. Briois, Time-Resolved Study of the Oxidation of Ethanol by Cerium(IV) Using Combined Quick-XANES, UV???Vis, and Raman Spectroscopies, IV.5 Références bibliographiques, 2005.
DOI : 10.1021/jp046691t

W. Drews, G. Drews, and J. Weckesser, Function, structure and composition of cell walls and external layer, The Biology of Cyanobacteria, vol.S, pp.333-356, 1982.

W. Droge, Free Radicals in the Physiological Control of Cell Function, Physiological Reviews, vol.82, issue.1, pp.47-95, 2002.
DOI : 10.1152/physrev.00018.2001

O. Duval, J. F. Duval, and H. Ohshima, Electrophoresis of Diffuse Soft Particles, Langmuir, vol.22, issue.8, pp.3533-3546, 2006.
DOI : 10.1021/la0528293

. Harrison, Multimetal resistance and tolerance in microbial biofilms, Nature Reviews Microbiology, vol.5, issue.12, pp.928-938, 2007.
DOI : 10.1038/nrmicro1774

. Jürgens, Primary structure of the -peptidoglycan from the unicellular cyanobacterium synechocystis sp. strain pcc 6714, Journal of Bacteriology, pp.154-1471, 1983.

J. W. Foster, Escherichia coli acid resistance: tales of an amateur acidophile, Nature Reviews Microbiology, vol.48, issue.11, pp.898-907, 2004.
DOI : 10.1146/annurev.mi.39.100185.001251

. Hesse, Méthodes spectroscopiques pour la chimie organique, 1997.

F. Kaudewitz, Lethality and inactivation after treatment of Escherichia coli-cells with nitrous acid. biochemical and biophysical research communications, p.416, 1963.

. Kotnik, Development of Novel Inhibitors Targeting Intracellular Steps of Peptidoglycan Biosynthesis, Current Pharmaceutical Design, vol.13, issue.22, pp.132283-2309, 2007.
DOI : 10.2174/138161207781368828

. Moreau, Extracellular Proteins Limit the Dispersal of Biogenic Nanoparticles, Science, vol.316, issue.5831, pp.3161600-1603, 2007.
DOI : 10.1126/science.1141064

J. Panoff, Les exopolysaccharides de deux cyanobactéries. Synechocystis PCC6803 et 6714 : Etudes physiologiques, biochimique et génétique, 1989.

. Panoff, Sulphated exopolysaccharides produced by two unicellular strains of cyanobacteria, Synechocystis PCC 6803 and 6714, Archives of Microbiology, vol.134, issue.6, pp.558-563, 1988.
DOI : 10.1007/BF00408249

. Pereira, H NMR and Chemometrics To Characterize Mature Grape Berries in Four Wine-Growing Areas in Bordeaux, France, Journal of Agricultural and Food Chemistry, vol.53, issue.16, pp.536382-6389, 2005.
DOI : 10.1021/jf058058q

. Reddy, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems, Applied Physics Letters, vol.90, issue.21, p.90213902, 2007.
DOI : 10.1063/1.2742324

. Worle-knirsch, Oops They Did It Again! Carbon Nanotubes Hoax Scientists in Viability Assays, Nano Letters, vol.6, issue.6, pp.1261-1268, 2006.
DOI : 10.1021/nl060177c

. La-complexité-de, multidisciplinaire) de celle des tests de toxicité utilisés pour les composés classiques En effet, nous montrons que les paramètres physicochimiques (stabilité, agrégation, dissolution et état de surface) des nanoparticules dans le milieu de contact, influencent fortement la toxicité observée sur les cellules. De plus, les interactions physicochimiques (floculation, adsorption, mécanismes redox) sont liées au modèle biologique, en particulier à la présence d'exopolysaccharides (chez Synechocystis) comme barrière naturelle entre la paroi cellulaire et les nanoparticules. La composition du milieu de dispersion des nanoparticules (notamment son pH) a aussi une influence majeure sur la toxicité (survie et intégrité membranaire)