

(cf. Section 3.1)

{ ∪, \, ∆ } equiv. to { ∩,∪, \, ∆ } equiv. to { ∩,∪, \, ∆ } equiv. to { ∩,∪, \, ∆ }

{ ∩,∪, ∆ } equiv. to { ∩,∪, \, ∆ } equiv. to { ∩,∪, \, ∆ } equiv. to { ∩,∪, \, ∆ }

Figure 1.5: Possible combinations of overlap-X , cross-X , and X closed families with
X ⊆ { ∩,∪, \, ∆ }. The size of the ground set is n. N.R.P. is short for not representable
in polynomial size on n, while – OPEN – refers to the open question whether the class is
polynomially representable or not. Arrows from cell A to cell B denote the fact the result
of cell A follows from that of cell B (cf. Remark 1.8).

Chapter 2

Fundamental Representations

Some aspects presented in this chapter are based on [16, 17, 18, 21]. This includes in

particular Sections 2.2.2 and 2.3.2. However, we will not go into the details of [16, 17, 18].

Further information on the decomposition schemes given in Section 2.3.2 are developed

in [83]. Most results presented in Section 2.2.2 have not been published so far.

The aim of this chapter is to survey a number of classes of set families for which a

polynomial space representation is known. For such a class, we recall the basic notions

related to that class, and show at least one representation theorem. Indeed, as set families

involve in many research areas, the same class of set families might have been studied

independently, leading to different representation theorems. When such a situation occurs,

we will select, among the most efficient representations, those that are most simple (in

our opinion!), as well as those that fit best into the scope of our discussion. Then, we

would rather suggest readers with further interests in the other representations to follow

the references given for each case.

For instance, intersecting families have two quadratic size representations: so-called

tree of posets [58] and a more recent representation given in [6]. As much as we will

recall the latter representation, which is simpler in our opinion, we only give a brief

comment for the former representation by trees of posets. To give another example, weakly

bipartitive families are also known as symmetric crossing families. The first terminology

leads to a representation that usually refers to the so-called split decomposition. This

decomposition was introduced and studied in the early 1970s [39] and figured also in

some recent works [94, 103]. The other terminology of symmetric crossing leads to the

so-called cactus (hyper-)tree representation, and was studied by several authors. The very

definition of a cactus hypertree seems to be first introduced in Russian in the mid 1970s.

For a quite recent introduction in English refer to, e.g., [54] (therein, the reference to the

mid 1970s Russian paper is cited as [45]). When facing this class of families, we will favour

bipartitive terminology, as it fits better in our general method described in Chapter 1.

36 Chapter 2. Fundamental Representations

crossing families

families

families
bipartitive

families
symmetric crossing

intersecting families

weakly partitive

partitive families

Figure 2.1: Some fundamental classes of set families. When comparable, the inclusion of
a class is strict.

Another noteworthy remark on all the classes addressed in this chapter would be that

they are seminal. Firstly, each of them has been rather well-studied for half a century

(at least∗!). Moreover, they will be fundamental for this thesis since the next chapter

will deepen two of their generalizations. As well, this chapter is concluded with selected

applications of the representation paradigm based on those set families. We will focus on

applications in graph theory, and more specifically in the problem of decomposing graphs

and their common generalization to 2-structures (roughly, a 2-structure is a complete

directed graph given along with a colouring on its arcs). Before going into the details,

let us recall that, unless otherwise stated explicitly, not only all families in the thesis are

supposed to cover a ground set of at least 3 elements, but they are also supposed to be

proper and connected, namely

Definition 2.1 (Proper and Connected Family) A family F over a ground set X is

proper and connected if it excludes the empty set, and if it contains all the trivial subsets

of X, namely the sets {x} (for all x ∈ X) and the set X.

This assumption will not change the results on space complexity since any family

can be made proper and connected by adding/removing the corresponding subsets. The

“cleaning” process will not take a space complexity higher than that of the ground set.

∗For instance, according to M. Habib [64], the first notions related to contemporaneous modular
decomposition and its closed associates the partitive families were already mentioned in 1949 in the
works of A. A. Zykov.

Section 2.1. Intersecting and Crossing Families 37

2.1 Intersecting and Crossing Families

We first focus on two seminal cases: intersecting and crossing families. Both of them

are quite well worked since they intervene very naturally among submodular function

minimization issues. Indeed, the family of non-empty minimizers of a submodular function

is an intersecting family, while the family of minimizers that are neither the empty set

nor the universal set is a crossing family. Let us begin with the intersecting families.

Definition 2.2 (Intersecting Family) A proper and connected family is an intersect-

ing family if it is closed under the union and the intersection of its overlapping members.

(They are exactly the overlap-{ ∩,∪ } families.)

H. Gabow gave a representation for intersecting families using quadratic space on the

size of the ground set [58]. It is so-called the tree-of-posets representation and is probably

the first quadratic-size result for those families. This was used to speed-up a number

of optimization problems, presented in the same paper. Let us call a lattice family a

set family which is closed under the intersection and the union of arbitrary members.

Informally, the approach of [58] can be seen as the extraction of a lattice family from the

input family F ⊆ 2X when looking into members of F of high cardinality (strictly greater

than |X|
2

). After this, members belonging to the lattice family are represented by a well-

known poset representation, while the remaining members are represented using some

recursive process (hence the terminology of a tree-of-posets). To obtain the quadratic

size result, the approach also requires some non-trivial counting argument. The main

drawback of this representation lays on both its number of intermediary notions and the

fact that the global approach is rather heavy.

On the other hand, A. Bernáth proved the following direct counting result [6]. For

every element x ∈ X, a subset A ⊆ X is called an x-free subset if x does not belong to

the subset: x /∈ A. For every subset A ⊆ X, a subset B ⊆ X is called an A-free subset if

A and B are disjoint: A ∩B = ∅.

Lemma 2.1 (Bernáth [6]) If a family F ⊆ 2X is closed under the union of its crossing

members, then the following family, which is not necessarily proper and connected, has at

most 2|X| − 2 members.

H = {A ⊆ X , ∃x ∈ X s.t. A is a maximal x-free member of F}.

Proof: The proof given in [6] is as follows. For every x ∈ X, let Hx denote the family of

maximal x-free members of F . Under this notation, H =
⋃

x∈X Hx. To prove the lemma,

we proceed by induction on n = |X|.

38 Chapter 2. Fundamental Representations

Clearly, the cases of n = 1 and n = 2 are trivial. Let us consider the case where

n ≥ 3. Firstly, X /∈ H by definition. As well, if all members of H are trivial subsets of X,

then their number cannot exceed n, and we are done. Now suppose there are non-trivial

subsets of X among the members of H. We take A ∈ H, A non-trivial, and minimum by

size. Note by minimality of A that every member B ∈ H with B (A is a singleton. We

partition H into two parts:

• K = { B ∈ H, A ∩B = ∅ or A ⊆ B }, and

• L = { B ∈ H, A©©B or B ⊆ A }.

We first evaluate K by proving the following claim:

K ⊆
⋃

x∈X\A

Hx ∪ { B ⊆ X , B is a maximal A-free member of F }.

Indeed, let B be a member of K. Basically, B is a member of H, so let b /∈ B be such

that B ∈ Hb. If b ∈ X \ A then we are done. Otherwise, A and B have to be disjoint,

from definition of K and the fact A \ B is non-empty (for the latter fact b is a witness).

In other words, B is an A-free member of F . Then, the maximality of B from being a

member of Hb allows to conclude.

We now build another family F ′ over another ground set X ′. First, let us shrink A

into one new element α: X ′ = (X \ A) ∪ {α}. Then, we define F ′ to contain the subsets

of X ′ corresponding to members of F that are either disjoint from A or a super-set of A:

F ′ = {B ∈ F , A∩B = ∅}∪{(B \A)∪{α}, B ∈ F and A ⊆ B}. From the non-triviality

of A, we have |X ′| < |X|, which enables the use of an inductive argument. Finally, one

can check that F ′ is closed under the union of its crossing members, and deduce from

induction that |K| ≤ 2|X ′| − 2, that is |K| ≤ 2n− 2|A|.

We now conclude by proving that |L| ≤ 2|A| − 2. Indeed, it is firstly straightforward

to notice that L ⊆
⋃

x∈AHx. Moreover, let a /∈ A be such that A ∈ Ha, then, for every

x ∈ A, for every member B of Hx, one and only one of the following holds:

• A ∩B = ∅, and B is not a member of L.

• B ⊆ A, and B is a singleton by minimality of A.

• A©©B. But then we have two further facts. First, a ∈ B otherwise the maximality

of A as a member of Ha would fail. Second, B is unique w.r.t. x otherwise the

maximality of B as a member of Hx would fail. Finally, whenever this case occurs,

we denote B by Zx, since B is unique w.r.t. x.

Section 2.1. Intersecting and Crossing Families 39

Note that, for every x ∈ A, Zx exists if and only if the third case in the above list

occurs. The remainder of the proof of the lemma is achieved by the following case analysis.

Let Z = {x ∈ A, Zx exists}. We distinguish three cases

• |Z| ≤ |A|−2. Then, we can conclude as L contains at most |Z| non-trivial members.

• Z = A \ {x}. Then {x} /∈ L: otherwise there would be y ∈ A such that {x} ∈ Hy;

this would imply x /∈ Zy; but then Zx would exist. After this observation, we

can conclude as L contains at most |Z| non-trivial members and at most |A| − 1

singletons.

• Z = A. We first prove that {Zx, x ∈ A} has at least two minimal members (by

inclusion): otherwise let Zx0 be the unique minimal member; but then, for every

y ∈ A ∩ Zx0 (y exists since A©©Zx0), we would have {y} ⊆ Zx0 ⊆ Zy, which is

impossible. Finally, for every minimal member Zx of the previous set, we have two

mutually exclusive cases

– either {x} /∈ L,

– or {x} ∈ L. But then, for some y ∈ A, Zx = Zy. Indeed, since {x} ∈ L, there

is y ∈ A such that {x} ∈ Hy. As Zy ∈ Hy also holds, we have x /∈ Zy. Now,

assuming Zx (Zy would contradict the maximality of Zx in Hx; assuming

Zx
©©Zy would also lead to the same contradiction; and assuming Zy (Zx

would contradict the minimality of Zx in {Zz, z ∈ A}. The only possibility is

that Zx = Zy.

In both cases we can conclude easily using the fact there are at least two minimal

members in {Zx, x ∈ A}.

We have seen that in all three cases we can conclude the proof of the lemma. �

We can now represent intersecting families by combining Bernáth lemma and the

following folklore fact:

Proposition 2.1 (see, e.g., [6]) Let F ⊆ 2X be an arbitrary intersecting family. Let H

denote the family H = {A ⊆ X , ∃x ∈ X s.t. A is a maximal x-free member of F},

which is not necessarily proper and connected. Then,

F \ {X} =

{
⋂

i∈I

Hi , ∀i ∈ I, Hi ∈ H

}

\ {∅}.

40 Chapter 2. Fundamental Representations

Proof: The inclusion of the right hand-side to the left hand-side follows directly from

definition. Let us prove the inclusion of the other way around. Let us pick any member

A of F which is different from X. If A ∈ H then we are done. Otherwise, let X \ A =

{x1, x2, . . . , xk}. Let H1, H2, . . . , Hk ∈ H be the members of H such that A ⊆ Hi and Hi

is xi-free, for all 1 ≤ i ≤ k. We define B =
⋂k

i=1 Hi. Straight from definition A ⊆ B.

Now, for all 1 ≤ i ≤ k, xi /∈ H clearly implies xi /∈ B. Hence B ⊆ A and we deduce that

A is the intersection of the Hi’s. �

Corollary 2.1 An intersecting family F ⊆ 2X can be represented in O(|X|2) space.

Proof: From Proposition 2.1, the familyH defined therein is a representation of F . From

Bernáth Lemma 2.1, the needed space to store H is in O(|X|2). �

Corollary 2.2 The complexity of an intersecting family on a ground set X is in O(|X|2).

Basically, Bernáth Lemma 2.1 is very nice by the simplicity of its statement. Now,

conversely, there is a second folklore fact stating it is not possible to have a representation

that is asymptotically better than the one given by Corollary 2.1, namely

Proposition 2.2 The quadratic complexity of an arbitrary intersecting family is tight.

Proof: We proceed with a counting argument as what has been done at the end of

Chapter 1 for Remark 1.4. Roughly, we need to display sufficiently “many” intersecting

families over the same ground set X. Concisely, let X = {x1, x2, . . . , xn}, p = ⌊n
2
⌋, and

q = ⌈n
2
⌉. We will define 2pq intersecting families over X. This would imply that we cannot

represent an arbitrary intersecting family with fewer than ⌊n
2
⌋2 bits, and the proposition

follows. Let G be a directed graph over the vertex set X such that

• G is a bipartite graph between {x1, x2, . . . , xp} and {xp+1, xp+2, . . . , xn},

• and there are no arcs in G of the form (xj , xi) with i < j.

The number of such graphs is clearly 2pq since there are only two choices per pair (i, j),

ranging as 1 ≤ i ≤ p < j ≤ n, whether the arc (xi, xj) belongs to a graph or not. Let

FG = f(G) be the family of all non-empty vertex subsets of X of in-degree zero, where the

in-degree of a vertex subset counts the number of arcs of G with an out-going extremity

inside that subset and the other extremity outside the subset. Then, it is straightforward

to prove that FG is an intersecting family. Therefore, it suffices to prove that the function

f is injective to obtain the desired amount of different intersecting families over X. Indeed,

let G and G′ be two different graphs which both satisfy the above requirement. Let us

Section 2.2. More Specific Families 41

prove that FG 6= FG′. Firstly, since the two graphs are different we can suppose without

loss of generality that there are i and j with 1 ≤ i ≤ p < j ≤ n such that arc (xi, xj)

belongs to G′ and does not belong to G (just permute G and G′ if G′ is a partial subgraph

of G). Now let A be the minimal member of FG which contains xj . The minimality of

A implies that, for all k > p and k 6= j, A does not contain xk. Now, if xi does not

belong to A then we are done because this would mean A cannot be a member of FG′.

Otherwise, B = A \ {xi}, which cannot belong to FG by minimality of A, should have

a strictly positive in-degree in G. However, as A is a member of FG, the previous fact

can only occur when there is an arc in G linking xi to some vertex in B, say xk0 . Clearly

k0 > p and k0 6= j. This contradicts the minimality of A. �

Turning our attention to the second case of this section, the class of crossing families

is the broadest class presented in this chapter. The situation is not the same for the

remaining of the thesis since the next chapter will present a class that is incomparable to

this class (inclusionwise).

Definition 2.3 (Crossing Family) A proper and connected family is a crossing family

if it is closed under the union and the intersection of its crossing members.

Since the crossing of two subsets implies their overlapping, an intersecting family is

clearly a crossing family. Conversely, we can represent a crossing family F with two

intersecting families as follows. Let x be an element of the ground set of F . Let F ′ be the

family of all complements of members of F containing x, and F ′′ the family of all members

of F excluding x. Then, one can check that both F ′ and F ′′ are intersecting families.

Finally, representing F by the two latter families follows trivially from F = F ′ ⊎ F ′′,

where F ′ is the family of all complements of members of F ′. Now, intersecting families

own polynomial space representations from what has been previously said. It follows that

Remark 2.1 The complexity of a crossing family is asymptotically proportional to that

of an intersecting family on the same ground set.

2.2 More Specific Families

Due to the quadratic complexity of the result on intersecting and crossing families, one

can suppose there is space for more efficient representations, for example with a better

theorem or when restricting to some subclass. However, the previous Proposition 2.2

states that improving the representation theorem is impossible for arbitrary intersecting

families. Then, by inclusion, this is also impossible for arbitrary crossing families. As a

42 Chapter 2. Fundamental Representations

natural consequence, it is interesting (by elimination perhaps?) to look for subclasses of

crossing families which have a more efficient representation. This will be the topic of the

section. The fact that the next section gives applications of all these classes in some quite

important branches of graph theory is all the more instructive.

2.2.1 Partitive Families – the Classical Approach

Partitive families are particular cases of intersecting families. Their structure is funda-

mental for a very well-studied field in graph theory, so-called modular decomposition (see

Section 2.3.1). The terminology of partitivity was introduced and studied in [27]. In one

of the most complete references of topics around modular decomposition, namely in [47],

a weakly partitive family is also called a siba – shortcut for semi-independent boolean

algebra. Therein, the notion is fundamental for the description of clan decomposition.

Definition 2.4 (Weakly Partitive Family and Partitive Family) A proper and

connected family is weakly partitive if it is closed under the union, the intersection, and

the difference of its overlapping members. Moreover, if the family is also closed under the

symmetric difference of its overlapping members, it is called partitive.

The terminology of weakly partitivity as opposed to (bare) partitivity is historical. It

could be interesting to replace them by partitivity and strongly partitivity, respectively.

Indeed, we will see in Theorem 2.1 that a weakly partitive axiom is sufficient to obtain a

linear space representation. Also, the additional closure provided by the partitive axiom

is quite marginal in a large part of the related literature in the topic. More precisely,

the common approach consists of getting a representation using the weakly partitive

axiom. Only then, the partitive axiom is used to eliminate some cases, and simplify the

representation. This being said, we will follow the historical terminologies.

We have mentioned in several places in the last chapter that modular decomposition

makes use of a version of decomposition tree that is not based on the cross-free members.

The actual situation is as follows. Modular decomposition relies on the representation

of partitive families. A partitive family, in turn, is usually studied under a different

framework, namely via the Edmonds-Giles rooted tree representation of the (overlap-free)

subfamily of overlap-free members of the input family, that is

Definition 2.5 (Overlap-free Decomposition Tree) The overlap-free decomposition

tree of a family F ⊆ 2X is defined as the Edmonds-Giles’s representation [46] of its

overlap-free members.

The following lemma shows how the two views of overlap-free decomposition tree and

cross-free decomposition tree are almost equivalent for weakly partitive families. Actually,

Section 2.2. More Specific Families 43

we show the result for a larger class of set families. However, note that this does not

necessarily hold for families such as the union-difference families that will be introduced

in the next chapter. Before continuing, recall that an overlap-free member of any set

family is also a cross-free member of the family. On the other hand,

Lemma 2.2 If a family is closed under the intersection and the difference of its overlap-

ping members, then every cross-free member of the family is either an overlap-free member

or the complement of an overlap-free member. A consequence is that, except for the root

and the edge orientations, the cross-free decomposition tree of such a family coincides with

its overlap-free decomposition tree.

Proof: Assume that a cross-free member A is not an overlap-free member. Then, A must

be the complement of an overlap-free member. Indeed, there exists another member B of

the family such that A and B overlap, but do not cross. Therefore the union of A and B

is equal to the ground set of the family. A consequence is that C = B \ A is exactly the

complement of A. Now, by difference closure, C is a member of the family. If |C| = 1

then C is clearly an overlap-free member and we can conclude. Otherwise, suppose that

C is not an overlap-free member: there exists a member D of the family such that C and

D overlap. Then, the union of C and D is equal to the ground set of the family, otherwise

D would cross (the cross-free member) A. But this also would mean that D ∩ B, which

is a member of the family by the intersection closure, crosses A. We conclude that C is

actually an overlap-free member, and A the complement of an overlap-free member. �

Chapter 1 was meant for the general case of an arbitrary family. There, we prefer

addressing cross-free decomposition trees in order to classify the members of the input

family into as many quotients as possible. However, for weakly partitive families, this

will not allow to classify any more than the approach via overlap-free decomposition trees

(cf. Lemma 2.2). Then, for the sake of simplicity, considering the overlap-free decompo-

sition trees allows some shortcuts in obtaining a representation result. In our study, we

nonetheless deepen the cross-free decomposition tree approach, even though it requires

more writing space. A (double) motivation is that the more general cross-free approach

gives more details, and at the same time, it can be used in a more general context. For

instance, a situation where the overlap-free approach fails while the cross-free approach

results in a polynomial representation will be exemplified in Section 2.2.3.

In order to recall the overlap-free approach, we will need to introduce the following

shortcut of the notion of a (cross-free) quotient. In an overlap-free decomposition tree,

every internal node u has k = d(u)− 1 children, except for the root which has k = d(u)

children. Here, the leaf sets of the subtrees rooted at the children of u can also be seen as

44 Chapter 2. Fundamental Representations

X u

X1 X2 X3

a b

c d

e

gf

Figure 2.2: The ground set {X1, X2, X3} of an overlap-free quotient, with X1 = {a, b},
X2 = {c}, and X3 = {d}. It is a partition of Xu = {a, b, c, d}.

a k−partition of Xu, the leaf set of the subtree rooted at u. Let {X1, X2, . . . , Xk} denote

this partition (e.g., Figure 2.2). Note that k ≥ 2. Let us consider Y = {X1, X2, . . . , Xk}

as a set.

Definition 2.6 (Overlap-free Quotient) Keeping the same notation of the partition

Y = {X1, X2, . . . , Xk} as above, we define the overlap-free quotient of F with respect to

node u as the family Q(u) ⊆ 2Y such that Q = {Xi | i ∈ I} belongs to Q(u) if and only

if
⋃

i∈I Xi belongs to F .

Notice that an overlap-free quotient is always proper and connected. Also, its ground

set may have less than three elements, but it always has at least two elements. Now, one

can check that the mapping of a set family to an object made of both the overlap-free

decomposition tree of the family and the overlap-free quotients of all nodes of the tree is

an injective function. One can also check that the initial family can be built back from

the knowledge of its overlap-free decomposition tree and the overlap-free quotients of all

nodes of the tree. We here would like to highlight the following straightforward property.

Proposition 2.3 Let F ⊆ 2X be a family. If |X| < 3 then every member of F is at the

same time an overlap-free member and a trivial member. Otherwise, trivial members of F

are clearly overlap-free members. On the other hand, for every node u of the overlap-free

decomposition tree of F , all overlap-free members of the quotient Q(u) with respect to u

are trivial with respect to the ground set of Q(u).

Definition 2.7 (Overlap-free Quotient property) We say that a set family satisfies

the overlap-free quotient property if all its overlap-free members are trivial.

One can also check that the class of partitive (resp. weakly partitive) families is overlap-

free quotient-hereditary, namely, for every partitive (resp. weakly partitive) family F , the

Section 2.2. More Specific Families 45

overlap-free quotient family Q(u) with respect to every node u of the decomposition tree

of F is also a partitive (resp. weakly partitive) family. Accordingly, in order to represent

a partitive (resp. weakly partitive) family, it suffices to represent a family that is at the

same time partitive (resp. weakly partitive) and overlap-free quotient.

In the following, Theorem 2.1 will recall a result given by M. Chein, M. Habib, and

M.-C. Maurer∗ [27]. This can be used as an intermediary step to establish a linear space

representation for weakly partitive families. It is seminal for several aspects throughout

the current part of the thesis. However, we will not discuss in detail how to prove this

theorem. Instead, we will recall how it can be used to obtain the linear space represen-

tation. Then, we revisit the theorem and give an alternative approach to obtain exactly

the same representation. Our approach follows the more general framework of cross-free

decomposition developed in Chapter 1. Recall that not only all set families in this part

of the thesis are supposed to have a ground set of at least 3 elements, but also they are

considered to be proper and connected, that is they exclude the empty set and include

all trivial subsets of the ground set.

Theorem 2.1 (Chein-Habib-Maurer [27]) If a family F ⊆ 2X is at the same time

weakly partitive and overlap-free quotient, then one and only one of the following holds:

• F has no other member than the trivial members (we say that F is prime),

• F = 2X \ {∅} (we say that F is complete),

• there is an ordering (x1, x2, . . . , xn) of the elements of X such that F is the family

of all intervals {xi, xi+1, . . . , xj} (for all 1 ≤ i ≤ j ≤ n) of this ordering (we say

that F is linear).

Moreover, if F is partitive, the third case cannot occur.

Though we will not formally prove this theorem, notice that a proof can be deduced

from the proofs of Theorems 2.2 and 2.3 (see Section 2.2.2). Here, let us discuss on

how Chein-Habib-Maurer theorem can be used to obtain a linear space representation of

(weakly) partitive families. Let F ⊆ 2X be a weakly partitive family. Let T be its overlap-

free decomposition tree. Let Y = {X1, X2, . . . , Xk} denote the partition associated to

an internal node u in T as in the definition of an overlap-free quotient (Definition 2.6,

also exemplified in Figure 2.2). If k = 2 then representing the overlap-free quotient is

straightforward (we can for example denote them by a special “trivially representable”

label). Let us suppose k ≥ 3. Then, if the overlap-free quotient is prime, its representation

∗M.-C. Maurer is now M.-C. Vilarem.

46 Chapter 2. Fundamental Representations

requires only 1 bit stating it has no other members than the trivial subsets of Y . In order

to represent an overlap-free quotient that is complete, again we need only 1 bit stating

that it is made of all unions of some Xi’s (informal view in the rooted tree T : all unions

of some children of the node u). For an overlap-free quotient that is linear, we also need

to code an ordering over the children of the node, namely k pointers. Then, 1 bit can

state it is the family of all unions of some consecutive Xi’s (informal view: all intervals

of children w.r.t. the aforementioned ordering). Accordingly, the global labelling for the

various overlap-free quotients of the overlap-free decomposition tree requires a space that

is a constant times the number of edges of the tree. The latter number is bounded by

2× |X| − 3. Notice that the previous constant is low: we need to code 3 types of nodes,

and at most 1 pointer per incident edge of the node (when the overlap-free quotient

w.r.t. the node is linear). We conclude from Theorem 2.1 and from what has been said

on overlap-free decomposition trees that weakly partitive families are representable in a

space of linear complexity on the size of the ground set, that is

Corollary 2.3 The space complexity of a weakly partitive family over X is in O(|X|).

2.2.2 Partitive Families – a New Viewpoint

In order to give the cross-free alternative to obtain the Chein-Habib-Maurer result, we

need the formalism of simply-linkedness and its dual notions of a guard and a quotiental

parent. These notions were introduced in [15] for the study of a strict generalization of

partitive families.

Let us emphasize that the current section abandons the overlap-free terminology as

long as decomposition trees and quotients are concerned. Instead, we address cross-free

decomposition trees and cross-free quotients, as in Chapter 1. Recall also that not only

all set families in this part of the thesis are supposed to have a ground set of at least 3

elements, but also they are considered to be proper and connected, that is they exclude

the empty set and include all trivial subsets of the ground set. Clearly, a quasi-trivial

member of a family is also a cross-free member. Moreover, we say that

Definition 2.8 (Simply-linked Property) A family is simply-linked if none of its quasi-

trivial members is an overlap-free member of the family.

Definition 2.9 (Guard) If a family F ⊆ 2X is not simply-linked, then directly from

definition there exists one and only one element x ∈ X such that G = F \ {X, {x}} is a

(proper and connected) family over Y = X \ {x}. In this case, the element x is called a

guard of the family. In the remaining of the thesis, the fact the ground set of G is Y , and

not X, is crucial.

Section 2.2. More Specific Families 47

Definition 2.10 (Quotiental Parent) Let F ⊆ 2X be an arbitrary family over X. Let

u be a node of the (cross-free) decomposition tree T of F such that the (cross-free)

quotient Q(u) w.r.t. u is

• not simply-linked. Then, the guard of Q(u) corresponds to a unique connected

component C of the forest T − u, obtained by removing u from T . Let v be the

unique neighbour of u in T that belongs to C. We say that v is the quotiental parent

of u, and define the quotiental parent orientation from u as an arc from u to v.

• simply-linked. Then, we say that u is the quotiental parent of itself, and define the

quotiental parent orientation from u as a loop from u to u.

Definition 2.11 (Quotiental Parent Arborescence) Let T be the decomposition tree

of a set family F . We define the quotiental parent arborescence
−→
T of F as the orientation

given by the quotiental parent orientation on the underlying graph of T . This might

disconnect the underlying graph, namely when two neighbours u and v in T are such that

neither u is the quotiental parent of v nor v the quotiental parent of u.

Notice that a quotiental parent arborescence might have loops. Roughly, loops therein

display simply-linked quotients. Now, Chein-Habib-Maurer Theorem 2.1 can be divided

into two pairwise exclusive cases as follows.

Theorem 2.2 If a family F ⊆ 2X satisfies: the weakly partitive property, the quotient

property, and the simply-linked property, then one and only one of the following holds:

• F is the family of trivial subsets of X (we say that F is prime),

• F = 2X \ {∅} (we say that F is complete),

• there is an ordering (x1, x2, . . . , xn) of the elements of X such that F is the family

of all intervals {xi, xi+1, . . . , xj} (for all 1 ≤ i ≤ j ≤ n) of this ordering (we say

that F is linear).

Moreover, if F is partitive, the last case cannot occur.

Proof: By successive applications of Lemma 2.4, Lemma 2.5, and Remark 2.2 (all three

below). �

Theorem 2.3 If a family F ⊆ 2X satisfies both the weakly partitive and the quotient

properties, but fails the simply-linked property, then, for x ∈ X being the guard of F ,

G = F \ {X, {x}}, and Y = X \ {x}, one and only one of the following holds:

48 Chapter 2. Fundamental Representations

• |Y | = 2 (we say that F is trivially representable: like in the case when |X| = 2,

here G = 2Y \ {∅}, but the difference is that F now has a guard),

• |Y | ≥ 3 and G is the family of trivial subsets of Y (by abuse of terminology, we still

say that F is prime, the difference is that F now has a guard),

• |Y | ≥ 3 and G = 2Y \ {∅} (we still say that F is complete, the difference is that F

now has a guard),

• |Y | ≥ 3 and there is a linear ordering of the elements of Y such that G is the family

of all intervals of this ordering (we still say that F is linear, the difference is that

F now has a guard).

Moreover, if F is partitive, the last case cannot occur.

Proof: (same as previous theorem). By successive applications of Lemma 2.4, Lemma 2.5,

and Remark 2.2 (all three below). �

Before heading to the proof of the two theorems, let us discuss on how they can be

used to retrieve the linear representation of (weakly) partitive families via the overlap-

free decomposition tree. For this we establish a rooted point of view of the unrooted

(cross-free) decomposition tree of a weakly partitive family. Let us proceed in two steps.

Lemma 2.3 In the decomposition tree T of a weakly partitive family F , there is at most

one internal node u such that the quotient w.r.t. node u is simply-linked.

Proof: (by contradiction). Suppose there are two internal nodes u, v in T such that

the quotient w.r.t. each node is simply-linked. For convenience, we make use of abuse of

terminology, and also denote the underlying graph of T by T . Let (u = u1, u2, . . . , up = v)

be the path linking u to v in T . Let A be the leaf set of the connected component

containing u we get when removing the edge between up−1 and v in T . Let B be the leaf

set of the connected component containing v we get when removing the edge between u

and u2 in T .

We first prove that both A and B are members of F in two steps.

• If u and v are neighbours in T , then A and B are complementary. From definition

of a cross-free decomposition tree, either A or its complement B is a member of F .

W.l.o.g. suppose that A is a member of F . Let us examine the quotientQ(u) w.r.t. u.

There, B corresponds to an element of the ground set of Q(u), and the complement

of the singleton {B} belongs to Q(u) since A = X \ B belongs to F . Since Q(u)

Section 2.2. More Specific Families 49

is simply-linked, Q(u) can only be complete or linear according to Theorem 2.2. In

both cases, there exists an element C of the ground set of Q(u) for which it holds

that C (X \ B and {B, C} belongs to Q(u) (to see that C 6= X \ B recall that

the ground set of Q(u) has at least 3 elements according to Proposition 1.2). One

consequence is that B ∪ C is a member of F . This member overlaps A, and the

difference closure of F implies B = (B ∪ C) \ A is a member of F .

• If u and v are not neighbours in T , then A and B overlap (noted A©©B). From

definition of a cross-free decomposition tree, either B or its complement X \B is a

member of F . Let us prove that B is a member of F . For this, it suffices to prove

that if X \ B is a member of F , then so is B. We proceed exactly as before: B

corresponds to an element of the ground set of Q(u), and the complement of the

singleton {B} belongs toQ(u) since X\B belongs to F . Since Q(u) is simply-linked,

Q(u) can only be complete or linear according to Theorem 2.2. In both cases, there

exists an element C of the ground set of Q(u) for which it holds that C (X \ B

and {B, C} belongs to Q(u) (to see that C 6= X \ B recall that the ground set

of Q(u) has at least 3 elements according to Proposition 1.2). One consequence is

that B ∪ C is a member of F . Since B ∪ C and X \ B overlap, their difference

(B∪C)\ (X \B) = B is a member of F by the difference closure of F . By a similar

argument, we can also prove that A is a member of F .

Hence, both A and B are members of F . But then, we can also obtain that their

respective complements are members of F : if u and v are neighbours, then it is trivial;

otherwise, just notice that A©©B and X \ B = A \ B, then use the difference closure.

Here again, since X \ B is a member of F , all arguments in the last paragraph applies:

there exists C (X \ B such that B ∪ C is a member of F . By a similar argument on

A and the quotient w.r.t. v, we can also obtain that there exists D (X \ A such that

A ∪ D is a member of F . But then (B ∪ C) ∩ (A ∪ D) is a member of F which crosses

both A and X \ A (it also crosses both B and its complement). This would mean that

the edge between up−1 and v cannot be an edge of the cross-free decomposition tree T .

Contradiction. �

Theorem 2.4 Let
−→
T be the quotiental parent arborescence of a weakly partitive family

F . Then, one and only one of the following holds:

•
−→
T has one and only one sink: it is then a rooted tree, noted T̂ .

•
−→
T has one and only one double-arc, says between nodes u and v. Moreover, when

subdividing that double-arc by adding a new node r such that both u and v have an

50 Chapter 2. Fundamental Representations

outgoing arc to r, one results in an arborescence having r as unique sink. In other

words, this is a rooted tree, noted T̂ .

Finally, T̂ in both cases turns out to be exactly the overlap-free decomposition tree of F .

Proof: The fact that, in both cases, T̂ is exactly the overlap-free decomposition tree of F

is straightforward from the definition of the various quotiental parents in T . Accordingly,

we only show how to obtain the two items in the theorem. From Lemma 2.3, we have two

pairwise exclusive configurations. Before continuing we highlight that one of the important

facts that is implicit in the following is that the ground set of a quotient always has at

least 3 elements (cf. Proposition 1.2).

In one configuration of Lemma 2.3, T has exactly one internal node u s.t. the quotient

Q(u) w.r.t. u is simply-linked. Let us prove that u is the unique sink of
−→
T . Here it suffices

to prove that, for every pair of neighbours s, t in T , the nearer node t (w.r.t. u) is the

quotiental parent of the further node s (w.r.t. u). By contradiction suppose that there

exists a neighbour w of s such that w 6= t and w is the quotiental parent of s. Notice

that t might coincide with u but s 6= u and w 6= u. Let (s = u1, t = u2, u3, . . . , up = u)

be the path linking s to u in T . Before continuing we prove a useful fact. Let Z be

the leaf set of the connected component containing up−1 we get when removing the edge

between up−1 and u in T . We claim that Z is a member of F . Indeed, by definition of

the cross-tree decomposition tree either Z or Z is a member of F . Moreover, if Z is a

member of F then we can proceed by a similar argument as in the proof of Lemma 2.3 as

follows. Z corresponds to an element of the ground set of Q(u). Since Z is a member of

F , by Theorem 2.2 Q(u) is not prime. Besides, all cases lead to the existence of another

element W of the ground set of Q(u) s.t. W (Z and {W, Z} belongs to Q(u). But

then W ∪ Z is a member of F which overlaps the member Z of F . By difference closure,

Z = (W ∪ Z) \ Z is a member of F . We now achieve the proof of this case by exhibiting

a contradiction. Let A be the leaf set of the connected component containing w we get

when removing node s from T . By definition of a quotiental parent, A corresponds to

the guard of the quotient Q(s) w.r.t. node s. Let B be the leaf set of the connected

component containing s we get when removing the edge between s and t in T . Note that

B corresponds to an element of the ground set of Q(s). Clearly B and A overlap. We

claim that B is a member of F . Indeed, if t = u then B = Z and we have just proved

that Z is a member of F . Otherwise, by definition of the cross-tree decomposition tree

either B or B is a member of F . Moreover, if B is a member of F then it overlaps the

member Z of F , and B = Z \ B will also be a member of F . But then in Q(s), the

membership of B in F would lead to the existence of a (quasi-trivial) member of Q(s)

Section 2.2. More Specific Families 51

which overlaps the complement of the guard A. Contradiction by definition of a guard.

We conclude that this case leads to the first item in the theorem.

In the other configuration of Lemma 2.3, every internal node u of T is such that the

quotient w.r.t. u is not simply-linked. The crucial point is the following. Let u and v

be two nodes of T such that v is the quotiental parent of u. Let st be an edge of the

connected component containing u when removing the edge uv from T , with t being the

nearer node (w.r.t. u) and s being the further node (w.r.t. u). Then, we claim that t is

the quotiental parent of s. Indeed, suppose by contradiction that there exists a neighbour

w of s such that w 6= t and w is the quotiental parent of s. Notice that t might coincide

with u but s 6= u and w 6= u. Let A be the leaf set of the connected component containing

w we get when removing the edge between s and w in T . By definition of a quotiental

parent, A corresponds to the guard of the quotient Q(s) w.r.t. node s. Let Z be the leaf

set of the connected component containing s we get when removing the edge between s

and t in T . Note that Z corresponds to an element of the ground set of Q(s). Clearly Z

and A overlap. Then Z cannot be a member of F since this would contradict the fact A

is the guard of Q(s). However, either Z or its complement is a member of F . Besides,

let B be the leaf set of the connected component containing u we get when removing the

edge between u and v in T . Clearly, B is a member of F for v is the quotiental parent

of u. Now, if Z is a member of F then it would overlap B and Z = B \ Z would also be

a member of F . Contradiction. We conclude that either
−→
T has one sink then the sink

is unique and this case leads to the first item of the theorem, or there exist in
−→
T one

and only one double-arc between u and v and it is straightforward to check that this case

leads to the second item of the theorem. �

Theorem 2.4 is the crucial point. Roughly, it states that if one decomposes a weakly

partitive family w.r.t. the cross-free decomposition framework, and labels the quotients

according to Theorems 2.2 and 2.3 (with a special “trivially representable” label for the

first case in the items of Theorem 2.3), then the orientation of arcs given by the quotiental

parents leads to exactly the same representation of the family as what has been done

in the previous section via the overlap-free approach (with the same special “trivially

representable” label for overlap-free quotients which have a ground set of 2 elements; see

the end of Section 2.2.1 for more concise details).

Turning our attention back to the proof of both Theorems 2.2 and 2.3, let us introduce

some minor terminologies.

Definition 2.12 (2-Graph of a Set Family) A family F ⊆ 2X can also be seen as an

undirected hypergraph with vertex set X. Let us define the 2-graph of F as its restriction

to size 2 hyperedges: GF = (X, E) with E = {A ∈ F and |A| = 2}.

52 Chapter 2. Fundamental Representations

We assume that the reader is familiar with the basics of graph theory. However, since

the following terminologies could be different in some literature, we give here the definition

we use in this composition: a stable is G = (X, ∅), a clique is the complement of a stable,

a cycle is a 2-regular connected graph, a path is a cycle minus one and only one edge.

The size, and also the length, of a cycle is its number of vertices. So is the size of a path.

The length of a path is its number of edges. The Pn path denotes the path of size n.

For instance, P4 denotes the four vertex path and P3 has length 2 (two).

The following two Lemmas 2.4 and 2.5 borrow heavily on a property given in [47]. For

the following lemma, the case of simply-linked quotients figured already in that reference.

Our context of cross-free decomposition trees introduces a second case to the statement

of the property. However, for the proof, the extended case follows trivially from the ideas

of the proof of the first case.

Lemma 2.4 ([47]) Let F ⊆ 2X be both weakly partitive and quotient. If moreover F is

simply-linked then either its 2-graph is connected, or F is the family of trivial subsets of

X. If F is not simply-linked then, for x ∈ X being its guard, G = F \ {X, {x}}, and

Y = X \ {x}, either the 2-graph of G is connected, or G is the family of trivial subsets of

Y .

Proof: We extend the ideas given in [47]. Suppose that F is simply-linked and does not

contain only the trivial subsets of X. The crucial point is, for every non-trivial member

of F , there exists another member of F such that the two overlap (if the first member

was quasi-trivial then the simply-linked property provide such a second member, if the

first member is not quasi-trivial then the quotient property can be used). We first prove

that GF has an edge. Let A be a minimal member of F among the non-trivial members

of F . As explained in the above, there exists another member B of F such that A and

B overlap. If |A| = 2, we are done. Otherwise by the corresponding closure, either A \B

or A ∩B is a non-trivial member of F included in A. This contradicts the minimality of

A. Hence, GF has an edge. To continue, let Z be the connected component of GF which

contains that edge: |Z| ≥ 2. We now want to prove that Z = X. Suppose this is not the

case. Z, which is a member of F by the union closure, is then a non-trivial member of

F . Therefore, there are members in F which overlap Z. Let C be a minimal member of

F among those of F which overlap Z. Firstly, |C ∩ Z| = 1 otherwise by the difference

closure between C and some well selected edge in Z there would be a contradiction to the

minimality of C. Secondly, suppose that D = C \ Z is such that |D| > 1. Notice that

D 6= X since Z is not empty. Then, D is a non-trivial member of F (membership by the

difference closure). Therefore, there exists a member E of F such that D and E overlap.

Section 2.2. More Specific Families 53

This clearly implies overlapping between C and E. But then either C \ E or C ∩ E will

contradict the minimality of C. Hence |D| = 1, or in other words |C| = 2. But then,

Z is no more a connected component in GF . We conclude that Z = X, namely GF is

connected.

Suppose that F is not simply-linked and G = F \ {X, {x}} does not contain only the

trivial subsets of Y = X \ {x}, where x ∈ X is the guard of F . The crucial point is, for

every non-trivial member of G (w.r.t. its ground set Y), there exists another member of G

such that the two overlap (it is provided by the quotient property of F). The remaining

proceeding is like before. �

Before continuing we would like to highlight that, though the following property was

discovered for partitive families, its proof mainly requires the union and difference closures.

The lemma can be found in [47].

Lemma 2.5 ([47]) Let F ⊆ 2X be a weakly partitive family. If its 2-graph GF is connected

then GF is either a clique or a path of size at least 3. Moreover, if F is partitive, then

GF is not a path of size ≥ 3.

Proof: The proof given in [47] is as follows. If |X| = 3 then the lemma is trivial.

Otherwise, suppose that GF has a vertex x with degree at least 3, and let y, z, t be three

distinct neighbours of x. In other words, {x, y} and {x, z} are members of F , and so is

{x, y, z} by the union closure. But {x, t} is also a member of F . By the difference closure

we deduce that {y, z} is an edge of GF . Likewise, we can deduce that x, y, z, and t form

a clique in GF . Now, let v be a vertex that is connected to the previous clique at some

point, say t. Then, by a similar argument on the fact that t is of degree at least 3, we

can show that v is connected to all other vertices of the clique. Thus the previous clique

plus vertex v form a bigger clique, and so on. The connectivity of GF then can be used to

conclude that the whole graph GF is a clique. Also, the only connected graphs of degree

at most 2 are paths and cycles.

We now have to use the intersection closure to forbid cycles. Indeed, if GF is a

cycle (x1, x2, . . . , xn) of size at least n ≥ 4, then {x1, x2, x3} and {x3, x4, . . . , xn, x1} are

overlapping members of F . Therefore, the closure under intersection implies that {x1, x3}

is a member of F , which in other words enforces an edge in GF between x1 and x3. But

then GF is no more a cycle.

Finally, suppose that F is partitive and GF a path (x1, x2, . . . , xn) of size n ≥ 3. Here,

{x1, x2} and {x2, x3} are overlapping members of F . Then, by the symmetric difference

closure, we obtain an edge in GF between x1 and x3. Contradiction. �

54 Chapter 2. Fundamental Representations

Remark 2.2 Let F be a weakly partitive family, and GF its 2-graph. Then

• GF is a clique if and only if F is complete.

• GF is a path of size at least 3 if and only if F is linear.

The remark is folklore. The only potentially tricky part is to prove the left-to-right

implication in the second item. Actually, if GF is the path (x1, x2, . . . , xn) of size n ≥ 3,

then it is clear that any intervals of the ordering (x1, x2, . . . , xn) is a member of F by

the union closure. Suppose that F had a member A that is not an interval of this

ordering. Then, there exist xi and xj with |j − i| ≥ 2 such that xi, xj ∈ A and xk /∈ A

for all i < k < j. Thus, A and {xi, xi+1, . . . , xj} are overlapping members of F . Their

intersection, which is {xi, xj}, has to belong to F . But then GF is no more a path.

2.2.3 Symmetric Crossing and Bipartitive Families

Bipartitive families are particular instances of crossing families. Their relaxation, so-

called weakly bipartitive families, is still a particular case of crossing families, and also

appears under the name of symmetric crossing families. The notion was probably first

introduced in [39] under the name of “decomposition frame with the intersection and

transitivity properties”. Later, the work of [39] are well formalized in [94, 103] under the

name of bipartitivity. The same notion appears also in [75] under the name of “unrooted

set families”.

From the references of [54], symmetric crossing families were also studied in [45] (in

Russian), which leads to the notion of a so-called cactus (hyper-)tree. Similarly as what

will be presented in this section, a cactus hypertree is also a linear size representation

of the input symmetric crossing family [45, cited in [54]]. However, note that we do not

address cactus hypertrees in this thesis at all.

Definition 2.13 (Symmetric Crossing Family and Bipartitive Family) A proper

and connected family is symmetric crossing if it is a crossing family and if it is closed

under the complementation. Moreover, the family is bipartitive if it is also closed under

the symmetric difference of its crossing members. A symmetric crossing family is also

called a weakly bipartitive family. By abuse of terminology, we still keep the convention

of excluding the empty set from all those families, though the complementation closure

on the ground set should clearly imply the membership of the empty set.

Given the result on partitive families via the overlap-free decomposition tree, it could

be interesting to investigate symmetric crossing families by the same approach. However,

the following observation, though simple, formally states that such a practice would fail.

Section 2.2. More Specific Families 55

Proposition 2.4 A (proper and connected) set family which is closed under complemen-

tation is also overlap-free quotient.

Proof: Let A be a non trivial member of a symmetric crossing family F ⊆ 2X . Let

x ∈ A. Since {x} is a member of F , so is its complement Y = X \ {x}. Then, A and Y

overlap. �

Corollary 2.4 The overlap-free decomposition tree of a symmetric crossing family is in

bijection with the trivial members of the family.

Basically, the overlap-free decomposition tree of a symmetric crossing family is a star:

one root and all leaves, with no internal nodes other than the root. Moreover, the only

overlap-free quotient of the tree (w.r.t. the unique internal node) is exactly equal to

the initial family itself! Accordingly, the overlap-free decomposition approach which was

explained in Section 2.2.1 does not provide any help in solving the representation problem

of symmetric crossing families. This being said, symmetric crossing families are closely

related to weakly partitive families by the now quite folklore fact that

Proposition 2.5 Let F ⊆ 2X be a symmetric crossing (resp. bipartitive) family such that

|X| ≥ 4. Let x ∈ X be any element of the ground set. Then, the family F ′ of all members

of F excluding x is a weakly partitive (resp. partitive) family.

Accordingly, those families are simply structured by the following theorem on their

cross-free quotients.

Theorem 2.5 (Cunningham [39]) If a symmetric crossing family F ⊆ 2X satisfies the

(cross-free) quotient property, then one and only one of the following holds:

• F consists of only the trivial subsets of X and possibly some of their complements

(we still say that F is prime, by abuse in the terminology),

• F = 2X \ {∅} (F is complete),

• |X| ≥ 4 and there is a circular ordering of the elements of X such that F is the

family of all circular intervals of this ordering (we say that F is circular).

Moreover, if F is bipartitive, the last case cannot occur.

Proof: There are many ways to prove this claim. The laziest one is probably as follows.

If the ground set of F has three elements, then the family is complete. Otherwise, take

any element x therein. Define F ′ as the family of all members of F excluding x. Check

that

56 Chapter 2. Fundamental Representations

• Proposition 2.5 applies on F ′, among other facts, F ′ is proper and connected, and

the ground set of F ′ has at least three elements.

• Moreover, if F is quotient, then so is F ′.

Apply Chein-Habib-Maurer Theorem 2.1 on F ′. Finally, we can conclude each case of the

claim using the fact that every member of F : either is exactly the ground set; or belongs

to F ′; or is the complement of some member of F ′. �

The new quotient type consists of the circular nodes, which are slightly different from

linear ones. However, as a circular ordering can also be encoded as a linear ordering, we

code circular nodes according to the encoding of linear ones (see previous Section 2.2.1),

and conclude that

Corollary 2.5 The space complexity of a symmetric crossing family over X is in O(|X|).

2.3 Applications in Graph Theory

This section exemplifies the usefulness of the representation paradigm in the area of graph

decomposition.

2.3.1 Modular Decomposition and Clan Decomposition

We start with probably the best known application of the representation of set families:

modular decomposition. Indeed, this is now a well-studied notion in graph theory [47, 62,

92]. As having been rediscovered in other fields, the notion appears also under the various

names of autonomous sets, homogeneous sets, externally related sets, clans, partitive sets,

and also intervals.

Though it has a quite storied origin, the last terminology of an interval is rather

inappropriate for its purpose nowadays. An attempt to explain the situation could be

as follows. Roughly, the biggest motivation for such a terminology comes from the fact

the closure axioms in the definition of the notion refer to those of an interval of the

real line: if A and B are intervals, then so are their intersection A ∩ B and differences

A \ B and B \ A; moreover, if the intersection of A and B is not empty, then A ∪ B

is also an interval. Then, calling a graph module an interval would have the merit to

generalize intervals of R to those of a (directed) graph. However, when applied to an

empty digraph, or more generally to a symmetric digraph (that is, an undirected graph),

if both A and B are graph modules, and if moreover they have a non-empty intersection,

then their symmetric difference A∆B will also be a graph module. Then, the fact that the

Section 2.3. Applications in Graph Theory 57

symmetric difference of two intersecting intervals of the real line is by no means an interval

could be an explanation why the use of this terminology is more and more marginal among

graph theorists.

Turning our attention back to decomposition purposes, let us highlight the following

aspects around the notion of a quotient. Firstly, when translated to graphs, the notion

of an overlap-free quotient (cf. Definition 2.6) consists roughly in “shrinking” a vertex

subset of the graph into one single vertex. The “shrinking” operation is so-called the

quotient operation in the literature related to the topic. Then, its reverse action can

be seen as the injection of a second graph to some vertex of the first graph. This is

denoted by the substitution operation. After this, the so-called modular decomposition

tree can be seen as a construction of the input graph from the one vertex graph through

successive substitution operations. Conversely, it is also a division scheme of the input

graph into terminal cases (indecomposable graphs) through quotient operations. For a

side note, modular decomposition has also been known under the name of decomposition

by substitution for a quite long time.

It turns out that many graph problems “go through quotient”, namely there is a way to

combine the solutions of some sub-instances to solve an instance that is obtained through

a substitution operation over the latter sub-instances. If so, to solve the problem on some

graph, it suffices to solve the same problem on the quotients of the modular decomposition

tree of that graph. The list of such problems includes: transitive orientation, maximum

clique, maximum independent set, colouring, minimum dominating set, longest induced

path, feedback vertex set, and number of minimal separators (cf. [92, 95] for short versions,

however, [103] gives a better introduction and discussion). In other words, in order to

solve those problems, modular decomposition fits into the academic divide-and-conquer

algorithmic philosophy. It is important to notice that, when translated to the graph,

there are only three kinds of quotients: the cliques, the stables, and the indecomposable

graphs. Also, it is an important fact that a modular decomposition tree can always be

computed in linear time on the size of the input graph [19, 25, 37, 43, 65, 87, 89, 108].

Accordingly, in order to solve some graph problem, it does not “cost” anything to

modular decomposing the input graph before the effective search for a solution. Thus,

modular decomposition becomes a very well studied, very useful decomposition of graphs,

and is used among other things as the first algorithmic step for many problems including

recognition, decision, and optimization. Its direct applications include tractable constraint

satisfaction problems [28], computational biology [59], graph clustering for, e.g., network

analysis, and graph drawing. This rich research field relies heavily on the nice combina-

torial properties of modules of a graph. Among most important ones, that modules form

58 Chapter 2. Fundamental Representations

a partitive family allows representing them compactly with a tree, as will be formalized

afterwards in Corollary 2.3. Let us first reformulate the definition of a graph from the

scope of its generalization to 2-structures. Also, in order to keep a homogeneity in the

notations occurring in this part of the thesis, the vertex set of a graph will be denoted by

X and not by the commonly used V .

Definition 2.14 (2-Structure) A 2-structure G = (X, C) is a vertex set X along with

a colour function C mapping every pair (x, y) (with x, y ∈ X and x 6= y) to some value in

N. The 2-structure is symmetric if C(x, y) = C(y, x) for every pair of vertices x and y in

X. Moreover, if the colour function C has only 2 values or fewer, then the 2-structure is

called a directed graph (the two values denote the existence and the non-existence of an

arc). Finally, a symmetric directed graph is called an undirected graph, or simply a graph.

Definition 2.15 (Module) A module M of a symmetric 2-structure G = (X, C) is a

non-empty vertex subset (i.e. M ⊆ X) such that for all x, y ∈ M and s /∈ M , the colour

function satisfies C(s, x) = C(s, y).

The probably first application of modules was a solution to the transitive orientation

problem (given an undirected graph, if exists, find an edge orientation which follows the

transitive law: the existence of arcs (x, y) and (y, z) implies that of arc (x, z)). Later on,

the notion has been shown to be fundamental for an increasing number of combinatorial

problems. For instance, twins and anti-twins in a graph are exactly the modules of size 2

of the graph. Then, for many optimization problems, contracting twins and anti-twins as

pre-processing is a common approach to simplify the problem. This practice is convenient

for computational purposes since twins and anti-twins can be found easily. To give another

example, all common intervals of two permutations are also modules of the permutation

graph associated to the two permutations. On the other hand, all overlap-free modules

of this graph are overlap-free common intervals of the two permutations. (Section 5.1 in

the next part of the thesis will deepen those matters.) Also, in graph drawing, a module

can be contracted and drawn as one single vertex without any information loss on the

incident edges, since they all are same. The following folklore fact is probably the most

important and seminal property of modules.

Proposition 2.6 The family of modules of a symmetric 2-structure is partitive. In par-

ticular, the property holds when the 2-structure is an undirected graph.

Proof: Let G = (X, C) be a symmetric 2-structure. By definition, the empty set is not

a module while every trivial subset of X is a module of G. It is also straightforward that

Section 2.3. Applications in Graph Theory 59

the modules of G form an intersecting family. Let A and B be two modules of G which

overlap. The only remaining thing to prove is that both Y = A \ B and Z = A∆B are

modules of G.

First suppose that Y is not a module and let x, y ∈ Y and s /∈ Y be such that

C(s, x) 6= C(s, y). That A is a module implies s ∈ A∩B. That A and B overlap provides

us with a vertex t belonging to B \A. That B is a module implies C(x, s) = C(x, t) and

C(y, s) = C(y, t). Now, G is a symmetric 2-structure, leading to C(s, x) = C(t, x) and

C(s, y) = C(t, y). However, A is a module: C(t, x) = C(t, y). Then, C(s, x) = C(s, y).

Contradiction.

Let us now suppose that Z is not a module. Let x, y ∈ Z and s /∈ Z be such that

C(s, x) 6= C(s, y). From the last paragraph, we can suppose without loss of generality

that x ∈ A \B, y ∈ B \A, and s ∈ A∩B. Both A and B are modules: C(x, s) = C(x, y)

and C(y, x) = C(y, s). G is symmetric: C(x, y) = C(y, x). Hence C(x, s) = C(y, s). But

then, C(s, x) = C(s, y) (still) by symmetry of G. Contradiction. �

Consequently, one can map every symmetric 2-structure G to a unique tree, namely

the decomposition tree of the family of modules of G. In fact, this tree defines the modular

decomposition tree of G, that is

Definition 2.16 (Modular Decomposition Tree) The modular decomposition tree of

a symmetric 2-structure is the decomposition tree of the family of its modules, which

is partitive. We mostly consider this tree as the overlap-free decomposition tree (cf.

Sections 2.2.1 and 2.2.2 for further details).

Moreover, the symmetry of a 2-structure implies also the following property, which

gives further information on its modular decomposition tree.

Proposition 2.7 The family of modules of a symmetric 2-structure G = (X, C) is com-

plete if and only if the colour function C is constant: C(x, y) = C(z, t) for all x, y, z, t ∈ X.

Proof: It is clear that the condition is sufficient. Let us prove its necessity. Indeed, the

completeness provides us with, among other things, two modules: {x, y, t} and {y, z, t}.

This includes two facts: C(z, x) = C(z, y) = C(z, t) and C(x, y) = C(x, z) = C(x, t).

Now, G is symmetric, and C(z, x) = C(x, z). Hence, C(x, y) = C(z, t). �

In the following remark, the modular decomposition theorem was first stated by

T. Gallai under the framework of undirected graphs. Its generalization to symmetric

2-structure is absolutely straightforward.

60 Chapter 2. Fundamental Representations

Remark 2.3 (On Gallai Modular Decomposition Theorem [62])

There is a unique labelled tree associated to a symmetric 2-structure, so-called modular

decomposition tree, such that all modules of the 2-structure can be enumerated by the tree

without the knowledge of the 2-structure. Moreover, the size of this tree is proportional

to the number of vertices of the 2-structure, while its labels are of only 2 types, so-called

complete and prime. Finally, if k is the number of values of the colour function of the

2-structure, then the modular decomposition tree can have a further labelling, which,

• for a complete node, consists of one among k (arbitrarily given) constants,

• for a prime node, consists of a symmetric 2-structure, and,

from which labelled tree the initial 2-structure can be rebuilt.

Proof: Mostly follows from Propositions 2.6 and 2.7. Let G = (X, C) denote the initial

2-structure. For a prime node n with the associated quotient partition {X1, X2, . . . , Xk}

of the vertex set X, the 2-structure used in the further labelling is the sub 2-structure

G[Q] = (Q, C|Q) of G that is induced by the vertex subset Q = {x1, x2, . . . , xk}, where

each xi is a representative belonging to the vertex subset Xi, and where C|Q refers to the

restriction of the function C on the domain Q. �

There is a classical generalization of modules of a symmetric 2-structure to those of

a not necessarily symmetric 2-structure, under the name of a clan. It is somewhat an

equivalent of modules in the directed case, from a structural point of view. Indeed, from a

more intrinsic point of view, we would prefer the subsequent notion of a genuine-module.

Definition 2.17 (Clan) A clan of a 2-structure G = (X, C) is a non-empty vertex

subset M ⊆ X such that for all x, y ∈ M and s /∈ M , the colour function satisfies

the two-way-condition C(s, x) = C(s, y) and C(x, s) = C(y, s). Moreover, when the

2-structure is a directed graph (meaning when the colour function has 2 values or fewer),

the clans are also called modules∗.

According to the standard notation of the neighbourhood in graph theory, let us

define the out-going neighbourhood N+
c (x), for every vertex x ∈ X and every colour

c ∈ N, as the set of all vertices y such that C(x, y) = c. Likewise, we define the in-coming

neighbourhood N−
c (x) as the set of all vertices y such that C(y, x) = c. Moreover, if

∗For the sake of history, we keep this terminology of “module of a directed graph”, although it is
quite little apropos. A better candidate would be the genuine-module which will be presented further in
Section 2.3.2.

Section 2.3. Applications in Graph Theory 61

the 2-structure is symmetric, we define the neighbourhood as Nc(x) = N+
c (x) = N−

c (x).

Then, an equivalent definition of a module of a symmetric 2-structure is

M is a module if for all x, y ∈M and for all c ∈ N, Nc(x) \M = Nc(y) \M.

From this point of view, the definition of a clan can be seen as a double module-like

condition:

M is a clan if for all x, y ∈ M and for all c ∈ N,






N+
c (x) \M = N+

c (y) \M

N−
c (x) \M = N−

c (y) \M
.

Actually, the definition of a clan has the important merit to organize the clans of a

2-structure into a weakly partitive family, and hence, to result in a decomposition theorem.

Proposition 2.8 The family of clans of a 2-structure is weakly partitive.

Proof: The proof is very similar to that of Proposition 2.6. �

After this, almost all – and actually all – the previous discourse about modular de-

composition of symmetric 2-structures holds for arbitrary 2-structures after some slight

modifications.

Remark 2.4 (On Ehrenfeutch-Rozenberg Clan Decomposition Theorem [48])

There is a clan decomposition for 2-structures. It is also called modular decomposition

when the 2-structure is a digraph.

We will not give the proof for Ehrenfeutch-Rozenberg theorem, nor discuss more about

clan decomposition. The purpose here is not to deepen every topic related to graph de-

composition. Clan decomposition is very similar to modular decomposition of symmetric

2-structures. We would suggest the reader with further interests in clan decomposition

to refer to [47] for more details.

The discussion right below can be seen as a side note on modular decomposition, from

a partitive families’s point of view. The class of cographs can probably be seen as the

most studied class of graphs in the framework of modular decomposition. This class owns

many intrinsic properties. For instance, it is the class of graphs excluding the four vertex

path P4 as induced subgraph. As well, it is the smallest class of graph which contains the

one vertex graph and which is closed under the complementation and the disjoint union.

Almost all the familiar NP -complete problems are polynomially – and often linearly –

62 Chapter 2. Fundamental Representations

solvable when restricting to this class. Simple examples could be: maximum independent

set or clique, chromatic number, and Hamiltonian path. Also, the graph isomorphism

problem is linearly solvable for cographs.

Here, an important notion bound to cographs which implies many of the nice compu-

tational linearity is probably the cotree. Let us revise this notion, from a 2-structures’

point of view. We exhibit a straightforward generalization of the representation theorem

for cographs.

Definition 2.18 (Co-structure, Cograph, and Cotree) A symmetric 2-structure is

a co-structure if there are no prime nodes in its modular decomposition tree. Moreover,

if the 2-structure is an undirected graph, then it is called cograph. Finally, a cotree is the

modular decomposition tree of a co-structure, labelled with respect to the labelling given

in Corollary 2.3.

Corollary 2.6 (Cotree Theorem) The cotree gives a representation of a co-structure,

using linear space on the size of its vertex set. In particular, this holds when the co-

structure is a cograph.

Proof: The linearity follows as there are no prime nodes, and the labels used for complete

nodes are of constant size. �

Basically, the cotree is a representation of the co-structure using a sub-linear encoding,

since the number of edges of a co-structure can be quadratic on the number of its vertices.

Moreover, this still holds for the particular case when the co-structure is a cograph. In

algorithmic graph theory, those facts are important for, among other things, designing

fast algorithms on cographs.

Let us come back to the discussion on modular decomposition in general. As previously

said, modular decomposition can be used to solve graph problems via the divide-and-

conquer paradigm. However, the main drawback of this approach comes from the terminal

cases, namely the indecomposable graphs (or prime nodes of the decomposition tree).

Indeed, when using modular decomposition to solve a problem, one needs to be able to

solve the problem on terminal cases of the decomposition. Accordingly, it is sensible to

search for relaxations of modular decomposition in order to further decompose.

Besides, in the research field of social networks, several vertex partitioning methods

have been introduced in order to catch the idea of putting together all vertices having

a similar behaviour, in other words finding regularities [113]. Modular decomposition

provides such a partitioning, yet seemingly too restrictive for real life applications. The

concept of a role [50] on the other hand seems promising, however its computation is

Section 2.3. Applications in Graph Theory 63

unfortunately NP -hard [52]. Here, there is need for the search of not only relaxed, but

also tractable, variations of the modular decomposition scheme. In the following, as

well as in the last section of the next chapter, we present a range of such relaxations.

The corresponding decomposition schemes are more powerful than the classical modular

decomposition scheme in the sense that the corresponding indecomposable graphs form

a strict subclass of the classical indecomposable graphs w.r.t. modular decomposition.

In other words, one will be able to decompose a graph into smaller pieces, making the

terminal cases more restricted, hence potentially easier to handle.

2.3.2 Genuine-Modules and Unordered-Modules

There is a broader generalization of modules of a symmetric 2-structure. We will present

this notion under the name of a genuine-module, given that the terminology of “module

of a directed graph” has already been reserved for (actually) its clans. Before this com-

position, we have presented the same notion under the name of a homogeneous module,

following the study then on the so-called homogeneous relations [16].

Definition 2.19 (Genuine-Module) A genuine-module M of a 2-structure G = (X, C)

is a non-empty vertex subset such that for all x, y ∈ M and s /∈ M , the colour function

satisfies the one-way-condition C(s, x) = C(s, y). An equivalent condition could be: for

all vertices x, y ∈M and for every colour c ∈ N, we have N−
c (x) \M = N−

c (y) \M .

Clearly, a clan is always a genuine-module, but the converse does not necessarily hold.

Besides, it follows directly from the definition that the genuine-modules of an undirected

graph or a symmetric 2-structure are exactly their modules, and also their clans. As for

their representation, the following property (which is also straightforward from definition)

shows that the genuine-modules of a 2-structure form an intersecting family. Then, we

can of course use the representation result of intersecting families to show a quadratic

space representation for the genuine-modules of a given 2-structure. Notice that this is

not much a space improvement in representing the genuine-modules since the 2-structure

itself is already an encoding using equivalent asymptotic space. Notwithstanding, the

representation obtained via intersecting families could be instructive, as it focuses on the

structure of the genuine-modules themselves.

Proposition 2.9 The genuine-modules of a 2-structure form an intersecting family.

We now describe an application of crossing families. We will use a newly introduced

notion [18], so-called unordered-module, or umodule to be short. It has high connections

with the notion of a bi-join (see Section 2.3.3). Also, we will restrict the discussion to the

64 Chapter 2. Fundamental Representations

case of digraphs, which here refer to loopless simple directed graphs where 2-cycles are

allowed. We address them using both standard graph theory’s and 2-structure theory’s

terminologies.

Definition 2.20 (Umodule) A umodule M of a digraph G over a vertex set X is a

non-empty vertex subset such that the partition of X \M into {N+(x) \M, N+(x) \M}

is the same for every vertex x ∈ M , where N+(x) is the complement of the out-going

neighbourhood of x. An equivalent condition could be: for all vertices x, y ∈ M and for

every colour c ∈ N, there exists a colour d ∈ N such that we have N+
c (x)\M = N+

d (y)\M .

For digraphs and non-symmetric 2-structures, we can also define the genuine-module

using a similar approach, namely with the partition of the exterior w.r.t. the colour of the

corresponding arc. The only difference between the two notions is that the order from

which the parts of the partition come is irrelevant in the definition of a umodule. On

the other hand, this order is important in the definition of a genuine-module. This is the

reason for the terminology of unordered-modules.

Proposition 2.10 The umodules of a digraph form a crossing family.

Proof: The closure under the intersection is the less obvious part. Let G be a digraph

over a vertex set X. Let A and B be two umodules of G which cross. Let us prove that

C = A ∩ B is a umodule of G. For this, if C is reduced to a singleton then we are done

by vacuity. Otherwise let x and y be two vertices of C. Since A and B cross there exists

an exterior vertex z /∈ A∪B. A proof can be obtained by exhaustive checking on the arcs

(x, z) and (y, z) as follows. If both of them exist in G, then, by umodule definition of A

and B, we have both N+(x) \A = N+(y) \A and N+(x) \B = N+(y) \B. This implies

N+(x)\C = N+(y)\C. If neither of them exist in G, then the situation is similar. If one

of them exists in G and the other does not, then we have both N+(x) \ A = N+(y) \ A

and N+(x) \B = N+(y) \B. This implies N+(x) \ C = N+(y) \ C. �

2.3.3 Split Decomposition, Bijoin Decomposition, and Decom-

position of Symmetric Submodular Functions

We close the chapter with the quite fruitful field of bipartitivity. To begin with, the

split decomposition defined by W. Cunningham and J. Edmonds [39, 41] can be seen

among other things as an application of bipartitivity. Later, W. Cunningham gave a

decomposition scheme for symmetric submodular functions [40], which can be seen as

an application of symmetric crossing families. The recent development of bipartitivity is

mainly for the study of bijoins of a graph [93, 94, 103]. We here recall all these notions,

Section 2.3. Applications in Graph Theory 65

starting with the simplest case in the list (proof-wise!). Before continuing, let us recall

the definition of a symmetric submodular function.

Definition 2.21 (Submodular and Symmetric Submodular Function)

A set function f : 2X → R is submodular if for all subsets A ⊆ X and B ⊆ X, f holds

the submodular inequality:

f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B).

The function is symmetric if for every subset A ⊆ X, f has the same value on A as on

its complement X \ A. In some literature, a symmetric and submodular function is also

called a function of connectivity.

Proposition 2.11 Both the empty set and the universal set are trivial minimizers of a

symmetric submodular function. Moreover, the family of non-trivial minimizers of the

function is weakly bipartitive.

Proof: It is quite straightforward from definition. The submodular inequality on a subset

and its complement implies the two trivial minimizers. As for the family of non-trivial

minimizers of the function, the symmetry of the function gives the closure under the com-

plementation. Then, the submodular inequality gives the closure under the intersection

and union of crossing members. �

Let us continue with the bijoins. In the following, we revert to standard graph theory

terminologies and abandon 2-structure theory terminologies.

Definition 2.22 (Bijoin) A vertex subset M ⊆ X of an undirected graph G = (X, E)

is a bijoin if there are A ⊆ M and B ⊆ M such that the edges between M and M are

exactly those forming the complete bipartite graph between A and B plus those forming

the complete bipartite graph between M \ A and M \B.

Proposition 2.12 The family of bijoins of a graph is bipartitive.

Proof: The closure under the complementation follows directly from definition. The

closure under the union of crossing members follows from the following characterization.

M is a bijoin if and only if, for all x, y ∈M and s, t /∈M , the adjacencies of x, s and x, t

differ if and only if the adjacencies of y, s and y, t differ. Then, using the two closures,

we deduce the closure under intersection and difference of crossing members. Finally,

we need to prove the closure under the symmetric difference of crossing members. Let

G = (X, E) be a graph. Let A and B be two bijoins of G which cross. We would like to

66 Chapter 2. Fundamental Representations

prove that C = A∆B is a bijoin of G. For this, we still use the above characterization.

Let x, y ∈ C and s, t /∈ C. If both x and y belong to A then we can conclude by the fact

A \ B is a bijoin. By symmetry, the only case left is w.l.o.g. x ∈ A and y ∈ B. Here, if

neither of s and t belong to A ∪ B, then it is straightforward to conclude for A ∪ B is a

bijoin. If both s and t belong to A ∩ B, then we conclude likewise using that A ∩ B is a

bijoin. By symmetry, we can suppose w.l.o.g. s ∈ A ∩ B and t /∈ A ∪ B. Then, a simple

case analysis allows to conclude. �

Finally, we end the list with the probably first application of bipartitivity.

Definition 2.23 (Split) A vertex subset M ⊆ X of an undirected graph G = (X, E) is

a split if there are A ⊆M and B ⊆ M such that the edges between M and M are exactly

those forming the complete bipartite graph between A and B.

Proposition 2.13 The family of splits of a connected graph is bipartitive.

Proof: The closure under the complementation is clear. However, unlike bijoins, splits

do not own a nice characterization. The only proof to our knowledge for the closure

under the intersection of crossing members makes use of a quite long case analysis. It

uses among other things the connectivity of the graph for some forbidden configurations.

For the sake of smoothness in the reading, the case analysis is postponed to the end of

this chapter, in Lemma 2.6. The same case analysis can be done for the closure under the

symmetric difference of crossing members. �

We now conclude the section with a unified statement, which follows as corollary of

Propositions 2.11, 2.12, and 2.13.

Remark 2.5 There are

• a decomposition of symmetric submodular functions,

• a bijoin decomposition of graphs, and

• a split decomposition of connected graphs.

Here again, the purpose is not to discuss in detail about decomposition schemes. We

refer readers with further interests to [40] for the first decomposition scheme, [93, 94, 103]

for the second, and [39, 41] for the last one. Before opening the next chapter, we give the

promised lemma for the bipartitivity of splits.

Lemma 2.6 The family of splits of a connected graph is closed under the intersection of

its crossing members.

Section 2.3. Applications in Graph Theory 67

Proof: Let A and Z be two crossing splits of a given connected graph G = (X, E). By

definition, there is a partition of A into {B, C} and its complement into {D, E} such

that the matrix adjacency between (B, C) and (D, E) is made of one 1-block and three

0-blocks. W.l.o.g. the 1-block is between B and D. The same holds for Z: there is a

partition of Z into {U, V } and its complement into {S, T} such that the only 1’s form an

1-block, which is between U and S. In the following, we denote any intersection A∩Z by

AZ. We would like to investigate the adjacency matrix between AZ and its complement.

For this purpose, we will use the following pairwise exclusive configurations.

• If BU is not empty, then both DT and ES are empty.

• If one among DT and ES is not empty, then BU is empty.

• Beside this, there are three similar couples of statements, by circular replacement

of BU by respectively BS, DS, and DU .

Moreover, we will also use a second kind of pairwise exclusive configurations.

• If BV is not empty, then DT is empty.

• If DT is not empty, then BV is empty.

• Beside this, there are three similar couples of statements, by circular replacement

of BV by respectively CU , CS, and BT .

Finally, we will also use the connectivity of G in the following forbidden configurations.

• One among CU , BU , and BV is not empty (otherwise either CV is empty, which

is forbidden since A and Z cross, or CV is disconnected from the other vertices in

G).

• Beside this, there are three similar statements, by the same circular replacement as

before.

Now, one can check the adjacency matrix between AZ and its complement under a case

analysis and conclude that AZ is a split. �

Chapter 3

Representable Generalizations

This chapter is based on [15, 21].

All the classes of set families presented in the previous chapter range over two main

categories: those having a tight linear space complexity, and those having a tight quadratic

space complexity. Moreover, every class of the first category is subclass of some class of

the second category, namely weakly partitive families are particular cases of intersecting

families while symmetric crossing families are particular cases of crossing families. As well,

note that all the involved families are particular cases of crossing families (see Figure 3.1).

We address in this chapter two new classes of families, the so-called (weakly) partitive

crossing and union-difference families. The motivation is manifold. Some theoretical

motivations could be as follows. At first, both classes own a polynomial space complexity.

Secondly, weakly partitive crossing families are in fact proper generalizations of, not only

weakly partitive families, but also symmetric crossing families. Besides, they all are

particular cases of crossing families. Furthermore, we will show that each of them has a

representation of linear size on the size of the ground set. This fact broadens the known

subclass of crossing families of linear space complexity. As for union-difference families,

while being a quite simple generalization of partitive families, they form a class which

is incomparable (inclusionwise) with the class of crossing families (a synopsis is given in

Figure 3.2). Also, we will give a representation of quadratic size on the size of the ground

set for such a family. This is a widening of the superclass of partitive families containing

some families known to have at most a quadratic space complexity. However, the question

whether the quadratic space complexity of union-difference families is tight, or not, will

be left open (see Figure 3.3).

At the same time, we will exemplify the applicative potentials of the above mentioned

families by introducing a new notion of graph components, a so-called sesquimodule. Then,

interests in studying those set families can also be seen as a motivation arising from the two

leading facts that: the sesquimodules of a given digraph form a weakly partitive crossing

70 Chapter 3. Representable Generalizations

crossing families

families

families
bipartitive

families
symmetric crossing

intersecting families

weakly partitive

partitive families

Figure 3.1: Inclusion relationship of some classes of set families. When comparable, the
inclusion of a class is strict.

crossing families

familiesfamilies families

families
symmetric crossing

intersecting families

weakly partitive crossingunion−difference weakly partitive

Figure 3.2: Two new classes of set families. When comparable, the inclusion of a class is
strict.

Section 3.1. Partitive Crossing Families 71

class space complexity tight

weakly partitive families O(n) [27] yes

symmetric crossing families O(n) [39] yes

weakly partitive crossing families O(n) [21] yes

union-difference families O(n2) [15] – OPEN –

intersecting families O(n2) [58] yes

crossing families O(n2) [58] yes

Figure 3.3: Some classes of set families by increasing space complexity. The size of the
ground set is n.

family; moreover, their generalization to the sesquimodules of a given 2-structure form a

union-difference family which is not necessarily weakly partitive crossing. Furthermore,

sesquimodules of digraphs turn out to be proper generalizations of their modules∗, while

sesquimodules of 2-structures are proper generalizations of their clans.

We then depict two new combinatorial decompositions. By some abuse of terminology,

we denote them simultaneously by sesquimodular decomposition. One of them can be used

for digraphs as a proper generalization of modular decomposition. It is based on weakly

partitive crossing families. The other can be used for arbitrary 2-structures as a proper

generalization of clan decomposition. It is based on union-difference families. However,

despite their common name, the two decomposition schemes are by no means equivalent.

For instance, given an n-vertex digraph G, the sesquimodular decomposition tree of G via

weakly partitive crossing families is of O(n) size. It is different from the sesquimodular

decomposition tree of G via union-difference families, which is of Θ(n2) size. In both

cases, all sesquimodules of G can be enumerated in a straightforward manner from the

only knowledge of the tree (without the knowledge of, e.g., G).

3.1 Partitive Crossing Families

The last chapter has displayed a quite tidy gap between the tight results of, on the

one hand, the space complexity of crossing families, and on the other hand, the space

complexity of families which are either partitive or bipartitive. This naturally moves us

∗Here, modules are in the sense of clans of the digraph (cf. Definition 2.17 in the last chapter).

72 Chapter 3. Representable Generalizations

to look into the gap and define

Definition 3.1 (Weakly Partitive Crossing and Partitive Crossing Families)

A proper and connected family is weakly partitive crossing if it is a crossing family which

is closed under the difference of its crossing members. Moreover, if the family is also closed

under the symmetric difference of its crossing members, it is called partitive crossing.

Clearly, the notion of a partitive crossing (resp. weakly partitive crossing) family can

be seen simultaneously as: a simple generalization of a partitive (resp. weakly partitive)

family; a simple generalization of a bipartitive (resp. symmetric crossing) family; and a

simple restriction of a crossing family. Besides, it is also a straightforward exercise to

check that those generalizations and restriction are strict. The main focus of this section

is to prove that every weakly partitive crossing family has also a representation using a

linear space on the size of the ground set.

At the same time, our study on partitive crossing families is moved by the fact that

Section 3.3 gives an application of those families in a strict generalization of the well-

known and well-studied modular decomposition of digraphs.

3.1.1 A Linear-Size Representation Theorem

We proceed as before with partitive families: we first give the claim of the main theorems,

and only give the proofs subsequently. Here, partitive crossing families are structured by

the two following theorems. Their respective hypothesis are pairwise exclusive.

Theorem 3.1 If a family F ⊆ 2X satisfies: the weakly partitive crossing property, the

quotient property, and the simply-linked property, then one and only one of the following

holds:

• |X| ≤ 4 (we say that F is basic),

• |X| ≥ 5 and F consists of only the trivial subsets of X and possibly some of their

complements (we still say that F is prime, by abuse in the terminology),

• |X| ≥ 5 and F = 2X \ {∅} (F is complete),

• |X| ≥ 5 and there is a linear ordering of the elements of X such that F is the family

of all intervals of this ordering (F is linear).

• |X| ≥ 5 and there is a circular ordering of the elements of X such that F is the

family of all circular intervals of this ordering (F is circular).

Section 3.1. Partitive Crossing Families 73

Moreover, if F is partitive crossing, the two last cases cannot occur.

Proof: By successive applications of Lemma 3.1, Lemma 3.2, and Remark 3.1 (all three

below). �

Theorem 3.2 If a family F ⊆ 2X satisfies both the weakly partitive crossing property

and the quotient property, but fails the simply-linked property, then, for x ∈ X being the

guard of F , G = F \{X, {x}}, and Y = X \ {x}, one and only one of the following holds:

• |Y | ≤ 4 (we still say that F is basic, the difference is that F now has a guard),

• |Y | ≥ 5 and G consists of only the trivial subsets of Y and possibly some of their

complements (we still say that F is prime, the difference is that F now has a guard),

• |Y | ≥ 5 and G = 2Y \ {∅} (we still say that F is complete, the difference is that F

now has a guard),

• |Y | ≥ 5 and there is a linear ordering of the elements of Y such that G is the family

of all intervals of this ordering (we still say that F is linear, the difference is that

F now has a guard).

Moreover, if F is partitive crossing, the last case cannot occur.

Proof: (same as previous theorem). By successive applications of Lemma 3.1, Lemma 3.2,

and Remark 3.1 (all three below). �

Linear and circular quotients are represented like before, with (weakly) partitive and

bipartitive families. The representation of the new prime quotients is already done by

the arc orientations of the decomposition tree: all members of a prime quotient are cross-

free members of the initial family. As for basic quotients, they can be represented in

constant space using an exhaustive encoding. In Section 3.3, Figure 3.9(b) exemplifies

the representation on a restricted framework (of sesquimodular digraph decomposition).

We conclude from the two above theorems that

Corollary 3.1 The space complexity of a weakly partitive crossing family over X is in

O(|X|).

We now prove Theorems 3.1 and 3.2 in two steps.

Lemma 3.1 Let F be a weakly partitive crossing and quotient family. Let S be a non

trivial and non-quasi trivial member in F . For every element x ∈ S, x has a neighbour

in the 2-graph GF of F .

74 Chapter 3. Representable Generalizations

Proof: Let A ∈ F such that x ∈ A, A is non trivial, non quasi-trivial and minimum by

size. If |A| = 2, then by definition x has a neighbour in GF . Otherwise, we will exhibit a

contradiction. Firstly, there is a member of F which crosses A since F is quotient. Let

B be a member of minimum size among the members of F which crosses A.

Suppose that x ∈ B. Here, B is not necessarily of minimum size among the members

of F which contains x, but A is one such. A consequence is that |B| ≥ |A|. Also, A∩B is

a member of F (intersection closure) which contains x. By minimality of A, A∩B = {x}.

Besides, B\A is a member of F (difference closure) and is not trivial nor quasi-trivial since

|B| ≥ |A| > 2. Then, there is a member C of F which crosses B \A (quotient property).

If A ∩ C = ∅, C crosses B, and B \ C would contradict the minimality of B. Therefore,

A∩C 6= ∅. If x 6∈ C, then B \C would contradict the minimality of B. Otherwise, B∩C

would contradict the minimality of B. In any case there is a contradiction.

Suppose that x /∈ B. Then, A \ B = {x} (closure and minimality of A). Moreover,

A∩B is a non trivial, non quasi-trivial member of F (closure and size argument). Then,

there is a member C of F which crosses A∩B (quotient). If C ⊆ A, then C 6= A, x ∈ C,

and C contradicts the minimality of A. Otherwise we distinguish two cases. If A∪C 6= V ,

then A and C cross, and A \C would contradict the minimality of A. If A∪C = V , then

B and C cross, and B ∩ C would contradict the minimality of B. �

Lemma 3.2 Let F be a weakly partitive crossing and quotient family over a ground set

X with |X| ≥ 5. Then, either F only consists of the trivial subsets of X and possibly

some of their complements, or one and only one of the following holds

• GF is a clique,

• GF is the disjoint union of a clique and an isolated vertex,

• GF is a cycle,

• GF is a path,

• GF is the disjoint union of a path and an isolated vertex.

Moreover, if F is also a partitive crossing family, then the three last cases cannot occur.

Proof: By Lemma 3.1, GF is not empty. Let W be a connected component of GF of size

at least 2. We first prove that |W | ≥ |X| − 1 by contradiction.

Assume this is not the case. Clearly we have W ∈ F (union closure). Let A be a

member in F which crosses W , minimum by size. Then, |A| > 2 (maximality of W).

Besides, |A ∩W | = 1, otherwise A \ {v} would contradict the minimality of A, where uv

Section 3.1. Partitive Crossing Families 75

is an edge of GF [W] which crosses A. Then, there is a member C of F which crosses

A \W . Here, either A ∩ C or A \ C would contradict the minimality of A.

We have now two cases. Either GF is connected, or GF has one connected component

of size |X| − 1 and one isolated vertex. In both cases, let W be the connected component

of size |X| or |X| − 1.

We now conclude using the same technique described in [47] and recalled in Lemma 2.5.

Suppose that there is in GF a vertex v ∈ W adjacent to at least 3 vertices a, b and

c. Clearly {a, v, b} and {v, c} are members of F . Since |X| > 4, there is a vertex

u ∈ X \ {v, a, b, c}, and the latter members {a, v, b} and {v, c} cross. Therefore, {a, b} is

a member of F , and by symmetry we can deduce that {v, a, b, c} induces a clique in GF .

Let C be a maximal clique in G[W] and suppose that C 6= W . Since W is a connected

component there is a vertex w ∈W \C adjacent to a vertex v ∈ C. By similar argument

as before, we can prove that w is linked to every vertex of C. But this contradicts the

maximality of C, so we must have C = W .

Hence either W induces a complete graph, or every vertex of W has degree at most

two, i.e. GF [W] is either a path or a cycle. Now suppose that |W | = |X| − 1 and W

induces a cycle of length at least 4. Let v be the isolated vertex in GF and let a, b, c be

pairwise distinct vertices of X \ {v} such that a is adjacent to b and c in GF (they exist

mostly for |X| > 4). But from the existence of v, {a, b} and {a, c} are crossing members

of F . Therefore {a, b, c} ∈ F . But we also have that X \ {v, a} is a member of F from

the union closure on the other vertices of the cycle. From the existence of v, {a, b, c} and

X \ {v, a} are crossing members of F . Hence, bc is an edge in GF . Contradiction.

Finally, suppose that F is also a partitive crossing family. If there is any vertex a

of GF of degree at least 2, then the symmetric difference closure will forbid the cases of

cycles and paths. �

Remark 3.1 Let F ⊆ 2X be a weakly partitive crossing family, and GF its 2-graph. Then

• GF has an isolated vertex if and only if F has a guard.

• GF is a clique of size at least 5 if and only if F = 2X \ {∅}.

• GF is a path of size at least 5 if and only if there is a linear ordering of the elements

of X such that F is the family of all intervals of this ordering.

• GF is a cycle of size at least 5 if and only if there is a circular ordering of the

elements of X such that F is the family of all circular intervals of this ordering.

76 Chapter 3. Representable Generalizations

The size assumption over the ground set has one and only one aim: whenever A and

B are overlapping members of the family with |A| = 3 and |B| = 2, the assumption

enforces that A and B are also crossing members. This allows the use of closure axioms

on crossing members, like in the proof of Lemma 3.2.

3.1.2 Between Crossing Families and Linear-Size Representable
Families?

We have seen that weakly partitive crossing families are at the same time generalizations of

weakly partitive families and symmetric crossing families. Also, they are crossing families

satisfying the additional axiom of closure under the difference of their crossing members.

Accordingly, they help in increasing the subclass of crossing families known to have a

linear space complexity (see Figure 3.2). However, such a gap is large, and it is a natural

question to look into the space between weakly partitive crossing families and crossing

families.

Unfortunately, the approach consisting of adding some closure axioms to those of

crossing families reveals unhelpful here. For instance, it is by definition that the addition

of the difference closure to a crossing family leads already to a weakly partitive crossing

family. Moreover, the following direction fails also. Both the class of crossing families and

the class of { ∆ } closed families have a tight quadratic space complexity (see Section 1.3).

Then, it could at first sight be an interesting question to look into their intersection.

However, we have here that a family which is at the same time crossing and closed under

the symmetric difference will also be a partitive crossing family. This leads back to a

known case. By elimination, the only closure related to our composition which remains is

the closure under complementation. But we have also seen that a crossing family which

is closed under complementation is called a symmetric crossing family. This also leads

back to a known case.

Even the following relaxation is a failure. Let us define FOO as the class containing

every crossing family which satisfies that, for every crossing members A and B of the

family, at least one of the three following sets is also a member of the family: A \ B,

A∆B, and B. Here, one can check that A \B is always a member of the family. Indeed,

if C = A∆B is a member, then C crosses A and A \B = A ∩ C will be a member of the

family. As well, if B is a member, then it crosses A and A \ B = A ∩ B will also be a

member. Hence, FOO is exactly the class of weakly partitive crossing families. And we

are back to a known case.

Despite all this, the duality quadratic vs. linear space complexity is still an interesting

question. For instance, the minimizers of submodular functions are very naturally bound

Section 3.2. Union-Difference Families 77

to intersecting and crossing families. On the other hand, the minimizers of symmetric

submodular functions are by definition bound to symmetric crossing families. Given the

tidy gap between the space complexity of crossing versus symmetric crossing families, the

above statements on submodular functions can also be seen as a theoretical motivation

to find other directions to investigate what is in between crossing families and symmetric

crossing families. The next section investigates one such direction.

3.2 Union-Difference Families

From what has just been said on the gap between families of linear and quadratic space

complexity, a direction could also be on how to extend partitive families while keeping

the linear space complexity. If we wish to do this by means of removing successively the

closure axioms on overlapping members, then the first axiom which comes to mind would

probably be the symmetric difference closure. (For an exhaustive checking on the possible

removals, we refer the reader to Figure 1.5 at the end of Chapter 1.) Indeed, we then result

in the class of weakly partitive families, which is also of linear space complexity. After this,

we come to a junction. However, we have seen that two among the three remaining choices

are bad: either we remove the difference axiom and result in intersecting families, which

have a tight quadratic space complexity (see Section 2.1); or we remove the union axiom

and run into the overlap-{ ∩, \ } families, which cannot be represented in polynomial

space (see Section 1.3). Accordingly, let us check the last choice, namely the case of

Definition 3.2 (Union-difference Family) A proper and connected family is a union-

difference family if it is closed under the union and the difference of its overlapping

members.

Remark 3.2 If a union-difference family is also closed under the symmetric difference

of its overlapping members, then it is a partitive family.

Remark 3.3 Clearly, a weakly partitive family is also a union-difference family. It is a

bit less straightforward, but a symmetric crossing family is also a union-difference family.

A potential hitch of the above defined families is that none of what has been said

so far give a clue on their space complexity. Indeed, it is straightforward to check that

the class of union-difference families is incomparable with, on the one hand, the class of

crossing families, and on the other hand, the class of { ∆ } closed families. From this, we

a priori cannot conclude with a polynomial assumption, from any of the results given in

the previous chapters. On the other hand, union-difference families are strict restrictions

78 Chapter 3. Representable Generalizations

of { ∪ } closed families and { ∩, \ } closed families, the two minimal classes we know to

own an argument against a polynomial representation. Accordingly, we a priori cannot

conclude with a non-polynomial assumption, neither. The aim of this section is to give

a representation of quadratic size on the size of the ground set for any union-difference

family. However, we leave open the question whether our representation is tight, or union-

difference families have a sub-quadratic space complexity.

In any case, the complexity result of this section is also a broadening of the known

classes of set families having a polynomial space complexity. Last but not least, the next

section gives an application of union-difference families in a strict generalization of clan

decomposition of 2-structures.

3.2.1 A Quadratic-Size Representation Theorem

The structuralization of a union-difference family via the cross-free decomposition tree,

and the associated notion of a quotient, is strange. Indeed, while simply-linked quotients

are simply organized by the following theorem, structural properties of other quotients

are rather scarce.

Theorem 3.3 If a family F ⊆ 2X satisfies: the union-difference property, the quotient

property, and the simply-linked property, then one and only one of the following holds:

• F consists of only the trivial subsets of X and possibly some of their complements

(F is prime),

• F = 2X \ {∅} (F is complete),

• there is a linear ordering of the elements of X such that F is the family of all

intervals of this ordering (F is linear).

• there is a circular ordering of the elements of X such that F is the family of all

circular intervals of this ordering (F is circular).

Proof: First we have to prove Lemmas 3.3 and 3.4 (below). Then, notice by Lemma 3.5

(below) that if GF is connected, it is either a clique, a path, or a cycle. We use Remark 3.4

(below) in order to conclude. �

Roughly, the simply-linked quotients of a union-difference family are more organized

than the simply-linked quotients of a partitive crossing family (there are fewer cases).

However, we have failed so far in characterizing the non-simply linked quotients of a

union-difference family. Instead, for the representation of those quotients we use the

Section 3.2. Union-Difference Families 79

very properties of a guard and a quotient-hereditary family. This is formally stated in

Theorem 3.4 below. Its proof follows directly from definition.

Theorem 3.4 If a family F ⊆ 2X satisfies both the union-difference property and the

quotient property, but fails the simply-linked property, then,

• there is a guard x ∈ X such that Y = X \ {x} and G = F \ {X, {x}} is a union-

difference family over the ground set Y (we say that F is recursive, it can be repre-

sented via the guard x and any representation of G).

In Section 3.3, Figure 3.9(c) gives an example under a restricted framework. Clearly,

we have to perform the recursive process of Theorem 3.4 for every non-simply linked

quotient of the decomposition tree T of a union-difference family F . Moreover, we have

to do the same process for all non-simply linked quotients of the decomposition tree T ′ of

every union-difference family G associated to a non-simply linked quotient of T . And so

on. In other words, a decomposition tree of a union-difference family, along with all its

quotients, may have recursive levels. Fortunately enough, its total size is still polynomial:

Theorem 3.5 Let us label every internal node of the decomposition tree T of a given

union-difference family F ⊆ 2X w.r.t. the matching between its quotient and the cases

described in Theorems 3.3 and 3.4. Then, the global size of the labelled tree is in O(|X|2).

Proof: (by induction on n = |X|). Let f(n) be the maximum size of all decomposition

trees of n leaves. Obviously, f(1) and f(2) are non null constants. Let f(k) ≤ α × k2

hold for all k < n. We suppose without loss of generality that α is greater than any other

constant in this proof. Let us consider a decomposition tree of n leaves and let N be the

set of its internal nodes. For each i ∈ N , let ni be its degree. The label of i is either of

constant size (cf. prime and complete nodes), of linear size on ni (cf. linear and circular

nodes), or of size bounded by f(ni − 1) + β (cf. nodes that are not simply-linked). In all

cases, it is bounded by α× (ni− 1)2 + α since ni ≥ 3 and α ≥ β. The total size of leaves,

edges, and orientations is linear on n, hence bounded by α× n. We deduce that

f(n) ≤ α×

(
∑

i∈N

((ni − 1)2 + 1) + n

)
≤ α×

(
∑

i∈N

(ni − 1)2 + n′ + n

)
,

where n′ = |N |. Notice that
∑

i∈N ni = n+2× (n′− 1) (the n pendant edges are counted

once while other edges are counted twice). In other words, S =
∑

i∈N(ni−1) = n+n′−2.

Then, the greatest value that
∑

i∈N(ni − 1)2 can reach happens when one among the ni

gets the greatest value possible. Since ni − 1 ≥ 2, we have
∑

i∈N

(ni − 1)2 ≤ (n′ − 1)× 22 + (S − (n′ − 1)× 2)2.

80 Chapter 3. Representable Generalizations

iii.i. ii.

Figure 3.4: i. A chain. ii. A covering chain. iii. An irreducible covering chain.

Then, f(n) ≤ α × (n2 + n′2 + 5n′ + n(1 − 2n′) − 4). Besides, that there are no degree 2

nodes in the tree provides us with n ≥ n′ + 2. Moreover, it is clear that 1 − 2n′ ≤ 0.

Hence, n(1−2n′) ≤ (n′+2)(1−2n′), which is also n(1−2n′) ≤ −2n′2−3n′+2. Therefore,

f(n) ≤ α× (n2 − n′2 + 2n′ − 2) ≤ α× (n2 − (n′ − 1)2 − 1) ≤ α× n2. �

Corollary 3.2 The space complexity of a union-difference family over X is in O(|X|2).

Turning our attention back to the proof of Theorem 3.3, let us introduce the following

terminologies. A chain of length k of F is a sequence (A1, A2, . . . , Ak) of members of F

such that Ai
©©Ai+1 for all i, and Ai ∩ Aj = ∅ for all |i − j| > 1. The chain is covering

if A1 ∪ A2 ∪ · · · ∪ Ak = X, and irreducible if |Ai| = 2 for all 1 ≤ i ≤ k. An irreducible

and covering chain of F can also be seen as a Hamiltonian path in the 2-graph GF , which

would imply its connectivity, and enable the use of Lemma 3.5 (see Figure 3.4).

Lemma 3.3 If a union-difference family F ⊆ 2X satisfies both quotient and simply-linked

properties, then, either F only consists of the trivial subsets of X and possibly some of

their complements, or F has a length three covering chain.

Proof: Suppose that F does not contain only the trivial subsets of X and some of their

complements. Let A ∈ F be neither trivial nor quasi-trivial. We take A maximal by

inclusion. The quotient property provides us with B ∈ F such that A and B cross. The

closure under the union implies A∪B ∈ F . Moreover, A is maximal. Hence A∪B is either

trivial or quasi-trivial. However, A ∪B cannot be trivial since A and B cross. Then, the

simply-linked property implies that A∪B is not an overlap-free member. Hence it overlaps

some member C ∈ F . Here, all cases lead to either D = C ∪B \A or E = C ∪A \B is a

member of F . Then, either (A, B, D) or (B, A, E) is a covering chain of length three. �

Lemma 3.4 If a union-difference family F ⊆ 2X satisfies both quotient and simply-linked

properties, and has a covering chain of length at least three, then F has an irreducible

covering chain (then GF is connected).

Section 3.2. Union-Difference Families 81

A i−1
A i A i+1 A i−1

A i+1B C

.

Figure 3.5: Illustration for the proof of Lemma 3.4.

Proof: By hypothesis F has a covering chain A = (A1, A2 . . . , Ak) with k ≥ 3. We take

k maximum.

Assume for some 1 < i < k that Ai \ (Ai−1∪Ai+1) 6= ∅. In this case B = Ai \Ai+1 and

C = Ai \ Ai−1 are overlapping members of F (see Figure 3.5). Then, replacing A with

(A1, A2 . . . , Ai−1, B, C, Ai+1, . . . , Ak) would improve k. Hence, Ai \ (Ai−1 ∪ Ai+1) = ∅ for

all 1 < i < k.

We now assume that |Ai| > 2 for some 1 < i < k. Then at least one among B =

Ai \ Ai+1 and C = Ai \ Ai−1 is neither trivial nor quasi-trivial (hence not cross-free by

quotient property). By symmetry we suppose it was B. Let D ∈ F cross B. We show in

all cases a contradiction as follows (see also Figure 3.6).

• Case 1: D ⊆ Ai. Among other, D and Ai−1 overlap. Let E = Ai−1 \ D, we can

improve k by replacing A with (A1, A2, . . . , Ai−2, E, B, D, Ai+1, . . . , Ak).

• Case 2: D \Ai 6= ∅ and C \D 6= ∅. Then, we are conducted to Case 1 by replacing

D with D′ = Ai \D.

• Case 3: D \Ai 6= ∅ and C ⊆ D. We define the left and right as L = A1 ∪ · · · ∪Ai−2

and R = Ai+1 ∪ · · · ∪ Ak. Notice that L ∪ R = B. Since D and B cross, there is

some element in either L or R that does not belong to D. If it was L, replacing D

with Ai \ (Ai−1 \ (D \ L)) leads back to Case 1. If it was R, the same can be done

with Ai \ (D \R).

Hence, |Ai| = 2 for all 1 < i < k. Now, assume that |A1| > 2, and let D ∈ F cross

B = A1 \ A2. Let Z = Ak \ Ak−1. We will examine whether Z \ D 6= ∅ or Z ⊆ D (see

Figure 3.7). In the first case, let E = A3 ∪ · · · ∪ Ak and F = D ∪ A2 ∪ · · · ∪ Ak−1: they

overlap. Then, G = F \ E is a member of F , and replacing A with (B, G, A2, . . . , Ak)

would improve k. In the second case, since D and B cross, there is some element in

A2∪· · ·∪Ak−1 that does not belong to D. In other words, A2∪· · ·∪Ak−1 and D overlap.

82 Chapter 3. Representable Generalizations

A i
A i−1 A i+1

B C

A i−1 A i+1
D

Case 1.

A i−1 A i+1
D’

D

Case 2.

A i−1 A i+1

Case 3.

D

.

Figure 3.6: Illustration for the proof of Lemma 3.4.

Z DCase

E

.

= 0Z \ DCase

B

G

A 1

A
2

A 3 A
k−1

A
k−2

A k

Z

B

Figure 3.7: Illustration for the proof of Lemma 3.4.

Section 3.3. Union-Difference Families 83

Then, E = D \ (A2∪· · ·∪Ak−1) is a member of F which contains Z. That E ∈ F implies

(E, A1, A2, . . . , Ak−1) is a chain of F . That E contains Z implies the chain is covering.

Moreover, it is of length k, i.e. of maximum length. However, from the last paragraph,

this chain cannot have A1 with more than two elements. Therefore, |A1| = 2. Then, by

symmetry we obtain |Ak| = 2, and A is an irreducible covering chain. �

To conclude, we use a tool that was discovered from previous works on partitive

families. It has been addressed in the last chapter in the statement of Lemma 2.5. The

actual situation is: the proofs of Lemma 2.5 given in [47] mainly required the union and

difference closures. Then, the following property can be seen as part of that lemma.

Lemma 3.5 (cf. [47] with partitive families) Let F be a union-difference family. If its

2-graph GF is connected then GF is either a clique, a path, or a cycle.

Proof: The proof given in [47] is as follows. Suppose that GF has a vertex x with degree

at least 3, and let y, z, t be three distinct neighbours of x. In other words, {x, y} and

{x, z} are members of F , and so is {x, y, z} by union closure. But {x, t} is also a member

of F . By difference closure we deduce that {y, z} is an edge of GF . Likewise, we can

deduce that x, y, z, and t form a clique in GF . Now, let v be a vertex that is connected to

the previous clique at some point, say t. Then, by a similar argument on the fact that t

is of degree at least 3, we can show that v is connected to all other vertices of the clique.

Thus the previous clique plus vertex v form a bigger clique, and so on. The connectivity

of GF then can be used to conclude that the whole graph GF is a clique. Finally, the only

connected graphs of degree at most 2 are paths and cycles. �

Remark 3.4 Let F ⊆ 2X be a union-difference family, and GF its 2-graph. Then

• GF is a clique if and only if F = 2X \ {∅}.

• GF is a path of size at least 3 if and only if there is a linear ordering of the elements

of X such that F is the family of all intervals of this ordering.

• GF is a cycle of size at least 4 if and only if there is a circular ordering of the

elements of X such that F is the family of all circular intervals of this ordering.

Before closing the section, let us comment that the way we proceeded for non-simply

linked quotients of union-difference families is somewhat brute-force (cf. Theorem 3.4),

and conjecture that

Conjecture: Union-difference families have sub-quadratic space complexity.

84 Chapter 3. Representable Generalizations

3.3 Applications in Graph Theory

We have seen at the end of Section 2.3.1 a natural question for the search of not only

relaxed, but also tractable, variations of the modular decomposition scheme. This section

investigates the case of directed graphs, and their common generalization to arbitrary

(and not necessarily symmetric) 2-structures. In order to further decompose, a weakened

definition of module is proposed. Fortunately enough, we still obtain a well-structured

variation, thanks to partitive crossing and union-difference families.

We recall some terminologies presented in the last chapter. Digraphs throughout the

thesis refer to loopless simple directed graphs where 2-cycles are allowed. A 2-structure

G = (X, C) is a vertex set X along with a colour function C mapping every pair (x, y)

(with x, y ∈ X and x 6= y) to some value in N. The out-going neighbourhood N+
c (x), for

every vertex x ∈ X and every colour c ∈ N, is defined according to standard notions of

neighbourhood in graph theory as the set of all vertices y such that C(x, y) = c. Likewise,

the incoming neighbourhood N−
c (x) is the set of all vertices y such that C(y, x) = c.

The focus of this section is on the following notion.

Definition 3.3 (Sesquimodule) A sesquimodule M of a 2-structure G = (X, C) is a

non-empty vertex subset such that

• ∀x, y ∈M, ∀c ∈ C, N−
c (x) \M = N−

c (y) \M , and

• ∀x, y ∈M, ∀c ∈ C, ∃d ∈ C, N+
c (x) \M = N+

d (y) \M .

Let us recall also that, in an undirected graph, a module is a non-empty vertex subset

M such that ∀x, y ∈ M, N(x) \M = N(y) \M . For a symmetric 2-structure, the same

definition holds with the condition ∀x, y ∈ M, ∀c ∈ C, N−
c (x) \M = N−

c (y) \M . The

generalization to arbitrary 2-structures presented in Section 2.3.2 under the name of a

genuine-module appeals to the very same condition. On the other hand, the classical

generalization of module to so-called digraph modules and clans of 2-structures requires

two full conditions on M : ∀x, y ∈ M, ∀c ∈ C, both N−
c (x) \ M = N−

c (y) \ M and

N+
c (x) \M = N+

c (y) \M must hold.

In the new notion, there is a full condition on in-neighbours, and a relaxed condition

on out-neighbours. For the relaxed condition, the partition of the exterior w.r.t. the

colour of the out-going arcs still has to be the same, however, the order of the parts in

the partition is irrelevant. We qualify such a notion as a half-condition compared to the

condition on in-neighbours. This is the reason for the terminology of a sesquimodule∗.

∗Sesqui- is a Latin prefix for one-and-one-half.

Section 3.3. Applications in Graph Theory 85

b

a

c

1

2

3

a

b c

3

2

1

B B

B B

Figure 3.8: A modular prime digraph with its sesquimodular decomposition tree. The
label “B” stands for basic quotient nodes.

a4a3

a1 a2

dc e fb

(a) A directed graph.

a1

a2

a3

a4

LC

guard

b

c

d

e

f

ordering

(b) Its weakly partitive crossing sesquimodular decomposition tree.

a1

a2

a3

a4

Rec

a 2 a 3

a4a 1

C

L

guard

b

c

d

e

f

ordering

recursive representation

(c) Its union-difference sesquimodular decomposition tree.

Figure 3.9: Sesquimodular decomposition. Some sesquimodules of the digraph are: all
subsets of A = {a1, a2, a3, a4}, A ∪ {b}, A ∪ {b, c}, A ∪ {b, c, d}, {b, c, d}, {b, c, d, e},
{b, c, d, e, f}, {c, d, e}, . . .

86 Chapter 3. Representable Generalizations

In Figure 3.8, we show that the generalization of clans to sesquimodules is proper. An

example of sesquimodular decomposition tree is given in Figure 3.9.

Besides, notice that the condition on the out-neighbours of a sesquimodule defines

exactly an unordered-module (cf. Section 2.3.2). Then, a sesquimodule can also be seen

as a vertex subset which is at the same time a genuine-module and an unordered-module.

For this reason sesquimodules are also called bi-dules in French. Finally, notice that the

sesquimodules of an undirected graph or a symmetric 2-structure are exactly its modules,

and also its clans. We now distinguish two cases, following some structural properties of

the family of sesquimodules, depending on whether the given structure is a digraph, or a

2-structure.

3.3.1 Sesquimodular Decompositions

We begin with the two leading facts of this section.

Proposition 3.1 The sesquimodules of a digraph form a weakly partitive crossing family.

Furthermore there are no circular nodes in its decomposition tree.

Proof: Let G = (X, A) be a digraph. Clearly, the trivial vertex subsets are sesquimodules

of G. Let P and Q be two crossing sesquimodules of G. By Proposition 3.2 (right below),

P ∪ Q and P \ Q are sesquimodules of G. We only need to prove that R = P ∩ Q is a

sesquimodule.

It follows directly from definition that ∀x, y ∈ R, ∀c ∈ C, N−
c (x) \R = N−

c (y) \R.

From now on, the fact that a 2-structure which is also a digraph must have at most

two arc colours will be important. W.l.o.g. suppose the two possible colours are 0 and

1. From definition of the sesquimodule P , there is a partition of P into two parts {S, T}

such that every vertex x ∈ P holds {N+
0 (x) \ P, N+

1 (x) \ P} = {S, T} (this is an equality

between sets). Likewise, there is a 2-partition of Q into {S ′, T ′} such that, for all x ∈ Q,

{N+
0 (x) \Q, N+

1 (x) \Q} = {S ′, T ′}. Now take a vertex x ∈ R: it belongs to both P and

Q. Since P and Q cross, there is a vertex s ∈ P ∪Q.

From {N+
0 (x) \ P, N+

1 (x) \ P} = {S, T}, suppose w.l.o.g. that s ∈ S. Likewise, from

{N+
0 (x) \Q, N+

1 (x) \Q} = {S ′, T ′}, suppose w.l.o.g. that s ∈ S ′. Moreover, vertex s has

only two choices: either s ∈ N+
0 (x) or s ∈ N+

1 (x). But then, N+
0 (x) \ R is either S ∪ S ′

or T ∪ T ′, accordingly. Hence, {N+
0 (x) \R, N+

1 (x) \R} = {S ∪ S ′, T ∪ T ′}.

Finally, a circular sesquimodule quotient node would be a complete one. �

Proposition 3.2 The sesquimodules of a 2-structure form a union-difference family.

Furthermore there are no circular nodes in its decomposition tree.

Section 3.3. Applications in Graph Theory 87

Proof: Let G = (X, C) be a 2-structure. Clearly, the trivial vertex subsets are sesquimod-

ules of G. Let P and Q be two overlapping sesquimodules of G. It follows directly from

definition that P ∪Q is a sesquimodule. We only need to prove that R = P \Q is also a

sesquimodule.

First suppose that there exist an exterior vertex s /∈ R and two vertices x, y ∈ R s.t.

C(s, x) 6= C(s, y). Since P is a sesquimodule s belongs to P ∩Q. Moreover, that P and Q

overlap implies there is a vertex t belonging to Q \ P . Notice that s, t ∈ Q and x, y /∈ Q.

Since Q is a sesquimodule, C(t, x) would be different from C(t, y). But then P is no more

a sesquimodule as t /∈ P and x, y ∈ P . Contradiction.

To finish, let us introduce a notation. For every vertex triplet x, y, z we denote the fact

C(x, y) = C(x, z) by x|yz. Then, the second condition in the definition of a sesquimodule

M , namely ∀x, y ∈M, ∀c ∈ C, ∃d ∈ C, N+
c (x) \M = N+

d (y) \M , can be translated by:

for all x, y ∈M , for all s, t /∈M , x|st⇔ y|st.

Now let x, y ∈ R and s, t /∈ R. We need to prove that x|st⇔ y|st. If none of s and t

belong to P , that P is a sesquimodule allows to conclude. If both s and t belong to Q,

that Q is a sesquimodule allows to conclude. By symmetry, the only remaining case is

when s ∈ P ∩Q and t /∈ P ∪Q. In this case, let u ∈ Q\P . Since P is a sesquimodule, we

already have x|tu⇔ y|tu, but we would like the same property with vertex u replaced by

vertex s. For this, notice that x /∈ Q, but s, u ∈ Q, and Q is a sesquimodule. Therefore,

x|su. Likewise, y|su. Then, we have (x|tu⇔ y|tu) ∧ (x|su) ∧ (y|su), which is equivalent

to the desired property.

Finally, a circular sesquimodule quotient node would be a complete one. �

Basically, with a digraph (resp. a 2-structure), one can associate a labelled tree which

represents exactly the family of sesquimodules of the digraph (resp. the 2-structure).

Definition 3.4 (Sesquimodular Decomposition Tree)

The sesquimodular decomposition tree of a digraph refers to the decomposition tree of

the family of its sesquimodules, which is weakly partitive crossing. The sesquimodular

decomposition tree of a 2-structure refers to the decomposition tree of the family of its

sesquimodules, which is a union-difference family. They are cross-free decomposition trees

(cf. Definition 1.1).

The discourse of the previous chapters applies on sesquimodular decomposition trees.

In particular, we can proceed with them using a similar approach as that with modular

graph decomposition (see Section 2.3.1). To begin with, it is clear that from the only

knowledge of the sesquimodular decomposition tree, all sesquimodules of the digraph

(resp. the 2-structure) can be retrieved, that is

88 Chapter 3. Representable Generalizations

Theorem 3.6 (Sesquimodular Decomposition Theorem) There is a unique labelled

tree associated to a 2-structure, a so-called sesquimodular decomposition tree, such that all

sesquimodules of the 2-structure can be enumerated from the tree without the knowledge

of the 2-structure. In particular, the claim holds if the 2-structure is a digraph.

Besides, we have also seen that one of the major interests – and, from a certain

algorithmic point of view, the major interest – of modular decomposition is that the

computation of the modular decomposition tree of a given graph is polynomially solvable.

Here also, we would like to highlight that there are polynomial algorithms that, given

a digraph (resp. 2-structure), compute the corresponding sesquimodular decomposition

tree. More precisely,

Theorem 3.7 ([15, 21]) The sesquimodular decomposition tree of a 2-structure over n

vertices can be computed in O(n7) time. This can be sped up to be in O(n3) time if the

2-structure is a digraph.

However, we will not discuss in detail this matter, which goes slightly beyond the

purposes of our composition. Instead, we will keep our focus on representability issues.

More specifically, we have seen in the previous chapter that one of the nice aspects of

modular decomposition is that from the only knowledge of the decomposition tree, one

can build back the graph itself! This is not the case for many other graph decompositions,

including notorious decompositions such as tree decomposition, branch decomposition,

and rank decomposition. Basically, the end of this section can be seen as an attempt to

answer to the following question.

Question 1: Can the sesquimodular decomposition tree of a digraph (resp. a 2-structure)

be labelled with further information in such a way that the digraph (resp. 2-structure) can

be built back from the only knowledge of the tree and its labels?

At the same time, we would like to investigate a second question. The motivation

comes from Corollary 2.6 at the end of Section 2.3.1, which states that the degenerate case

of modular graph decomposition, on the so-called cographs, leads to a sub-linear encoding

of the input cograph. This case occurs precisely when the modular decomposition tree of

some given graph has no prime node. Then, the graph will be called a cograph, and the

modular decomposition tree of the graph its cotree. It is then proved that one can label

the cotree in such a way that the cograph can be built back from the only knowledge of

the cotree and its labels. Moreover, the total size of the labelled cotree turns out to be

proportional to the number of vertices of the cograph, while the size of the cograph can be

quadratic on this number. Accordingly, one says that the cotree is a sub-linear encoding

Section 3.3. Applications in Graph Theory 89

of the corresponding cograph. This is an important fact for, e.g., computational purposes

in graph theory. Here, we would like to investigate Question 2 below, which can be seen

as an extended version of Question 1 on the particular instance of what we call a totally

sesquimodular decomposable digraph.

Definition 3.5 (Totally Sesquimodular Decomposable 2-Structure & Digraph)

A 2-structure is totally sesquimodular decomposable if there are no prime nodes in its

sesquimodular decomposition tree. In particular, the definition holds when the 2-structure

is a digraph.

Question 2: Can a digraph which is totally sesquimodular decomposable be represented

using linear space on the size of its vertex set?

Before continuing, it is important to highlight that we have failed so far in giving

an answer to either Question 1 or Question 2, no matter if the answer were positive or

negative. Instead, the leading idea of the remaining of this section should be seen as an

attempt to investigate these two questions, with a tendency towards positive answers. To

this purpose, the following property will be essential. However, since this is a property

with a long statement, let us first give the idea behind the claim. Roughly, our aim is to

encode every quotient of a sesquimodular decomposition tree with additional information

in such a way that we can partly build back the digraph (resp. the 2-structure) from

the knowledge of the sesquimodular decomposition tree plus the encoding inside that

quotient. Then, the whole digraph (resp. 2-structure) can be retrieved by juxtaposing the

parts which are thus given by the quotients of the tree. This is a quite common practice

in topics around modular decomposition.

Besides, recall that a quotient in the sesquimodular decomposition tree of a 2-structure

G = (X, C) has a ground set of the form Y = {X1, X2, . . . , Xk}, where {X1, X2, . . . , Xk}

is a partition of the vertex set X (cf. Definition 1.2 in Chapter 1). Basically, from the

following property we can obtain the above mentioned encoding when the quotient is such

that every Xi (1 ≤ i ≤ k) contains one and only one vertex vi ∈ X.

Proposition 3.3 The family of sesquimodules of a 2-structure G = (X, C) is

• complete without guard if and only if the colour function C is partially constant:

C(y, z) = C(y, t) for all y ∈ X and z, t ∈ X \ {y}.

• complete with a guard x ∈ X if and only if the colour function C satisfies:

1. C(x, y) = C(x, z) for all y, z ∈ X \ {x},

90 Chapter 3. Representable Generalizations

2. C(y, z) = C(y, t) for all y ∈ X \ {x} and z, t ∈ X \ {x, y},

3. C(y, x) 6= C(y, t) for all y ∈ X \ {x} and t ∈ X \ {x, y}.

• linear without guard w.r.t. the ordering X = (x1, x2, . . . , xn) if and only if the colour

function C satisfies:

∀xi ∈ X, ∃c 6= d,
(
1 ≤ k < i ⇒ C(xi, xk) = c

)
∧
(
i < k ≤ n ⇒ C(xi, xk) = d

)
.

• linear with a guard x ∈ X w.r.t. the ordering X \ {x} = (x1, x2, . . . , xn−1) if and

only if the colour function C satisfies:

1. C(x, y) = C(x, z) for all y, z ∈ X \ {x},

2. ∀xi ∈ X \ {x}, ∃c 6= d, such that

(
1 ≤ k < i ⇒ C(xi, xk) = c

)
∧
(
i < k < n ⇒ C(xi, xk) = d

)
,

3. for all xi ∈ X \ {x}, when any among xi−1 and xi+1 exists, we have both

C(xi, x) 6= C(xi, xi−1) and C(xi, x) 6= C(xi, xi+1).

Proof: For each of the four items in the statement, it is straightforward to check that

the corresponding condition is sufficient, namely that the right hand-side of the iff implies

the left hand-side. We only give the proof for the other direction in each case.

For the first item, if every vertex subset is a sesquimodule, then in particular every

vertex subset that is quasi-trivial (i.e. of cardinality |X| − 1) satisfies the “in-neighbours

condition” of a sesquimodule. From this observation it is straightforward to conclude.

For the second item, if the family of sesquimodules is complete with a guard, then

|X| ≥ 4 otherwise the family would be complete without guard. By examining G[X \{x}]

using what has just been proved in the last paragraph, we deduce the condition number

two. By observing that X \ {x} is a sesquimodule whenever x is a guard we deduce

the condition number one. Now suppose that the condition number three is violated.

We can deduce a contradiction to the fact that x is a guard as follows. There exist

vertices y and t such that x, y, t are pairwise distinct and C(y, x) = C(y, t). Let z be

any other vertex: z ∈ X \ {x, y, t}, which exists since |X| ≥ 4. The “out-neighbours

condition” of a sesquimodule, when applied on the sesquimodule {y, z}, states that as

long as C(y, x) = C(y, t), we must have C(z, x) = C(z, t). Combining this and the

conditions number one and two we have so far that the colour function C is almost

partially constant, except for t: for every vertex u 6= t and for all v, w ∈ X \ {u}, we

have C(u, v) = C(u, w). As for vertex t, we have that C(z, x) = C(z, y) from the previous

Section 3.3. Applications in Graph Theory 91

sentence, then, applying the “out-neighbours condition” on the sesquimodule {z, t} allows

to conclude that C(t, x) = C(t, y). But then we are exactly in the case of the first item

of the statement of the proposition, among other things x is not a guard. Contradiction.

For the third item, let us consider vertex xi. Using the “in-neighbours condition” of a

sesquimodule on both {x1, x2, . . . , xi−1} and {xi+1, xi+2, . . . , xn}, we obtain the existence

of two colours c and d (not necessarily different) such that (1 ≤ k < i ⇒ C(xi, xk) = c)

and (i < k ≤ n ⇒ C(xi, xk) = d). This can be done for any vertex xi. After this

step, suppose that for some vertex xi with 1 < i < n, the corresponding colours c and

d are equal: c = d. Then, using the “out-neighbours condition” of the sesquimodule

{x2, x3, . . . , xn−1}, we can conclude that {x1, xn} is a sesquimodule. This contradicts the

fact the family of sesquimodule is linear w.r.t. the ordering X = (x1, x2, . . . , xn).

For the last item, we prove the conditions number one and number two in a similar

way like before. Then, like before again, we can prove condition number three using

an argument by contradiction as follows. Suppose that the condition is violated. By

symmetry of the ordering X = (x1, x2, . . . , xn−1), we can suppose w.l.o.g. that there

exists xi with 1 < i ≤ n − 1 such that C(xi, x) = C(xi, xi−1). But then we can prove

that {x1, x2, . . . , xi−1} ∪ {x} is a sesquimodule using the “out-neighbours condition” of

the sesquimodule {xi, xi+1, . . . , xn−1}. Contradiction. �

Basically, from Proposition 3.3, it is straightforward to encode a 2-structure using a

very efficient space when the family of its sesquimodules is complete or linear (with or

without a guard). For instance, if the family is complete without guard, then it suffices

to encode for every vertex of the 2-structure the colour of one of its out-going arcs: the

colour of all other out-going arc from that vertex is the same, according to the first item

of Proposition 3.3. A synopsis is given in Figure 3.10.

Let us now consider a quotient Q(u) w.r.t. node u of the sesquimodular decomposition

tree of a 2-structure G = (X, C). Let Y = {X1, X2, . . . , Xk} be the ground set of Q(u).

As previously said, Proposition 3.3 applies when Q(u) is such that every Xi (1 ≤ i ≤ k)

contains one and only one vertex vi ∈ X. In the modular decomposition of graphs, such

a result is sufficient to answer to similar questions as Questions 1 and 2. The reason

is roughly because if A and B are modules of undirected graph G – here viewed as a

2-structure – then all arcs in G with an extremity in A and another extremity in B have

the same colour. Then, even when the Xi’s get an arbitrary size, each of them can still

be represented by a vertex, say any vi ∈ Xi. After encoding the adjacency of vi, we

can skip encoding the adjacency of the other vertices of Xi: it is the same as that of vi.

Unfortunately, such a property does not necessarily hold for sesquimodular decomposition.

For instance, every digraph given in Figure 3.11 has the same family of sesquimodules.

92 Chapter 3. Representable Generalizations

i.

1

2 5

3 4

2 5

3 4

1 (guard)

1 2 3 4

iii.

1 2 3 4

iv.

5 (guard)

ii.

Figure 3.10: 2-structures where the family of sesquimodules is: complete without guard
(i.); complete with a guard (ii.); linear without guard (iii.); linear with a guard (iv.). In
the three first examples, the 2-structure is also a digraph. The dashed arrows in (iv.)
represents a third colour of the 2-structure.

12

3

5

4

6

7

8

c

c

1

2

3

4 5

6

7

8

B

B B

B

C

12

3

5

4

6

7

8

c

i. A digraph. ii. A digraph.

12

3

5

4

6

7

8

c

iii. A digraph.

iv. Their sesquimodular decomposition tree.

Figure 3.11: Three digraphs with the same sesquimodular decomposition tree.

Section 3.3. Applications in Graph Theory 93

Even so, the colours of the out-going arcs from the sesquimodule {1, 2} can have several

configurations. Besides, it is straightforward to add an arbitrary number of “petals” to

these examples, where the “petals” refer to the sesquimodules of the form {1, 2}, {3, 4},

{5, 6}, . . .

Basically, in these examples, we might end up storing, for every quotient Q(u), one

colour per vertex of each Xi. This would imply |X| colours per quotient Q(u). As

the number of possible quotients could be proportional to |X|, we might end up with

a total encoding space proportional to |X|2, namely the same space complexity as that

of the 2-structure itself. The question of characterizing the quotients of sesquimodular

decomposition trees from the scope of obtaining an efficient encoding of the corresponding

2-structures seems to be more difficult. The difficulty seems to remain intact even for the

restriction to digraphs.

It is now time to close the current part of the thesis and give way for more applicative

assumptions. We have until now discussed on a general technique for obtaining various

representation theorems for set families satisfying some closure axioms. We have also seen

that those results are crucial to define various decomposition schemes. All of them are

modelled using a graph theoretic point of view, with possibly a slight generalization to

2-structures. In the next part of the thesis, among other things, we will give some concrete

motivations for the study of decomposition schemes in graph theory. Before this, let us

recall that a synopsis of all results on the representation of set families which have been

discussed so far can be found in Figures 1.4 and 1.5 at the end of Chapter 1.

Part II

Decomposition

and

Divide-and-Conquer Algorithms

On magazines for gum chewers:

“Each one encourages you to think you belong to an elite clique,

so advertisers can appeal to your ego and get you to cultivate an image

that sets you apart from the crowd. It’s the divide and conquer trick.”

Bill Watterson, 1992.

(The complete Calvin and Hobbes – Book three. 1st ed., Andrews McMeel Publishing, 2005.)

Overview of Part II

Divide-and-conquer is a general strategic principle which, in common lore, refers back

to a long history. It ranges, among others, from Sun Tzu to Niccolò Machiavelli, and

more recently, to René Descartes. The practice involves many famous names including

Gaius Julius Caesar, the Habsburgs, and also Stargate or Teenage Mutant Ninja Turtles.

Even nowadays, it is still widely used as reference to a combination of political, military

and economic strategies. It consists in gaining and maintaining one’s power by means

of breaking up larger concentrations of power into chunks that individually will be less

powerful than one’s self. However, this approach is scarce in reality since it is difficult to

break up existing power structures. Thus, the divide-and-conquer principle, in practice,

will also refer to its restriction to the more realizable act of preventing small power groups

from linking up together.

The principle came into computer science in the early 1960s with the publication of

Anatolii Karatsuba’s fast multiplication algorithm. In this field however, rather than the

latter practice, it will be exactly the original divide-and-conquer principle that is solicited.

A bit more precisely, the now classical divide-and-conquer algorithmic framework can be

summarized as dividing the input problem into some sub-problems; conquering them by

making recursive calls; eventually uniting the sub-solutions into a global solution. Thus, it

is more of a divide-conquer-and-unite approach, from a certain standpoint. Also from the

same standpoint, one might want to consider the consequences of omitting the unification

process in the general divide-and-conquer principle: the decline and fall of the Roman

Empire could be seen as a motivation for such a consideration. However, in computer

science, such a discussion is forfeit: the need of a unification process is final, and sometimes

it is even the very core of the question to be solved. Such an example could be the very

standard merge-sort. According to this, it is quite intriguing why the paradigm is still

widely denoted by the name of divide-and-conquer algorithms.

Beside those vocabulary matters, it is quite popular that one of the major drawbacks

of the divide-and-conquer algorithmic paradigm comes up when, for some problems, many

of the sub-problems overlap. If such a situation occurs, it is more interesting to use again

98 Overview

the sub-solutions, as many times as possible. Such a practice is so-called memoization

and can also be seen as the basic idea of a dynamic programming. Also, the best known

examples of divide-and-conquer algorithms, beside some standard sorting algorithms, are

probably dynamic programming algorithms.

In algorithmic graph theory as in any other field, the divide-and-conquer paradigm

has the prior requirement of being able to divide an input graph instance, not in an

arbitrary way, but in such a way that a unification stage is possible after the corresponding

“conquests”. For this aim many tools have been developed, with the most notorious being,

in lexicographic order: articulation vertex, block, bridge, cut, cut set, edge-connectivity,

flow, isthmus, maxflow, mincut, separator, vertex-connectivity. Here, the two last notions

are related to a more or less academic yet certainly popular and celebrated notion, the

so-called tree-decomposition. It is the close associate of the notion of a graph treewidth,

and is roughly the completion of an undirected graph G into a chordal graph having a

clique number as small as possible. Then, the chordal graph can be bijectively mapped

into a tree, a so-called clique tree. In such a tree, the node labels correspond to the

maximal cliques of the chordal graph, while the edge labels are the intersection of the

labels of the two incident nodes. To that minimum clique number (of the chordal graph)

minus one is given the name of the treewidth of G, to the clique tree of such a chordal

graph is given the name of a (possible) tree-decomposition of G.

Actually, from any tree-decomposition of G, there is a straightforward transformation

to result in another tree-decomposition of G holding the following fact, which is essential

for algorithmic purposes: every edge label of the tree is a minimal separator of G (see,

e.g., [8] for a recent and general survey, or [12, 109, 110] for more foci on separators). An

example could be:

a

b

c

e

d

f

g

h

a

b

c

e

d

f

g

h

a

b

c

e

d

f

g

h

a d
c

c
e

b

d
ec d

e f

d f

h

g

e f

a
c

cb

d
ec d

e f

f

h

g

f

c

c

f

f

de

de
dc

ce ef

d f

i.

ii.

iii.

Example of tree-decomposition: i. A graph G. ii. A tree-decomposition of G. iii. A

tree-decomposition of G which displays only minimal separators of G.

Part II. Decomposition and Divide-and-Conquer Algorithms 99

Now, a separator by definition is a vertex subset whose removal splits a connected

graph into several disconnected parts. This turns out to be a convenient way to enhance

the use of divide-and-conquer techniques. As a result, many optimization problems on G

can be solved by those techniques if a tree-decomposition of G is given (see, e.g., [8], and

also [79, Chapter 10. Extending the Limits of Tractability] for a more detailed overview).

In this topic, the dividing stage of the divide-and-conquer algorithms follows directly from

the input tree-decomposition. On the other hand, the unification stage is usually more

complex, and constitutes the core question to be solved, like with the case of merge-sort.

Finally, it is important to highlight that the same discourse actually applies for various

other graph decomposition schemes as well. For instance, we have seen in the previous part

of the thesis in Section 2.3.1 that modular decomposition is also a good candidate for this

perspective. Other major examples include split decomposition, branch decomposition,

as well as the relatively recent clique decomposition.

At the same time, an original aspect of studying divide-and-conquer algorithms could

come from the converse of what has just been said. Actually, it is a quite common fact that

some algorithms, while theoretically efficient, may be notorious for being complicated and

impractical. For instance, in order to compute the modular decomposition tree of a given

graph, the first algorithms with a linear runtime were found more than one decade ago [37,

88]. Nonetheless, there still are ongoing large efforts in simplifying or giving alternatives to

those already optimal algorithms [108]. To give another example, for the enumeration of

all common intervals of two permutations, the first linear time algorithm [111] was already

found (in 1996) almost one decade before the proposition of an alternative [4]. In some

of those situations, the goal would be to improve the robustness of the existing algorithm

and/or to lead to a better understanding of its combinatorial structure. An original

approach here is to consider the algebraic aspects of the existing algorithms in order to find

insights in some combinatorial properties related to the statements of the initial problem.

In other words, a deeper study of some (infamous) algorithms may help in the discovery

of unexpected combinatorial results. In particular, if the corresponding algorithm follows

a divide-and-conquer approach, then the probability to run into a decomposition result

will be increased. It is, e.g., the case for what will be presented in Chapter 5, where we in

fact revisit the aforementioned enumeration of common intervals [111]: the corresponding

decomposition scheme was proposed in [19], long after the discovery of the algorithm.

The current part of the thesis is meant to emphasize the above mentioned duality

between combinatorial decompositions and algorithm design. We investigate three cases.

In each case, we insist on the combinatorial aspects of the corresponding problem, before

effectively giving an algorithmic solution. A leading idea here could be seen as the fact

100 Overview

these algorithms rely on some underlying structural properties of the instances defined by

the problem to be solved. In reality it may happen that the very structural properties are

found after the discovery of the corresponding algorithm (e.g., Lemma 5.2 in Chapter 5).

However, even in those cases, we still address combinatorial issues first, and skip the

discussion on the converse view of the duality, namely on how analysing the algorithm

gives hints in pointing out those combinatorial issues.

Let us specify more the structure of the current part.

We address in Chapter 4 two graph problems arising from computational biology: the

so-called common connected component enumeration and the so-called cograph sandwich

problem. For the first problem we give a unique algorithm which has various runtime

depending on the data-structure we use. This runtime, for all configurations of the data-

structures to be used, is sub-quadratic on the number of vertices and edges of the input

graphs. Besides, our solution can be seen as a unified viewpoint of various approaches

for solving the common connected component enumeration using the divide-and-conquer

paradigm. Also, unlike the case with merge-sort, the unification stage of our algorithm

is straightforward, while the dividing stage is more tricky. To achieve the sub-quadratic

runtime we introduce a new graph search, the so-called competitive graph search, which

has a sub-linear runtime on the size of its input graph. Then, for the second problem,

namely the cograph sandwich problem, instead of designing an algorithm from scratch,

we show how one can derive an efficient solution from the solution of the first problem

and from some structural analysis of the involved notions.

In Chapter 5, we deepen a particular instance of the common connected component

enumeration, the so-called common interval enumeration. We revisit a tricky algorithm

designed by T. Uno and M. Yagiura [111], which can be made to run in linear time on

the number of vertices (by the addition of a simple one-line routine). While simple to

implement and having a very fast performance, Uno-Yagiura algorithm has been quite

notorious for its tricky correctness and complexity analysis. Our study discusses in detail

the correctness and complexity issues of this algorithm. At the same time, we point out

strong structural properties of the involved notions. Among other things, we establish in

Lemma 5.2 an intersecting submodular property for a very general framework of modular

decomposition. Various decomposition issues around common intervals are also discussed

in the same chapter. We also give an application of Uno-Yagiura algorithm in the modular

decomposition of graphs (if a so-called factoring permutation is given).

We close the thesis with an attempt in Chapter 6 of giving a unified viewpoint of, at

the same time, modular decomposition, split decomposition, bijoin decomposition, as well

as various recent advances in algorithmic graph theory including clique decomposition,

Part II. Decomposition and Divide-and-Conquer Algorithms 101

NLC-decomposition, and the newly introduced rank decomposition. However, we restrict

our discussion on this topic to some algorithmic issues around the new notion of an H-join

decomposition, as well as those around the restriction of H-join decompositions to rank

decomposition. We point out how, in a so-called fixed-parameter tractable (FPT) single

exponential time, one can enhance our decomposition scheme into an object amenable to

the divide-and-conquer paradigm. When applied to rank decomposition, our enhancing

process runs in FPT time with single exponential on the rankwidth of the input graph.

We also exemplify our approach on a dynamic programming solution for the NP -hard

problem of finding the clique number of a graph, first under our framework in general,

then under the framework of rank decomposition in particular. Similarly as in the cases of

tree-decompositions and merge-sort, the dividing stage of our method is straightforward

while the unification stage is the crux of the algorithm.

This part of the composition is based on [19, 20, 22].

Chapter 4

Common Connectivity

This chapter is based on [20].

The algorithmics series begins with a special focus on connected components of graphs.

More precisely, we investigate two problems, both arising from computational biology. The

first problem consists of, given two graphs over the same vertex set, finding the coarsest

partition of the vertex set into subsets which induce connected subgraphs in both input

graphs. The second problem is an instance of sandwich graph problems: given a partial

subgraph G1 of G2, find a completion of G1 into a partial subgraph G of G2 (sandwich)

such that G is a cograph. They will be called common connected component and cograph

sandwich problems, respectively.

The first problem was studied in [13] for its connection with some gene structure.

There, one graph can be obtained by the distance between the genes of some genomic

sequence, taken with respect to a given threshold. The other graph can be any graph

on the same set of genes, for example one generated by some chemical reaction. Besides,

this problem arises also from comparative genomics, such as in the search of the so-called

gene-teams [2]. In this topic, both graphs are obtained by the former method, namely by

the distance w.r.t. a threshold among the genes in a genomic sequence. As for the second

focus of the chapter, the class of sandwich graph problems was defined in [63]. However,

most instances of this class are NP -complete, and only some few polynomial cases are

known. They include cograph sandwiches [63] and module sandwiches [11, 26].

Beside applicative purposes, the work presented in this chapter has also a theoretical

motivation. Indeed, it is folklore that, without specific assumptions, the divide-and-

conquer approach helps with designing algorithms running in quadratic worst case time.

Moreover, most of the classical speed up techniques in the literature consist in holding

some condition on the “conquer” part (i.e. the recursive calls). This is the case for, e.g.,

the standard merge-sort and more complex procedures such as the median computation [7]

or algorithms derived from the planar separator theorem [84]. Actually, even when no

104 Chapter 4. Common Connectivity

a

b

c e

d

f

gh

i

j

k

l

Figure 4.1: Two graphs over the same vertex set. Non-trivial common connected sets
are: {d, e, f, h}, {d, e, g, h}, {d, e, f, g, h}, and {i, j, k, l}. Solution for common connected
component problem: {{a}, {b}, {c}, {d, e, f, g, h}, {i, j, k, l}}.

condition is placed on the recursive calls, it is also established that cutting down the

“divide” and “unite” part improves the global computing time [1, 82]. However, applied

examples of this paradigm are scant in the literature. Our computations turn out to be

such examples. More details on those matters will be given in Section 4.2.1.

The chapter is organized as follows. We will begin with the study of some structural

behaviour of the so-called common connected components of two graphs. Then, using a

new and sub-linear graph search, the so-called competitive graph search, we depict a sub-

quadratic enumeration of common connected components, and solve the first problem.

For cograph sandwiches, we study some structural properties in relation with the common

connected component problem. After this, we will see how an efficient computation for

cograph sandwiches follows directly from structural analysis.

4.1 Some Structural Aspects of Common Connected

Components

We first focus on structural issues of the first problem, on the so-called common connected

components.

Definition 4.1 (Common Connected Component) Given two graphs G1 = (V, E1)

and G2 = (V, E2), a common connected set A of (G1, G2) is a vertex subset of V such

that both G1[A] and G2[A] are connected. A common connected component is a maximal

common connected set.

Section 4.1. Some Structural Aspects of Common Connected Components 105

A A BB

i. ii.

Figure 4.2: i. One graph is not cycle free and the common connected sets fail the inter-
section closure. ii. One graph is not a path and the difference closure fails.

Let us begin with an observation which, though simple, has many consequences.

Proposition 4.1 Clearly, the family of common connected sets of a pair of two given

graphs over the same vertex set is closed under the union of its overlapping members.

Moreover, if both graphs are forests, then the family is an intersecting family. Finally,

if both forests are forests of paths, then the family is weakly partitive. This hierarchy is

tight.

Proof: Let G1 and G2 be two forests over the same vertex set. Let A and B be two

common connected sets of (G1, G2). We first consider two vertices a, b ∈ A ∩ B. By

definition there exist a chain from a to b in G1[A], and a chain from a to b in G1[B]. Since

G1 is a forest this chain is unique and therefore included in A ∩B.

Now, let us suppose that both G1 and G2 are forests of paths, and that A and B

overlap. We consider x, y ∈ A \ B. Suppose that x, y are not connected in G1[A \ B].

Clearly, both of them belong to A, which is a common connected set. Then, the (unique)

chain in G1 linking x to y goes through a vertex z in G1[A∩B]. By definition, it exists at

least a vertex t ∈ B \A. Clearly, both z and t belong to B, which is a common connected

set. But then the connected component of G1 containing x, y, z, and t is not a chain.

Contradiction.

Finally, Figure 4.2 proves that the corresponding hierarchy over the graph classes is

tight. �

From Proposition 4.1 and what has been said in the first part of the thesis (more

precisely in Section 2.2.1), there exists a decomposition scheme of the input graphs into

their common connected sets when both graphs are forests of paths. Then, recursiveness

can be conducted easily through the quotients of the corresponding decomposition tree.

In fact, this corresponds to a well-studied case and the computation of the decomposition

106 Chapter 4. Common Connectivity

tree can be done in O(|V |) time by adding some slight modifications to the computation

of common intervals of two permutations [111]. (Here, the paths of each forest can be put

together to result in a permutation.) The next chapter will deepen those matters.

A step forward in generality, when dealing with arbitrary forests, the structure of

the intersecting family of common connected sets will be instructive. However, we will

mostly use the following partitioning lemma, which, though still simple, can be seen as

a stronger structural property of common connected sets. Also, the forest case will be

the most basic case of the algorithm depicted in this chapter, as we will show how our

forest-based algorithm turns out to be suited for even the general case of arbitrary graphs,

thanks to tree spanners. Accordingly, an important idea throughout the chapter is that,

we will roughly “think forest”, even in non-forest cases.

Lemma 4.1 ([61]) If there are no edges in the cut {X, V \ X} w.r.t. one graph among

G1 = (V, E1) and G2 = (V, E2), then, the common connected components of (G1, G2) are

exactly those of (G1[X], G2[X]) plus those of (G1[V \X], G2[V \X]).

Basically, the lemma has the two following algorithmic consequences. Unless the

solution is trivial (both graphs are connected), one can always divide an instance of the

common connected component problem into several parts. Moreover, in order to find this

division, it suffices to determine some connected components, and not necessarily all of

them. The first observation leads directly to a solution based on a divide-and-conquer

approach. More interestingly, the second observation is the basic idea for our speed up

result on common connected components. Indeed, in order to find the above mentioned

division, we will consider the problem of, given a graph and a list of one representative

vertex per connected component, visiting all connected components but the largest. We

will depict how a so-called competitive graph search can solve the problem in linear time

on the size of the visited vertices and edges. This complexity is sub-linear in the sense

that it is sub-linear on the size of the problem, namely the total size of the input and

the output. Of course, the complexity is clearly not sub-linear on the size of the output.

Also, note that the size of the largest component might be very close to that of the initial

graph. In this case the competitive graph search will record a small time complexity.

4.2 Some Algorithmic Aspects

4.2.1 Divide-and-Conquer Algorithmic Framework – the Basics

Divide-and-conquer is a now standard algorithmic framework and can be found in any

classical algorithmic handbook, e.g., [29, 90]. In this thesis, we address the following

Section 4.2. Some Algorithmic Aspects 107

formalism.

Definition 4.2 (Divide-and-Conquer Algorithm) Let P be a problem on a set S of

data structures, and let Size be a function from S to R+. H is a divide-and-conquer

algorithm with respect to Size solving P if:

• there exists a set T ⊆ S of trivial inputs on which H solves P in O(1) time;

• any S ∈ S with Size(S) ≤ 1 is a trivial input, namely S ∈ T ;

• for all S /∈ T , H(S) proceeds as follows.

– (divide) first it divides the input S into some sub-instances S1, S2, . . . , Sk with

Size(Si) > 0 for all i and Size(S1) + Size(S2) + · · ·+ Size(Sk) ≤ Size(S),

– (conquer) then it recurses with H(S1),H(S2), . . . ,H(Sk),

– (unite) finally it combines the results in order to provide the output of H(S).

Let C(S) be the total computing time of H(S), Div(S) be the time for finding

S1, S2, . . . , Sk, and Uni(S) for uniting the sub-solutions into the output of H(S). Then,

for all S /∈ T ,

C(S) = Div(S) +

k∑

i=1

C(Si) + Uni(S)

straight from definition. Let n = Size(S). If Div(S) + Uni(S) = O(n), then there is a

naive bound C(S) = O(n2) (cf. e.g., [29, 90]). Well-known speed up techniques divide S

into two subproblems S1 and S2 of equal size. This yields O(n log n) time algorithms such

as the very standard merge-sort (cf. e.g., [29, 90]).

Besides, the naive quadratic bound is known to improve as recursive calls decrease.

For instance, most famous algorithms such as the median computation [7] or algorithms

deriving from the planar separator theorem [84] reach linear worst case time bound by

avoiding a fraction of S on recursive calls, namely by granting

Size(S1) + Size(S2) + · · ·+ Size(Sk)

Size(S)
< 1.

The success of such examples might explain why minimizing the divide and unite time

Div(S) + Uni(S) is usually disregarded in standard speed up approaches. Here, we

address the case when recursive calls have to be applied on all parts, namely when
Size(S1)+Size(S2)+···+Size(Sk)

Size(S)
≤ 1 with the bound reached. As a result of a larger theorem

given in [1, 82], minimizing Div(S)+Uni(S) becomes fruitful here, if it is done according

to an “avoid the largest” principle. However, the proof given in [1, 82] is complicated as

108 Chapter 4. Common Connectivity

it addresses a much larger situation. We give in the below an alternative proof. Within

our terminology, the statement of the property could be as follows.

Proposition 4.2 ([1, 82]) Let H be a divide-and-conquer algorithm, and α be such that,

for all S ∈ S \ T ,

Div(S) + Uni(S) ≤ α×

(
Size(S)− max

i∈J1,kK
Size(Si)

)
,

where {S1, S2, . . . , Sk} is the partition of S given by H(S). Then, for every input S ∈ S,

H(S) runs at most in α× Size(S) log Size(S) time. The bound is tight.

Proof: We proceed by induction on s = Size(S). If S is not trivial and S1, S2, . . . , Sk

are such that sk = Size(Sk) is greater than any si = Size(Si), then

Div(S) + Uni(S) +

k∑

i=1

C(Si) ≤ α×

(
k−1∑

i=1

si +

k∑

i=1

si log si

)

≤ α×

(
k−1∑

i=1

si +

k−1∑

i=1

si log
s

2
+ sk log s

)

≤ α× s log s.

Now, let P and H be such that there exist S0 ∈ T and Sq (q ≥ 1) where H divides

Sq into two sub-instances that are both identical to Sq−1. Then, H computes at least in

α× Size(Sq) log Size(Sq) time on Sq. �

Remark 4.1 The standard speed up technique used in merge-sort results in the same

bound. However, the size of the input given to merge-sort is granted to geometrically

decrease (by half) as inductive levels grow, implying that the induction depth is smaller

than log Size(S). On the other hand, the above result still holds even when the induction

depth is linear on Size(S).

Though it may be straightforward to avoid the largest part for linear data structures

such as ordered arrays, it is less easy in other cases, in particular when dealing with

graphs. The challenge will be to avoid some “largest” graph component without exploring

the whole graph. We exemplify the practical potential of Proposition 4.2 on graphs with

a so-called competitive graph search technique.

4.2.2 Competitive Graph Searches

Let G = (V, E) be a graph. We define the size of G as its number of vertices and edges:

Size(G) = |V |+ |E|. By abuse in the terminologies, we refer to the size of a vertex subset

Section 4.2. Some Algorithmic Aspects 109

as the size of the subgraph it induces. For more vocable precision, we say in the following

that all vertices of a vertex subset A belong to the induced subgraph G[A], and an edge

of G belongs to G[A] if both its extremities belong to A. We address two problems.

Exploring Connected Components

Let Rep be a list of pointers to one representative vertex per connected component of

G. The first problem consists of, given G and Rep, visiting all connected components of

G but the largest. To this aim, a competitive graph search proceeds as follows. At the

beginning, all components are competitors via their corresponding representative vertex

in Rep. Then, each step of the search visits one new element – vertex or edge (the “or” is

exclusive) – of each competitor. The competitors for which no new element is found are

discarded. This process continues as long as there are at least two remaining competitors.

Obviously the last competitor C is the largest and has not been entirely visited. Indeed,

if s′ is the size of the second largest competitor C ′, then only s′ elements of C have been

visited, which leads to the following result.

Proposition 4.3 Given a graph G and a list of pointers to one representative vertex per

connected component of G, a competitive graph search visits all connected components of

G but the largest component C in time bounded by 2 × (sG − sC) with sG the number of

vertices and edges of G, and sC the number of vertices and edges of G[C].

Proof: The exact visiting time is (sG − sC) + s′ with s′ the size of the second largest

component. �

Exploring Induced Subgraphs

Let {V1, V2, . . . , Vk} be a vertex partition of G, for example described by k lists. Let

oracle(v, w) be an oracle box stating whether the vertices v and w belong to the same

Vi. The second problem consists of, given G, {V1, V2, . . . , Vk}, and oracle, visiting all

induced subgraphs G[V1], G[V2], . . . , G[Vk] but the largest. Here, let Rep be a list of

pointers to the first element of each Vi. Note that Rep is not required as input, but we

have a much stronger requirement, namely the input of {V1, V2, . . . , Vk}. We still start

with the list Rep representing the competitors V1, V2, . . . , Vk. Then, each step still tries

to visit one new element (vertex or edge) of each competitor using any standard graph

search on the corresponding vertex list Vi and the adjacency list of G. (This is why

we need the input of {V1, V2, . . . , Vk}.) The hitch is that inter-edges, namely those in

IE = {vw ∈ E | ∃i 6= j s.t. v ∈ Vi and w ∈ Vj}, belong to none of the competitors.

However, thanks to oracle, the search can check at any moment whether an edge is

110 Chapter 4. Common Connectivity

inter-edge, and avoid leaving the current G[Vi]. To sum up, for each competitor, each

step of the graph search either discovers a new vertex, or checks the outgoing edges until

one edge belonging to that competitor is found. The remaining of the search behaves like

before.

Proposition 4.4 Given a graph G = (V, E), a partition {V1, V2, . . . , Vk} of V , and an

oracle function oracle stating whether two vertices belong to the same Vi, a competitive

graph search visits the subgraphs G[V1], G[V2], . . . , G[Vk] but the largest in time bounded

by 2 × (sG − sC) + M with M the number of inter-edges between the subgraphs, sG the

number of vertices and edges of G, and sC the number of vertices and edges of the largest

subgraph.

Proof: The exact visiting time is (sG−sC)+s′+M ′ with s′ the size of the second largest

subgraph, and M ′ the number of visited inter-edges. �

To conclude, the main technical difficulty of a competitive graph search is to manage

an entry to each competitor before starting and to maintain this as an invariant during

the recursive process. Notice that this generic competitive search can be applied to other

discrete structures such as directed graphs, hypergraphs or matroids. Let us examine the

paradigm on the two foci of this chapter.

4.3 Common Connected Component Enumeration

Let G1 = (V, E1) and G2 = (V, E2) be the input graphs of an instance of the common

connected component problem. Firstly, we can can suppose w.l.o.g. that E1 ∩ E2 = ∅

by recursively merging together vertices x and y if (x, y) ∈ E1 ∩ E2 [60, 61]. Besides, if

none of G1 and G2 is connected, a preliminary standard graph search can build the sub-

instances (G1[X], G2[X]) for all connected components X of G1. Lemma 4.1 states that

computing the common connected components of (G1, G2) results in computing those of

the latter sub-instances. Therefore, we can also suppose w.l.o.g. that G1 is connected.

Finally, another preliminary graph search can compute a list of one representative vertex

per connected component of G2 before launching our main recursive algorithm.

Concisely, the main algorithm addresses the problem of finding the common connected

components of two graphs G1 = (V, E1) and G2 = (V, E2), given along with a list Rep

such that E1 ∩ E2 = ∅, G1 is connected, and Rep has exactly one representative vertex

per connected component of G2. It proceeds as follows.

• If k = |Rep| = 1 then return V .

Section 4.3. Common Connected Component Enumeration 111

• Otherwise, let V1, V2, . . . , Vk be the connected components of G2. Then, for all

1 ≤ i ≤ k, we compute G1[Vi], G2[Vi], and a list Repi containing one representative

vertex per connected component of G1[Vi].

• By inverting G1 and G2, we make recursive calls on (G2[Vi], G1[Vi], Repi) and return

all results.

The correctness follows from Lemma 4.1. Clearly, all the above operations can be

done using standard graph searches, which would yield a naive O(n(n + m)) solution.

However, we can benefit from competitive graph searches to improve the bound. Let

s(G) = Size(G) = |V | + |E| for any graph G = (V, E). For convenience, we also note

s1
i = s(G1[Vi]), s2

i = s(G2[Vi]), and si = s1
i +s2

i . Let the “sum of all but the max” sami∈Isi

be a shortcut for
∑

i∈I si −maxi∈I si.

Lemma 4.2 If s1
i , s

2
i are positive and si = s1

i + s2
i for all i ∈ I, then:

sami∈I sp
i ≤ sami∈I si, with p ∈ {1, 2}.

Proof: Let i0 and ip be such that si0 = maxi∈I si and sip = maxi∈I sp
i . Obviously,

sp
i0
≤ sp

ip
≤ sip . Besides,

∑
i∈I\{i0,ip}

sp
i ≤

∑
i∈I\{i0,ip}

si. Adding the two inequalities

allows to conclude. �

As already mentioned a competitive graph search on the connected components of G2

computes all G2[Vi] except for G2[Vi2] with s2
i2

= max1≤i≤k s2
i , as well as all Vi, except for

Vi2. During the search, we label the vertices in Vi (i 6= i2) so that they can be distinguished

afterwards. Those in Vi2 keep their old label so that they also come as a distinct kth class.

We define oracle which tests whether two vertices have same labels. By removing from

G2 vertices and edges of the k − 1 computed graphs, we compute G2[Vi2]. Likewise, by

removing from V vertices of the other Vi, we compute Vi2. The operations so far run in

O(sam1≤i≤ks
2
i) time.

Using the computed V1, V2, . . . , Vk and the function oracle, a competitive graph

search on the induced subgraphs of G1 computes all G1[Vi] except for G1[Vi1] with s1
i1

=

max1≤i≤k s1
i . Let IE contain all inter-edges in G1 between the subgraphs G1[Vi]. By

removing from G1 vertices and edges of G1[Vi] (i 6= i1), plus the inter-edges in IE, we

compute G1[Vi1]. These operations take O(|IE|+ sam1≤i≤ks
1
i) time.

As G1[Vi] (i 6= i1) are of small enough size, we simply compute Repi (i 6= i1) thanks to

standard searches on those graphs (such as the breath-first graph search). At this point,

we have computed the recursive input for every (G2[Vi], G1[Vi], Repi) such that i 6= i1.

The operations of this paragraph take O(sam1≤i≤ks
1
i) time.

112 Chapter 4. Common Connectivity

:1 2G
4 = (G , G)4 4

2
G 1 2

2 2= (G , G) :

G
q−1q−1

G

iii

1

(G)2

:1 2G

q(G)q > 1

q > 1
q

q = (G , G)q q

Figure 4.3: i. A sequence (Gq)q>1 = ((Gq
1, G

q
2))q>1 of instances for which our common

connected component computation runs in Θ(n log n). ii. Details of G4. Notice that all
common connected sets/components of this sequence are and only are singletons.

From Lemma 4.2 all the operations so far run in O(|IE|+ sam1≤i≤ksi) time.

The biggest hitch will be the computation of Repi1 , in order to provide the recursive

input for (G2[Vi1], G2[Vi1], Repi1). For this, let us assume that Repi1 is computed by some

routine R. We result in the following main theorem.

Definition 4.3 (Routine R) Given a connected graph G1 = (V, E1) and a partition

{V1, V2, . . . , Vk} of V , the routine R computes a list Repi1 containing one represen-

tative vertex per connected component of G1[Vi1], where G1[Vi1] is the largest among

G1[V1], G1[V2], . . . , G1[Vk].

Theorem 4.1 (Main Theorem) Given a routine R as defined above, the common con-

nected components of two graphs G1 = (V, E1) and G2 = (V, E2) can be computed in

O(n + m log n + tR) time, where n = |V |, m = |E1| + |E2|, and tR stands for the global

computing time (through recursive calls) of the routine R.

Proof: The preliminary operations for computing the first list Rep and for rendering

E1 ∩ E2 6= ∅ and G1 connected run in O(n + m). Now, our main algorithm follows the

divide-and-conquer paradigm. Therein, the “unite” time of each step is O(1). Moreover,

except for the “|IE|” terms due to inter-edges and the cost of calls to the routine R, the

divide time fulfils requirements of Proposition 4.2. According to this, we split the global

Section 4.3. Common Connected Component Enumeration 113

complexity analysis of the main algorithm into three parts. The first counts the “|IE|”

terms, the second the total cost of R, and the third the remaining. Let G′
1 = (V ′, E ′

1) and

G′
2 = (V ′, E ′

2) be the input graphs given to the main algorithm. Let n′ = |V ′| and m′ =

|E ′
1|+ |E

′
2|. Then, the “|IE|” part is in O(m′) = O(m) since an edge can be “inter-edge”

only once throughout the running of the main algorithm. The second part was denoted

by tR. From Proposition 4.2, the third part is in O((n′ + m′) log(n′ + m′)) = O(m log n)

time (also because m′ ≤ m ≤ n2, and G′
1 connected implies n′ = O(m′)). Whence, the

whole running is in O(n + m log n + tR). �

Implementation of Routine R

The idea of computing Repi1 is the following. Let OG be the outgoing vertices in G1 from

G1[
⋃

i6=i1
Vi] to G1[Vi1], namely OG = {y ∈ Vi1 | ∃x /∈ Vi1 s.t. (x, y) ∈ E1}. Since G1 is

connected, Repi1 ⊆ OG. Computing OG only takes O(|IE|+sam1≤i≤ks
1
i) time. Our idea

is to filter OG efficiently until we obtain Repi1 . To this aim, we will use two tool boxes.

Definition 4.4 (Tool boxes B1 and B2) Tool box B1 computes a spanning-forest of a

given graph G, and for each vertex in G a pointer to the identifier of the spanning tree

it belongs to. Given a graph G and one such spanning-forest representation of G, plus

an edge e in G, tool box B2 computes the spanning-forest representation of G \ {e}, and

updates the pointers to spanning tree identifiers.

Thanks to B1, right before launching the main recursive algorithm of the common

connected component problem, we compute the spanning-forest representations of the

two input graphs (namely the input graphs for the main algorithm, after the preliminary

step). At each recursive step we use the oracle function to compute the inter-edge set

IE in O(|IE|+sam1≤i≤ks
1
i) time. Using B2 we delete all edges of IE of the corresponding

spanning-forest representation. Then, each vertex in OG has a pointer to the identifier of

its spanning tree of the current G1. We then sort those identifiers using standard sorting.

Finally we scan the sorted identifiers and only keep one vertex of OG per identifier, which

will form the list Repi1 .

Sorting the identifiers takes O(|OG| log |OG|) = O(|IE| log |IE|) = O(|IE| logm)

time. The sum of all the “|IE|” terms throughout the computation is bounded by m.

The remaining complexity is bounded by O(m log n) from Proposition 4.2 (the counting

is the same as the one in the proof of Theorem 4.1). Hence, except for the cost of calls to

B1 and B2, the complexity is still in O(n + m log n).

Forests: If the input graphs given to the main algorithm are forests, they form their own

spanning forests. The only thing to be taken care off is keeping a pointer for each vertex

114 Chapter 4. Common Connectivity

best so far our algorithm conjecture

forests O(n log n) [31] O(n log n) O(n)

interval graphs O(m + n log n) [32] O(n + m log n) O(n + m)

unit interval graphs O(n log ∆ log n) [2] O(n∆ log n) O(n + m)

planar graphs O(n log2 n) [61] O(n log n) O(n)

permutation graphs O(n logn + m log2 n) [61] O(n + m log2 n) O(n + m)

arbitrary graphs O(n logn + m log2 n) [61] O(n + m log2 n) O(n + m log n)

Figure 4.4: Common connected component enumeration time, with n the number of
vertices, m the total number of edges, and ∆ the maximum vertex degree.

to the identifier of the spanning tree it belongs to. This, for B1 can be done easily in

O(n + m) time. For B2, let the edge to be deleted be e = (x, y). We only need to update

the identifiers of the spanning tree that has contained e before the deletion. The deletion

of the edge e will split the old spanning tree into two parts, x and y could be seen as

representatives for each part. Then, a competitive graph search will update the identifiers

of vertices of the smaller part, while those of the bigger part keep their old label. This

is in time proportional to the size of the smaller part. Then, the task of B2 is complete.

The complexity of B2 is bounded by O(m log m) from Proposition 4.2. Finally, m = O(n)

in case of forests. We conclude that tR = O(n log n).

Corollary 4.1 One can enumerate the common connected components of two forests in

O(n logn) time.

Non-forest cases: For arbitrary graphs, we benefit from results of [73] on the so-called

ET-tree data structure [70]. Let m′ be the number of edges in the two graphs given as input

to the main algorithm, and n′ be the number of their vertices. Here, the implementation

of B1 can be done in O((n′ + m′) log2 n′) time [73], or O(m′ log2 n′) as m′ is higher than

n′ (one of the two graphs is connected). The implementation of B2 can be done in

O(log2 n′) time per operation [73]. Like before, we note that an edge can be “inter-edge”

only once during the whole computation, and conclude the total cost for calls to B2 is in

O(m′ log2 n′). Hence, tR = O(n + m log2 n).

Likewise, we use results on edge-ordered dynamic trees [49] for planar graphs. The

corresponding B1 and B2 run in O(m′ log n′) and O(logn′), respectively. Therefore, the

Section 4.4. Application to Cograph Sandwiches 115

total running time of both tool boxes is O(m′ log n′). Notice that the number of edges in

a planar graph is bounded by three times the number of vertices, and tR = O(n log n).

For interval graphs, the same idea can be done using clique-path representations [67] for

an O(m′) B1, an O(log n′) B2, and a total tR = O(n + m log n).

Corollary 4.2 One can enumerate the common connected components of two arbitrary

graphs in O(n+m log2 n) time. This runtime is in O(n log n) if the two graphs are planar.

It is in O(n + m log n) if the two graphs are interval graphs.

Our algorithm turns out to be a generic algorithm for all the related graph classes. As

a consequence, mixing different classes is allowed, and yields the computing time equals

to the upper one. For instance, the common connected computing time for a planar graph

G1 and an interval graph G2 is in O(n + m log n).

As for performance analysis, our algorithm equals the best known so far for arbitrary

graphs [61] and forests [31]. For planar graphs, we improve the performance by a log n

factor, namely with an O(n log n) computing time. Our complexity for interval graphs is

in O(n+m log n), while a recent result improved this to O(m+n log n) [32] (see Figure 4.4).

4.4 Application to Cograph Sandwiches

We now address the sandwich graph problems defined by M. Golumbic, H. Kaplan, and

R. Shamir (1995).

Definition 4.5 (Sandwich Graph Problem [63]) A sandwich graph problem is a

problem which addresses the following question:

Input: G1 = (V, E1), G2 = (V, E2), and Π, where G1 and G2 are two undirected graphs

such that E1 ⊆ E2, and Π is a property over graphs.

Question: Does there exist a graph G = (V, E) satisfying both property Π and E1 ⊆

E ⊆ E2?

In this class of problems, the edges of E1 are called forced edges, those of E2 optional

edges, and those of E3 = E2 forbidden edges. Unfortunately, most problems therein are

NP -complete, for example with the property Π(G): G is a comparability graph (resp.

chordal, resp. strongly chordal graph). Actually the problem remains NP -complete even

for Π(G) being G belongs to the quite small class of split graphs [63]. Only few polynomial

cases are known, among which cograph sandwich [63], and the related problem of module

sandwich [11, 26]. Therefore it is a natural question to ask for efficient algorithms for

these polynomial cases.

116 Chapter 4. Common Connectivity

We show in this section that, instead of designing from scratch a specific algorithm

for cograph sandwiches, structural analysis can directly give an efficient solution for this

problem. To this aim, we first exhibit a strong relationship between the cograph sandwich

problem and the common connected component problem. Let us recall several folklore

facts on cographs (for their very definition refer to Definition 2.18 in Section 2.3.1). The

class of cographs is the smallest class of graphs containing the one vertex graph and

closed under series and parallel composition. Therefore, any cograph can also be seen

as a modular decomposition tree without prime nodes. Equivalently, cographs can be

defined as the class of graphs excluding P4 as induced subgraph [107], where P4 denotes

the path of size 4 (hence of length 3).

Theorem 4.2 Let G1 = (V, E1) be a graph of required edges, and G2 = (V, E2) with

E1 ⊆ E2 be a graph of possible edges. The complement graph of G2 is defined as G3 = G2,

the graph of forbidden edges. Then, there exists a sandwich G = (V, E) between G1 and

G2 (meaning E1 ⊆ E ⊆ E2) which is a cograph if and only if every common connected

component of G1 and G3 is a singleton.

Proof: Suppose there is a cograph G = (V, E) with E1 ⊆ E ⊆ E2. G cannot be both

connected and co-connected, since the root of the modular decomposition tree of G is

not a prime node. Let V1, V2, . . . , Vk be the partition of V into connected components

of: G if it is not connected; G otherwise. That E1 ⊆ E ⊆ E2 implies there are no inter-

edges between the vertex subsets Vi in one graph among G1 and G3. Then, using the

partitioning Lemma 4.1, the common connected components of G1 and G3 are exactly

the union of those of G1[Vi] and G3[Vi] for all i. Obviously, G[Vi] is a sandwich of G1[Vi]

and G2[Vi]. Furthermore, G[Vi] is a cograph, otherwise it would contain an induced P4,

and so would G. Hence, an inductive argument on the vertex subsets Vi will allow to

conclude that all common connected components of G1 and G3 are singletons.

Conversely, suppose that every common connected component of G1 and G3 is a

singleton. Let us build a graph G = (V, E) as follows. If |V | = 1, then E = ∅. Otherwise,

the instance can be divided into two cases. If G1 is not connected, let V1, V2, . . . , Vk

be its connected components. We define E such that any vertex pair (x, y) satisfying

x ∈ Vi, y ∈ Vj, and i 6= j implies (x, y) /∈ E. If G1 is connected, then necessarily G3

is not connected (otherwise V is a common connected component). Let V1, V2, . . . , Vk

be the connected components of G3. We define E such that any pair (x, y) satisfying

x ∈ Vi, y ∈ Vj, and i 6= j implies (x, y) ∈ E. In both cases (G1 not connected or G3

not connected), the definition of E within each Vi follows inductively on V1, V2, . . . , Vk.

The fact that all common connected components of G1 and G3 are singletons guarantees

Section 4.4. Application to Cograph Sandwiches 117

that, for all pairs (x, y) ∈ V 2 with x 6= y, we have chosen whether (x, y) belongs to E

or not without contradictory definitions. Hence, G is well-defined. Then, using standard

cograph characterizations, G can be proved to be a cograph. (We actually have built the

modular decomposition tree of the cograph.) One can also verify that G is a sandwich

between G1 and G3 by its construction. �

The above proof is constructive: if all common connected components of G1 and

G3 are singletons, an algorithm was depicted to compute a cograph that is sandwich

of G1 and G2. Therein, each step divides the graph into subgraphs induced by some

V1, V2, . . . , Vk, then decides whether edges between the Vi exist, and finally recurses in the

subgraphs. This actually follows a divide-and-conquer scheme, with a O(1) uniting time.

Moreover, deciding the adjacency between the Vi results in labelling the corresponding

node in the modular decomposition tree with series or parallel, which can be done in

O(1) time. Finally, identifying the subgraphs induced by the Vi can be cared off by a

competitive graph searching. Hence, when a sandwich cograph exists, we can build one

such in O(n + m log n) time, where n denotes the number of vertices, and m the number

of edges of G1 and G3. We will use this algorithm as an intermediary result in order to

prove the following one.

Corollary 4.3 The sandwich cograph problem can be solved by a robust – in the sense of

certifying – algorithm in O(n+m log2 n) time, where n is the number of involved vertices,

and m the total number of forced edges and forbidden edges.

Proof: We first compute in O(n + m log2 n) time the common connected components

of the graph G1 of forced edges and the graph G3 of forbidden edges. Suppose that all

common connected components of G1 and G3 are singletons. Then, a sandwich cograph

can be build in O(n + m log n) as depicted in the proof of Theorem 4.2. We now suppose

that there is some common connected component C that is not a singleton. Then, any

sandwich G of G1 and G2 holds that G[C] is both connected and co-connected (G1[C] is

partial subgraph of G[C] and G3[C] is partial subgraph of G[C]). We deduce that G[C] is

not a cograph and must contain a P4, and so must G. Thus, C is our certificate to state

that no sandwich of G1 and G2 can be a cograph. In this case, one can verify in linear

time that both G1[C] and G3[C] are connected and deduce that every sandwich of G1 and

G2 must contain a P4. �

The above result improves the O(n(n + m)) complexity of the algorithm proposed in

[63]. However, we think that:

Conjecture: There exists a linear time algorithm to solve the sandwich cograph problem.

118 Chapter 4. Common Connectivity

The conjecture has also implications in the common connected component problem.

Firstly, such an algorithm would imply a linear time algorithm for the characterization of

the totally degenerate case of the common connected component problem, namely when

all components are singletons. Besides, but quite similarly, the P4-structure of common

connected components is worth being further studied as the following proposition shows.

It is highly related to Theorem 4.2, and states that common connected components must

contain many P4’s.

Proposition 4.5 Let C be a common connected component of two graphs G1 = (V, E1)

and G2 = (V, E2) with E1 ∩ E2 = ∅. Then, both G1[C] and G2[C] contain a P4.

Proof: Consider the root of the modular decomposition tree of G1[C]. It cannot be a

parallel node since G1[C] is connected, nor it can be a series node since E1 ∩E2 = ∅ and

G2[C] is connected. Therefore it is a prime node. Hence, G1[C] is not a cograph and must

contain a P4. Similar argument holds for G2[C]. �

To conclude, this chapter gives a generic common connected component enumeration.

It also exemplifies an infrequent technique for speeding up divide-and-conquer algorithms.

Since divide-and-conquer is a very basic method, our algorithm is simply structured while

holding some efficient performances (Figure 4.4). We also improve the computation of

cograph sandwiches as a corollary of this algorithm.

In general, as soon as some dynamic data structure satisfying our requirements on the

tool boxes B1 and B2 (see Definition 4.4) is provided, our general algorithmic scheme will

apply. We hope that this technique could be helpful to solve other problems, such as that

of common strongly connected components.

Now, we have seen in Section 4.1 that the case when both input graphs are forests

of paths is special. Indeed, the family of common connected sets of the graphs will

then satisfy the axioms of a weakly partitive family (cf. Proposition 4.1). Actually, this

restricted case corresponds to another topic arising quite recently from computational

biology with some high challenges and specific interests. The next chapter will focus on

this restriction.

Section 4.4. Application to Cograph Sandwiches 119

Chapter 5

Uno-Yagiura Algorithm Revisited

This chapter is based on [19].

The common connected component problem presented in Chapter 4, when restricted

to graphs that are collections of disjoint paths, turns out to have important connections

to some other problems in computational biology as well. This is a quite promising field

with high challenges (a so-called “hot-topic”), and is currently under intensive studies as

having applications in the enumeration of gene clusters, the computation of evolutionary

distance between species, and that of evolutionary conservations in a given set of genomic

sequences (some further precisions are upcoming). In the previous chapter, we have seen

in Proposition 4.1 how to connect this restricted case of forests of paths to the structural

properties of modular decomposition. The general guideline for this chapter is to revisit

a related algorithm designed by T. Uno and M. Yagiura.

In computational biology, the latter restriction to forests of paths is more known via

the notion of a common interval. Here, let us restrict the modelling of a genomic sequence

to the case of a permutation over the set V of all genes it contains. Therein, an interval is

a set of genes which come successively in the sequence (the permutation can be seen as a

total order). Then, a set C of genes is called a common interval of a given group of several

genomic sequences if C is an interval for every sequence in the group. For instance, the

set {5, 6, 7, 8} is a common interval of the example given in Figure 5.2. This is among the

first attempts to formalize the notion of a gene cluster [111].

In that same paper, T. Uno and M. Yagiura depicted also an algorithm that computes

all the K common intervals of two given permutations of length n in O(n + K) time,

which is linear on the size of the problem [111]. Afterwards, F. de Montgolfier pointed

out strong relationships between the modules of a permutation graph and the common

intervals of every realizer of the graph (made of two permutations) [94]. This allows

to define a kind of common interval decomposition tree (further details will be given in

Section 5.1). From recent works, the tree turns out to own some important biological

122 Chapter 5. Uno-Yagiura Algorithm Revisited

Uno-Yagiura general scheme:

1. Let Potential be an empty list
2. For i = n down to 1 Do

3. (Filter): Remove all known boundaries r in Potential such that
for all l ≤ i, (l, r) is not a common interval

4. (Add): Add i to the head of Potential
5. (Extract): While there still is some boundary r of Potential such

that (i, r) is a common interval, output (i, r)
6. End of for

Figure 5.1: A list Potential is used. It contains at each step i all boundaries r ≥ i such
that there is some l ≤ i with (l, r) a common interval. Then, Potential is scanned to
output the common intervals of the form (i, r). The main difficulty of such an approach
is to prove the linear time complexity, as the algorithm is sketched by a double iteration.

meaning [3, 80]. Particularly, common intervals help in finding evolutionary distances

between the corresponding species [5, 53, 80], and they can be interpreted as pieces of

each genome that have been conserved all along an evolutionary scenario between the

involved species and their common ancestor [3].

The seminal algorithmic result on common intervals is due to T. Uno and M. Yagiura

(Figure 5.1). This is really a masterpiece among combinatorial algorithms as it uses a

unique scan on one of the two permutations and could be seen as an application of a sweep

plane paradigm as used in computational geometry [44]. However, even if Uno-Yagiura

algorithm is based on the very standard and conventional dynamic programming scheme,

its correctness proof is tough to understand. Later, S. Heber and J. Stoye pointed out

a smaller and generating sub-family, a so-called family of irreducible common intervals.

They succeeded in adapting Uno-Yagiura algorithm to enumerate all irreducible common

intervals of d permutations in O(d× n) time [69]. Besides, generating all the K common

intervals from this sub-family is in O(K) time [69]. While T. Uno and M. Yagiura’s scheme

was used as a crucial part of their algorithm, S. Heber and J. Stoye did not give further

explanations for the correctness proof. More recently, some authors bypassed this difficult

issue by proposing an alternative algorithm together with its combinatorial proof [4].

In this chapter, we propose a complete invariant-based proof for both correctness and

complexity analysis of Uno-Yagiura algorithm. We also show how it can be adapted in

a straightforward manner to compute in O(n) time a tree representation of all common

intervals of two permutations on n elements. Then, Section 5.3 generalizes Uno-Yagiura

algorithm, and uses it as a central step for the computation of the modular decomposition

tree of an undirected graph (if a so-called factoring permutation is given).

Section 5.1. Some Structural Aspects of Common Intervals 123

5.1 Some Structural Aspects of Common Intervals

Before addressing algorithmic issues, we first focus on some combinatorial aspects around

the notion of a common interval. Let us denote Nn = J1, nK = {1, 2, . . . , n}.

Definition 5.1 (Common Interval) A permutation π over a set V will be regarded

indifferently as a bijection from N|V | to V , a total order on V , or a word π ∈ V ∗ without

multiple occurrence over alphabet V . The support of a factor of π is called an interval of

π, namely it is of the form π(Jl, rK) = {π(l), π(l+1), . . . , π(r)}, where l, r ∈ N|V | are called

its left and right boundaries. A subset of V is a common interval of two permutations

over V if it is interval of each permutation.

Notice that there could be a quadratic number of common intervals, for example when

the two permutations are equal. Let us give a decomposition scheme for common intervals,

based on weakly partitive families.

5.1.1 Common Interval Decomposition

We briefly recall results of Section 2.2.1. Let F ⊆ 2V be a weakly partitive family over

ground set V . The subfamily of F containing all overlap-free members of F is denoted

by S. The members of S can be organized by inclusion order into a tree, so-called the

overlap-free decomposition tree of F . Let us denote it by T . Then, an internal node in T

satisfies one and only one of the following:

• it has two children and every union of children belongs to F , and we say that the

node is linear in this chapter (unlike elsewhere in the thesis);

• it has at least three children and no union of children belongs to F , except for the

node itself, and we say that the node is prime;

• it has at least three children and every union of children belongs to F , and we say

that the node is complete;

• it has at least three children and there is an ordering over the children such that a

union of children belongs to F if and only if they are consecutive w.r.t. this order,

and we say that the node is linear.

Roughly, the tree T , with the internal nodes labelled as above, is a compact encoding

of F : from this all members of F can be generated in a straightforward manner. The

following notion was first introduced by C. Capelle under a restricted framework. How-

ever, our extension to set families is absolutely straightforward. It will act as a crux in

our point of view when dealing with Uno-Yagiura algorithm.

124 Chapter 5. Uno-Yagiura Algorithm Revisited

1 :

σ : 3 5 7 21 6 8 9 4

3 21 9 4

P

L

5 6 7 81 2 3 4 5 6 7 8 9

i. ii.

Figure 5.2: Common interval decomposition. “L” stands for linear and “P” for prime.

Definition 5.2 (Factoring Permutation) ([24]) A permutation σ is factoring for a

family F ⊆ 2V if and only if every overlap-free member of F is an interval of σ.

In other words, a factoring permutation of F is the visit-order of the leaves of T given

by a depth-first graph search. Though the following property is straightforward, it gives

a formal decomposition framework for common intervals.

Proposition 5.1 (Common Interval Decomposition) The family CI of common

intervals of two given permutations σ1 and σ2 over a same set V always satisfies the three

following properties: CI is weakly partitive; its overlap-free decomposition tree T has no

complete nodes; and both σ1 and σ2 are factoring.

Before going to computational purposes, we continue the discussion around combina-

torial issues with an essential property. This, in our opinion, is responsible for the nice

runtime of Uno-Yagiura algorithm.

5.1.2 Intersecting Submodularity of Common Intervals, with

Generalization to Modules and to Genuine-Modules

To our knowledge the first submodular-like property around the topic of common intervals

is given by T. Uno and M. Yagiura under the name of the reverse Monge property in their

seminal paper [111].

Lemma 5.1 (Uno-Yagiura [111]) Let σ = σ1 and σ2 be two permutations over a same

set V with n = |V |. For all 1 ≤ i ≤ j ≤ n, we define l(i, j) = min{k | σ2(k) ∈ σ(Ji, jK)},

r(i, j) = max{k | σ2(k) ∈ σ(Ji, jK)}, and f(i, j) = r(i, j)− l(i, j)− (j − i). Then,

f(i′, j) + f(i, j′) ≥ f(i′, j′) + f(i, j) for all i′ < i ≤ j < j′.

This property is fundamental. Moreover, for purposes in Section 5.3, we will use the

following extension. We recall the definition of a submodular function. A set function

Section 5.1. Some Structural Aspects of Common Intervals 125

f : 2V → R is submodular if

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), for all A, B ⊆ V.

Our proposition to extend Uno-Yagiura lemma requires the introduction of the notion

of a splitter. We begin with explaining how to define this under the framework of common

intervals. After this crucial step, we will see how to extend the notion to graph splitters,

and also to 2-structure splitters.

Definition 5.3 (Common Interval Splitter) Let σ = σ1 and σ2 be two permutations

over a same set V with n = |V |. Let C2(i, j) refer to the convex hull in σ2 of σ(Ji, jK),

namely C2(i, j) = σ2(Jl, rK) where boundaries l, r are l = min{k | σ2(k) ∈ σ(Ji, jK)}

and r = max{k | σ2(k) ∈ σ(Ji, jK)}. We define the splitter set Sσ(Ji,jK) of σ(Ji, jK) as

Sσ(Ji,jK) = C2(i, j) \ σ(Ji, jK).

Roughly, the existence of a splitter is a guarantee that an interval is not a common

interval. Let s(σ(Ji, jK)) = |Sσ(Ji,jK)| be the function counting the number of splitter of an

interval. Then,

Remark 5.1 The function s counting the number of splitter of an interval is exactly the

function f defined in Uno-Yagiura Lemma 5.1. Moreover, σ(Ji, jK) is a common interval

if and only if s(σ(Ji, jK)) = f(i, j) = 0, for all i ≤ j.

Let us briefly recall the notion of a genuine-module of a 2-structure (cf. Section 2.3.2

for further details). A 2-structure G = (V, C) is a vertex set V along with a colour function

C mapping every arc (x, y) (with x, y ∈ V and x 6= y) to some value in N. A digraph

is a 2-structure where the colour function has only two values: present and absent arcs.

An undirected graph is a digraph where the colour function has the same value on (x, y)

and (y, x), for every pair {x, y} ⊆ V with x 6= y. A genuine-module M of a 2-structure

G = (V, C) is a non-empty vertex subset such that for all x, y ∈M and s /∈M , the colour

function satisfies C(s, x) = C(s, y).

Definition 5.4 (Module Splitter and Genuine-Module Splitter) Let G = (V, C)

be a 2-structure. Let A ⊆ V be a vertex subset. A vertex s /∈ A outside of A is called

a splitter of A if there exist x, y ∈ A such that C(s, x) 6= C(s, y). In particular, the

definition applies on the restriction of G to the case of an undirected graph.

Straight from definition, a vertex subset M ⊆ V is a genuine-module if and only if it

has no splitters. Let SA refer to the splitter set of a vertex subset A 6= ∅ and s(A) = |SA|

count their number. Then, we have the following observation, which can be found in [16].

It is a very straightforward generalization (from undirected graphs to 2-structures) of a

more crucial observation, given in [19].

126 Chapter 5. Uno-Yagiura Algorithm Revisited

Lemma 5.2 (Intersecting Submodularity of Genuine-Module Splitters)

The function s counting the splitters of vertex subsets of a 2-structure is an intersecting

submodular function, that is

s(A) + s(B) ≥ s(A ∩ B) + s(A ∪ B), for all A, B ⊆ V verifying A ∩B 6= ∅.

Moreover, the family of non-empty minimizers of this function is exactly the family of

genuine-modules of the 2-structure. In particular, the lemma holds for undirected graphs,

where the notion of a genuine-module coincides with that of a module.

Proof: That the family of non-empty minimizers of this function is exactly the family

of genuine-modules of the 2-structure follows directly from definition. The intersecting

submodularity can be proved as follows. If A ⊆ B or B ⊆ A, the inequality is trivial. If

A©©B then A 6= ∅ and B 6= ∅. Let SA denote the set of splitters of A. If {X1, X2, . . . , Xk}

is a partition of X, we will note X = {X1, X2, . . . , Xk}.

Clearly, SA∩B = {SA∩B \B, SA∩B ∩ B}. Also, that SA ∩ A = ∅ implies the partition

SA∪B = {SA∪B \ SA, SA∪B ∩ SA} can be reduced to SA∪B = {SA∪B \ SA, SA \ (A ∪ B)}.

Similarly, SB = {SB \ SA∩B, SA∩B \B} .

Finally, that SA = {SA \ B, (SA ∩ B) \ SA∩B, (SA ∩ B) ∩ SA∩B} can be reduced to

SA = {SA \ (A ∪B), (SA ∩B) \ SA∩B, SA∩B ∩ B}. Hence,

|SA|+ |SB| − |SA∪B| − |SA∩B| = |(SA ∩B) \ SA∩B|+ |SB \ SA∩B| − |SA∪B \ SA|.

To achieve proving the lemma, we prove that SA∪B \ SA ⊆ SB \ SA∩B. Indeed, let

s ∈ SA∪B \ SA. Then, s /∈ A ∪ B and C(s, x) = C(s, y) for all x, y ∈ A. Now, suppose

that s /∈ SB. Since s does not belong to B, we deduce C(s, x) = C(s, y) for all x, y ∈ B.

Furthermore, as A and B overlap, we deduce C(s, x) = C(s, y) for all x, y ∈ A ∪ B and

s /∈ A ∪ B, which is by definition s /∈ SA∪B. Contradiction. Finally, supposing s ∈ SA∩B

would imply s ∈ SA. �

5.1.3 Right-Free Intervals

For computational purposes, the main drawback of the raw definition of a common interval

is that there is potentially a quadratic number of them. This is responsible for the

term “K” in Uno-Yagiura runtime. (Uno-Yagiura algorithm computes all the K common

intervals of two given permutations of length n in O(n + K) time.) In order to rectify

this situation, S. Heber and J. Stoye introduced a smaller, but generating, subfamily of

the family of all common intervals. It is as follows.

Section 5.1. Some Structural Aspects of Common Intervals 127

Definition 5.5 (Reducible vs. Irreducible Common Interval) ([69]) A common

interval is reducible if it is the union of consecutively overlapping non-trivial common

intervals. A common interval is irreducible when not reducible.

There is a straightforward manner to enumerate all the K common intervals from

the only knowledge of the subfamily of irreducible common intervals, in time O(K) [69].

Also, this can easily be generalized to any weakly partitive family, and is very similar

to the notion of a 2-graph (Definition 2.12 in Section 2.2.2). Now, it follows directly

from definition that the irreducible common intervals correspond exactly to prime nodes

and pairs of consecutive children of linear nodes of the decomposition tree. Besides, the

decomposition tree, which is an inclusion tree, can be seen as a collection of its nodes,

namely the subfamily of overlap-free common intervals. Then, the difference between

the subfamily of irreducible common intervals and the decomposition tree, viewed as the

subfamily of overlap-free common intervals, is thin. Firstly, the difference only concerns

linear nodes. Moreover, even for the linear nodes, going from one to the other is easy: an

overlap-free common interval bound to a linear node can be seen as a pair (l, r) of left

and right boundaries on one of the two input permutations; while the irreducible common

intervals bound to the same linear node are exactly the pairs (l, l + 1), (l + 1, l + 2), . . . ,

(r − 1, r). In other words, one can compute in O(n) time the subfamily of irreducible

common intervals from the decomposition tree and conversely.

For convenience, we would rather focus on the decomposition tree and some related

notions that have been introduced throughout the first part of the thesis. We will also

have to introduce a new notion in order to adapt Uno-Yagiura algorithm to obtain a

computation of the decomposition tree in O(n) time (without the “K” term). From what

has been said on weakly partitive families it is clear that the decomposition tree is a

generating object for the enumeration of all common intervals of the initial permutations.

The intermediary notion we need is so-called right-free interval, where right-free is a

shortcut for overlap-free-on-the-right.

Let σ = σ1 and σ2 be two permutations over V . Let CI refer to the family of their

common intervals. Then, σ is factoring for CI. W.l.o.g., from now on, intervals will stand

for intervals of σ. By definition, a common interval is an interval.

Definition 5.6 (Right-Free Interval) Let σ be a factoring permutation of a (weakly)

partitive family F ⊆ 2V . Let σ(Ji, jK) ∈ F be at the same time an interval of σ and a

member of F . Then, we call the interval σ(Ji, jK) right-free if it does not overlap on its

right any other interval of σ that belongs to F , namely if

for all i < i′ ≤ j < j′, we have σ(Ji′, j′K) /∈ F .

128 Chapter 5. Uno-Yagiura Algorithm Revisited

Roughly, a right-free interval of CI is a member of CI that does not overlap any other

member of CI on its right in the order σ. From definition, it is clear that there are

more right-free intervals than overlap-free intervals. Fortunately enough, their number

is still bounded by the same value as that for overlap-free intervals, namely 2 × n (cf.

Corollary 5.1 below). This is a crucial fact as it roughly explains why we can allow to

compute the right-free intervals as a pre-processing step before computing the overlap-free

intervals. In order to formalize the computation of right-free intervals, let us define

Select(i) = {j | σ(Ji, jK) is a right-free interval}, for all n ≥ i ≥ 1.

Note that Select(i) always includes at least one member, namely i.

Definition 5.7 (Useless Boundary) While inspecting σ from n down to 1, σ(Jl, rK) is

visited at step i if i < l, unvisited otherwise. Then, r ∈ Ji, nK is useless w.r.t. i if none of

the unvisited right-free intervals is of the form σ(Jl, rK).

Lemma 5.3 Let mi be the maximum boundary such that σ(Ji, miK) ∈ F . Clearly, mi is

well defined and i ≤ mi. Moreover, mi = max Select(i) and, when exists, every r such

that i < r < mi+1 also verifies that r is useless w.r.t. i.

Proof: If σ(Ji, miK) overlaps σ(Ji′, m′K) on its right (i.e. if i < i′ < mi < m′), then

σ(Ji, m′K) ∈ F (partitivity) and mi is not maximum. Therefore, mi ∈ Select(i), and

mi = max Select(i) follows directly from the definition of mi. Besides, for all l < i+1 ≤

r < mi+1, σ(Jl, rK) overlaps σ(Ji + 1, mi+1K) on its right. �

Corollary 5.1 |Select(1)| + |Select(2)| + . . . + |Select(n)| ≤ 2× n.

Proof: From Lemma 5.3, the sets Select(i) \ {max Select(i)} (1 ≤ i ≤ n) are pairwise

disjoint and their total cardinal is bounded by n. �

When dealing with computational issues in the upcoming Section 5.2 we will first

output all right-free intervals before computing the decomposition tree. As well, the

enumeration of right-free intervals will be the main part of the difficulty. Fortunately, it

fits into T. Uno and M. Yagiura’s sweep paradigm.

5.2 Common Interval Enumeration

With a slight modification, namely by adding an one-line routine, Uno-Yagiura algorithm

computes in O(n) time the family of right-free intervals of two given permutations σ = σ1

Section 5.2. Common Interval Enumeration 129

Uno-Yagiura algorithm revisited:

1. Let Potential be an empty list and Select(n + 1) = ∅
2. For i = n down to 1 Do

3. (Update-Detect): Collect all known useless boundaries w.r.t. i

4. (Pre-Filter): If there are some r < r0(= max Select(i+1)) in
Potential, remove them and mark r0 as Eaten

5. (Customized Filter): Remove all known useless boundaries w.r.t. i

6. (Add): Add the boundary i to the head of Potential
7. (Extract): Find the right-most rq in Potential with si(rq) = 0

and output Select(i) = {r1 . . . rq}
8. End of for

and σ2 over V , where n = |V |. However, we will discuss in detail its correctness, since the

original version is tough to understand. The sets Select(i) (n ≥ i ≥ 1) will be computed

using a list Potential. At each step i, this list contains the right boundaries r ≥ i of

every unvisited right-free interval, and possibly some extra boundaries.

Potential is initialized as an empty list. Each step n ≥ i ≥ 1 aims at removing

from Potential as many useless boundaries w.r.t. i as possible. For this purpose, let

si(j) = s(σ(Ji, jK)) = |Sσ(Ji,jK)| denote the number of splitters of interval σ(Ji, jK). We

have seen that a splitter makes an interval not a common interval.

Proposition 5.2 ([111]) σ(Ji, jK) is a common interval if and only if si(j) = 0.

We define δi(pj) = si(pj+1)− si(pj) if a member pj of Potential has a successor pj+1.

Otherwise, δi(pj) = +∞. Then, Corollary 5.2 below, which is a direct application of

Uno-Yagiura Lemma 5.1, is fundamental and most results hereafter rely on it.

Corollary 5.2 ([111]) δi(pj) < 0 implies pj is useless w.r.t. i.

To simplify the presentation of how to handle the list Potential, let us assume some

routines. At each step i, assume that some Update-Detect routine provides

• for each pj in Potential a pointer to the value of si(pj); and

• a list Detected of pointers to all pj with δi(pj) < 0, and possibly to some other

useless boundaries w.r.t. i. Besides, assume that the pointed pj1 < pj2 < · · · < pjh

are organized increasingly.

Then, Potential is filtered twice. The first filtering (routine Pre-Filter) is our only

addition to the original algorithm. It follows from Lemma 5.3, which states that it is

130 Chapter 5. Uno-Yagiura Algorithm Revisited

possible to move apart some useless boundaries w.r.t. i even before considering σ(i).

Concisely, a pointer to r0 = max Select(i + 1) is maintained. Then, if r0 has some

predecessors in Potential, they are removed and r0 receives the mark Eaten, which

will be for later use in the final construction of the decomposition tree. The second

filtering (routine Customized Filter) backtracks Detected from pjh
down to pj1. Each pjk

is removed from Potential if still there. If some removing makes the next-left boundary

p′ have δi(p
′) < 0, p′ is also removed and so on. Thus, only useless boundaries w.r.t. i

are removed, and all remaining boundaries have positive δi. Both filtering takes linear

time on the number of removed boundaries. The boundary i is then added to the head

of Potential (routine Add) and the update of step i is complete. Notice that δi(i) ≥ 0.

Invariant 5.1 After the update of step i, let pj0 be the first member of Potential with

si(pj0) 6= 0. Then, Select(i) = {r < pj0 | r is a member of Potential}.

Proof: After the update, all pj have δi(pj) ≥ 0. If r ∈ Select(i), then si(r) = 0

and r < pj0. Besides, σ(Ji, rK) is unvisited at step i. Hence, r still is a member of

Potential, and it is strictly before pj0. Conversely, any member r < pj0 of Potential

after the update satisfies si(r) = 0. If σ(Ji, rK) overlaps some σ(Ji′, r′K) on its right, then

i < i′ ≤ r < r′, σ(Ji′, rK) ∈ CI, σ(Ji′, r′K) ∈ CI and the Pre-Filter at step i′ would remove

r from Potential if it was still there. �

Outputting Select(i) from the list Potential (routine Extract) follows from Invari-

ant 5.1. Its computing time is clearly linear on the size of the output. Finally, Corollary 5.1

and the fact that each boundary is inserted exactly once in Potential imply the following.

Proposition 5.3 The computing time to enumerate all right-free intervals is in O(n) if

routine Update-Detect runs in linear time on the size of the outputted list Detected at

each iteration step i. Such a runtime is sublinear on the size of the input.

Outputting Dectected in linear time on the size of this list is not trivial. T. Uno and

M. Yagiura’s solution to this problem [111] is as follows. Let us denote list Potential

at the beginning of step i as Potential = [p1(= i + 1), p2, . . . , pl]. The routine updates

two lists Min = [Min1, Min2, . . . , Mins] and Max. Each 1 ≤ Minj ≤ n is a boundary

with two pointers first(Minj) and last(Minj) to two members of Potential. All pj

between these two members satisfy Minj = min{k | σ2(k) ∈ σ(Ji, pjK)}. Besides, each pj

in Potential has a pointer Min(pj) to the corresponding member of Min. It is analogous

for Max. By supposing V = J1, nK, computing si(pj) from this structure is in O(1) time.

We recall the notation of a convex hull given in Definition 5.3: the convex hull in σ2

of σ(Ji, jK) is C2(i, j) = σ2(Jl, rK), where boundaries l, r are l = min{k | σ2(k) ∈ σ(Ji, jK)}

and r = max{k | σ2(k) ∈ σ(Ji, jK)}.

Section 5.2. Common Interval Enumeration 131

Let Min = [Min′
1, Min′

2, . . . , Min′
s′] and Max = [Max′

1, Max′
2, . . . , Max′

t′] at the be-

ginning of step i. Suppose inductively that C2(i + 1, pj) = σ2(JMin(pj), Max(pj)K) for

all pj and that Min, resp. Max, is strictly decreasing, resp. increasing. Notice that

σ2(Min′
1) = σ2(Max′

1) = σ(i+1). Now, i′ with σ2(i
′) = σ(i) can be obtained in O(1) time.

Then, either i′ < Min′
1 and Max will be unchanged, or Max′

1 < i′ and Min unchanged.

We trace Min, resp. Max, from j = 1 until finding the first j∗ with Min′
j∗ ≤ i′ < Max′

1,

resp. Min′
1 < i′ ≤ Max′

j∗ . Notice that j∗ > 1 and let pj0 = first(Min′
j∗−1), resp.

pj0 = first(Max′
j∗−1).

Lemma 5.4 ([111]) pj is useless w.r.t. i if si(pj)−si+1(pj)>si(pj+1)−si+1(pj+1)≥0.

Proof: This lemma follows from the application of Uno-Yagiura Lemma 5.1. �

Invariant 5.2 (equivalent to Lemma 5.4) pj with 1 ≤ j < j0 is useless w.r.t. i.

W.l.o.g. Min′
j∗ ≤ i′ < Max′

1, we set Min′
j∗−1 to i′; point first(Min′

j∗−1) to p1;

and for all 1 ≤ j < j0, point Min(pj) to Min′
j∗−1. Thus, each pj satisfies C2(i, pj) =

σ2(JMin(pj), Max(pj)K). It is straightforward to maintain this fact until the end of step

i, and the inductive hypothesis for the next step holds. Finally, Detected is defined

as a list of pointers to p1 < p2 < · · · < pj0−1. Now, the only member of Potential

where δi can be negative that is not pointed by Detected is pj1 = last(Minj∗−1). Thus,

if δi(pj1) < 0, we add a pointer to pj1 to the end of Detected. The running time is

O(j0 + j∗) = O(j0) = O(|Detected|).

We have proved the tricky part of the revisited Uno-Yagiura algorithm, that is

Proposition 5.4 The enumeration of the right-free intervals of two given permutations

over a same set of n elements takes O(n) time.

Remark 5.2 Ideally, at each step i, Potential would contain only the right boundaries

r ≥ i of all unvisited right-free intervals. Is it true ?

After the enumeration of right-free intervals, a symmetric sweep from left-to-right

generates the overlap-free common intervals (i.e. both right-free and left-free). We recall

that those are the nodes of the decomposition tree. Moreover, the sweep organizes them

by interval inclusion. Hence, constructing the tree is in O(n) time. Then, the labelling can

use the following remarks. Since there are only prime and linear nodes, the overlap-free

common intervals that are marked Eaten by the enumeration of right-free intervals have

also this mark in the computation of left-free intervals. Besides, a node has Eaten if and

only if it is linear.

132 Chapter 5. Uno-Yagiura Algorithm Revisited

Finally, Proposition 5.2, Corollary 5.2, and Lemma 5.4 can be generalized to the case

of d permutations if one replaces C2(i, pj) with Cj = Sσ(Ji,pjK)⊎σ(Ji, pjK) =
⋃d

h=2 Ch(i, pj).

Then, at each step i in the new Update-Detect, one has to maintain Cj rather than just

C2(i, pj). The hitch lays on the fact that Ch(i, pj) (2 ≤ h ≤ d) are not pairwise disjunctive.

However, as an element σ(i′) can be added to some Ch(i
′′, p′′j) only once throughout the

computation, the total maintenance can be done in O(d× n) time. We have proved that

Theorem 5.1 The common interval decomposition tree of d given permutations can be

computed in O(d× n) time. From this tree all common intervals can be enumerated in a

straightforward manner in linear time on their number.

5.3 Application to Modular Graph Decomposition

We briefly recall some aspects already presented in Section 2.3.1.

Let G = (V, E) be a loopless simple undirected graph with n = |V | and m = |E|. A

vertex v ∈ V \ A exterior to A 6= ∅ is adjacent to A if it is adjacent to every vertex of

A, non-adjacent to A if non-adjacent to every vertex of A. In both cases, v is uniform to

A. Otherwise, v is a splitter of A. The vertex subset A is a module if it has no splitters.

Roughly, the family M of modules of G refers to the set of subgraphs of G that behave

as one single vertex. It is well-known that M is partitive [47, 62], and finding efficient

algorithms for computing TM from G has been an important challenge of the last two

decades [25, 37, 43, 65, 87, 89, 108]. The factoring permutations of G refer to those ofM.

Linear time algorithms to output such a permutation are available for chordal graphs [74],

inheritance graphs [66], and even for arbitrary graphs [65].

C. Capelle initiated in [24] a “graph lay-out” approach for the computation of the

modular decomposition tree of a given graph. It consists of first finding a factoring per-

mutation [65], then constructing the modular decomposition tree [25]. Both computations

run in O(n + m) time even if the latter [25] is somewhat a complicated procedure. One

of the aspects of this section is to give an alternative to this algorithm.

Definition 5.8 (Permutation Graph and Realizer) A graph is a permutation graph

if it has an intersection model consisting of straight lines (one per vertex) between two

parallels. Equivalently, a graph G = (V, E) is a permutation graph if and only if it has

a so-called realizer, whose definition is as follows. A realizer of G is a pair (σ1, σ2) of

permutations over the vertex set V such that there is an edge xy in G if and only if:

• either x is on the right of y in σ1 while y is on the right of x in σ2, or

• x is on the left of y in σ1 while y is on the left of x in σ2.

Section 5.3. Application to Modular Graph Decomposition 133

In order to link common intervals to modular decomposition, the following observation

given by F. de Montgolfier (cf. [94, Proposition 73, page 217]) will be important. Its proof

is a straightforward case analysis.

Lemma 5.5 ([94]) Both permutations of a realizer of a permutation graph are factoring

for the graph.

Corollary 5.3 The family CI of common intervals of two permutations is included in

the family M of modules of the permutation graph where the two permutations form a

realizer. Besides, the overlap-free members of CI are exactly the overlap-free members of

M. Finally, the decomposition tree TCI of CI is isomorphic to the decomposition tree TM

of M, with complete labels in TM replaced by linear labels in TCI , and conversely.

The proof of Corollary 5.3 is straightforward. From this, the algorithm of the previous

section is an O(n) time modular decomposition algorithm for an n-vertex permutation

graph given by one realizer. Notice that the number of edges of such a graph can be in

m = Θ(n2).

Corollary 5.4 The modular decomposition tree of an n-vertex permutation graph given

by one of its realizers can be computed in O(n) time.

There exists another common interval decomposition algorithm of two permutations

which runs in O(n) time [86], and hence it is also an alternative to Corollary 5.4 above.

Unfortunately, the algorithm therein is not that simple and relies on a rather sophisticated

one [42]. Moreover that approach does not seem to be extendible to arbitrary modular

graph decomposition. To this aim one can use the algorithm proposed in [25]. However,

this latter produces a rather heavy sequence of trees. On the other hand, we will show

that revisiting the Uno-Yagiura approach results in using a unique paradigm for both

computations of the common interval decomposition tree of two given permutations and

the modular decomposition tree of an arbitrary graph. Then, not only we unify the two

corresponding topics but also provide very efficient algorithms.

Accordingly, we address the following problem: given a factoring permutation σ of

an arbitrary graph G = (V, E), compute the modular decomposition tree of G. Let us

first adapt Proposition 5.2 and Corollary 5.2. Let SA refer to the splitter set of a vertex

subset A 6= ∅ and s(A) = |SA| count the number of its splitters (see Definition 5.4).

Proposition 5.5 and Corollary 5.5 below are our graph versions of Proposition 5.2 and

Corollary 5.2, respectively.

Proposition 5.5 σ(Ji, jK) is a module if and only if si(j) = s(σ(Ji, jK)) = 0.

134 Chapter 5. Uno-Yagiura Algorithm Revisited

Corollary 5.5 Let i ≤ pj < pj+1, and δi(pj) = si(pj+1)−si(pj). Then, δi(pj) < 0 implies

there is no k ≤ i such that σ(Jk, pjK) is a module.

Proof: If δi(pj) < 0, then the submodularity of Lemma 5.2 on the subsets σ(Jk, pjK) and

σ(Ji, pj+1K) for all k ≤ i implies that sk(pj) > sk(pj+1) ≥ 0. �

Basically, the two above generalizations imply that the algorithmic scheme of the

previous section can be used in the case of modules if one adapts the involved routines

accordingly. Actually, the adaptation is straightforward, except for the Update-Detect

routine and labelling the decomposition tree.

The Update-Detect Routine for Modular Decomposition

Let G = (V, E) be a graph, and σ a factoring permutation of G. Let NX (resp. NX) be the

set of adjacent (resp. non-adjacent) vertices to X. We implement here the Update-Detect

routine to be used for modular decomposition. Let us recall what has to be done in this

routine.

Let [p1, p2, . . . , pk] be the value of Potential at the beginning of iteration step i. After

the computation of Update-Detect, from each pj , one has to be able to compute the value

of si(pj) or δi(pj) in O(1) time. Besides, the routine is to output a list Detected of pointers

to all members pj of Potential with δi(pj) < 0, plus some other useless boundaries w.r.t.

i. In this case of modular decomposition, we will compute Detected such that the pointed

boundaries are exactly those that have a strictly negative δi. Finally, Detected has to

organize increasingly the pointed boundaries pj1 < pj2 < · · · < pjh
.

To obtain this, we need another data structure from the one used in the common

interval decomposition. Our implementation aims at an O(n + m) runtime, and follows

the rule: each step i only considers the neighbourhood of σ(i). Some notions have to be

introduced.

Let Ni,j and N i,j refer to Nσ(Ji,jK) and Nσ(Ji,jK) for short. Let [p′1, p
′
2, . . . , p

′
l] be the

value of Potential at the end of step i in the selection phase. Then, the fact that

p′1(= i) < · · · < p′l implies Ni,p′1
⊇ · · · ⊇ Ni,p′

l
. Therefore, the neighbourhood of σ(i) in G

can be partitioned into l neighbour wings Ni,i = (NWi,p′1
, NWi,p′2

, . . . , NWi,p′
l
), where each

neighbour wing is defined as NWi,p′j
= Ni,p′j

\ Ni,p′j+1
for all 1 ≤ j ≤ l and Ni,p′

(l+1)
= ∅.

The definition of the non-neighbour wings such that N i,i = (NWi,p′1
, NWi,p′2

, . . . , NWi,p′
l
)

is analogous. Then, the level Li,p′j
is defined as Li,p′j

= NWi,p′j
⊎ NWi,p′j

. We define

Hi = {σ(i)} and trivially deduce that V = (Li,p′1
, Li,p′2

, . . . , Li,p′
l
, Hi). The level threshold

does not depend on i and is defined as θ(p′j) = p′j+1 − p′j for all 1 ≤ j ≤ l and p′l+1 = p′l.

Section 5.3. Application to Modular Graph Decomposition 135

Notice that its obtaining does not require any data structure since it can be directly

computed from p′j and its successor in O(1) time.

Proposition 5.6 si(p
′
j) = n− (|Ji, p′jK|+ |Ni,p′j

|+ |N i,p′j
|) for all 1 ≤ j ≤ l.

Proof: A splitter of a vertex subset is an exterior non-uniform vertex. �

Corollary 5.6 δi(p
′
j) = si(p

′
j+1)− si(p

′
j) = |Li,p′j

| − θ(p′j) for all 1 ≤ j ≤ l.

Proposition 5.7 A data structure representing V = (Li,p′1
, Li,p′2

, . . . , Li,p′
l
, Hi) with re-

spect to partition refinements techniques [68] allows to implement the Update-Detect rou-

tine for graph modules to compute in O(|Ni,i|) time per step i.

Indeed, from Corollary 5.6, the value of delta(p′j) = δi(p
′
j) can be obtained in O(1)

from the one of |Li,p′j
|. According to this, we use the partition refinement techniques [68]

to maintain the partition of V into V = (Li,p′1
, Li,p′2

, . . . , Li,p′
l
, Hi) at the end of each step

i.

Let us assume a partition refinement function Refine, which takes as input a pivot

set S ⊆ V and a data structure P representing a partition of (X1, X2, . . . , Xp). Each

Xi (1 ≤ i ≤ q) has a pointer Size(Xi) to its cardinal. Then, Refine(S, P) proceeds in

O(|S|) and splits any Xi with Xi ∩ S 6= ∅ to an intersection subset Ii = Xi ∩ S and a

different subset Di = Xi \ S. The two subsets have pointers to each other. The details of

Refine are in [68].

We then define a data structure holding the following. At the beginning of each

step i, besides the list Potential = [p1, p2, . . . , pk], a data structure Partition is main-

tained with respect to the partition refinement techniques to represent Partition =
(
Np1 , Np1, Np2, Np2 , . . . , Npk

, Npk
, H
)
. Each pj points to both Npj

and Npj
. The pointer

delta(pj) does not exist: it is replaced by the addition of Size(Npj
) and Size(N pj

), to

which pj can access in O(1) time.

Let us assume that an inductive hypothesis provides Npj
= NWi+1,pj

, Npj
= NWi+1,pj

and H = Hi+1. We will prove the inductive hypothesis for the next step by describing the

Update-Detect routine. To begin with, {σ(i)} can be removed from Partition with a

call to Refine({σ(i)}, Partition). Indeed, there only is one single intersection subset

HTemp = {σ(i)}, which is temporally stored apart. All the remaining is redefined

Partition, where any member (wings or H) is the old one excluded σ(i). This takes

O(1) time. Besides, an empty N ′
i is created with a pointer Size(N ′

i) to 0, as well as an

empty N ′
i with Size(N ′

i) to another 0. Furthermore, Modified is initialized to be an

empty list (of pointers). This takes O(1) time.

136 Chapter 5. Uno-Yagiura Algorithm Revisited

After this, Refine(Ni,i, Partition) is called with some extra rules. When it splits a

neighbour wing Npj
= Ni+1,pj

\ Ni+1,pj+1
\ {σ(i)} in Partition into two subsets, it also

perform the following. First, as the intersection subset holds Npj
∩ Ni,i = Ni,pj

\Ni,pj+1
,

the old neighbour wing in Partition is replaced by this. Second, as the difference subset

Npj
\Ni,i = L1

pj
∩N i,i is included in N i,i \N i,p1, it is concatenated to N ′

i and the involved

pointers Size are updated. Last, a pointer to pj is added to the end of the list Modified.

It is analogous when a non-neighbour wing Npj
= N i+1,pj

\ N i+1,pj+1
\ {σ(i)} is split

since the difference subset holds N pj
\ Ni,i = N pj

∩ N i,i = N i,pj
\ N i,pj+1

and the other

holds N pj
∩ Ni,i ⊆ Ni,i \ Ni,p1. When splitting H , we replaced it by HTemp = {σ(i)},

and concatenate H ∩ Ni,i to N ′
i and H \ Ni,i to N ′

i. All these operations are in O(1)

time per splitting operation. Therefore, the refinement is in O(|Ni,i|). At this point, the

value
(
NNp1 , NNp1 . . . , NNpk

, NN pk
, HH

)
of Partition holds NNpj

= NWi,pj
, NN pj

=

NWi,pj
, and HH = Hi. Thus, acceding to |Li,pj

| − θ(pj) = Size(NNpj
) + Size(NN pj

)−

(pj+1− pj) = δi(pj) from each pj takes O(1) time, which is one of the two main results of

Update-Detect. Now, we deduce by elimination that N ′
i = Ni,i\Ni,p1 and N ′

i = N i,i\N i,p1.

Therefore, the routine outputs s = Size(N ′
i)+ Size(N ′

i)− (p1− i) = si(i+1) for further

use in the Add routine. This takes O(1) time.

Finally, it is obvious to state that Modified contains the pointers to all pj such that

δi+1(pj) = δi(pj). Therefore, Detected is a sublist of Modified since δi is positive else-

where. Besides, the pointed boundaries by Modified are increasing since Partition has

a specific order of increasing levels (the increasing monotonicity of boundaries pointed by

Modified is not necessarily strict though: a boundary might be introduced twice when

either Npj
and Npj

have been split). Hence, obtaining Detected by tracing Modified is

straightforward in O(|Modified|) = O(|Ni,i|). This is the second of the two main results

of Update-Detect.

Now, we have to prove the inductive hypothesis for the next step. To obtain this, the

filtering routines (Pre-Filter, Customized Filter) have to perform some extra works: when

a boundary pj is removed, if its predecessor pj−1 in Potential exists, we concatenate the

involved neighbour wings with respect to Ni,pj−1
\Ni,pj+1

= Ni,pj−1
\Ni,pj

⊎Ni,pj
\Ni,pj+1

.

It is similar for the involved non-neighbour wings. If pj is at the head of Potential, the

wings are concatenated to N ′
i and N ′

i. Besides, the values of delta have to be updated

accordingly. If pj is at the head of Potential, delta(pj) is added to s so that we always

have s = si(pj) with pj at the head of Potential. The cost of each removing still is O(1).

Besides, for later use, when the Pre-Filter removes some r < r0(= max Select(i + 1))

and gives r0 the mark Eaten, we mark r0 as Adjacency if and only if NWi,r is not empty.

Notice that either NWi,r is not empty and NWi,r is empty or NWi,r is empty and NWi,r

Section 5.3. Application to Modular Graph Decomposition 137

is not empty. This helps distinguishing series from parallel nodes. Finally, when the Add

routine inserts i to the head of Potential, it also has to insert N ′
i and N ′

i to the head of

Partition, and make i point to both of them. Let p1 = i and p2 be the two first members

of Potential at this state, the Add routine uses the value of s = si(p2) = δi(p1) to create

the pointer delta(p1) for this boundary p1 = i. The cost of the Add routine still is O(1).

By doing so, it is straightforward to deduce the inductive hypothesis for the next step.

As for complexity issues, at each step i, the computing time of the Update-Detect

routine is O(|Ni,i|) = O(d(σ(i))), where d(σ(i)) is the degree of vertex σ(i). Then, the

global complexity cost for calls to this routine is in O(n+ m), while the other complexity

costs are like before, namely in O(n).

Now, let us show how to label the decomposition tree. First, it is well-known that

a modular decomposition tree has no linear nodes, and its complete nodes are divided

into series nodes – adjacency guaranteed between all children – and parallel nodes –

non-adjacency between children [47, 62]. Then, by analogous remarks as in the previous

section, nodes marked Eaten are complete, others are prime. Besides, thanks to Adjacency

marks, which state the adjacency between the children of the node, we can differ the series

and parallel nodes in the labelling.

We have showed that

Proposition 5.8 Given an arbitrary graph along with one of its factoring permutation,

we can compute the modular decomposition tree of the graph in O(n+m) time by following

Uno-Yagiura approach.

To conclude, this chapter has displayed the importance of graph layout approaches,

e.g., the approach via factoring permutations. Such an approach can also be seen as a

gateway between string algorithms and graph algorithms. Finally, we have showed strong

potentials of generalizing Uno-Yagiura algorithm to broader perspectives, and also its

connection to weakly partitive families.

We believe that the use of Uno-Yagiura algorithm would be an important crux for

designing future algorithms. For instance, it would be interesting to adopt the same

philosophy conducted throughout this chapter to other combinatorial problems such as

the decomposition in O(n + m) time of an inheritance graph into “inheritance-blocks”.

This would yield an alternative to the algorithms proposed in [24, 66]. Another example

would be the question whether the modular decomposition tree can be computed in O(n)

time for a bounded tolerance graph – trapezoid graph with solely parallelograms [9, 51]

– when an intersection model is provided. Then, it would be very interesting to have an

O(n) modular decomposition time for an interval or trapezoid graph given by one of its

intersection models. This would give interesting connections to works on gene-teams [2].

Chapter 6

H -join Decomposition and Dynamic
Programming

This chapter is based on [22].

We close the thesis with an attempt to give a generalized standpoint of, at the same

time, modular graph decomposition, split decomposition, and the recently introduced

bijoin decomposition (see, e.g., Section 2.3.1 and Section 2.3.3 for their definition). In

fact, it is now quite widely known that both notions of a split and a bijoin are strict

generalizations of that of a module (see Figure 6.1). This chapter goes one step further in

the same generalization stream, and addresses a unifying graph composition operation, a

so-called H-join operation. It is indexed by a bipartite graph H (see Figure 6.2). We then

investigate a so-called H-join decomposition scheme, which gives a broader view than all

the above mentioned decompositions.

At the same time, H-join decomposition has also connections to a series of recent

advances in algorithmic graph theory, initiated by the important establishment of strong

algorithmic results on the so-called clique decomposition of a graph [35]. In this topic, the

list of related notions to H-join decomposition includes no fewer than, in lexicographic

order: c-decomposition [81], clique decomposition [33, cited in [10]], decomposition into

bimodule partitions∗ [103], k-HB decomposition [77], NLC-decomposition [112], and rank

decomposition [96, 100]. This is a currently evolving field with ongoing large efforts for

advancements. In this chapter, we will restrict our discussion to some algorithmic issues.

As a matter of fact, several graph decompositions define an associated notion of width

parameter. Most of them are already mentioned sparsely in the thesis, even though none of

them has really been discussed in detail so far. From an algorithmic point of view, the most

important among those are, in order of discovery: treewidth, branchwidth, cliquewidth

and rankwidth. The first two of these parameters are “less powerful” than the last two,

∗This is different from the bimodular decomposition of bipartite graphs [55].

140 Chapter 6. H -join Decomposition and Dynamic Programming

iii.ii.i.

Figure 6.1: i. A module that is also a split and a bijoin. ii. A split that is not a module,
nor a bijoin. iii. A bijoin that is not a module, nor a split.

i.

iii.

ii.

Figure 6.2: i. A split. ii. A bijoin. iii. An H-join.

141

in the sense that a graph class has bounded treewidth if and only if it has bounded

branchwidth [104], it has bounded cliquewidth if and only if it has bounded rankwidth

[100], and if it has bounded treewidth then it has bounded cliquewidth but not the other

way around [30]. Moreover, the rankwidth of a graph is never larger than its cliquewidth,

nor its branchwidth , nor its treewidth plus one [99]. In this sense, rankwidth is the most

powerful of the four parameters. Also, since its recent introduction [96], the notion has

been quite intensively investigated [34, 36, 71, 97, 98, 99, 100]. In our composition also,

rank decomposition will figure in one of the major foci of this chapter.

Given a parameter π(I) for every object I belonging to a set I, a fixed-parameter

tractable (FPT) algorithm on an instance made by an element of I, parameterized by π

is an algorithm running in O(f(k)|I|α) time on every instance I ∈ I with π(I) ≤ k, where

α is a constant. Many NP -hard graph optimization problems have FPT algorithms when

parameterized by the above width parameters (see [72] for an overview). Some examples

could be: maximum independent set/clique, minimum dominating set, and Hamiltonian

path/circuit. FPT algorithms for such problems usually have two stages:

• a first stage computing the right decomposition of the input graph, and

• a second stage solving the problem using the decomposition.

For a long time there was no good first stage algorithm for cliquewidth, and originally

rankwidth was in fact introduced, among other things, as a tool to help with computing

a decomposition for cliquewidth [100].

Recently, an FPT algorithm was found that given an n-vertex graph G and a parameter

k will decide if G has rankwidth at most k and if so output a rank decomposition of width

k in time O(f(k)n3) [71]. Between rankwidth rw(G) and cliquewidth cw(G) we have the

connection rw(G) ≤ cw(G) ≤ 2rw(G)+1 and such a width k rank decomposition can be

turned into a clique decomposition of width 2k+1 of the graph G. Because of the jump

from rankwidth k to cliquewidth 2k+1 it is clear that based on the first stage rankwidth

should be better suited than cliquewidth for getting the fastest possible algorithms.

The problem with rankwidth has been that the rank decomposition has until now

not been known to be amenable to the second stage that involves a divide-and-conquer

approach along the decomposition (for example with a dynamic programming). In this

chapter we rectify the situation by showing how to enhance a rank decomposition, in

order to make it amenable to dynamic programming. To this aim we proceed as follows.

We first revise in Section 6.1 some local operations on the rank decomposition of a

given graph, which, roughly, results in considering some structural properties of cuts of

the graph. Then, by noticing strong connections of those properties to modular graph

142 Chapter 6. H -join Decomposition and Dynamic Programming

decomposition, we define the more general framework of H-join decomposition of graphs.

After this, we point out how poor information, a rank decomposition in particular, and

an H-join decomposition in general, could give for divide-and-conquer purposes. In order

to counteract the lack, we propose in Section 6.2 a computation of further information for

those decompositions, making them amenable to the divide-and-conquer paradigm (more

specifically, the statement is given in Lemma 6.2). Finally, in Section 6.3 we illustrate

the technique by an FPT dynamic programing algorithm solving the NP -hard problem of

finding the clique number of a graph, given along with one of its H-join decompositions.

We also discuss speed up issues when the H-join decomposition is restricted to the case

of a rank decomposition of the input graph.

6.1 Some Structural Aspects of Cuts

The formal definition of a rank decomposition will be given in Section 6.3.2. In the

following, let us give an informal discussion on rank decomposition in order to introduce

the more general framework of H-join decomposition. Roughly, the basic idea of rank

decomposition is to evaluate a cut {X, V \X} of a graph G = (V, E) by the help of some

ranking function ρG : 2V → N, which is symmetric: ρG(X) = ρG(V \ X). Then, the

ranking function is sometimes considered, by abusive notations, as a function over the

cuts of G, namely we abusively denote ρG({X, V \X}) = ρG(X). A rank decomposition

of G is then defined in a way analogous to branch decompositions as follows.

A subcubic tree is an unrooted tree where all internal nodes have degree three. If T

and δ are such that T is a subcubic tree over |V | leaves, and δ a bijection between V and

the leaves of T , then for every edge uv of T , the removal of uv from T clearly induces a

2-partition of V . Finally, if we consider the 2-partition as a cut {X, V \ X} of G, then

we can associate every edge of T to a cut of G. The subcubic tree can then be evaluated

w.r.t. the ranking value ρG, taken over all the edges of the tree. The minimum value of

such an evaluation, taken over all possible subcubic trees, will then define the rankwidth

of G, while any subcubic tree which has that minimum rankwidth value will be called

a rank decomposition of G. A formal definition is given in Section 6.3.2. Nonetheless,

according to this informal discussion, studying this kind of branch-like decomposition of

graphs turns out to study a certain collection of cuts of the initial graph.

At the same time, we will see that the behaviour of the function ρG on a vertex subset

X does not change much after the contraction of a bi-twin in X, where x ∈ X is a bi-twin

of y ∈ X w.r.t. the cut {X, V \X} if, for every s ∈ V \X, the adjacency between x and s

is the same as that between y and s. An informal illustration is given in Figure 6.3. This

Section 6.1. Some Structural Aspects of Cuts 143

Figure 6.3: A sequence of cuts which preserve the value of the cut-rank function ρG.

leads us to the following more general formalism.

Definition 6.1 (H -join Operation) Let H be a bipartite graph over colour classes

V (H) = V1 ∪ V2. Let V1 = (a1, a2, ..., al) and V2 = (b1, b2, ..., br) be two orderings of the

colour classes. Let A, B be two graphs with PA = (A0, A1, ..., Al) and PB = (B0, B1, ..., Br)

ordered partitions of V (A) and V (B) respectively, with empty subsets allowed. We define

H-join(A, B, PA, PB) as the graph having vertex set V (A) ∪ V (B) and edge set

E(A) ∪ E(B) ∪ {uv : u ∈ Ai ∧ v ∈ Bj ∧ aibj ∈ E(H)}

for 1 ≤ i ≤ l, 1 ≤ j ≤ r. Moreover, a graph G is said to be an H-join of A and B if

G = H-join(A, B, PA, PB) for some PA and PB.

Roughly, the idea of an H-join operation is to associate the first configuration with

the last configuration in Figure 6.3. Notice that since A0 and B0 can be equal to V (A)

and V (B), the disjoint union of graphs A and B is an H-join of A and B for any graph

H . Note also that since subsets Ai and Bj are allowed to be empty, we have for any

induced subgraph F of H that any F -join of A and B is also realizable as an H-join of A

and B. On the other hand, if (an induced subgraph) K is obtained from H after a twin

contraction, or after the deletion of an isolated vertex, then any H-join of A and B is also

realizable as a K-join of A and B.

The H-join operation is very general and quite powerful. If we decompose graphs

through H-join operations in a way analogous to modular decomposition, then any graph

144 Chapter 6. H -join Decomposition and Dynamic Programming

G can be recursively decomposed into trivial one-vertex graphs already by P2-joins, where

P2 denotes the 2-vertex path. To see this let V (G) = {v1, v2, ..., vn}, and note that we

can construct the graph Gi = G[{v1, v2, ..., vi}] inductively starting from the trivial graph

G1, with Gi being the P2-join of the trivial graph B on vertex vi with the partition

PB = (∅, {vi}) and the graph Gi−1 with the partition Pi−1 = (V (Gi−1)\Si−1, Si−1), where

Si−1 = {NG(vi) ∩ {v1, v2, ..., vi−1}}. We will instead decompose graphs by H-joins in a

way analogous to branch decompositions.

Definition 6.2 (H -join Decomposition) Let T be a subcubic tree and δ a bijection

between the leaf set of T and the vertex set of a graph G. We say that (T, δ) is an H-join

decomposition of G if for any edge uv of T we have G being an H-join of G[Su] and G[Sv],

where Su, Sv is the 2-partition of V (G) induced by the leaf sets of the two subtrees we

get by removing uv from T . A graph having an H-join decomposition will be called an

H-join decomposable graph.

A potential drawback of defining H-join decompositions simply as the pair (T, δ) is

that, for every edge uv of T , we a priori do not know how to obtain ordered partitions Pu

and Pv such that G = H-join(G[Su], G[Sv], Pu, Pv). Moreover, for dynamic programming

we would need to build the graph G bottom-up and also for this it is not clear how to

proceed. Notice that this is the main bottleneck for doing dynamic programming along

a rank decomposition (cf. further in Section 6.3.2). This being said, we show in the

upcoming section how to compute all the needed information. The starting idea is from

the straightforward fact that, if such Pu and Pv as mentioned above exist, unordering

each of them will result in two partitions (of Su and Sv) which are both what we call

external module partitions. Additionally, this can also be viewed as a link from H-join

decomposition to modular decomposition.

Definition 6.3 (External Module Partition) Let G be a graph and let A ⊆ V (G) be

a vertex subset. An external module partition of A is a partition PA of A such that, for

every s ∈ V (G) \A and pair of vertices x, y belonging to the same part in PA, we have x

adjacent to s if and only if y adjacent to s.

6.2 Computing Enhanced Information for an H -join

Decomposition

Throughout this section, we consider that only G, H, T, and δ are given as input for some

computation, in such a way that (T, δ) is an H-join decomposition of graph G. The aim of

this section is to output a rooted and labelled tree Tr which will ease a bottom-up approach

Section 6.2. Computing Enhanced Information for an H-join Decomposition 145

for solving problems on an instance defined by G using a dynamic programming. Among

most important information, the tree Tr will come equipped with the ordered partitions

of vertex sets used in the various H-join operations to incrementally build G bottom-up,

starting with the trivial one-vertex graph. Let n = |V (G)|, m = |E(G)|, and h = |V (H)|.

We first focus on a useful subroutine which has input a vertex subset A ⊆ V (G).

It should output a maximum external module partition of A, which is well-defined by

Lemma 6.1 below. We can process using partition refinement techniques: just initialize

an unordered partition as P = {A}; then, for every exterior vertex s ∈ V (G)\A, refine P

using the neighbourhood of s as pivot. Those operations can be done in O(m) time since

each refinement operation can be done in time proportional to the size of the pivot set.

(Partition refinement is a now standard algorithmic operation, we would refer the reader

with further interests to, e.g., [68] for implementation details.) The correctness is stated

in the following lemma.

Lemma 6.1 Let G be a graph and A be a vertex subset of V (G). The maximum (with

respect to coarseness) external module partition of A is well-defined and can be computed

in O(|E(G)|) time.

Proof: Let P be a maximal external module partition of A. Suppose it is not maximum,

then there exists an external module partition Q of A such that there are some parts

X ∈ P and Y ∈ Q such that X and Y overlap. Then, replace all Xi in P which overlap

(or included in) Y by
⋃

i Xi ∪ Y , and obtain P ′. Using the transitivity of the relation on

x, y for a given s: ”x and y are linked to s the same way”, we can prove that P ′ is an

external module partition that is coarser than P . Contradiction.

To finish, it suffices to prove that the subroutine described in the above text computes

correctly a maximum external module partition. Here, the fact the computation results

in an external module partition is straightforward from an argument by contradiction.

Moreover, that partition is maximum since, for every external module partition PA of A,

for every s ∈ V (G) \ A, the neighbourhood of s does not overlap any part in PA. �

We now address the problem of finding an order over the colour classes V (H) = V1∪V2

of H , V1 = (a1, a2, ..., al) and V2 = (b1, b2, ..., br), and for every edge uv of T a quadruplet

(cu, cv, Pu, Pv) satisfying the following. Both cu and cv are pointers stating which colour

class of H will be mapped to u, and respectively to v. Supposing w.l.o.g. that cu maps u

to V1, then Pu and Pv will be two ordered partitions of Su and Sv respectively. Moreover,

we have Pu = (A0, A1, A2, . . . , Al) and Pv = (B0, B1, B2, . . . , Br), in such a way that

G = H-join(G[Su], G[Sv], Pu, Pv), where Su, Sv is the 2-partition of V (G) induced by the

leaf sets when removing uv from T . The following property will be important.

146 Chapter 6. H -join Decomposition and Dynamic Programming

Proposition 6.1 Let (T, δ) be an H-join decomposition of G. Let Su, Sv be the 2-partition

of V (G) induced by the deletion of an edge uv in T . Let Mu, Mv be the (unordered)

maximum external module partitions of respectively Su and Sv. Let Ru and Rv be two sets

containing exactly one representative vertex per part in respectively Mu and Mv. Let Huv

be the bipartite graph defined by the bipartite adjacency in G between Ru and Rv.

Then, there is at most one isolated vertex in each colour class of Huv. Furthermore,

removing all isolated vertices from the graph Huv results in an induced subgraph H ′ of H.

Proof: If Huv has more than one isolated vertex in any of the two colour classes, then

either Mu or Mv is not maximum. Let H ′ be the graph we get by removing all isolated

vertices from Huv. Now, since (T, δ) is an H-join decomposition of G, G can be obtained

from G[Su] and G[Sv] through an H-join operation. This H-join operation defines two

external module partitions of Su and Sv: say M ′
u and M ′

v. From Lemma 6.1, Mu (resp.

Mv) is coarser than M ′
u (resp. M ′

v). We deduce that H ′ is an induced subgraph of H

obtained by some successive twin contractions. �

Based on this property the algorithm proceeds as follows. Firstly, choose an order

over the colour classes of H : V1 = (a1, a2, ..., al) and V2 = (b1, b2, ..., br). For every

edge uv of the subcubic tree T , process all the following operations. Call the subroutine

computing the maximum external module partitions of respectively Su and Sv. Then, in

both partitions, only keep one representative vertex per part, thus obtaining the sets Ru

and Rv. Check in Ru and Rv whether there are (up to one each, from Proposition 6.1)

isolated vertices w.r.t. the bipartite adjacency induced in G. If there are any isolated

vertices, define A0 and B0 as the parts in the maximum external module partitions of Su

and Sv corresponding to them, then remove them definitively from Ru and Rv. Again

from Proposition 6.1, the bipartite induced subgraph of G by colour classes Ru and Rv is

an induced subgraph of H . Find a mapping of vertices in Ru ∪Rv to those in V (H) such

that the bipartite adjacency between Ru and Rv (in G) coincides with that of V (H) (in

H) as follows.

Remark 6.1 Given k-vertex graph F and n-vertex graph H such that k ≤ n, one can

brute-force solve the induced subgraph isomorphism problem on the pair (F, H) by first

arbitrary ordering the vertices of F into (v1, v2, . . . , vk), and then checking all possibilities

of mapping an k-uplet (u1, u2, . . . , uk) of vertices of V (H). In case of success a mapping

can also be outputted. The resulting time is in O(k2×n(n−1)(n−2) . . . (n−k+1)). This

action will hereafter be referred to as brute-force finding an induced subgraph matching.

After the brute-force mapping, we can determine whether Ru is mapped to vertices of

V1 or not, and assign the pointers cu and cv accordingly.

Section 6.2. Computing Enhanced Information for an H-join Decomposition 147

Convention: Since the pointers cu and cv are rather technical details and their use in

the remaining of the chapter is quite marginal, we will skip referring to them and suppose,

whenever we write G = H-join(A, B, P, Q), that we know exactly which partition P and

Q is mapped to which colour class of H .

Finally, we output the ordered partitions Pu and Pv made of: firstly the already defined

A0 and B0, then parts in the maximum external module partitions of Su and Sv, w.r.t. the

order defined by (a1, a2, . . . , al), (b1, b2, . . . , br), and the latter mapping, with possibly the

completion of absent positions by empty sets. The correctness is straightforward from the

definition of an external module partition and an H-join operation. For complexity issues,

the runtime of the brute-force induced subgraph matching is bounded by O(h22h log h).

Accordingly, the running time of the whole process is in O(nm + nh22h log h).

Furthermore, for a dynamic programming perspective, we will use a rooted version:

subdivide any edge in the subcubic tree T , set a root r in the subdivision and obtain

Tr. Here, the same idea as in Proposition 6.1 can be used to prove a more useful result

for dynamic programming. Actually, the main point here is to focus on computing labels

for nodes of the rooted tree Tr that will tell us how to build up the graph G by H-join

operations bottom-up on Tr.

Proposition 6.2 Let (T, δ) be an H-join decomposition of G. Let Tr be the rooted tree

obtained from setting a root r in a subdivision of some edge of T . Let w be an internal node

of Tr, and a, b the children of w. In general, let Sx be the vertex subset of G mapped to

the leaves of the subtree of Tr rooted at a node x; let Mx be the maximum external module

partition of Sx in G; let Mx be the maximum external module partition of V (G) \ Sx in

G. Finally, let M ′
a (resp. M ′

b) be the restriction of Mb (resp. Ma) to Sa (resp. Sb).

Then, M ′
a (resp. M ′

b) is a coarser partition than Ma (resp. Mb). More specifically, in

the graph G[Sw], both M ′
a and M ′

b are maximum external module partitions of respectively

Sa and Sb. A consequence is that there is a way to order M ′
a and M ′

b into Qa and Qb

such that G[Sw] = H-join(G[Sa], G[Sb], Qa, Qb). Finally, Mw is a coarser partition than

Ma ∪Mb.

Proof: We first prove that, in the induced subgraph G[Sw], M ′
a is a maximum external

module partition of Sa. Firstly, in that induced subgraph, M ′
a is an external module

partition otherwise Mb fails, in G, to be an external module partition of V (G) \ Sb.

Secondly, if M ′
a is not maximum, we can deduce that Mb is not maximum using the

transitivity of the relation on x, y for a given s: ”x and y are linked to s the same

way”. By symmetry, M ′
b is a maximum external module partition of Sb in G[Sw]. Then,

M ′
a (resp. M ′

b) is a coarser partition than Ma (resp. Mb) since the latter is an external

148 Chapter 6. H -join Decomposition and Dynamic Programming

module partition in G[Sw]. To finish, in the graph G, if Ma∪Mb is not an external module

partition of Sw, then either Ma or Mb fails to be an external module partition of Sa or Sb,

respectively. Then, using Lemma 6.1 and the maximality of Mw, we can conclude that

Mw is a coarser partition than Ma ∪Mb. �

Let w be an internal node of Tr, and a, b the two children of w. In general, let Sx

be the vertex subset of G mapped to the leaves of the subtree of Tr rooted at a node

x. Moreover, unless x is the root, let Px and Px be the ordered partitions computed by

the previous computation for the edge of T linking x to its father in Tr. Finally, let P ′
a

(resp. P ′
b) be the restriction of Pb (resp. Pa) to Sa (resp. Sb). Our main focus will be

to compute, for all w, two re-orderings Qa and Qb of respectively P ′
a and P ′

b such that

G[Sw] = H-join(G[Sa], G[Sb], Qa, Qb).

Notice that P ′
a and P ′

b are not already known. However, from the above proposition,

unordering them results in coarser partitions M ′
a and M ′

b of those partitions Ma and Mb we

get by unordering Pa and Pb. We can compute a representation for P ′
a (and analogously

for P ′
b) as follows. W.l.o.g. assume P b = (P0, P1, P2, . . . , Pl) (otherwise just replace l by

r). Create a table P ′
a of size l + 1. Pick one representative vertex per non-empty part in

Pa (up to h vertices). For every such vertex: determine which Pi it belongs to; then create

a double-pointer between the ith cell of the table P ′
a and the part in Pa which corresponds

to the representative vertex. Each membership computation can be done in constant time

because we can store both Pa and P b as tables of pointers to the same table of vertices

in V (G), and subsequently follow the pointers. After the scanning, for every cell P in

P ′
a, the position of its (present/absent) pointers to some part of Pa can be viewed under

a bit-vector representation I w.r.t. the order defined by Pa, namely with P =
⋃

i∈I Ai

and Pa = (A0, A1, A2, . . . , A|Pa|). This can be computed in O(h) time for each P . The

bit-vector, in turn, can be viewed as a number written in binary: we will not use the

pointers in the following so assign that number to the cell instead. Thus, for each w, we

can compute P ′
a and P ′

b in O(h2) time.

By a similar technique, we add information to Pw by performing the same representa-

tion for every part P of the partition Pw, following the statement where Pw is a coarser

partition than Pa ∪ Pb. Here, we would rather have two numbers for each part P : one to

the positions in Pa and the other to the positions in Pb.

Let us head back to P ′
a and P ′

b. From Proposition 6.2, unordering each of P ′
a and P ′

b

results in a maximum external module partition in G[Sw]. Besides, G[Sw] is an H-join of

G[Sa] and G[Sb], completing to form similar conditions as in the claim of Proposition 6.1.

(To see that G[Sw] is an H-join of G[Sa] and G[Sb], we can for instance consider the

restriction of G = H-join(G[Sa], G[V (G)\Sa], Pa, P a) to the partitions Pa and P ′
b). Then,

Section 6.3. Dynamic Programming 149

with a similar approach as before, we can compute in O(h22
h
2) time a new order for parts

of P ′
a and P ′

b such that (w.l.o.g.) Qa = (A′
0, A

′
1, A

′
2, . . . , A

′
l), Qb = (B′

0, B
′
1, B

′
2, . . . , B

′
r),

and G[Sw] = H-join(G[Sa], G[Sb], Qa, Qb). From what has been said above, each A′
i and

each B′
j is assigned a number which represents the positions of parts in respectively Pa

and Pb it is made of. We have shown the following.

Lemma 6.2 (Main Tool) Let (T, δ) be an H-join decomposition of G. We can in time

O(nm + nh22h log h) output a rooted tree Tr, an order over the colour classes of H, V1 =

(a1, a2, ..., al) and V2 = (b1, b2, ..., br), and for every node w of Tr with children a, b ordered

partitions Qa, Qb, Pw, Pw such that

G[Sw] = H-join(G[Sa], G[Sb], Qa, Qb) and G = H-join(G[Sw], G[V (G) \ Sw], Pw, Pw).

Moreover, each part P in Qa (resp. Qb) is assigned a number representing the set of

indices of the parts in Pa (resp. Pb) that P is made of. Besides, each part P in Pw is

assigned two numbers representing the two sets of indices of the parts in Pa and those in

Pb that P is made of as union of the two.

6.3 Dynamic Programming

The dynamic programming algorithm solving a problem P on an H-join decomposable

graph G given with its H-join decomposition (T, δ) will first compute the rooted tree Tr

and associated information as described in Lemma 6.2. It will then follow a bottom-up

traversal of Tr. With each node w of Tr we associate a data structure table. The table of

a leaf is initialized according to the base case, usually by a brute-force strategy. The table

of an interior node is filled based on previously filled tables of its children. The overall

solution is obtained from the table at the root of Tr. The table associated with a node w

of Tr contains optimal solutions to a subproblem, a constrained version of the problem P,

restricted to the graph G[Sw], where Sw is the set of vertices of G mapped to leaves of the

subtree of Tr rooted at w. The subproblem constraints focus on the subsets of Sw that

interact in specific ways with the external module partitions of the H-join operations.

6.3.1 MaxClique of H -join Decomposable Graphs

In this section we illustrate the technique for the NP -hard problem of computing the size

of the maximum clique in a graph G. We will prove the following result.

Theorem 6.1 Given an n-vertex m-node graph G, and an H-join decomposition (T, δ)

of G, we can in O(nm + nh22h log h + nhβH2max(l,r)) time find the clique number of G,

where βH is the number of maximal bicliques of the (l, r)-bipartite graph H, and h = l+r.

150 Chapter 6. H -join Decomposition and Dynamic Programming

In order to deal with H-join operations, which will be viewed as cuts, we will need the

following formalism.

Definition 6.4 (Biclique) A biclique (L, R) of a graph G is defined as two vertex subsets

L and R such that the bipartite adjacency in G between L and R forms a complete

bipartite graph (note that we allow adjacencies inside L and R). If A, B is a 2-partition

of V (G), we denote by βG(A, B) the set of maximal bicliques of G among the bicliques

(L, R) for which L ⊆ A and R ⊆ B (maximal in the ordering where (L1, R1) is defined to

be smaller than (L2, R2) if we have both L1 ⊆ L2 and R1 ⊆ R2, giving a relation which is

a poset over the bicliques of G).

Note that (L, R) is a biclique if and only if (R, L) is a biclique, and that (L, ∅) and

(∅, R) are bicliques for all L and R. Finally, for a graph G, let cl(G) be the size of the

maximum clique of G, and for S ⊆ V (G), let cl(S) = cl(G[S]).

Proposition 6.3 Let G be a graph. Let A, B be a 2-partition of V (G) and let S ⊆ V (G).

Then,

cl(S) = max{cl(KA ∩ S) + cl(KB ∩ S), (KA, KB) ∈ βG(A, B)}.

Proof: That cl(S) is greater than or equal to the value of the right hand-side is straight-

forward since each situation in the right hand-side corresponds to a clique of G[S]. We

prove the converse by exhaustive checking over the cliques of G[S]. Let K be a clique of

G[S]. Clearly, (K ∩ A, K ∩ B) is a biclique of G: let (KA, KB) ∈ βG(A, B) be such that

K ∩ A ⊆ KA and K ∩ B ⊆ KB. Then K ∩ A is a clique of G with K ∩ A ⊆ KA ∩ S: we

deduce |K ∩A| ≤ cl(G[KA∩S]). To conclude, notice that the same holds for B, and that

|K| = |K ∩ A|+ |K ∩B|. �

Note that all bicliques (L, R), with L and R nonempty, of a bipartite graph H with

colour classes V1 ∪ V2 = V (H) follow the cut {V1, V2}. Accordingly, the set of maximal

bicliques of H can be viewed as βH(V1, V2). The following proposition defining the set

of bicliques βG(A, B) of a graph G resulting from an H-join of G[A] and G[B] follows

directly from the definitions.

Proposition 6.4 Let G be a graph, and A, B a 2-partition of V (G). Let H be a bipartite

graph with colour classes V1 ∪ V2 = V (H) with given ordering V1 = (a1, a2, . . . , al) and

V2 = (b1, b2, . . . , br). Let PA = (A0, A1, A2, . . . , Al) and PB = (B0, B1, B2, . . . , Br) be two

ordered partitions of A and B. If G = H-join(G[A], G[B], PA, PB), then

βG(A, B) =

{(
⋃

i∈I

Ai,
⋃

j∈J

Bj

)
, where

(
⋃

i∈I

ai,
⋃

j∈J

bj

)
∈ βH(V1, V2)

}
.

Section 6.3. Dynamic Programming 151

Following Lemma 6.2 we have computed information on Tr such that for any node w of

Tr with children a and b the incident labels of a, b, and w give us the 8 ordered partitions

Pa, Pb, P a, P b, Qa, Qb, Pw, and Pw such that

• G = H-join(G[Sa], G[V (G) \ Sa], Pa, P a),

• G = H-join(G[Sb], G[V (G) \ Sb], Pb, P b),

• G = H-join(G[Sw], G[V (G) \ Sw], Pw, Pw), and

• G[Sw] = H-join(G[Sa], G[Sb], Qa, Qb).

W.l.o.g. let

• Qa = (A′
0, A

′
1, A

′
2, ..., A

′
l) and Qb = (B′

0, B
′
1, B

′
2, ..., B

′
r),

• Pa = (A0, A1, A2, ..., A|Pa|) and Pb = (B0, B1, B2, ..., B|Pb|), and

• Pw = (W0, W1, W2, ..., W|Pw|).

We now describe the bottom-up dynamic programming on Tr to solve MaxClique. Let

us consider that we are computing at the level of node w having children a, b and that

cl(S) is known for all combinations S of parts that are all in Pa or that are all in Pb,

in other words we have I ⊆ {1, 2, ..., |Pa|} and S =
⋃

i∈I Ai or I ⊆ {1, 2, ..., |Pb|} and

S =
⋃

i∈I Bi. Let us briefly describe the data structure needed to store and access cl(S).

If S =
⋃

i∈I Ai is given by a bit-vector representation of I w.r.t. the order of the Ai defined

by Pa, then one can view I as a number written in binary, and cl(S) can then be obtained

in constant time by accessing the I th cell of a table data-structure (this table is of size

2|Pa| ≤ 2max(l,r)). Let us first describe how to compute the maximum clique of the graph

G[Sw], i.e. the graph induced by the vertices of G mapped to leaves of the subtree rooted

at node w of Tr. This value cl(Sw) will be stored in a table at node w and computed

based on the cl values already computed and stored in tables at its children a and b.

For simplicity we do not distinguish explicitly between tables in the formulae that follow,

since it is clear from context where the cl values are stored.

cl(Sw) = max

{
cl(
⋃

i∈I

A′
i) + cl(

⋃

j∈J

B′
j)

}
, where

(
⋃

i∈I

ai,
⋃

j∈J

bj

)
∈ βH(V1, V2).

The proof that this correctly computes cl(Sw) follows from a combination of Propo-

sition 6.3, Proposition 6.4, and the fact that G[Sw] = H-join(G[Sa], G[Sb], Qa, Qb). Note

that from Lemma 6.2 we know that all the needed values have already been computed.

152 Chapter 6. H -join Decomposition and Dynamic Programming

For example, A′
1 is the union of some Ai, and we have already computed a numeral rep-

resentation for that union. Then, every value of cl(
⋃

i∈I A′
i) can be obtained from the

inductive hypothesis by adding all numeral representations of A′
i (i ∈ I): the global sum

will represent the set ΣI with
⋃

i∈ΣI
Ai =

⋃
i∈I A′

i, and we can read the corresponding

cl-value in the ΣI
th cell of the cl-table data structure given by the inductive hypothesis on

Pa. (More precisely: the xor of two bit-vectors is exactly the symmetric difference of the

corresponding sets; in the case (here) where the sets are pairwise disjoint, the symmetric

difference is exactly the union while the xor is exactly the sum.) For complexity issues,

note that the implicit ordering of V (H), Qa, and Qb, implies that for all I, each access to

the numerical representation of each A′
i (for i varying in I) takes constant time. Then,

the computation of ΣI for each I requires O(h) time since |I| ≤ |V (H)|. Accordingly, it

takes O(hβH) time to compute cl(Sw).

Now we need to provide the inductive hypothesis for the parent of w. Namely, we

will need to compute cl(S) for any subset S such that S =
⋃

k∈K Wk for any K ⊆

{1, 2, ..., |Pw|}. Again, from a combination of Proposition 6.3, Proposition 6.4, and the

fact that G[Sw] = H-join(G[Sa], G[Sb], Qa, Qb), the following statement is correct: for all

K ⊆ {1, 2, . . . , |Pw|}, if S =
⋃

k∈K Wk, then

cl(S) = max

{

cl(
⋃

i∈I

A′
i ∩ S) + cl(

⋃

j∈J

B′
j ∩ S)

}

, where

(
⋃

i∈I

ai,
⋃

j∈J

bj

)

∈ βH(V1, V2).

Now, from Lemma 6.2, every Wk is the union of some Ai and some Bj. Moreover,

we have assigned, for each Wk, two numeral representations of respectively Ik and Jk

such that Wk = Wk(a) ∪Wk(b), where Wk(a) =
⋃

i∈Ik
Ai and Wk(b) =

⋃
j∈Jk

Bj. Let us

have a closer look to the right hand side of the above equality. Firstly, for the maximal

biclique (V1, ∅) we need cl(Sa ∩ S) and note that Sa ∩ S =
⋃

k∈K Wk(a) and we can

access its cl-value via ΣK,a =
∑

k∈K Ik and the cl-table data structure provided by the

inductive hypothesis on Pa (like before with the union of some of the A′
i, those Wk(a) are

pairwise disjoint). The same goes for maximal biclique (∅, V2) and cl(Sb ∩ S). Consider
⋃

i∈I A′
i∩S =

⋃
i∈I A′

i∩
⋃

k∈K Wk(a). Recall that we have just computed the value of ΣK,a

such that X =
⋃

k∈K Wk(a) =
⋃

i∈ΣK,a
Ai. Also, from the previous computation of cl(Sw),

we have computed ΣI such that Y =
⋃

i∈I A′
i =

⋃
i∈ΣI

Ai. We now want the value ΣI,K,a

such that X ∩ Y =
⋃

i∈ΣI,K,a
Ai. This can be done by an O(h) scanning. Accordingly, we

can access the cl-value of
⋃

i∈I A′
i ∩ S via ΣI,K,a and the cl-table data structure provided

by the inductive hypothesis on Pa. The same can then be done for
⋃

j∈J B′
j ∩ S. For the

running time, we need O(hβH) time for each K ⊆ {1, 2 . . . , |Pw|}.

Section 6.3. Dynamic Programming 153

Initializing at the leaves of Tr is trivial, since cl(v) = 1 for a vertex v and cl(∅) = 0.

The maximum clique of G is found as cl(V (G)) at the root r of T . Summing up, the

runtime for each node w is in O(hβH2max(l,r)). Hence, the global runtime of the dynamic

programming stage is O(nhβH2max(l,r)). From Lemma 6.2, the runtime for computing the

enhanced information needed to perform the dynamic programming is O(nm+nh22h log h)

and from this Theorem 6.1 follows.

6.3.2 MaxClique of Graphs of Bounded Rankwidth

Let us first give the definition of rankwidth.

Definition 6.5 (Rank-Decomposition) For any graph G, the cut-rank function ρG is

defined over every vertex subset X ⊆ V (G) as the rank of the X × V (G) \X submatrix

of the adjacency matrix of G. For any pair (T, δ) with T a subcubic tree and δ a bijection

between vertices of G and leaves of T , (T, δ) is defined as a width r rank decomposition

of G if for every edge uv in T , the cut-rank of Su is at most r, where Su, Sv is the 2-

partition of V (G) induced by the leaf sets of the two subtrees we get by removing uv from

T . The rankwidth of G is the minimum integer r such that there exists a width r rank

decomposition of G.

Definition 6.6 (Bipartite Graph Rk) For a positive integer k we define a bipartite

graph Rk having for each nonempty subset S of {1, 2, ..., k} a vertex aS ∈ A and a vertex

bS ∈ B, with V (Rk) = A ∪ B. This gives 2k − 1 vertices in each of the colour classes A

and B. Two vertices aS and bS′ are adjacent if and only if |S ∩ S ′| is odd.

Lemma 6.3 The function σG : 2V (G) → N defined by

σG(X) = min{k : G is an Rk-join of G[X] and G[V (G) \X]}

is equal to the cut-rank function ρG.

Proof: Let k = ρG(X) be the cut-rank value of X. There are several ways to view

the graph Rk. Before proving the lemma, note the following, where we slightly abuse

the notation of Definition 6.6 by denoting the vertices arising from a one-element subset

S = {i} simply as ai and bi. We denote by Mk the bipartite adjacency matrix of the

bipartite graph Rk, meaning that its rows correspond to the vertices of one colour class

and the columns to those of the other colour class. Suppose that the vertices a1, a2, . . . , ak

are mapped to rows in Mk: again by abuse on the notation, we can view vertex of Rk as

a row/column it is mapped to in Mk. Let aS be a vertex of Rk with S = i1, i2, . . . , ip.

154 Chapter 6. H -join Decomposition and Dynamic Programming

We can prove that in Mk, the row aS is the GF (2)-sum of the rows ai1 , ai2 , . . . , aip: for

every column bS′ of Mk, |S ∩ S ′| is odd iff there is an odd number of the iq (1 ≤ q ≤ p)

which belong to S ′, that is Mk has a 1 in the row aip and column bS′. The same holds

for b1, b2, . . . , bk. Note also that an arbitrary bipartite adjacency matrix is not necessarily

symmetric but it is clear here that

Claim: There is a way to swap the columns and rows of Mk to result in a symmetric

matrix. Also, adding one column and one row to Mk with all 0’s inside will result in a

matrix of rank k of maximum size.

Moreover, let us w.l.o.g. define Mk in such a way that {a1, a2, . . . , ak} are mapped (in this

order) to the first k rows of Mk while {b1, b2, . . . , bk} are mapped to the k first columns.

This way, the first k × k block of Mk is equal to the identity matrix of size k. We define

Lk as the block of Mk made of the first k rows. Clearly, Lk has 2k − 1 columns and has

no column with only 0’s.

We now come to the actual proof of the lemma. We first prove that σG(X) ≤ k.

Let M be the bipartite adjacency matrix induced by X and V (G) \ X in G. A valid

elimination in a matrix is a deletion of a column (resp. a row) when, either the column

(resp. row) is a 0-vector, or the matrix has another column (resp. row) identical to the

one we delete. Let us obtain N from M through a maximal sequence of valid eliminations.

This operation corresponds more or less to the contraction with respect to some external

module partition (to the absence of 0-vectors). Then, in order to prove that G is an

Rk-join of G[X] and G[V (G) \X], it suffices to prove that the bipartite graph GN with

bipartite adjacency matrix N is an induced subgraph of Rk. This will be proved in two

steps.

There cannot be less than k rows in N . If the number of rows in N is exactly k,

then we look at N as a collection of columns. By maximality of the sequence of valid

eliminations, all the latter columns are pairwise distinct and are all non-null. Besides,

if we look at Lk as a collection of columns, then by definition Lk contains all possible

non-null k-bit vectors. Therefore, N (as a collection of columns) is a subset of Lk. Hence,

GN is an induced subgraph of the bipartite graph defined by Lk, and consequently it is an

induced subgraph of Rk. If the number of columns in N is exactly k, then by transposition

we can conduct a similar argument to conclude.

Otherwise we take k rows of N which induce a k-basis of the matrix N . Putting those

k rows together results in a matrix Z of k rows. Besides, the other rows of N are linear

combinations of those k rows. Therefore, the columns of Z are pairwise distinct otherwise

there would be identical columns in N , which contradicts the maximality of the sequence

of valid eliminations. Then, the previous argument applies, and every column of Z is a

Section 6.3. Dynamic Programming 155

column of Lk: w.l.o.g. suppose Z is a block of Lk (otherwise swap columns). Let T be a

set of rows which contains all linear combinations of rows of Z. Now, the set of rows of

Mk contains every linear combination of rows of Lk, and Z is a block of Lk. Consequently,

we can suppose w.l.o.g. that T is a block of Mk (otherwise just swap rows). Then, the

bipartite graph GT defined by T is an induced subgraph of Rk. Besides, it is clear that

every row of N belongs to T and GN is an induced subgraph of GT . Hence, GN is an

induced subgraph of Rk.

We now prove that ρG(X) ≤ σG(X). Let l = σG(X). The Rl-join operation of G[X]

and G[V (G)\X] defines two external module partitions P and Q of X and V (G)\X. Let

Y and Z contain one representative vertex per part in respectively P and Q. If there are

isolated vertices in the bipartite graph defined by the bipartite adjacency in G between

Y and Z, then remove them from Y or Z accordingly. Then, the cut-rank value ρG(X)

is equal to the rank of the bipartite adjacency matrix M between the remaining Y and

Z. Clearly, the graph defined by M is an induced subgraph of Rl from Proposition 6.1.

Hence, the cut-rank value ρG(X) cannot exceed the rank of the bipartite adjacency matrix

of Rl, which is equal to l. �

Theorem 6.2 (T, δ) is a width k rank decomposition of G if and only if (T, δ) is an Rk-

join decomposition of G. Thus G is a graph of rankwidth at most k if and only if G is an

Rk-join decomposable graph.

Theorem 6.2 follows from Lemma 6.3 and that Rl is an induced subgraph of Rk for

all l ≤ k. A consequence of Theorem 6.2 is that one can apply the generic dynamic

programming for H-join graphs on graphs of rankwidth bounded by k. Moreover, Rk-join

decompositions are obviously particular cases of H-join decompositions. Then, there is

for example a runtime improvement of Lemma 6.2 for Rk, stated in Lemma 6.4 below.

Actually, the complexity bottle-neck in the generic runtime given in Lemma 6.2 is the

brute-force induced subgraph matching, which runs in O(22k+(k+1)2k+1
) for Rk. Let us

improve the bound to O(k222k2
). Recall that Rk is a bipartite graph having for each

nonempty subset S of {1, 2, ..., k} a vertex aS ∈ A and a vertex bS ∈ B, with V (Rk) =

A ∪ B. Two vertices aS and bS′ are adjacent iff |S ∩ S ′| is odd. Let us solve the induced

subgraph matching of a bipartite graph F to Rk, when we know that F is indeed an

induced subgraph of Rk.

The general idea is to first brute-force compute a GF (2)-basis of the bipartite adja-

cency matrix MF of F . To find one, let us use the characterization where a basis is a

maximal set of linearly independent vectors. We first check the columns: C is initialized

to be an empty list. For every column c of MF do: if C + c is linearly independent

156 Chapter 6. H -join Decomposition and Dynamic Programming

then add c to C. The test whether a set S = {c1, c2, . . . , cp} is linearly independent is

as follows: for every {i1, i2, . . . , ip} with iq ∈ {0, 1} and at least one iq 6= 0 check if

i1c1 + i2c2 + · · · + ipcp = 0; if there is none of such then the answer is positive. The

correctness follows directly from the above characterization of a basis. For complexity

issues, there are at most 2k columns in MF , each of size at most 2k. Besides, the rank of

MF is known to be at most k (i.e. the number p = |S| in the above is at most k). Finally,

checking if i1c1 + i2c2 + · · ·+ ipcp = 0 requires at most p2k time. Hence, we can compute

a basis C = {c1, c2, . . . , cl} of the columns of MF in O(k23k) time. Likewise, we compute

a basis R = {r1, r2, . . . , rl} of the rows of MF in the same runtime.

Each element of C and R actually corresponds to a unique vertex in F : by abuse in the

terminology we says that C and R are vertex subsets of F . The idea now is to solve the

induced subgraph matching of F [C ∪R] and Rk using the brute-force algorithm described

in Remark 6.1. Then, the property where a basis is a spanning set of vectors can be used

to map the remaining vertices of MF to Rk as follows. For every vertex of F that is not

in C ∪R, say w.l.o.g. a column c in MF , we look at the adjacency defined between c and

R, and obtain an l-bit vector. From the bipartite adjacency matrix of F [C ∪ R] and the

latter l-bit vector, find the (unique) linear combination such that i1c1+i2c2+· · ·+ilcl = c.

Let (aS1 , aS2, . . . , aSl
) be the vertices of Rk mapped to (c1, c2, . . . , cl). Then, map c to aS

with S = i1S1∆i2S2∆ . . .∆ilSl, where ∆ is the symmetric difference operation (also-called

xor). The correctness follows from the spanning property of the basis. For complexity

issues, brute-force matching induced subgraph F [C ∪ R] (of F hence) of Rk requires

O(l2 × C l
2k × C l

2k) = O(k222k2
) runtime. Then, finding the l-bit vector requires l time;

finding the linear combination by exhaustive checking all possibilities requires l×2l time;

computing aS requires at most l xor operations on sets of size k, taking at most l × k

time. Hence, the overall complexity is in O(k222k2
). We have shown that

Lemma 6.4 When H = Rk, the runtime given in Lemma 6.2 to find an enhanced version

of Rk-decomposition can be improved to O(nm + nk222k2
).

Besides, an arbitrary bipartite graph H over h vertices can have 2
h
2 pairwise distinct

maximal bicliques, but

Proposition 6.5 For every k ≥ 1, Rk has no more than 22k2
maximal bicliques.

Proof: The cock-tail party graph CP (j, j) (j ≥ 1) is the bipartite complement graph

of an (j, j)-matching bipartite graph. This 2j-vertex graph has exactly 2j maximal bi-

cliques [102]: a maximal biclique is obtained for each combination of a vertex subset of

the first colour class with the set of all vertices of the other colour class which are not

Section 6.3. Dynamic Programming 157

hit by former vertices through the (j, j)-matching. By a theorem of E. Prisner [102], if a

(p, q)-bipartite graph H does not contain CP (j + 1, j + 1) as an induced subgraph, then

H has at most (pq)j maximal bicliques. Now, if Rk has an induced CP (k +1, k +1), then

the rank of the bipartite adjacency matrix of Rk would exceed k. �

Eventually, as a combination of Theorem 6.1, Theorem 6.2, Lemma 6.4, and Proposi-

tion 6.5, we obtain a dynamic programming solving the MaxClique problem on graph of

bounded rankwidth. The solution directly follows along the tree of the rank decomposition

of the graph.

Corollary 6.1 Given an n-vertex m-edge graph G along with a width k rank decomposi-

tion (T, δ) of G, one can solve MaxClique on G in O(nm + n22k2+k+2k

) time.

To conclude, rankwidth is a quite recent graph parameter, introduced by S. Oum and

P. Seymour [96, 100], whose value for a graph is lower than both its cliquewidth and

its branchwidth [99]. Algorithms for NP -hard problems on graphs of bounded rankwidth

have so far relied on dynamic programming on graphs of bounded cliquewidth and the fact

that the cliquewidth of a graph is no more than an exponential function of its rankwidth.

In this chapter we have shown that using the connection to H-join decompositions we can

do dynamic programming directly on the rank decomposition.

There are various questions that can be asked for future research. Can the equivalence

between Rk-join decompositions and rank decompositions of width k be used to find vertex

minors [97] for bounded rankwidth? Can the equivalence be used to find a logical formula

describing rank decompositions of width k? Can the equivalence be used to solve further

problems in FPT time for graphs of bounded rankwidth? Since the rankwidth is relatively

small for large classes of graphs, the most interesting algorithmic problem may be to use

the equivalence to carefully design dynamic programming algorithms for specific problems,

and classes of problems, on graphs of bounded rankwidth. For example, we believe that

with some effort the MaxClique problem could be solved for rankwidth k graphs in time

singly exponential in k.

Concluding Remarks

In the first part of the thesis, we have presented a study on some combinatorial issues

around set families. In order to estimate the number of set families satisfying some closure

axioms, we have developed new tools and techniques to find tree-like representations for

them, with the most interesting tool being probably the general framework for representing

set families using cross-free decomposition trees. It was presented in Chapter 1. Under

this framework, we succeeded in obtaining polynomial results for two new classes of set

families. Each of them could be seen as responsible for a new combinatorial decomposition,

with one being a strict generalization of the modular decomposition of digraphs, and

the other being a strict generalization of the clan decomposition of 2-structures. Both

decompositions are polynomially computable.

In the second part of the thesis, we have presented various algorithmic results on

discrete structures, mostly modelled into graph theoretic problems. The leading idea was

the duality between the divide-and-conquer algorithmic framework and some structural

decomposition of the corresponding input instances. We pointed out how one can find

noteworthy structural properties of the family of vertex subsets which induce connected

subgraphs in a given set of graphs. Using this we gave efficient algorithmic solutions for,

not only the proper computation of the previously mentioned common connected sets

themselves, but also a related computation of the so-called cograph sandwiches. Still

using the same properties, we revisited an algorithm given by T. Uno and M. Yagiura,

(in-)famous for its tough correctness proof.

At the same time, we deepened some structural aspects of this Uno-Yagiura algorithm

and established an intersecting submodular property for a very general framework of

modular decomposition. This was captured in Lemma 5.2 in Chapter 5, and could be seen

as the most representative example of the idea behind the second part of the composition,

namely to derive combinatorial results from the analysis of some tricky algorithms.

Finally, we have, in the closing chapter, attempted to give a general standpoint over

various graph decompositions, ranging from modular, split, and bijoin decompositions, to

clique, NLC-, and rank decompositions. However, on this (hot-)topic, we have restricted

160 Concluding Remarks

our discussion to only some algorithmic issues. We showed how a rank decomposition in

particular, and an H-join decomposition in general, can be made amenable to dynamic

programming solutions for NP -hard optimization problems, such as the problem of finding

the clique number of a given graph.

Turning our attention to perspectives, the purpose of the last chapter is manifold.

Even though our composition was restricted to algorithmic aspects, the framework we

present opens the way for various directions, ranging from basic speed up algorithmic

questions to more complex issues such as those related to graph logic theory and those

related to the well-quasi ordering of graphs w.r.t. the vertex minor relation. The end of

Chapter 6 gave more precisions on those questions.

Besides, fixed-parameter tractable (FPT) algorithmics also presents highly challenging

questions. This research field has close connections to width-based decompositions of

graphs, such as those related to the treewidth, the cliquewidth, and also the rankwidth

measures. In the latter list, rankwidth, though being a very recent notion, owns some

important algorithmic results. It should be interesting to explore more on the impact of

rank decomposition on FPT algorithmic graph theory.

Let us head back to the first part of the thesis, namely to some discrete bijections

over set families in general. A simple, yet hitting, critique of our composition could be

its ubiquitous obsession on two and only two set operations: the overlapping and the

crossing relations. A broader perspective could be the examination of other binary set

operations under a similar framework as that presented in Chapter 1. From a similar

point of view, a second simple remark on our composition is that, not only the classes of

families we address are defined using closure axioms, but also (and more importantly) all

the corresponding axioms are based on only binary set operations. For instance, a union-

difference family is a family which is closed under the union and the difference of its

overlapping members, where the overlapping relation is a relation over pairs of members

of the family. A broader perspective could be the examination of closure axioms using

more arity.

We continue the perspective list with a few words in connection with the very first

paragraph of our composition, in the introduction section. There, we have seen that

collections of collections of objects – so-called set families – allow broader modelling

perspectives than just collections of objects. We have also seen that a large branch of

combinatorics in fact does not address set families in general, but their restriction to

simple graphs, i.e. families of 2-element sets. Accordingly, much as set families go one

step further in modelling than elementary sets, collections of collections of collections of

elementary objects go one step further than set families. This formalism comes under

161

the name of a class of set families. It could be interesting to study such a notion. In

other words, if we have seen how fruitful it is to upgrade from an element to a set, and

subsequently to a family, then it could be interesting to go one step further and upgrade

from a family to a class. Beside this, much as graphs are interesting instances of set

families in combinatorics, classes of graphs could be interesting instances of classes of set

families. Finally, and according to all what has been said, studying problems with input

made by a class of graphs will give a broader modelling perspective than the study of

problems with input made by one graph. It could be interesting to study such problems.

They have connections to the modelling of dynamics of graphs and are related to many

topics of current interest, including some problems in ad-hoc networks, social networks,

and data-mining.

Eventually, we would like to close the thesis in connection with the very last word of

the introduction section, namely the underlined word written using italic font: “finite”.

Actually, it is a matter of fact that all discrete structures which have been addressed in

the composition are finite. It could be interesting to investigate the infinite case, e.g., the

study of how to generalize the sesquimodular decomposition scheme to infinite graphs.

Bibliography

[1] L. Alonso, E. Reingold, and R. Schott. Multidimensional Divide-and-Conquer

Maximin Recurrences. SIAM Journal on Discrete Mathematics, 8(3):428–447, 1995.

[2] M.-P. Béal, A. Bergeron, S. Corteel, and M. Raffinot. An algorithmic view of gene

teams. Theoretical Computer Science, 320(2-3):395–418, 2004.

[3] S. Bérard, A. Bergeron, and C. Chauve. Conservation of combinatorial structures

in evolution scenarios. In 8th Annual International Conference on Computational

Molecular Biology (RECOMB’04), volume 3388 of LNCS, pages 1–14, 2004.

[4] A. Bergeron, C. Chauve, F. de Montgolfier, and M. Raffinot. Computing Com-

mon Intervals of K Permutations, with Applications to Modular Decomposition of

Graphs. In 13th Annual European Symposium on Algorithms (ESA’05), volume

3669 of LNCS, pages 779–790, 2005.

[5] A. Bergeron and J. Stoye. On the Similarity of Sets of Permutations and its Applica-

tions to Genome Comparison. In 9th Annual International Conference on Comput-

ing and Combinatorics (COCOON’03), volume 2697 of LNCS, pages 68–79, 2003.

[6] A. Bernáth. A note on the directed source location algorithm. Technical Report

TR-2004-12, Egerváry Research Group, Budapest, 2004. www.cs.elte.hu/egres.

[7] M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan. Time bounds for selection.

Journal of Computer and System Science, 7(2):36–44, 1973.

[8] H. Bodlaender. Treewidth: Characterizations, Applications, and Computations. In

32nd International Workshop on Graph-Theoretic Concepts in Computer Science

(WG’06), volume 4271 of LNCS, pages 1–14, 2006.

[9] K. Bogart, P. Fishburn, G. Isaak, and L. Langley. Proper and unit tolerance graphs.

Discrete Applied Mathematics, 60:99–117, 1995.

164 Bibliography

[10] R. Borie, R. Parker, and C. Tovey. Solving problems on recursively constructed

graphs. To appear in ACM Computing Surveys.

[11] C. Bornstein, C.M.H. de Figueiredo, and V.G.P. de Sá. The pair completion algo-

rithm for the homogeneous set sandwich problem. Information Processing Letters,

98(3):87–91, 2006.

[12] V. Bouchitté and I. Todinca. Treewidth and Minimum Fill-in: grouping the Minimal

Separators. SIAM Journal on Computing, 31(1):212–232, 2001.

[13] F. Boyer, A. Morgat, L. Labarre, J. Pothier, and A. Viari. Syntons, metabolons

and interactons: an exact graph-theoretical approach for exploring neighbourhood

between genomic and functional data. Bioinformatics, 21(23):4209–4215, 2005.

[14] B. Bui Xuan, A. Ferreira, and A. Jarry. Computing Shortest, Fastest, and Foremost

Journeys in Dynamic Networks. International Journal of Foundations of Computer

Science, 14(2):267–285, 2003.

[15] B.-M. Bui-Xuan and M. Habib. A Representation Theorem for Union-Difference

Families and Application. In 8th Latin American Theoretical Informatics

(LATIN’08), volume 4957 of LNCS, pages 492–503, 2008.

[16] B.-M. Bui-Xuan, M. Habib, V. Limouzy, and F. de Montgolfier. Algorithmic As-

pects of a General Modular Decomposition Theory. Discrete Applied Mathematics:

special issue of the 3rd conference on Optimal Discrete Structures and Algorithms

(ODSA’06), to appear.

[17] B.-M. Bui Xuan, M. Habib, V. Limouzy, and F. de Montgolfier. Homogeneity

vs. Adjacency: generalising some graph decomposition algorithms. In 32nd Inter-

national Workshop on Graph-Theoretic Concepts in Computer Science (WG’06),

volume 4271 of LNCS, pages 278–288, 2006.

[18] B.-M. Bui-Xuan, M. Habib, V. Limouzy, and F. de Montgolfier. Unifying two

Graph Decompositions with Modular Decomposition. In 18th Annual International

Symposium on Algorithms and Computation (ISAAC’07), volume 4835 of LNCS,

pages 52–64, 2007.

[19] B.-M. Bui Xuan, M. Habib, and C. Paul. Revisiting T. Uno and M. Yagiura’s Al-

gorithm. In 16th Annual International Symposium of Algorithms and Computation

(ISAAC’05), volume 3827 of LNCS, pages 146–155, 2005.

165

[20] B.-M. Bui-Xuan, M. Habib, and C. Paul. Competitive Graph Searches. Theoretical

Computer Science, 393(1-3):72–80, 2008.

[21] B.-M. Bui-Xuan, M. Habib, and M. Rao. Representation Theorems for two Set

Families and Applications to Combinatorial Decompositions. Extended abstract

in Proceedings of the International Conference on Relations, Orders and Graphs:

Interaction with Computer Science (ROGICS’08), Nouha editions, pages 532–546,

2008.

[22] B.-M. Bui-Xuan and J. A. Telle. H-join and dynamic programming on graphs of

bounded rankwidth. Abstract presented in the Workshop on Graph Decomposition:

Theoretical, Algorithmic and Logical Aspects, 2008.

[23] C. Capelle. Block Decomposition of Inheritance Hierarchies. In 23rd International

Workshop on Graph-Theoretic Concepts in Computer Science (WG’97), volume

1335 of LNCS, pages 118–131, 1997.

[24] C. Capelle. Décomposition de Graphes et Permutations Factorisantes. PhD thesis,

Université Montpellier II, 1997.

[25] C. Capelle, M. Habib, and F. de Montgolfier. Graph decomposition and factorizing

permutations. Discrete Mathematics and Theoretical Computer Science, 5(1):55–70,

2002.

[26] M. Cerioli, H. Everett, C.M.H. de Figueiredo, and S. Klein. The homogeneous set

sandwich problem. Information Processing Letters, 67(1):31–35, 1998.

[27] M. Chein, M. Habib, and M.-C. Maurer. Partitive hypergraphs. Discrete Mathe-

matics, 37(1):35–50, 1981.

[28] D. Cohen, M. Cooper, and P. Jeavons. Generalising Submodularity and Horn

clauses: Tractable optimization problems defined by tournament pair multimor-

phisms. Technical Report CS-RR-06-06, Oxford University, 2006.

[29] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT

Press, 1990.

[30] D. Corneil and U. Rotics. On the Relationship Between Clique-Width and

Treewidth. SIAM Journal on Computing, 34(4):825–847, 2005.

166 Bibliography

[31] F. Coulon and M. Raffinot. Identification of maximal common connected sets of

interval graphs and tree forests. In 1st International Conference on Algorithms

and Computational Methods for Biochemical and Evolutionary Networks (Comp-

BioNets’04), 2004. To appear.

[32] F. Coulon and M. Raffinot. Fast algorithms for identifying maximal common con-

nected sets of interval graphs. Discrete Applied Mathematics, 154(12):1709–1721,

2006.

[33] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph gram-

mars. Journal of Computer and System Sciences, 46(2):218–270, 1993.

[34] B. Courcelle and M. Kanté. Graph Operations Characterizing Rank-Width and

Balanced Graph Expressions. In 33rd International Workshop on Graph-Theoretic

Concepts in Computer Science (WG’07), volume 4769 of LNCS, pages 66–75, 2007.

[35] B. Courcelle, J. Makowsky, and U. Rotics. Linear Time Solvable Optimization

Problems on Graphs of Bounded Clique-Width. Theory of Computing Systems,

33(2):125–150, 2000.

[36] B. Courcelle and S. Oum. Vertex-minors, monadic second-order logic, and a con-

jecture by Seese. Journal of Combinatorial Theory, Series B, 97(1):91–126, 2007.

[37] A. Cournier and M. Habib. A new linear algorithm for modular decomposition. In

Trees in algebra and programming (CAAP’94), volume 787 of LNCS, 1994.

[38] C. Crespelle. Représentation dynamiques de graphes. PhD thesis, Université Mont-

pellier II, 2007.

[39] W. Cunningham. A combinatorial decomposition theory. PhD thesis, University of

Waterloo, 1973.

[40] W. Cunningham. Decomposition of submodular functions. Combinatorica, 3(1):53–

68, 1983.

[41] W. Cunningham and J. Edmonds. A combinatorial decomposition theory. Canadian

Journal of Mathematics, 32:734–765, 1980.

[42] E. Dahlhaus. Parallel algorithms for hierarchical clustering, and applications to split

decomposition and parity graph recognition. Journal of Algorithms, 36(2):205–240,

2000.

167

[43] E. Dahlhaus, J. Gustedt, and R. McConnell. Efficient and practical algorithms for

sequential modular decomposition. Journal of Algorithms, 41(2):360–387, 2001.

[44] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational

geometry. Springer-Verlag, 1991.

[45] E. Dinitz, A. Karzanov, and M. Lomonosov. On the structure of a family of minimal

weighted cuts in a graph. In A. Pridman (Ed.), Studies in Discrete Optimization,

Nauka, Moscow, pages 290–306, 1976. (in Russian).

[46] J. Edmonds and R. Giles. A min-max relation for submodular functions on graphs.

Annals of Discrete Mathematics, 1:185–204, 1977.

[47] A. Ehrenfeucht, T. Harju, and G. Rozenberg. The Theory of 2-Structures - A

Framework for Decomposition and Transformation of Graphs. World Scientific,

1999.

[48] A. Ehrenfeucht and G. Rozenberg. Theory of 2-structures. Theoretical Computer

Science, 3(70):277–342, 1990.

[49] D. Eppstein, G. Italiano, R. Tamassia, R. Tarjan, J. Westbrook, and M. Yung.

Maintenance of a minimum spanning forest in a dynamic plane graph. Journal of

Algorithms, 13:33–54, 1992.

[50] M. Everett and S. Borgatti. Regular Equivalence: General Theory. Journal of

Mathematical Sociology, 18:29–52, 1994.

[51] S. Felsner. Tolerance graphs and orders. Journal of Graph Theory, 28(3):129–140,

1998.

[52] J. Fiala and D. Paulusma. A complete complexity classification of the role assign-

ment problem. Theoretical Computer Science, 349(1):67–81, 2005.

[53] M. Figeac and J.-S. Varré. Sorting by reversals with common intervals. In 4th

International Workshop on Algorithms in Bioinformatics (WABI’04), volume 3240

of LNBI, pages 26–37, 2004.

[54] T. Fleiner and T. Jordán. Coverings and structure of crossing families. Mathematical

Programming, 84(3):505–518, 1999.

[55] J.-L. Fouquet, M. Habib, F. de Montgolfier, and J.-M. Vanherpe. Bimodular Decom-

position of Bipartite Graphs. In 30th International Workshop on Graph-Theoretic

168 Bibliography

Concepts in Computer Science (WG’04), volume 3353 of LNCS, pages 117–128,

2004.

[56] S. Fujishige. Canonical decompositions of symmetric submodular systems. In Graph

Theory and Algorithms, volume 108 of LNCS, pages 53–64, 1981.

[57] S. Fujishige. Structures of polyhedra determined by submodular functions on cross-

ing families. Mathematical Programming, 29(2):125–141, 1984.

[58] H. Gabow. Centroids, Representations, and Submodular Flows. Journal of Algo-

rithms, 18(3):586–628, 1995.

[59] J. Gagneur, R. Krause, T. Bouwmeester, and G. Casari. Modular decomposition of

protein-protein interaction networks. Genome Biology, 5(8), 2004.

[60] A.-T. Gai. Algorithmes de Partitionnement: Minimisation d’Automates et Appli-

cations aux Graphes. MSc thesis, Université Montpellier II, 2003.

[61] A.-T. Gai, M. Habib, C. Paul, and M. Raffinot. Identifying Common Connected

Components of Graphs. Technical Report RR-LIRMM-03016, LIRMM, Université

de Montpellier II, 2003.

[62] T. Gallai. Transitiv orientierbare Graphen. Acta Mathematica Academiae Scien-

tiarum Hungaricae, 18:25–66, 1967.

[63] M. Golumbic, H. Kaplan, and R. Shamir. Graph Sandwich Problems. Journal of

Algorithms, 19:449–473, 1995.

[64] M. Habib. Substitution des structures combinatoires. Théorie et algorithmes. Thèse

d’état, Université Pierre et Marie Curie, 1981.

[65] M. Habib, F. de Montgolfier, and C. Paul. A simple linear-time modular decompo-

sition algorithm. In 9th Scandinavian Workshop on Algorithm Theory (SWAT’04),

volume 3111 of LNCS, pages 187–198, 2004.

[66] M. Habib, M. Huchard, and J. Spinrad. A linear algorithm to decompose inheritance

graphs into modules. Algorithmica, 13(6):573–591, 1995.

[67] M. Habib, C. Paul, and M. Raffinot. Common connected Components of Interval

Graphs. In 15th Annual Symposium on Combinatorial Pattern Matching (CPM’04),

volume 3109 of LNCS, pages 347–358, 2004.

169

[68] M. Habib, C. Paul, and L. Viennot. Partition refinement techniques: An interesting

algorithmic tool kit. International Journal of Foundations of Computer Science,

10(2):147–170, 1999.

[69] S. Heber and J. Stoye. Finding all common intervals of k permutations. In 12th

Annual Symposium on Combinatorial Pattern Matching (CPM’01), volume 2089 of

LNCS, pages 207–218, 2001.

[70] M. Henzinger and V. King. Randomized dynamic graph algorithms with poly-

logarithmic time per operation. In 27th Annual ACM Symposium on Theory of

Computing (STOC’95), volume 787, pages 519–527, 1995.

[71] P. Hliněný and S. Oum. Finding Branch-Decompositions and Rank-Decompositions.

In 15th Annual European Symposium on Algorithms (ESA’07), volume 4698 of

LNCS, pages 163–174, 2007.

[72] P. Hliněný, S. Oum, D. Seese, and G. Gottlob. Width Parameters Beyond Tree-

width and Their Applications. The Computer Journal, 51(3):326–362, 2008.

[73] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-

dynamic algorithms for connectivity, minimum spanning tree, 2−edge, and bicon-

nectivity. In 30th Annual ACM Symposium on Theory of Computing (STOC’98),

pages 79–89, 1998.

[74] W.-L. Hsu and T.-M. Ma. Substitution decomposition on chordal graphs and ap-

plications. In 2nd International Symposium on Algorithms (ISA’91), volume 557 of

LNCS, pages 52–60, 1991.

[75] W.-L. Hsu and R. McConnell. PC-trees and circular-ones arrangements. Theoretical

Computer Science, 296:99–116, 2003.

[76] M. Huchard. Sur quelques questions algorithmiques de l’héritage multiple. PhD

thesis, Université Montpellier II, 1992.

[77] J. Johnson. Polynomial time recognition and optimization algorithms on special

classes of graphs. PhD thesis, Vanderbilt University, 2003.

[78] T. Király. Edge-connectivity of undirected and directed hypergraphs. PhD thesis,

Eötvös Loránd University, 2003.

[79] J. Kleinberg and É. Tardos. Algorithm Design. Pearson/Addison-Wesley, 2005.

170 Bibliography

[80] G. Landau, L. Parida, and O. Weimann. Using PQ trees for comparative genomics.

In 16th Annual Symposium on Combinatorial Pattern Matching (CPM’05), volume

3537 of LNCS, 2005.

[81] J.-M. Lanlignel. Autour de la décomposition en coupes. PhD thesis, Université

Montpellier II, 2001.

[82] Z. Li and E. Reingold. Solution of a divide-and-conquer maximin recurrence. SIAM

Journal on Computing, 18(6):1188–1200, 1989.

[83] V. Limouzy. Thesis in preparation, Université Paris VII Diderot.

[84] R. Lipton and R. Tarjan. Applications of a planar separator theorem. SIAM Journal

on Computing, 9(3):615–627, 1980.

[85] F. Maffray and M. Preissmann. A translation of Tibor Gallai’s paper: Transitiv

orientierbare Graphen. In Perfect Graphs, pages 25–66. J. Wiley, 2001.

[86] R. McConnell and F. de Montgolfier. Algebraic Operations on PQ Trees and Mod-

ular Decomposition Trees. In 31st International Workshop on Graph-Theoretic

Concepts in Computer Science (WG’05), volume 3787 of LNCS, pages 421–432,

2005.

[87] R. McConnell and F. de Montgolfier. Linear-time modular decomposition of directed

graphs. Discrete Applied Mathematics, 145(2):189–209, 2005.

[88] R. McConnell and J. Spinrad. Linear-time modular decomposition and efficient

transitive orientation of comparability graphs. In 5th Annual ACM-SIAM Sympo-

sium on Discrete Algorithms (SODA’94), pages 536–545, 1994.

[89] R. McConnell and J. Spinrad. Modular decomposition and transitive orientation.

Discrete Mathematics, 201:189–241, 1999. Extended abstract at SODA’94.

[90] K. Mehlhorn. Data Structures and Efficient Algorithms. Springer Verlag, EATCS

Monographs, 1984.

[91] R. Möhring. Algorithmic aspects of the substitution decomposition in optimization

over relations, set systems and boolean functions. Annals of Operations Research,

6:195–225, 1985.

[92] R. Möhring and F. Radermacher. Substitution decomposition for discrete structures

and connections with combinatorial optimization. Annals of Discrete Mathematics,

19:257–356, 1984.

171

[93] F. de Mongolfier and M. Rao. The bi-join decomposition. 2005.

http://hal.archives-ouvertes.fr/hal-00132862/.

[94] F. de Montgolfier. Décomposition modulaire des graphes. Théorie, extensions et

algorithmes. PhD thesis, Université Montpellier II, 2003.

[95] S. Nikolopoulos and L. Palios. Minimal separators in P4-sparse graphs. Discrete

Mathematics, 306(3):381–392, 2006.

[96] S. Oum. Graphs of Bounded Rank-width. PhD thesis, Princeton University, 2005.

[97] S. Oum. Rank-width and vertex-minors. Journal of Combinatorial Theory, Series

B, 95(1):79–100, 2005.

[98] S. Oum. Rank-width and Well-quasi-ordering. SIAM Journal on Discrete Mathe-

matics, 22(2):666–682, 2008.

[99] S. Oum. Rank-width is less than or equal to branch-width. Journal of Graph Theory,

57(3):239–244, 2008.

[100] S. Oum and P. Seymour. Approximating clique-width and branch-width. Journal

of Combinatorial Theory, Series B, 96(4):514–528, 2006.

[101] C. Paul. Aspects algorithmiques de la décomposition modulaire. Habilitation thesis,

Université Montpellier II, 2006.

[102] E. Prisner. Bicliques in Graphs I: Bounds on Their Number. Combinatorica,

20(1):109–117, 2000.

[103] M. Rao. Décomposition de graphes et algorithmes efficaces. PhD thesis, Université

Paul Verlaine, Metz, 2006.

[104] N. Robertson and P. Seymour. Graph minors. X. Obstructions to tree-

decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.

[105] A. Schrijver. Proving total dual integrality with cross-free families - A general

framework. Mathematical Programming, 29(1):15–27, 1984.

[106] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer-

Verlag, 2003.

[107] D. Seinsche. On a property of the class of n-colorable graphs. Journal of Combina-

torial Theory, Series B, pages 191–193, 1974.

172 Bibliography

[108] M. Tedder, D. Corneil, M. Habib, and C. Paul. Simple, Linear-Time Modular

Decomposition. In 35th International Colloquium on Automata, Languages and

Programming (ICALP’08), volume 5125 of LNCS, pages 634–645, 2008.

[109] I. Todinca. Aspects algorithmiques des triangulations minimales des graphes. PhD

thesis, École Normale Supérieure de Lyon, 1999.

[110] I. Todinca. Décompositions arborescentes de graphes : calcul, approximations,

heuristiques. Habilitation thesis, Université d’Orléans, 2006.

[111] T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two

permutations. Algorithmica, 26(2):290–309, 2000.

[112] E. Wanke. k-NLC Graphs and Polynomial Algorithms. Discrete Applied Mathe-

matics, 54(2-3):251–266, 1994.

[113] D. White and K. Reitz. Graph and Semigroup Homomorphisms on Networks of

Relations. Social Networks, 5:193–234, 1983.

173

Index

2-graph, 51

2-structure, 58

co-structure, 62

symmetric, 58

H-join

decomposition, 144

operation, 143

Pn, 52

Rk, 153

log n neglect, 10

bi-twin, 142

biclique, 150

bidule, 86

bijoin, 65

decomposition, 66

chain, 80

covering, 80

irreducible, 80

clan, 60

decomposition, 61

co-structure, 62

common connected

component, 104

set, 104

common interval, 123

decomposition, 124

irreducible, 127

right-free, 127

competitive graph search, 109, 110

cotree, 62

cross, 16

cut-rank, see rank decomposition

decomposition tree, 19

cross-free, 19

overlap-free, 42

divide-and-conquer

algorithm, 107

principle, 97

Edmonds-Giles representation, 17

Edmonds-Giles theorem, 30

external module partition, 144

factoring permutation, 124

of a graph, 132

family, 15

X closed, 24

basic, 72, 73

bipartitive, 54

circular, 55, 72, 78

complete, 45, 48, 55, 72, 73, 78

cross-X , cross-X closed, 24

cross-free, 16

crossing, 41

intersecting, 37

laminar, see overlap-free

linear, 45, 48, 72, 73, 78

overlap-X , overlap-X closed, 24

overlap-free, 16

partitive, 42

176 Index

partitive crossing, 72

prime, 45, 48, 55, 72, 73, 78

proper and connected, 16, 36

recursive, 79

simply-linked, 46

symmetric crossing, 54

trivially representable, 45, 48

union-difference, 77

weakly bipartitive, 54

weakly partitive, 42

weakly partitive crossing, 72

function of connectivity, see symmetric and

submodular function

genuine-module, 63

graph, 58

Rk, see Rk

cograph, 62

directed graph, 58

path Pn, see Pn

permutation graph, 132

undirected graph, 58

graph sandwich, 115

ground set, 15

guard, 46

homogeneous module, see genuine-module

induced subgraph matching, 146

interval, 56, 123

member, 15

cross-free, 18

overlap-free, 18

quasi-trivial, 22

trivial, 15

modular decomposition

theorem, 60

tree, 59

module, 58

overlap, 16

quotient, 20

cross-free, 20

overlap-free, 44

quotient property, 23

cross-free, 23

overlap-free, 44

quotient-hereditary, 23

cross-free, 23

overlap-free, 44

quotiental parent, 47

arborescence, 47

rank decomposition, 153

cut-rank, 153

rankwidth, 153

realizer, 132

sesquimodular decomposition

theorem, 88

totally decomposable, 89

tree, 87

sesquimodule, 84

set family, see family

split, 66

decomposition, 66

splitter

common interval, 125

genuine-module, 125

module, 125

subcubic tree, 142

submodular function, 65

intersecting, 126

symmetric, 65

177

decomposition, 66

tree-decomposition, 98

treewidth, 98

trivial subset, 15

umodule, 64

unordered-module, see umodule

Notation and Abbreviation

{x1, x2, . . . , xk} set of size k, in particular {x1, x2} = {x2, x1}

(x1, x2, . . . , xk) k-uplet, in particular (x1, x2) 6= (x2, x1)

[x1, x2, . . . , xk] linked list containing k elements, in particular [x1, x2] 6= [x2, x1]

|A|, or #A cardinality of set A

A ⊆ B A is a subset of B, in particular B ⊆ B

A (B A is a subset of B and A 6= B

2X {A, A ⊆ X}

A∆B symmetric difference, namely A∆B = (A \B) ∪ (B \ A)

A ⊎B only when A 6= B, we denote A ⊎ B = A ∪B

A©©B true if A ∩ B 6= ∅, A \B 6= ∅, and B \ A 6= ∅

Ck
n, or

(
n

k

)
binomial coefficient: Ck

n = n!
k!(n−k)!

for 0 ≤ k ≤ n

Z set of integers

N set of integers greater or equal to 0

R set of real numbers

R+ set of real numbers greater or equal to 0

⌊x⌋ when x ∈ R, the floor function is ⌊x⌋ = max{n ∈ Z | n ≤ x}

⌈x⌉ when x ∈ R, the ceiling function is ⌊x⌋ = min{n ∈ Z | n ≥ x}

V (G) when G is a graph, V (G) is the vertex set of G

E(G) when G is a graph, E(G) is the edge set of G

uv, or (u, v) usually denotes the edge between vertices u and v of some graph

N−(v), or N−
G (v) in-neighbours of vertex v in graph G: N−(v) = {u, uv ∈ E(G)}

N+(v), or N+
G (v) out-neighbours of vertex v in graph G: N+(v) = {u, vu ∈ E(G)}

N(v), or NG(v) when G is undirected, neighbours of v: N(v) = N−(v) = N+(v)

d(v), or dG(v) when G is undirected, degree of vertex v: d(v) = |N(v)|

180 Notation and Abbreviation

G[A] when G is a graph, G[A] = (A, E(G) ∩ A×A)

sami∈Ixi sum of all but the max: sami∈Ixi =
∑

i∈I xi −maxi∈I xi

a.k.a. also known as

cf. confer

e.g. exempli gratia

i.e. id est

iff if and only if

resp. respectively

s.t. such that

vs. versus

w.l.o.g. without loss of generality

w.r.t. with respect to

181

Résumé de la thèse

Ce manuscrit de thèse développe certains aspects autour de trois thèmes généraux, sur

la représentation arborescente des familles d’ensembles, les décompositions de graphes,

et les algorithmes de graphes. Les thèmes abordés vont de la combinatoire théorique à

l’algorithmique en bio-informatique, en passant par plusieurs décompositions de graphes

et aussi par l’optimisation combinatoire.

Le manuscrit commence par l’étude de certaines propriétés combinatoires des familles

d’ensembles en général. Afin d’estimer le nombre de familles satisfaisant certains axiomes

de clôture, de nouveaux outils et techniques pour en obtenir des représentations arbores-

centes ont été développés. Un point intéressant ici est l’établissement d’une technique

générale pour représenter une famille quelconque par un arbre. Ceci est rendu possible

en unifiant et étendant plusieurs concepts fondamentaux venant de différents domaines

de la combinatoire, allant de l’arborescence des familles sans croisement d’Edmonds-

Giles (cross-free family en anglais) aux techniques de représentation d’Ehrenfeutch-Harju-

Rozenberg, en passant par deux décompositions de graphes assez connues, dites de Gallai,

et de Cunningham.

Puis, l’étude se poursuit avec une des applications des propriétés ci-dessus : celle

concernant les décompositions de graphes. Pas moins de sept schémas de décomposition

de graphes, dont deux nouveaux, sont développés dans le manuscrit : décomposition

modulaire, décomposition par clans, décomposition en coupes, décomposition en bi-joints,

décomposition de fonctions symétriques et sousmodulaires, décomposition en “modules

véritables” (genuine-modules en anglais), et décomposition en “modules désordonnés”

(unordered-modules en anglais). Ces deux niveaux d’étude (représentation de familles

d’ensembles – décomposition de graphes) occupent entièrement la première moitié du

manuscrit.

La deuxième moitié du manuscrit est consacrée aux applications des décompositions

de graphes dans l’algorithmique de graphes. Trois problèmes algorithmiques seront à

l’étude. Dans chacun des trois, il est montré pourquoi et comment on peut appliquer

l’idée de la décomposition de graphes pour résoudre le problème posé de manière efficace.

184 Résumé de la thèse

Il est également montré comment appliquer les trois solutions proposées pour résoudre

trois autres problèmes d’algorithmique de graphes. Le premier cas étudie les parties

connexes communes à plusieurs graphes, son cas d’application concerne les cographes

sandwich. Le deuxième cas étudie les intervalles communs à plusieurs permutations, son

cas d’application concerne la décomposition modulaire des graphes. Le troisième cas,

enfin, étudie une autre décomposition de graphes, appelée décomposition en H-joints,

son cas d’application concerne la programmation dynamique sur les décompositions par

largeur de rang.

Finalement, notons sur ce dernier point que nous avons introduit récemment le cadre

de décomposition en H-joints comme étant une généralisation unificatrice de plusieurs

décompositions existant en théorie des graphes. Celles-ci comprennent : décomposition

modulaire, décomposition en coupes ou en bi-joints, décomposition par largueur de clique,

par largueur NLC, et par largeur de rang.

Partie 1 : Entre la représentation de familles d’ensembles et les décompositions

L’objectif principal ce cette partie est de trouver des codages efficaces pour représenter

une famille d’ensembles donnée. Une des motivations théoriques pourrait être la suivante.

A partir d’un ensemble X contenant n éléments distincts, on a clairement 22n

choix de

familles de sous-ensembles de X. Pourtant, si la famille satisfaisait quelques axiomes

simples, la situation pourrait être complètement différente. Par exemple, on dit que deux

sous-ensembles A et B se chevauchent si elles ont une intersection non-vide A ∩ B 6= ∅,

ainsi que des différences non-vides A \ B 6= ∅ et B \ A 6= ∅. Ensuite, une famille est

dite laminaire (ou sans chevauchement) s’il n’y a pas deux éléments de la famille qui se

chevauchent. Par élimination, deux éléments disjoints de cette famille ne peuvent qu’être

inclus l’un dans l’autre. Ainsi, en ordonnant les éléments de la famille par inclusion, on

obtient un sous-graphe partiel d’un arbre, dont la racine correspond à X, dont les feuilles

correspondent aux singletons {x} (pour tout x ∈ X), et dont les noeuds internes ont tous

au moins deux fils. Cela implique clairement qu’une famille laminaire sur X contient au

a b

c d

e

gf

a
b

c
d

e

g
f

Une famille laminaire.

185

plus 2n éléments (et, par conséquent, il y a au plus 22n choix d’une telle famille). Dans des

théories de complexité classiques en informatique, un tel saut exponentiel est important

pour des raisons computationelles. Pour cette raison, nous nous intéressons à l’étude de

certaines de ces situations, où une famille d’ensembles admet une représentation, non pas

exponenetielle, mais polynomiale en espace.

L’application principale de notre étude vient de la théorie des graphes. Cela pourrait

parâıtre assez étrange, étant donné que les graphes ne sont que des cas particuliers de

familles d’ensembles : un graphe n’est guère plus qu’une famille de sous-ensembles à

deux éléments, alors pourquoi le détour par les familles quelconques ? Cependant, on

peut premièrement constater que de nombreux schémas de décomposition de graphes

font appel de manière très naturelle à diverses familles de sous-ensembles de sommets

du graphe en question. C’est par exemple le cas pour la décomposition modulaire et la

décomposition en coupes : les deux notions associées, celle d’un module et celle d’une

coupe, ne sont essentiellement que des sous-ensembles de sommets répondant à un certain

axiome d’homogéné̈ıté. Deuxièmement, il est maintenant assez bien connu que l’ensemble

des modules d’un graphe quelconque définit toujours une famille dite partitive, tandis que

celui des coupes d’un graphe connexe définit une famille dite symétrique et “à croissement”

(symmetric crossing family en anglais). A partir de là, la décomposition modulaire et la

décomposition en coupes découlent toutes les deux des résulats de représentation assez

connus pour les familles correspondantes. Pour donner un autre exemple, les familles

d’ensembles interviennent aussi dans la décomposition arborescente et la décomposition

par largeur de clique par l’intermédiare de leurs alternatives : la décomposition par largeur

de branche (d’un graphe) et la décomposition par largeur de rang (d’un graphe). En effet,

ces dernières décompositions sont toutes deux des cas particuliers de la décomposition par

largeur de branche d’une fonction de connectivité. Celle-ci s’adresse à la famille des points

où la fonction admet des valeurs inférieures à un certain seuil fixé. Finalement, l’arbre de

décomposition associé pourra être vu comme une représentation d’une sous-famille de la

famille précédente.

Par ailleurs, l’optimisation combinatoire est aussi un domaine important de la com-

binatoire. Une question fondamentale de ce domaine consiste à calculer l’ensemble des

racines d’une fonction sous-modulaire. Cela permet, entre autres, de résoudre le problème

du flot maximum dans des problématiques liés à l’étude des réseaux (l’équivalence cor-

respondante est bien connue sous le nom de la théorie de la dualité, min-max duality

en anglais). Dans cette thématique, les racines non-vides d’une fonction sous-modulaire

définissent toujours une famille dite à intersection (intersecting family en anglais). Alors,

l’objectif de représenter efficacement une telle famille a joué un rôle principal dans une

186 Résumé de la thèse

1 :

σ : 3 5 7 21 6 8 9 4

1 2 3 4 5 6 7 8 9

1 :

σ : 3 21 9 457 8 6

1 2 3 4 5 6 7 8 9

L’ensemble {5, 6, 8, 7} est un intervalle commun dans ces deux exemples.

classe de solutions au problème ci-dessus, à savoir celui de minimiser les fonctions sous-

modulaires. C’est par exemple le cas pour la décomposition dite d’arbre des ensembles

partiellement ordonnés (tree-of-posets decomposition en anglais).

Les familles d’ensembles ont aussi des applications en bio-informatique. Par exemple,

elles interviennent dans des cas particuliers de problèmes liés à la notion de cluster de

gènes. En effet, limitons-nous au cas où une séquence génomique peut être modélisée par

une permutation sur l’ensemble X contenant tous les gènes de la séquence. Alors, un

intervalle est défini comme un ensemble de gènes se succédant dans l’ordre défini par la

permutation. Ensuite, étant donné un ensemble de plusieurs séquences génomiques sur

le même ensemble de gènes X, un intervalle commun à ces séquences est défini comme

un sous-ensemble de X qui est intervalle pour chacune des séquences considérées. Cette

notion est considérée comme étant une des premières tentatives afin de formaliser la notion

d’un cluster de gènes. Ici, il s’avère que les intervalles communs à plusieurs séquences

données définissent toujours une famille dite faiblement partitive. Une conséquence est que

l’on peut utiliser un résultat de représentation bien connu de ces familles pour définir un

schéma de décomposition d’un ensemble quelconque de séquences génomiques en clusters

de gènes de cet ensemble. A partir de là, on peut non seulement dériver un calcul efficace

des intervalles communs, mais aussi étudier leur comportement dynamique vis à vis des

modifications successives sur les séquences génomiques. Ainsi, le premier fait s’applique

directement au calcul des clusters de gènes, tandis que le dernier fait s’avère fondamental

pour le calcul de la distance dite de renversements dans l’évolution des espèces.

Quelques autres exemples de décompositions de structures discrètes où un résultat de

représentation efficace d’un certain type de familles d’ensembles joue un rôle central pour-

raient être : décomposition canonique de fonctions de connectivité [56], décomposition de

187

fonctions sous-modulaires et en particulier décomposition de matröıdes [40], décomposition

par clans de 2-structures [48], décomposition par blocs de graphes d’héritage [23, 66,

76], décomposition bimodulaire de graphes bipartis [55], décomposition en bi-joints de

graphes [93], et décomposition en modules non-ordonnés de tournois [18].

Dans cette première partie du manuscrit, une des questions centrales est d’appréhender

la distance (en terme de complexité en espace) entre une famille sur un ensemble X

et l’ensemble X lui-même. Rappelons ici qu’une famille laminaire sur X a le même

comportement (en complexité en espace) que X lui-même, à savoir qu’elle ne peut avoir

plus de 2×|X| éléments. Alors, une manière équivalente de poser la question est d’établir

les familles laminaires comme référence et d’évaluer les autres familles en fonction de

celles-ci. Par ailleurs, d’après un théorème assez connu en optimisation combinatoire,

dû à J. Edmonds et R. Giles, les familles laminaires sont en bijection avec des arbres.

Ainsi, une troisième manière de poser la question est aussi d’étudier la distance entre une

famille d’ensembles et une structure d’arbre. Outre cette question à triple formulation,

cette partie du manuscrit développe également ce qui a été dit précédemment à propos du

lien entre le problème de représentation des familles d’ensembles et celui de décomposition

des graphes.

Un bref résumé du contenu de cette partie du manuscrit pourrait être comme suit.

Le chapitre d’ouverture construit la base pour la méthode de représentation que nous

allons utiliser à travers le manuscrit entier. A cette fin, nous présentons de nouveaux outils

et techniques pour trouver une représentation arborescente d’une famille d’ensembles

quelconque. Ceux-ci englobent et étendent certains concepts fondamentaux venant des

domaines différents de la combinatoire, allant de l’arborescence de familles sans croisement

d’Edmonds-Giles (cross-free family en anglais) [46] aux techniques d’Ehrenfeucht-Harju-

Rozenberg pour décomposer les graphes en général [47]. Outre ceci, ce chapitre comporte

également une brève discussion sur certains résultats simples pour le problème de la

représentation des familles d’ensembles. Enfin, le chapitre se termine avec deux tableaux

récapitulatifs de tous les résultats de représentation abordés dans l’ensemble du manuscrit.

Le Chapitre 2 commence par rappeler quelques résultats de représentation déjà établis,

ainsi que certaines de leur applications en décomposition de graphes. En particulier, le

chapitre détaille un des résultats de représentation les plus efficaces pour les familles à

intersection. Ces familles sont importantes pour minimiser les fonctions sous-modulaires.

Par ailleurs, le chapitre passe en revue de manière détaillée un résultat très classique à

propos des familles partitives (cf. Chein-Habib-Maurer [27] et Möhring-Radermacher [92]),

ainsi qu’un autre résultat classique à propos des familles symétrique et à croisement (cf.

Cunningham-Edmonds [39, 41]). Alors que les familles partitives sont fondamentales pour

188 Résumé de la thèse

la décomposition modulaire des graphes (cf. Gallai [62]), les familles symétrique et à croise-

ment sont importantes pour minimiser les fonctions de connectivité (ceci est folklore). En

même temps, le chapitre passe une deuxième fois sur le résultat à propos des familles

partitives et présente une approche alternative pour obtenir la même représentation. La

motivation est que, contrairement à l’approche classique, l’alternative en question suit le

cadre général décrit dans le Chapitre 1. Quant aux familles symétriques et à croisement,

le cadre présenté au Chapitre 1 englobe déjà l’approche classique de W. Cunningham et

J. Edmonds. A partir de là, ce qui a été développé dans le Chapitre 1 pourrait être vu

comme une unification sous le même formalisme de diverses approches pour représenter les

familles d’ensembles. Le Chapitre 2 se termine par une série d’applications des résultats

de représentation ci-dessus en décomposition de graphes. Ici, la liste des applications

comprend pas moins de sept schémas de décomposition de diverses structures discrètes

(on peut aussi dériver cette liste de la table des matières). Bien que la plupart de ces

schémas proviennent de travaux antérieurs sur le sujet, deux d’entre eux proviennent de

nos activités au cours de la période de thèse. Cependant, nous n’allons pas les développer

dans le manuscrit (voir [83] pour plus de détails).

Le troisième et dernier chapitre de cette partie est consacré à deux résultats récents.

Pour les introduire, rappelons que deux ensembles se chevauchent s’ils ont une inter-

section non-vide et s’ils ne sont pas inclus l’un dans l’autre. Ici, nous disons de plus

que deux sous-ensembles d’un ensemble X se croisent s’ils se chevauchent ainsi que leur

complémentaires dans X. Ensuite, une famille d’ensembles est appelée faiblement à croise-

ment partitif si elle est close par union, intersection, et différence d’éléments se croisant.

Par ailleurs, une famille d’ensembles est appelée à union-différence si elle est close par

union et différence d’éléments se chevauchant. Ce chapitre présente une représentation

en espace linéaire, resp. quadratique, pour les familles faiblement à croisement partitif,

resp. les familles à union-différence. Ces résultats suivent l’approche devéloppée dans le

Chapitre 1. Le chapitre se termine avec la présentation de deux nouveaux schémas de

décomposition combinatoire. Par abus de langage, nous les appellerons par le même nom

de décomposition en sesquimodules. L’un des deux est une généralisation stricte de la

décomposition modulaire de graphes orientés, tandis que l’autre est une généralisation

stricte de la décomposition par clans de 2-structures. Les deux notions associées d’arbre

de décomposition peuvent être calculées en temps polynomial.

Partie 2 : Entre les décompositions et les algorithmes diviser-pour-régner

Diviser-pour-régner est un principe stratégique qui a une longue histoire dans la

littérature populaire. Il apparâıt dans plusieurs oeuvres allant de Sun Tzu à Niccolò

189

Machiavelli, et plus récemment aussi dans les travaux de René Descartes. Même de nos

jours, il est encore largement utilisé pour se référer à une combinaison de stratégies à la

fois politiques, militaires et économiques. Il consiste à gagner et maintenir le pouvoir en

réduisant des concentrations de pouvoir en éléments qui, pris individuellement, ont moins

de puissance que soi-même. Cependant, cette pratique est rare en réalité, car il est difficile

de briser les structures de pouvoir déjà existantes. Ainsi, le principe diviser-pour-régner,

dans la pratique, se réfère également à sa restriction qui consiste à empêcher les petits

groupes de pouvoir de s’agglomérer.

Ce principe a été introduit en informatique avec la publication de l’algorithme de multi-

plication rapide de Anatolii Karatsuba dans les années soixantes. Dans ce domaine cepen-

dant, ce sera exactement l’aspect originel du principe qui est utilisé. Plus précisément,

le schéma algorithmique dit diviser-pour-régner consiste à diviser le problème à étudier

en plusieurs sous-problèmes, “conquérir” les sous-problèmes par des appels récursifs, et

finalement unir les solutions à ces sous-problèmes en une solution au problème de départ.

Ici, notons qu’il est assez connu que l’un des principaux défauts de l’approche diviser-pour-

régner se manifeste lorsque, pour certains problèmes, un grand nombre de sous-problèmes

cöıncident. Si une telle situation se produit, il est plus intéressant d’utiliser à nouveau la

solution commune à ces sous-problèmes autant de fois que possible. Une telle pratique

est appelée en anglais memoization et peut être considérée comme l’idée fondamentale

de la programmation dynamique. Aussi, les exemples les plus connus des algorithmes

diviser-pour-régner, outre des algorithmes de tri, sont probablement les algorithmes de

programmation dynamique.

Dans l’algorithmique de graphes comme dans tout autre domaine de l’algorithmique,

l’approche diviser-pour-régner exige la condition préalable de savoir comment diviser une

instance de graphe donnée, pas de manière arbitraire, mais d’une manière telle que l’étape

d’unification, après les “conquêtes” des sous-problèmes correspondants, reste possible.

Pour cet objectif, de nombreux outils ont été développés, les plus notoires étant, par

ordre alphabétique : arête-connexité, bloc, coupe, cut-set, flot, isthme, max-flow, min-

cut, séparateur, sommet d’articulation, sommet-connexité. Dans cette liste, les notions

de séparateur et de sommet-connexité sont liés à la notion notoire de décomposition

arborescente. Cette dernière, que l’on appelle quelques fois décomposition par largeur

arborescente, s’obtient en complétant un graphe G en un graphe triangulé H ayant une

clique maximum aussi petite que possible. Ensuite, le graphe triangulé H peut être

associé de manière bijective à un arbre, appelé l’arbre de clique de H . Dans un tel arbre,

les étiquettes des noeuds correspondent aux cliques maximales du graphe triangulé, tandis

que les étiquettes des arêtes s’obtiennent en prenant l’intersection des étiquettes de ses

190 Résumé de la thèse

deux noeuds ajacents. En fin de compte, la largeur arborescente de G est définie comme

la taille maximum d’une clique de H moins un, tandis que l’arbre de clique d’un tel graphe

H définit ce que l’on appelle une décomposition arborescente de G.

En fait, à partir de n’importe quelle décomposition arborescente de G, il y a une

transformation simple pour obtenir une décomposition T satisfaisant la propriété suivante,

qui est essentielle pour l’algorithmique : l’étiquette d’une arête de T est toujours un

séparateur minimal de G (voir, e.g., [8] pour une vue d’ensemble, ou [12, 109, 110] pour

plus de détails sur les séparateurs). Un exemple pourrait être:

a

b

c

e

d

f

g

h

a

b

c

e

d

f

g

h

a

b

c

e

d

f

g

h

a d
c

c
e

b

d
ec d

e f

d f

h

g

e f

a
c

cb

d
ec d

e f

f

h

g

f

c

c

f

f

de

de
dc

ce ef

d f

i.

ii.

iii.

i. Un graphe G. ii. Une décomposition arborescente de G. iii. Une décomposition
arborescente de G qui n’induise que des séparateurs minimaux de G.

Or, un séparateur d’un graphe connexe G est par définition un sous-ensemble de

sommets dont la suppression déconnecte G en plusieurs morceaux. Cela s’avère être un

moyen pratique pour permettre l’application des techniques diviser-pour-régner. Ainsi,

de nombreux problèmes d’optimisation sur G peuvent être résolus par ces techniques si

une décomposition arborescente de G est donnée (voir, e.g., [8], et aussi [79, Chapter 10.

Extending the Limits of Tractability] pour plus de détails). Dans cette thématique, l’étape

de division dans l’approche diviser-pour-régner découle directement de la décomposition

arborescente, tandis que l’étape d’unification est généralement plus complexe, et constitue

souvent la question à résoudre, comme dans le cas très académique du tri-fusion. Enfin,

il est important de souligner que le même discours s’applique à bien d’autres schémas de

décomposition de graphes. Parmi ceux-ci, notons les cas de la décomposition modulaire,

de la décomposition en coupes, de la décomposition par largeur de branche, ainsi que la

décomposition par largeur de clique.

En même temps, un aspect original dans l’étude des algorithmes diviser-pour-régner

191

vient d’un point de vue inverse de ce qui a été dit. En fait, il arrive que certains algo-

rithmes, bien que théoriquement efficaces, s’avèrent compliqués et, ainsi, peu pratiques.

Par exemple, afin de calculer l’arbre de décomposition modulaire d’un graphe donné, les

premiers algorithmes en temps linéaires ont été trouvés il y a plus d’une décennie [37, 88].

Néanmoins, d’énormes efforts de recherche sont encore faits pour simplifier et/ou donner

des alternatives à ces algorithmes déjà optimaux [108]. Pour donner un autre exemple,

afin d’énumérer tous les intervalles communs à deux permutations, le premier algorithme

en temps linéaire [111] a été trouvé (en 1996) presque une décennie avant la proposi-

tion d’un autre algorithme [4]. Dans certaines de ces situations, l’objectif est d’améliorer

la robustesse de l’algorithme existant et/ou de conduire à une meilleure compréhension

de la structure combinatoire du problème de départ. L’approche originale ici consiste à

examiner les propriétés “algébriques” des algorithmes existants dans le but de trouver

des propriétés combinatoires du problème à résoudre. En d’autres termes, une étude plus

approfondie de certains algorithmes pourrait contribuer à la découverte de résultats combi-

natoires nouveaux et inattendus. En particulier, si l’algorithme en question suit l’approche

diviser-pour-régner, alors la probabilité de tomber sur un résultat de décomposition sera

augmentée. Ce sera, par exemple, le cas pour ce qui sera présenté dans le Chapitre 5,

où nous allons en fait réviser le susdit algorithme d’énumération des intervalles com-

muns [111] : le schéma de décomposition associé a été proposé dans [19], longtemps

après la découverte de l’algorithme.

La deuxième partie du manuscrit met l’accent sur la dualité mentionnée ci-dessus entre

les décompositions combinatoires et l’établissement des algorithmes. Nous étudions trois

cas. Dans chacun des cas, nous insistons sur les aspects combinatoires du problème, avant

de donner la solution algorithmique correspondante. Une idée-clef de cette partie, comme

expliqué précédemment, réside dans le fait que ces algorithmes reposent sur certaines

propriétés structurelles qui sont sous-jacentes au problème à résoudre. En réalité, il se peut

que ces propriétés structurelles aient été trouvées après la découverte de l’algorithme en

question (e.g., Lemme 5.2 du Chapitre 5). Toutefois, même dans ces cas, nous addressons

les questions combinatoires d’abord, et omettons le débat sur la façon dont l’analyse de

l’algorithme a conduit aux propriétés combinatoires du problème de départ.

La structure de la deuxième partie du manuscrit pourrait se résumer comme suit.

Nous abordons dans le Chapitre 4 deux problèmes de graphes qui viennent de la bio-

informatique : celui de l’énumération des composantes connexes communs à deux graphes

et celui du cographe sandwich. Pour le premier problème nous donnons un algorithme

unique ayant un temps d’exécution qui varie en fonction de la structure de données utilisée.

Ce temps d’exécution, pour toutes les configurations de structures de données à utiliser,

192 Résumé de la thèse

est sous-quadratique en le nombre de sommets et d’arêtes des deux graphes à considérer.

Contrairement au cas du tri-fusion, l’étape d’unification de notre algorithme diviser-pour-

régner est simple, tandis que l’étape de division est plus complexe. Pour atteindre le temps

d’exécution sous-quadratique, nous introduisons un nouveau parcours de graphe, appelé

le parcours compétitif. Ce dernier s’exécute en temps sous-linéaire en la taille de la donnée

de l’algorithme. Ensuite, pour le deuxième problème, à savoir le problème du cographe

sandwich, au lieu d’écrire un algorithme à partir de zéro, nous montrons comment on peut

dériver une solution efficace à ce problème de l’algorithme précédent, par le biais d’une

analyse structurelle des notions correspondantes.

Dans le Chapitre 5, nous détaillons un cas particulier du problème des composantes

connexes communes, celui concernant ce que l’on appelle les intervalles communs à deux

permutations. Nous revisitons un algorithme conçu par T. Uno et M. Yagiura [111], qui se

modifie de manière très simple pour fonctionner en temps linéaire en le nombre d’éléments

des permutations (par l’ajout d’une simple ligne de commande). Bien que l’algorithme

soit simple à implémenter et ait un temps d’exécution très rapide, les aspects théoriques

de l’algorithme Uno-Yagiura ont été assez peu mis en évidence, ce qui a rendu difficile

l’analyse de sa correction et sa complexité. Notre étude examine en détail la correction

et la complexité de cet algorithme. En même temps, nous mettons en évidence de puis-

santes propriétés structurelles des notions impliquées. Entre autres, nous démontrons

dans le Lemme 5.2 une propriété de sous-modularité à intersection (intersecting submodu-

larity en anglais), applicable dans un contexte très général de la décomposition modulaire.

Plusieurs questions liées à la décomposition des intervalles communs sont également dis-

cutées dans le même chapitre. Nous donnons également une application de l’algorithme

Uno-Yagiura dans le calcul de l’arbre de décomposition modulaire d’un graphe quelconque

en temps linéaire (quand une permutation dite factorisante est donnée).

Dans le Chapitre 6, le manuscrit se termine par une tentative de donner un point de

vue unifié de la décomposition modulaire, la décomposition en coupes, la décomposition

en bi-joints, ainsi que de divers progrès récents dans l’algorithmique de graphes dont la

décomposition par largeur de clique, par largeur NLC, et par largeur de rang. Cependant,

nous limitons notre discussion sur ce sujet à certains problèmes algorithmiques autour de

la nouvelle notion de décomposition en H-joints, ainsi que quelques problèmes autour de

la restriction de celle-ci à la décomposition par largeur de rang. Nous montrons comment,

en un temps d’exécution dit à paramètre fixé (FPT-runtime en anglais) avec un seul

tour exponentiel, on peut améliorer la décomposition en H-joints à un objet permettant

l’usage des techniques diviser-pour-régner. Lorsqu’il est appliqué à la décomposition par

largeur de rang, ce temps de calcul admet un seul tour exponentiel en la largeur de rang

193

du graphe de départ. Nous implémentons également notre approche sur l’exemple d’une

programmation dynamique pour résoudre le problème NP -difficile du calcul de la taille

d’une clique maximum d’un graphe quelconque, d’abord en utilisant la décomposition en

H-joints, puis en utilisant son cas particulier d’une décomposition par largeur de rang. A

l’instar des cas de la décomposition arborescente et du tri-fusion, l’étape de division de

notre méthode est simple tandis que celle d’unification consitue le coeur de l’algorithme.

Nos activités jusqu’à ce jour ont amené à des références [14, 15, 16, 17, 18, 19, 20, 21, 22]

(détails ci-dessous). Dans ce manuscrit, nous développons [15, 19, 20, 21, 22]. Nous

mentionnons également [16, 17, 18] sans rentrer dans les détails. Nous n’évoquons pas [14]

dans ce manuscrit.

La plupart des idées présentées dans le Chapitre 1, l’approche alternative présentée

dans le Chapitre 2 pour représenter les familles partitives, deux schémas de décomposition

de ceux présentés à la fin du Chapitre 2, ainsi que tous les résultats présentés dans le

Chapitre 3, sont basés sur [15, 16, 17, 18, 21]. Les Chapitres 4, 5, 6 sont basés respective-

ment sur [19, 20, 22].

[14] B. Bui Xuan, A. Ferreira, and A. Jarry. Computing Shortest, Fastest, and Foremost Journeys in Dynamic Networks.
International Journal of Foundations of Computer Science, 14(2):267–285, 2003.

[15] B.-M. Bui-Xuan and M. Habib. A Representation Theorem for Union-Difference Families and Application. In 8th Latin
American Theoretical Informatics (LATIN’08), volume 4957 of LNCS, pages 492–503, 2008.

[16] B.-M. Bui-Xuan, M. Habib, V. Limouzy, and F. de Montgolfier. Algorithmic Aspects of a General Modular Decom-
position Theory. Discrete Applied Mathematics: special issue of the 3rd conference on Optimal Discrete Structures and
Algorithms (ODSA’06), to appear.

[17] B.-M. Bui Xuan, M. Habib, V. Limouzy, and F. de Montgolfier. Homogeneity vs. Adjacency: generalising some graph
decomposition algorithms. In 32nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG’06),
volume 4271 of LNCS, pages 278–288, 2006.

[18] B.-M. Bui-Xuan, M. Habib, V. Limouzy, and F. de Montgolfier. Unifying two Graph Decompositions with Modular
Decomposition. In 18th Annual International Symposium on Algorithms and Computation (ISAAC’07), volume 4835 of
LNCS, pages 52–64, 2007.

[19] B.-M. Bui Xuan, M. Habib, and C. Paul. Revisiting T. Uno and M. Yagiura’s Algorithm. In 16th Annual International
Symposium on Algorithms and Computation (ISAAC’05), volume 3827 of LNCS, pages 146–155, 2005.

[20] B.-M. Bui-Xuan, M. Habib, and C. Paul. Competitive Graph Searches. Theoretical Computer Science, 393(1-3):72–80,
2008.

[21] B.-M. Bui-Xuan, M. Habib, and M. Rao. Representation Theorems for two Set Families and Applications to Combina-
torial Decompositions. Extended abstract in Proceedings of the International Conference on Relations, Orders and Graphs:
Interaction with Computer Science (ROGICS’08), Nouha editions, pages 532–546, 2008.

[22] B.-M. Bui-Xuan and J. A. Telle. H-join and dynamic programming on graphs of bounded rankwidth. Abstract presented
in the Workshop on Graph Decomposition: Theoretical, Algorithmic and Logical Aspects, 2008.

Abstract

We address some issues around three main topics: on the representation of set families

by a tree, on decompositions of graphs, and on algorithms on graphs. Our study ranges

from theoretical questions in combinatorics to the design of algorithms in computational

biology, and also includes several decomposition schemes of graphs, as well as some issues

in combinatorial optimization.

The first half of the thesis has two foci. Firstly, in order to estimate the number of

set families satisfying some closure axioms, we have developed new tools and techniques

to find tree-like representations for them. Then, we have given some applications of the

previous results in a branch of graph theory called graph decomposition.

The second half of the thesis is devoted to algorithmic applications of set representa-

tions and decompositions to three graph problems. For each of them we show how the

philosophy of decomposition can help to provide efficient solutions. We also show how to

apply our three solutions to solve three other graph problems.

Keywords: set system, cross-free family, graph decompositions, submodular function,

sub-linear representation, divide-and-conquer algorithms, sub-linear complexity, fixed-

parameter tractable algorithms

Résumé

Ce manuscrit de thèse développe certains aspects autour de trois thèmes généraux, sur

la représentation arborescente des familles d’ensembles, les décompositions de graphes, et

les algorithmes de graphes. Les thèmes abordés vont de la combinatoire théorique à

l’algorithmique en bio-informatique, en passant par plusieurs décompositions de graphes

et aussi par l’optimisation combinatoire.

La première moitié du manuscrit développe deux études. D’abord, afin d’estimer

le nombre de familles d’ensembles satisfaisant certains axiomes de clôture, de nouveaux

outils et techniques pour obtenir des représentations arborescentes de celles-ci ont été

développés. Puis, l’étude se poursuit avec une des applications des propriétés ci-dessus :

celle concernant les décompositions de graphes.

La deuxième moitié du manuscrit est consacrée aux applications des décompositions

de graphes dans l’algorithmique de graphes. Trois problèmes algorithmiques seront à

l’étude. Dans chacun des trois, il est montré pourquoi et comment on peut appliquer

l’idée de la décomposition de graphes pour résoudre le problème posé de manière efficace.

Il est également montré comment appliquer les trois solutions proposées pour résoudre

trois autres problèmes d’algorithmique de graphes.

Mots clés : famille d’ensembles, famille sans croisement, décompositions de graphes,

fonction sous-modulaire, représentation sous-linéaire, algorithmes “diviser-pour-régner”,

complexité sous-linéaire, algorithmes à paramètre fixé

Lirmm, 161 Rue Ada 34392 Montpellier Cedex 05, France

