H. Amano, M. Kito, K. Hiramatsu, and E. I. Akasaki, P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI), Japanese Journal of Applied Physics, vol.28, issue.Part 2, No. 12, p.2112, 1989.
DOI : 10.1143/JJAP.28.L2112

S. Nakamura, T. Mukai, and M. Senoh, Candela???class high???brightness InGaN/AlGaN double???heterostructure blue???light???emitting diodes, Applied Physics Letters, vol.64, issue.13, p.1687, 1994.
DOI : 10.1063/1.111832

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada et al., InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices, Japanese Journal of Applied Physics, vol.36, issue.Part 2, No. 12A, p.1568, 1997.
DOI : 10.1143/JJAP.36.L1568

S. Nagahama, T. Yanamoto, M. Sano, and E. T. Mukai, Blue-Violet Nitride Lasers, physica status solidi (a), vol.40, issue.190, p.423, 2002.
DOI : 10.1002/1521-396X(200212)194:2<423::AID-PSSA423>3.0.CO;2-V

B. Damilano, N. Grandjean, C. Pernot, and E. J. Massies, Monolithic White Light Emitting Diodes Based on InGaN/GaN Multiple-Quantum Wells, Japanese Journal of Applied Physics, vol.40, issue.Part 2, No. 9A/B, p.918, 2001.
DOI : 10.1143/JJAP.40.L918

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki et al., InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode, Japanese Journal of Applied Physics, vol.41, issue.Part 2, No. 12B, p.1431, 2002.
DOI : 10.1143/JJAP.41.L1431

N. Grandjean, B. Damilano, and E. J. Massies, Group-III nitride quantum heterostructures grown by molecular beam epitaxy, Journal of Physics: Condensed Matter, vol.13, issue.32, p.6945, 2001.
DOI : 10.1088/0953-8984/13/32/305

L. Hirsch and A. S. Barrière, Electrical characterization of InGaN/GaN light emitting diodes grown by molecular beam epitaxy, Journal of Applied Physics, vol.94, issue.8, p.5014, 2003.
DOI : 10.1063/1.1605252

URL : https://hal.archives-ouvertes.fr/hal-00183539

C. Pernot, A. Hirano, H. Amano, and E. I. Akasaki, Investigation of the Leakage Current in GaN P-N Junctions, Japanese Journal of Applied Physics, vol.37, issue.Part 2, No. 10B, p.1202, 1998.
DOI : 10.1143/JJAP.37.L1202

M. R. Krames, J. Bhat, D. Collins, N. F. Gardner, W. Götz et al., High-Power III-Nitride Emitters for Solid-State Lighting, physica status solidi (a), vol.8, issue.2, p.237, 2002.
DOI : 10.1002/1521-396X(200208)192:2<237::AID-PSSA237>3.0.CO;2-I

F. Interview and . Steranka, vice-president of R&D at Lumileds, Opto and Laser Europe, 2003.

S. Nakamura, G. Fasol, ». The-blue-laser-diode, and . Springer, [13] www.lumileds.com, Lumileds Lighting, 1997.

W. S. Wong, T. Sands, and N. W. Cheung, Damage-free separation of GaN thin films from sapphire substrates, Applied Physics Letters, vol.72, issue.5, p.599, 1998.
DOI : 10.1063/1.120816

M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki et al., Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor, Japanese Journal of Applied Physics, vol.42, issue.Part 2, No.1A/B, p.20, 2003.
DOI : 10.1143/JJAP.42.L20

H. Xiang, S. Yu, C. Che, and P. T. Lai, -tetrakis(pentafluorophenyl) porphyrin hybrid light-emitting diodes, Applied Physics Letters, vol.83, issue.8, p.1518, 2003.
DOI : 10.1063/1.1604192

URL : https://hal.archives-ouvertes.fr/hal-00856955

C. Kuo, J. Sheu, S. Chang, Y. Su, L. Wu et al., n-UV+Blue/Green/Red White Light Emitting Diode Lamps, Japanese Journal of Applied Physics, vol.42, issue.Part 1, No. 4B, p.2284, 2003.
DOI : 10.1143/JJAP.42.2284

B. Damilano, N. Grandjean, C. Pernot, and E. J. Massies, Monolithic White Light Emitting Diodes Based on InGaN/GaN Multiple-Quantum Wells, Japanese Journal of Applied Physics, vol.40, issue.Part 2, No. 9A/B, p.918, 2001.
DOI : 10.1143/JJAP.40.L918

M. Yamada, Y. Narukawa, and T. Mukaï, Phosphor Free High-Luminous-Efficiency White Light-Emitting Diodes Composed of InGaN Multi-Quantum Well, Japanese Journal of Applied Physics, vol.41, issue.Part 2, No. 3A, p.246, 2002.
DOI : 10.1143/JJAP.41.L246

C. Chen, S. Chang, and Y. Su, InGaN/GaN multiple-quantum-well dual-wavelength near-white light emitting diodes, physica status solidi (c), vol.0, issue.7, p.2257, 2003.
DOI : 10.1002/pssc.200303418

T. Nakamura, S. Fujiwara, H. Mori, and K. Katayama, Novel Cladding Structure for ZnSe-based White Light Emitting Diodes with Longer Lifetimes of over 10,000 h, Japanese Journal of Applied Physics, vol.43, issue.4A, p.1287, 2004.
DOI : 10.1143/JJAP.43.1287

S. J. Bai, C. C. Wu, T. D. Dang, F. E. Arnold, and E. B. Sakaran, Tunable and white light-emitting diodes of monolayer fluorinated benzoxazole graft copolymers, Applied Physics Letters, vol.84, issue.10, p.1656, 2004.
DOI : 10.1063/1.1667262

G. Cheng, Y. Zhao, Y. Zhang, and S. Liu, White organic light-emitting devices using 2,5,2???,5???-tetrakis(4???-biphenylenevinyl)-biphenyl as blue light-emitting layer, Applied Physics Letters, vol.84, issue.22, p.4457, 2004.
DOI : 10.1063/1.1738179

G. Li and E. J. Shinar, Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped 4,4???-bis(2,2???-diphenylvinyl)-1,1???-biphenyl, Applied Physics Letters, vol.83, issue.26, p.5359, 2003.
DOI : 10.1063/1.1635658

F. Li, G. Cheng, Y. Zhao, J. Feng, S. Liu et al., White-electrophosphorescence devices based on rhenium complexes, Applied Physics Letters, vol.83, issue.23, p.4716, 2003.
DOI : 10.1063/1.1632545

S. Seo, K. Cho, and J. H. Shin, Intense blue???white luminescence from carbon-doped silicon-rich silicon oxide, Applied Physics Letters, vol.84, issue.5, p.717, 2004.
DOI : 10.1063/1.1645989

P. Pellegrino, A. Perez-rodriguez, B. Garrido, O. Gonzales-varona, J. R. Morante et al., Time-resolved analysis of the white photoluminescence from SiO2 films after Si and C coimplantation, Applied Physics Letters, vol.84, issue.1, p.25, 2004.
DOI : 10.1063/1.1634692

L. Xu, K. Wai-cheah, H. Lam-tam, K. F. Li, Y. Zhang et al., Synthesis of Nano-ZnS Modified Porous Si with White Light Photoluminescence Properties, Japanese Journal of Applied Physics, vol.41, issue.Part 1, No. 7A, p.4466, 2002.
DOI : 10.1143/JJAP.41.4466

T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai et al., Direct Evidence that Dislocations are Non-Radiative Recombination Centers in GaN, Japanese Journal of Applied Physics, vol.37, issue.Part 2, No. 4A, p.398, 1998.
DOI : 10.1143/JJAP.37.L398

M. Lesczczynski, Gallium nitride and related semiconductors, emis datareviews series 23, 1999.

I. Akasaki and H. Amano, Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters, Japanese Journal of Applied Physics, vol.36, issue.Part 1, No. 9A, p.5393, 1997.
DOI : 10.1143/JJAP.36.5393

B. Damilano, thèse de doctorat de l'université de Nice-Sophia-Antipolis, 2001.

I. Ho and G. B. Stringfellow, Solid phase immiscibility in GaInN, Applied Physics Letters, vol.69, issue.18, p.2701, 1996.
DOI : 10.1063/1.117683

K. Osamura, S. Naka, and Y. Murakami, N thin films, Journal of Applied Physics, vol.46, issue.8, p.3432, 1975.
DOI : 10.1063/1.322064

T. Saito and E. Y. Arakawa, random alloys calculated using a valence-force-field method, Physical Review B, vol.60, issue.3, p.1701, 1999.
DOI : 10.1103/PhysRevB.60.1701

J. Adhikari and D. A. Kofke, Molecular simulation study of miscibility of ternary and quaternary InGaAlN alloys, Journal of Applied Physics, vol.95, issue.11, p.6129, 2004.
DOI : 10.1063/1.1728317

D. Doppalapudi, S. N. Basu, K. F. Ludwig, J. , and T. D. Moustakas, Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy, Journal of Applied Physics, vol.84, issue.3, p.1389, 1998.
DOI : 10.1063/1.368251

N. A. El-masry, E. L. Piner, S. X. Liu, and S. M. Bedair, Phase separation in InGaN grown by metalorganic chemical vapor deposition, Applied Physics Letters, vol.72, issue.1, p.40, 1998.
DOI : 10.1063/1.120639

N. Grandjean, B. Damilano, and E. J. Massies, Group-III nitride quantum heterostructures grown by molecular beam epitaxy, Journal of Physics: Condensed Matter, vol.13, issue.32, p.6945, 2001.
DOI : 10.1088/0953-8984/13/32/305

V. Potin, E. Hahn, A. Rosenauer, D. Gerthsen, B. Kuhn et al., Comparison of the In distribution in InGaN/GaN quantum well structures grown by molecular beam epitaxy and metalorganic vapor phase epitaxy, Journal of Crystal Growth, vol.262, issue.1-4, p.145, 2003.
DOI : 10.1016/j.jcrysgro.2003.10.082

S. Chichibu, T. Azuhata, T. Sota, and E. S. Nakamura, Luminescences from localized states in InGaN epilayers, Applied Physics Letters, vol.70, issue.21, p.2822, 1997.
DOI : 10.1063/1.119013

D. Behr, J. Wagner, A. Ramakrishnan, H. Obloh, and K. Bachem, Evidence for compositional inhomogeneity in low In content (InGa)N obtained by resonant Raman scattering, Applied Physics Letters, vol.73, issue.2, p.241, 1998.
DOI : 10.1063/1.121768

L. Görgens, O. Ambacher, M. Stutzmann, C. Miskys, and F. Scholz, Characterization of InGaN thin films using high-resolution x-ray diffraction, Applied Physics Letters, vol.76, issue.5, p.577, 2000.
DOI : 10.1063/1.125822

N. Wieser, O. Ambacher, H. Felsl, L. Görgens, and E. M. Stutzmann, Compositional fluctuations in GaInN/GaN double heterostructures investigated by selectively excited photoluminescence and Raman spectroscopy, Applied Physics Letters, vol.74, issue.26, p.3981, 1999.
DOI : 10.1063/1.124243

M. Takeguchi, M. R. Mccartney, and D. J. Smith, Mapping In concentration, strain, and internal electric field in InGaN/GaN quantum well structure, Applied Physics Letters, vol.84, issue.12, p.2103, 2004.
DOI : 10.1063/1.1689400

L. Bellaiche, T. Mattila, L. Wang, S. Wei, and E. A. Zunger, Resonant hole localization and anomalous optical bowing in InGaN alloys, Applied Physics Letters, vol.74, issue.13, p.1842, 1999.
DOI : 10.1063/1.123687

K. P. O-'donnel, R. W. Martin, and P. G. Middleton, Origin of Luminescence from InGaN Diodes, Physical Review Letters, vol.82, issue.1, p.237, 1999.
DOI : 10.1103/PhysRevLett.82.237

T. M. Smeeton, M. J. Kappers, J. S. Bernard, M. E. Vickers, and C. J. Humphreys, Electron-beam-induced strain within InGaN quantum wells: False indium ???cluster??? detection in the transmission electron microscope, Applied Physics Letters, vol.83, issue.26, p.5419, 2003.
DOI : 10.1063/1.1636534

M. C. Johnson, E. D. Bourret-courchesne, J. Wu, Z. Lilientalweber, and D. N. Zakharov, Effect of gallium nitride template layer strain on the growth of InxGa1-xN???GaN multiple quantum well light emitting diodes, Journal of Applied Physics, vol.96, issue.3, p.1381, 2004.
DOI : 10.1063/1.1766407

T. Mukai, S. Nagahama, T. Yanamato, and E. M. Sano, Expanding Emission Wavelength on Nitride Light-Emitting Devices, physica status solidi (a), vol.40, issue.190, p.261, 2002.
DOI : 10.1002/1521-396X(200208)192:2<261::AID-PSSA261>3.0.CO;2-U

H. P. Maruska and J. J. Tietjen, THE PREPARATION AND PROPERTIES OF VAPOR???DEPOSITED SINGLE???CRYSTAL???LINE GaN, Applied Physics Letters, vol.15, issue.10, p.327, 1969.
DOI : 10.1063/1.1652845

K. A. Rickert, A. B. Ellis, F. J. Himpsel, H. Liu, W. Schaff et al., X-ray photoemission spectroscopic investigation of surface treatments, metal deposition, and electron accumulation on InN, Applied Physics Letters, vol.82, issue.19, p.3254, 2003.
DOI : 10.1063/1.1573351

F. Bernardini, V. Fiorentini, and E. D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Physical Review B, vol.56, issue.16, p.10024, 1997.
DOI : 10.1103/PhysRevB.56.R10024

P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allègre et al., High internal electric field in a graded-width InGaN/GaN quantum well: Accurate determination by time-resolved photoluminescence spectroscopy, Applied Physics Letters, vol.78, issue.9, p.1252, 2001.
DOI : 10.1063/1.1351517

URL : https://hal.archives-ouvertes.fr/hal-01303203

Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, vol.34, issue.1, p.149, 1967.
DOI : 10.1016/0031-8914(67)90062-6

H. P. Schenk, P. De-mierry, F. Omnès, and E. P. Gibart, Spectroscopic Studies of InGaN Ternary Alloys, physica status solidi (a), vol.47, issue.1, p.307, 1998.
DOI : 10.1002/(SICI)1521-396X(199911)176:1<307::AID-PSSA307>3.0.CO;2-U

Y. H. Cho, G. H. Gainer, A. J. Fisher, J. J. Song, S. Keller et al., ???S-shaped??? temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells, Applied Physics Letters, vol.73, issue.10, p.1370, 1998.
DOI : 10.1063/1.122164

J. Massies, F. Turco, A. Saletes, and J. P. Contour, Experimental evidence of difference in surface and bulk compositions of AlxGa1-xAs, AlxIn1-x As and GaxIn1-x As epitaxial layers grown by molecular beam epitaxy, Journal of Crystal Growth, vol.80, issue.2, p.307, 1987.
DOI : 10.1016/0022-0248(87)90076-5

C. Kisielowski, Z. Liliental-weber, and S. Nakamura, Quantum Well Structure, Japanese Journal of Applied Physics, vol.36, issue.Part 1, No. 11, p.6932, 1997.
DOI : 10.1143/JJAP.36.6932

N. Grandjean, J. Massies, S. Dalmasso, P. Vennéguès, L. Siozade et al., GaInN/GaN multiple-quantum-well light-emitting diodes grown by molecular beam epitaxy, Applied Physics Letters, vol.74, issue.24, p.3616, 1999.
DOI : 10.1063/1.123199

URL : https://hal.archives-ouvertes.fr/hal-00183550

N. Duxbury, U. Bangert, P. Dawson, E. J. Thrush, W. Van-der-stricht et al., Indium segregation in InGaN quantum-well structures, Applied Physics Letters, vol.76, issue.12, p.1600, 2000.
DOI : 10.1063/1.126108

P. Waltereit, O. Brandt, K. H. Ploog, M. A. Tagliente, and L. Tapfer, Indium Surface Segregation during Growth of (In,Ga)N/GaN Multiple Quantum Wells by Plasma-Assisted Molecular Beam Epitaxy, physica status solidi (b), vol.56, issue.1, p.49, 2001.
DOI : 10.1002/1521-3951(200111)228:1<49::AID-PSSB49>3.0.CO;2-C

O. Mayrock, H. Wünsche, and F. Henneberger, Polarization charge screening and indium surface segregation in (In,Ga)N/GaN single and multiple quantum wells, Physical Review B, vol.62, issue.24, p.16870, 2000.
DOI : 10.1103/PhysRevB.62.16870

K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells, Applied Physics Letters, vol.61, issue.5, p.557, 1992.
DOI : 10.1063/1.107835

S. Martini, A. A. Quivy, E. C. Da-silva, and J. R. Leite, Real-time determination of the segregation strength of indium atoms in InGaAs layers grown by molecular-beam epitaxy, Applied Physics Letters, vol.81, issue.15, p.2863, 2002.
DOI : 10.1063/1.1513182

P. Waltereit, O. Brandt, K. H. Ploog, M. A. Tagliente, and E. L. Tapfer, In surface segregation during growth of (In,Ga)N/GaN multiple quantum wells by plasma-assisted molecular beam epitaxy, Physical Review B, vol.66, issue.16, p.165322, 2002.
DOI : 10.1103/PhysRevB.66.165322

J. M. Gerard and G. L. Roux, Growth of InGaAs/GaAs quantum wells with perfectly abrupt interfaces by molecular beam epitaxy, Applied Physics Letters, vol.62, issue.26, p.3452, 1993.
DOI : 10.1063/1.109046

K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells, Applied Physics Letters, vol.61, issue.5, p.557, 1992.
DOI : 10.1063/1.107835

F. Bernardini, V. Fiorentini, and E. D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Physical Review B, vol.56, issue.16, p.10024, 1997.
DOI : 10.1103/PhysRevB.56.R10024

P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allègre et al., High internal electric field in a graded-width InGaN/GaN quantum well: Accurate determination by time-resolved photoluminescence spectroscopy, Applied Physics Letters, vol.78, issue.9, p.1252, 2001.
DOI : 10.1063/1.1351517

URL : https://hal.archives-ouvertes.fr/hal-01303203

P. Waltereit, O. Brandt, K. H. Ploog, M. A. Tagliente, and E. L. Tapfer, In surface segregation during growth of (In,Ga)N/GaN multiple quantum wells by plasma-assisted molecular beam epitaxy, Physical Review B, vol.66, issue.16, p.165322, 2002.
DOI : 10.1103/PhysRevB.66.165322

N. Grandjean, J. Massies, and E. M. Leroux, As on GaAs(001), Physical Review B, vol.53, issue.3, p.998, 1996.
DOI : 10.1103/PhysRevB.53.998

R. Kaspi and K. R. Evans, Improved compositional abruptness at the InGaAs on GaAs interface by presaturation with In during molecular???beam epitaxy, Applied Physics Letters, vol.67, issue.6, p.819, 1995.
DOI : 10.1063/1.115454

M. Mesrine, J. Massies, C. Deparis, N. Grandjean, and E. E. Vanelle, P on GaAs (001), Applied Physics Letters, vol.68, issue.25, p.3579, 1999.
DOI : 10.1063/1.116643

S. Pereira, M. R. Correia, E. Pereira, K. P. O-'donnell, C. Trager-cowan et al., layers:???A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study, Physical Review B, vol.64, issue.20, p.205311, 2001.
DOI : 10.1103/PhysRevB.64.205311

J. Y. Marzin and J. Gérard, Experimental probing of quantum-well eigenstates, Physical Review Letters, vol.62, issue.18, p.2172, 1989.
DOI : 10.1103/PhysRevLett.62.2172

N. Grandjean, B. Damilano, S. Dalmasso, M. Leroux, M. Laügt et al., Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells, Journal of Applied Physics, vol.86, issue.7, p.3714, 1999.
DOI : 10.1063/1.371241

M. O. Manaresh and H. X. Jiang, III-nitride semiconductors optical properties I, 2002.

C. H. Henry and E. K. Nassau, Lifetimes of Bound Excitons in CdS, Physical Review B, vol.1, issue.4, p.1628, 1970.
DOI : 10.1103/PhysRevB.1.1628

Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, vol.34, issue.1, p.149, 1967.
DOI : 10.1016/0031-8914(67)90062-6

T. Mukai, S. Nagahama, T. Yanamato, and E. M. Sano, Expanding Emission Wavelength on Nitride Light-Emitting Devices, physica status solidi (a), vol.40, issue.190, p.261, 2002.
DOI : 10.1002/1521-396X(200208)192:2<261::AID-PSSA261>3.0.CO;2-U

H. Amano, M. Kito, K. Hiramatsu, and E. I. Akasaki, P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI), Japanese Journal of Applied Physics, vol.28, issue.Part 2, No. 12, p.2112, 1989.
DOI : 10.1143/JJAP.28.L2112

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki et al., InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode, Japanese Journal of Applied Physics, vol.41, issue.Part 2, No. 12B, p.1431, 2002.
DOI : 10.1143/JJAP.41.L1431

N. Grandjean, B. Damilano, and E. J. Massies, Group-III nitride quantum heterostructures grown by molecular beam epitaxy, Journal of Physics: Condensed Matter, vol.13, issue.32, p.6945, 2001.
DOI : 10.1088/0953-8984/13/32/305

P. Waltereit, H. Sato, C. Poblenz, D. S. Green, J. S. Brown et al., Blue GaN-based light-emitting diodes grown by molecular-beam epitaxy with external quantum efficiency greater than 1.5%, Applied Physics Letters, vol.84, issue.15, p.2748, 2004.
DOI : 10.1063/1.1705721

K. Johnson, V. Bousquet, S. E. Hooper, M. Kauer, C. Zellweger et al., High-power InGaN light emitting diodes grown by molecular beam epitaxy, Electronics Letters, vol.40, issue.20, p.1299, 2004.
DOI : 10.1049/el:20046144

Y. Lin and W. Liu, Excimer-laser-induced activation of Mg-doped GaN layers, Applied Physics Letters, vol.84, issue.14, p.2515, 2004.
DOI : 10.1063/1.1695436

S. Nakamura, M. Senoh, and E. T. Mukai, Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers, Japanese Journal of Applied Physics, vol.30, issue.Part 2, No. 10A, p.1708, 1991.
DOI : 10.1143/JJAP.30.L1708

J. Neugebauer and C. G. Van-de-walle, Hydrogen in GaN: Novel Aspects of a Common Impurity, Physical Review Letters, vol.75, issue.24, p.4452, 1995.
DOI : 10.1103/PhysRevLett.75.4452

Y. Nakagawa, M. Haraguchi, M. Kukui, S. Tanaka, A. Sakaki et al., Hydrogen Dissociation from Mg-doped GaN, Japanese Journal of Applied Physics, vol.43, issue.1, p.23, 2004.
DOI : 10.1143/JJAP.43.23

C. G. Van-de-walle, First-principles calculations for defects and impurities: Applications to III-nitrides, Journal of Applied Physics, vol.95, issue.8, p.3851, 2004.
DOI : 10.1063/1.1682673

R. Cusco, L. Artus, and E. D. Pastor, Local vibrational modes of H complexes in Mg-doped GaN grown by molecular beam epitaxy, Applied Physics Letters, vol.84, issue.6, p.897, 2004.
DOI : 10.1063/1.1645668

S. J. Chung, E. K. Suh, H. J. Lee, H. B. Mao, and S. J. Park, Photoluminescence and photocurrent studies of p-type GaN with various thermal treatments, Journal of Crystal Growth, vol.235, issue.1-4, p.49, 2002.
DOI : 10.1016/S0022-0248(01)01776-6

S. Pézagna, P. Vennéguès, N. Grandjean, and J. Massies, Polarity inversion of GaN(0001) by a high Mg doping, Journal of Crystal Growth, vol.269, issue.2-4, p.249, 2004.
DOI : 10.1016/j.jcrysgro.2004.05.067

P. Vénéguès, Influence of high Mg doping on the microstructural and optoelectronic properties of GaN, Materials Science and Engineering: B, vol.93, issue.1-3, p.224, 2002.
DOI : 10.1016/S0921-5107(02)00046-6

. Osinsky, Solid State Electronics, p.51, 2003.

S. Dalmasso, thèse de doctorat de l'université de Nice-Sophia-Antipolis, 2001.

E. Haus, I. P. Smorchkova, B. Heying, P. Fini, C. Poblenz et al., The role of growth conditions on the p-doping of GaN by plasma-assisted molecular beam epitaxy, Journal of Crystal Growth, vol.246, issue.1-2, p.55, 2002.
DOI : 10.1016/S0022-0248(02)01704-9

M. G. Cheong, K. S. Kim, C. S. Kim, R. J. Choi, H. S. Yoon et al., Strong acceptor density and temperature dependences of thermal activation energy of acceptors in a Mg-doped GaN epilayer grown by metalorganic chemical-vapor deposition, Applied Physics Letters, vol.80, issue.6, p.1001, 2002.
DOI : 10.1063/1.1448666

U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, Hole conductivity and compensation in epitaxial GaN:Mg layers, Physical Review B, vol.62, issue.16, p.10867, 2000.
DOI : 10.1103/PhysRevB.62.10867

L. T. Romano, M. Kneissi, J. Northrup, C. G. Van-de-walle, and E. D. Treat, Influence of microstructure on the carrier concentration of Mg-doped GaN films, Applied Physics Letters, vol.79, issue.17, p.2734, 2001.
DOI : 10.1063/1.1413222

L. Hirsch and A. S. Barrière, Electrical characterization of InGaN/GaN light emitting diodes grown by molecular beam epitaxy, Journal of Applied Physics, vol.94, issue.8, p.5014, 2003.
DOI : 10.1063/1.1605252

URL : https://hal.archives-ouvertes.fr/hal-00183539

I. P. Schmorkova, E. Haus, B. Heying, P. Kozodoy, P. Fini et al., Mg doping of GaN layers grown by plasma-assisted molecular-beam epitaxy, Applied Physics Letters, vol.76, issue.6, p.718, 2000.
DOI : 10.1063/1.125872

F. B. Naranjo, E. Calleja, Z. Bougrioua, A. Trampert, X. Kong et al., Efficiency optimization of p-type doping in GaN:Mg layers grown by molecular-beam epitaxy, Journal of Crystal Growth, vol.270, issue.3-4, p.542, 2004.
DOI : 10.1016/j.jcrysgro.2004.07.019

O. Brandt, J. Ringling, K. H. Ploog, H. Wünsche, and E. F. Henneberger, Temperature dependence of the radiative lifetime in GaN, Physical Review B, vol.58, issue.24, p.15977, 1998.
DOI : 10.1103/PhysRevB.58.R15977

J. M. Shah, Y. L. Li, . Th, E. F. Gessmann, and . Schubert, junction diodes, Journal of Applied Physics, vol.94, issue.4, p.2627, 2003.
DOI : 10.1063/1.1593218

S. Figge, R. Kröger, T. Böttcher, P. Ryder, and E. D. Hommel, Pyramidal Defect Formation in View of Magnesium Segregation, physica status solidi (a), vol.75, issue.2, p.456, 2002.
DOI : 10.1002/1521-396X(200208)192:2<456::AID-PSSA456>3.0.CO;2-6

W. Kim, A. E. Botchkarev, A. Salvador, G. Popovici, H. Tang et al., On the incorporation of Mg and the role of oxygen, silicon, and hydrogen in GaN prepared by reactive molecular beam epitaxy, Journal of Applied Physics, vol.82, issue.1, p.219, 1997.
DOI : 10.1063/1.365801

A. J. Ptak and T. H. Myers, Magnesium incorporation in GaN grown by molecular-beam epitaxy, Applied Physics Letters, vol.78, issue.3, p.285, 2001.
DOI : 10.1063/1.1339255

S. Guha, N. A. Bojarczuk, and E. F. Cardone, Mg in GaN: Incorporation of a volatile species at high temperatures during molecular beam epitaxy, Applied Physics Letters, vol.71, issue.12, p.1685, 1997.
DOI : 10.1063/1.119793

M. Mesrine, N. Granjean, and E. J. Massies, Efficiency of NH3 as nitrogen source for GaN molecular beam epitaxy, Applied Physics Letters, vol.72, issue.3, p.350, 1997.
DOI : 10.1063/1.120733

P. Kiesel, F. Renner, M. Kneissel, N. M. Johnson, and G. H. Döhler, Electroabsorption Spectroscopy ? Direct Determination of the Strong Piezoelectric Field in InGaN/GaN Heterostructure Diodes, physica status solidi (a), vol.72, issue.1, p.131, 2001.
DOI : 10.1002/1521-396X(200111)188:1<131::AID-PSSA131>3.0.CO;2-C

. Longueur-d-'onde-différente, Suivant la tension appliquée, l'émission blanche tend plus ou moins vers le jaune-vert ou vers le bleu, voire vers le vert à très fort courant. Il faut donc adapter la tension pour obtenir le blanc désiré

D. Cela-permet-d-'espérer-un-bon-irc-avec-ce-type-de, mais il sera limité par la faible composante dans le rouge, émission de puits quantiques (Ga,In)N/GaN à ces longueurs d'onde là étant très faible

L. Hirsch and A. S. Barrière, Electrical characterization of InGaN/GaN light emitting diodes grown by molecular beam epitaxy, Journal of Applied Physics, vol.94, issue.8, p.5014, 2003.
DOI : 10.1063/1.1605252

URL : https://hal.archives-ouvertes.fr/hal-00183539

S. Dalmasso, thèse de doctorat de l'université de Nice-Sophia-Antipolis, 2001.

E. Haus, I. P. Smorchkova, B. Heying, P. Fini, C. Poblenz et al., The role of growth conditions on the p-doping of GaN by plasma-assisted molecular beam epitaxy, Journal of Crystal Growth, vol.246, issue.1-2, p.55, 2002.
DOI : 10.1016/S0022-0248(02)01704-9

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki et al., InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode, Japanese Journal of Applied Physics, vol.41, issue.Part 2, No. 12B, p.1431, 2002.
DOI : 10.1143/JJAP.41.L1431

P. Waltereit, H. Sato, C. Poblenz, D. S. Green, J. S. Brown et al., Blue GaN-based light-emitting diodes grown by molecular-beam epitaxy with external quantum efficiency greater than 1.5%, Applied Physics Letters, vol.84, issue.15, p.2748, 2004.
DOI : 10.1063/1.1705721

K. Johnson, V. Bousquet, S. E. Hooper, M. Kauer, C. Zellweger et al., High-power InGaN light emitting diodes grown by molecular beam epitaxy, Electronics Letters, vol.40, issue.20, p.1299, 2004.
DOI : 10.1049/el:20046144

N. Grandjean, B. Damilano, and E. J. Massies, Group-III nitride quantum heterostructures grown by molecular beam epitaxy, Journal of Physics: Condensed Matter, vol.13, issue.32, p.6945, 2001.
DOI : 10.1088/0953-8984/13/32/305

Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, vol.34, issue.1, p.149, 1967.
DOI : 10.1016/0031-8914(67)90062-6

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, ???Blue??? temperature-induced shift and band-tail emission in InGaN-based light sources, Applied Physics Letters, vol.71, issue.5, p.569, 1997.
DOI : 10.1063/1.119797

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, I. Akasaki et al., Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect, Applied Physics Letters, vol.73, issue.12, p.1691, 1998.
DOI : 10.1063/1.122247

S. Dalmasso, thèse de doctorat de l'université de Nice-Sophia-Antipolis, 2001.

S. N. Lee, T. Sakong, W. Lee, H. Paek, J. Son et al., Characterization of optical and electrical quality of Mg-doped InxGa1???xN grown by MOCVD, Journal of Crystal Growth, vol.261, issue.2-3, p.249, 2004.
DOI : 10.1016/j.jcrysgro.2003.11.016

K. Kumakura, T. Makimoto, and E. N. Kobayashi, -type InGaN grown by metalorganic vapor phase epitaxy, Journal of Applied Physics, vol.93, issue.6, p.3370, 2003.
DOI : 10.1063/1.1545155

URL : https://hal.archives-ouvertes.fr/halshs-01098769

M. Yamada, Y. Narukawa, and T. Mukaï, Phosphor Free High-Luminous-Efficiency White Light-Emitting Diodes Composed of InGaN Multi-Quantum Well, Japanese Journal of Applied Physics, vol.41, issue.Part 2, No. 3A, p.246, 2002.
DOI : 10.1143/JJAP.41.L246

T. Mukai, S. Nagahama, T. Yanamato, and E. M. Sano, Expanding Emission Wavelength on Nitride Light-Emitting Devices, physica status solidi (a), vol.40, issue.190, p.261, 2002.
DOI : 10.1002/1521-396X(200208)192:2<261::AID-PSSA261>3.0.CO;2-U

S. Dalmasso, B. Damilano, C. Pernot, A. Dussaigne, D. Byrne et al., Injection Dependence of the Electroluminescence Spectra of Phosphor Free GaN-Based White Light Emitting Diodes, physica status solidi (a), vol.73, issue.190, p.139, 2002.
DOI : 10.1002/1521-396X(200207)192:1<139::AID-PSSA139>3.0.CO;2-G

S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures, Japanese Journal of Applied Physics, vol.34, issue.Part 2, No. 7A, p.797, 1995.
DOI : 10.1143/JJAP.34.L797

. L. Smith and . Mailhiot, Piezoelectric effects in strained???layer superlattices, Journal of Applied Physics, vol.63, issue.8, p.2717, 1988.
DOI : 10.1063/1.340965

G. D. O-'clock and M. T. Duffy, Acoustic surface wave properties of epitaxially grown aluminum nitride and gallium nitride on sapphire, Applied Physics Letters, vol.23, issue.2, p.55, 1973.
DOI : 10.1063/1.1654804

P. F. Yuh and K. L. Wang, Formalism of the Kronig-Penney model for superlattices of variable basis, Physical Review B, vol.38, issue.18, p.13307, 1998.
DOI : 10.1103/PhysRevB.38.13307

R. Leavitt and J. W. Little, Simple method for calculating exciton binding energies in quantum-confined semiconductor structures, Physical Review B, vol.42, issue.18, p.11774, 1990.
DOI : 10.1103/PhysRevB.42.11774

S. Strite and E. H. Morkoc, GaN, AlN, and InN: A review, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.10, issue.4, p.1237, 1992.
DOI : 10.1116/1.585897

Y. C. Yeo, T. C. Chong, and M. F. Li, Electronic band structures and effective-mass parameters of wurtzite GaN and InN, Journal of Applied Physics, vol.83, issue.3, p.1429, 1998.
DOI : 10.1063/1.366847

S. H. Wei and E. A. Zunger, Valence band splittings and band offsets of AlN, GaN, and InN, Applied Physics Letters, vol.69, issue.18, p.2719, 1996.
DOI : 10.1063/1.117689

P. B. Perry and R. F. Rutz, The optical absorption edge of single???crystal AlN prepared by a close???spaced vapor process, Applied Physics Letters, vol.33, issue.4, p.319, 1978.
DOI : 10.1063/1.90354

B. K. Meyer, D. Volm, A. Graber, H. C. Alt, T. Detchprohm et al., Shallow donors in GaN???The binding energy and the electron effective mass, Solid State Communications, vol.95, issue.9, p.597, 1995.
DOI : 10.1016/0038-1098(95)00337-1

M. Suzuki and E. T. Uenoyama, First-principles calculations of effective-mass parameters of AlN and GaN, Physical Review B, vol.52, issue.11, p.8132, 1995.
DOI : 10.1103/PhysRevB.52.8132

G. Martin, A. Botchkarev, A. Rockett, and E. H. Morkoc, Valence???band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x???ray photoemission spectroscopy, Applied Physics Letters, vol.68, issue.18, p.2541, 1996.
DOI : 10.1063/1.116177

A. S. Barker, Infrared Lattice Vibrations and Free-Electron Dispersion in GaN, Physical Review B, vol.7, issue.2, p.743, 1973.
DOI : 10.1103/PhysRevB.7.743

K. A. Rickert, A. B. Ellis, F. J. Himpsel, H. Liu, W. Schaff et al., X-ray photoemission spectroscopic investigation of surface treatments, metal deposition, and electron accumulation on InN, Applied Physics Letters, vol.82, issue.19, p.3254, 2003.
DOI : 10.1063/1.1573351

V. Y. Davidov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov et al., Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap, physica status solidi (b), vol.51, issue.3, pp.1-3, 2002.
DOI : 10.1002/1521-3951(200202)229:3<R1::AID-PSSB99991>3.0.CO;2-O

T. L. Tansley and C. P. Foley, Optical band gap of indium nitride, Journal of Applied Physics, vol.59, issue.9, p.3241, 1986.
DOI : 10.1063/1.336906