. En-conséquence, nous appelons l'AAP de Temps 3 fois, chacune pour un seul chemin ; nous appelons l'AAOP de Humidité 3 fois, à chaque fois l'arbre est appelé pour un seul chemin. De la même manière, nous appelons l

Z. Bibliographieadriaans, P. Adriaans, and D. Et-zantinge, Data Mining, 1996.

U. Aho, A. Aho, and J. Et-ullman, Concepts fondamentaux de l'informatique, 1993.

. Boussaid, Fouille de donnés complexes, 2005.

. Bratko, . Knononenko, I. Bratko, and I. Et-knononenko, Learning diagnostic rules from incomplete and noisy data, Interactions in Artificial Intelligence and Statistical Methods, 1987.

. Breiman, Classification and regression trees, 1984.

W. Buntine, Learning classification trees, Artificial Intelligence frontiers in statistics, pp.182-201, 1993.

C. Et-bratko-]-cestnik, B. Et-bratko, and I. , On estimating probabilities in tree pruning, EWSL-91 : Proceedings of the European working session on learning on Machine learning, pp.138-150, 1991.

. Cestnik, Assistant 86 : A knowledge elicitation tool for sophisticated users, Progress in Machine Learning, pp.31-45, 1987.

C. Clark, P. Et-niblett, and T. , The CN2 induction algorithm, Machine Learning, pp.261-283, 1989.
DOI : 10.1007/BF00116835

. Cloppet, Extraction des connaissances : Etat et perspectives (Ateliers de la conférence EGC'2005), 2005.

. Cornuéjols, Apprentissage artificiel : Concepts et algorithmes, 2002.

. Cover, . Hart, T. Cover, and P. Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol.13, issue.1, pp.21-27, 1967.
DOI : 10.1109/TIT.1967.1053964

B. Crémilleux, Induction automatique : aspects théoriques, le système ARBRE, Applications en médecine, Thèse de doctorat, 1991.

B. Crémilleux, Decision trees as a data mining tool, Computing and Information Systems, pp.91-97, 2000.

. Kononenko, I. Robnik-sikonia-]-kononenko, and M. Et-robnik-sikonia, Relieff for estimation and discretization of attributes in classification regression and ilp problems, Artificial Intelligence : Methodology, pp.31-40, 1996.

. Kononenko, . Simec, I. Kononenko, and E. Et-simec, Induction of Decision Trees Using Relieff, Mathematical and statistical methods in artificial intelligence, 1995.
DOI : 10.1007/978-3-7091-2690-5_14

M. Kovacic, Stochastic inductive logic programming Kovacic m. (1994) stochastic inductive logic programming, 1994.

Y. Liang, H. Liang, and Y. Et-yan, Learning Na??ve Bayes Tree for Conditional Probability Estimation, Canadian Conference on AI, pp.455-466, 2006.
DOI : 10.1007/11766247_39

URL : http://doi.org/10.1007/11766247_39

L. , Y. Ling, C. Et-yan, and R. , Decision tree with better ranking, Proc. Int. Conf. on Machine Learning (ICML2003), 2003.

. Liu, Techniques for dealing with missing values in classification, LNCS, vol.1280, pp.527-537, 1997.
DOI : 10.1007/BFb0052868

. Lobo, . Numao, O. Lobo, and M. Et-numao, Ordered Estimation of Missing Values, PAKDD '99 : Proceedings of the Third Pacific Asia Conference on Methodologies for Knowledge Discovery and Data Mining, pp.499-503, 1999.
DOI : 10.1007/3-540-48912-6_67

. Lobo, . Numao, O. Lobo, and M. Et-numao, Ordered estimation of missing values for propositional learning, the Japanese Society for Artificial Intelligence, vol.15, issue.1, pp.162-168, 2000.

. Lobo, . Numao, O. Lobo, and M. Et-numao, Suitable domains for using ordered attribute trees to impute missing values, IEICE TRANS.INF. and SYST, issue.2, p.84, 2001.

O. O. Lobo, Dealing with Imperfections in the Data for Propositional Learning, Doctor, 2000.

D. J. Mackay, Information Theory, Inference, and Learning Algorithms, 2003.

. Margineantu, . Dietterich, D. Margineantu, and T. G. Et-dietterich, Improved Class Probability Estimates from Decision Tree Models, Nonlinear Estimation and Classification, 2002.
DOI : 10.1007/978-0-387-21579-2_10

M. Et-hirschberg-]-martin, J. K. Et-hirschberg, and D. S. , The time complexity of decision tree induction, 1995.

. Mehta, Mdl-based decision tree pruning, Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD'95), pp.216-221, 1995.

R. S. Michalski, On the quasiminimal solution of the general covering problem, Proc. 5th Int. Symp. Information Processing, pp.125-128, 1969.

J. Mingers, Expert systems-rule induction with statistical data, The Journal of the Operational Research Society, vol.38, issue.1, pp.39-47, 1987.

J. Mingers, An empirical comparison of pruning methods for decision tree induction, Machine Learning, pp.227-243, 1989.

T. Mitchell, Machine Learning, 1997.

. Morgan, . Messenger, J. N. Morgan, and R. C. Et-messenger, THAID, a sequential analysis program for the analysis of nominal scale dependent variables, Survey Research Center, 1973.

M. Et-sonquist-]-morgan, J. N. Et-sonquist, and J. A. , Problems in the Analysis of Survey Data, and a Proposal, Journal of the American Statistical Association, vol.58, issue.302, pp.415-434, 1963.
DOI : 10.1080/01621459.1963.10500855

. Newman, Uci repository of machine learning databases, 1998.

B. Niblett, T. Niblett, and I. Et-bratko, Learning decision rules in noisy domains, Research and Development in Expert Systems III, pp.24-25, 1986.

N. Paterson, A. Paterson, and T. Et-niblett, Acls manual, version 1, 1982.

D. Provost, F. Provost, and P. Et-domingos, Tree induction for probability-based ranking, Machine Learning, pp.199-215, 2003.

J. R. Quinlan, Induction of decision trees, Expert Systems in the Micro Electronic Age, pp.168-201, 1979.
DOI : 10.1007/BF00116251

J. R. Quinlan, Induction of decision trees, Machine Learning, pp.81-106, 1986.
DOI : 10.1007/BF00116251

J. R. Quinlan, DECISION TREES AS PROBABILISTIC CLASSIFIERS, Proceedings of the Fourth International Workshop on Machine Learning, pp.31-37, 1987.
DOI : 10.1016/B978-0-934613-41-5.50007-6

J. R. Quinlan, Simplifying decision trees, International Journal of Man-Machine Studies, vol.27, issue.3, pp.221-234, 1987.
DOI : 10.1016/S0020-7373(87)80053-6

J. R. Quinlan, UNKNOWN ATTRIBUTE VALUES IN INDUCTION, Proceedings of the Sixth International Machine Learning Workshop, 1989.
DOI : 10.1016/B978-1-55860-036-2.50048-5

J. R. Quinlan, PROBABILISTIC DECISION TREES, Machine Learning : an Artificial Intelligence Approach, pp.140-152, 1990.
DOI : 10.1016/B978-0-08-051055-2.50011-0

J. R. Quinlan, C4.5 : Programs for Machine Learning, 1993.

. Quinlan, Inductive knowledge acquisition : a case study, Proceedings of the Second Australian Conference on Applications of expert systems, pp.137-156, 1987.

Q. Et-rivest-]-quinlan, J. R. Et-rivest, and R. L. , Inferring decision trees using the minimum description lenght principle, Information and Computation, vol.80, issue.3, pp.227-248, 1989.
DOI : 10.1016/0890-5401(89)90010-2

R. Et-cremilleux-]-ragel, A. Et-cremilleux, and B. , Treatment of missing values for association rules, Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.258-270, 1998.

R. Et-crémilleux-]-ragel, A. Et-crémilleux, and B. , Mvc -a preprocessing method to deal with missing values, Knowl.-Based Syst, vol.12, pp.5-6285, 1999.

J. Rissanen, Universal coding, information, prediction, and estimation, IEEE Transactions on Information Theory, vol.30, issue.4, pp.629-636, 1984.
DOI : 10.1109/TIT.1984.1056936

K. M. Risvik, Discretization of numerical attributes -preprocessing for machine learning, 1997.

[. Et-kononenko-]-robnik-sikonja, M. Et-kononenko, and I. , Attribute dependencies, understandability and split selection in tree based models, Machine Learning : Proceedings of the Sixteenth International Conference ICML99, pp.344-353, 1999.

M. Robnik-sikonja and I. Et-kononenko, Theoretical and empirical analysis of relieff and rrelieff, Machine Learning, vol.53, issue.1/2, pp.23-69, 2003.
DOI : 10.1023/A:1025667309714

R. , D. Roderick, J. A. Donald, and B. R. , Statistical Analysis with Missing Data, Hoboken (N.J), 2002.

S. Roman, Coding and information theory, 1992.

S. J. Russell and P. Et-norvig, Artificial Intelligence : A Modern Approach, 2003.

. Saar-tsechansky, . Provost, M. Saar-tsechansky, and F. Et-provost, Handling missing values when applying classification models, J. Mach. Learn. Res, vol.8, pp.1623-1657, 2007.

C. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

J. S. Simonoff, Three Sides of Smoothing: Categorical Data Smoothing, Nonparametric Regression, and Density Estimation, International Statistical Review, vol.26, issue.2, pp.137-156, 1998.
DOI : 10.2307/2289465

. Smyth, Retrofitting Decision Tree Classifiers Using Kernel Density Estimation, International Conference on Machine Learning, pp.506-514, 1995.
DOI : 10.1016/B978-1-55860-377-6.50069-4

. Su, . Zhang, J. Su, and H. Zhang, Learning conditional independence tree for ranking, ICDM, pp.531-534, 2004.

. Su, . Zhang, J. Su, and H. Zhang, Representing conditional independence using decision trees, AAAI, pp.874-879, 2005.

. Tan, Introduction to Data Mining, 2006.

. Tsumoto, CHASE-2 : Rule based chase algorithm for information systems of type lambda, de Lecture Notes in Computer Science, 2005.

. Wang, Improving the Performance of Decision Tree: A Hybrid Approach, LNCS, vol.3288, pp.327-335, 2004.
DOI : 10.1007/978-3-540-30464-7_26

L. Wehenkel, Théorie de l'information et du codage, 2001.

A. P. White, Probabilistic induction by dynamic part generation in virtual trees, Proceedings of Expert Systems '86, The 6Th Annual Technical Conference on Research and development in expert systems III, pp.35-46, 1987.

I. Frank-]-witten-ian, H. Frank, and E. , Data Mining : Practical Machine Learning Tools and Techniques, 2005.

Z. Et-elkan-]-zadrozny, B. Et-elkan, and C. , Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers, Proc. 18th International Conf. on Machine Learning, pp.609-616, 2001.

S. Zhang, H. Zhang, and J. Su, Conditional Independence Trees, Machine Learning : ECML 2004, pp.513-524, 2004.
DOI : 10.1007/978-3-540-30115-8_47

. Zheng, . Low, Z. Zheng, and B. T. Et-low, Classifying unseen cases with many missing values. Rapport technique, Proceedings Third Paci Conference (PAKDD99), volume 1574 of LNAI, 1999.

. Zighed, . Rakotomalala, D. Zighed, and R. Et-rakotomalala, Graphes d'induction : apprentissage automatique et Data mining, Hermes, 2000.