
HAL Id: tel-00338771
https://theses.hal.science/tel-00338771

Submitted on 14 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mesh Compression from Geometry
Thomas Lewiner

To cite this version:
Thomas Lewiner. Mesh Compression from Geometry. Computer Science [cs]. Université Pierre et
Marie Curie - Paris VI, 2005. English. �NNT : �. �tel-00338771�

https://theses.hal.science/tel-00338771
https://hal.archives-ouvertes.fr

Ecole Doctorale : E.D.I.T.E.

THESE

pour obtenir le titre de

Docteur en Sciences
de l’Université Pierre et Marie Curie (Paris VI)

Mention: Informatique

présentée par

Thomas LEWINER

Compression de Maillages à partir de la Géométrie

(Mesh Compression from Geometry)

Thèse dirigée par Jean–Daniel BOISSONNAT

préparée à l’INRIA Sophia Antipolis au sein du Projet Géométrica

et soutenue le 16, Décembre 2005

devant le jury composé de :

J.–D. Boissonnat INRIA — Sophia Antipolis Directeur
J. Rossignac Georgia Tech — Atlanta Rapporteur
D. Cohen–Or Tel Aviv University Rapporteur
P. Frey UPMC — Paris Président
H. Lopes PUC — Rio de Janeiro Examinateur
F. Schmitt ENST — Paris Examinateur
O. Devillers INRIA — Sophia Antipolis Examinateur
F. Lazarus INPG — Grenoble Examinateur

All rights reserved.

Thomas Lewiner

graduated from the Ecole Polytechnique (Paris, France) in
Algebra and Computer Science, and in Theoretical Phy-
sics. He then specialized at the Ecole Supérieure des
Télécommunications (Paris, France) in Signal and Image Pro-
cessing, and in Project Management, while working for Inven-
tel in wireless telecommunication systems based on BlueTooth
technology. He then obtained a Master degree at the Pontif́ıcia
Universidade Católica do Rio de Janeiro in computational to-
pology, and actively participated to the Mathematical depart-
ment’s work for Petrobras.

Bibliographic description
Lewiner, Thomas

Mesh Compression from Geometry / Thomas Lewiner;
adviser: Jean–Daniel Boissonnat.— Paris : Université
Pierre et Marie Curie (Paris VI), 2005 [Projet Géométrica,
INRIA Sophia Antipolis].—

1 vol. (159 p.) : ill. ; 29,7 cm.—

PhD Thesis.— Université Pierre et Marie Curie (Pa-
ris VI) : prepared at the Projet Géométrica, INRIA Sophia
Antipolis.—

Bibliography included.—

1. Computer Science – Thesis. 2. Mesh Compression.
3. Geometry–Driven Compression. 4. Level sets. 5. Isosur-
faces. 6. Isosurface compression. 7. Computational Geo-
metry. 8. Solid Modelling. 9. Data Compaction. I. Le-
winer, Thomas. II. Boissonnat, Jean–Daniel. III. Projet
Géométrica, INRIA Sophia Antipolis. IV. E.D.I.T.E., Uni-
versité Pierre et Marie Curie (Paris VI). V. Mesh Com-
pression from Geometry.

Thomas Lewiner

Mesh Compression from Geometry

Thesis prepared at the Projet Géométrica, INRIA Sophia
Antipolis as partial fulfilment of the requirements for the
degree of Doctor in Philosophy in Computer Science of the
Université Pierre et Marie Curie (Paris VI), and submitted to
the following commission:

J.–D. Boissonnat (Adviser)
INRIA — Sophia Antipolis

J. Rossignac (Referee)
Georgia Tech — Atlanta

D. Cohen–Or (Referee)
Tel Aviv University

P. Frey (President)
UPMC — Paris

H. Lopes (Examinator)
PUC — Rio de Janeiro

F. Schmitt (Examinator)
ENST — Paris

O. Devillers (Examinator)
INRIA — Sophia Antipolis

F. Lazarus (Examinator)
INPG — Grenoble

Paris — 16, Décembre 2005

Acknowledgments

This is my second PhD redaction, and my tribute to the many people who

helped me remains. First of all, my father who motivated me for science and

always supported me, especially in difficult moments, my mother and my grand

mother who made me feel this wonderful familiar environment wherever I was.

I am also particularly grateful to my advisor Jean–Daniel for his support and

encouragements along these three years. He maintained a very open–minded

vision that allowed me to convey many ideas between France and Brazil, and

this has been very fruitful for my professional and personal formation. His

support has been relayed by the everyday work of Agnès and Creuza, the help

of Francis Schmitt in the defence organisation, of Pierre Deransart and Rachid

Deriche from the International Relations of the INRIA, the funding of the

Fondation de l’École Polytechnique, and the access conceded by the Pontif́ıcia

Universidade Católica do Rio de Janeiro. Moreover, I would like to thank

particularly Agnès, Marie–Pierre and Dominique for the help in preparing the

defence, the referees and the jury members for the exceptional attention they

manifested for this work.

This big team that welcomed my projects allowed a wide exchange of

point of views, with the practise of Hélio, Pierre and Sinésio, the experience

of Jean–Daniel, Olivier, Luiz and Geovan, the lights of Marcos, Carlos and

David and the cooperation of my colleagues of both sides: Vińıcius, Wilson,

Marcos, Rener, Alex, Cynthia, Afonso, Jessica, Christina, Francisco, Fabiano,

Marcos and Marie, Luca, David, Marc, Steve, Philippe, Camille, Christophe,

Abdelkrim and Laurent. In particular, I would like to thank Vińıcius for his

great help in the use of his data structure, and Luiz and Hélio for the starting

ideas of at least half of this work.

But the scientific help is not sufficient to achieve this work, and the

emotive support has been crucial for leading it. This constant energy along

these three years came from the presence of my grandmother during the

preparation of this work, the souvenir of Fanny and Simone, the eternal

support of my parents, the complicity of my sisters, brothers–in–law and of

Debora together with the tight friendship of my uncles, ants and cousins. I

also felt this warmness with my friends, and I am happy that this includes

my professors and colleagues, with Albane, JA, Anne–Laure, Juliana(s), Ana

Cristina, Silvana, Tania, Benjamin, Nicolas, David(s), Aurélien, Eric, Mathieu,

Sergio(s), Bernardo, . . .

Résumé

Lewiner, Thomas ; Boissonnat, Jean–Daniel. Compres-
sion de Maillages à partir de la Géométrie. Paris,
2005. 159p. Thèse de Doctorat — Université Pierre et
Marie Curie (Paris VI) : preparée au Projet Géométrica,
INRIA Sophia Antipolis.

Les images ont envahi la plupart des publications et des communications

contemporaines. Cette expansion s’est accélérés avec le développement de

méthodes efficaces de compression spécifiques d’images. Aujourd’hui, la

génération d’images s’appuie sur des objets multidimensionnels produits

à partir de dessins assistés par ordinateurs, de simulations physiques, de

représentations de données ou de solutions de problèmes d’optimisation.

Cette variété de sources motive la conception de schémas dédiés de com-

pression adaptés à des classes spécifiques de modèles. Ce travail présente

deux méthodes de compression pour des modèles géométriques. La première

code des ensembles de niveau en dimension quelconque, de manière directe

ou progressive, avec des taux de compression au niveau de l’état de l’art

pour les petites dimensions. La seconde méthode code des maillages de

n’importe quelle dimension ou topologie, même sans être purs ou variété,

plongés dans des espaces arbitraires. Les taux de compression pour les sur-

faces sont comparables aux méthodes usuelles de compression de maillages

comme Edgebreaker.

Mots–Clefs
Compression de Maillages. Compression orientée par la Géométrie.

Ensembles de Niveau. Isosurfaces. Compression d’Isosurfaces. Géométrie

Algorithmique. Modelage Géométrique. Compression de Données.

Abstract

Lewiner, Thomas ; Boissonnat, Jean–Daniel. Mesh
Compression from Geometry. Paris, 2005. 159p.
PhD Thesis — Université Pierre et Marie Curie
(Paris VI) : prepared at the Projet Géométrica, INRIA
Sophia Antipolis.

Images invaded most of contemporary publications and communications.

This expansion has accelerated with the development of efficient schemes

dedicated to image compression. Nowadays, the image creation process relies

on multidimensional objects generated from computer aided design, physical

simulations, data representation or optimisation problem solutions. This

variety of sources motivates the design of compression schemes adapted to

specific class of models. This work introduces two compression schemes for

geometrical models. The first one encodes level sets in any dimension, in a

direct or progressive manner, with both state of the art compression ratios

for low dimensions. The second one encodes meshes of any dimension and

topology, even non–pure or non–manifold models, embedded in arbitrary

space. The compression ratios for surfaces are comparable with famous mesh

compression methods such as the Edgebreaker.

Keywords
Mesh Compression. Geometry–Driven Compression. Level sets. Iso-

surfaces. Isosurface compression. Computational Geometry. Solid Mod-

elling. Data Compaction.

Contents

I Introduction 11

II Encoding and Compression 19

II.1 Information Representation 19
Coding 19
Information Theory 20
Levels of Information 21

II.2 Arithmetic Coding 22
Arithmetic Coder 22
Algorithms 23
Statistical Modelling 25

II.3 Compression 27
Compaction 28
Direct Compression 28
Progressive Compression 28

III Meshes and Geometry 29

III.1 Simplicial Complexes and Polytopes 29
Simplicial Complexes 30
Local Structure 31
Pure Simplicial Complexes 32
Simplicial Manifolds 32
Polytopes 33

III.2 Combinatorial Operators 34
Euler Operators 34
Handle Operators 36
Stellar Operators 38

III.3 Geometry and Discretisation 39
Subdivision and Smoothing 40
Delaunay Triangulation 41
Multi–Triangulations 42

IV Connectivity–Driven Compression 47

IV.1 Principles 47
Origins 52
Primal or dual remainders 52
Topological Singularities 54

IV.2 The Edgebreaker example 55
CLERS encoding 56
Fast decompression 57
Topology encoding 58
Compression algorithms 61

7 Contents

Decompression algorithms 61

IV.3 Performances 66
Compression Rates 66
Good and bad cases 67
Extensions 69

V Level Set Compression 73

V.1 Level Set Extraction 75
Simplicial Interpolation 76
Geometry and Distortion Control 77
Topology Control 79

V.2 Direct Encoding 81
Localisation 82
Uniform Encoding 83
Adapted Encoding 84

V.3 Progressive Encoding 85
Combinatorial Refinement 85
Extrinsic Geometry Refinement 87
Level Sets Extensions 88

V.4 Tuning and Results 88
Prediction and Statistical Models 88
Direct 90
Progressive 90
Extended applications 93

VI GEncode 97

VI.1 Purposes 97
Focus on Geometrical Meshes 97
Zero Cost for Reconstructible Meshes 98
Independent Geometry Encoding 99

VI.2 GEncode schemes 102
Advancing front compression 102
Optimisations and Extensions 102
Candidates selection 105

VI.3 Geometric Criteria 107
Generic Formulation 107
Ball–Pivoting and Delaunay–Based Reconstruction 108
Parametric Criterion 110

VI.4 Results 112

VII Conclusions and Future Works 115

Résumé en français 117

Bibliography 145

Index 157

Avant de quitter la vie de ma propre volonté
et avec ma lucidité, j’éprouve le besoin de rem-
plir un dernier devoir : adresser de profonds re-
merciements au Brésil, ce merveilleux pays qui
m’a procuré, ainsi qu’à mon travail, un repos si
amical et si hospitalier. De jour en jour, j’ai ap-
pris à l’aimer davantage et nulle part ailleurs je
n’aurais préféré édifier une nouvelle existence,
maintenant que le monde de mon langage a
disparu pour moi et que ma patrie spirituelle,
l’Europe, s’est détruite elle-même.

Stefan Zweig, Petrópolis, 22 février 1942.

I
Introduction

Images surpassed the simple function of illustrations. In particular, artificial
and digital images invaded most of published works, from commercial identi-
fication to scientific explanation, together with the specific graphics industry.
Technical advances created supports, formats and transmission protocols for
these images, and these contributed to this expansion. Among these, high qual-
ity formats requiring low resources appeared with the development of generic,
and then specific, compression schemes for images. More recently drew on the
sustained trend to incorporate the third dimension into images, and this mo-
tivates orienting the developments of compression towards higher dimensional
images.

There exists a wide variety of images, from photographic material to
drawings and artificial pictures. Similarly, higher dimensional models are
produced from many sources: The graphics industry designers draw three–
dimensional objects by their contouring surface, using geometric primitives.
The recent developments of radiology make intense use of three–dimensional
images of the human body, and extract isosurfaces to represent organs and
tissues. Geographic and geologic models of terrain and underground consist
in surfaces in the multi–dimensional of physical measures. Engineering usually
generate finite elements solid meshes in similar multi–dimensional spaces to
support physical simulations, while reverse engineering, archæological heritage
preservation and commercial marketing reconstruct real objects from scanned
samplings. In addition, other fields are adding new multi–dimensional mod-
elling, such as data representation and optimisation, particularly for solving
financial problems.

Compression methods for three–dimensional models appeared mainly in
the mid 1990’s with [Deering 1995] and developed quickly since then. This
evolution turned out to be a technical necessity, since the size and complex-
ity of the typical models used in practical applications increases rapidly. The
most performing practical strategies for surfaces are based on the Edgebreaker
of [Rossignac 1999] and the valence coding of [Touma and Gotsman 1998].
These are classified as connectivity–driven mesh compression, since the prox-
imity of triangles guides the sequence of the surface vertices to be encoded.
More recently, dual approaches proposed to guide the encoding of the triangle
proximity by the geometry, such as done in [Gandoin and Devillers 2002].

Actually, the diversity of images requires this multiplicity of compression
programs, since specific algorithms usually perform better than generic one, if
they are well adapted, as illustrated on Figure I.1. This work focuses on two
new geometry–driven compression methods that compare nicely to the state

Chapter I. Introduction 12

Figure I.1: Specific compression methods are more efficient than generic
ones.

of the art for surfaces, and further extend to any dimension. Although this
area of mesh compression is recent, it has been very productive with great
improvements, as testifies the amount of bibliographic references of this work.
Many new ideas appeared in these works during this last decade, and could be
incorporated to these new proposals in a close future.

I.1 Main Results

Edgebreaker improvement

The first contribution of this work is a small improvement to Edgebreaker com-
pression scheme of [Rossignac 1999], introduced in Chapter IV Connectivity–
Driven Compression, illustrated on Figure I.2. It provides a simple and
efficient way to compress meshes with boundary, as the one of Figure I.3, for-
mulated as an extension of the compression of meshes with handles described
in [Lopes et al. 2002]. Although the original algorithm already encoded bound-
aries, the proposed extension lowers the theoretical code entropy and the prac-
tical compression ratio. Moreover, it provides a direct way to read the topol-
ogy of the surface on the compressed format. This part originally appeared
in [Lewiner et al. 2004].

This contribution is introduced here mainly to state what is intended
by connectivity–driven strategies, and the Edgebreaker example has been cho-
sen since it is particularly simple and efficient. Moreover, it emphasizes how
the combinatorial study of meshes introduced in the basic concepts of Chap-
ter III Meshes and Geometry gives elegant and productive presentations

13

Figure I.2: Compression codes used by the Edgebreaker on a sphere model.

Figure I.3: Edgebreaker compression on a more complex model.

of such algorithms. Actually, most of mesh decompression processes hang on
combinatorial and topological operations that have been extensively studied,
and which thus provide powerful tools to design mesh compression algorithms.

This analysis provides another improvement on the Wrap&Zip decom-
pression of [Rossignac and Szymczak 1999] for the Edgebreaker. The improve-
ment reduces the execution time of the Zip part. The maintains the linear
complexity and the single pass of the compression process, as described in Al-
gorithm 5: compress, calling Algorithm 4: traverse and Algorithm 6: check handle.
The decompression is also linear, but requires more than one pass, as described
in Algorithm 7: decompress, calling Algorithm 8: wrap, Algorithm 9: fast zip and
Algorithm 10: read geometry.

Chapter I. Introduction 14

Level sets direct and progressive compression

Although geometry–driven compression compares nicely to connectivity–
driven one, the experience acquired in connectivity–driven compression
gives for many types of meshes a significant advantage. However, for level
sets, geometry–driven compression outperforms any connectivity–driven ap-
proaches, as already stated in [Taubin 2002]. Whereas for surfaces the average
compression ratios turn around 8 to 10 bits per vertex, level set compression
reaches 1 or 2 bits per vertex for the same quality of the decompressed model.

(a) original (b) without control (c) topology control

Figure I.4: Isosurface multiresolution representation is more correct when
preserving its topology.

Chapter V Level Set Compression introduces a significant improve-
ment for level set compression. It provides a general method for direct and
progressive compression of these level sets, using intensively the stellar theory
introduced in Chapter III Meshes and Geometry and the powerful struc-
ture of [Mello et al. 2003] deduced from it. This structure provides a very high
degree of adaptability since it is a specification of binary space partitions,
together with simple and striking control on the induced multiresolution rep-
resentation of level sets, as shown on Figure I.4.

For isosurfaces, this method achieves state of the art rate/distortion
curves and compression ratio, in particular in comparison to octree–based
methods, included in our method as shown on Figure I.5. Moreover,
this proposal is described for any dimension in the same manner, using
only stellar operations on edges. Its current implementation is still mem-
ory consuming. The specification of the algorithm for surfaces appeared
first in [Lewiner et al. 2004*4], and for curves in [Lewiner et al. 2004*2,
Lewiner et al. 2005*3].

15

Figure I.5: Decompression of the Horse model as a 2573 regular sampled
data. The first images correspond to the binary multi–triangulation
refinement, followed by the geometric refinements.

Generic geometry–driven direct compression

Motivated by these results, confirming the idea that geometry–driven compres-
sion systems can be more efficient than connectivity–driven ones, we developed
a general geometry–driven direct compression scheme called GEncode. This
method, as described in Algorithm 15: gencode and Algorithm 16: gdecode,
handles any simplicial complex or polytope of any dimension embedded in
any ambient space, as the examples of Figure I.6. For surfaces, GEncode com-
pares nicely to connectivity–driven programs, although the geometrical com-
pression part can still be greatly improved. These results, presented in Chap-
ter VI GEncode, already appeared in [Lewiner et al. 2005*1].

This general scheme relies on a geometrical criterion to encode the
connectivity of the mesh. This criterion is an arbitrary real valued function
that should characterise the geometry of a cell of the encoded mesh. The
more the criterion fits to the mesh, the better the compression ratio and the
algorithm execution time. As an illustration, we derived a geometric criterion
from the circumradius of a cell. This criterion fits particularly well to meshes
generated by Delaunay–based reconstruction or remeshing. This completed our
primary objective: encode the connectivity of a reconstructible mesh at almost
zero cost.

Figure I.6: Encoding traversal of a tetrahedral mesh of a solid sphere in
R3 (left) and of a Cartesian product of a 2–sphere with a circle in R4

(right).

Chapter I. Introduction 16

Furthermore, we present a practical method to derive geometric criterion
for a given class of meshes. This method further provides a general description
of the relation between the geometry of an object and its discretisation through
a mesh model. This relation actually represents the sampling model used by the
application that generated the mesh, which is usually implicit in the algorithm
design although it represents a fundamental step in its validation. We hope that
this method would clarify this intrinsic structure of meshes, which is the proper
of efficient information coding.

I.2 Outline
This thesis is organised as follows. Chapter II Encoding and Compression
gives some general notions of information theory and coding methods. In
particular, we tried to emphasize the different parameters a coding system
needs to tune to work correctly. This task turns out to be delicate and technical,
but remains fundamental to obtain compression ratios comparable with the
state of the art. Moreover, the problems involved with this tuning usually put
at stake the deep understanding of the proposed encoding, as a opposed to the
theoretical entropy eventually achieved by the classical arithmetic coder.

Then, Chapter III Meshes and Geometry introduce the main object
we will try to encode efficiently: geometrical meshes. These meshes are usu-
ally considered as a discretisation of a geometrical object, possibly of high
dimension in high dimensional space. However, these meshes have a specific
combinatorial structure, partly characterised by the topology of the original
object, partly corresponding to the discretisation process. This combinatorial
structure can be decomposed by a complete set of construction and edition
operators. These operators are described, together with some of the geometry
discretisation processes.

A general presentation of classical mesh compression methods is then
introduced in Chapter IV Connectivity–Driven Compression. These are
described in terms of the combinatory of the mesh structure, which differen-
tiates directly the two main proposals for surfaces, the Edgebreaker and the
valence coding, as dual and primal strategies. The example of the Edgebreaker
is then detailed as a very simple, although very efficient example of mesh en-
coding. We emphasize the asymmetry between encoding and decoding process,
together with some difficulties encountered to encode topological singularities
for these connectivity–driven schemes. We introduce some practical solutions
for these problems and a simple enhancement of the decompression procedure.
The chapter ends with a rough comparison of dual and primal connectivity–
driven compression methods.

On a different side, Chapter V Level Set Compression proposes a
geometry–driven approach to mesh compression, when these meshes are pre-
sented as the zero level set of a sampled real valued function. The compression
uses specific support space triangulations to represent the sampled function,
and this representation provides a high degree of adaptability and regularity.
This allows first to generate a controlled multiresolution representation of the
level set, and then to encode this multiresolution in a progressive manner.
Both the direct and progressive methods are very competitive to state of the

17

art method for contour curve and isosurface compression. Moreover, the com-
pression ratios are much lower than for connectivity–driven approaches, mainly
because of the real control of the sampling model such level sets provides.

This control can be extended for generic meshes through a geometric
characterisation of the discretisation process. This is the base of the GEncode,
introduced in Chapter VI GEncode. The proposed scheme is extensively
described, and a simple implementation for very general meshes is presented.
The required properties of the geometric characterisation are introduced,
with the practical example of the Delaunay–based meshes. A general method
for producing such criterion is then described. The final results are very
motivating, since they compare nicely with the Edgebreaker for usual meshes.

II
Encoding and Compression

This work aims at defining new methods for compressing geometrical
objects. We would like first to briefly introduce what we mean by
compression, in particular the relation of the abstract tool of infor-
mation theory [Nyquist 1928, Hartley 1928, Shannon 1948], the asymp-
totic entropy of codes [Shannon 1948, Huffman 1952, Tutte 1998] and the
practical performance of coding algorithms [Huffman 1952, Rissanen 1976,
Lempel and Ziv 1977, Moffat et al. 1995]. We will then focus on the arith-
metic coder [Rissanen 1976, Moffat et al. 1995] since we will mainly use it
in practise. This coder can be enhanced by taking in account deterministic
or statistic information of the object to encode, which translates technically
by a shift from Shannon’s entropy [Shannon 1948] to Kolmogorov complex-
ity [Li and Vitanyi 1997]. Finally, we will describe how this coding takes part
in a compression scheme. General references on data compression can be found
in [Salomon 2000].

II.1 Information Representation

(a) Coding

Source and codes. Coding refers to a simple translation process that
converts symbols from one set, called the source to another, this last one being
called the set of codes . The conversion can then be applied in a reverse way, in
order to recover the original sequence of symbols, called message. The purpose
is to represent any message of the source into a more convenient way, typically
a way adapted to a specific transmission channel. This coding can intend to
reduce the size of the message [Salomon 2000], for example for compression
applications, or on the contrary increase its redundancy to be able to detect
transmission errors [Hamming 1950].

Enumeration. A simple example coder would rely on enumerating all
the possible messages, indexing them from 1 to n during the enumeration.
The coder would then simply assign one code for each message. In prac-
tise, the number of possibilities is huge and difficult to enumerate, and
it is hard to recover the original message from its index without enumer-
ating again all the possible messages. However, this can work for specific
cases [Castelli and Devillers 2004]. These enumerative coders give a reference

Chapter II. Encoding and Compression 20

for comparing performance of coders. However, in practical cases, we would
like the coding to be more efficient for the most frequent messages, even if the
performance is altered for less frequent ones. This reference will thus not be
our main target.

Coder performance. Two different encodings of the same source will in
general generate two coded messages of different sizes. If we intend to reduce
the size of the message, we will prefer the coder that generated the smallest
message. On a specific example, this can be directly measured. Moreover, for
the enumerative coder, the performance is simply the logarithm of the number
of elements, since a number n can be represented by log pnq digits. However,
this performance is hard to measure it for all the possible messages of a given
application. [Nyquist 1928], [Hartley 1928] and [Shannon 1948] introduced a
general tool to measure the asymptotic, theoretic performance of a code, called
the entropy.

(b) Information Theory

Entropy. The entropy is defined in general for a random message, which
entails message generators as symbol sources or encoders, or in particular
to a specific message (an observation) when the probabilities of its symbols
are defined. If a random message m of the code is composed of n symbols
s1 . . . sn, with probability p1 . . . pn respectively, then its entropy h pmq is defined
by h pmq � °

i

�pi log ppiq. As referred in [Shannon 1948], this definition is

natural for telecommunication systems, but it is only one possible measure
that respects the following criteria:

1. h pq should be continuous in the pi.

2. If all pi are equal, pi � 1
n
, then h pq should increase with n, since there

are more possible messages.

3. If the random message m be broken down into two successive messages
m1 and m2, then h pmq should be the weighted sum of h pm1q and h pm2q.

Huffman coder. [Huffman 1952] introduced a simple and efficient coder
that writes each symbol of the source with a code of variable size. For
example, consider that a digital image is represented by a sequence of colours
sblack, sred, sdarkblue, slightblue, swhite. A simple coder will assign a symbol to each
colour, and encode the image as the sequence of colours. This kind of coder
will be called next an order 0 coder .
If the image is a photo of a seascape, as the one of Figure II.1, the probability
to have blue colours in the message will be higher than for red colours. Huffman
proposed a simple way to encode with less bits the more frequent colours, here
blue ones, and with more bits the less frequent symbols. Consider that each
of the colour probabilities is a power of 2: pblack � 2�3, pred � 2�4, pdarkblue �
2�1, plightblue � 2�2, pwhite � 2�4.

21 II.1. Information Representation

Figure II.1: Huffman coding relies on the frequency of symbols of a
message, here the colours inside an image.

These probabilities can be represented by a binary tree, such as each symbol
of probability 2�b is a leaf of depth b in the binary tree. Then each symbol is
encoded by the left (0) and right (1) choices to get from the root of the tree to
that symbol. The decoding is then performed by following the left and right
codes until reaching a leaf, and the symbol of that leaf is a new element of
the decoded message. In that context, the probability of each left and right
operation is 1

2
, which maximises the entropy (h pmq � 1), i.e., the theoretical

performance.

Entropy coder. The original Huffman code also worked out for general
probabilities, but without maximising the entropy. It uses a greedy algorithm to
choose how to round off the probabilities towards powers of 2 [Huffman 1952].
However, Shannon proved that it is asymptotically possible to find a coder of
maximum entropy [Shannon 1948], and that no other coder can asymptotically
work better in general. This is the main theoretical justification for the
definition of h pq. [Huffman 1952] introduced a simpler proof of that theorem,
by grouping sequence of symbols until their probability become small enough
to be well approximated by a power of 2.

(c) Levels of Information

In practise, although the entropy of a given coder can be computed, the
theoretical entropy of a source is very hard to seize. The symbols of the source
are generally not independent, since they represent global information. In the
case of dependent symbols, the entropy would be better computed through the
Kolmogorov complexity [Li and Vitanyi 1997]. For example, by increasing the
contrast of an image, as human we believe that we loose some of its details,
but from the information theory point of view, we added a (mostly) random
value to the colours, therefore increasing the information of the image.

An explanation for that phenomenon is that the representation of an
image as a sequence of colours is not significant to us. This sequence could be
shuffled in a deterministic way, it would not change the coding, but we would

Chapter II. Encoding and Compression 22

not recognise anymore the information of the image. In order to design and
evaluate an efficient coding system, we need to represent the exact amount
of information that is needed for our application, through an independent
set of codes. If we achieve such a coding, then its entropy can be maximised
through a universal coder, such as the Huffman coder or the arithmetic coder.

II.2 Arithmetic Coding

The arithmetic coding [Rissanen 1976, Moffat et al. 1995] encodes the symbols
source with code sizes very close to their probabilities. In particular, it achieves
an average size of codes that can be a fraction of bits. Moreover, it can
encode simultaneously different sources, and provide a flexible way of adapting
probabilities of the source symbols. This adaptation can be monitored through
rules depending on a context, or automatically looking at the previous encoded
symbols by varying the order of the coder. This section details these points,
and provides some sample code inspired from [Arithmetic coding source]. In
particular, we would like to detail why the arithmetic coder is usually presented
as a universal solution, and how much parameters are hidden behind this
universal behaviour. This coder will be used all along this work, and we will
detail for each algorithm the hidden parameters which have a significant impact
on the final compression ratio.

(a) Arithmetic Coder

Instead of assigning a code for each of the source symbol, an arithmetic coder
represent the whole message by a single binary number m P r0, 1r, with a large
number of digits. Where Huffman decoder read a sequence of left/right codes
to rebuild the source message, the arithmetic coder will read a sequence of
interval shrinking, until finding a small enough interval containing m. At each
step, the interval is not shrunk by splitting it in two as in Huffman coding, but
each possible symbol of the source is assigned a part of the interval proportional
to its probability, and the interval is shrunk to the part of the source symbol.
Therefore, a splitting in two corresponds in general to several shrinking, and
thus a single bit can encode many symbols, as the next table details on the
beginning of the example of Figure II.1, using the above probabilities.

Example. We will first illustrate the arithmetic coding with our previous
example of Figure II.1, reduced to Figure II.2: compressing an image by directly
encoding its colours: sblack, sred, sdarkblue, slightblue, swhite. In order to simplify the
writing, we will consider that the probabilities of the colours are decimals, but
this does not make any difference. Each probability is assigned an distinct
interval of r0, 1r :

symbol probability r interval r
sblack 0.1 r 0 , 0.1 r
sred 0.1 r 0.1 , 0.2 r

sdarkblue 0.4 r 0.2 , 0.6 r
slightblue 0.3 r 0.6 , 0.9 r
swhite 0.1 r 0.9 , 1 r

23 II.2. Arithmetic Coding

Figure II.2: Reduced image extracted of Figure II.1.

Then, the image to be encoded is the sequence of Figure II.2 :

sred slightblue sdarkblue slightblue slightblue slightblue

sblack slightblue slightblue sdarkblue slightblue sdarkblue

sdarkblue sblack sblack slightblue sdarkblue sdarkblue

sblack sblack slightblue sdarkblue sdarkblue sdarkblue

This sequence will be encoded by progressively shrinking the original interval.
The final message is the lower bound of the last interval.

symbol r proba r |Ij| interval Ij�1 � inf Ij � |Ij| � proba
r , r 1 r 0 ,1 r

sred r 0.1 ,0.2 r 0.1 r 0.1 ,0.2 r
slightblue r 0.6 ,0.9 r 0.03 r 0.16 ,0.19 r
sdarkblue r 0.2 ,0.6 r 0.012 r 0.166 ,0.178 r
slightblue r 0.6 ,0.9 r 0.0036 r 0.1732 ,0.1768 r
slightblue r 0.6 ,0.9 r 0.00108 r 0.17536 ,0.17644 r
slightblue r 0.6 ,0.9 r 0.000324 r 0.176008 ,0.176332 r
sblack r 0 ,0.1 r 3.24 10�05 r 0.176008 ,0.1760404 r

slightblue r 0.6 ,0.9 r 9.72 10�06 r 0.17602744 ,0.17603716 r
slightblue r 0.6 ,0.9 r 2.92 10�06 r 0.176033272 ,0.176036188 r
sdarkblue r 0.2 ,0.6 r 1.17 10�06 r 0.1760338552 ,0.1760350216 r
slightblue r 0.6 ,0.9 r 3.50 10�07 r 0.17603455504 ,0.17603490496 r
sdarkblue r 0.2 ,0.6 r 1.40 10�07 r 0.176034625024 ,0.176034764992 r
sdarkblue r 0.2 ,0.6 r 5.60 10�08 r 0.1760346530176 ,0.1760347090048 r
sblack r 0 ,0.1 r 5.60 10�09 r 0.1760346530176 ,0.17603465861632 r
sblack r 0 ,0.1 r 5.60 10�10 r 0.1760346530176 ,0.176034653577472 r

(b) Algorithms

Decoding algorithm. The decoding procedure is easy to understand once
the message m P r0, 1r has been completely read. In practise, it is progressively
decoded since it is too long to be conveniently represented by a single number in
memory, which introduces some extra work referred as renormalisation. First,
the probability pj

i of the source symbols must be known at each step j of the
decoding procedure. The initial interval is set to I0 � r0, 1r. Then, at each
step j, the interval Ij�1 is subdivided into parts proportional to the symbol

Chapter II. Encoding and Compression 24

probabilities pj
i into subintervals sIj

i as follows :

sIj
1 � [0 , pj

1 [

sIj
2 � [pj

1 , pj
1 � pj

2 [

sIj
3 � [pj

1 � pj
2 , pj

1 � pj
2 � pj

3 [� � �
sIj

n�1 � [1� pj
n � pj

n�1 , 1� pj
n [

sIj
n � [1� pj

n , 1 [

Then, the message m belongs to one of the subintervals sIj
i , corresponding

to symbol si. This symbol si is added to the decoded message, and the next
interval is set to sIj

i : Ij � sIj
i .

Algorithm 1 aritdecode(in,out) : decodes stream in to out

1: I Ð r0, 1r // initial interval

2: in
�32ÝÝÑm // reads the first bits of the input

3: repeat
4:
5: ppiqiPv1,nw Ð get model pq // retrieves the probabilities

6: count Ð p1 // upper bound of sIj
i

7: for i P v2, nw do // look the interval containing m
8: if m count then // found the subinterval
9: break // exits the for loop

10: end if
11: count Ð count� pi // next i
12: end for
13:
14: sÐ si ; out

�sÐÝ si // decoded symbol si

15: I Ð rcount� pi�1, countr // updates the current interval
16:
17: while 1

2
R I or |I| 1

2
do // renormalisation

18: if I � �
1
2
, 1
�
then // higher half

19: I Ð I � 1
2

; mÐm� 1
2

// shifts higher half to lower half
20: else if I � �

1
4
, 3

4

�
then // central half

21: I Ð I � 1
4

; mÐm� 1
4

// shifts central half to lower half
22: end if
23: I Ð 2 � I // lower half is directly renormalised

24: mÐ 2 �m ; in
�1ÝÑm // message is shifted by reading in

25: end while
26:
27: until s � stop // read a stop symbol

Renormalisation. Observe that unless the decoder does not stop on its
own, as for Huffman coding. The source must have a stop symbol or the
decompression must know how to stop the decoder. For large messages, the
intervals Ij require more memory to be represented than the usual 2� 64 bits

25 II.2. Arithmetic Coding

offered by computers. Therefore, when an interval Ij is contained in
�
0, 1

2

�
or�

1
2
, 1
�
, one bit of the message is transmitted, the interval is shifted (scaled by

two), and the algorithm goes on. Moreover, the intervals Ij can get arbitrarily
small around 1

2
. In order to prevent this, when Ij � �

1
4
, 3

4

�
, two bits of the

message are transmitted, the interval is shifted twice (scaled by four). These
processes are called renormalisation. In parallel, the message does not need to
be read entirely, since the only precision needed to decode one symbol is given
by the intervals Ij. At each renormalisation, a complement of the message is
read to ensure that the precision of the interval matches the precision of the
message. This whole process is implemented by Algorithm 1: aritdecode.

Algorithm 2 aritencode(in,out) : encodes stream in to out

1: I Ð r0, 1r // initial interval
2: repeat
3: ppiqiPv1,nw Ð get model pq // retrieves the probabilities

4: in
�sÝÑ si // retrieves symbol to encode

5: I Ð �°
kPv1,i�1w pk,

°
kPv1,iw pk

�
// deduce the current interval

6: while 1
2
R I or |I| 1

2
do // renormalisation

7: if I � �
0, 1

2

�
then // lower half

8: out
�1ÐÝ 0 // appends a 0 to the coded message

9: else if I � �
1
2
, 1
�
then // higher half

10: out
�1ÐÝ 1 // appends a 1 to the coded message

11: I Ð I � 1
2

// shifts higher half to lower half
12: else if I � �

1
4
, 3

4

�
then // central half

13: out.repeat next bit // set out to repeat the next bit to be output
14: I Ð I � 1

4
// shifts central half to lower half

15: end if
16: I Ð 2 � I // scaling
17: end while
18:
19: until s � stop // read a stop symbol

Encoding algorithm. The encoding procedure is very similar to the decod-
ing one, as details on Algorithm 2: aritencode. Note that in both cases, the finite
precision of computer representations forces to use only half of the available
bits to represent the probabilities and the intervals, since both have to be mul-
tiplied with exact precision. Also, the open intervals are actually represented
by closed ones: rni, nsr � rni, ns�1r.

(c) Statistical Modelling

This arithmetic coder provides a powerful engine to encode a universal source.
However, it is very sensible to the tuning, which is a very hard task. First, the
probability model is very important. Consider a zero–entropy message, i.e. a
message with a constant symbol s0. If the probability model states that s0 has
probability p0 ! 1, then the encoded stream will have a huge length. Therefore,

Chapter II. Encoding and Compression 26

the arithmetic coder is not close to an entropy coder, unless very well tuned.
We will see some generic techniques to improve these aspects.

Adaptive models. A simple solution to the adaptability of the probabilities
consists in updating the probability model along the encoding, in a determin-
istic way. For example, the probability of a symbol can increase each time it is
encoded, or the probability of a stop symbol can increase at each new symbol
encoded, as on the table below. This can be easily implemented through the
function get modelpq of Algorithm 1: aritdecode and Algorithm 2: aritencode. For
the case of the zero–entropy stream, there would be a reasonable amount of
encoded stream where p0 goes closer to 1, and then the stream will be encoded
at a better rate. Observe that p0 cannot reach one, since the probability of each
symbol must not vanish, prohibiting an asymptotic zero–length, but respecting
the second item of the requirements for the entropy of Section II.1(b) Informa-
tion Theory.

symbol updated probabilites r ps r |Ij| Ij�1
0
10

1
10

2
10

6
10

9
10

10
10

r , r 1 r 0 ,1 r
sred

0
11

1
11

3
11

7
11

10
11

11
11

r 1
10

, 2
10
r 0.1 r 0.1 ,0.2 r

slightblue
0
12

1
12

3
12

7
12

11
12

12
12

r 7
11

,10
11
r 0.027272 r 0.16363636 ,0.19090909 r

sdarkblue
0
13

1
13

3
13

8
13

12
13

13
13

r 3
12

, 7
12
r 0.009090 r 0.17045454 ,0.17954546 r

slightblue
0
14

1
14

3
14

8
14

13
14

14
14

r 8
13

,12
13
r 0.002797 r 0.17604895 ,0.17884615 r

slightblue
0
15

1
15

3
15

8
15

14
15

15
15

r 8
14

,13
14
r 0.000999 r 0.17764735 ,0.17864635 r

slightblue
0
16

1
16

3
16

8
16

15
16

16
16

r 8
15

,14
15
r 0.000400 r 0.17818015 ,0.17857975 r

sblack
0
17

2
17

4
17

9
17

16
17

17
17

r 0
16

, 1
16
r 2.49 10�5 r 0.17818015 ,0.17820513 r

slightblue
0
18

2
18

4
18

9
18

17
18

18
18

r 9
17

,16
17
r 1.02 10�5 r 0.17819337 ,0.17820366 r

slightblue
0
19

2
19

4
19

9
19

18
19

19
19

r 9
18

,17
18
r 4.57 10�6 r 0.17819851 ,0.17820309 r

sdarkblue
0
20

2
20

4
20

10
20

19
20

20
20

r 4
19

, 9
19
r 1.20 10�6 r 0.17819948 ,0.17820068 r

slightblue
0
21

2
21

4
21

10
21

20
21

21
21

r 10
20

,19
20
r 5.41 10�7 r 0.17820008 ,0.17820062 r

sdarkblue
0
22

2
22

4
22

11
22

21
22

22
22

r 4
21

,10
21
r 1.54 10�7 r 0.17820018 ,0.17820034 r

sdarkblue
0
23

2
23

4
23

12
23

22
23

23
23

r 4
22

,11
22
r 4.92 10�8 r 0.17820021 ,0.17820026 r

sblack
0
24

3
24

5
24

13
24

23
24

24
24

r 0
23

, 2
23
r 4.27 10�9 r 0.17820021 ,0.17820022 r

sblack
0
25

4
25

6
25

14
25

24
25

25
25

r 0
24

, 3
24
r 0.53 10�9 r 0.17820021 ,0.17820021 r

Order. This probability model can be enhanced by considering groups of
symbols instead of only one. The number of symbols considered jointly is
called the order of the coder. This is particularly useful for text, where syllables
play an important role. An order 0 coder means that the probability model is
updated continuously, whereas an order k model will use a different probability
model for each combination of the k symbols preceding the encoded one.

Contexts. With this point of view, the arithmetic coder begins with one
probability model, and updates it continuously along the encoding process.
However, we can actually consider various probability models simultaneously,

27 II.3. Compression

depending on the context of the symbol to encode. For example when coding
a text, it is more probable to find a vowel after a consonant. Therefore, the
probability of a vowel after another vowel could be reduced to improve the
probability model.

Limits. Context modelling and order–based coding allows reducing the
interdependence of the symbols (putting the entropy closer to the Kolmogorov
complexity [Li and Vitanyi 1997]). This process is the main part of describing
the object to encode, but since it is a difficult one, these features can lead to
significant improvements of the results. However, the number of contexts and
the order must be limited, since for each context the coder builds a probability
model through the regular updates, and an exponential number for each order
added. This probability needs a reasonable amount of encoded stream to get
closer to the real probability model. The encoded stream must be longer than
this amount of time for each context.

Prediction. Another way to reduce the covariance relies on prediction
mechanisms, i.e. deductions that can be equally obtained from the encoder
and the decoder. Since we encode the lower part of the interval containing
the message, a message ended by a sequence of 0 is cheaper to encode than a
message ended with a 1, as on the example of Section II.2(a) Arithmetic Coder .
Therefore, if the prediction always asserts the results, the message will be a
sequence of 0s, with some isolated 1s. This is actually encoded by an arithmetic
coder as a run–length encoded stream, since the stop characters induce a very
tiny last interval. If the stop can be predicted too, then the arithmetic coding
spares the last sequence of 0s. In this rough point of view, the better case of
arithmetic coding is, for a generic problem, the logarithm of the number of
symbols.

II.3 Compression
Coding is only a part of a compression scheme. Actually, a compression scheme
is composed of various steps of conversions, from the original data to a symbolic
representation, from this representation to specifications of sources, from these
sources to the encoded message, from this encoded message to a transmission
protocol, which entails a re–coding for error detection, and the symmetric parts
from the receiver.

This whole process can be designed part by part, or all together. For
example, some nice compression scheme already contains error detection using
the redundancy of the original data that is left after the encoding. Some lossy
or progressive compression schemes perform the encoding directly from the
representation and incorporate the specification of sources.

These features optimise compression for specific applications. However,
a generic application usually requires a separate design of the parts of a
compression scheme. In this context, arithmetic coding turns out to be a
very flexible tool to work on the final compression ratio, i.e. the ratio of the
final size and the original size of the data. Depending on the application, this

Chapter II. Encoding and Compression 28

compression ratio must be reduced to optimize specific characteristics of these
applications, leading to different trade–offs. We will now detail three such
generic trade–offs.

(a) Compaction

Compaction refers to compact data structures, also called succinct. These
structures aim at reducing the size of the memory used during the execution of
an application, while maintaining a small execution overhead. This trade–off
between memory used and execution time must also allow a random access to
the compact data structure. For example for mesh data structures, this trade–
off can be simply a elegant data representation with no specific encoding such
as [Rossignac et al. 2001, Lage et al. 2005*1, Lage et al. 2005]. It can also in-
volve simple encoding scheme that are fast to interpret as [Houston et al. 2005],
or involve a precise mixture of very efficient encoding with a higher–level data
structure, such as [Castelli et al. 2005*1, Castelli et al. 2005*2].

(b) Direct Compression

The most used meaning of compression refers to file compression or to
compression of exchanged information. Most of the common generic algo-
rithms are based on the LZH (ZIP) algorithm of [Lempel and Ziv 1977],
aside from specific image and video compression algorithms such as
JPEG [Wallace 1991, Christopoulos et al. 2000] and MPEG [le Gall 1991,
Pereira and Ebrahimi 2002]. In this case, the goal is to optimise the trade–
off between compression rate and compression time: the enumeration method
is usually too slow, while a simple coding of the data representation can be in
general improved with a minor time overhead. The trade–off can also take
into account the amount of memory necessary to compress or decompress
the stream. In that case, the process is usually performed out–of–core, such
as [Isenburg and Gumhold 2003].

(c) Progressive Compression

The compression can also lead to a loss of information when decompressing.
This can be useful either when the lost part is not significant, or when it
can be recovered by a further step of the compression. In that second sense,
lossy compression will generate objects at various levels of detail, i.e. in multi-
resolution. Each resolution can be compressed separately by the difference
from the previous one. A variant of that scheme does not distinguish between
levels of details, sending a coarse level by direct compression, and refining it
by a sequence of local changes. In these contexts, the goal is to optimise the
trade–off between compression ratio and the distortion of the decompressed
model. For the geometrical models, the distortion is usually measured by the
geometric distance between the decoded model and the original one.

III
Meshes and Geometry

Geometrical objects are usually represented through meshes. Especially for
surfaces in the space, triangulations had the advantage for rendering of
representing with a single element (a triangle) many pixels on screen, which
reduced the number of elements to store. Although the increasing size of usual
meshes reduced this advantage, graphic hardware and algorithms are optimised
for these representations and meshes are still predominant over point sets
models. Moreover, several parts of the alternative to meshes require local mesh
generation, which becomes very costly in higher dimensions. Finally, meshes
describe in a unique and explicit manner the support of the geometrical object,
either by piecewise interpolation or by local parameterisation such as splines
or NURBS.

To a real object correspond several meshes. These meshes represent the
same geometry and topology, and thus differ by their connectivity . The way
these objects are discretised usually depends on the application, varying from
visualisation to animation and finite element methods. These variations make
it harder to define the geometric quality of a mesh independently of the
application, even with a common definition for the connectivity.

This chapter details the combinatorial part, introducing the definition
and properties of meshes in Section III.1 Simplicial Complexes and Polytopes, and
a complete set of operations on the connectivity in Section III.2 Combinatorial
Operators. Finally, Section III.3 Geometry and Discretisation gives some classical
examples of interactions of geometry and meshes.

In this work, we do not use a specific data structure for meshes. We will
consider the operations described in this chapter as the basic elements of a
generic data structure. For further readings, the classical data structures for
surfaces are the winged–edge [Baumgart 1972], the split–edge [Eastman 1982],
the quad–edge [Guibas and Stolfi 1985], the half–edge [Mäntylä 1988]
and the corner–table [Rossignac et al. 2001, Lage et al. 2005]. For non–
manifold 2–meshes, we would mention the radial–edge [Weiler 1985]
and [de Floriani and Hui 2003]. Further references on the following definitions
can be found in [Munkres 1984, Boissonnat and Yvinec 1998, Hatcher 2002].

III.1 Simplicial Complexes and Polytopes
There are various kind of meshes used in Computer Graphics, Scientific
Visualisation, Geometric Modelling and Geometry Processing. However, the
graphic hardware is optimised for processing triangles, line segments and
points, which are all special cases of simplices. We will therefore focus mainly on

Chapter III. Meshes and Geometry 30

meshes made of simplices, called simplicial complex, and one of its extensions
to meshes made of convex elements, which we will refer as polytopes. This
notion can be further extended to cell complexes [Hatcher 2002], but these are
only used for high–level modelling and we will not use them in this work.

(a) Simplicial Complexes

Simplex. A simplex is an n–dimensional analogue of a triangle. More
precisely, a simplex σn of dimension n, or n–simplex for short, is the open
convex hull of n � 1 points tv0, . . . , vnu in general position in some Euclidean
space Rd of dimension n or higher, i.e., such that no m–plane contains more
than pm� 1q points. The closed simplex σ̄n is the closed convex hull oftv0, . . . , vnu. The points vi are called the vertices of σn. For example, a 0–

Figure III.1: Simplices from dimension 0 to 3.

simplex is a point, a 1–simplex is a line segment, a 2–simplex is a triangle,
a 3–simplex is a tetrahedron, and a 4–simplex is a pentachoron, as shown
on Figure III.1.

Incidence. The open convex hull of any m n vertices of σn is also a
simplex τm, called an m–face of σn. We will say that σn is incident to τm,
and denote σn ¡ τm. The 0—faces are called the vertices, and the 1–faces are
called the edges . The frontier of a simplex σ, denoted by Bσ, is the collection
of all of its faces.

(a) Simplicial complex. (b) Non–complex.

Figure III.2: Simplicial complex and a set of simplices not being a
complex.

31 III.1. Simplicial Complexes and Polytopes

Complex. A simplicial complex K of Rd is a coherent collection of simplices
of Rd, where coherent means that K contains all the faces of each simplex
(@σ P K, Bσ � K), and contains also the geometrical intersection of the
closure of any two simplices (@ pσ1, σ2q P K2, σ̄1 X σ̄2 � K), as illustrated
on Figure III.2. Two simplices incident to a common simplex are said to be
adjacent . The geometry of a complex usually refers to the coordinates of its
vertices, while its connectivity refers to the incidence of higher–dimensional
simplices on these vertices.

Skeleton. If a collection K 1 of simplices of K is a simplicial complex, then
it is called a subcomplex of K. The subcomplex Kpmq of all the p–simplices,
p ¤ m, is called the m–skeleton of K.

Connected components. A complex is connected if it cannot be repre-
sented as a union of two non–empty disjoint subcomplexes. A component of a
complex K is a maximal connected subcomplex of K.

(b) Local Structure

Consider a simplex σ of a complex K. The local neighbourhood of σ is described
by its star [Alexander 1930].

(a) The star of a vertex is the
union of the open star (in red)
with the ling (in blue).

(b) The star of an edge.

Figure III.3: Vertex star in a 2–complex and edge star in a 3–complex.

Link. The join σ � τ of two disjoint simplices σ and τ is the simplex that is
the open convex hull of σYτ . The link of a simplex σ P K is the set of simplices
whose join with σ belongs to K: lk pσq � tτ P K : σ̄ X τ̄ � H, σ � τ P Ku.
Star. The open star of σ is then the join of σ with its link: 9st pσq �tσ � τ, τ P lk pσqu. Finally, the star of σ is the union of all the simplices of
the open star together with all their faces: st pσq � 9st pσq Y �

ρP 9stpσq Bρ. The
valence of a vertex is the number of maximal faces in its star.

Chapter III. Meshes and Geometry 32

(c) Pure Simplicial Complexes

Dimension. The dimension n of a simplicial complex K is the maximal
dimension of its simplices, and we will say that K is an n–complex. A maximal
face of a simplicial complex of dimension n is an n–simplex of K.

Euler–Poincaré characteristic. Denoting #m pKq the number of
m–simplices in K, the Euler–Poincaré characteristic χ pKnq of an n–
complex Kn is a topological invariant [Hatcher 2002] defined by χ pKnq �°
mPN
p�1qm#m pKnq.

Pure complexes. Roughly speaking, a complex is pure if all the visible
simplices have the same dimension. More precisely, a simplicial complex Kn

of dimension n is pure when each p–simplex of K, p n, is face of another
simplex of K.

Boundary. The boundary BK of a pure simplicial complex Kn is the closure
of the set, eventually empty, of its (n�1)–simplices that are face of only one
n–simplex: BKn � tσn�1 : # lk pσn�1q � 1u. The simplices of the boundary of
K and their faces are called boundary simplices, and the other simplices are
called interior simplices.

(d) Simplicial Manifolds

Figure III.4: A surface with two
bounding curves

Figure III.5: A non–pure 2–
complex with a non–manifold
vertex.

Manifolds. A simplicial n–manifold Mn is a pure simplicial complex of
dimension n where the open star of each interior vertex is homeomorphic to an
open n–ball Bn and the open star of each bounding vertex is homeomorphic
to the intersection of Bn with an closed half–space. This implies that each
(n�1)–simplex of M is the face of either one or two simplices. In particular,
the boundary of an n–manifold is a (n�1)–manifold with an empty boundary.

33 III.1. Simplicial Complexes and Polytopes

Orientability. An orientation on a simplex is an ordering pv0, . . . , vnq on its
vertices. Two orientations are equivalent if they differ by an even permutation.
There are therefore two opposite orientations on a simplex. A simplicial
manifold Mn is orientable when it is possible to choose a coherent orientation
on all its simplices. More precisely, if σn�1 � pv1, . . . , vnq is an oriented interior
(n�1)–simplex ofMn, face of ρ � σn�1�v and ρ1 � σn�1�v1, then the orientation
of ρ and ρ1 is coherent the orientation of ρ is equivalent to pv, v1, . . . , vnq and
the orientation of ρ1 is opposed to pv1, v1, . . . , vnq. This orientation thus defines
the notion of next and previous vertex inside a triangle of a simplex.

Surfaces. For example, a 2–manifold is a surface, i.e. a simplicial complex
made of only vertices, edges and triangles where each edge is in the frontier
of either one or two triangles and where the boundary does not pinch.
For example, Figure III.4 shows an example of 2–manifold and Figure III.5
illustrates a 2–complex that is neither pure nor a manifold. The topology of
surfaces can be easily defined from its orientability and its Euler–Poincaré
characteristic, using the Surface classification theorem [Armstrong 1979]: Any
oriented connected surface S is homeomorphic to either the sphere S2 (g pSq �
0) or a connected sum of g pSq ¡ 0 tori, in both cases with some finite number
b pSq of open disks removed. The number g pSq is called the genus of S, and
b pSq its number of boundaries. The Euler–Poincaré characteristic χ pSq of S
is equal to χ pSq � #2 pSq �#1 pSq �#0 pSq � 2� 2 � g pSq � b pSq.

(e) Polytopes

Surfaces in finite element methods are usually represented by a mixture of
triangular and quadrangular elements. Although this do not directly fits to the
simplicial complexes we just introduced, this structure can be easily extended
to that case. For example, one could divide each quadrangle into two coplanar
triangles and get a simplicial complex. We define a polytope in a similar way.

Along this work, a polytope in Rd will be a coherent collection of convex
open set of Rd, called cells , where coherent means again that the collection
contains the frontiers and the intersections of its cells. Observe that this implies
that each cell is made up with piecewise linear elements, from edges to its
maximal faces.

The definition and properties described above are still valid, in particular
the notion of boundary, manifold, orientability, and the classification for 2–
dimensional manifold polytopes. Moreover, polytopes are useful to define the
dual of a manifold: The dual of an n–manifold Md is the manifold polytope
obtained by reversing the incidence relations of its cells, i.e. creating a vertex
for each n–cell of Md, and an m–cell for each (n�m)–cell of Md, spanning
the vertices created for each n–cell of its star in Md.

Chapter III. Meshes and Geometry 34

III.2 Combinatorial Operators
The encoding of meshes describes, in a compact way, how to build the encoded
mesh. The decoding operation thus performs a sequence of combinatorial
operations on an initial empty or canonically defined mesh together with
a reconstruction of its geometry. These combinatorial operations are of two
kinds: purely constructive ones and their inverse, namely the Euler and
Handle operators, which only increase the number of simplices (or cells)
without modifying existing ones; and subdivision ones with their inverse, and
Stellar operators is a complete set for this category. The Handle operators
are sometimes considered as a special case of Euler operators, since these
operations are similar but they alter the topology of the mesh.

We will now describe each of these operators, first because it is
a complete set of operators for mesh, and second because each of the
three general methods we will introduce in this work is based on one
of these operators: the Edgebreaker algorithm [Rossignac 1999] of Chap-
ter IV Connectivity–Driven Compression uses the specificities of Handle
operators together with Euler operators. The Simplicial Level Set Compres-
sion [Lewiner et al. 2004*2, Lewiner et al. 2004*4] of Chapter V Level Set
Compression uses intensively Stellar theory, while the geometry–driven com-
pression scheme [Lewiner et al. 2005*1] of Chapter VI GEncode uses only the
basics of Euler and Handle operators. Once again, we do not rely on a specific
implementation of these operations, and we will refer to [Velho et al. 2003] for
a simple, complete and powerful one.

Figure III.6: 3 ways of attaching a simplex to a triangulation. Centre:
MSG, Down: MTE, Up: MEV �MTE.

(a) Euler Operators

Generic Euler operators for surfaces. Euler operators were originally
defined as operators on surfaces that do not change its manifoldness nor its

35 III.2. Combinatorial Operators

Euler characteristic [Mäntylä 1988]. In this restricted definition, there was 5
creation and 5 destruction operators, some illustrated on Figure III.6, namely:

M/K EV adds/removes an edge and a vertex

M/K TE adds/removes a triangle and an edge

M/K STV adds/removes an initial triangle, without edge

M/K SG closes/opens a bounding curve

M/K EKL adds/removes an edge, joining two bounding curves

We will now extend these definitions, in order to first distinguish between
topology–preserving operators (M/K EV and M/K TE) and Handle operators
that will be introduced next, and second to extend these definitions to any
dimension. All the definitions of this section also work for polytopes.

Low–level Euler operators. With this distinction, basic Euler operators
are reduced to simplicial collapse and simplicial expansion [Hatcher 2002].
Given a simplicial complex K and σm a simplex of K face of only one (m�1)–
simplex ρm�1, we say that K collapses to K 1 � Kz tσm, ρm�1u, and that K 1
expands to K. Observe that since we add or remove pairs of simplices of
consecutive dimensions, we do not change the Euler characteristic of K. For
m � 0, the expansion corresponds to MEV, and the collapse to KEV. For
m � 1, the expansion corresponds to MTE, and the collapse to KTE.

Euler attachment. The simplicial expansion operator works at low–level,
and in particular for pure complexes or manifolds, these operators must be used
in group to preserve the purity of the mesh as on the top of Figure III.6. The
simplex attachment operations compose the minimal group of Euler operators
that add a unique maximal face, preserving the purity. For 1–complexes, a
simplex attachment of order 1 is a MEV operation. For 2–complexes, a simplex
attachment of order 2 is a MTE operation, eventually preceded by a simplex
attachment of order 1. In general, a simplex attachment for n–complexes can
be described as a simplicial expansion with m � n�1, eventually preceded of
at most n�1 simplex attachments of order n�1.

Manifold Euler operators. The simplicial expansion preserves the topol-
ogy of the mesh (actually this define its simple homotopy type), and combined
into simplex attachment operations, it preserves the purity of the mesh. In
order to preserve the manifoldness of the mesh, we need to restrict the simplex
attachment operations. From the property of manifolds, that each (n�1)–
simplex is the face of either one or two simplices, we need to restrict these
simplex attachment to the boundary of the manifold. Since Euler attachments
preserve the topology of the mesh, this is actually sufficient: the manifold Euler
operators are attachments involving only bounding simplices.

Chapter III. Meshes and Geometry 36

(b) Handle Operators

Generic attachment. We distinguished inside the generic Euler operators
for surfaces between those who preserve and those who change the topology
of the simplicial complex. The Euler attachment resulted in adding a maximal
face using only low–level Euler operators, and thus preserving the topology.
The generalization of this notion, the generic attachment, also adds a simplex
and its faces, with the only restriction of preserving the properties of a
simplicial complex. More precisely, an m–simplex σm can be attached to an n–
complex Kn by identifying some of the faces of σm with some of the simplices
of K. In order to preserve the simplicial complex property, we impose that if
a face τ of σm is identified with a simplex τ 1 of Kn, then the faces of τ are
identified with the faces of τ 1 in a one–to–one correspondence.
Such operation can alter the topology of the complex, and its manifoldness. In
particular, observe that the first step of a mesh construction, i.e. creating the
first simplex, is a generic attachment onto an empty complex.

Manifold Handle operators. In order to preserve the manifoldness, we
must first restrict the attachment to a maximal face, and identify part of its
frontier with the boundary of the manifold, as we did previously. However, this
is not enough, since a generic attachment can create a pinch on the manifold.
A sequence of Euler attachments can then fatten this pinch in order and thus
recover the manifoldness. Therefore, we will define a Handle operator on Mn

as a generic attachment involving only the boundary of Mn of an n–simplex
followed by at most n�1 Euler attachments of n–simplices. This operation is
also referred as Handle attachment [Lopes 1996, Lopes and Tavares 1997].

ÝÝÝÝÝÑ

Figure III.7: χ� 0: Euler attachment.

ÝÝÝÝÝÑ

Figure III.8: b� 1, χ� 1: lower 1–handle operator.

Handle operators for surfaces. These manifold Handle operators can be
exhaustively described, and especially for curves and orientable manifold, they

37 III.2. Combinatorial Operators

ÝÝÝÝÝÑ

Figure III.9: g� 1, b� 1, χ� 1: upper 1–handle operator.

ÝÝÝÝÝÑ

Figure III.10: b� 1, χ� 1: 2–handle operator.

characterise exactly the topological change they induce. For 1–complexes, there
are four constructive operators: creating a first vertex (generic attachment),
adding an edge and a vertex (MEV), adding an edge between two vertices
of a boundary (Handle operator) and adding an edge between an interior
vertex and another vertex (Non–manifold generic attachment). For surfaces,
there are seven surface constructive operations, with their inverse, destructive
operators [Lopes 1996, Lopes and Tavares 1997]:

χ� 1 creates a new connected component with initial triangle, with its three
edges and vertices (Handle operator: 0–handle)

χ� 0 completes two consecutive bounding edges with a triangle (MTE, Fig-
ure III.6)

χ� 0 glues a triangle on a bounding edge (Euler attachment, Figure III.7)

χ� 1 glues two bounding edges of distinct connected components (Handle
operator: 1–handle)

b� 1 glues two non–consecutive edges of the same bounding curve with two
triangles, splitting this curve into two bounding curves (Handle operator:
lower 1–handle, Figure III.8)

g� 1, b� 1 glues two edges of different bounding curves with two triangles, creating
a genus (Handle operator: upper 1–handle, Figure III.9)

b� 1 closes a three–edges bounding curves with a triangle (Handle operator:
2–handle, Figure III.10)

Chapter III. Meshes and Geometry 38

(c) Stellar Operators

Stellar theory. Stellar theory studies the combinatorial equivalences
between simplicial complexes. It was developed by [Newman 1926]
and [Alexander 1930], and more recently consolidated by [Pachner 1991]
and [Lickorish 1999]. This theory states another class of operators for editing
the combinatorial structure of a manifold with a minimal set of operators
while preserving its topology. As opposed to Euler and Handle operators,
stellar operators intend to modify, as opposed to constructing meshes. The
stellar operators were first stated in [Alexander 1930] as stellar moves, and
then reformulated in [Pachner 1991] as bistellar moves. Both cases can be
decomposed on edges with the vertex weld and edge split operations.

Stellar moves. A stellar move of order m on a simplicial complex K consists
of replacing the star of an m–simplex σm by the join of a vertex with the link
of σm: K Ñ Kz st pσq Y v � lk pσq. These moves are a powerful operation, as
stated in Alexander’s theorem [Newman 1926, Glaser 1970, Theorem II.17]:
Any two simplicial complexes are piecewise–linear homeomorphic if and only
if they are related by a finite sequence of stellar moves.

Bistellar moves. Bistellar moves are somehow more concise than stellar
moves, and can be defined as follows. Consider an m–simplex σm of an
simplicial complex Kn of dimension n, and an pn � mq–simplex τn�m not
included in Kn, such that lk pσmq � Bτn�m. Then the complex Kn z σm �Bτn�m Y Bσm � τn�m is said to be obtained from Kn by a bistellar move
of order m. Note that the inverse of a bistellar move of order m is a bi-
stellar move of order (n �m), and that, for manifolds, a bistellar move does
not change the connectivity of the boundary. [Pachner 1991] proved a similar
theorem as Alexander’s one: two simplicial manifolds with an empty boundary
are equivalent if and only if they are related by a finite sequence of bistellar
moves.

Weld and split. Actually, Stellar theory states that stellar moves
on edges are sufficient to map any two equivalent combinatorial mani-
folds [Alexander 1930]. This can be proved by decomposing the bistellar moves
by stellar moves on edges. The stellar move on edge is called an edge split, and
the inverse operation, which removes the inserted vertex, is called a vertex weld.
Therefore, stellar operations can be used as primitives for multiresolution op-
erators. In particular, an edge flip [Hoppe et al. 1993] can be decomposed as an
edge split followed by a vertex weld. Moreover, the classical edge collapse op-
erator [Hoppe 1996] can be decomposed into a sequence of edge flips, followed
by one vertex weld, as shown in [Velho 2001].

39 III.3. Geometry and Discretisation

III.3 Geometry and Discretisation
The above definition of meshes contains three order of information about a
geometrical object: its inner properties, which do not change with large scale
deformations and are referred as its topology; its combinatorial representation
described by the incidences of its simplices; and its shape, represented by
the coordinates of the vertices of the mesh, and interpolated onto its higher
order simplices. The relations between the geometry and the topology are very

(a) A finite element volu-
metric mesh.

(b) A paramrtric and an
implicit torus.

(c) A remeshed hand
with a subdivided
sphere.

Figure III.11: Geometrical models generated with different methods.

clear, although the connection of geometry and connectivity is still loose. Many
different discretisations are commonly used, as illustrated on Figure III.11.
There is no standard mesh representation even for simple geometrical models
such as a sphere in R3 [Katanforoush and Shahshahani 2003].

On the way from meshes to geometry, the geometry of an object is
usually interpolated or approximated by a mesh using an iterative process
of subdivision [Catmull and Clark 1978, Doo and Sabin 1978] and simplifica-
tion [Garland and Heckbert 1997]. On the reverse way, there are several ap-
proaches to define a mesh from a geometrical object, the most famous one being
the Delaunay triangulation [Boissonnat and Yvinec 1998]. This process is ei-
ther referred as discretisation if the whole geometrical object is known, or as
reconstruction in the other case. Finally, the geometry of an object can be ex-
tracted from a mesh, usually by intersection of a standard mesh with a geomet-
rical function, such as for constructive solid geometry models [Rossignac 1986].

In this section, we will give a quick overview on these three elements,
detailing only the last one, as we will use it in Chapter V Level Set
Compression. However, we will not try to define what would be a reliable
geometry representation, which restrictions the geometry could impose to the
mesh or other definitions of mesh quality. This task is far beyond the scope
of this work, although the wide variety of answers is the main motivation for
designing the specific compression methods that will be introduced in this
work.

Chapter III. Meshes and Geometry 40

(a) Subdivision and Smoothing

Subdivision. The subdivision process was originally defined to state equiv-
alences in piecewise linear topology [Munkres 1984, Hatcher 2002]. In that
context, the basic combinatorial operation was the barycentric subdivi-
sion [Munkres 1984], that inserts the barycentre of each simplex, and thus
corresponds to a sequence of stellar moves. In order to refine also the geometry
of the surface, the old and new vertices can be shift [Zorin and Schröder 2000].
When iterating the subdivision process, we can obtain a continuous geomet-
rical object from an initial discrete mesh. For example, each of the following
subdivision operators generates a different smooth limit.

(a) Original icosahedron. (b) One step
of [Loop 1987].

(c) One step
of [Kobbelt 2000].

Figure III.12: Example of surface subdivision methods.

Surface subdivision. For surfaces, [Catmull and Clark 1978] first detailed
vertex shifts in order to obtain an almost smooth surface after an infi-
nite number of iterations. A dual scheme was introduced at the same time
in [Doo and Sabin 1978], which behaves well with noises. The barycentric sub-
division creates many simplices with high degrees. The valence can be regu-
larised by inserting only the barycentre’s of the edges, as done in [Loop 1987].
Then, the number of new simplices created at each step can be reduced by
performing an intermediate dual step [Kobbelt 2000].
Each of these improvements enhanced the smoothness of the result, until the
order 5 in [Velho and Zorin 2001], using stellar operations. Actually, we know
from the previous section that all these subdivisions can be expressed with
stellar operations and vertex shifts, and this provides a unified framework for
all the subdivision operations [Velho 2003] which extends in any dimension.

Smoothing. The reverse of the subdivision operation is called simplifica-
tion [Hoppe et al. 1993, Garland and Heckbert 1997, Vieira et al. 2004]. Al-
though it could be defined using reverse stellar operators for each of the subdi-
vision above, the geometrical information is difficult to recover: the subdivision
filters the mesh. A vertex shift similar to the subdivision one can also be per-
formed without changing the connectivity. The smoothing is then performed
with a constant complexity, as a mimic of image filtering [Taubin 1995].

41 III.3. Geometry and Discretisation

These filters are very useful for practical cases, especially to enhance meshes
resulting from noisy acquisition [Fleishman et al. 2003] or lossy transmis-
sion [Desbrun et al. 1999, Taubin 1999], as in Chapter V Level Set Com-
pression.

(b) Delaunay Triangulation

Figure III.13: A Delaunay triangulation, with some of the empty circum-
circles attached to each triangle drawn.

Voronoi diagrams. Given a finite set of points pxiqiPv0,kw and a distance

function d p,q on an ambient space X, the most natural way to discretise X is
to draw a curved polytope on it, called the Voronoi diagram or the Dirichlet
tessellation of pxiqiPv0,kw, where each maximal cell σi contains all the points of X
closer to xi than to any other xj: σi � ty P X : @j � i, d py,xiq d py,xjqu. For
the Euclidean distance d px,yq � }y � x}, this polytope is straight and convex.
The planar version of this polytope goes back to Descartes and Dirichlet, but
the general definition was introduced in [Voronoi 1908].

Delaunay tessellation. The Voronoi diagram has many nice properties,
but it does not present the original points xi as its vertices, which is the usual
paradigm for the geometry interpolation. This can be achieved by considering
the dual of the Voronoi diagram, in the sense of Section III.1(e) Polytopes,
where the vertices corresponding to each maximal cell σi is shift to the original
point xi. For the Euclidean distance and for the original points in general
positions, this dual is a simplicial complex, called the Delaunay tessellation
of pxiqiPv0,kw [Delone 1934]. It can be efficiently computed with randomised

algorithms [Boissonnat and Yvinec 1998]. From this point of view, it is the
most natural definition of a mesh from the geometry of a set of points, which
will be useful for reconstruction applications.

Properties. The Delaunay triangulation Kd of pxiqiPv0,kw in Rd reflects the

definition of Voronoi diagrams by the fact that the open circumsphere Sd�1

Chapter III. Meshes and Geometry 42

of any maximal simplex is always empty. Moreover, the union of all compact
simplices in the triangulation is the convex hull of the original points. For the
Euclidean distance, Delaunay triangulations maximise the minimum internal
angle of its simplices [Boissonnat and Yvinec 1998]. These properties are useful
for packing problems and for differential approximations, since the asymptotic
accuracy of derivative estimators is usually related to the angle of the elements
of the mesh. Moreover, it relates directly to sampling conditions on the
geometry of smooth and non–smooth objects [Boissonnat and Oudot 2005].

Delaunay–based reconstruction. The above properties make Delau-
nay triangulations a very significant choice for reconstruction algorithms,
from slice interpolation [Boissonnat and Geiger 1993, Lopes et al. 2000,
Nonato et al. 2005] to spatial restriction [Chaine and Bouakaz 2000,
Boissonnat and Cazals 2002] and greedy traversal [Bernardini et al. 1999,
Cohen–Steiner and Da 2002] inside the Delaunay triangulation and further
more complex methods [Amenta and Kullori 2002]. These methods deduce a
mesh from a set of points in a deterministic manner, which can be used as a
basis for decompressing a mesh knowing its vertices.

Ball pivoting algorithm. In Chapter VI GEncode, we will prefer greedy
approaches in order to control the decompression on the fly. Particularly,
the Ball Pivoting algorithm of [Bernardini et al. 1999] will serve as the basic
example. This algorithm creates an initial triangle, a priori the triangle with
the smallest possible circumradius for the given point set, and then recursively
attach the triangle with the smallest possible circumradius to the boundary
of the mesh being reconstructed. The original algorithm put a threshold on
the circumradius of the inserted triangle, in order to allow reconstructing
open surfaces. It can be directly implemented with the Handle operators
of Section III.2(b) Handle Operators, as described in [Medeiros et al. 2003,
Medeiros et al. 2004]. The reconstructed surface is then a subcomplex of the
volumetric Delaunay triangulation.

(c) Multi–Triangulations

Order of triangulations. In theory, a geometrical model can be approxi-
mated by a sequence of subdivisions on an original, coarse mesh. In practise,
the size of the mesh must remain reasonable to be handled by a computer,
but this sequence of subdivisions still generates a refinement of the resolution
of the geometry. We will formalise the fact that a complex K 1 is obtained by
subdivision from K by a hierarchical relation: K ¶ K 1.
Actually, these subdivisions can be adapted to refine only a part of a mesh,
for example by stellar operations in a specified neighbourhood [Velho 2004]
or by inserting points in the Delaunay triangulation [Devillers 2002]. Depend-
ing on the neighbourhood chosen, these subdivisions will generate different
meshes, and the order ¶ is thus only a partial order. The hierarchy generated
by ¶ is called a multi–triangulation [de Floriani et al. 1997, Puppo 1998].

43 III.3. Geometry and Discretisation

We will look more precisely at one of these multi–triangulations, introduced
in [Mello et al. 2003] and specified for tetrahedral meshes in [Pascucci 2002].

Binary space partition. On one side, these multi–triangulations actually
define generic rules multiresolution data structure of the space they span. On
the other side, canonical multiresolution data structures are already widely
used, such as the quad–tree [Finkel and Bentley 1974], its generalisation as
kd–trees [Friedman et al. 1977] and binary space partitions [Bentley 1975] or
BSP for short. Most of these domain subdivision structures, and in particular
the octrees and kd–trees, can be implemented as a BSP with no overhead,
which puts this structure as a powerful framework. The abstract definition of
multi–triangulation can be combined with the power and simplicity of binary
space partitions into binary multi–triangulations [Mello et al. 2003], or BMT
for short.

Binary multi–triangulations. A binary space partition (BSP) is a pro-
gressive partition of an original space by a sequence of refinements. Each re-
finement cut a part of the partition in two subparts. Therefore, such a BSP
can be represented by a binary tree with one node per part created along the
sequence. The binary multi–triangulation (BMT) is then a specific BSP where
each part is a triangle and each refinement is an edge split, as defined in Sec-
tion III.2(c) Stellar Operators. This BMT adapts more nicely than the classical
octree or kd–tree for image decomposition, since it provides k times more in-
termediate levels without extra space used and since it does not require extra
operation to remain polytope.

Local refinement and local simplification. The BMT can be seen as a
binary tree or as a sequence of simplicial complexes, and the original space
corresponds to the coarse mesh. We will thus call the level of a maximal
face its depth in the binary tree. The BMT is locally refined (·) or locally
simplified (¶) by walking up and down the binary tree, creating a hierarchy
of triangulations at different resolutions . Each refinement operation splits an
edge by inserting a vertex w and creating some simplices σi. For each of these
σi, vertex w will be called the lowest vertex , and the facet of σi not containing
w will be called its higher facet . Therefore, the lowest vertex characterises
the level of a maximal face. Figure III.14 shows a BMT whose root is a

(a) K1 (b) K2 (c) K3 (d) K4 (e) Irregular
geometry.

Figure III.14: BMT example: the subdivision edges are marked in bold.

the two triangles of the square (K1) and whose leaves uniformly covers a

Chapter III. Meshes and Geometry 44

grid (K5). The bold edges are the subdivision edges, and the bold vertices
are the simplification vertices. The first triangulation on this figure is the
minimum triangulation of a square K1. The second picture shows the K2

triangulation that is obtained by the subdivision of the diagonal edge of K1.
The third example of triangulation is the result of four subdivisions applied to
the bounding edges of K2, thus it corresponds to K3. The fourth triangulation
example is K4 that is obtained from K3 by subdividing all of its four diagonal
edges. The last triangulation on figure Figure III.14, shows a BMT with an
irregular geometry. Although we will mainly use regularly spaced vertices,
the BMT structure can handle more general configurations. The pictures
on Figure III.15 illustrate, the corresponding binary tree representations for
the triangulations K1, K2, K3, K4 and K5 of the BMT example shown in
Figure III.14.

(f) K1 (g) K2 (h) K3 (i) K4 (j) K5

Figure III.15: The BMT example of Figure III.14 can be represented as
a binary tree.

Regular binary multi–triangulation. The adaptability of the BMT re-
lies on local refinements and simplifications. It can be enhanced by maintaining
dependencies between adjacent simplices, in particular, by forcing gradual size
transitions along each resolution of the triangulation. This means that adja-
cent maximal faces of a resolution will differ in level by at most 1. With this
restriction, the resulting structure is an example of a restricted hierarchy, as
defined in [von Herzen and Barr 1987], and we will called it a regular binary
multi–triangulation, or RBMT for short. Observe that this regularity criterion
is purely combinatorial, which allows efficient implementation especially for
high dimensions. For example, all the BMT of Figure III.14 are regular.

Non–local refinement and simplification. In order to maintain this reg-
ularity, a refinement must propagate to adjacent simplices: a regular refinement
of a RBMT is composed of a sequence of local refinements. The RBMT is then
a subset of the underlying multi–triangulation, and the order ù of a regular
multi–triangulation is a restriction of the order ¶ of the multi–triangulation.
The regularity restriction is easy to implement in practise (see Algo-
rithm 3: simplify). Simplifying a maximal face σ removes its lower vertex by
a stellar move on it. In order to maintain the regularity of the resolution, we

45 III.3. Geometry and Discretisation

Algorithm 3 simplify(σ): non–local simplification of σ

1: w Ð σ.lowest vertex // used to check the level compatibility
2: for all σi adjacent to σ do // look for simplices of lower level
3: if σi.lowest vertex � w then // σi must be simplified before σ
4: simplify(σi) // simplifies σi

5: end if
6: end for
7: weld(w) // locally simplify σ

must check that the adjacent maximal faces σi have at most the same level as
σ. This can be checked through the lowest vertex w of σ. First, if w is not a
vertex of σi, then the level of σi is greater than the one of σ, and the regularity
will be maintained by the simplification. Second, if w is the lowest vertex of
σi, then σ and σi have the same level, and the removal of w will simplify both.
Last, if w is a vertex of σi, but not the lowest, then σi have a lower level than
σ and must be simplified first, and here begins the propagation.

Figure III.16: RBMT adapted to the bold line: at each level, every
triangle crossing the bold line is refined, but subdivisions in the upper–
right part of the square propagate to the lower–left part.

Figure III.17: The BMT example of Figure III.16 can be represented as
a binary tree.

For example, Figure III.16 illustrates a sequence of refinements adapting
the triangulation to the bold line. In order to preserve gradual transition
between resolution levels, local refinements around the bold line propagates
inside the triangulation and, in this example, far away from the bold line,
as what happened to the bottom left part. The corresponding binary tree is
represented on Figure III.17.

IV
Connectivity–Driven Compression

This work aims at compressing geometrical objects represented by meshes.
Since there is still no strong relation between the geometry and the connectivity
of these meshes for the usual objects considered by graphics applications,
dedicated compression schemes consider either that the common information
can be deduced from either the connectivity or the geometry. The first option
assumes that the star of a simplex has a simple geometry, which can be
well approximated by simple methods such as linear interpolation. Then,
the geometry can be efficiently encoded by a connectivity traversal of the
mesh, leading to connectivity–driven compression schemes. The second option
predicts the connectivity from the geometry, and will be referred as geometry–
driven compression schemes. In that case, the connectivity is usually better
compressed, but it needs efficient coding of the geometry.

In this chapter, we will focus on the connectivity part of the compres-
sion, in order to clarify the position of geometry–driven compression of the
next chapters. These connectivity–driven methods improved so much in the
last decade that the compression ratio for usual surface connectivity turns
around 2/3 bits per vertex. We will give a general framework for handling
the critical elements of the connectivity: the topological singularities. These
singularities are well understood for surfaces through the Handle operators
of Section III.2(b) Handle Operators. We will then focus on the Edgebreaker
scheme, and introduce two new improvements: the handling of boundary, as
a consequence of this framework for singularities, and a small improvement of
the decompression algorithm. We will conclude this chapter with compression
ratios of the Edgebreaker on usual models with our improvements, and we will
detail the specificities of connectivity–driven compression scheme. The goal
of this chapter is to state what connectivity–driven compression means, with
the detailed example of the Edgebreaker (Figure IV.1 and Figure IV.2), and to
show where these algorithms are well suited.

IV.1 Principles
Connectivity–driven compression schemes rely on a traversal of the mesh in
order to visit each vertex, and to identify it on further visits. This way, the
geometry of the vertex needs to be transmitted only once, and the traver-
sal encodes the connectivity of the mesh. This general framework suits par-
ticularly well for manifold polytopes. Most of the existing compression tech-
niques are dedicated to surfaces, and we will focus on these algorithms. Fur-
ther extensions to non–manifold cases are described in [Guéziec et al. 1998],

Chapter IV. Connectivity–Driven Compression 48

(a) Vertex labels used in the
next sequence.

(b) First triangle not encoded:
P, vertices 0, 1, 2 are marked. It
will be the root of the dual tree.
The traversal starts from edge
12.

(c) Since vertex 3 is unmarked,
132 is created and 3 is marked:
C. This extends the dual tree
and the primal remainder. The
traversal continues on the right.

(d) Similarly, since vertex 4 is
unmarked, 143 is created and 4
is marked: C.

(e) Again, vertex 5 marked: C (f) Since vertex 0 is marked and
the right triangle is marked al-
ready, 105 is attached and the
traversal continues on the left:
R. This extends only the dual
tree.

Figure IV.1: Edgebreaker compression of a triangulated cube.

49 IV.1. Principles

(g) C again: vertex 6 is marked. (h) Again, vertex 2 is already
marked and the right triangle
also: R.

(i) Again: R. (j) C again: vertex 7 is marked.

(k) Again, vertices 4 and then 5
are already marked, with their
right triangles also: RR.

(l) Since vertex 6 is marked, and
both the right and left triangles
are marked, attach 567: E. This
extends the dual tree only.

Figure IV.1: Edgebreaker compression of a triangulated cube (continued).

Chapter IV. Connectivity–Driven Compression 50

(a) Decode P: create the first
vertex. This is a Handle oper-
ator of type 0: χ � 0Ñ χ � 1

(b) Decode C: create a new tri-
angle. This is an Euler attach-
ment: MEV3 �MTE.

(c) Decode C: create a new tri-
angle: MEV4 �MTE.

(d) Decode C: create a new tri-
angle: MEV5 �MTE.

(e) Decode R: attach one trian-
gle: MTE. The new edge will be
identified later by the Zip pro-
cedure.

(f) Decode C: create a new tri-
angle: MEV6 �MTE.

Figure IV.2: Wrap&Zip decompression of a triangulated cube.

51 IV.1. Principles

(g) Decode R: attach one trian-
gle: MTE.

(h) Decode R: attach one trian-
gle: MTE.

(i) Decode CRR as above. (j) Decode E: close one trian-
gle. This is a Handle operator
of type 2: b � 1 Ñ b � 0. The
two new edges will be identified
by the Zip procedure.

(k) The above Wrap procedure
already decoded the adjacencies
of the traversal: this is the dual
tree.

(l) The Zip procedure will then
identify the edges of the primal
remainder, matching edges cre-
ated by a C with the others.

Figure IV.2: Wrap&Zip decompression of a triangulated cube (continued).

Chapter IV. Connectivity–Driven Compression 52

while simple extensions of the most common schemes exist for solid models
in [Szymczak and Rossignac 2000, Isenburg and Alliez 2002].

(a) Origins

Connectivity–driven compression begun with cache problems in graphic cards:
the rough way of transmitting triangle meshes from the main memory to the
graphic card is (still) to send the three vertices of the triangle, represented by
their three floating–point coordinates. Each triangle is then encoded with 96
bits! [Deering 1995] proposed to represent these triangle meshes by generalised
strips in order to share one or two vertices with the last triangle transmitted,
reducing by at least a half the memory required previously. This mechanism
uses also a small prediction scheme to optimise caching.

Then, these strips were generalised by a topological surgery approach
in [Taubin and Rossignac 1998, Taubin et al. 1998]. These works introduced
the most general framework for connectivity–driven compression, and has
been efficiently derived into the Edgebreaker [Rossignac 1999], and with a
more flexible way into the valence coding of [Touma and Gotsman 1998,
Alliez and Desbrun 2001]. The Edgebreaker has been extended to handle larger
categories of surfaces in [Lopes et al. 2002, Lewiner et al. 2004], while valence
coding has been tuned using the geometry in [Alliez and Desbrun 2001], dis-
crete geometry [Kälberer et al. 2005]. In addition, the generated traversal of
valence coding can be cleaned using [Castelli and Devillers 2004].

With these improvements, the connectivity of usual models can be com-
pressed with less than 3 bits per vertex. Geometry became the most expen-
sive part, which can be reduced using prediction [Touma and Gotsman 1998,
Cohen–Or et al. 2001] and high–quality quantisation [Sorkine et al. 2003,
Gumhold and Amjoun 2004]. However, we will not focus here on the com-
pression of the geometry.

(b) Primal or dual remainders

Primal and dual graphs. The main advance of topological
surgery [Taubin and Rossignac 1998] was to substitute mesh connectivity
compression by graph encoding. A graph can be considered as a simplicial
complex of dimension 1. Therefore, the 1–skeleton Kp1q of any simplicial
complex is a graph, called the primal graph of the manifold. Moreover for
manifolds, we defined the dual manifold in Section III.1(e) Polytopes, and the
1–skeleton of this dual manifold is also a graph, called the dual graph of the
manifold. For example, Figure IV.3 represents the primal and the dual graph
of a triangulated sphere.

Tree encoding. For simplicial surfaces, the dual graph has a very nice
property: each node of the graph has three incident links. Encoding the
connectivity thus resumes to encoding this dual graph. In order to encode
the geometry, this graph must be encoded by traversal, i.e. a spanning forest.
Since each connected component can be encoded separately, we will consider

53 IV.1. Principles

Figure IV.3: (left): the primal graph and (right): the dual graph of a
triangulated sphere.

only connected orientable surfaces, and the spanning forest is, in that case, a
tree. This tree can be encoded from its root by enumerating for each node how
many sons he has. This is the principle of both the valence coding and the
Edgebreaker algorithms. The first one encodes the mesh by enumerating the
valence of each node of a spanning tree in the primal graph, while the second
one encodes a little more than the valence of each node of a spanning tree in
the dual graph. In this last case, the valence is either 1, 2 or 3 since the nodes
of the dual graph have a constant valence, which simplifies the coding.

Figure IV.4: (left): a dual spanning tree S21 extracted from the dual graph
of Figure IV.3(right). (right): the primal remainder S01 of S21, which is a
subgraph of the primal graph of Figure IV.3(left).

Remainders. For clarity of the presentation, we will focus on spanning
tree of the dual graph and the primal remainder, which is the focus of the
Edgebreaker. What follows can be read identically by considering spanning
tree of the primal graph and the dual remainder, which is the point of view
of the valence coding. Consider a surface S, with a spanning tree S21 of its
dual graph. Observe that the links of S21 correspond to edges of S. Then,
consider the primal graph S1 (1–skeleton) of S. Its links also correspond to
edges of S. The graph S01 having the same nodes as S1 and the links of S1

Chapter IV. Connectivity–Driven Compression 54

not represented in the dual spanning tree S21 is called the primal remainder
of S21. This remainder is what is left to encode after the traversal of the dual
mesh, i.e. S21, has been encoded. For example, the Edgebreaker encodes this
primal remainder by specific symbols for the valence 1 and 2 of the dual tree.
Moreover, this primal remainder contains all the vertices of the mesh, and will
therefore be used to drive the encoding of the geometry.

(c) Topological Singularities

Topology of the remainders. If the remainder is a tree, then it can be
easily encoded. The original Edgebreaker works directly in that case. However,
this is not always the case, and the topology of the primal remainder actually
characterises the topology of the (orientable) surface. For the dual remainder
used by the valence coding, there is a detail to assert when the surface
has a non–empty boundary. This process relies on a very simple calculus of
the Euler characteristic of the remainder. According to Section III.1(c) Pure
Simplicial Complexes, the Euler characteristic of a surface is given by χ pSq �
#2 �#1 �#0, and according to the surface classification theorem introduces
in Section III.1(d) Simplicial Manifolds, χ pSq � 2 � 2 � g pSq � b pSq. Since
S21 is a tree with exactly one node for each of the #2 faces, it has #2�1
links. Therefore, the Euler characteristic of the primal remainder S01 is
χ pS01q � χ pSq � χ pS21q � 1 � 2 � g pSq � b pSq. We get the same result
for the case of a dual remainder.

Remainder of topological spheres. If the surface S is a topological
sphere, then g pSq � b pSq � 0, and the remainders have Euler characteristic
1. From the Jordan curve theorem [Armstrong 1979], the remainders are
connected, since they cannot be disconnected by the corresponding spanning
tree, which has no closed curve. Then, the remainder is a connected graph
with Euler characteristic 1: it is a tree. This primal remainder will be easy to
encode, relating topological simplicity to easy compression with connectivity–
driven schemes.

Morse edges. For a generic remainder, its Euler characteristic is 1 � 2 �
g pSq�b pSq. In the case of a dual spanning tree, the primal remainder is always
connected. However, for primal spanning trees on surfaces with a non–empty
boundary, the dual remainder can be disconnected. This can be avoided if the
primal spanning tree contains all the bounding edges of the surface, except
one per boundary components to keep it as a tree. With this restriction, the
remainder is a connected graph with exactly 2�g pSq�b pSq independent cycles,
where a cycle is a sequence of distinct adjacent links whose last one is adjacent
to the first one, and where independent means that removing one link of a cycle
does not break any other. For each cycle, one edge that would break it will be
called a Morse edge, since it induces a change in the topology of the surface,
and corresponds to a Handle operator introduced in [Lopes and Tavares 1997]
and Section III.2(b) Handle Operators. Any connectivity–driven compression
scheme designed for topological spheres can be extended to any orientable

55 IV.2. The Edgebreaker example

surface by encoding separately these Morse edges. For example, in the case of

Figure IV.5: (left): a primal remainder on a torus (genus 1): the topmost
and bottommost horizontal edges are identified, and so do the leftmost
and rightmost ones. (right) a primal remainder on an annulus (two
bounding curves).

a sphere, the primal remainder is a tree, as shown on Figure IV.4. For a mesh
with genus one or with two boundary curves, the primal remainder is a graph
with two cycles, as shown on Figure IV.5.

IV.2 The Edgebreaker example
The Edgebreaker scheme has been enhanced and adapted from the Topologi-
cal Surgery [Taubin and Rossignac 1998] to yield an efficient but initially re-
stricted algorithm [Rossignac 1999], which encodes the connectivity of any
simplicial surface homeomorphic to a sphere with a guaranteed worst case
code of 1.83 bits per triangle [King and Rossignac 1999]. The Wrap&Zip al-
gorithm introduced in [Rossignac and Szymczak 1999] enhanced the original
Edgebreaker decompression worst–case complexity from O pn2q to O pnq, where
n is the number of triangles of the mesh. It decompresses the mesh in two
passes, a direct and a recursive one. It is possible to decompress it in only
one pass using the Spirale Reversi algorithm of [Isenburg and Snoeyink 2000],
but it requires to read the encoded backwards, which is not appropriate for
the Huffman encoding of [King and Rossignac 1999] or the arithmetic en-
coding. But the true value of Edgebreaker lies in the efficiency and in the
simplicity of its implementations [Rossignac et al. 2001], which is very con-
cise. This simple algorithm has been extended to deal with non–simplicial
surfaces [Kronrod and Gotsman 2001] and the compression of simplicial sur-
faces with handles has been enhanced in [Lopes et al. 2003] using handle data.
Because of its simplicity, Edgebreaker is viewed as the emerging standard
for 3D compression [Salomon 2000] and may provide an alternative for the
current MPEG–4 standard, which is based on the Topological Surgery ap-
proach [Taubin and Rossignac 1998].

In this section, we will enhance the Edgebreaker compression for surfaces
with a non–empty boundary. [King and Rossignac 1999] encoded these sur-

Chapter IV. Connectivity–Driven Compression 56

operator S21 val. S21 pos. apex left tri. right tri.
C attach 2 H unmarked unmarked unmarked
R MTE 2 left marked unmarked marked
L MTE 2 right marked marked unmarked
E 2–handle 1 marked marked marked
S 1–handle 3 marked unmarked unmarked

Table IV.1: The CLERS codes.

faces by closing each bounding curve with a dummy vertex. This is a very
simple but expensive solution: first, it requires encoding each bounding edge
with a useless triangle; second, it requires extra code to localise the dummy
vertex; and third, it gives bad geometrical predictors on the boundary. The
original solution of [Rossignac 1999] however encodes bounding curves a spe-
cial symbol containing their length, which solves the first item but does not
describe explicitly the topology of the surface, and gave bad prediction on the
boundary. As we introduced in [Lewiner et al. 2004], we use directly the han-
dle data to encode the boundaries, which solves the above mentioned problems
and enhances the compression ratio. We will also introduce a small accelera-
tion to the Wrap&Zip procedure in order to avoid the recursion, accelerate the
decompression and reduce the amount of memory used.

(a) CLERS encoding

Gate based compression. Edgebreaker encodes the connectivity of the
mesh by producing the stream of symbols taken from the set C,L,E,R,S, called
the clers stream. It traverses spirally the dual graph of a surface in order to
generate a spanning tree. At each step, a decision is made to move from one
triangle t to an adjacent triangle t1 through an edge e1 called the gate. The
vertex v of t not contained in the previous gate e is called the apex of the gate.
This decision depends on the previously visited triangles, which are marked
together with their incident vertices.

Right–first traversal. The spiral traversal means that the next triangle is
chosen to be the one on the right if not marked, where the right triangle means
that the link of the new gate e1 contains the vertex next to the apex v of the
previous gate e (see Section III.1(d) Simplicial Manifolds for the definition of
next). This gives a direct construction of the dual spanning tree and an order
on it.

CLERS codes. The traversal is then encoded by the valences (1, 2 or 3)
of the nodes of the dual spanning tree S21, and for the valence 2 case, by the
current position (H, left or right) of the primal remainder S01 with respect to
the new triangle. The corresponding symbols are stated on Table IV.1. The
valence of the nodes of S21 can be easily detected during the traversal, using
the rules of Table IV.1 [Rossignac 1999].

57 IV.2. The Edgebreaker example

Figure IV.6: The Edgebreaker encoding. A C corresponds to a triangle
Creation. With the outward orientation, an L means that the Left triangle
has been visited, whereas an R means that the Right triangle has been
visited. S stands for Split, and E for End.

Original compression. We will now describe directly the above formal
presentation of the Edgebreaker. The algorithm starts by encoding the geometry
of a first triangle, that will be the root of S21. In the text, we will call it a P
triangle. It corresponds to a 0–handle Handle operator. The traversal begins
right after with the rules of Table IV.1: if the apex is not marked, a C is
encoded with the geometry of the apex, and the traversal continues on the
right triangle. Otherwise, if the left triangle is marked, an R symbol is encoded
and the traversal continues on the right triangle. Similarly, if the right triangle
is marked, an L symbol is encoded and the traversal continues on the left
triangle. If none of the triangles are marked (but the apex is), an S symbol is
encoded. The traversal splits since the spanning tree has a branching here. The
first traversed branch begins with the right triangle, and continues on the left
one when the first branch ends. Finally, if both adjacent triangles are marked,
the branch ends with an E symbol. This branching mechanism can be simply
implemented with an S stack that stores the left triangle of each S triangle.

(b) Fast decompression

(a) P (b) C (c) R (d) E

Figure IV.7: Coding of a tetrahedron: PCRE.

Chapter IV. Connectivity–Driven Compression 58

Wrap&Zip decompression. The original Wrap&Zip procedure
of [Rossignac and Szymczak 1999] decodes the clers stream in two passes.
The Wrap simply decodes the dual spanning tree, with the geometry of each
vertex at each C symbol. It decodes the S/E branchings and positions cor-
rectly the adjacent triangles using the branching order and the distinction
between the C or L symbols and the R symbols. Then, the Zip procedure
completes this spanning tree to obtain the dual graph. If the surface has
the topology of a sphere, then there is enough information to recover the
entire dual graph, as we will see next. The procedure is very similar to the
enumeration of [Poulalhon and Schaeffer 2003]: it looks for the star of each
vertex v, and if its star is not closed, and if the two bounding edges of its
star are associated to a C on one side, and on another symbol on the other
side, then these two edges are identified. A recursive implementation of this
procedure is necessary to achieve a linear complexity, using the fact that the
closure of a star usually allows closing adjacent stars, except when reaching
an L or E symbol.

Fast Zip. Actually, the Zip procedure is a recursive traversal of the dual
spanning tree, and it closes the stars from the leaves to the root. Actually,
since the algorithm just built the spanning tree, there is no need to traverse
it all to find the leaves. It is sufficient to use a C stack during the Wrap that
stores each C triangle. Popping the C stack reads it in the reverse way, and
the algorithm closes one star at each C symbol, and three for each P symbol,
instead of trying all triangles. This spares half of the tests. Moreover, stars
can be closed at some R and E symbols during the Wrap. This can be used to
keep the size of the C stack small, and allows a better usage of the multiway
geometry prediction of [Cohen–Or et al. 2001].

(c) Topology encoding

Figure IV.8: Dual tree generated by the Edgebrealer traversal and the
primal remainder, with the two Morse edges in red.

59 IV.2. The Edgebreaker example

Handle Sh symbols. As we said earlier, if the surface S has genus g pSq ¡ 0,
the primal remainder S01 is not a tree anymore, as illustrated on Figure IV.8.
For a surface with an empty boundary, S01 has 2 � g pSq cycles. These
cycles can be simply detected during the traversal and efficiently encoded
using [Lopes et al. 2003], while preserving the original Edgebreaker compression
scheme. These cycles correspond to a branching, and thus to an S symbol.
However, the two branchings induced by each genus of the surface loops back,
and the left edge of the S triangle is visited before its right branch ends. During
the execution, this is easily detected when popping the S stack containing the
triangles left to S symbols: if the top of the S stack is not marked, the algorithm
continues as normally. If the left triangle was marked, the S symbol actually
corresponds to a handle, and will be marked as a handle Sh symbol. This
symbol is encoded as a normal S, and special information identifying this Sh

symbol is encoded in the handle data. In order to decompress handles directly,
the position of the left triangle in the clers stream can be encoded, for example
by the number of S symbol that preceded the Sh symbol and by the number of
R, L and E symbols that preceded the left triangle, since handle Sh triangles
are obviously closed by only these kind of triangles. These numbers can be
encoded by differences to spare even more space.

(a) Reaching first S triangle (b) Reaching second S triangle

(c) The lower–right E triangle
closes the handle.

(d) The upper–left E triangle
closes the handle.

Figure IV.9: Coding of a torus: the creation of two handle S triangles:
the first and the second S symbols.

Example. To illustrate the algorithm, consider the triangulated torus of Fig-
ure IV.9, where the edges on the opposite sides of the rectangle are identified.

Chapter IV. Connectivity–Driven Compression 60

This simplicial complex can be embedded in R3. The Edgebreaker compres-
sion algorithm encodes the connectivity of the mesh though the following clers
stream: CCCCRCSCRSSRLSEEE, completed with the following handle
data: 0—4�,0—3�. There are four triangles labelled with an S symbol. The
left triangles of the two last ones are visited when popping the S stack. On the
contrary, the two first ones are visited before the being popped out of the S
stack. These two triangles are detected as handle Sh symbols. This is encoded
in the handle data as follows: the first handle Sh symbol is also the first S
symbol, and the first number encoded is therefore 0. There are four possible
matches (R, L and E symbols) for its left triangle before the good one, which
is encoded by the 4. Since it is an E triangle, it can be glued on both sides,
and the left side is indicated by the ε ��. The encoding is done the same way
for the second handle Sh symbol.

First bounding curve. This scheme can be extended to boundary compres-
sion, since they correspond to the same Handle operators. Using the handle
data to encode boundaries is then more coherent, gives a direct reading of the
surface topology through this handle data even before decoding the mesh, and
allows a specific prediction scheme for boundaries. Consider first a connected
surface S with one bounding curve. Suppose that we close it by adding a face
incident to each bounding edge of S, called the infinite face. The resulted
surface S� has no boundary, and can almost be encoded by the previous algo-
rithm. However, the infinite face is not a triangle. In the same way that the P
triangles are not explicitly encoded, we will not encode this infinite face, and
start the compression directly one of its adjacent triangle. As in the original
Edgebreaker algorithm, we encode and mark first all its vertices, e.g., all the
vertices belonging to the boundary of S. Then, for the first boundary, we only
need to know if the surface component has a boundary or not.

Boundary Sb symbols. Now, consider a connected surface has more than
one bounding curve. Then, we distinguish arbitrarily one of them as the first
boundary and the encoding uses the technique of the last paragraph. During
the traversal, we label each triangle touching a new bounding curve as a
boundary Sb triangle. As for handles, we encode it as a normal S symbol in the
clers handle, and specify that it is a boundary Sb symbol in the handle data.
To distinguish with handle Sh symbols, their first number is negative. Also,
due to the orientation of the bounding curve, the left triangle is always glued
on its left side, and we do not need to specify the last ε �� or ε ��, and we
can avoid counting the L symbols to localise it. From the Euler characteristic,
we know that there is exactly one boundary Sb symbol per bounding curve.
On Figure IV.10, the only handle S triangle is the first triangle with a vertex on
the internal boundary that we encounter during the traversal. As said before,
there are 2�g pSq�b pSq�1 such handle S triangles for each surface component
with genus g pSq and b pSq bounding curves.

Multiple components. The compression processes successively each sur-
face component. When the component has no boundary, the compression en-

61 IV.2. The Edgebreaker example

(a) The first triangle is chosen adja-
cent to a boundary. The vertices of
the central infinite face are encoded.

(b) An unmarked boundary is
reached: the corresponding S trian-
gle is a boundary S triangle.

Figure IV.10: Coding of an annulus: initialisation and creation of bound-
ary S triangles.

codes explicitly the vertices of the first triangle (uncoded P symbol). Other-
wise, it encodes the vertices of the first bounding curve. In practise, we only
need to transmit the number of components with boundary of S. Then we
transmit first all the components with a non–empty boundary, and then the
other ones.

(d) Compression algorithms

The compression scheme then decomposes in handling the multiple components
and their first boundaries (Algorithm 5: compress), compress each component
by the dual spanning tree traversal (Algorithm 4: traverse). The handles are
tested along the traversal with Algorithm 6: check handle. The whole process is
linear and performed in one pass only.

(e) Decompression algorithms

The decompression is performed in three passes, controlled by Algo-
rithm 7: decompress. The first pass decodes the dual spanning tree (Algo-
rithm 8: wrap), which is further zipped using the backward sequence of C sym-
bols (Algorithm 9: fast zip). The compression described here encodes boundary
curves, which improves prediction for the interior. However this means that
the size of the boundary is not known to the decoder at the first pass, and the
geometry must be decoded in a posterior step (Algorithm 10: read geometry).
This pass could be done at the wrap stage if we encode the boundaries when
they are closed, or if we encode the geometry of the bounding curves in a
separate stream.

Chapter IV. Connectivity–Driven Compression 62

Algorithm 4 traverse(t): encode one component starting from triangle t

1: stack Sstack ÐH // stack of the triangles left to S symbols
2: repeat
3: t.mark Ð true // mark current triangle
4: v Ð t.apex // orient the triangle from its apex
5: if v.mark � false then // C triangle
6: write vertex pvq // encode the geometry of v
7: v.mark Ð true // mark the vertex
8: write symbol pCq // encode the clers code: C
9: t Ð t.right // spiral traversal to the right

10: else if is boundarypt.rightq or t.right.mark then // right triangle visited
11: if is boundarypt.leftq or t.left.mark then // E triangle
12: write symbol pEq // encode the clers code: E
13: check handle ptq // check if it is the left triangle of a Sh triangle
14: repeat
15: if Sstack � H then // end of compression
16: return // exit the external repeat loop
17: end if
18: t Ð Sstack.pop // pop the S stack
19: until not t.mark // skip left of a handle Sh triangle
20: else // R triangle
21: write symbol pRq // encode the clers code: R
22: check handle ptq // check if it is the left triangle of a Sh triangle
23: t Ð t.left // break in spiral traversal: to the left
24: end if
25: else if is boundarypt.leftq or t.left.mark then // L triangle
26: write symbol pLq // encode the clers code: L
27: check handle ptq // check if it is the left triangle of a Sh triangle
28: t Ð t.right // spiral traversal to the right
29: else // S triangle
30: write symbol pSq // encode the clers code: S
31: if is boundarypvq then // boundary Sb triangle
32: write boundary ptq // encode boundary
33: t.mark Ð �#S // mark for the handle data
34: else // normal S or handle Sh triangle
35: t.mark Ð #S // mark for the handle data
36: end if
37: Sstack.push pt.leftq // push the left triangle on the S stack
38: t Ð t.right // spiral traversal to the right
39: end if
40: until true // infinite loop

63 IV.2. The Edgebreaker example

Algorithm 5 compress(S): compress separately each component of S
1: b� Ð 0 // counts number of components with boundary
2: for all vertices v P S do // reset marks
3: v.mark Ð is boundary pvq // mark boundary vertices
4: end for
5: for all triangles t P S do // compress components with boundary first
6: if not t.mark and is boundaryptq then // not boundary or already

encoded
7: write boundary ptq // encode boundary
8: traverseptq // component compression
9: b� Ð b� � 1 // one more component with boundary

10: end if
11: end for
12: for all triangles t P S do // compress the other components
13: if not t.mark then // not already encoded
14: t.mark Ð true // mark P triangle
15: for all vertices v P Bt do // encode the 3 vertices of the P triangle
16: write vertex pvq // encode the geometry of v
17: v.mark Ð true // mark the vertex
18: end for
19: traversept.rightq // component compression
20: end if
21: end for
22: writephandle, b�q // write the number of components with boundary

Algorithm 6 check handle(t): check if triangle t is left to a Sh triangle

1: if not is boundarypt.rightq and t.right.mark R ttrue, falseu then //
handle Sh triangle to the right

2: write
�
handle, t.right.mark�#�

RE

�
// write the handle data

3: end if
4: if not is boundarypt.leftq and t.left.mark R ttrue, falseu then // handle

Sh triangle to the left
5: write

�
handle, t.left.mark�#�

LE

�
// write the handle data

6: end if

Algorithm 10 read geometry(Cstack1): decompress the geometry

1: while Cstack1 � H do // traverse the stack
2: t Ð Cstack1.pop pq // pop the next element of the C stack
3: if t ¥ 0 then // not a boundary triangle
4: read vertexptq // read a new vertex
5: else // boundary triangle
6: read boundaryptq // read a new bounding curve
7: end if
8: end while

Chapter IV. Connectivity–Driven Compression 64

Algorithm 7 decompress(streams): decompress separately each component

1: repeat
2: s� tε Ð readphandleq // read handle data
3: if s ¡ 0 then // handle Sh symbol
4: glueps, t, εq // glue the handle on side ε before the decompression
5: else // boundary Sb symbol
6: gluep�s, t,�q // close the bounding curve before the decompression
7: end if
8: until end of filephandleq // passed the last couple of data
9: b� Ð s // last handle data counts number of components with boundary

10: stack Cstack ÐH // stack of the C and boundary Sb triangles
11: wrappb�, Cstackq // wrap using the clers stream
12: fast zippCstackq // closes the stars of the primal remainder
13: read geometrypCstackq // reads the geometry of the surface

Algorithm 9 fast zip(Cstack): decompress one primal remainder

1: stack Cstack1 ÐH // reverse copy of the C stack for the geometry
2: while Cstack � H do // traverse the stack
3: t Ð Cstack.pop pq // pop the next element of the C stack
4: Cstack1.push ptq // copy the C stack
5: if t ¥ 0 then // not a boundary triangle
6: close starptq // close the star of the next vertex
7: end if
8: Cstack Ð Cstack1 // returns the copy of the C stack
9: end while

65 IV.2. The Edgebreaker example

Algorithm 8 wrappb�, Cstackq: decompress the dual trees

1: #2 Ð 0 // initialisation
2: stack Sstack ÐH // stack of the triangles left to S symbols
3: repeat // components loop
4: if b� ¡ 0 then // component with boundary
5: b� Ð b� � 1; t ÐH // first boundary
6: Cstack.push p�#2q // push the boundary triangle for the geometry
7: else // component with an empty boundary
8: t Ð #2 // P triangle
9: Cstack.push ptq // push the first triangle for the zip

10: for all vertices v P Bt do // decode the 3 vertices of the P triangle
11: read vertex pvq // decode the geometry of v
12: end for
13: t Ð t.right // spiral traversal to the right
14: #2 Ð #2 � 1 // initialisation
15: end if
16: repeat // decompress one component
17: gluept, #2q // glue the next triangle eventually to the boundary
18: s Ð read symbol pclersq // reads the next symbol
19: if s � C then // C triangle
20: Cstack.push p#2q // push the C triangle for the zip
21: t Ð t.right // orient the new triangle to the right
22: else if s � R then // R triangle
23: t Ð t.left // orient the new triangle to the left
24: tryclose star pt.apexq // eventually zip the right edge
25: else if s � L then // L triangle
26: t Ð t.right // orient the new triangle to the right
27: else if s � S then // S triangle
28: if not t.right.mark then // not a handle or boundary S symbol
29: Sstack.push p#2.leftq // push the S triangle for the next E
30: else if is boundaryp#2q then // boundary triangle
31: Cstack.push p�#2q // push the boundary triangle for the

geometry
32: end if
33: t Ð t.right // orient the new triangle to the right
34: else if s � E then // E triangle
35: tryclose star pt.apexq // eventually zip the right and left edges
36: if Sstack � H then // end of the component
37: break // exits the component loop
38: end if
39: t Ð Sstack.pop pq // pop the next element of the S stack
40: end if
41: #2 Ð #2 � 1 // next triangle
42: until true // infinite loop
43: until end of filepclersq // end of the clers stream

Chapter IV. Connectivity–Driven Compression 66

IV.3 Performances
We presented in this chapter the fundamental concepts of connectivity–driven
compression. In particular, we focused on an extension of the Edgebreaker algo-
rithm, which handles manifold surfaces of arbitrary topology. The complexity
of the compression and the decompression are both linear in execution time
and memory footprint, independently of the maximal number of the active
elements during the execution. However, the decompression still requires two
passes, which makes it harder to stream.

There are various ways of representing a geometrical object, even
for simplicial surfaces. For specific type of meshes, some algorithms show
better performances than other ones. This distinction is one of the
main shifts from the MPEG compression [le Gall 1991] to the MPEG–4
one [Pereira and Ebrahimi 2002], which for example encodes differently hu-
man faces than landscapes. Although it is difficult to distinguish with pre-
cision classes of meshes and to predict exactly the behaviour of compression
algorithms on these, we will try to get an intuition of which characteristics
of a mesh are well suited for connectivity–driven compression schemes, and in
particular for the Edgebreaker.

(a) Compression Rates

Our experimental results for the Edgebreaker are recorded on Table IV.2
and Figure IV.11. We compared with the original Edgebreaker implementation
with the Huffman encoding of [King and Rossignac 1999] and the border
handling of [Rossignac and Szymczak 1999], and our encoding with the simple
arithmetic coder of [Martin 1979]. Our experimental results are always better
than the original Edgebreaker, mainly due to the arithmetic coding. However,
the entropy of our codes is always better than the other implementations of
Edgebreaker, as shown on Figure IV.11(b). A compression ratio of a few bits
per vertex, or even less, is a general order for efficient connectivity–driven
compression schemes.

(a) Size of the compressed file vs com-
plexity of the model.

(b) Entropy vs complexity of the
model.

Figure IV.11: Comparison of the final size and entropy: for the range
encoder, those parameters depends more on the regularity than on the
size of the model, but our algorithm really enhances the previous results.

67 IV.3. Performances

Model |#0| |#2| Dum Ori Ours Ori
Ours

Dum
Ours

sphere 1 848 926 3.39 3.39 3.45 0.98 0.98
violin 1 508 1 498 3.16 2.21 2.25 0.98 1.41
pig 3 560 1 843 3.26 3.24 3.13 1.03 1.04
rose 3 576 2 346 3.37 2.95 2.64 1.12 1.28
cathedral 1 434 2 868 2.25 1.00 0.19 5.27 11.86
blech 7 938 4 100 3.25 3.18 2.40 1.33 1.35
mask 8 288 4 291 3.19 3.12 1.93 1.62 1.65
skull 22 104 10 952 3.51 3.51 3.30 1.06 1.06
bunny 29 783 15 000 3.36 3.34 1.27 2.62 2.64
terrain 32 768 16 641 3.03 3.00 0.40 7.43 7.51
david 47 753 24 085 3.45 3.85 3.07 1.25 1.12
gargoyle 59 940 30 059 3.28 3.27 2.11 1.55 1.55

Table IV.2: Comparative results on different models drawn on Fig-
ure IV.13. ‘Dum’ stands for the dummy vertex method to en-
code meshes with boundaries [Rossignac and Szymczak 1999,
King and Rossignac 1999], and ‘Ori’ stands for the original
Edgebreaker [Rossignac 1999], and ‘Ours’ for the algorithm intro-
duced here, with the simple arithmetic coder of [Martin 1979]. The
size of the compressed symbols (columns ‘Dum’, ‘Ori’ and ‘Ours’) is
expressed in bit per vertex. Our algorithm has a compression ratio in
weighted average 2.5 better than the other two. The ‘sphere’ model has
the same encoding in all the above algorithms, but the range coder used
has a lower performance since there are few symbols to encode. The
‘cathedral’ model is the output of an architecture modelling program,
which is almost unstructured: all the connected components are pairs of
triangles.

(b) Good and bad cases

Topology–dependent applications. For our extended Edgebreaker, the
separate handle data informs directly the application of the topology of the
mesh. Many simple parameterisations, texturing or remeshing applications
work only for closed surfaces without handle. The handle data can be used
to call a preprocessing step for simplifying the topology before using these
kind algorithms. For the Edgebreaker, this handle data is not an overhead,
since encoding the handle and boundary S symbols as a true/false code on the
clers string is in the best case logarithmic as we saw in Section II.2(c) Statistical
Modelling, which is equivalent to the handle data.

Regular connectivity. The valence coding of [Touma and Gotsman 1998,
Kälberer et al. 2005] encodes particularly well meshes where the vertices
have a uniform valence. This can be obtained by subdivision [Loop 1987,
Velho and Zorin 2001] or remeshing [Alliez et al. 2003, Alliez et al. 2003]. Re-
meshing can be done also to improve the Edgebreaker compression using

Chapter IV. Connectivity–Driven Compression 68

Edgebreaker Valence coding
Topology–dependent ��� ���

[Lewiner et al. 2004]
Regular valence ��� ���

[Touma and Gotsman 1998]
Lossy connec. � ���

[Attene et al. 2003] [Alliez and Desbrun 2001]
Self–similar connec. ��� �

[Rossignac 1999] [Kälberer et al. 2005]
Irregular connec. � ���

[King and Rossignac 1999] [Castelli and Devillers 2004]
Geometric connec. ��� �

[Coors and Rossignac 2004] [Lee et al. 2003]
Geometry prediction � ���

[Lewiner et al. 2005] [Cohen–Or et al. 2001]
Low resource use ��� ���

[Rossignac et al. 2001]

Table IV.3: Good and bad cases for the two main connectivity–driven
compression schemes.

the Swingwrapper of [Attene et al. 2003]. Without these regularisations, va-
lence coding based algorithms have better performance when the connec-
tivity is locally regular, whereas the Edgebreaker performs better on irreg-
ular meshes or meshes with a global regularity, such as those obtained by
subdivision algorithms or with some self–similar connectivity. Meshes with a
very irregular connectivity would be better encoded by enumeration methods
of [Poulalhon and Schaeffer 2003, Castelli and Devillers 2004].

Regular geometry. The geometry of the mesh is not directly considered in
connectivity–driven compression, and therefore geometry–based compression
will outperform these schemes for the connectivity compression of meshes
with a regular geometry. However, the geometry can be used to predict the
connectivity, which works specifically when the geometry is regular. This has
been done for the valence coding in [Alliez and Desbrun 2001, Lee et al. 2003]
and in [Coors and Rossignac 2004] for the Edgebreaker.

Geometry prediction. Geometry prediction uses already decoded vertices
to estimate the next vertex to be decoded, asserting that the geometry is
locally regular. For connectivity–driven schemes are usually based on the par-
allelogram predictor of [Touma and Gotsman 1998]. It can be enhanced by
using more than one parallelogram to estimate the new position, as described
in [Cohen–Or et al. 2001]. This is particularly well adapted to the valence cod-
ing since the traversal can be adapted to the prediction. For the Edgebreaker,
the parallelogram can be distorted to adapt to local mean curvature of the
surface, as in [Lee et al. 2003], or to torsion and curvature of the primal re-
mainder, as described in [Lewiner et al. 2005] and on Figure IV.12.

69 IV.3. Performances

Figure IV.12: The Edgebreaker cuts the compressed surface along a curve
in the space. An extrapolation of this curve is used to enhance the
parallelogram predictor. The predictor uses the parallelogram predictor
to guess the distance from the last vertex of the curve, and rotates this
estimation according to the approximating curve.

Low resource applications. The Edgebreaker uses a deterministic traver-
sal, independent of geometry considerations. Although this is less flexible for
geometry prediction enhancements, it gives a very simple algorithm. Moreover,
compared to the valence coding schemes that needs to maintain sorted active
boundaries along compression and decompression, the Edgebreaker just needs
a stack of past S symbols. The Edgebreaker thus requires much less memory for
the execution, and spares a constant sort, which can become expensive. More
generally, connectivity–driven compression schemes are easy to implement and
quick to execute.

The above results are roughly summarised on table IV.3, as a general
appreciation from the author.

(c) Extensions

Non–simplicial meshes. Connectivity–driven compression schemes are
easier on simplicial meshes, since the dual graph has a constant valence. Most of
the mesh compression algorithms for polytope surfaces can be interpreted as a
simplicial encoding preceded by a triangulation of each face. This triangulation
is done in a canonical way from the traversal, and the decoder just need to know
the degree of the triangulated faces. For example, the valence coding can be
extended by encoding simultaneously the vertex valences and the face degrees,
as in [Alliez and Desbrun 2001], and the Edgebreaker codes can be combined
in a predictable way using the codes of [Kronrod and Gotsman 2001].

Non–manifold meshes. Extending these methods to non–manifold
meshes directly is a hard task. The usual method consists in cutting
the non–manifold surface into manifold pieces, using the techniques
of [Guéziec et al. 1998], encoding the manifold parts as separate components,
and then encoding the cut operations that were performed. The encoding of
cut operations can be done directly as in the handle data, or more carefully
by propagating the curves formed by the non–manifold edges.

Chapter IV. Connectivity–Driven Compression 70

Higher dimensions. For solid meshes, the Edgebreaker compression
has been directly extended to tetrahedral meshes in [Gumhold et al. 1999,
Szymczak and Rossignac 2000], and the valence coding has been extended
in [Isenburg and Alliez 2002]. The principles are the same, but the encoding
needs some extra information to complete the intermediate dimension between
the spanning tree and the remainders. This extra information has necessarily
some expensive parts to encode, similar to the handle S symbols that are nec-
essary to glue distant parts of the traversal. Minimising this extra information
is an NP–hard problem, as proved in [Lewiner et al. 2004]. For higher dimen-
sions, the combinatory of mesh connectivity makes it difficult to find a concise
set of symbols for coding, or a good statistical model for them as was done
for surfaces in [King and Rossignac 1999]. However, for high codimensions, the
connectivity remains simple while the geometry can be efficiently predicted.
Seen from the other side, this means that for low codimension, geometry–based
coding can be very efficient, which is where isosurface compression outperforms
any connectivity–based compression, as we will see in the next chapter.

Robustness. The Edgebreaker is robust in the sense that it handles general
manifold surfaces. However, it is not particularly robust with a noisy transmis-
sion, where the clers codes can be altered. In that case, the grammar inherent
to these codes can be used to detect transmission errors, but not directly to
correct them.

Deformable meshes. For animation purposes, the Edgebreaker can be used
directly to compute the deformed mesh when its connectivity is constant,
and using for example [Sorkine et al. 2003] to interpolate the geometry. Local
changes in the connectivity can be further encoded using the explicit identifi-
cation of vertices and triangles provided by the Edgebreaker, similarly to the
description of [Vieira et al. 2004].

71 IV.3. Performances

(a) sphere (b) violin (135 comps,
138 bdries)

(c) pig (6 bdries)

(d) rose (51 comps, 64
bdries, χ � 0)

(e) cathedral (717
comps)

(f) blech

(g) mask (7 bdries) (h) skull (genus 51) (i) bunny (5 bdries)

(j) terrain (k) david (l) gargoyle

Figure IV.13: Some of the models used for the experiments, with the
beginning of Edgebreaker’s dual spanning tree: The ‘violin’ has 135 com-
ponents and 138 boundaries. The ‘rose’ has 51 components, genus 1 and
64 boundaries. The cathedral has 717 components with boundary. The
‘mask’ has 7 boundaries. The ‘skull’ has genus 51. The bunny has 5 bound-
aries.

V
Level Set Compression

Connectivity–driven compression schemes provide general methods with good
performances in average. However, for specific cases, their compression ratios
are far away from those of dedicated techniques. This chapter describes
the specific case of isosurface compression, and more generally level sets
compression, where compression ratio can achieve fractions of connectivity–
driven ones for the connectivity and the geometry (from 8–10 bits per vertex to
only 1 or 2). This mixture with geometry is the key to reach these performances.

Level sets. A level set is the preimage f�1 p0q of the singleton t0u by
a continuous function f : X Ñ R. The domain X of f is generally an
Euclidean space Rd. If f is continuously differentiable, this implies from Sard’s
theorem [Arnold 1981] that the level set is generically a manifold of dimension
d� 1 with an empty boundary. In the discrete setting, the sampling f of
f will be called the scalar data, and the points x of X where f is defined
will be called the sample points . The discrete level set then depends on the
sampling and on the interpolation. We chose one particular interpolation,
detailed in Section V.1 Level Set Extraction.

(a) 764 bytes (b) 853 bytes (c) 1089 bytes (d) 2011 bytes (e) 5369 bytes

Figure V.1: Topology controlled extraction of a Computerized Tomogra-
phy image of the cortex, and progressive compression.

Level curve compression. The first level sets to be encoded were con-
tour curves (d � 2), especially for cartographic data and shape classifica-
tion. When the scalar data is an image, and the sample points are limited
to the pixels of that image, the contour can be compressed using deriva-
tives of the chain code of [Freeman 1974], or as a standard bidimensional
signal as in [Langdon and Rissanen 1981, Bossen and Ebrahimi 1997]. When
the contour is more precise than pixel quantisation, the vector displace-
ment inside that pixel can be compressed using [Craizer et al. 2002*1,

Chapter V. Level Set Compression 74

Safonova and Rossignac 2003]. These methods can be extended to hierarchi-
cal representations, as in [Lopes et al. 2002*1], and then to progressive com-
pression schemes, as done in [le Buhan and Ebrahimi 1997] by a hierarchical
representation induced by a multiresolution of the image.

Isosurface applications. Isosurfaces (d � 3) are widely used in
many fields, from medical imaging [Lorensen and Cline 1987] to computer
graphics [Parker et al. 1998] and surface reconstruction [Davis et al. 2002],
through geophysical modelling [Tavares et al. 2003] and scientific visuali-
sation [Bajaj et al. 1998]. For example, medical scan techniques such as
computerised axial tomography and magnetic resonance imaging measure
physical quantities sampled on a semiregular tridimensional grid. Also for
scientific simulations, partial differential equations are usually resolved
using level set methods, as those of [Sethian 1999], which also result in
sampled functions over a tridimensional grid. This variety of applica-
tions resulted also from a large panel of techniques to manipulate iso-
surfaces [Bloomenthal et al. 1997]. These isosurfaces can be structured into
meshes by the usual Marching Cubes method of [Lorensen and Cline 1987]
and its extensions [Nielson and Hamann 1991, Montani et al. 1994,
Lewiner et al. 2003*3], the dual contouring of [Ju et al. 2002] and simpli-
cial methods [Velho 1996, Treece et al. 1999].

Isosurface compression. In most of isosurface applications, the visual
result is only a surface extracted from the scalar data as an interpolation
of f. For example, the cortex corresponds to only a specific X–ray scintillation
inside the scan of the whole head. In that case, looking only at this cortex allows
discarding most of the scalar data, as the reconstructed cortex is contained only
in a limited part of the head. This motivates specific techniques to compress
isosurfaces by encoding only the essential portion of the scalar data. Moreover,
these techniques show better performances than generic mesh compression
methods. Although [Saupe and Kuska 2002] and [Yang and Wu 2002] already
developed specific compression schemes for isosurface, their extensive encoding
based on Marching Cubes’ configurations have been quickly bested by the JBIG
compression of the scalar data, and then by [Taubin 2002] who extended this
arithmetic encoding with a context in all three dimensions of scalar data.
Then, [Boada and Navazo 2001] proposed to encode only the specific part of
the scalar data containing the isosurface, in a progressive manner based on
an octree decomposition of the scalar data. A small improvement of this work
proposed in [Lee et al. 2003] to complete the compression with a final encoding
of the geometry at the finest level of detail.

Simplicial level set compression. We will introduce now a general
method to compress level sets in any dimension, which is competitive
with the state–of–the–art for contour curves [le Buhan and Ebrahimi 1997]
and isosurfaces [Lee et al. 2003]. This method was first introduced
in [Lewiner et al. 2004*2, Lewiner et al. 2004*4, Lewiner et al. 2005*3], and
can be used for direct or progressive compression, as on Figure I.5. It is based

75 V.1. Level Set Extraction

(a) original (b) without control (c) distortion control

Figure V.2: Isosurface multiresolution representation can minimise the
distortion induced by progressive compression.

on the regular binary multi–triangulations (RBMT) of [Mello et al. 2003], that
we presented in Section III.3(c) Multi–Triangulations, which allows a greater
adaptability than the octree of [Boada and Navazo 2001, Lee et al. 2003].
The RBMT is built on the sample points, and its simplification induce a
multiresolution on the isosurface, which provides simple mechanisms to con-
trol the geometry, distortion and topology over the compression process, as
on Figure V.1, Figure I.4, and Figure V.2. The compression is performed as a
traversal, guided by the sign of f on the sample points encountered.

V.1 Level Set Extraction
We will structure the scalar data as a RBMT, where each vertex coincides with
a sample point of f. This is the case of regular grids, terrains, stratigraphical
grids or discrete maps of functions. The RBMT can be automatically generated
starting with a triangulation of the hypercube, and then mapped onto X by a
continuous function.

(a) curvature (b) distortion (c) topology

Figure V.3: A singular contour curve extracted in order to preserve:
V.3(a) the curvature, V.3(b) the distortion and V.3(c) the topology.

The whole process of compression starts with the full scalar data, which
corresponds to the finest level of the RBMT. The level set at that level will
be called the original level set. Then, the RBMT is progressively simplified,
and at each step, a simplification that would induce a too high distortion or
a topological change can be prevented, as on Figure V.3. The simplification
thus proceeds by non–local simplifications until reaching what we will call the

Chapter V. Level Set Compression 76

coarsest level of the RBMT according to the distortion and topology criteria
we used to simplify. Then, we encode this coarsest level directly, and encode
successively the refinements of each level of the RBMT.

Extraction and compression thus work in opposite ways, and the quality
of the multiresolution extraction will correspond to the quality of the progres-
sive decompression. This whole process can be used by parts, since the direct
encoding can be used directly at the finest level, leading to a competitive di-
rect compression scheme for level sets. Moreover, the only extraction has direct
applications into multiresolution representations of level sets with guarantees,
as detailed in this section.

(a) Simplicial Interpolation

Figure V.4: The tubular neighbourhood of a contour curve.

Tubular neighbourhood. For a fixed resolution K of the RBMT, a vertex v
is said to be positive if the scalar data f is positive at the corresponding sample
point, and negative otherwise. Then, a simplex of K incident to a positive and
a negative vertex is called a crossing simplex . The collection of the crossing
simplices of K will be called the tubular neighbourhood]K pfq of the level set
of f in K:]K pfq � tσ P K : f pσq Q 0u. Figure V.4 shows an example of such
tubular neighbourhood.

Figure V.5: Interpolation of the contour cruve.

Linear interpolation on edges. We intend to create a mesh MK repre-
senting the level set, generalising the method of [Velho 1996]. The geometry

77 V.1. Level Set Extraction

of this mesh, i.e. the position of its vertices, will be computed by linear inter-
polation of f. Thus, each vertex v of MK belongs to a crossing edges e of K.
If we denote Be � tw�, w�u, then the position of v is given by the following
linear equation, schematized on Figure V.5:

v � λ � w� � p1� λq � w� with λ � f pw�q
f pw�q � f pw�q .

Level set meshing. The level set is also interpolated linearly inside each
simplex. This corresponds to intersecting a simplex with a codimension 1
hyperplane. This hyperplane contains the vertices of MK , since they are
linearly interpolated on the edges. In general, there exists more than n
crossing edges for inside an n–simplex, and there will therefore be more than
one maximal simplex of MK inside a crossing simplex of K. For arbitrary
dimensions, these simplices can be computed directly as the Cartesian product
of two simplices as in [Gelfand et al. 1994, p. 246] or by triangulating the
convex hull of the vertices of MK of each crossing simplex, for example
using the Delaunay triangulation of Section III.3(b) Delaunay Triangulation. For
contour curve, there is exactly two vertices of MK inside a crossing triangle,
and the level set is meshed by linking these vertices by an edge. In the case of
a grey–scale image, this corresponds to a linear subpixel interpolation, as the
purple points of Figure V.4. For isosurfaces, the level set is triangulated using
the look–up table of [Velho 1996], schematized on Figure V.6.

Figure V.6: Simplicial meshing of an isosurface.

(b) Geometry and Distortion Control

Controlled simplification. The Algorithm 3: simplify of Sec-
tion III.3(c) Multi–Triangulations provided a simple way to simplify a resolution
of the RBMT while preserving its regularity. Here, we want to simplify the
resolution of the RBMT to induce a controlled simplification of the level
set, as for example the simplifications of Figure V.3 and Figure V.7. The
controlled is obtained by testing for each local simplification if its conse-
quences on the level set are suitable or not. For example, we can simplify
the RBMT while preserving the level set, by preventing any local operation
on its tubular neighbourhood. This can be implemented by successive calls

Chapter V. Level Set Compression 78

(a) no control (b) curvature (c) distortion

Figure V.7: An ellipse extracted without control, and controlling: V.7(b)
its curvature, V.7(c) its level of distortion.

to Algorithm 3: simplify, but Algorithm 11: global simplify gives a faster imple-
mentation. In this algorithm, w.level refers to the level of the vertex in the
RBMT. Figure III.16 was generated using such a criterion on the different

Algorithm 11 global simplify(f) : global simplification preserving the tubular
neighbourhood of the level set of f

1: repeat // recurse on levels
2: changed Ð false // to stop the repeat loop
3: for all w P Kp0q do // vertices of K
4: for all w1 P st pwq do // vertices in the star of w
5: if w.level ¡ w1.level or f pwq � f pw1q ¤ 0 then // w is not the lowest

vertex or ww1 is crossing
6: continue2 // cannot simplify it: next w
7: end if
8: end for
9: weld(w) ; changed Ð true // locally simplify w

10: end for
11: until changed // stabilised

steps of Figure III.14.

Geometry control. The crossing criterion f pwq � f pw1q ¤ 0 of line 5
of Algorithm 11: global simplify can be modified to simplify further the level
set inside its tubular neighbourhood]K . The simplest case would be to
simplify any vertex of the RBMT having a level superior to a given threshold.
This gives a tubular neighbourhood with constant size of simplices. Since
a flat curvature of the level set means that it is well approximated by an
affine plane, regions where the estimated curvature is low can be simplified
with small visual distortion. The curvature of a level set can be simply
estimated by local differences of the scalar data around it, which makes it
easy to modify Algorithm 11: global simplify for these kind of geometric control.
Instead of curvature, view–dependent and ray–casting strategies can be used
for visualisation, or specific curvatures for parameterisation and texturing
applications.

79 V.1. Level Set Extraction

Figure V.8: The simplification of w induces a distortion that can be
measured as maxtdpq, p11q; dpq, p12qu.
Distortion control. The performance of progressive compression schemes
is usually measured in terms of rate/distortion curves. Therefore, we can tune
our simplification algorithm in order to control the distortion of the simplified
level set MK compared to the original one MK0 . An example for curves is
drawn on Figure V.8. The distortion is usually measured as the semi–Hausdorff
distance [Cignoni et al. 1998*1], which is the maximal distance of a point
of MK0 to the closest point of MK . This distortion induced by the local
simplification of a vertex w in K can be estimated by the maximal distance
between the portions of the original level set and the portion of the level set
after the simplification lying in the star of w. Since the w needs to be the
lowest vertex of its star to be simplified, the star of w in K has always the
same connectivity for a given dimension, which allows a generic implementation
of that test as a small modification at line 5 of Algorithm 11: global simplify.
In particular for coding, this distance can take into account the quantisation
error of the decoder for MK , as done on Figure V.8, in order for the encoder
to compute exactly the final distortion of the whole compression scheme.

(c) Topology Control

Generic topology control. Similarly, the topology of the level set can be
easily controlled during the extraction process. Consider the local simplification
of a vertex w, and denote e the edge of the simplified mesh containing w. If
the level set is a topological disk in the star of w, the local simplification does
not change its topology. This test can be partially done by computing the
Euler–Poincaré characteristic, which differs from 1 if the part of the level set is
not a disk. Moreover, if the edge e is not crossing, while its two subedges were
crossing before the simplification, the simplification can induce a topological
change as on Figure V.9.

Topology control for contour curves. This test can be simplified and
certified for contour curves. If we denote Be � tvl, vru, there are only two
prohibited simplifications, and similar ones on the boundary, as described
on Figure V.9 and Algorithm 12: topology :

Chapter V. Level Set Compression 80

(1)

(2)

Figure V.9: There are two cases where the simplification of w induces a
change on the topology: (1) destruction of a connected component, (2)
exchange of local connected components.

1. The destruction of a connected component occurs when all the four edges
incident to w are crossing.

2. The separation of a connected component in two or the merge of two
connected components happen when the subdivision edge e � tvl, vru
is not crossing (f pvlq � f pvrq ¡ 0), while its subedges were crossing
(f pvlq � f pwq ¤ 0).

Algorithm 12 curve topology(w) : test if the simplification of w would alter
the topology of the contour curve (valence 4 case)

1: pe1, e2, e3, e4q Ð edges of w.star // e2 Y e4 is the subdivision edge
2: pc1, c2, c3, c4q Ð pe1.crossing, e2.crossing, e3.crossing, e4.crossingq // local

topology
3: if pc1, c2, c3, c4q � ptrue, true, true, trueq then
4: return false // (1) destruction of a connected component
5: end if
6: if pc1, c2, c3, c4q � ptrue, false, true, falseq then
7: return false // (2) exchange of local connected components
8: end if
9: return true // simplification is safe

81 V.2. Direct Encoding

Figure V.10: The second prohibited case for isosurfaces.

Topology control for isosurfaces. For isosurfaces, the test can also be
simplified and certified. If the refined edge e is crossed at most once, below or
above the welded vertex w, the topology of the isosurface will not change during
the weld. This is a sufficient condition, and covers the two cases for contour
curves, as shown on Figure V.10. To obtain a necessary one, we compute, when
the surface crosses e twice, the Euler characteristic χ of the isosurface in the
star of w. The simplification is allowed only if χ � 1.

V.2 Direct Encoding

(a) Location: level
4, 1, L R L R. ���.

(b) Vertex signs:��������.
(c) 2 known ver-
tices, then: ���.

(d) ���������End.

Figure V.11: Uniform encoding of the coarser resolution of a small
sinusoid. The light curve is a second–order fitting of the decoder’s points
(in the middle of the crossing edges), and serves as geometrical predictor.

The whole compression process extracts the level set at the finest reso-
lution, simplifies it to a coarser one, encodes this coarser resolution and the
sequence of refinements operations. A direct compression scheme can be imple-
mented by simply encoding the level set at a given resolution with the technique
described in this section. This technique is also used for the compression of
the coarse resolution, as an initial data for the successive refinements. When
the tubular neighbourhood has constant size, as obtained on a regular grid or

Chapter V. Level Set Compression 82

after the execution of the original version of Algorithm 11: global simplify, the
direct encoding is simpler and more efficient.

The main idea is to encode the tubular neighbourhood]K going along
with the level set, from one crossing simplex to an adjacent one of]K .
Similarly to the connectivity–driven compression, this allows good prediction
mechanisms, since the local structure of the level set can be supposed to be
smooth. The algorithm encodes first the localisation of an unvisited crossing
simplex σ0, and the signs of its vertices. From this initial simplex, it follows
the level set by a traversal of its dual graph in a depth–first–search manner,
encoding the sign of each unvisited vertex encountered. When the traversal
is done, it continues on the next connected component. Notice that only
the vertices of]K have their sign encoded, leaving our algorithm almost
independent of the initial size of the scalar data.

Figure V.12: Coarser resolution compression: the traversal goes from t0
to t1 through gate e0, and encodes the sample point v1.

Figure V.12 illustrates the idea by the use of a contour curve. The RBMT
is spatially adapted to the contour curve. Once the initial triangle is detected,
we encode in a certain sequence only the scalar value of the vertices on the
tubular neighbourhood of the curve.

(a) Localisation

Algorithm 13 send localise(σ0) : send localisation of σ0

1: σ Ð σ0 // temporary variable
2: stack RLstack ÐH // stack of the positions of the ancestors of σ0

3: while σ.parent � H do // not reached the root
4: stack.pushpσ.parent.left � σq // stores as Left (true) or Right (false)
5: σ Ð σ.parent // one level up
6: end while
7: sendpposition pσ, rootsqq // encodes which root of the RBMT binary tree
8: while RLstack � H do // pops the stack
9: send bitptop.pushq // encodes the Left or Right symbol

10: end while

The location of the initial simplex σ0 can be encoded using the binary
tree inherent to the RBMT, as done by Algorithm 13: send localise. The root of
the tree contains only a few simplices: 2 for a regular bidimensional grid, 6 for

83 V.2. Direct Encoding

the tridimensional one. The root ancestor of σ0 can therefore be encoded by its
index with few bits. Then, knowing the level l of the simplex to encode, it can
be localised using a sequence of l symbols Left and Right, as on Figure V.11(a),
Figure V.13(a) and Figure V.13(d).

Then σ0 and all its vertices are marked as visited, and their signs are
encoded. Although the location is cheap to encode this way (log p#rootsq �
log plq � 2 � l � 1 bits), it is one of the most expensive parts of the compressed
data. Since this has to be encoded for each connected component, topology
preserving extraction for the last simplifications can enhance the compression
ratio.

(b) Uniform Encoding

Once the signs of the vertices of the initial simplex σ0 have been encoded, its
crossing n�1–faces are known to the decoder. The crossing n�1–faces τi are
then pushed into a stack. These faces are ordered by the level of their vertices
in the RBMT, so that the decoder is synchronised with the encoder.

(a) Location: level 5, 0,
L R L L L. ���.

(b) Vertex levels and
signs: ¡ � � � � � �.

(c) � � ¡ � ¡ � ¡ � �� �.

(d) level 5, trig 0, L L L
L L. � � �. ¡ � � � � � .

(e) � � ¡ � ¡ � ¡ � �� �End.

Figure V.13: Adaptive encoding of the coarser resolution of a small
hyperbola.

Then, the stack is popped and the first crossing n�1–faces of σ0 will
play the role of the gate τ0, as described in Algorithm 14: receive coarse uniform.
The other simplex σ1 incident to the gate τ0 is also a crossing simplex. The

Chapter V. Level Set Compression 84

Algorithm 14 receive coarse uniform : decodes the coarser level uniformly

1: stack Gstack ÐH ; levelset ÐH // traversal stack and neighbourhood
2: while σ Ð receive localise do // new connected component
3: σ.mark Ð true ; Bσ XKp0q.mark Ð true // mark σ and its vertices
4: repeat // traverse a connected component
5: for all τn�1 P Bσ do // look for gates in order
6: σ1 Ð st pτn�1q z tσu // retrieves the next candidate
7: if not σ’.mark and τn�1.crossing then // crossing new face
8: Gstack.pushpτn�1, σ1q // push the next gate onto the stack
9: end if

10: end for
11: repeat // retrieve a new gate
12: if Gstack � H then // empty stack
13: break // next component
14: end if
15: pτ, σq Ð Gstack.pop // next gate
16: until not σ.mark
17: w Ð σzτ // apex of the new simplex
18: if not w.mark then // w not visited yet
19: w.mark Ð true ; f pwq Ð receive bitpq // decodes the sign of w
20: end if
21: levelset Ð tlevelset, pτ, σ1qu // add to the decoded levelset in order
22: until Gstack � H // empty stack
23: end while
24: return levelset // the ordered levelset is used for the refinements

algorithm encodes the sign of its apex, i.e. the vertex w1 not contained in τ0,
so that the decoder knows its crossing faces. Both σ1 and w1 are marked as
visited. The algorithm then pushed the crossing n�1–faces of σ1, and continues
the traversal by popping the next gate on the stack. This way, the traversal of
the connected component of the level set only ends when the stack is empty.

Actually, a gate is valid only when the simplex σ1 it reaches has not been
visited yet, and the sign of the vertex w1 is encoded only when it has not been
marked (which can occur even when σ1 has not been visited). This guarantees
to encode exactly one sign bit per sample point, with an overhead of a few bits
per connected components used for the localisation procedure.

(c) Adapted Encoding

The above algorithm can be easily modified to encode the tubular neighbour-
hood when it is composed of simplices of different levels. In that case, the algo-
rithm also encodes the level of the current simplex σ1 during the traversal. The
decoder will read the required level for σ1 and subdivide or simplify σ1 if neces-
sary. Since we defined the RBMT in order to maintain a difference of at most
one level between adjacent simplices in Section III.3(c) Multi–Triangulations,
the decoder will have to subdivide or simplify an unvisited simplex at most
once (after line 16 of Algorithm 14: receive coarse uniform), and the encoder will
have to send only one out of 3 symbols: 1 �1 when the levels match, 1 ¡1 or

85 V.3. Progressive Encoding

1 1 when the levels differ. The encoding of the signs is done similarly to the
uniform one.

This guarantees to encode exactly one bit per vertex of the tubular
neighbourhood]K , plus one symbol of t�, ,¡u per simplex of]K , with
an overhead of a few bits per connected components, used for the localisation
procedure, as done on Figure V.13.

V.3 Progressive Encoding
Successive refinements reverse the multiresolution extraction, allowing a pro-
gressive adaptation of the tubular neighbourhood to the level set, using each
time smaller simplices. The algorithm can encode the signs of the new vertices
of K 1 ø K created by the subdivisions of all simplices of]K , or it can first
specify which simplices to subdivide according to their order in the coarse level
encoding, and then send the sign of the new vertices inserted, as done on Fig-
ure V.15. The refinements can also be performed by encoding the position of
the level set directly inside]K , which becomes cheaper in high dimensions
and allows sharing information with close–by level sets.

(a) Combinatorial Refinement

Figure V.14: A subdivision can extend the tubular neighbourhood of the
level set if the sign of vv0 ¡ 0 and vv1 ¡ 0.

The uniform refinement simply subdivides first all the simplices of]K ,
and then encodes the signs of the vertices of]K1 belonging to the former
tubular neighbourhood]K created by the subdivision. The order of the new
vertices is induced by the traversal used for the coarser resolution encoding.

When subdividing a simplex crossing the contour curve, the position of
the subdivided simplices with respect to the contour curve is determined by
the sign of the new vertex introduced on the subdivision edge. This sign is
encoded during the progression. However, this subdivision can locally extend
the tubular neighbourhood:]K1 �]K , as on Figure V.14. This case occurs
when the new vertex w is inserted inside a non–crossing face at the boundary
of]K . In that case,]K1 is extended to enclose the new vertex w and its star,
but the signs of the star do not need to be encoded, since they are either

Chapter V. Level Set Compression 86

(a) Location. (b) Adaptive decod-
ing. . .

(c) . . . with prediction

(d) Decoding refinements. . . (e) . . . the curve is incomplete

(f) Decoding signs of new ver-
tices. . .

(g) . . . until completing the curve.

Figure V.15: Direct decoding, followed by a progressive refinements of a
fish curve.

87 V.3. Progressive Encoding

already encoded or opposed to the sign of the w. Otherwise, there would have
been an uncoded connected component at the former level of detail.

Our method also allows an adaptive progression, creating smaller sim-
plices where the level set is more complex, and leaving bigger simplices where
it is simple. There are only a fraction of simplices of the tubular neighbour-
hood]K that can be refined: only the one with the lowest level. For each
of these simplices, taken in the order of the encoding returned by Algo-
rithm 14: receive coarse uniform, we encode a Refine or Keep code on one bit.
When a Keep symbol is encoded, the simplex will not be considered for future
refinements, keeping it as a leaf on the binary tree of the RBMT. The simplices
for Refine codes are refined, and the sign of the newly inserted vertices are en-
coded in the same way as for uniform refinement. This procedure is repeated
until all simplices are marked with a Keep code.

(b) Extrinsic Geometry Refinement

Once the tubular neighbourhood]K of a resolution level is encoded, only one
bit for each vertex of]K is known to the decoder. Therefore, the position of
each vertex v of the level set mesh is a priori set to the middle point of its
crossing edge e. This can be improved by sending a more precise value of f on
the endpoints of e.

(a) Location: level 6, 1,
L L L L L R. ���. �.

(b) Vertex levels and
signs: � � ¡ �.

(c) level 5, trig 0, L L L
L L.

(d) ���. � � � � ¡ � ¡� � � � � �.
(e) ¡ � � � � � � � �� ¡ � � � End.

Figure V.16: Adaptive encoding of the coarser resolution of a cubic:
irregular tessellation can reduce the distortion.

The input scalar data regularity can actually influence the quality of
the compression, as illustrated on Figure V.16. For specific applications such

Chapter V. Level Set Compression 88

as human face contour compression in images, the RBMT can be mapped
onto a non–regular model given by a few set of parameters, such as the mean
and variances of the original level set, for example an elliptic–radial initial
distribution of the scalar data for human faces.

Geometry and combinatorial refinements are concurrent and complemen-
tary. It is not clear to us yet how much information each one adds at different
levels. A priori, geometry refinements are more efficient in high dimensions,
where there are many simplices for only a few scalar points.

(c) Level Sets Extensions

The scalar value given by the extrinsic geometry refinements can be used to
encode other level sets corresponding to small translations f1pwq � fpwq � ε
of f. By decoding ε, we can deduce the sign of many vertices for f1 before
any new transmission. This feature can be very useful in medical applications,
where the contrast of measure planes varies inside the grid. The algorithm
to complete the level set at the same resolution as f is then almost identical
to Algorithm 14: receive coarse uniform.

V.4 Tuning and Results
We presented in this chapter a novel approach for level set compression,
which works for arbitrary dimension. The following sections show results for
isocontour and isosurfaces, and comparisons with the state–of–the–art method
for isosurface [Lee et al. 2003]. Note that our compression and decompression
has, in the worst case, a linear complexity with respect to the size of the
input data (the image or the volume for isocurve and isosurfaces), both in
execution time and memory footprint. However the expected execution time
rather depends on the size of the level set. We used the arithmetic coder
of Section II.2 Arithmetic Coding for the final coding, with an implementation
based on the one used by [Lee et al. 2003].

(a) Prediction and Statistical Models

Direct encoding. The sign of the vertex being decoded can be predicted
by approximating the decoded level set and extrapolating this approximation.
For example for contour curves, we fit a parabola on the last 20 decoded curve
vertices using [Lewiner et al. 2004*1]. For the decoder, the contour vertices are
at the midpoints of each crossing edge, and the interpolated parabola on these
edges midpoints passes closer to one of the two unknown edges the triangle on
top of the stack, as shown on Figure V.17. The algorithm predicts that this
edge will be the next crossing edge. Moreover, the distance to the central vertex
allows defining 3 different cases, each of which generates a specific probability
model through the context mechanism described at Section II.2(c) Statistical
Modelling. This prediction succeeds in average in 80% of the cases, as described
in [Lewiner et al. 2005] and on table V.1. We complete this prediction with an
order 0 arithmetic coder.

89 V.4. Tuning and Results

Figure V.17: “Singular” curve: the predictor must guess whether the
curve will traverse edge ac or bc, approximating the real curve (in red)
by a parabola (blue curve) using only the points known to the decoder
(in blue), i.e. midpoints of the edges crossing the curve.

Adaptive codes. The encoding schemes we introduced here goes along with
the level set to compress. Therefore, the next symbols to encode are closely
related to the symbols just encoded before. This fact gives a priori more
accurate probability models for the context–based arithmetic encoding. The
context model can be enhanced with a good initialisation. For example, we can
give more probability to the � symbol. Moreover, the encoder does not encode
a RBMT grid vertex twice, although it visits it more than once. This multiple
visit can be used to update the probability model of the context, even without
encoding the corresponding symbol. This accelerates the learning delay of the
arithmetic coder, without any cost.

Combinatorial refinements. For the combinatorial refinements, we dis-
tinguish two cases for the vertex w created during the refinement process: either
w is on the boundary of]K , or inside]K . On the boundary, the general case is
not to extend]K . Inside]K , the prediction is made using the parabola fitting
of [Lewiner et al. 2004*1, Lewiner et al. 2005]. We used an order 2 arithmetic
coder for the refinements.

Extrinsic geometry. The extrinsic geometry can be predicted by smooth-
ing. However, for the contour curves case, since we already used the parabola
fitting with success, we use it again for the prediction of the geometry: the
reconstruction of the curve can be enhanced by a smoothing operation, mov-
ing the intersection of the curve with the simplicial grid away from the edge
midpoint. This should reduce the distortion of the decoded curve. In order
to perform this operation on–the–fly, the approximation used by the predic-
tor is directly used to compute the new intersection, as on Figure V.18. This
smoothing behaves well when the curve is regular and well sampled, as shown
on table V.1). We used an order 1 arithmetic coder for the geometry transmis-
sion. For the general case, the probability model is initialised with a Gaussian
around zero.

Chapter V. Level Set Compression 90

Figure V.18: A decompressed implicit sinoide without smoothing (left)
and with the predictor on–the–fly smoothing (right).

Predict Size (bits) Distortion (10�3)
Curve success w/out with gain w/out with gain
bicorn 80.3 % 1479 1014 46 % 2.26 2.52 �10 %
circle 80.6 % 1658 1106 50 % 2.38 2.20 8 %
cubic 81.4 % 566 324 75 % 3.48 3.99 �13 %
ellipse 82.5 % 1430 920 55 % 2.03 1.99 2 %
singular 77.9 % 1501 1099 37 % 1.43 1.36 5 %
hyperbola 80.2 % 1648 1164 42 % 1.53 1.39 10 %
sinoide 84.5 % 2645 1612 64 % 0.91 0.76 20 %

Table V.1: Results of the predictor for the contour curves case: for each
one of the implicit curves, the number of successes over the erroneous
guesses of the predictor is around 80%. The gain in the size of the
compressed curve is half of the compressed size. The smoothing induced
by the predictor reduces the distortion for most of the case. All the results
were obtained as means of the same model over various resolution of the
grid, from 50 to 3000 vertices, with q � 84.

(b) Direct

The methods we introduced here are flexible and can be used in many ways,
and resulted in nice rate/distortion curves, as on Figure V.22. For contour
curves in images, we started from the complete triangulation of the pixels. For
implicit curves, we sent in–between two levels of detail a part of the geometry
(2 bits). For any dimensions, single rate encoding is, as usual, a little more
efficient than progressive encoding.

(c) Progressive

The different controls on the adaptation of the multiresolution, such as those
of Figure V.19, can have a significant cost, as shown on Figure V.22(a). For
example, on regular models such as the elevation curve of the Sugar Loaf drawn
on Figure V.20, the distortion and topology controls provide nicer results to
the eyes at the beginning of the compression than uniform refinements, while

91 V.4. Tuning and Results

(a) Original isocontour. (b) Tessellation.

(c) Curvature. (d) Distortion. (e) Topology.

Figure V.19: Extraction of a contour curve with different controls.

(a) 21 bytes (b) 31 bytes

(c) 46 bytes (d) 156 bytes (e) 690 bytes

Figure V.20: Progressive compression of an elevation curve of the Sugar
Loaf. The tessellation is adapted to the curve to minimize the distortion
and to preserve the topology.

finally resulting in similar performances. Topology control means an extra
cost depending on the complexity of the model: compare the car number plate

Chapter V. Level Set Compression 92

(a) 97 bytes (b) 129 bytes (c) 164 bytes

(d) 223 bytes (e) 283 bytes

Figure V.21: Progressive compression of a car number plate (with en-
hanced contrast), topology controlled: direct encoding (173 bytes) and
progressive encoding (283 bytes) both with good compression ratio.

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

di
st

or
tio

n:
 H

au
sd

or
ff

 d
is

ta
nc

e
(%

 b
bo

x)

rate (bytes)

brain (adapted to topology)
ellipse (alternate refine/geometry)

sloaf (adapted to distortion)
sloaf (uniform)

(a) Semi-Hausdorff distance.

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000

di
st

or
tio

n:
 m

ea
n

ab
so

lu
te

 e
rr

or
 (

%
 b

bo
x)

rate (bytes)

brain (adapted to topology)
car plate (adapted to topology)

car plate (direct encoding + geometry)
rio_inpe (uniform)

rio_inpe (direct encoding)
sloaf (adapted to distortion)

sloaf (uniform)

(b) Mean absolute error.

Figure V.22: Compression results: on complex models, topology control
is mode expensive with progressive encoding.

of Figure V.21 with the brain model of Figure V.1 on Figure V.22. However,
the rate/distortion performances have a similar evolution for all methods and
models, as shown on Figure V.22(a). For simple curves, the geometry encoding
seems a good alternative to refinements for regular models such as the ellipse
on Figure V.22(a), and for higher dimensions.

93 V.4. Tuning and Results

Octree [Lee et al. 2003] Simplicial
level rate dist level rate dist

brute smooth
Coarse 15 220 11.01 6.27

Comb 5 191 68.16 Comb 16 349 4.15 4.34
Comb 7 1 563 9.06 Comb 17 651 3.19 3.29
Comb 8 4 854 4.44 Comb 18 934 2.70 2.72

Comb 19 1 462 2.02 1.97
Comb 20 2 637 1.69 1.59
Comb 21 3 816 1.49 1.41
Comb 22 5 908 1.20 1.08
Comb 23 10 595 0.98 0.87

quantisation (bits)
Geom 30% 21 138 2.79 Geom 2 18 966 0.91
Geom 100% 53 706 0.52 Geom 4 34 060 0.27

Geom 8 78 096 0.04
Geom 16 158 566 0.04
Geom 20 201 548 0.04

Table V.2: Comparison of the octree–based uniform refinement strategy
from [Lee et al. 2003] and our method with the same strategy on the horse
model.

For isosurfaces, [Lee et al. 2003] use the dual marching
method [Ju et al. 2002] to reduce the amount of geometry to encode (only
one vertex per crossing cube), which force the geometry to be sent at the end.
We tested the same kind of methods for the comparisons of Table V.2, with
uniform refinements and the geometry encoding as a final step.

Figure V.23 shows our rate/distortion curves for other models with the
same strategy, and Figure I.5 and Figure V.24 illustrates it. Figure V.25
shows the rate/distortion ratios for different distortion threshold and different
geometry quantisation. The threshold is well respected and the rate/distortion
distributions converge to an optimum.

But since our method is more flexible, we experienced using distortion
control for multiresolution encoding, by alternating refinement and geometry
encoding pass. This is illustrated on Figure V.26, where the base mesh is
encoded as in the previous single rate application, and the refinements are sent
adaptively. At each level, we encode the full geometry of the new vertices of the
tubular neighbourhood (8 bits). The resulting distortion converges quickly in
that case, which goes in the direction of the assertion of Section V.3(b) Extrinsic
Geometry Refinement on the efficiency of geometry coding in higher dimensions.

(d) Extended applications

This method already compresses level sets in any dimension. It could
detect transmission errors during the initial coarse encoding better

Chapter V. Level Set Compression 94

Figure V.23: Rate/distortion curves on various models

than [Lee et al. 2003], since the level set traversal would probably not close if
the transmitted signs are altered. However, it would not be straightforward
to correct these errors. In the refinement pass, errors would probably not be
detected since the refinements are mainly local and the global topology can
be preserved independently.

This method naturally extends to codimension higher than one, for
example curves in space, by transmitting several signs for each RBMT vertex
of the tubular neighbourhood. For animation applications, in particular for
physical simulations where level sets are commonly used for integrating partial
differential equations (PDE), our level set compression can be used directly
in two ways. First, a deformed level set corresponds to a level set with one
more dimension (the time). This compression can be expensive, particularly in
memory, and would not use the coherence of the level set during its evolution.
The second option would be to use the method described at Section V.3(c) Level
Sets Extensions, to encode the level set of each instant as a local deformation of
the one at the previous instant. In particular for PDE integration, the proper
structure of the PDE can be used to improve the prediction mechanisms.

95 V.4. Tuning and Results

Figure V.24: Decompression of the eight model as a 2573 regular sampled
data. The first images correspond to the binary multi–triangulation
refinement, followed by the geometric refinements.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10000 100000

di
st

or
tio

n
(%

 b
bo

x)

rate (bytes)

dist 0.0002
dist 0.002

dist 1.0
dist 2.0
dist 3.0

Figure V.25: Rate/distortion curves of single rate encoding of the happy
buddha model, with different distortion thresholds and geometry quan-
tisations

Chapter V. Level Set Compression 96

(a) base mesh : threshold 3.0, 2258
bytes

(b) base mesh with geometry: 5439
bytes

(c) first refinement: threshold 0.2,
7353 bytes

(d) geometry of the first refinement:
1135 bytes

Figure V.26: Progressive encoding according to the distortion, with
alternate refinement/geometry levels.

VI
GEncode

Among the mesh compression algorithms, different schemes compress better
specific categories of model. In particular, we saw in the last chapter that
geometry–driven approaches have outstanding performances on isosurfaces. It
would be expected these algorithm to also encode well meshes reconstructed
from the geometry, or optimised by a geometric re–meshing. These meshes
adapted to geometry are usually expensive to compute, either in the recon-
struction case, as for example with [Amenta et al. 2001] or the remeshing one
as in [Alliez et al. 2003, Alliez et al. 2003]. Moreover, their geometry is some-
times known independently of their connectivity, such as scanning results, and
the only encoding of their connectivity can be useful in these contexts.

We will present now GEncode, first introduced in [Lewiner et al. 2005*1],
which is a direct mesh compression scheme that compresses the connectivity of
these meshes at almost zero–cost. This scheme is very general, and deals with
simplicial complexes of arbitrary dimension in arbitrary ambient space, even if
the complex is non–pure, non–manifold or non–orientable. Compression results
for surfaces are competitive with existing connectivity–driven compression
schemes.

VI.1 Purposes

(a) Focus on Geometrical Meshes

We will focus on geometrical meshes , i.e. meshes whose connectivity can partly
deduced from its geometry, as for reconstructed scans or remeshed models,
and meshes of high dimension or with a complex topology. In these cases,
connectivity–driven compression approaches should be less efficient on the
connectivity encoding. On one side, the connectivity of geometrical meshes
can be decoded from the geometry, and thus the connectivity does not even
need to be encoded. On the other side, connectivity codes become exponentially
complex with the dimension, while geometry–driven connectivity codes handle
gracefully complex topology, as we will detail now. These particularities were
already stated in [Gandoin and Devillers 2002], which was the first geometry–
driven progressive compression scheme.

Moreover, we would like our scheme to be predictable and flexible. More
precisely, since this scheme is adapted to a specific category of meshes, as
connectivity–driven compression or level sets compression wer adapted to
other categories, we would like to know by a simple test if our algorithm will

Chapter VI. GEncode 98

(a) edge length (b) circumradius (c) # candidates

(d) quantised criterion (e) candidate position

Figure VI.1: Compression of a scanned mechanical piece: once the ge-
ometry is decoded, the decoder attaches a triangle e � w to the active
bounding edge e. The vertex w is identified by the circumradius ρ pe � wq
of the original triangle, divided by the length of e in order to reduce the
entropy. The position of w in the list of vertices with the same quantised
criterion is then encoded.

be performing before the whole compression. Furthermore, depending on the
mesh type, i.e. computer aided design meshes, finite element method supports,
scanned meshes, remeshed models. . . , the algorithm should use different
geometric criterion to be compatible with the mesh generation properties.
We will focus on the Ball Pivoting criterion since it is easy to understand and
to implement in any dimension, but the algorithm works with any geometric
criterion.

In the case of scanned models, the reconstruction algorithm computes the
connectivity of the surface only from the geometry of its vertices. Therefore,
a geometry–driven approach using the same reconstruction algorithm should
not waste any byte in connectivity. The proposed scheme achieves this, by
encoding a mesh based on a local geometric criterion.

(b) Zero Cost for Reconstructible Meshes

Compression overview. The proposed encoding scheme works similarly
to reconstruction algorithms, although it encodes continuously the differences
of the original and reconstructed mesh. It first encodes the geometry of
each vertex, in any ambient space, using a simple octree coding that is
a synthesis of both [Gandoin and Devillers 2002, Botsch et al. 2002], as for

99 VI.1. Purposes

example on Figure I.6. The algorithm then encodes the connectivity of an
n–manifold propagating from an initial cell an advancing front triangulation,
attaching at each step an n–cell τn�1 � twju to a bounding (n�1)–cell τn�1.

Deviation encoding. The difference between the original and recon-
structed mesh is that w is not always the one that minimises the geometric
criterion G pτn�1, wq of the reconstruction procedure. This difference is encoded
by the position of w in a list of candidates . These candidates are chosen from
a quantised bound on G pτn�1, wq.
Entropy for reconstructible meshes. To minimise the entropy (with the
definition of Section II.1(b) Information Theory), that list is ordered by the
geometric criterion. Therefore, when the mesh is reconstructible by the given
geometric criterion, the candidate is always the first one and the quantisation
generates only one class. Therefore, the symbols to encode are always the same
for that case, and the message have a zero entropy, which is what we intended.

General meshes. When the geometric criterion corresponds to the con-
struction of the mesh, the entropy is almost zero. Otherwise, general meshes
require to find an adapted geometric criterion in order to encode the deviation
between the reconstruction and the original model as described above. From a
geometrical point of view, usual meshes are not so general, since their simplices
are relatively well shaped and connect mainly neighbour vertices. Their local
geometry is therefore relatively simple, which motivates looking for parametric
geometric criterion to fit the mesh geometry.

Extensions. From the connectivity point of view, the algorithm can be
easily extended. The generic algorithm does not need to be modified when
elevating the dimension or the codimension. For non–simplicial meshes, the
generic attachment can require more than one vertex. The first one is encoded
as previously, and the other ones are selected in order to belong to the same
hyperplane, and in increasing order for the geometric criterion. For non–
manifold n–meshes, many n–cells can be attached to the same (n� 1)–cell
of the active border. For non–pure meshes, the encoding performs successively
for each dimension, completing progressively the highest dimensional structure
with lower ones.

(c) Independent Geometry Encoding

Paradigm. For the GEncode algorithm, the geometry is supposed to be
known before the connectivity is encoded. This can be the case for a prac-
tical application or for artificial sampling. However, for generic cases, the
separate encoding of the geometry turns out to be expensive with actual
techniques. Mixed step of geometry/connectivity encoding could greatly im-
prove the overall compression ratio, but this is still ongoing work. More-
over, since point sets encoding is still a new area, the cost of the geome-

Chapter VI. GEncode 100

try encoding should reduce in a close future. For scanned objects, the points
are usually aligned on parallel planes, similarly to medical imaging recon-
struction [Boissonnat and Geiger 1993], in which case the geometry encod-
ing can be improved. For generic case, the geometry can be encoded as
a general multidimensional signal, using for example the optimal coding
of [Craizer et al. 2002*1], or by some space subdivision techniques.

- Lower vs Higher Lower vs Higher vs Ours
nv Lower Higher Lower Higher Ours

0 - 49 81% 19% 0% 12% 88%
50 - 99 100% 0% 60% 0% 40%

100 - 199 95% 5% 14% 4% 82%
200 - 499 100% 0% 40% 0% 60%
500 - 999 93% 7% 67% 0% 33%

1000 - 1999 86% 14% 67% 0% 33%

Table VI.1: Percentage of models on which each geometry encoded per-
formed best, grouped by model size: the lower node efficient method
of [Gandoin and Devillers 2002] performs better on bigger models, par-
ticularly when compared only to the higher node efficient method
of [Botsch et al. 2002]. Our method achieves integrating the benefits
of [Botsch et al. 2002], and partially of [Gandoin and Devillers 2002].

Space subdivision encoding. We used the last option, with a synthesis
on [Gandoin and Devillers 2002] and [Botsch et al. 2002], which uses a simple
tree coding technique. This techniques works for vertices with an arbitrary
number of coordinates, allowing encoding meshes of arbitrary codimension.
As in [Gandoin and Devillers 2002] and [Botsch et al. 2002], the space is di-
vided with a particular binary space partition where each separator is per-
pendicular to the axis (i.e. a octree): the axis alternates from one level to the
other (X,Y,Z,X,Y. . . in R3), and the separator is always positioned at the
barycenter of the cell represented by the node, as for Figure VI.2, Figure VI.3
and Figure VI.4. The subdivision is performed until each node contains only
one vertex.

Figure VI.2: Geometry encoding of [Gandoin and Devillers 2002]: the
encoder encodes 5 on 32 bits, then 5 on rlog2p6qs bits, then 4 on rlog2p6qs
bits. The right vertex position is then encoded. Then 2 is encoded on
rlog2p5qs bits, 1 on 1 bit and 1 bit again. Then each remaining vertex is
encoded.

101 VI.1. Purposes

Lower nodes efficient. In [Gandoin and Devillers 2002], each node of the
binary space partition is encoded by the number of vertices #vl its left children
contains. The number of vertices of the other node #vr is simply deduced by
difference from the number of the known vertices of the parent’s node #vf .
This technique wastes many bits at the beginning of the encoding, as the
number of nodes must be encoded on rlog2p#vf � 1qs bits, as for the example
of Figure VI.2. When there is only one vertex per node, is is encoded with 1
bit per level, which is optimal.

Figure VI.3: Geometry encoding of [Botsch et al. 2002]: the encoder en-
codes the following sequence: �0, ��, ��, 0�, ��, ��, 0�. Then follow
0� and �0 to reach the the desired number of bits.

Higher nodes efficient. In [Botsch et al. 2002], each node is encoded by
one out of 3 symbols: �� if both children contain at least one vertex, �0 if
only the left child contains a vertex, and 0� if only the right one contains
a vertexs, as for the example of Figure VI.3. Note that at least one child
must contain a vertex, as the parent did. The encoding stops at a predefined
level. This method spends more bits at the end of the encoding, since the
decoder doesn’t know when there is only one vertex in a node. Therefore,
the encoder sends log2p3q bit for each level, which is greater than the 1 bit
of [Gandoin and Devillers 2002] for the last part.

Figure VI.4: Our geometry encoding: the encoder encodes the following
sequence: �0, �1 and the right vertex is fully encoded. Then ��, 11, 11.
The position of each remaining vertex is then encoded.

Synthesis. Our technique takes the best part of both. First, it encodes each
node by one of 6 symbols: �� if both children contains more than one vertex,�1 and 1� if one child contains more than one vertex, and the other only
one, 11 if they both contain only one vertex, and �0 and 0� if one child
contains more than one vertex, and the other child is emptys, as for the example
of Figure VI.4. With this encoding, the encoder detects when there is only one
vertex in a node, and then uses the technique of [Gandoin and Devillers 2002].
The symbols do not have the same probability and the coder takes that into

Chapter VI. GEncode 102

account. Moreover, these probabilities are used differently depending on the
level of the node to encode: nodes closer to the root are more frequently of
type ��, whereas these are rare when going closer to the leaves. For example,
the 1986 vertices of the solid sphere of Figure I.6, left, were compressed
by [Gandoin and Devillers 2002] with 3433 bytes, by [Botsch et al. 2002] with
3877 bytes and by our method with 3429 bytes. The 192 vertices of the
Cartesian product of a sphere and a circle of Figure I.6, right, were compressed
by [Gandoin and Devillers 2002] with 649 bytes, by [Botsch et al. 2002] with
980 bytes and by our method with 646 bytes. The coloured lines represent part
of the traversal of the mesh by the connectivity encoder.

VI.2 GEncode schemes

(a) Advancing front compression

Any mesh can actually be constructed by a sequence of general attach-
ments, as defined in Section III.2(a) Euler Operators. This property is inten-
sively used in surface reconstruction with advancing front triangulation algo-
rithms [Medeiros et al. 2003], and will be the base of our algorithm. The mesh
is built step by step, each step consisting in attaching a cell to the boundary of
the last step, called the active boundary . The cell attached is the join of a cell
τn�1 of the active boundary with some vertices wi. For example for triangulated
surfaces, the triangle attached is the join of an edge of the active boundary
with one vertex. Since the geometry of all the vertices is known, the problem is
to identify which vertices wi are used for the attachment, and we will identify
each wi by its position j inside a list of candidates : wj P tv1, . . . , vku. This
process is implemented by Algorithm 15: gencode and Algorithm 16: gdecode.
For these algorithms, we suppose that there is at most one cell spanning a
given set of vertices.

(b) Optimisations and Extensions

Generality of GEncode. The above algorithms are actually very general,
and can be simplified for specific cases. In its present forms, it handles
simplicial complexes and polytopes of arbitrary dimension, embedded in any
codimensional space. The complex can be orientable or not, and have any kind
of topology. It can respect the manifold or pseudo–manifold criterion or not.
We will see how each of these restrictions can simplify the algorithm, and
improve the final compression ration. Such improvements do not change the
nature of the GEncode, but accelerates its execution. For example, we can push
only the unmarked n�1–cells of the frontier of the attached cells at lines 33
and 29 of Algorithm 15: gencode and Algorithm 16: gdecode respectively, in
order to maintain a smaller priority queue and to avoid the test of lines 7
and 6 of Algorithm 15: gencode and Algorithm 16: gdecode respectively.

103 VI.2. GEncode schemes

Algorithm 15 gencode(): encodes one component of a pure n–polytope.

1: Gqueue ÐH // priority queue of the (n�1)–cells of the active boundary
2: σn Ð initial cell pq // first cell of the component
3: encode first pσnq // encode the first cell by its geometry
4: Gqueue.push pBσnq // initial active boundary
5: while Gqueue � H do // main loop
6: τn�1 Ð Gqueue.pop // the active (n�1)–cell of highest priority
7: if τn�1.mark then // already encoded
8: continue // try next
9: end if

10: for all σn P 9st pτn�1q do // look for an uncoded cell incident to τn�1
11: if σn.mark then // already encoded
12: continue // try next
13: end if
14: tw1, . . . , wmu Ð apex pσn, τn�1q // vertices to be encoded
15: encode pmq // encode the complementary degree of the cell
16:
17: sort ptw1, . . . , wmu ,Gq ; g Ð G pτn�1, w1q // minimal apex for G
18: rGmin,Gmaxs Ð quantise pgq // quantisation interval for g
19: encode pGmin,Gmaxq // encode the quantised criterion
20: tv1, . . . , vku Ð candidates pτn�1, rGmin,Gmaxsq) // look for candidates
21: sort ptv1, . . . , vku ,Gq // optimal candidate first
22: encode pi : w1 � viq // encode the position of w1 as a candidate
23:
24: rGmin,Gmaxs Ð quantise ptw2, . . . , wmuq // quantisation of G for the

other vertices
25: encode pGmaxq // encode the quantised criterion
26: for all j P v2,mw do // encode the other vertices of the cell
27: tv1, . . . , vku Ð candidates pτn�1, tw1, wj�1u , rGmin,Gmaxsq) // look

for candidates
28: sort ptv1, . . . , vku ,Gq // optimal candidate first
29: encode pi : wj � viq // encode the position of wj as a candidate
30: end for
31:
32: σn.mark Ð true // mark the encoded cell
33: Gqueue.push pBσnq // update the active boundary
34: end for
35: τn�1.mark Ð true // mark the encoded active boundary cell
36: encode p�1q // end of the edge star
37: end while

Chapter VI. GEncode 104

Algorithm 16 gdecode(): decodes one component of a pure n–polytope.

1: Gqueue ÐH // priority queue of the (n�1)–cells of the active boundary
2: σn Ð decode first pq // decode the first cell of the component
3: Gqueue.push pBσnq // initial active boundary
4: while Gqueue � H do // main loop
5: τn�1 Ð Gqueue.pop // the active (n�1)–cell of highest priority
6: if τn�1.mark then // already encoded
7: continue // try next
8: end if
9: while true do // uncoded simplices incident to τn�1

10: m Ð decode pq // decode the complementary degree of the cell
11: if m � �1 then // no new incident simplices
12: break // next cell of the active boundary
13: end if
14:
15: Gmax Ð decode pq // decode the quantised criterion
16: tv1, . . . , vku Ð candidates pτn�1, rGmin,Gmaxsq) // look for candidates
17: sort ptv1, . . . , vku ,Gq // optimal candidate first
18: i Ð decode pq ; w1 Ð vi // decode the position of w1 as a candidate
19:
20: pGmin,Gmaxq Ð decode pq // decode the quantised criterion
21: for all j P v2,mw do // encode the other vertices of the cell
22: tv1, . . . , vku Ð candidates pτn�1, tw1, wj�1u , rGmin,Gmaxsq) // look

for candidates
23: sort ptv1, . . . , vku ,Gq // optimal candidate first
24: i Ð decode ; w1 Ð vi // encode the position of wj as a candidate
25: end for
26:
27: σn Ð attach pτn�1, τn�1 � tw1, . . . , wmuq // attach the new cell
28: σn.mark Ð true // mark the decoded cell
29: Gqueue.push pBσnq // update the active boundary
30: end while
31: τn�1.mark Ð true // mark the decoded boundary cell
32: end while

105 VI.2. GEncode schemes

Simplicial meshes. For simplicial meshes, we know that each n–simplex
has n�1 vertices. Therefore the m symbol is always equal to 1 at lines 15
and 10 of Algorithm 15: gencode and Algorithm 16: gdecode respectively. More-
over, the coding of the extra vertices tw2, wm�1u can be avoided, which sup-
presses lines 16 to 31 of Algorithm 15: gencode, and lines 19 to 26 of Algo-
rithm 16: gdecode. For generic purposes, this can be implemented with the
same algorithms by incorporating this information in the probability model
of the m symbols, either at initialisation or progressively, as described in Sec-
tion II.2(c) Statistical Modelling.

Manifolds. If the mesh is a pseudo–manifold with an empty border, we
know that each n�1–cell is incident to exactly two n–cells. Therefore, there is
no need to encode the �1 symbol at lines 36 and 11 of Algorithm 15: gencode

and Algorithm 16: gdecode respectively, nor to include the loops starting at
lines 10 and 9 of Algorithm 15: gencode and Algorithm 16: gdecode respectively,
that wait for this symbol. Furthermore, if we know the original mesh is
manifold, we can remove from the list the candidates that would create a
non–manifold mesh, i.e. the vertices that are not in the active boundary.

Non–pure complexes. The above algorithms can be easily extended
to handle multiple components and non–pure elements by calling Algo-
rithm 15: gencode and Algorithm 16: gdecode many times. For the first case, the
algorithm is called once per component using the function initial cell at line 2
of Algorithm 15: gencode, and a by encoding a bit signal Stop/Continue at the
end of the procedure. Non–pure elements of dimension p n, i.e. p–cells not
face of any (p�1)–cell, can actually be considered as pure elements of the p–
skeleton Kppq, as defined at Section III.1(a) Simplicial Complexes. The algorithm
then encodes the pure part Kpure of the polytope with Algorithm 15: gencode,
and then successively encodes the pure parts Kpureppq of the lower skeletons Kppq,
starting with the boundary of Kpurepp�1q as active boundary, and considering each

cell of Kpurepp�1q as already encoded. This involves at most n�1 calls to Algo-
rithm 15: gencode or Algorithm 16: gdecode.

(c) Candidates selection

Quantisation. The decoder has to choose which vertices w of the encoded
mesh was adjacent to τn�1. This information is encoded by the index of w
inside a list of candidates. This list could be the list of all vertices, but that
would require O plog p#0qq bits for each vertex, which is too expensive. In order
to minimise the number of elements of the candidate list and the time used
to create that list, the geometric criterion G pτn�1, wq of w is quantised and
encoded. This quantisation is a tradeoff: On one hand, if the quantisation is
brutal, there will be many candidates, which means a long time to generate
the list and an expensive encoding of the position of w in the list of the
candidates, as show the histograms of Figure VI.5. On the other hand, if the
quantisation is too refined, the quantised geometric criterion will be expensive

Chapter VI. GEncode 106

(a) # candidates (b) candidate position

Figure VI.5: The quantisation of the geometrical criterion affects the
entropy of the candidate position.

to encode. Therefore, a given geometric criterion must be associated with a
adapted quantisation scheme.

Figure VI.6: Candidate selection from a given geometric criterion (here
the circumradius).

Ordering. The quantised geometric criterion is just an interval rGmin,Gmaxs
that contains G pτn�1, wq. The decoder then enumerates all the candidates

107 VI.3. Geometric Criteria

vi R τn�1 that could fit in this interval : G pτn�1, viq P rGmin,Gmaxs, and order this
list of candidates by G: G pτn�1, viq G pτn�1, vi�1q, as shown on Figure VI.6.
For typical meshes, this ordering lowers drastically the entropy, since the vertex
w is usually one of the first ones, and the entropy coder can reflect this using
predefined probabilities, as described in Section II.2(c) Statistical Modelling.

Non–simplicial meshes. In the implementation, the binary space parti-
tion created by the encoding of the geometry is used to accelerate the search
for candidates, when the range of the geometric criterion can be bound in
the ambient space. However, the number of candidates for the other verticestw2, wm�1u can be further reduced : On one hand, these vertices belong to the
hyperplane containing τn�1 � w, and not to the hyperplane supporting τn�1.
This criterion translates directly on the binary space partition, and greatly ac-
celerates the search. On the other hand, the vertices wj are taken in increasing
order of G, which means that the lower bound of the quantisation interval is
reduced at each step.

VI.3 Geometric Criteria

For reconstruction purposes, the vertex w chosen to join the simplex τn�1

minimises a geometric criterion G pτn�1, wq � Gmin pτn�1q. For example, the
Ball Pivoting Algorithm of [Bernardini et al. 1999, Medeiros et al. 2004] uses
the circumradius of the simplex τn�1 � w as geometric criterion: G pτn�1, wq �
ρ pτn�1 � wq.

This geometric criterion is a fundamental piece of the GEncode scheme,
since it must predict the local rules to deduce the connectivity from the
geometry. In this section, we will describe which are the important elements
of a geometric criterion, and detail these by the specific example of a criterion
derived from the Ball Pivoting Algorithm. We will conclude by some indications
to a practical scheme for deducing a ad hoc criterion for a given mesh.

(a) Generic Formulation

Purpose. Consider a fixed mesh K. A geometric criterion is a real valued
function G pτn�1, wq depending on an active (n�1)–simplex τn�1, a candidate
vertex w and eventually any vertex of the complete mesh and the already
decoded mesh. The geometry criterion is adapted to K if, for a fixed active
simplex τn�1, this function assigns the lowest possible values to the apex w of
an n–simplex τn�1�w of K. This would characterise the mesh local connectivity
from its geometry, but for practical use in our GEncode scheme, the criterion
must satisfy other

Quantisation/enumeration tradeoff. In order to avoid generating huge
lists of candidates, the geometric criterion is quantised into a few classes. This
quantisation should optimise the tradeoff between the number of candidates
generated and the number of classes. A simple class repartition mechanism

Chapter VI. GEncode 108

would be an exponential increase of the class size, giving more precision for the
more frequent elements. However, this should be specified for each geometric
criterion.

Spatial extension. The search for candidates can be accelerated using the
binary space partition created by the encoding of the geometry described
at Section VI.1(c) Independent Geometry Encoding. To do so, a range of the
geometric criterion should correspond to a spatial restriction, in order to look
for candidates in only a specific part of the space. This generates a significant
acceleration of the algorithm.

Traversal strategy. The geometric configuration of a simplex σn differs if
looking at it from an apex w (σn � τ � w) or another one w1 (σn � τ 1 � w1),
as shown on Figure VI.8. The geometric criterion can perform better if
entering in a simplex σn by a specific face τn�1. That is why the active
boundary is implemented by a priority queue in Algorithm 15: gencode

and Algorithm 16: gdecode. The geometric criterion can thus be enhanced by
a specific priority for the faces of the active boundary.

(b) Ball–Pivoting and Delaunay–Based Reconstruction

Delaunay–based meshes. In order to illustrate the GEncode scheme
with a practical geometric criterion, we will present a criterion derived from
the simple and efficient reconstruction algorithm of [Bernardini et al. 1999]:
the Ball Pivoting described at Section III.3(b) Delaunay Triangulation. For
meshes that were reconstructed with this algorithm, or with similar
Delaunay–based reconstruction algorithms as [Boissonnat and Geiger 1993,
Lopes et al. 2000, Chaine and Bouakaz 2000, Boissonnat and Cazals 2002,
Cohen–Steiner and Da 2002, Nonato et al. 2005], this criterion will be partic-
ularly efficient.

Ball Pivoting criterion. For surfaces, the Ball Pivoting algorithm always
attaches to an active boundary edge τ 1 the vertex w that minimizes the
circumradius ρ ptq of the triangle t � τ 1 � w. This can be extended to
higher dimensions, as was done in [Medeiros et al. 2004]. The circumradius
can be computed in high dimensions using derivations of the Cayley–Menger
determinant [Blumenthal 1970]. In practise, this computation is expensive, and
can be substituted by the volume |σ| of σ � τn�1�w, using directly the Cayley–
Menger determinant.

Quantisation. The quantisation can actually be improved if we consider the
circumradius divided by the length of the active face as show the histograms
of Figure VI.7 :

G �τn�1, w� � ρpτn�1�wq
|τn�1| .

109 VI.3. Geometric Criteria

(a) edge length (b) circumradius

(c) quantised radius

Figure VI.7: Whereas the circumradius of a simple mesh has a high
entropy, its circumradius divided by the edge length has a very low
entropy and can be efficiently quantised. However, when some of the
edges are linked to a distant vertex, as in Figure VI.9, their quantisation
becomes expensive.

As ρ pτn�1 � wq is the circumradius, G pτn�1, wq ¡ 1
2
. Then, from 1

2
, the criterion

is quantised in an exponential manner, with speed k that, experimentally, was
optimum around 7:

Gmax

�
τn�1, w� � Q

log2

�G �τn�1, w�� k

2

�U
, k � 7.

Spatial bound. Moreover, with this quantisation, the candidates can be
searched only in a ball centred of radius proportional to Gmax, centered at the
midpoint of τn�1. The proportion depends on the dimension of the ambient
space.

Traversal priority. These kinds of optimisations actually depend of which
face of the active boundary is chosen at each step. In particular for our criterion
will be better quantised if the volume of the active face is bigger, as it optimises
the entropy of G, conforming the examples of Figure VI.8. This gives a direct
key for the priority of the queue representing the active boundary.

Chapter VI. GEncode 110

Figure VI.8: Traversal of a sphere and of a Klein bottle models, from cold
to hot colours: good orders can improve the compression.

(c) Parametric Criterion

Figure VI.9: The circumradius encoding can be expensive for meshes
generated with a criterion different from G.

Mesh–dependent automatic tuning. The ball pivoting criterion that we
just introduced is efficient for usual meshes of Computer Graphics. However,
it is obviously not universal, and in particular not adapted to Computer Aided
Design meshes, as the one of Figure VI.9. More generally, each mesh would have
a specific criterion, ideally requiring only one quantisation class and assigning
to the right candidate a local minimum. This kind of criterion can be arbitrarily
complex to describe, and its transmission to the decoder can be even more
expensive than the encoding with a simpler criterion. This results in another
tradeoff between increasing the complexity of the criterion to get closer to
an ideal criterion that would encode the mesh at zero cost, and reducing its
complexity to avoid an expensive transmission of the criterion.

111 VI.3. Geometric Criteria

Parametric criterion. Actually, for a given mesh and eventually a given
traversal of the mesh, we can create a sampling of the criterion G : Rnd�Rd Ñ
R by assigning to each gate τn�1 one sample per valid vertex w of the mesh. A
vertex is valid if it does not create a degenerated cell, and for the manifold case,
if it belongs to the active boundary during the traversal. The gate is considered
as a simplex by eventually omitting some vertices, in order to simplify the
sampling task. The domain of the criterion is actually projected in order to
put the gate τn�1 at the origin and aligned with the axes. The real value
associated with the sample pτn�1, wq is somehow arbitrary, and can be 0 if the
vertex is the apex of a valid cell of the mesh, and 1 otherwise. This value can
be scaled by the distance of the vertex to the gate in order to get a better fit,
and far–away vertices can be omitted to accelerate the process. The criterion
is then a parametric fit of these samples, for example using [Pratt 1987]. For
example, a low–degree polynomial or rational fraction can be used, which would
encompass the Ball Pivoting criterion.

Quantised class creation. The quantisation can be directly deduced by
summing for each value of the criterion the position of the right apex for
each gate inside the list of candidates of higher criterion. The quantisation
can optimally allocate quantisation intervals to have the lowest average value
inside each class.

Spatial division. We can compute the maximal distance of a valid vertex
to the centre of a gate directly for each quantisation bound. This information
can be transmitted directly since there are only a few quantisation intervals.
Eventually, these distances are affected by the volume of the gate, which can
be taken in account here, similarly to the Ball Pivoting criterion.

Traversal guiding. The traversal strategy is somehow harder to deduce
automatically, mainly because the whole criterion depends on the traversal.
Since the traversal should be guided by only the gates, we should start with
one priority for a gate, such as the volume or the orientation, and draw the
error of the criterion as a function of that priority function. Then, a simple
transformation, such as a multiplication by �1 or a recentring on an intervalra, bs (x ÞÑ px� aq pb� xq), can outline a lower error on higher value of the
transformed priority. If the difference between low and high values is not
significant, another priority could be used.

Practical use. This method is time consuming in practise, which prevents
its direct use for each mesh to encode. However, it can be used to generate
criteria for a specific class of meshes. For example, this process can be applied
to a sequence of meshes generated for a specific finite element method. The
resulting criterion would then be hard coded to form a specific compression
algorithm for this kind of meshes. The only care to be taken concerns the spatial
extension, which should either be guaranteed, or the algorithm should take in
account escape codes to handle exceptions to the extension rules. Moreover,

Chapter VI. GEncode 112

we believe that applying this method to a specific kind of meshes provides a
nice way to understand better their geometry/connectivity relation.

VI.4 Results

Geometry Connectivity
animal 19.343 1.980
art 19.561 1.491
cad 18.566 1.682
math 21.499 1.996
medical 21.220 2.411
scans 18.639 1.372
original 19.334 2.246
remeshed 18.882 1.269
all 19.089 1.717

Table VI.2: GEncode compression ratio for triangulated surfaces, in bits
per vertex. These results are an average over 200 models grouped by
category.

GEncode intends to compress better geometrical meshes. In the case of
the Ball Pivoting criterion, this means that the simplices should be as equi-
lateral as possible, or at least a subtriangulation of a Delaunay polyhedron.
This is the case of reconstruction algorithm [Bernardini et al. 1999] or some
techniques of remeshing [Alliez et al. 2003]. The results of Table VI.2 show
that this behaviour stands in practice (we used the arithmetic coder of Sec-
tion II.2 Arithmetic Coding). In particular, the remeshed models and the scans
sculptures are better compressed than the other models, as for example the
model of Figure VI.10. Although most of the results presented here are for sur-
faces, the algorithm has been implemented for any dimension and codimension.
The only two features that were not implemented in high dimension are the
non–pure compression and the manifoldness recognition (which is a NP–hard
problem [Hass 1998]). For higher dimension, we lacked of geometrical mod-
els to make a valid benchmark. The compressor compares nicely to exist-
ing compression scheme, although it is able to compress a wider range of
models. Table VI.3 details some comparisons with the Edgebreaker algorithm
of Chapter IV Connectivity–Driven Compression. These comparisons
were made using the parallelogram prediction of [Touma and Gotsman 1998]
for the Edgebreaker, with the same quantisation for the vertices (12 bits per co-
ordinate). We are aware that many techniques improved on this parallelogram
prediction, in particular [Cohen–Or et al. 2001]. As the difference is tight, the
performance of connectivity–driven algorithm could best this current version of
GEncode for surfaces. However, we believe that there are many open directions
to improve this new scheme that will maintain it competitive.

The GEncode compression is already robust to errors in the input model
since it compresses any mesh. The connectivity compression is actually quite
robust to noise in the transmission, since the attachment criterion is local
and the decoder should generate an interpolation of the points. Moreover,

113 VI.4. Results

#2 Edgebreaker GEncode
Geometry Connectivity Geometry Connectivity

mechanical 71150 � � 15.860 0.822
bunny 34834 17.050 2.178 18.767 1.182
gargoyle 30059 20.992 2.110 18.379 0.894
david 24988 25.800 3.070 16.985 1.631
horse 19851 24.856 3.012 18.216 1.193
terrain 16641 17.093 0.400 13.505 3.557
fandisk 6475 19.555 2.254 21.519 2.630
klein 4120 � � 22.110 3.436
blech 4102 21.552 2.400 20.721 4.550
sphere 642 27.975 3.450 24.685 0.051
rotor 600 31.667 3.693 24.078 6.438

Table VI.3: GEncode compression ratio on triangulated surfaces, com-
pared with the Edgebreaker. The mechanical piece is not a manifold object,
and the Klein bottle is not orientable, which prevented the Edgebreaker
to work.

the number of candidates varies significantly along the mesh, and errors can
thus be easily detected by a candidate position exceeding the number of
candidates. Animated models could be handled similarly to the connectivity–
driven compression, although the vertices displacement can be encoded directly
on the spatial hierarchy in that case.

Chapter VI. GEncode 114

Figure VI.10: Candidate position for scanned models: the connectivity is
encoded almost at zero rate: # is not transmitted, and thus almost only
0 codes are encoded.

VII
Conclusions and Future Works

This work proposed two new geometry–driven compression schemes for meshes
in arbitrary dimension, while showing good performances for low dimensions
compared to state of the art methods.

The first method is restricted to level sets, but provides both direct and
progressive coding with a high controllability over the progression in the last
case.

The mesh can be refined either by subdividing its ambient space or by
transmitting more precise values of the implicit function defining the level set.
These two methods are complementary and competitive, and a continuation
of this work could study how to optimise their interaction in practise.

Moreover, a general model for the mesh can be translated into a specific
ambient space subdivision. For example for medical images of a given organ,
we can map a regular subdivision of a cube onto a space denser close to the
model for that organ. Once again, the gain of such method could motivate a
more precise study. However, the encoding of the level set can then represent
more than just a compact image format, since it describes a certain deviation
of the real level set with respect to the model.

The second method is a very general direct encoding scheme that handles
any mesh of any topology, of arbitrary dimension and in any ambient space.
GEncode originally aimed at encoding predictable mesh connectivity at almost
zero cost. This goal is achieved if the prediction rule is known.

The strategy can be improved in many ways. First, the separate encoding
of the geometry makes the whole compression ratio still a little higher than
connectivity–driven approaches. On one side, the geometry encoding technique
we used is still one of the first ones, and it can surely be improved by itself.
On the other side, the mixing of geometry and connectivity coding usually
results in more efficient programs, as we saw for level set compression. For
example, this mixture could be implemented as an alternate process between
connectivity and geometry coding, the result of one guiding the other.

A general method to fit the geometrical criterion to a specific class of
mesh has been proposed. It can be directly used to improve the compression
ratios for the given range of models, but the look for the best criterion actually
generates much more information. In particular, this criterion can be used in
the reverse direction to generate greedy reconstruction algorithms that would
mimic the generation of the given class of meshes.

Moreover, this criterion represents part of the sampling paradigm used
to generate the meshes, which is usually implicit. We believe that this relation
between a given geometry and its discretisation can lead to a better under-

Chapter VII. Conclusions and Future Works 116

standing of discrete geometry. Designing coding schemes actually translates
into isolating and representing clearly the most relevant information of the ob-
jects to encode. In that sense, it provides a nice framework to approach these
essential questions.

These two geometry–driven methods are general, and compare nicely to
existing surface compression schemes. In particular for isosurfaces, our method
improved on state–of–the–art methods, which already outperformed generic
surface compression schemes. For more general surfaces, GEncode compares
nicely to the Edgebreaker. However, these two approaches are delicate to
compare. On one side, the geometry coding of GEncode is more adapted to
regular sampling in the space, and the one of the Edgebreaker relies on the
regularity of the sampling on the surface. On the other side, the local coherence
of the sampling is directly used in the contexts of the arithmetic coder for
the octree coding, whereas this coherence is included in the parallelogram
prediction scheme for the connectivity–driven schemes. The contribution these
two steps of the compression (the symbol generation and their coding), remains
delicate to measure in theory. During the preparation of this thesis, it appeared
experimentally that on specific categories of models, the relative impact of each
step gets more visible: On manual designs, the sparse and even distribution of
points makes it difficult to predict locally, while the statistical modelling of the
arithmetic coder produces nice results. On the contrary for re-meshed models,
the geometry is oversampled on the surface, leading to better local prediction
compared to global statistics. This justifies the point of view of this work,
which intends to provide specific compressing techniques for each category of
models.

Résumé en français

I Introduction

Les images ont dépassé le simple rôle d’illustrations. Plus précisément,
les images artificielles et numériques ont envahi la plupart de travaux publiés,
depuis les logos commerciaux jusqu’aux explications scientifiques, et ce sans
compter les applications des industries proprement graphiques. Les avancées
techniques ont proposé supports, formats et protocoles de transmission pour
ces images, et ont ainsi contribué à cette expansion. Parmi ceux–ci, les
formats de haute qualité peu gourmands en ressources sont apparus avec
le développement de méthodes génériques, puis spécifiques, de compression
d’images. Plus récemment est apparu une tendance forte d’incorporer la
troisième dimension aux images, et ceci oriente ces avancées en compression
vers celle des images de dimensions plus élevées.

Il existe une grande variété d’images, depuis les documents photogra-
phiques aux dessins et aux images artificielles. De même, les modèles de dimen-
sions plus élevées sont issus de sources très diverses. Par exemple, les designers
de l’industrie graphique dessinent des objets tridimensionnels par leur sur-
face extérieure, en utilisant des primitives géométriques. Les développements
récents de la radiologie utilisent des images tridimensionnelles du corps hu-
main, et en extraient des surfaces de niveau pour en représenter les organes
et les tissus. Les modèles géographiques et géologiques des terrains et des
sous–sols consistent en surfaces plongées dans un espace multidimensionnel
de mesures physiques. Les ingénieries produisent également des maillages
d’éléments finis dans des espaces multidimensionnels, domaine de simulations
physiques. L’ingénierie inverse et les programmes de conservation du patri-
moine archéologique, ainsi que le marketing reconstituent de vrais objets à par-
tir de leurs scans. Enfin, de nouveaux champs d’application ajoutent d’autres
formes de modelages multidimensionnel, tels que la représentation de gros vo-
lume de données et l’optimisation, en particulier pour approcher des problèmes
issus de la finance.

Les premières méthodes de compression pour les modèles tri-
dimensionnels ont été proposées au milieu des années 90 avec [Deering 1995],
et se sont depuis développées très rapidement. Cette évolution s’est
avérée une nécessité technique, puisque la taille et la complexité des
modèles utilisées dans des applications pratiques augmentent rapide-
ment. Les algorithmes les plus performants pour les surfaces sont en
général fondés sur Edgebreaker [Rossignac 1999] et le codage par valences
de [Touma and Gotsman 1998]. Ceux–ci sont classés comme des méthodes de
compression de maillages orientées connectivité, car la proximité des triangles
guide l’ordre des sommets de la surface à coder. Plus récemment, des ap-
proches duales, telles que [Gandoin and Devillers 2002], ont proposé de guider
le codage de la proximité de triangle par la géométrie.

Résumé en français 120

Figure I.1: La compression spécifique d’image est plus efficace que la
compression générique.

En fait, la diversité des images exige cette multiplicité d’approches
en compression, puisque les algorithmes spécifiques, s’ils sont bien adaptés,
sont en général plus performants que des algorithmes génériques, comme le
montre la Figure I.1. Ce travail se concentre sur deux nouvelles méthodes de
compression orientées géométrie, qui se comparent avantageusement pour les
surfaces à l’état de l’art, et qui de plus s’étendent en dimension quelconque.
Bien que la compression de maillages soit un domaine nouveau, il a été très
productif, présentant des améliorations significatives en peu de temps, comme
en témoigne la quantité de références bibliographiques de ce travail. Beaucoup
de nouvelles idées sont apparues dans ces travaux pendant la dernière décennie,
et pourraient être incorporées à ces nouvelles propositions dans un futur
proche.

I.1 Principaux résultats

Extension d’Edgebreaker

La première contribution de ce travail est une petite amélioration
de l’algorithme Edgebreaker de [Rossignac 1999], présentée au Cha-
pitre IV Connectivity–Driven Compression, illustrée sur la Figure I.2. Elle
fournit une manière simple et efficace de comprimer des maillages avec bord,
comme celui de la Figure I.3, et est formulée comme une extension directe de
la compression des maillages avec anses décrites dans [Lopes et al. 2002]. Bien
que l’algorithme original pouvait déjà coder les surfaces à bords, l’extension
proposée diminue l’entropie théorique du code et le taux réel de compression.

121 Chapitre I. Introduction

Figure I.2: Codes de compression utiliés par Edgebreaker sur une sphère.

De plus, elle fournit une manière directe de lire la topologie de la surface sur
le format comprimé. Cette partie a été publiée dans [Lewiner et al. 2004*1].

Figure I.3: Compression par Edgebreaker d’un model plus complexe.

Cette contribution est présentée ici principalement pour établir ce qui est
entendu par “stratégies orientées connectivité”, et l’exemple d’Edgebreaker a
été choisi pour sa simplicité et son efficacité. De plus, Edgebreaker souligne
à quel point l’étude combinatoire des maillages, revue ici dans les partie
sur les concepts de base, offre une présentation élégante et efficace de tels
algorithmes. En fait, la plupart des processus de décompression de maillages
reposent sur des opérations combinatoires et topologiques, qui ont été pour

Résumé en français 122

leur part intensivement étudiées, et qui fournissent ainsi des outils puissants
pour concevoir des algorithmes de compression de maillages.

Cette analyse mène à une autre amélioration de la décompression
Wrap&Zip pour Edgebreaker [Rossignac and Szymczak 1999]. Cette
amélioration réduit le temps d’exécution de la partie Zip. Ceci conserve
la complexité linéaire et la passage en une fois du processus de compression.
La décompression est également linéaire, mais exige plus d’un passage.

Compression directe et progressive des ensembles de
niveau

(a) original (b) sans contrôle (c) contrôle de la topo-
logie

Figure I.4: La représentation simplifiée d’une surface de niveau en multi-
résolution est plus correcte en préservant sa topologie.

Bien que la compression orientée géométrie se révèle parfois meilleure que
celle orientée connectivité, l’expérience acquise par cette dernière lui confère
un avantage significatif pour beaucoup de types de maillages. Cependant, pour
les ensembles de niveau, la compression orientée géométrie surpasse toutes les
approches orientées connectivité, comme indiqué dans [Taubin 2002]. Alors
que, pour les surfaces, les taux de compression moyens tournent autour de 8 à
10 bits par sommet, la compression des surfaces de niveau atteint 1 ou 2 bits
par sommet pour la même qualité du modèle décomprimé.

Le Chapitre V Level Set Compression présente une amélioration
significative de la compression d’ensembles de niveau. Il fournit une méthode
générale pour la compression directe et progressive de ces ensembles de niveau,
en utilisant intensivement la théorie stellaire présentée au Chapitre III Meshes

123 Chapitre I. Introduction

Figure I.5: Decompression d’un modèle de cheval échantillonné sur une
grille régulière de taille 2573. Les premières images correspondent aux raf-
finements de la multitriangulation, suivi des raffinements de la géométrie.

and Geometry, ainsi que la structure de [Mello et al. 2003] qui en est
déduite. Cette structure fournit un degré d’adaptabilité très élevé en se
présentant comme une spécification de partition binaires, et permet également
un contrôle simple et puissant sur la représentation induite en multirésolution
des ensembles de niveau, comme sur l’exemple de la Figure I.4.

Pour les surfaces de niveau, cette méthode offre des rapports entre le
taux de compression et la distorsion du modèle décomprimé au niveau de
l’état de l’art, en particulier par comparaison aux méthodes basées sur les
octrees, qui sont des cas particuliers de notre méthode comme le montre
la Figure I.5. De plus, cette proposition est décrite de la même manière pour
n’importe quelle dimension, en utilisant seulement les opérations stellaires
sur les arêtes du maillage. Son implémentation actuelle consomme encore
beaucoup de mémoire à l’exécution. Les spécifications de l’algorithme pour
les surfaces ont été précédemment publiées dans [Lewiner et al. 2004*4], et
dans [Lewiner et al. 2004*2, Lewiner et al. 2005*3] pour les courbes.

Compression orientée géométrie générique

Motivé par ces résultats, qui renforcent l’idée que les systèmes de com-
pression orientés géométrie peuvent être plus efficaces que ceux orientés connec-
tivité, nous avons développé une méthode générale de compression directe
orienté géométrie, appelée GEncode. Cette méthode, sous la forme de l’Al-
gorithme 15 : gencode et l’Algorithme 16 : gdecode, supporte n’importe quel
complexe simplicial ou polytope, de dimension arbitraire et plongé dans un
espace ambiant quelconque, comme ceux de la Figure I.6. Pour les surfaces,
GEncode offre des taux de compression comparables aux approches orientés
connectivité, bien que la partie de codage géométrique puisse encore être
considérablement améliorée. Ces résultats, présentés au Chapitre VI GEn-
code, ont été précédemment publiés dans [Lewiner et al. 2005*1].

Le cœur de cette méthode comporte un critère géométrique pour coder la
connectivité du maillage. Ce critère est une fonction à valeurs réelles arbitraire
qui doit caractériser la géométrie d’une cellule du maillage à coder. Plus le
critère correspond au maillage, meilleur est le taux de compression et le temps
d’exécution. Pour illustrer ce concept, nous avons dérivé un critère géométrique
du à partir du rayon de la sphère circonscrite à une cellule. Ce critère s’adapte

Résumé en français 124

particulièrement bien aux maillages produits par remaillages ou reconstruction
basée sur les triangulations de Delaunay. Ceci complète notre premier objectif :
coder la connectivité d’un maillage reconstructible à coût presque nul.

De plus, nous présentons une méthode pratique pour dériver un critère
géométrique à partir d’une classe donnée des maillages. Cette méthode fournit
en outre une description générale de la relation entre la géométrie d’un objet
et sa discrétisation par maillages. Cette relation représente directement le
modèle d’échantillonnage utilisé par l’application à l’origine du maillage, qui
est habituellement implicite dans la conception des algorithmes bien que ce soit
une étape fondamentale dans sa validation. Nous espérons que cette méthode
clarifie cette structure intrinsèque des maillages, qui est le propre d’un codage
efficace de l’information.

Figure I.6: Chemin parcouru pendant le codage d’un maillage tetrahe-
drique d’une sphère solide dans R3 (gauche) et du produit cartésien d’une
2–sphère avec un cercle dans R4 (droite).

I.2 Organisation de ce travail
Cette thèse est organisée comme suit. Le Chapitre II Encoding and

Compression présente de manière très générale les notions de bases de
théorie de l’information et du codage. En particulier, nous avons essayé de
souligner les différents paramètres qu’un système de codage doit régler pour
fonctionner correctement. Cette tâche s’avère être délicate et technique, mais
reste fondamentale pour obtenir des taux de compression comparables à l’état
de l’art. De plus, les problèmes liés à ces réglages mettent généralement en
jeu la compréhension détaillée du codage proposé, au contraire de l’entropie
théorique éventuellement réalisée par le classique codeur arithmétique.

Ensuite, le Chapitre III Meshes and Geometry présente l’objet prin-
cipal que nous essayerons de coder efficacement : les maillages géométriques.
Ces maillages sont habituellement considérés comme la discrétisation d’un
objet géométrique de dimension peut–être élevée, plongé dans un espace de
grande dimension. Cependant, ces maillages ont une structure combinatoire
spécifique, en partie caractérisée par la topologie de l’objet original, en par-
tie correspondant au procédé de discrétisation. Cette structure combinatoire
peut être décomposée par un ensemble complet d’opérateurs de construction

125 Chapitre I. Introduction

et d’édition. Ces opérateurs sont décrits, ainsi que certains des procédés de
discrétisation classiques de la géométrie.

Une présentation générale des méthodes usuelles de compression de
maillage est ensuite présentée au Chapitre IV Connectivity–Driven Com-
pression. Celles–ci sont décrites par la combinatoire de ces structures de
maillage, ce qui distingue directement les deux principales approches de com-
pression des surfaces, Edgebreaker et le codage par valences, en tant que
stratégies duales et primales. L’exemple d’Edgebreaker est ensuite détaillé. Nous
l’avons choisi pour sa simplicité, bien qu’il soit très efficace pour coder les
maillages. A travers cet exemple, nous soulignons l’asymétrie entre les pro-
cessus de codage et de décodage, ainsi que les quelques difficultés rencontrées
pour coder les singularités topologiques par ces méthodes orientés connecti-
vité. Nous présentons quelques solutions pratiques pour ces problèmes ainsi
qu’un perfectionnement simple du procédé de décompression. Ce chapitre se
termine par une comparaison générale des méthodes de compression orientées
connectivité duales et primales.

Ensuite, le Chapitre V Level Set Compression propose une ap-
proche orientée géométrie pour comprimer les maillages, quand ceux–ci sont
présentés comme ensemble de niveau zéro d’une fonction à valeurs réelles
échantillonnée. Cette compression utilise une triangulation spécifique du do-
maine pour représenter la fonction échantillonnée, et cette représentation four-
nit un degré élevé d’adaptabilité et de régularité. Ceci permet dans un premier
temps de produire une représentation contrôlée en multirésolution de l’en-
semble de niveau, et puis de coder cette multirésolution de manière progres-
sive. Les deux les méthodes, directes et progressives, sont très compétitives
par rapport à l’état de l’art pour la compression de courbes et de surfaces
de niveau. De plus, les taux de compression sont bien en deçà des approches
orientées connectivité, principalement en raison du contrôle effectif du modèle
d’échantillonnage que ces ensembles de niveau fournissent.

Ce contrôle peut être étendu aux maillages génériques à travers une
caractérisation géométrique du procédé de discrétisation. Cette idée est à la
base de GEncode, présentée au Chapitre VI GEncode. La méthode proposée
est décrite en détail, et une implémentation simple pour des maillages très
généraux est présentée. La caractérisation géométrique est au centre de la
méthode, et ses propriétés essentielles sont décrites avec pour exemple pratique
les maillages extraits de triangulations de Delaunay. Une méthode générique
pour produire de tels critères est ensuite décrite. Les résultats finaux sont
très encourageants car ils se comportent bien comparé à Edgebreaker pour les
maillages usuels.

II Codage et Compression

Ce travail vise à définir de nouvelles méthodes pour comprimer les objets
géométriques. Nous voudrions d’abord présenter brièvement ce que entendons
par compression, en particulier la relation entre l’outil abstrait de la théorie de
l’information [Nyquist 1928, Hartley 1928, Shannon 1948], l’entropie asymp-
totique des codes [Shannon 1948, Huffman 1952, Tutte 1998] et les perfor-
mances pratiques des algorithmes de codage [Huffman 1952, Rissanen 1976,
Lempel and Ziv 1977, Moffat et al. 1995]. Nous nous concentrerons ensuite sur
le codeur arithmétique [Rissanen 1976, Moffat et al. 1995], car c’est celui que
nous emploierons dans la pratique. Ce codeur peut être amélioré par la prise
en compte des informations, déterministes ou statistiques, de l’objet à co-
der, ce qui se traduit techniquement par un passage de l’entropie de Shan-
non [Shannon 1948] à la complexité de Kolmogorov [Li and Vitanyi 1997]. En-
fin, nous décrirons comment ce codage fait partie des schémas de compression.
Des références générales sur la compression de données peuvent être trouvées
dans [Salomon 2000].

II.1 Représentation de l’Information

Source et codes. Le codage est un procédé simple de traduction qui
convertit des symboles d’un ensemble, appelé la source, vers un autre, appelé
l’ensemble des codes. La conversion doit aussi pouvoir être appliquée dans
l’autre sens, afin de récupérer la séquence originale de symboles, appelée le
message. Le but est de représenter n’importe quel message de la source plus
efficacement, typiquement pour s’adapter à un canal de transmission spécifique.
Ce codage peut chercher à réduire la taille du message [Salomon 2000],
par exemple pour des applications de compression, ou au contraire pour
augmenter sa redondance, afin de pouvoir détecter d’éventuelles erreurs de
transmission [Hamming 1950].

Énumération. Un exemple simple de codeur énumèrerait tous les messages
possibles, en les numérotant de 1 à n pendant l’énumération. Le codeur
assignerait alors simplement un code pour chaque message. Dans la pratique,
le nombre de possibilités est énorme et difficile à énumérer, et il est difficile
de récupérer le message original à partir de son index sans avoir à énumérer
tous les messages possibles. Ceci peut quand même fonctionner pour des cas
spécifiques [Castelli and Devillers 2004]. Ces codeurs énumératifs donnent une
référence pour comparer l’exécution des codeurs. Cependant, dans les cas
pratiques, nous voudrions que le codage soit plus efficace pour les messages les

Résumé en français 128

plus fréquents, même si la performance se dégrade pour les moins fréquents.
Cette référence ne sera alors pas notre objectif principal.

Performances des codeurs. Deux codages différents de la même source
produisent en général deux messages codés de tailles différentes. Si nous avons
l’intention de réduire la taille du message, nous préférerons le codeur qui
produit du plus petit message. Sur un exemple spécifique, ceci peut être
directement mesuré. D’ailleurs, pour le codeur énumératif, l’exécution est
simplement le logarithme du nombre d’éléments, puisqu’un nombre n peut
être représenté par des chiffres de log pnq. Cependant, cette performance est
difficile à mesurer pour tous les messages possibles d’une application donnée.
[Nyquist 1928], [Hartley 1928] et [Shannon 1948] ont présenté un outil général
pour mesurer la performance asymptotique et théorétique d’un code, appelé
l’entropie.

II.3 Compression
Le codage est seulement une partie d’un schéma de compression. En

fait, un schéma de compression se compose de diverses étapes de conversions,
depuis les données originales vers une représentation symbolique, puis de cette
représentation à la spécification des sources, de ces sources à un message codé,
de ce message codé en protocole de transmission, qui nécessite un re–codage
pour la détection des erreurs, et enfin les parties symétriques du côté récepteur.

Ce processus entier peut être conçu partie par partie, ou comme un
tout. Par exemple, certains schémas de compression astucieux incorporent
déjà la détection d’erreurs, en utilisant la redondance des données originales
qui restent après le codage. Quelques schémas de compression avec pertes ou
progressifs effectuent le codage directement à partir de la représentation et
incorporent la spécification des sources.

Ces aspects optimisent la compression pour des applications spécifiques.
Cependant, une application générique exige en général une conception séparée
des parties d’un schéma de compression. Dans ce contexte, le codage
arithmétique s’avère être un outil très flexible pour ajuster le taux de com-
pression final, i.e. le rapport entre la taille finale et originale des données.
Selon l’application, ce rapport de compression doit être réduit pour optimiser
certaines caractéristiques de ces applications, donnant lieu à différents com-
promis. Nous allons maintenant détailler trois compromis génériques.

(a) Compaction

La compaction se rapporte aux structures de données compactes,
également appelées succinctes. Ces structures cherchent à réduire la taille de
la mémoire utilisée pendant l’exécution d’une application, tout en nécessitant
peu de temps d’exécution supplémentaire. Ce compromis entre la mémoire
utilisée et le temps d’exécution doit en plus permettre un accès aléatoire
à la structure de données compacte. Par exemple pour des structures de
données de maillage, ce compromis peut être simplement une représentation
élégante des données sans codage spécifique, comme [Rossignac et al. 2001,

129 Chapitre II. Codage et Compression

Lage et al. 2005*1, Lage et al. 2005]. Il peut également impliquer un schéma de
codage simple qui soit rapide à interpréter, comme [Houston et al. 2005], ou en-
core un mélange précis d’un codage très efficace avec une structure de données
de plus haut niveau, comme [Castelli et al. 2005*1, Castelli et al. 2005*2].

(b) Compression Directe

La signification la plus utilisée de la compression se rapporte à
la compression de fichiers ou à la compression d’information échangée.
La plupart des algorithmes génériques usuels sont basées sur l’algo-
rithme LZH (ZIP) de [Lempel and Ziv 1977], hormis quelques algorithmes
spécifiques de compression d’image et de vidéo tels que JPEG [Wallace 1991,
Christopoulos et al. 2000] et MPEG [le Gall 1991, Pereira and Ebrahimi 2002].
Dans ce cas, le but est d’optimiser le compromis entre le taux de compression et
le temps nécessaire pour comprimer : la méthode d’énumération est habituel-
lement trop lente, alors qu’un codage simple de la représentation de données
peut être en général amélioré sans presque augmenter le temps d’exécution. Le
compromis peut également tenir compte de la quantité de mémoire nécessaire
pour comprimer ou décomprimer le message. Dans ce cas, le processus est
habituellement exécuté hors noyau, comme [Isenburg and Gumhold 2003].

(c) Compression Progressive

La compression peut également mener à une perte d’information en
décomprimant. Ceci peut être utile soit quand la partie perdue n’est pas
significative, soit quand elle peut être récupérée par une autre étape de
compression. Dans ce deuxième sens, la compression avec pertes produira des
objets à de divers niveaux de détail, i.e. en multirésolution. Chaque résolution
peut être comprimée séparément par différence avec la précédente. Une variante
de ce schéma ne distingue pas un niveau de détail du suivant, envoyant un
niveau brut par compression directe, puis le raffinant par une séquence de
modifications locales. Dans ce contexte, le but est d’optimiser le compromis
entre le taux de compression et la distorsion du modèle décomprimé. Pour
les modèles géométriques, la déformation est habituellement mesurée par la
distance géométrique entre le modèle décodé et l’original.

III Maillages et Géométrie

Les objets géométriques sont habituellement représentés par des
maillages. Particulièrement pour les surfaces dans l’espace, les triangulations
ont eu l’avantage de représenter beaucoup de pixels sur l’écran par un seul tri-
angle. Bien que la taille croissante des maillages usuels ait réduit cet avantage,
le matériel graphique et les algorithmes sont optimisés pour ces représentations
et les maillages sont encore prédominants sur les modèles par ensemble de
point. D’ailleurs, plusieurs parties des traitements sans maillages nécessitent
encore la génération de maillages locaux, qui devient très coûteuse en dimen-
sions élevées. Enfin, les maillages décrivent d’une façon unique et explicite le
support de l’objet géométrique, par interpolation morceau à morceau ou par
paramétrisation locale telle que les splines ou les NURBS.

À un objet réel correspondent plusieurs maillages. Ces maillages
représentent la même géométrie et la même topologie, et différent donc par
leur connectivité. La manière dont ces objets sont échantillonnés dépend de
l’application, variant depuis la visualisation jusqu’aux méthodes d’anima-
tion et d’élément fini. Ces variations rendent difficile une définition de qua-
lité géométrique d’un maillage indépendante de l’application, même avec une
définition commune pour la connectivité.

Ce chapitre détaille la partie combinatoire, présentant la définition et
les propriétés des maillages dans la Section III.1 Simplicial Complexes and Po-
lytopes, et un ensemble complet d’opérations sur la connectivité dans la Sec-
tion III.2 Combinatorial Operators. Enfin, la Section III.3 Geometry and Discreti-
sation donne quelques exemples classiques des interactions entre la géométrie
et les maillages.

Dans ce travail, nous n’employons pas une structure de données
spécifique pour les maillages. Nous considérerons les opérations décrites
dans ce chapitre comme les éléments de base d’une structure de données
générique. Pour approfondir, les structures de données classiques pour
des surfaces sont winged–edge [Baumgart 1972], split–edge [Eastman 1982],
quad–edge [Guibas and Stolfi 1985], half–edge [Mäntylä 1988] et
corner–table [Rossignac et al. 2001, Lage et al. 2005]. Pour les maillages non–
variétés, nous mentionnerions radial–edge [Weiler 1985] et [de Floriani and Hui 2003].
D’autres références sur les définitions suivantes peuvent être trouvées
dans [Munkres 1984, Boissonnat and Yvinec 1998, Hatcher 2002].

IV Compression Orientée Connectivité

Ce travail vise à comprimer les objets géométriques représentés par des
maillages. Puisqu’il n’y a pas encore de relation forte entre la géométrie
et la connectivité pour les maillages usuels des applications graphiques, les
algorithmes de compression dédiés considèrent que l’information commune
peut être déduite soit de la connectivité soit de la géométrie. La première
option suppose que l’étoile d’un simplexe a une géométrie simple, qui peut être
correctement approchée par des méthodes simples telles que l’interpolation
linéaire. Puis, la géométrie peut être efficacement codée par un parcours de
la connectivité du maillage, menant aux schémas de compression orientée
connectivité. La deuxième option prédit la connectivité à partir de la géométrie,
et sera désignée comme schémas de compression orientés géométrie. Dans ce
cas, la connectivité est en général mieux comprimée, mais ces schémas ont
besoin d’un codage efficace de la géométrie.

Dans ce chapitre, nous nous concentrerons sur la partie connectivité de la
compression, afin de clarifier la position de la compression orientée géométrie
des prochains chapitres. Ces méthodes orientées connectivité se sont telle-
ment améliorées dans la dernière décennie que le taux de compression pour
la connectivité des surfaces usuelles tourne autour de 2/3 bits par sommet.
Nous donnerons un cadre général pour manipuler les éléments critiques de la
connectivité : les singularités topologiques. Ces singularités des surfaces sont
bien explicitées par les opérateurs de poignée de la Section III.2(b) Handle
Operators. Nous nous concentrerons ensuite sur l’algorithme Edgebreaker, et
présenterons deux nouvelles améliorations : la manipulation des bords, comme
conséquence de cette formalisation des singularités, et une petite amélioration
de l’algorithme de décompression. Nous conclurons ce chapitre avec les taux de
compression d’Edgebreaker sur les modèles habituels avec nos améliorations, et
nous détaillerons les spécificités des schémas de compression orienté connecti-
vité. Le but de ce chapitre est d’énoncer ce que signifie la compression orientée
connectivité, avec l’exemple détaillé d’Edgebreaker, pour voir quand ces algo-
rithmes sont bien adaptés.

Principes
Les schémas de compression orientés connectivité se fondent sur un

parcours du maillage afin de visiter chaque sommet une fois, et l’identi-
fier au cours des visites suivantes. De cette façon, la géométrie du som-
met doit être transmise seulement une fois, et le parcours code la connec-
tivité du maillage. Ce cadre de général convient particulièrement bien
pour les polytopes qui sont des variétés. La plupart des techniques exis-

Résumé en français 134

tantes de compression sont consacrées aux surfaces, et nous nous concen-
trerons sur ces algorithmes. D’autres prolongements aux cas des non–
variétés sont décrits dans [Guéziec et al. 1998], alors que les prolongements
simples des schémas les plus communs existent pour les modèles solides,
comme [Szymczak and Rossignac 2000, Isenburg and Alliez 2002].

La compression orientée connectivité a commencé par des problèmes
d’optimisation de mémoire cache dans les cartes graphiques : la manière de
transmettre des maillages triangulaires à partir de la mémoire centrale vers
la carte graphique est (encore aujourd’hui) d’envoyer les trois sommets du
triangle, représentés par leurs trois coordonnées en représentation en virgule
flottante. Chaque triangle est alors codé avec 96 bits ! [Deering 1995] a proposé
de représenter ces maillages triangulaires par les bandes généralisées, afin de
partager un ou deux sommets avec le dernier triangle transmis, réduisant au
moins de moitié la mémoire requise précédemment. Ce mécanisme emploie
également un petit schéma de prévision pour optimiser le cache.

Puis, ces bandes ont été généralisées par une approche de chi-
rurgie topologique dans [Taubin and Rossignac 1998, Taubin et al. 1998].
Ces travaux ont présenté le cadre le plus général pour la com-
pression orientée connectivité, et ont été efficacement dérivés dans
Edgebreaker [Rossignac 1999], et de manière plus flexible dans le co-
dage par valence de [Touma and Gotsman 1998, Alliez and Desbrun 2001].
L’Edgebreaker a été étendu pour manipuler une plus grande catégorie de
surfaces dans [Lopes et al. 2002, Lewiner et al. 2004], alors que le codage par
valence a été réglé en utilisant la géométrie dans [Alliez and Desbrun 2001],
et la géométrie discrète dans [Kälberer et al. 2005]. En outre, le par-
cours du codage par valence peut éviter les codes d’échappement en uti-
lisant [Castelli and Devillers 2004].

Avec ces améliorations, la connectivité des modèles habituels
peut être comprimée avec quelques bits par sommet. La géométrie
est devenue la partie la plus chère, qui peut être réduite en utilisant
prédiction [Touma and Gotsman 1998, Cohen–Or et al. 2001] et quantifi-
cation de haute qualité [Sorkine et al. 2003, Gumhold and Amjoun 2004].
Cependant, nous ne nous concentrerons pas ici sur la compression de la
géométrie.

V Compression d’Ensembles de Niveau

Les schémas de compression orientés connectivité fournissent des
méthodes générales avec de bonnes performances en moyenne. Cependant,
pour des cas spécifiques, leurs taux de compression sont très loin de ceux
de techniques dédiées. Ce chapitre décrit le cas spécifique de la compression
d’isosurface, et plus généralement de compression d’ensembles de niveau, où
le taux de compression peut atteindre des fractions ceux orientés connectivité,
pour la connectivité et la géométrie (de 8–10 bits par sommet à seulement 1
ou 2). Ce mélange entre connectivité et géométrie est l’élément décisif pour
atteindre ces performances.

Ensembles de niveau. Un ensemble de niveau est la préimage f�1 p0q
du singleton t0u par une fonction f P C1pX Ñ Rq. Le domaine X de f est
généralement un espace euclidien Rd, ce qui signifie, d’après le théorème de
Sard [Arnold 1981], que l’ensemble de niveau est une variété de dimension d�1
sans bord. Dans le cas discret, l’échantillonnage f de f s’appellera la donnée
scalaire, et les points x de X où f est définis s’appelleront les points échantillons.

(a) 764 octets (b) 853 octets (c) 1089 oc-
tets

(d) 2011 oc-
tets

(e) 5369 oc-
tets

Figure V.1: Extraction d’une image tomographie axiale automatisée du
cortex, avec contrôle de la topologie et compression progressive.

Compression de courbes de niveau. Les premiers ensembles de ni-
veau à coder étaient les courbes de niveau (d � 2), particulièrement
pour les données cartographiques et la classification des formes. Quand
la donnée scalaire est une image, et les points échantillons sont limités
aux pixels de cette image, la courbe peut être comprimée en utilisant des
dérivés du code de châıne [Freeman 1974], ou bien comme en tant que
signal bidimensionnel standard, comme dans [Langdon and Rissanen 1981,
Bossen and Ebrahimi 1997]. Quand le niveau est plus précis que la quan-
tification du pixel, le vecteur déplacement dans ce pixel peut être com-
primé en utilisant [Craizer et al. 2002*1, Safonova and Rossignac 2003]. Ces
méthodes peuvent être étendues aux représentations hiérarchiques, comme

Résumé en français 136

dans [Lopes et al. 2002*1], et puis aux schémas progressifs de compres-
sion, comme cela est effectué dans [le Buhan and Ebrahimi 1997] par la
représentation hiérarchique induite par une multirésolution de l’image.

Applications des Isosurfaces. Les isosurfaces (d � 3) sont lar-
gement répandues dans beaucoup de domaines, depuis les images
médicales [Lorensen and Cline 1987] jusqu’à l’infographie [Parker et al. 1998]
et la reconstruction de surface [Davis et al. 2002], en passant par le
modelage géophysique [Tavares et al. 2003] et la visualisation scienti-
fique [Bajaj et al. 1998]. Par exemple, les techniques d’imagerie médicale
telles que la tomographie axiale automatisée et la résonance magnétique
mesurent des quantités physiques échantillonnées sur une grille semi–
régulière tridimensionnelle. En outre pour les simulations scientifiques,
des équations aux dérivées partielles sont généralement résolues en utili-
sant des méthodes d’ensembles de niveau, comme ceux de [Sethian 1999],
qui résultent également en une fonctionne échantillonnée sur une grille tri-
dimensionnelle. Cette variété d’applications a également généré un large
attirail de technique pour manipuler les isosurfaces [Bloomenthal et al. 1997].
Ces isosurfaces peuvent être structurées en maillages par la méthode
usuelle de Marching Cubes de [Lorensen and Cline 1987] et ses exten-
sions [Nielson and Hamann 1991, Montani et al. 1994, Lewiner et al. 2003*3],
par le contour dual de [Ju et al. 2002] et les méthodes simpliciales
de [Velho 1996, Treece et al. 1999].

Compression d’Isosurfaces. Dans la plupart des applications des iso-
surfaces, le résultat visuel est seulement une surface extraite à partir des
données scalaires par interpolation de f. Par exemple, le cortex correspond
seulement à une scintillation spécifique de rayons X à l’intérieur de l’image
de la tête entière. Dans ce cas, regarder seulement ce cortex permet de je-
ter la majeure partie des données scalaires, puisque le cortex reconstruit est
contenu seulement dans une partie limitée de la tête. Ceci motive des tech-
niques spécifiques pour comprimer les isosurfaces en codant seulement la partie
essentielle des données scalaires. De plus, ces techniques montrent de meilleures
performances que des méthodes génériques de compression de maillage. Bien
que [Saupe and Kuska 2002] et [Yang and Wu 2002] aient déjà développé des
méthodes de compression spécifiques pour les isosurfaces, leur codage exten-
sif basé sur les configurations de Marching Cube ont été rapidement dépassés
par la compression JBIG des données scalaires, et puis par [Taubin 2002] qui
a étendu ce codage arithmétique avec un contexte dans chacune des trois di-
mensions des données scalaires. Puis, [Boada and Navazo 2001] ont proposé de
coder seulement la partie spécifique des données scalaires contenant l’isosur-
face, d’une façon progressive basée sur une décomposition en octree des données
scalaires. Une petite amélioration de ce travail, proposée dans [Lee et al. 2003],
achève la compression avec un codage final de la géométrie au niveau du détail
le plus fin.

137 Chapitre V. Compression d’Ensembles de Niveau

(a) original (b) sans contrôle (c) contrôle de la distor-
sion

Figure V.2: La représentation en multirésolution des isosurfaces peut
aussi minimiser la distorsion induite par la compression progressive.

Compression simpliciale d’ensembles de niveau. Nous alloms main-
tenant présenter une méthode générale pour comprimer des ensembles de
niveau dans n’importe quelle dimension, qui est compétitive avec l’état
de l’art pour des courbes de niveau [le Buhan and Ebrahimi 1997] et pour
les isosurfaces [Lee et al. 2003]. Cette méthode a été précédemment publiée
dans [Lewiner et al. 2004*2, Lewiner et al. 2004*4, Lewiner et al. 2005*3], et
peut être employée aussi bien comme compression directe ou progressive,
comme sur la Figure I.5. Elle est basée sur les multi–triangulations binaires
régulières (RBMT) de [Mello et al. 2003], présentée à la Section III.3(c) Multi–
Triangulations, ce qui permet une plus grande adaptabilité que l’octree
de [Boada and Navazo 2001, Lee et al. 2003]. La RBMT est construite sur les
points échantillons, et sa simplification induit un multirésolution sur l’isosur-
face, en fournissant des mécanismes simples pour contrôler la géométrie, la
distorsion et la topologie au cours du processus de compression, comme sur
la Figure V.1, la Figure I.4 et la Figure V.2. La compression est exécutée par
un parcours guidé par le signe de f sur les points échantillons rencontrés.

VI GEncode

Parmi les algorithmes de compression de maillages, différents schémas
compriment mieux certaines catégories de modèle. En particulier, nous avons
vu dans le dernier chapitre que les approches orientées géométrie ont des
performances exceptionnelles pour les isosurfaces. Il serait attendu de ces
algorithmes qu’ils codent également bien les maillages reconstruits à partir
de la géométrie, ou optimisés par remaillage géométrique. Ces maillages
adaptés à la géométrie sont habituellement chers à calculer, soit dans le cas
de la reconstruction, comme par exemple avec [Amenta et al. 2001], soit par
remaillage comme dans [Alliez et al. 2003, Alliez et al. 2003]. De plus, leur
géométrie est parfois connue indépendamment de leur connectivité, telle que
pour les résultats de scans, et le seul codage de leur connectivité peut être utile
dans ce contexte.

Nous allons maintenant présenter GEncode, précédemment publié
dans [Lewiner et al. 2005*1], qui est un schéma de compression directe de
maillages et qui comprime la connectivité de ces maillages géométriques à coût
presque zéro. Cet algorithme est très général, et traite de complexes simpliciaux
de dimension arbitraire plongés dans un espace ambiant arbitraire, même si le
complexe n’est ni pur, ni variété et ni orientable. Les résultats de compression
pour des surfaces sont concurrentiels avec des schémas de compression orientés
connectivité existants.

VI.1 Objectifs

(a) Adaptation aux maillages géométriques

Nous nous concentrerons sur les maillages géométriques, c’est à dire les
maillages dont la connectivité est déduite de leur géométrie, comme les re-
constructions de scans ou les modèles remaillés, ainsi que sur les maillages de
dimension élevée ou avec une topologie complexe. Dans ces cas, les approches
de compression orientées connectivité devraient être moins efficaces sur le co-
dage de la connectivité. D’une part, la connectivité des maillages géométriques
peut être partiellement déduite de la géométrie, et la connectivité n’a ainsi pas
même besoin d’être codée. D’autre part, les codes de connectivité deviennent
exponentiellement complexes avec la dimension, alors que les codes de connecti-
vité orientés géométrie manipulent très simplement des topologies complexes,
comme nous allons le détailler maintenant. Ces particularités ont été déjà
énoncées dans [Gandoin and Devillers 2002], qui était le premier algorithme
de compression progressif et orienté géométrie.

Résumé en français 140

De plus, nous voudrions que notre algorithme soit prévisible et flexible.
Plus précisément, puisque cette méthode est adaptée à une catégorie spécifique
des maillages, comme la compression orientée connectivité ou la compression
d’ensembles de niveau était adaptées à d’autres catégories, nous voudrions
savoir par un test simple si notre algorithme sera performant avant la com-
pression par elle-même. En outre, selon le type de maillage, i.e. les maillages
de conception assistée par ordinateur, les supports des méthodes d’éléments
finis, les maillages se scans ou remaillés. . . , l’algorithme devrait employer un
critère géométrique différent pour être adapté aux caractéristiques propres à
la génération de ces maillages. Nous nous concentrerons sur le critère du Ball
Pivoting puisqu’il est facile à comprendre et à implémenter en n’importe quelle
dimension, bien que notre algorithme fonctionne avec n’importe quel critère
géométrique.

Dans le cas des scans, l’algorithme de reconstruction calcule la connec-
tivité de la surface seulement à partir de la géométrie de ses sommets. Par
conséquent, une approche orientée géométrie employant le même algorithme
de reconstruction ne devrait gaspiller aucun bit dans la connectivité. Le schéma
proposé atteint ce but, en codant un maillage basé sur un critère géométrique
local.

(b) Coût Nul pour des Maillages Reconstructibles

Vue d’ensemble de la compression. Le schéma de codage proposé
fonctionne de façon similaire aux algorithmes de reconstruction, bien qu’il
code en continu les différences entre le maillage original et reconstruit.
Il code d’abord la géométrie de chaque sommet, dans n’importe quel es-
pace ambiant, en utilisant un codage simple d’octree, qui est une synthèse
de [Gandoin and Devillers 2002] et [Botsch et al. 2002], comme par exemple
sur la Figure I.6. L’algorithme code alors la connectivité d’une n–variété en
conquerrant la triangulation à partir d’une cellule initiale, attachant à chaque
étape une n–cellule τn�1 � twju à une (n�1)–cellule du bord τn�1.

Codage par déviation. La différence entre le maillage original et le
maillage résultant d’un procédé de reconstruction est que w n’est pas toujours
celui qui minimise le critère géométrique G pτn�1, wq du procédé de reconstruc-
tion. Cette différence est codée par la position de w dans une liste de candidats.
Ces candidats sont choisis à partir d’une limite de quantisation sur G pτn�1, wq.
Entropie pour les maillages reconstructibles. Pour réduire au mini-
mum l’entropie (au sens de la Section II.1(b) Information Theory), cette liste
est ordonnée par le critère géométrique. Par conséquent, quand le maillage est
reconstructible par le critère géométrique donné, le candidat est toujours le
premier et la quantification produit de seulement une classe. Par conséquent,
les symboles à coder sont tous identiques dans ce cas, et le message a une
entropie nulle, ce qui était notre objectif.

141 Chapitre VI. GEncode

Maillages généraux. Quand le critère géométrique correspond à la
construction du maillage, l’entropie est presque nulle. Autrement, les maillages
généraux exigent de trouver un critère géométrique adapté pour coder la
déviation entre la reconstruction et le modèle original comme décrit ci–
dessus. D’un point de vue géométrique, les maillages usuels ne sont pas aussi
génériques, puisque leurs simplexes sont relativement bien formés et relient
principalement des sommets voisins. Leur géométrie locale est donc relative-
ment simple, ce qui motive de chercher des critères géométriques paramétriques
pour s’adapter à la géométrie de ces maillages.

Extensions. Du point de vue de la connectivité, l’algorithme peut être fa-
cilement étendu. L’algorithme générique n’a pas besoin d’être modifié en pas-
sant en dimension ou en codimension supérieures. Pour les maillages non–
simpliciaux, l’opération d’attachement peut exiger plus d’un sommet. Le pre-
mier est codé comme précédemment, et les autres sont choisis afin d’appartenir
au même hyperplan, et dans l’ordre croissant de leur critère géométrique. Pour
des n–maillages non–variétés, beaucoup de n–cellules peuvent être attachées
à la même (n�1)–cellule de la frontière active. Pour les maillages non–purs,
le codage est effectué successivement pour chaque dimension, complétant pro-
gressivement la structure de dimension la plus élevée avec celles de dimensions
inférieures.

VII Conclusions et Travaux Futurs

Ce travail a proposé deux nouvelles méthodes de compression orientées
géométrie pour des maillages en dimension arbitraire, tout en montrant de
bonnes performances comparé à l’état de l’art pour les basses dimensions.

La première méthode est limitée aux ensembles de niveau, mais fournit
deux codages direct et progressif avec un large contrôle sur la progression dans
le dernier cas.

Le maillage peut être raffiné en subdivisant son espace ambiant ou
bien en transmettant des valeurs plus précises pour la fonction implicite
définissant l’ensemble de niveau. Ces deux méthodes sont complémentaires
et concurrentes, et une suite possible de ce travail pourrait étudier comment
optimiser leur interaction en pratique.

De plus, un modèle général du maillage peut être a priori traduit par
une subdivision spécifique de l’espace ambiant. Par exemple pour les images
médicales d’un certain organe, il est possible de travailler sur l’image d’une
subdivision régulière d’un cube dans un espace plus dense près du modèle
de cet organe. De nouveau, le gain d’une telle méthode pourrait motiver une
étude plus détaillée. Cependant, le codage de l’ensemble de niveau peut alors
représenter plus qu’un format compact d’image, puisqu’il décrit une certaine
déviation du vrai niveau par rapport au modèle.

La deuxième méthode est une stratégie de codage direct très générale qui
peut traiter n’importe quelle maillage de n’importe quelle topologie, dimension
et dans n’importe quel espace ambiant. GEncode visait à l’origine à coder la
connectivité de maillage des maillages prévisible à coût presque nul. Ce but
est atteint réalisé si la règle de prévision est connue.

Cette stratégie peut être améliorée de beaucoup de manières. D’abord,
le codage séparé de la géométrie résulte encore en un taux de compression
plus élevé que les approches orientées connectivité. D’un côté, la technique
de codage de la géométrie que nous avons employée est l’une de première du
genre, et elle peut sûrement être améliorée indépendamment du reste. D’un
autre côté, le mélange du codage de la géométrie et de connectivité mène
habituellement à des programmes plus efficaces, comme nous l’avons vu pour
la compression des ensembles de niveau. Par exemple, ce mélange a pu être
mis en application par une alternance entre le codage de la connectivité et de
la géométrie, le résultat de l’un guidant l’autre.

Nous avons ensuite proposé une méthode très générale pour adapter
le critère géométrique à une classe spécifique de maillages. Elle peut être
directement employée pour améliorer les taux de compression pour une la
classe de modèles étudiés, mais la recherche du meilleur critère génère de fait
beaucoup plus d’informations. En particulier, ce critère peut être employé à

Résumé en français 144

l’inverse pour produire des algorithmes de reconstruction gloutons qui imitent
le processus de génération de cette classe de maillages.

De plus, ce critère représente une partie du modèle d’échantillonnage
employé pour produire les maillages, qui est habituellement implicite. Nous
croyons que cette relation entre une certaine géométrie et sa discrétisation
peut mener à une meilleure compréhension de la géométrie discrète. De fait, la
conception d’algorithmes de codage demande d’isoler et représenter clairement
l’information la plus significative des objets à coder. Dans ce sens, elle fournit
un cadre de travail intéressant pour approcher ces questions essentielles.

Ces deux approches orientées géométrie sont génériques, et sont au ni-
veau des schémas de compression existants. En particulier pour les surfaces
de niveau, notre méthode améliore l’état de l’art, qui présentait des perfor-
mances déjà au-delà des méthodes générales de compression de surfaces. Pour
des surfaces quelconques, GEncode est comparable à Edgebreaker. Toutefois,
ces deux approches sont délicates à comparer. D’une part, le codage de la
géométrie de GEncode est mieux adapté à un échantillonnage régulier dans
l’espace, et celui de Edgebreaker s’appuie sur la régularité de l’échantillonnage
sur la surface. D’autre part, la cohérence locale de l’échantillonnage est di-
rectement utilisée par les contextes du codeur arithmétique pour les codages
d’arbre octaires, alors que cette cohérence est incluse dans la prédiction du
parallèlogramme dans les schémas orientés connectivité. La contribution de
chacune de ces étapes de la compression (la génération de symboles et leur
codage) reste délicate à mesurer théoriquement. Pendant la préparation de
cette thèse, il est apparu expérimentalement que sur certaine catégories de
modèles, l’impact relatif de chacune de ces étapes est plus clair : sur les modèles
dessinés, la faible densité et l’irrégularité de la distribution des points ren-
dait la prédiction locale difficile, alors que les modèles statistiques du codeur
arithmétique se montraient performants. Au contraire pour les modèles re-
maillés, la géométrie est suréchantillonnés sur la surface, conduisant à une
meilleure prédiction locale comparée qu’une statistique globale. Ceci justifie le
point de vue de ce travaille, qui vise à fournir des techniques de compression
spécifiques pour chaque catégorie de modèles.

Bibliography

[Alexander 1930] J. W. Alexander. The combinatorial theory of com-
plexes. Annals of Mathematics, 31:219–320, 1930. III.1(b), III.2(c)

[Alliez and Desbrun 2001] P. Alliez and M. Desbrun. Valence–driven con-
nectivity encoding of 3D meshes. In Computer Graphics Forum, pages
480–489, 2001. IV.1(a), IV.3(b), IV.3(b), IV.3(c), VII

[Alliez et al. 2003] P. Alliez, D. Cohen–Steiner, O. Devillers, B. Levy and
M. Desbrun. Anisotropic polygonal remeshing. In Siggraph. ACM,
2003. IV.3(b), VI, VII

[Alliez et al. 2003] P. Alliez, É. Colin de Verdière, O. Devillers and M. Isen-
burg. Isotropic surface remeshing. In Shape Modeling International.
IEEE, 2003. IV.3(b), VI, VI.4, VII

[Amenta and Kullori 2002] N. Amenta and R. Kolluri. The medial axis of
unions of balls. Computational Geometry: Theory and Applications, 20(1–
2):25–37, 2001. III.3(b)

[Amenta et al. 2001] N. Amenta, S. Choi and R. Kolluri. The Power Crust,
unions of balls, and the medial axis transform. Computational
Geometry: Theory and Applications, 19(2–3):127–153, 2001. VI, VII

[Arithmetic coding source] F. W. Wheeler. Adaptive arithmetic coding
source code. http://www.cipr.rpi.edu/~wheeler/ac/index.html. II.2

[Armstrong 1979] M. A. Armstrong. Basic topology. McGraw–Hill, London,
1979. III.1(d), IV.1(c)

[Arnold 1981] V. I. Arnold. Catastrophe theory. Znanie, Moscow, 1981. V,
VII

[Attene et al. 2003] M. Attene, B. Falcidieno, M. Spagnuolo and J. Rossignac.
SwingWrapper: retiling triangle meshes for better Edgebreaker
compression. Transactions on Graphics, 22(4):982–996, 2003. IV.3(b),
IV.3(b)

[Bajaj et al. 1998] C. L. Bajaj, V. Pascucci and D. Schikore. Visualization
of scalar topology for structural enhancement. In D. Ebert, H. Hagen
and H. Rushmeier, editors, Visualization, pages 51–58. IEEE, 1998. V, VII

[Baumgart 1972] B. G. Baumgart. Winged edge polyhedron representa-
tion. Technical report, Stanford University, 1972. Technical Report AIM–
179 (CS–TR–74–320). III, VII

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Alexander.html
http://www.jstor.org/journals/0003486X.html
http://www.jstor.org/journals/0003486X.html
http://www-sop.inria.fr/geometrica/personnel/alliez/
http://www.multires.caltech.edu/~mathieu/
ftp://ftp-sop.inria.fr/geometrica/alliez/eg2001.pdf
ftp://ftp-sop.inria.fr/geometrica/alliez/eg2001.pdf
http://www-sop.inria.fr/geometrica/personnel/alliez/
http://www-sop.inria.fr/geometrica/personnel/David.Cohen-Steiner/
http://www-sop.inria.fr/geometrica/personnel/devillers/index.html.en
http://www.loria.fr/~levy/
http://www.multires.caltech.edu/~mathieu/
ftp://ftp-sop.inria.fr/geometrica/alliez/anisotropic.pdf
http://www-sop.inria.fr/geometrica/personnel/alliez/
http://www.di.ens.fr/users/colin/index.html.en
http://www-sop.inria.fr/geometrica/personnel/devillers/index.html.en
http://www.cs.unc.edu/~isenburg/
http://www.cs.unc.edu/~isenburg/
ftp://ftp-sop.inria.fr/geometrica/alliez/isotropic.pdf
http://www.cs.utexas.edu/users/amenta
http://www.cs.berkeley.edu/~rkolluri/
http://www.cs.berkeley.edu/~rkolluri/pubs/amenta-2001-mau/amenta-2001-mau.pdf
http://www.cs.berkeley.edu/~rkolluri/pubs/amenta-2001-mau/amenta-2001-mau.pdf
http://www.cs.utexas.edu/users/amenta
http://www.cs.utexas.edu/users/sunghee
http://www.cs.berkeley.edu/~rkolluri/
http://www.cs.berkeley.edu/~rkolluri/pubs/amenta-2001-pcub/amenta-2002-pcub.pdf
http://www.cs.berkeley.edu/~rkolluri/pubs/amenta-2001-pcub/amenta-2002-pcub.pdf
http://www.cipr.rpi.edu/~wheeler/
http://www.cipr.rpi.edu/~wheeler/ac/index.html
http://www.cipr.rpi.edu/~wheeler/ac/index.html
http://www.cipr.rpi.edu/~wheeler/ac/index.html
http://maths.dur.ac.uk/pure/temphome/maamain.html
http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-10053-72-2326954-0,00.html
http://www.pdmi.ras.ru/~arnsem/Arnold/
http://www.ima.ge.cnr.it/ima/personal/attene/PersonalPage/attene.html
http://www.ima.ge.cnr.it/ima/smg/people.html
http://150.145.3.115/ima/personale/frame.php?la=it&su=Spagnuolo
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.gvu.gatech.edu/~jarek/papers/SwingWrapper.pdf
http://www.gvu.gatech.edu/~jarek/papers/SwingWrapper.pdf
http://www.cs.utexas.edu/users/bajaj/
http://www.llnl.gov/CASC/people/pascucci/
http://www.ticam.utexas.edu/CCV/papers/top-viz98f.pdf
http://www.ticam.utexas.edu/CCV/papers/top-viz98f.pdf
http://www.baumgart.org/
http://www.baumgart.org/winged-edge/winged-edge.html
http://www.baumgart.org/winged-edge/winged-edge.html

Bibliography 146

[Bentley 1975] J. L. Bentley. Multidimensional binary search trees used
for associative searching. Communications of the ACM, 18(9):509–517,
1975. III.3(c)

[Bernardini et al. 1999] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva
and G. Taubin. The Ball–Pivoting Algorithm for surface reconstruc-
tion. Transactions on Visualization and Computer Graphics, 5(4):349–359,
1999. III.3(b), VI.3, VI.3(b), VI.4

[Bloomenthal et al. 1997] J. Bloomenthal, C. L. Bajaj, J. Blinn, M.-P. Cani,
A. Rockwood, B. Wyvill and G. Wyvill. Introduction to implicit
surfaces. Morgan Kaufmann, San Francisco, 1997. V, VII

[Blumenthal 1970] L. M. Blumenthal. Theory and applications of dis-
tance geometry. Chelsea, New York, 1970. VI.3(b)

[Boada and Navazo 2001] I. Boada and I. Navazo. An octree isosurface
codification based on discrete planes. In T. L. Kunii, editor, Spring
Conference on Computer Graphics, pages 187–194, Comenius University,
Bratislava, 2001. V, V, VII, VII

[Boissonnat and Geiger 1993] J.-D. Boissonnat and B. Geiger. Three dimen-
sional reconstruction of complex shapes based on the Delaunay
triangulation. In R. Acharya and D. B. Goldgof, editors, Biomedical Im-
age Processing and Biomedical Visualization, volume 1905, pages 964–975,
SPIE, 1993. III.3(b), VI.1(c), VI.3(b)

[Boissonnat and Yvinec 1998] J.-D. Boissonnat and M. Yvinec. Algorithmic
geometry. Cambridge University Press, 1998. III, III.3, III.3(b), VII

[Boissonnat and Cazals 2002] J.-D. Boissonnat and F. Cazals. Smooth sur-
face reconstruction via natural neighbour interpolation of dis-
tance functions. Computational Geometry: Theory and Applications,
22(1–3):185–203, 2002. III.3(b), VI.3(b)

[Boissonnat and Oudot 2005] J.-D. Boissonnat and S. Oudot. Provably
Good Sampling and Meshing of Surfaces. Graphical Models, 2005.
Solid Modeling ’04 special issue, to appear. III.3(b)

[Bossen and Ebrahimi 1997] F. Bossen and T. Ebrahimi. A simple and effi-
cient binary shape coding technique based on bitmap representa-
tion. In Acoustics, Speech, and Signal Processing, pages 3129–3132, 1997.
V, VII

[Botsch et al. 2002] M. Botsch, A. Wiratanaya and L. Kobbelt. Efficient
high quality rendering of point sampled geometry. In Eurographics
workshop on Rendering, pages 53–64, 2002. VI.1(b), VI.1, VI.1(c), VI.3,
VI.1(c), VI.1(c), VII

[Castelli and Devillers 2004] L. Castelli Aleardi and O. Devillers. Canonical
triangulation of a graph, with a coding application. INRIA preprint,
2004. II.1(a), IV.1(a), IV.3(b), IV.3(b), VII, VII

http://cm.bell-labs.com/cm/cs/
http://doi.acm.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
http://www.research.ibm.com/people/f/fausto/
http://www.research.ibm.com/people/m/Mittleman/
http://www.research.ibm.com/people/h/holly/
http://www.cs.utah.edu/~csilva/
http://mesh.brown.edu/taubin/
http://dx.doi.org/10.1109/2945.817351
http://dx.doi.org/10.1109/2945.817351
http://www.unchainedgeometry.com/jbloom/
http://www.cs.utexas.edu/users/bajaj/
http://research.microsoft.com/users/blinn/
http://www-imagis.imag.fr/Membres/Marie-Paule.Cani/
http://www.mines.edu/~alynrock/
http://pages.cpsc.ucalgary.ca/~blob/brianwyvill.html
http://www.cs.otago.ac.nz/gpxpriv/public_html/Geoff/Geoff.html
http://www.unchainedgeometry.com/jbloom/book.html
http://www.unchainedgeometry.com/jbloom/book.html
http://www.genealogy.math.ndsu.nodak.edu/html/id.phtml?id=8199
http://www.ams.org/mathscinet-getitem?mr=42:3678
http://www.ams.org/mathscinet-getitem?mr=42:3678
http://ima.udg.es/~imma/indexuk.html
http://www.lsi.upc.es/~isabel/
http://kucg.korea.ac.kr/seminar/2002/src/PA-02-14.pdf
http://kucg.korea.ac.kr/seminar/2002/src/PA-02-14.pdf
http://www.inria.fr/geometrica/personnel/boissonnat/boissonnat-eng.html
http://www-sop.inria.fr/prisme/personnel/anciens/geiger.html.en
http://www.inria.fr/rrrt/rr-1697.html
http://www.inria.fr/rrrt/rr-1697.html
http://www.inria.fr/rrrt/rr-1697.html
http://www.inria.fr/geometrica/personnel/boissonnat/boissonnat-eng.html
http://www.inria.fr/geometrica/personnel/yvinec/yvinec-eng.html
http://www.inria.fr/geometrica/personnel/boissonnat/boissonnat-eng.html
http://www-sop.inria.fr/geometrica/personnel/cazals/
http://www.inria.fr/rrrt/rr-3985
http://www.inria.fr/rrrt/rr-3985
http://www.inria.fr/rrrt/rr-3985
http://www.inria.fr/geometrica/personnel/boissonnat/boissonnat-eng.html
http://www-sop.inria.fr/geometrica/team/Steve.Oudot/
ftp://ftp-sop.inria.fr/geometrica/soudot/preprints/gmod.ps.gz
ftp://ftp-sop.inria.fr/geometrica/soudot/preprints/gmod.ps.gz
http://ltssg3.epfl.ch/staff/bossen.html
http://ltswww.epfl.ch/~ebrahimi/
http://ltssg3.epfl.ch/publications/pdf/fb_icassp97.pdf
http://ltssg3.epfl.ch/publications/pdf/fb_icassp97.pdf
http://ltssg3.epfl.ch/publications/pdf/fb_icassp97.pdf
http://www.mpi-sb.mpg.de/~botsch/
http://www-i8.informatik.rwth-aachen.de/people/people.html
http://www-i8.informatik.rwth-aachen.de/
http://www-i8.informatik.rwth-aachen.de/publications/downloads/octree.pdf
http://www-i8.informatik.rwth-aachen.de/publications/downloads/octree.pdf
http://www.lix.polytechnique.fr/~amturing/
http://www-sop.inria.fr/geometrica/personnel/devillers/index.html.en
ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-5231.pdf
ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-5231.pdf

147 Bibliography

[Castelli et al. 2005*1] L. Castelli Aleardi, O. Devillers and G. Schaeffer.
Succinct representation of triangulations with a boundary. In
Workshop on Algorithms and Data Structures, volume 5608, pages 134–145.
Springer, 2005. II.3(a), VII

[Castelli et al. 2005*2] L. Castelli Aleardi, O. Devillers and G. Schaeffer.
Dynamic updates of succinct triangulations. In Canadian Conference
on Computational Geometry, pages 135–138, 2005. II.3(a), VII

[Catmull and Clark 1978] E. Catmull and J. Clark. Recursively generated
B–spline surfaces on arbitrary topological meshes. Computer–Aided
Design, 10(6):350–355, 1978. III.3, III.3(a)

[Chaine and Bouakaz 2000] R. Chaine and S. Bouakaz. Segmentation of 3–
d surface trace points, using a hierarchical tree–based, diffusion
scheme. In Asian Conference on Computer Vision, volume 2, pages 995–
1002, 2000. III.3(b), VI.3(b)

[Christopoulos et al. 2000] C. Christopoulos, A. Skodras and T. Ebrahimi.
The JPEG2000 still image coding system: An Overview. Trans-
actions on Consumer Electronics, 46(4):1103–1127, 2000. II.3(b), VII

[Cignoni et al. 1998*1] P. Cignoni, C. Rocchini and R. Scopigno. Metro:
measuring error on simplified surfaces. Computer Graphics Forum,
17(2):167–174, 1998. V.1(b)

[Cohen–Or et al. 2001] D. Cohen–Or, R. Cohen and T. Ironi. Multi–way
geometry encoding. TAU Tech. Report, 2001. IV.1(a), IV.2(b), IV.3(b),
IV.3(b), VI.4, VII

[Cohen–Steiner and Da 2002] D. Cohen–Steiner and T. K. F. Da. A greedy
Delaunay–based surface reconstruction algorithm. The Visual Com-
puter, 20(1):4–16, 2002. III.3(b), VI.3(b)

[Coors and Rossignac 2004] V. Coors and J. Rossignac. Delphi: geometry-
based connectivity prediction in triangle mesh compression. The
Visual Computer, 20(8–9):507–520, 2004. IV.3(b), IV.3(b)

[Craizer et al. 2002*1] M. Craizer, D. A. Fonini Jr and E. A. B. da Silva.
Alpha–expansions: a class of frame decompositions. Applied and
Computational Harmonic Analysis, 13:103–115, 2002. V, VI.1(c), VII

[Davis et al. 2002] J. Davis, S. Marschner, M. Garr and M. Levoy. Filling
holes in complex surfaces using volumetric diffusion. In Symposium
on 3D Data Processing, Visualization, and Transmission, 2002. V, VII

[Deering 1995] M. F. Deering. Geometry compression. In Siggraph, pages
13–20. ACM, 1995. I, IV.1(a), VII, VII

[Delone 1934] B. N. Delone. Sur la sphère vide. Otdelenie Matematicheskikh
i Estestvennykh Nauk, 7:793–800, 1934. III.3(b)

http://www.lix.polytechnique.fr/~amturing/
http://www-sop.inria.fr/geometrica/personnel/devillers/index.html.en
http://www.lix.polytechnique.fr/Labo/Gilles.Schaeffer/
http://www.lix.polytechnique.fr/~amturing/pub/WADS05.ps
http://www.lix.polytechnique.fr/~amturing/
http://www-sop.inria.fr/geometrica/personnel/devillers/index.html.en
http://www.lix.polytechnique.fr/Labo/Gilles.Schaeffer/
http://www.lix.polytechnique.fr/~amturing/pub/CCCG05.ps
http://www-sop.inria.fr/geometrica/personnel/chaine/index.html
http://www-sop.inria.fr/geometrica/personnel/chaine/IMAGES/accv2000.ps
http://www-sop.inria.fr/geometrica/personnel/chaine/IMAGES/accv2000.ps
http://www-sop.inria.fr/geometrica/personnel/chaine/IMAGES/accv2000.ps
http://www.ericsson.com/about/publications/review/2001_02/authors.shtml
http://www.upatras.gr/ieee/skodras/
http://ltswww.epfl.ch/~ebrahimi/
http://jj2000.epfl.ch/jj_publications/papers/006.pdf
http://vcg.isti.cnr.it/~cignoni/
http://vcg.isti.cnr.it/~rocchini/
http://vcg.isti.cnr.it/people/vcgpeople/scopigno/scopigno.html
http://vcg.isti.cnr.it/metro.html
http://vcg.isti.cnr.it/metro.html
http://www.cs.tau.ac.il/~dcor
http://www.cs.tau.ac.il/~dcor/graduate_students/
http://www.cs.tau.ac.il/~talii/
http://www.cs.tau.ac.il/~dcor/online_papers/papers/multiway.pdf
http://www.cs.tau.ac.il/~dcor/online_papers/papers/multiway.pdf
http://www-sop.inria.fr/geometrica/personnel/David.Cohen-Steiner/
http://www-sop.inria.fr/prisme/personnel/da/da.html
ftp://ftp-sop.inria.fr/geometrica/dcohen/Papers/RR-4564.ps
ftp://ftp-sop.inria.fr/geometrica/dcohen/Papers/RR-4564.ps
http://www.fht-stuttgart.de/fbv/fbvweb/pers/coors/Homepage.htm
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.fht-stuttgart.de/fbv/fbvweb/pers/coors/Homepage-Dateien/Paper/Coors_Delphi.pdf
http://www.fht-stuttgart.de/fbv/fbvweb/pers/coors/Homepage-Dateien/Paper/Coors_Delphi.pdf
http://www.mat.puc-rio.br/~craizer
http://www.lps.ufrj.br/profs/eduardo/index.html
http://graphics.stanford.edu/~jedavis/
http://graphics.stanford.edu/~srm
http://graphics.stanford.edu/~levoy/
http://graphics.stanford.edu/papers/holefill-3dpvt02/
http://graphics.stanford.edu/papers/holefill-3dpvt02/
http://java.sun.com/products/java-media/3D/collateral/class_notes/notes/bios.htm
http://doi.acm.org/10.1145/218380.218391
http://en.wikipedia.org/wiki/Boris_Delaunay

Bibliography 148

[Desbrun et al. 1999] M. Desbrun, M. Meyer, P. Schröder and A. H. Barr.
Implicit fairing of irregular meshes using diffusion and curvature
flow. In Siggraph, pages 317–324. ACM, 1999. III.3(a)

[Devillers 2002] O. Devillers. The Delaunay hierarchy. Foundations of
Computer Science, 13:163–180, 2002. Special issue on triangulations. III.3(c)

[Doo and Sabin 1978] D. Doo and M. Sabin. Behaviour of recursive
division surfaces near extraordinary points. Computer–Aided Design,
10(6):356–360, 1978. III.3, III.3(a)

[Eastman 1982] C. M. Eastman. Introduction to computer aided design,
1982. Course Notes. Carnegie–Mellon University. III, VII

[Finkel and Bentley 1974] R. A. Finkel and J. L. Bentley. Quad trees: A
data structure for retrieval on composite keys. Acta Informatica,
4:1–9, 1974. III.3(c)

[Fleishman et al. 2003] S. Fleishman, I. Drori and D. Cohen–Or. Bilateral
mesh denoising. Transactions on Graphics, 22(3):950–953, 2003. III.3(a)

[de Floriani et al. 1997] L. de Floriani, E. Puppo and P. Magillo. A formal
approach to multiresolution modeling. In W. Stras̈er, R. Klein and
R. Rau, editors, Theory and Practice of Geometric Modeling, pages 302–
323. Springer, 1997. III.3(c)

[de Floriani and Hui 2003] L. de Floriani and A. Hui. A scalable data struc-
ture for three–dimensional non–manifold objects. In Symposium on
Geometry processing, pages 72–82. Eurographics, 2003. III, VII

[Freeman 1974] H. Freeman. Computer processing of line drawing
images. Computing Surveys, 6(1):57–97, 1974. V, VII

[Friedman et al. 1977] J. H. Friedman, J. L. Bentley and R. A. Finkel. An
algorithm for finding best matches in logarithmic expected time.
Transactions on Mathematical Software, 3(3):209–226, 1977. III.3(c)

[le Gall 1991] D. Le Gall. MPEG: a video compression standard for
multimedia applications. Communications of the ACM, 34(4):46–58,
1991. II.3(b), IV.3, VII

[Gandoin and Devillers 2002] P.-M. Gandoin and O. Devillers. Progressive
lossless compression of arbitrary simplicial complexes. In Siggraph,
volume 21, pages 372–379. ACM, 2002. I, VI.1(a), VI.1(b), VI.1, VI.1(c),
VI.2, VI.1(c), VI.1(c), VI.1(c), VII, VII

[Garland and Heckbert 1997] M. Garland and P. S. Heckbert. Surface sim-
plification using quadric error metrics. Computers & Graphics, 31:209–
216, 1997. III.3, III.3(a)

[Gelfand et al. 1994] I. M. Gelfand, M. Kapranov and A. Zelevinsky.
Discriminants, resultants and multidimensional determinants.
Birkhäuser, Boston, 1994. V.1(a)

http://www.multires.caltech.edu/~mathieu/
http://www.cs.caltech.edu/~mmeyer/
http://www.multires.caltech.edu/~ps/
http://www.gg.caltech.edu/~barr/
http://www-grail.usc.edu/pubs/DMSB_SIG99.pdf
http://www-grail.usc.edu/pubs/DMSB_SIG99.pdf
http://www-sop.inria.fr/geometrica/personnel/devillers/index.html.en
http://www.cs.engr.uky.edu/~raphael/
http://cm.bell-labs.com/cm/cs/
http://www.sci.utah.edu/~shachar/
http://www-stat.stanford.edu/~Eidrori/
http://www.cs.tau.ac.il/~dcor
http://www.cs.tau.ac.il/~dcor/online_papers/papers/shachar03.pdf
http://www.cs.tau.ac.il/~dcor/online_papers/papers/shachar03.pdf
http://www.disi.unige.it/person/DeflorianiL/
http://www.disi.unige.it/person/PuppoE/
http://www.disi.unige.it/person/MagilloP/
ftp://ftp.disi.unige.it/person/MagilloP/PS/formal.ps.gz
ftp://ftp.disi.unige.it/person/MagilloP/PS/formal.ps.gz
http://www.disi.unige.it/person/DeflorianiL/
http://www.cs.umd.edu/~huiannie/
http://portal.acm.org/citation.cfm?id=882380
http://portal.acm.org/citation.cfm?id=882380
http://www.ece.rutgers.edu/~freeman/
http://stat.stanford.edu/~jhf/
http://cm.bell-labs.com/cm/cs/
http://www.cs.engr.uky.edu/~raphael/
http://www.slac.stanford.edu/pubs/slacpubs/1500/slac-pub-1549.pdf
http://www.slac.stanford.edu/pubs/slacpubs/1500/slac-pub-1549.pdf
http://www.c-cube.net/tecno/mpeg.html
http://doi.acm.org/10.1145/103085.103090
http://doi.acm.org/10.1145/103085.103090
http://www-sop.inria.fr/geometrica/personnel/gandoin/
http://www-sop.inria.fr/geometrica/personnel/devillers/index.html.en
ftp://ftp-sop.inria.fr/geometrica/publis/gd-plcas-02.pdf
ftp://ftp-sop.inria.fr/geometrica/publis/gd-plcas-02.pdf
http://basalt.cs.uiuc.edu/~garland/
http://www-2.cs.cmu.edu/~ph/
http://basalt.cs.uiuc.edu/~garland/papers/quadrics.pdf
http://basalt.cs.uiuc.edu/~garland/papers/quadrics.pdf
http://en.wikipedia.org/wiki/Israel_Gelfand
http://www.math.yale.edu/~mk486/
http://www.math.neu.edu/~zelevinsky/
http://www.ams.org/bull/2000-37-02/S0273-0979-99-00858-7/home.html

149 Bibliography

[Glaser 1970] L. C. Glaser. Geometrical combinatorial topology. Van
Nostrand Reinhold, New York, 1970. III.2(c)

[Guéziec et al. 1998] A. Guéziec, G. Taubin, F. Lazarus and W. P. Horn.
Converting sets of polygons to manifold surfaces by cutting and
stitching. In D. Ebert, H. Hagen and H. Rushmeier, editors, Visualization.
IEEE, 1998. IV.1, IV.3(c), VII

[Guibas and Stolfi 1985] L. J. Guibas and J. Stolfi. Primitives for the
manipulation of general subdivisions and the computation of
Voronoi diagrams. Transactions on Graphics, 4:74–123, 1985. III, VII

[Gumhold et al. 1999] S. Gumhold, S. Guthe and W. Stras̈er. Tetrahedral
mesh compression with the Cut–Border machine. In Visualization,
pages 51–58. IEEE, 1999. IV.3(c)

[Gumhold and Amjoun 2004] S. Gumhold and R. Amjoun. Higher Order
Prediction for Geometry Compression. In Shape Modeling Interna-
tional, pages 59–68. IEEE, 2003. IV.1(a), VII

[Hamming 1950] R. W. Hamming. Error-detecting and error-correcting
codes. Bell System Technical Journal, 29(2):147–160, 1950. II.1(a), VII

[Hartley 1928] R. V. L. Hartley. Transmission of information. Bell System
Technical Journal, 7:535, 1928. II, II.1(a), VII

[Hass 1998] J. Hass. Algorithms for recognizing knots and 3–manifolds.
Chaos, Solitons & Fractals, 9(4–5):569–581, 1998. VI.4

[Hatcher 2002] A. Hatcher. Algebraic topology. Cambridge University
Press, 2002. III, III.1, III.1(c), III.2(a), III.3(a), VII

[von Herzen and Barr 1987] B. von Herzen and A. H. Barr. Accurate tri-
angulations of deformed, intersecting surfaces. In Siggraph, pages
103–110. IEEE, 1987. III.3(c)

[Hoppe et al. 1993] H. Hoppe, T. DeRose, T. Duchamp, J. A. McDonald and
W. Stuetzle. Mesh optimization. In Siggraph, volume 27, pages 19–26.
ACM, 1993. III.2(c), III.3(a)

[Hoppe 1996] H. Hoppe. Progressive meshes. In Siggraph, pages 99–108,
New Orleans, Aug. 1996. ACM. III.2(c)

[Houston et al. 2005] B. Houston, M. B. Nielsen, C. Batty, O. Nilsson and
K. Museth. Gigantic Deformable Surfaces. In Siggraph Sketches &
Applications. ACM, 2005. II.3(a), VII

[Huffman 1952] D. A. Huffman. A method for the construction of
minimum redundancy codes. In I.R.E, pages 1098–1102, 1952. II,
II.1(b), II.1(b), VII

[Isenburg and Snoeyink 2000] M. Isenburg and J. Snoeyink. Spirale reversi:
reverse decoding of the Edgebreaker encoding. In Canadian Confer-
ence on Computational Geometry, pages 247–256, 2000. IV.2

http://www.gueziec.org/
http://mesh.brown.edu/taubin/
http://www.lis.inpg.fr/pages_perso/lazarus/
http://mesh.brown.edu/taubin/pdfs/Gueziec-etal-tvcg01.pdf
http://mesh.brown.edu/taubin/pdfs/Gueziec-etal-tvcg01.pdf
http://geometry.stanford.edu/member/guibas/
http://www.dcc.unicamp.br/~stolfi/
http://portal.acm.org/citation.cfm?id=808751
http://portal.acm.org/citation.cfm?id=808751
http://portal.acm.org/citation.cfm?id=808751
http://web.inf.tu-dresden.de/ST2/cg/mitarbeiter/Gumhold/
http://www.gris.uni-tuebingen.de/staff/Stefan_Guthe_en.html
http://www.gris.uni-tuebingen.de/~strasser/
http://web.inf.tu-dresden.de/ST2/cg/mitarbeiter/Gumhold/tmccbm.pdf
http://web.inf.tu-dresden.de/ST2/cg/mitarbeiter/Gumhold/tmccbm.pdf
http://web.inf.tu-dresden.de/ST2/cg/mitarbeiter/Gumhold/
http://www.gris.uni-tuebingen.de/staff/Rachida_Amjoun_fr.html
http://www.gris.uni-tuebingen.de/publics/paper/Gumhold-2003-Higher.pdf
http://www.gris.uni-tuebingen.de/publics/paper/Gumhold-2003-Higher.pdf
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Hamming.html
http://www.geocities.com/neveyaakov/electro_science/hartley.html
http://www.math.ucdavis.edu/~hass/
http://front.math.ucdavis.edu/math.GT/9712269
http://www.math.cornell.edu/~hatcher/
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://www.fpga.com/brianvon.html
http://www.gg.caltech.edu/~barr/
http://doi.acm.org/10.1145/37401.37415
http://doi.acm.org/10.1145/37401.37415
http://research.microsoft.com/~hoppe/
http://www.cs.washington.edu/homes/derose/
http://www.math.washington.edu/~duchamp/
http://home.att.net/~jamcdonald/
http://stat.washington.edu/wxs/
http://research.microsoft.com/~hoppe/meshopt.pdf
http://research.microsoft.com/~hoppe/
http://research.microsoft.com/~hoppe/pm.pdf
http://www.exocortex.org/ben/
http://www.daimi.au.dk/~bang/
http://www.cs.ubc.ca/~batty/
http://www.efd.lth.se/~d94on/
http://gg.itn.liu.se/People/kmu/
http://www.exocortex.org/siggraph/GiganticDeformableSurfaces.pdf
http://www.huffmancoding.com/david/scientific.html
http://www.math.tu-berlin.de/~thor/imco/Downloads/huffman.pdf
http://www.math.tu-berlin.de/~thor/imco/Downloads/huffman.pdf
http://www.cs.unc.edu/~isenburg/
http://www.cs.unc.edu/~snoeyink/
http://www.cs.unc.edu/~isenburg/research/papers/is-sr-00.pdf
http://www.cs.unc.edu/~isenburg/research/papers/is-sr-00.pdf

Bibliography 150

[Isenburg and Alliez 2002] M. Isenburg and P. Alliez. Compressing hexa-
hedral volume meshes. In Pacific Graphics, pages 284–293, 2002. IV.1,
IV.3(c), VII

[Isenburg and Gumhold 2003] M. Isenburg and S. Gumhold. Out–of–core
compression for gigantic polygon meshes. Transactions on Graphics,
22(3):935–942, 2003. II.3(b), VII

[Ju et al. 2002] T. Ju, F. Losasso, S. Schaefer and J. Warren. Dual contour-
ing of hermite data. In Siggraph, pages 339–346. ACM, 2002. V, V.4(c),
VII

[Kälberer et al. 2005] F. Kälberer, K. Polthier, U. Reitebuch and M. Wardet-
zky. Freelence — coding with free valences. Computer Graphics Fo-
rum, 24(3):469–478, 2005. IV.1(a), IV.3(b), IV.3(b), VII

[Katanforoush and Shahshahani 2003] A. Katanforoush and M. Shahshahani.
Distributing Points on the Sphere. Experimental Mathematics,
12(2):199–209, 2003. III.3

[King and Rossignac 1999] D. King and J. Rossignac. Guaranteed 3.67v
bit encoding of planar triangle graphs. In Canadian Conference on
Computational Geometry, pages 146–149, 1999. IV.2, IV.3(a), IV.2, IV.3(b),
IV.3(c)

[Kobbelt 2000] L. Kobbelt.
?

3 subdivision. In Siggraph, pages 103–112.
ACM, 2000. III.12(c), III.3(a)

[Kronrod and Gotsman 2001] B. Kronrod and C. Gotsman. Efficient coding
of nontriangular mesh connectivity. Graphical Models, 63:263–275,
2001. IV.2, IV.3(c)

[le Buhan and Ebrahimi 1997] C. Le Buhan and T. Ebrahimi. Progressive
polygon encoding of shape contours. In Image Processing and its
Applications, pages 17–21, 1997. V, V, VII, VII

[Lage et al. 2005*1] M. Lage, T. Lewiner, H. Lopes and L. Velho. CHE: a
scalable topological data structure for triangular meshes. Technical
report, Pontifical Catholic University of Rio de Janeiro, 2005. II.3(a), VII

[Lage et al. 2005] M. Lage, T. Lewiner, H. Lopes and L. Velho. CHF: a
scalable topological data structure for tetrahedral meshes. In
Sibgrapi, pages 349–356, Natal, Oct. 2005. IEEE. II.3(a), III, VII, VII

[Langdon and Rissanen 1981] G. Langdon Jr and J. Rissanen. Compression
of black–white images with arithmetic coding. Transactions on
Communications, 29(6):858–867, 1981. V, VII

[Lee et al. 2003] H. Lee, P. Alliez and M. Desbrun. Angle-Analyzer: A
Triangle-Quad Mesh Codec. In Eurographics, volume 21(3), 2002.
IV.3(b), IV.3(b), IV.3(b)

http://www.cs.unc.edu/~isenburg/
http://www-sop.inria.fr/geometrica/personnel/alliez/
ftp://ftp-sop.inria.fr/geometrica/alliez/hexahedral.pdf
ftp://ftp-sop.inria.fr/geometrica/alliez/hexahedral.pdf
http://www.cs.unc.edu/~isenburg/
http://web.inf.tu-dresden.de/ST2/cg/mitarbeiter/Gumhold/
http://www.cs.unc.edu/~isenburg/oocc/
http://www.cs.unc.edu/~isenburg/oocc/
http://www.cs.rice.edu/~jutao/
http://graphics.stanford.edu/~losasso/
http://www.cs.rice.edu/~sschaefe/
http://www.cs.rice.edu/~jwarren/
http://graphics.stanford.edu/~losasso/publications/dualcontour/dualcontour.pdf
http://graphics.stanford.edu/~losasso/publications/dualcontour/dualcontour.pdf
http://www.zib.de/kaelberer/
http://www.zib.de/polthier/
http://www.zib.de/reitebuch/
http://www.zib.de/wardetzky/
http://www.zib.de/wardetzky/
http://www.zib.de/polthier/articles/freelence/freelenceEG2005.pdf
http://www.ipm.ac.ir/IPM/people/personalinfo.jsp?PeopleCode=IP0100061
http://math.ipm.ac.ir/scc/PointsOnSpheres/
http://www.cc.gatech.edu/~kingd/research.html
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-17.pdf
ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-17.pdf
http://www-i8.informatik.rwth-aachen.de/
http://www.cs.technion.ac.il/~gotsman
http://www.cs.technion.ac.il/~gotsman/AmendedPubl/EfficientCoding/EfficientCoding.pdf
http://www.cs.technion.ac.il/~gotsman/AmendedPubl/EfficientCoding/EfficientCoding.pdf
http://ltssg3.epfl.ch/staff/lebuhan.html
http://ltswww.epfl.ch/~ebrahimi/
http://ltssg3.epfl.ch/publications/pdf/clb_ipa97.pdf
http://ltssg3.epfl.ch/publications/pdf/clb_ipa97.pdf
http://www.carva.org/thomas.lewiner
http://www.mat.puc-rio.br/~lopes
http://w3.impa.br/~lvelho/
http://www.carva.org/thomas.lewiner
http://www.mat.puc-rio.br/~lopes
http://w3.impa.br/~lvelho/
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=chf_sibgrapi.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=chf_sibgrapi.pdf
http://www.soe.ucsc.edu/people/faculty/langdon.html
http://www.cs.tut.fi/~rissanen/
http://www-scf.usc.edu/~leeh
http://www-sop.inria.fr/geometrica/personnel/alliez/
http://www.multires.caltech.edu/~mathieu/
http://www.geometry.caltech.edu/Angleanalyzer/
http://www.geometry.caltech.edu/Angleanalyzer/

151 Bibliography

[Lee et al. 2003] H. Lee, M. Desbrun and P. Schröder. Progressive encoding
of complex isosurfaces. Transactions on Graphics, 22(3):471–476, 2003.
V, V, V.4, V.4(c), V.2, V.4(c), V.4(d), VII, VII

[Lempel and Ziv 1977] A. Lempel and J. Ziv. A universal algorithm for
sequential data compression. Transactions on Information Theory,
23(3):337–343, 1977. II, II.3(b), VII

[Lewiner et al. 2003*3] T. Lewiner, H. Lopes, A. W. Vieira and G. Tavares.
Efficient implementation of Marching Cubes’ cases with topologi-
cal guarantees. Journal of Graphics Tools, 8(2):1–15, 2003. V, VII

[Lewiner et al. 2004] T. Lewiner, H. Lopes, J. Rossignac and A. W. Vieira.
Efficient Edgebreaker for surfaces of arbitrary topology. In Sibgrapi,
pages 218–225, Curitiba, Oct. 2004. IEEE. I, IV.1(a), IV.2, IV.3(b), VII

[Lewiner et al. 2004*4] T. Lewiner, L. Velho, H. Lopes and V. Mello. Sim-
plicial isosurface compression. In Vision, Modeling and Visualization,
pages 299–306, Stanford, 2004. IOS Press. I, III.2, V, VII, VII

[Lewiner et al. 2004*2] T. Lewiner, L. Velho, H. Lopes and V. Mello. Hier-
archical isocontours extraction and compression. In Sibgrapi, pages
234–241, Curitiba, Oct. 2004. IEEE. I, III.2, V, VII, VII

[Lewiner et al. 2004] T. Lewiner, H. Lopes and G. Tavares. Applications
of Forman’s discrete Morse theory to topology visualization and
mesh compression. Transactions on Visualization and Computer Graph-
ics, 10(5):499–508, 2004. IV.3(c)

[Lewiner et al. 2004*1] T. Lewiner, J. Gomes Jr, H. Lopes and M. Craizer.
Arc–length based curvature estimator. In Sibgrapi, pages 250–257,
Curitiba, Oct. 2004. IEEE. V.4(a), V.4(a), VII

[Lewiner et al. 2005*3] T. Lewiner, L. Velho, H. Lopes and V. Mello. Ex-
traction and compression of hierarchical isocontours from image
data. Computerized Medical Imaging and Graphics, 2005. accepted for
publication. I, V, VII, VII

[Lewiner et al. 2005*1] T. Lewiner, M. Craizer, H. Lopes, S. Pesco, L. Velho
and E. Medeiros. GEncode: geometry–driven compression in arbi-
trary dimension and co–dimension. In Sibgrapi, pages 249–256, Natal,
Oct. 2005. IEEE. I, III.2, VI, VII, VII

[Lewiner et al. 2005] T. Lewiner, J. Gomes Jr, H. Lopes and M. Craizer. Cur-
vature and torsion estimators based on parametric curve fitting.
Computers & Graphics, 2005. IV.3(b), IV.3(b), V.4(a), V.4(a)

[Li and Vitanyi 1997] M. Li and P. M. B. Vitanyi. An introduction to
Kolmogorov complexity and its applications. Springer, 1997. II,
II.1(c), II.2(c), VII

http://www-scf.usc.edu/~leeh
http://www.multires.caltech.edu/~mathieu/
http://www.multires.caltech.edu/~ps/
http://www-grail.usc.edu/ProgressiveIsosurfaceEncoder/
http://www-grail.usc.edu/ProgressiveIsosurfaceEncoder/
http://www.cs.technion.ac.il/People/Faculty/lempel.html
http://www.ee.technion.ac.il/faculty_e/staff1_eng.asp?staff_id=53
http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1977_universal_algorithm.pdf
http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1977_universal_algorithm.pdf
http://www.carva.org/thomas.lewiner
http://www.mat.puc-rio.br/~lopes
http://www.angelfire.com/moon/awilson/
http://www.mat.puc-rio.br/~tavares
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=marching_cubes_jgt.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=marching_cubes_jgt.pdf
http://www.carva.org/thomas.lewiner
http://www.mat.puc-rio.br/~lopes
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.angelfire.com/moon/awilson/
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=edgebreaker_sibgrapi.pdf
http://www.carva.org/thomas.lewiner
http://w3.impa.br/~lvelho/
http://www.mat.puc-rio.br/~lopes
http://w3.impa.br/~vinicius/
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=isosurface_vmv.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=isosurface_vmv.pdf
http://www.carva.org/thomas.lewiner
http://w3.impa.br/~lvelho/
http://www.mat.puc-rio.br/~lopes
http://w3.impa.br/~vinicius/
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=isocontour_sibgrapi.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=isocontour_sibgrapi.pdf
http://www.carva.org/thomas.lewiner
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~tavares
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=morse_apps_tvcg.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=morse_apps_tvcg.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=morse_apps_tvcg.pdf
http://www.carva.org/thomas.lewiner
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~craizer
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=curvature_sibgrapi.pdf
http://www.carva.org/thomas.lewiner
http://w3.impa.br/~lvelho/
http://www.mat.puc-rio.br/~lopes
http://w3.impa.br/~vinicius/
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=isocontour_cmig.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=isocontour_cmig.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=isocontour_cmig.pdf
http://www.carva.org/thomas.lewiner
http://www.mat.puc-rio.br/~craizer
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~sinesio
http://w3.impa.br/~lvelho/
http://w3.impa.br/~esdras/
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=gencode_sibgrapi.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=gencode_sibgrapi.pdf
http://www.carva.org/thomas.lewiner
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~craizer
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=curvature_cg.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=curvature_cg.pdf
http://www.cs.uwaterloo.ca/~mli/
http://homepages.cwi.nl/~paulv/
http://homepages.cwi.nl/~paulv/kolmogorov.html
http://homepages.cwi.nl/~paulv/kolmogorov.html

Bibliography 152

[Lickorish 1999] W. B. R. Lickorish. Simplicial moves on complexes and
manifolds. In Kirbyfest, volume 2 of Geometry and Topology Monographs,
pages 299–320, 1999. III.2(c)

[Loop 1987] C. T. Loop. Smooth subdivision surfaces based on trian-
gles. Master’s thesis, Department of Mathematics, University of Utah, 1987.
III.12(b), III.3(a), IV.3(b)

[Lopes 1996] H. Lopes. Algorithm to build and unbuild 2 and 3
dimensional manifolds. PhD thesis, Department of Mathematics, PUC–
Rio, 1996. Advised by Geovan Tavares. III.2(b), III.2(b)

[Lopes and Tavares 1997] H. Lopes and G. Tavares. Structural operators
for modeling 3–manifolds. In C. Hoffman and W. Bronsvort, editors,
Solid Modeling and Applications, pages 10–18. ACM, 1997. III.2(b), III.2(b),
IV.1(c)

[Lopes et al. 2000] H. Lopes, G. Nonato, S. Pesco and G. Tavares. Dealing
with topological singularities in volumetric reconstruction. In P.-
J. Laurrent, P. Sablonière and L. Schumaker, editors, Curve and Surface
Design, pages 229–238, Saint Malo, 2000. Vanderbilt University Press.
III.3(b), VI.3(b)

[Lopes et al. 2002] H. Lopes, J. Rossignac, A. Safonova, A. Szymczak and
G. Tavares. Edgebreaker: a simple compression for surfaces with
handles. In C. Hoffman and W. Bronsvort, editors, Solid Modeling and
Applications, pages 289–296, Saarbrücken, Germany, 2002. ACM. I, IV.1(a),
VII, VII

[Lopes et al. 2002*1] H. Lopes, J. B. Oliveira and L. H. de Figueiredo. Robust
adaptive polygonal approximation of implicit curves. Computers &
Graphics, 26(6):841–852, 2002. V, VII

[Lopes et al. 2003] H. Lopes, J. Rossignac, A. Safonova, A. Szymczak and
G. Tavares. Edgebreaker: a simple implementation for surfaces with
handles. Computers & Graphics, 27(4):553–567, 2003. IV.2, IV.2(c)

[Lorensen and Cline 1987] W. E. Lorensen and H. E. Cline. Marching
Cubes: a high resolution 3D surface construction algorithm. In
Siggraph, volume 21, pages 163–169. ACM, 1987. V, VII

[Mäntylä 1988] M. Mäntylä. An introduction to solid modeling. Com-
puter Science Press, Rockville, 1988. III, III.2(a), VII

[Martin 1979] G. Martin. Range encoding: an algorithm for removing
redundancy from a digitised message. In Video & Data Recoding, 1979.
IV.3(a), IV.2

[Medeiros et al. 2003] E. Medeiros, L. Velho and H. Lopes. Topological
framework for advancing front triangulations. In Sibgrapi, pages 45–
51, São Carlos, Oct. 2003. IEEE. III.3(b), VI.2(a)

http://www.dpmms.cam.ac.uk/site2000/Staff/lickorish-01.html
http://www.maths.warwick.ac.uk/gt/ftp/main/m2/m2-16.pdf
http://www.maths.warwick.ac.uk/gt/ftp/main/m2/m2-16.pdf
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~tavares
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~tavares
http://portal.acm.org/citation.cfm?doid=267734.267745
http://portal.acm.org/citation.cfm?doid=267734.267745
http://www.mat.puc-rio.br/~lopes
http://www.icmc.sc.usp.br/~gnonato/
http://www.mat.puc-rio.br/~sinesio
http://www.mat.puc-rio.br/~tavares
http://perso.enst.fr/~afa/saint-malo/program.html
http://perso.enst.fr/~afa/saint-malo/program.html
http://www.mat.puc-rio.br/~lopes
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www-2.cs.cmu.edu/~alla/
http://www.cc.gatech.edu/fac/Andrzej.Szymczak/
http://www.mat.puc-rio.br/~tavares
http://portal.acm.org/citation.cfm?doid=566282.566324
http://portal.acm.org/citation.cfm?doid=566282.566324
http://www.mat.puc-rio.br/~lopes
http://www.inf.pucrs.br/~oliveira/
http://w3.impa.br/~lhf
ftp://ftp.tecgraf.puc-rio.br/pub/lhf/doc/cag02.ps.gz
ftp://ftp.tecgraf.puc-rio.br/pub/lhf/doc/cag02.ps.gz
http://www.mat.puc-rio.br/~lopes
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www-2.cs.cmu.edu/~alla/
http://www.cc.gatech.edu/fac/Andrzej.Szymczak/
http://www.mat.puc-rio.br/~tavares
http://portal.acm.org/citation.cfm?doid=566282.566324
http://portal.acm.org/citation.cfm?doid=566282.566324
http://doi.acm.org/10.1145/37401.37422
http://doi.acm.org/10.1145/37401.37422
http://www.cs.hut.fi/~mam/
ttp://portal.acm.org/citation.cfm?id=39278
http://www.compressconsult.com/rangecoder/rngcod.pdf.gz
http://www.compressconsult.com/rangecoder/rngcod.pdf.gz
http://w3.impa.br/~esdras/
http://w3.impa.br/~lvelho/
http://www.mat.puc-rio.br/~lopes
http://w3.impa.br/~esdras/topframe.pdf
http://w3.impa.br/~esdras/topframe.pdf

153 Bibliography

[Medeiros et al. 2004] E. Medeiros, L. Velho and H. Lopes. Restricted bpa:
applying ball–pivoting on the plane. In Sibgrapi, pages 372–379,
Curitiba, Oct. 2004. IEEE. III.3(b), VI.3, VI.3(b)

[Mello et al. 2003] V. Mello, L. Velho, P. Roma Cavalcanti and C. Silva. A
generic programming approach to multiresolution spatial decom-
positions. In H.-C. Hege and K. Polthier, editors, Visualization and Math-
ematics III, pages 337–360. Springer, Heidelberg, 2003. I, III.3(c), V, VII,
VII

[Moffat et al. 1995] A. Moffat, R. Neal and I. H. Witten. Arithmetic coding
revisited. In Data Compression, pages 202–211, 1995. II, II.2, VII

[Montani et al. 1994] C. Montani, R. Scateni and R. Scopigno. A modified
lookup table for implicit disambiguation of Marching Cubes. The
Visual Computer, 10(6):353–355, 1994. V, VII

[Munkres 1984] J. R. Munkres. Elements of algebraic topology. Addison-
Wesley, Menlo Park, 1984. III, III.3(a), VII

[Newman 1926] M. H. A. Newman. On the foundations of combinatorial
analysis situs. Royal Academy, 29:610–641, 1926. III.2(c)

[Nielson and Hamann 1991] G. M. Nielson and B. Hamann. The asymptotic
decider: resolving the ambiguity in Marching Cubes. Visualization,
pages 29–38, 1991. V, VII

[Nonato et al. 2005] G. Nonato, A. Castelo, R. Minghim and H. Hideraldo.
Topological tetrahedron characterization with application in vol-
ume reconstruction. Journal of Shape Modeling, 11(2), 2005. III.3(b),
VI.3(b)

[Nyquist 1928] H. Nyquist. Certain topics in telegraph transmission
theory. Transactions of the American Institute of Electrical Engineers,
47:617–644, 1928. II, II.1(a), VII

[Pachner 1991] U. Pachner. PL homeomorphic manifolds are equivalent
by elementary shellings. European Journal of Combinatorics, 12:129–
145, 1991. III.2(c)

[Parker et al. 1998] S. Parker, P. Shirley, Y. Livnat, C. Hansen and P.-P.
Sloan. Interactive ray tracing for isosurface rendering. In D. Ebert,
H. Hagen and H. Rushmeier, editors, Visualization, pages 233–238. IEEE,
1998. V, VII

[Pascucci 2002] V. Pascucci. Slow growing subdivision (SGS) in any
dimension: towards removing the curse of dimensionality. Computer
Graphics Forum, 21(3):451–460, 2002. III.3(c)

[Pereira and Ebrahimi 2002] F. Pereira and T. Ebrahimi, editors. The
MPEG–4 Book. Prentice Hall, Upper Saddle River, 2002. II.3(b), IV.3,
VII

http://w3.impa.br/~esdras/
http://w3.impa.br/~lvelho/
http://www.mat.puc-rio.br/~lopes
http://w3.impa.br/~esdras/restBPA.pdf
http://w3.impa.br/~esdras/restBPA.pdf
http://w3.impa.br/~vinicius/
http://w3.impa.br/~lvelho/
http://w3.impa.br/~roma/
http://www.cs.utah.edu/~csilva/
http://www.cs.utah.edu/~csilva/papers/vismath2002.pdf
http://www.cs.utah.edu/~csilva/papers/vismath2002.pdf
http://www.cs.utah.edu/~csilva/papers/vismath2002.pdf
http://www.cs.mu.oz.au/~alistair/
http://www.cs.mu.oz.au/~alistair/arith_coder/
http://www.cs.mu.oz.au/~alistair/arith_coder/
http://vcg.isti.cnr.it/people/vcgpeople/montani/montani.html
http://vcg.isti.cnr.it/people/vcgpeople/scopigno/scopigno.html
http://math.mit.edu/people/faculty/munkres.html
http://www.ams.org/mathscinet-getitem?mr=85m:55001
http://www.eas.asu.edu/~csedept/people/faculty/nielson.html
http://graphics.cs.ucdavis.edu/~hamann
http://graphics.cs.ucdavis.edu/~hamann/NielsonHamann1991.pdf
http://graphics.cs.ucdavis.edu/~hamann/NielsonHamann1991.pdf
http://www.icmc.sc.usp.br/~gnonato/
http://www.icmc.sc.usp.br/~castelo/
http://www.lcad.icmc.usp.br/~rosane/
http://www.icmc.sc.usp.br/admin/sce/reldpto2001/orientacao_de_alunos_e_participacoes_em_comissoes_julgadoras.htm
http://www.ieee.org/organizations/history_center/legacies/nyquist.html
http://www.cs.utah.edu/~sparker
http://www.cs.utah.edu/~shirley
http://www.cs.utah.edu/~ylivnat
http://www.cs.utah.edu/~hansen
http://www.cs.utah.edu/~ppsloan
http://www.cs.utah.edu/~shirley/papers/iso/
http://www.llnl.gov/CASC/people/pascucci/
ttp://www.img.lx.it.pt/~fp/
http://ltswww.epfl.ch/~ebrahimi/
http://www.m4if.org/products/book.php
http://www.m4if.org/products/book.php

Bibliography 154

[Poulalhon and Schaeffer 2003] D. Poulalhon and G. Schaeffer. Optimal
coding and sampling of triangulations. In ICALP, pages 1080–1094,
2003. IV.2(b), IV.3(b)

[Pratt 1987] V. Pratt. Direct least–squares fitting of algebraic surfaces.
Computers & Graphics, 21(4):145–152, 1987. VI.3(c)

[Puppo 1998] E. Puppo. Variable resolution triangulations. Computa-
tional Geometry: Theory and Applications, 11(3–4):219–238, 1998. III.3(c)

[Rissanen 1976] J. Rissanen. Generalized Kraft inequality and arith-
metic coding. IBM Journal of Research and Development, 20:198–203,
1976. II, II.2, VII

[Rossignac 1986] J. Rossignac. Constraints in constructive solid geom-
etry. In Workshop on interactive 3D graphics, pages 93–110. ACM, 1986.
III.3

[Rossignac 1999] J. Rossignac. Edgebreaker: connectivity compression
for triangle meshes. Transactions on Visualization and Computer Graph-
ics, 5(1):47–61, 1999. I, I, III.2, IV.1(a), IV.2, IV.2(a), IV.2, IV.3(b), VII,
VII, VII

[Rossignac and Szymczak 1999] J. Rossignac and A. Szymczak. Wrap & zip
decompression of the connectivity of triangle meshes compressed
with edgebreaker. Computational Geometry: Theory and Applications,
14(1–3):119–135, 1999. I, IV.2, IV.2(b), IV.3(a), IV.2, VII

[Rossignac et al. 2001] J. Rossignac, A. Safonova and A. Szymczak. 3D
compression made simple: Edgebreaker on a corner–table. In
Shape Modeling International, pages 278–283. IEEE, 2001. II.3(a), III, IV.2,
IV.3(b), VII, VII

[Safonova and Rossignac 2003] A. Safonova and J. Rossignac. Compressed
piecewise–circular approximations of 3D curves. Computer–Aided
Design, 35(6):533–547, 2003. V, VII

[Salomon 2000] D. Salomon. Data compression: the complete reference.
Springer, Berlin, 2000. II, II.1(a), IV.2, VII

[Saupe and Kuska 2002] D. Saupe and J.-P. Kuska. Compression of iso-
surfaces for structured volumes with context modelling. In Sympo-
sium on 3D Data Processing, Visualization, and Transmission, pages 384–
390, 2002. V, VII

[Sethian 1999] J. A. Sethian. Fast marching methods and level set meth-
ods. Cambridge Monograph on Applied and Computational Mathematics.
Cambridge University Press, 1999. V, VII

[Shannon 1948] C. E. Shannon. A mathematical theory of communica-
tion. Bell System Technical Journal, 27:379–423 and 623–656, 1948. II,
II.1(a), II.1(b), II.1(b), VII

http://www.liafa.jussieu.fr/~poulalho/
http://www.lix.polytechnique.fr/Labo/Gilles.Schaeffer/
http://www.liafa.jussieu.fr/~poulalho/Publis/real.pdf
http://www.liafa.jussieu.fr/~poulalho/Publis/real.pdf
http://boole.stanford.edu/pratt.html
http://doi.acm.org/10.1145/37401.37420
http://www.disi.unige.it/person/PuppoE/
http://www.disi.unige.it/person/PuppoE/PS/cgta98.ps.gz
http://www.cs.tut.fi/~rissanen/
http://www.research.ibm.com/journal/rd/203/ibmrd2003B.pdf
http://www.research.ibm.com/journal/rd/203/ibmrd2003B.pdf
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.gvu.gatech.edu/~jarek/papers/CSGconstraints.pdf
http://www.gvu.gatech.edu/~jarek/papers/CSGconstraints.pdf
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.gvu.gatech.edu/~jarek/papers/eb.pdf
http://www.gvu.gatech.edu/~jarek/papers/eb.pdf
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.cc.gatech.edu/fac/Andrzej.Szymczak/
http://www.gvu.gatech.edu/~jarek/papers/Wrap&Zip.pdf
http://www.gvu.gatech.edu/~jarek/papers/Wrap&Zip.pdf
http://www.gvu.gatech.edu/~jarek/papers/Wrap&Zip.pdf
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www-2.cs.cmu.edu/~alla/
http://www.cc.gatech.edu/fac/Andrzej.Szymczak/
http://www.gvu.gatech.edu/~jarek/papers/smi.pdf
http://www.gvu.gatech.edu/~jarek/papers/smi.pdf
http://www-2.cs.cmu.edu/~alla/
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.gvu.gatech.edu/~jarek/papers/PCA.pdf
http://www.gvu.gatech.edu/~jarek/papers/PCA.pdf
http://www.inf.uni-konstanz.de/~saupe/
http://phong.informatik.uni-leipzig.de/~kuska/
http://www.inf.uni-konstanz.de/cgip/publications/2001/PSaKu01a.pdf
http://www.inf.uni-konstanz.de/cgip/publications/2001/PSaKu01a.pdf
http://math.berkeley.edu/~sethian/
http://math.berkeley.edu/~sethian/level_set.html
http://math.berkeley.edu/~sethian/level_set.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Shannon.html
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html

155 Bibliography

[Sorkine et al. 2003] O. Sorkine, D. Cohen–Or and S. Toledo. High-pass
quantization for mesh encoding. In Symposium on Geometry Processing,
pages 42–51. Eurographics, 2003. IV.1(a), IV.3(c), VII

[Szymczak and Rossignac 2000] A. Szymczak and J. Rossignac. Grow
& Fold: compressing the connectivity of tetrahedral meshes.
Computer–Aided Design, 32(8/9):527–538, 2000. IV.1, IV.3(c), VII

[Taubin 1995] G. Taubin. A signal processing approach to fair surface
design. In Siggraph, pages 351–358. ACM, Aug. 1995. III.3(a)

[Taubin and Rossignac 1998] G. Taubin and J. Rossignac. Geometric com-
pression through topological surgery. Transactions on Graphics,
17(2):84–115, 1998. IV.1(a), IV.1(b), IV.2, VII

[Taubin et al. 1998] G. Taubin, W. P. Horn, F. Lazarus and J. Rossignac.
Geometry coding and VRML. Proceedings of the IEEE, 86(6):1228–
1243, 1998. IV.1(a), VII

[Taubin 1999] G. Taubin. Geometric signal processing on polygonal
meshes. In Eurographics State of the Art Report, 1999. III.3(a)

[Taubin 2002] G. Taubin. Blic: bi–level isosurface compression. In
Visualization, pages 451–458, Boston, Massachusetts, 2002. IEEE. I, V,
VII, VII

[Tavares et al. 2003] G. Tavares, R. Santos, H. Lopes, T. Lewiner and A. W.
Vieira. Topological reconstruction of oil reservoirs from seismic sur-
faces. In International Association for Mathematical Geology, Portsmouth,
UK, 2003. Terra Nostra. V, VII

[Touma and Gotsman 1998] C. Touma and C. Gotsman. Triangle mesh
compression. In Graphics Interface, pages 26–34, 1998. I, IV.1(a), IV.3(b),
IV.3(b), IV.3(b), VI.4, VII, VII

[Treece et al. 1999] G. Treece, R. Prager and A. Gee. Regularised Marching
Tetrahedra: improved iso–surface extraction. Computers & Graphics,
23(4):583–598, 1999. V, VII

[Tutte 1998] W. T. Tutte. Graph theory as I have known it. Oxford
University Press, New York, 1998. II, VII

[Velho 1996] L. Velho. Simple and efficient polygonization of implicit
surfaces. Journal of Graphics Tools, 1(2):5–25, 1996. V, V.1(a), VII

[Velho 2001] L. Velho. Mesh simplification using four–face clusters. In
Shape Modeling International, pages 200–208. IEEE, 2001. III.2(c)

[Velho and Zorin 2001] L. Velho and D. Zorin. 4–8 subdivision. Computer–
Aided Geometrical Design, Special Issue on Subdivision, 18(5):397–427,
2001. III.3(a), IV.3(b)

http://www.cs.tau.ac.il/~sorkine/
http://www.cs.tau.ac.il/~dcor
http://www.cs.tau.ac.il/~stoledo/
http://www.cs.tau.ac.il/~sorkine/ProjectPages/Highpass/
http://www.cs.tau.ac.il/~sorkine/ProjectPages/Highpass/
http://www.cc.gatech.edu/fac/Andrzej.Szymczak/
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.gvu.gatech.edu/~jarek/papers/Grow&Fold.pdf
http://www.gvu.gatech.edu/~jarek/papers/Grow&Fold.pdf
http://mesh.brown.edu/taubin/
http://mesh.brown.edu/taubin/
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://mesh.brown.edu/taubin/publications/taubin-etal-tog-1998-17-2-p84.pdf
http://mesh.brown.edu/taubin/publications/taubin-etal-tog-1998-17-2-p84.pdf
http://mesh.brown.edu/taubin/
http://www.lis.inpg.fr/pages_perso/lazarus/
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.gvu.gatech.edu/~jarek/papers/VRML.pdf
http://mesh.brown.edu/taubin/
http://mesh.brown.edu/taubin/pdfs/taubin-eg00star.pdf
http://mesh.brown.edu/taubin/pdfs/taubin-eg00star.pdf
http://mesh.brown.edu/taubin/
http://mesh.brown.edu/taubin/pdfs/Taubin-vis02.pdf
http://www.mat.puc-rio.br/~tavares
http://www.mat.puc-rio.br/~lopes
http://www.carva.org/thomas.lewiner
http://www.angelfire.com/moon/awilson/
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=reservoir_recons_iamg.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=reservoir_recons_iamg.pdf
http://www.cs.technion.ac.il/~costa/
http://www.cs.technion.ac.il/~gotsman
http://www.graphicsinterface.org/cgi-bin/DownloadPaper?name=1998/107/paper107.ps.gz
http://www.graphicsinterface.org/cgi-bin/DownloadPaper?name=1998/107/paper107.ps.gz
http://svr-www.eng.cam.ac.uk/~gmt11/
http://svr-www.eng.cam.ac.uk/~rwp/
http://svr-www.eng.cam.ac.uk/~ahg/
ftp://svr-ftp.eng.cam.ac.uk/pub/reports/treece_tr333.ps.gz
ftp://svr-ftp.eng.cam.ac.uk/pub/reports/treece_tr333.ps.gz
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Tutte.html
http://cs.ioc.ee/~bibi/kyber/Contents/EAR/tutte.html
http://w3.impa.br/~lvelho/
http://www.visgraf.impa.br/Projects/simple
http://www.visgraf.impa.br/Projects/simple
http://w3.impa.br/~lvelho/
http://www.visgraf.impa.br/RefBib/Data/PS_PDF/smi01/paper_velho_l.pdf
http://w3.impa.br/~lvelho/
http://www.mrl.nyu.edu/~dzorin/
http://w3.impa.br/~lvelho/h4k/s4.html

Bibliography 156

[Velho et al. 2003] L. Velho, H. Lopes, G. Tavares, E. Medeiros and
T. Lewiner. Mesh ops. Technical report, Department of Mathematics,
PUC–Rio, 2003. III.2

[Velho 2003] L. Velho. Stellar subdivision grammars. In Symposium on
Geometry Processing, pages 188–199. Eurographics, 2003. III.3(a)

[Velho 2004] L. Velho. A dynamic adaptive mesh library based on
stellar operators. Journal of Graphics Tools, 9(2), 2004. III.3(c)

[Vieira et al. 2004] A. W. Vieira, T. Lewiner, L. Velho, H. Lopes and
G. Tavares. Stellar mesh simplification using probabilistic optimiza-
tion. Computer Graphics Forum, 23(4):825–838, 2004. III.3(a), IV.3(c)

[Voronoi 1908] G. F. Voronoi. Nouvelles applications des paramètres
continus à la théorie des formes quadratiques. Journal für die Reine
und Angewandte Mathematik, 133:97–178, 1908. III.3(b)

[Wallace 1991] G. K. Wallace. The JPEG still picture compression
standard. Communications of the ACM, 34(4):30–44, 1991. II.3(b), VII

[Weiler 1985] K. J. Weiler. Edge–based data structures for solid mod-
eling in curved–surface environments. Computer Graphics and Appli-
cations, 5(1):21–40, 1985. III, VII

[Yang and Wu 2002] S.-N. Yang and T.-S. Wu. Compressing isosurfaces
generated with Marching Cubes. The Visual Computer, 18(1):54–67,
2002. V, VII

[Zorin and Schröder 2000] D. Zorin and P. Schröder. Subdivision for Mod-
eling and Animation. In Siggraph course notes. ACM, 2000. III.3(a)

http://w3.impa.br/~lvelho/
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~tavares
http://w3.impa.br/~esdras/
http://www.carva.org/thomas.lewiner
http://w3.impa.br/~lvelho/
http://www.visgraf.impa.br/Data/RefBib/PS_PDF/sgp03/stellar.pdf
http://w3.impa.br/~lvelho/
http://www.visgraf.impa.br/RefBib/Data/PS_PDF/dag03/dag03.pdf
http://www.visgraf.impa.br/RefBib/Data/PS_PDF/dag03/dag03.pdf
http://www.angelfire.com/moon/awilson/
http://www.carva.org/thomas.lewiner
http://w3.impa.br/~lvelho/
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~tavares
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=fast_stellar_cgf.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=fast_stellar_cgf.pdf
http://www.emusoftware.com/content/view/23/65/
http://www.maths.lth.se/na/staff/jose/jpeg/wallace.pdf
http://www.maths.lth.se/na/staff/jose/jpeg/wallace.pdf
http://kucg.korea.ac.kr/seminar/2002/src/PA-02-25.pdf
http://kucg.korea.ac.kr/seminar/2002/src/PA-02-25.pdf
http://www.mrl.nyu.edu/~dzorin/
http://www.multires.caltech.edu/~ps/
http://mrl.nyu.edu/publications/subdiv-course2000/
http://mrl.nyu.edu/publications/subdiv-course2000/

Index

Arithmetic coding, 22, 55, 67
adaptive model, 25
context, 26
decoding, 23
encoding, 25
order, 26, 106
prediction, 27, 88
renormalisation, 24
statistical modelling, 25, 68,

88, 104

Coding, 19
code, 19
complexity, 21
entropy, 20
entropy coder, 21
enumeration, 19
Huffman coder, 20, 55
information theory, 20
message, 19
order, 20
source, 19

Compression, 27
coarse level, 28
compaction, 28
compression scheme, 27
connectivity–driven, 47
direct compression, 28, 61,

81, 90, 101
distortion, 28
geometry–driven, 47
lossy compression, 28
multiresolution, 28
out–of–core compression, 28
progressive compression, 28,

85, 90
ratio, 27

Connectivity–driven coding
boundary S symbol, 60
clers stream, 56
compression, 61

decompression, 61
dual graph, 52
fast zip, 58
handle data, 55
handle S symbol, 58
Morse edge, 54
original Edgebreaker, 56
primal graph, 52
remainder, 54
Wrap&Zip, 57

Euler operator, 34, 56
collapse, 35
Euler attachment, 35
expansion, 35
MEV, 35
MTE, 35

Geometry–driven coding
active boundary, 104
Ball Pivoting criterion, 98
candidate, 99, 104, 105
circumradius, 107, 108
geometric criterion, 98, 99,

107
geometrical mesh, 97
kd–tree coding, 106, 107
manifold, 104
non–manifold, 99, 101
non–pure, 99, 104
non–simplicial, 99, 101, 106
octree coding, 98, 100
pure, 101
quantisation, 105, 107, 109,

110
simplicial, 104
spatial extension, 106, 107,

109, 111
traversal strategy, 107, 109,

111

Index 158

Handle operator, 36, 47, 54, 56,
58, 101

attachment, 36
handle, 36

Level set compression, 73
crossing simplex, 76
level set, 73
negative vertex, 76
original level set, 75
positive vertex, 76
sample point, 73
scalar data, 73
semi–Hausdorff distance, 79
tubular neighbourhood, 76

Mesh, 29
adjacency, 31
dimension, 32
maximal face, 32
polytope, 29
pure complex, 32, 97, 104
simplicial complex, 29, 31,

104
subcomplex, 31
surface, 33, 54

Mesh connectivity, 29, 31
bounding simplex, 32
interior simplex, 32
join, 31
link, 31
next vertex, 33
open star, 31
previous vertex, 33
skeleton, 31, 105
star, 31
valence, 31

Mesh geometry, 29, 31, 41
ball pivoting, 42, 98, 107, 108
Delaunay triangulation, 41
reconstruction, 42, 97, 107,

108
simplification, 40
smoothing, 40
subdivision, 40
Voronoi diagram, 41

Mesh topology, 29
boundary, 32, 60
connected, 31

connected component, 31,
60, 104

dual, 33
Euler characteristic, 32, 54,

79
genus, 33
manifold, 32, 97, 104
orientability, 33, 97
surface classification, 33

Multi–triangulation, 42
binary multi–triangulation,

43
binary space partition, 43,

82, 100, 106, 107
coarse mesh, 42
fine mesh, 75
higher facet, 43
level, 43
local refinement, 43, 77
local simplification, 43
lowest vertex, 43
refinement, 44, 77
regular binary multi–

triangulation, 44, 74, 75, 84
resolution, 43
simplification, 44

Polytope, 33, 106
cell, 33

Simplex, 30
edge, 30
face, 30
frontier, 30
incidence, 30
tetrahedron, 30
triangle, 30
vertex, 30

Stellar operator, 38
bistellar move, 38
split, 38
stellar move, 38
weld, 38, 77

Summary of notations

x,y, z P X points of a topological space X
R set of the real number
Rn � R� R� . . .� R Euclidean space of dimension n

}x} �a°
x2

i Euclidean norm of point x
Bp � tx P Rp : }x} 1u unit ball in Rp

Sp�1 � tx P Rp : }x} � 1u unit sphere in Rp

N, Z sets of the natural and relative integersvm,nw � tm,m�1, . . . , nu integer interval
ρ, σ, τ simplices
ρn, σn, τn simplices of dimension n
v, w vertices : simplex of dimension 0
e edge : simplex of dimension 1
t triangle : simplex of dimension 2
∆ tetrahedron : simplex of dimension 3
τm σn, σn ¡ τm τm is a face of σn, σn is incident to τm

Bσ � tτ, τ σu frontier of a simplex σ
K � tσu simplicial complex
Kn � tσp, p ¤ nu simplicial complex of dimension n
#m pKq � # tσm P Ku number of m–simplices of K
χ pKnq � °p�1qm#n�m pKnq Euler–Poincaré characteristic of K
Kpmq � tσp P K, p ¤ mu m–skeleton of K

σ � τ � 9hull pσ Y τq join of σ and τ
lk pσq � tτ P K : σ � τ P Ku link of σ
9st pσq � tσ � τ, τ P lk pσqu open star of σ
st pσq � 9st pσq Y �

ρP 9stpσq Bρ star of σ

BKn � tσn�1 : # lk pσn�1q � 1u boundary of a pure simplicial complex
Md simplicial n–manifold
S �M2 triangulated surface
χ pSq � 2� 2 � g pSq � b pSq genus and number of boundaries of S
K ¶ K 1, K 1 · K triangulation order: local refinement
K ù K 1, K 1 ø K RBMT order : non–local refinement
]K pfq � tσ P K : f pσq Q 0u tubular neighbourhood of f�1 p0q in K

	Mesh Compression from Geometry
	Résumé
	Abstract
	Contents
	Introduction
	Encoding and Compression
	Information Representation
	Coding
	Information Theory
	Levels of Information

	Arithmetic Coding
	Arithmetic Coder
	Algorithms
	Statistical Modelling

	Compression
	Compaction
	Direct Compression
	Progressive Compression

	Meshes and Geometry
	Simplicial Complexes and Polytopes
	Simplicial Complexes
	Local Structure
	Pure Simplicial Complexes
	Simplicial Manifolds
	Polytopes

	Combinatorial Operators
	Euler Operators
	Handle Operators
	Stellar Operators

	Geometry and Discretisation
	Subdivision and Smoothing
	Delaunay Triangulation
	Multi--Triangulations

	Connectivity--Driven Compression
	Principles
	Origins
	Primal or dual remainders
	Topological Singularities

	The Edgebreaker example
	CLERS encoding
	Fast decompression
	Topology encoding
	Compression algorithms
	Decompression algorithms

	Performances
	Compression Rates
	Good and bad cases
	Extensions

	Level Set Compression
	Level Set Extraction
	Simplicial Interpolation
	Geometry and Distortion Control
	Topology Control

	Direct Encoding
	Localisation
	Uniform Encoding
	Adapted Encoding

	Progressive Encoding
	Combinatorial Refinement
	Extrinsic Geometry Refinement
	Level Sets Extensions

	Tuning and Results
	Prediction and Statistical Models
	Direct
	Progressive
	Extended applications

	GEncode
	Purposes
	Focus on Geometrical Meshes
	Zero Cost for Reconstructible Meshes
	Independent Geometry Encoding

	GEncode schemes
	Advancing front compression
	Optimisations and Extensions
	Candidates selection

	Geometric Criteria
	Generic Formulation
	Ball--Pivoting and Delaunay--Based Reconstruction
	Parametric Criterion

	Results

	Conclusions and Future Works
	Résumé en français
	Bibliography
	Index

