Logics for n-ary Queries in Trees

Emmanuel Filiot

INRIA Lille Nord-Europe, Mostrare Project
University of Lille 1, LIFL

Ph.D. Defense, 2008, October

supervisors: Sophie Tison and Jean-Marc Talbot
eXtensible Markup Language

XML

- markup language to represent tree-shaped data
- XML data big bang!
- standard for data exchange and data storage
eXtensible Markup Language

XML
- markup language to represent tree-shaped data
- XML data big bang!
- standard for data exchange and data storage

Tree representation
eXtensible Markup Language

XML
- markup language to represent tree-shaped data
- XML data big bang!
- standard for data exchange and data storage

Tree representation
eXtensible Markup Language

XML
- markup language to represent tree-shaped data
- XML data big bang!
- standard for data exchange and data storage

Tree representation

Trees are ordered and unranked.
XML Queries

Queries

- access XML data, transform XML documents
- node selection in XML trees
- n-ary queries select set of n-tuples of nodes
 - $n = 1$: unary queries
 - $n = 2$: binary queries
XML Queries

Queries

- access XML data, transform XML documents
- node selection in XML trees
- n-ary queries select set of n-tuples of nodes
 - $n = 1$: unary queries
 - $n = 2$: binary queries

Example (Select all directors)
XML Queries

Queries

- access XML data, transform XML documents
- node selection in XML trees
- n-ary queries select set of n-tuples of nodes
 - $n = 1$: unary queries
 - $n = 2$: binary queries

Example (Select all triples $(\text{title}, \text{year}, \text{director name})$)
Logics and Automata to Query XML Trees

- FO, MSO (yardstick logics but high query evaluation complexity)
- FO-relatives
 - temporal logics (LibkinN03, BarceloL05, ABDGGMR05)
 - navigational language XPath (W3C, GottlobKP02, Marx04, tenCate06, ...)
- MSO-relatives
 - μ-calculus (BarceloL05)
 - Monadic Datalog (GottlobK04)
 - query automata (NevenS99)
 - node-selecting automata (Neven00, FrickGK03, NiehrenPTT06)
- Combination Logics (Schwentick00, ArenasBL07)
- pattern-matching approach: XDuce/CDuce (HosoyaP03, BenzakenCF03), Spatial Logic TQL (CardelliG02, BonevaTT05)
Logics and Automata to Query XML Trees

- **FO, MSO** (yardstick logics but high query evaluation complexity)
- **FO-relatives**
 - temporal logics (LibkinN03, BarceloL05, ABDGGMR05)
 - navigational language XPath (W3C, GottlobKP02, Marx04, tenCate06, ...)
- **MSO-relatives**
 - \(\mu \)-calculus (BarceloL05)
 - Monadic Datalog (GottlobK04)
 - query automata (NevenS99)
 - node-selecting automata (Neven00, FrickGK03, NiehrenPTT06)
- **Combination Logics** (Schwentick00, ArenasBL07)
- **pattern-matching approach**: XDuce/CDuce (HosoyaP03, BenzakenCF03), Spatial Logic TQL (CardelliG02, BonevaTT05)

Only a few logics are well-suited to express \(n \)-ary queries
Objectives

Two popular approaches:

Navigational Approach

Pattern-matching approach
Objectives

Two popular approaches:

Navigational Approach

How to define a navigation-based \(n \)-ary query language?

Pattern-matching approach
Objectives

Two popular approaches:

Navigational Approach

How to define a navigation-based \(n \)-ary query language?

- expressiveness vs query evaluation complexity
- composition language: from binary to \(n \)-ary queries
- application to XPath-based \(n \)-ary query languages

Pattern-matching approach
Objectives

Two popular approaches:

Navigational Approach

How to define a navigation-based n-ary query language?

- expressiveness vs query evaluation complexity
- composition language: from binary to n-ary queries
- application to XPath-based n-ary query languages

Pattern-matching approach

- satisfiability problem
- is there an expressive **decidable** TQL fragment that can define n-ary queries?
Objectives

Two popular approaches:

Navigational Approach

How to define a navigation-based \(n \)-ary query language?

- expressiveness vs query evaluation complexity
- composition language: from binary to \(n \)-ary queries
- application to XPath-based \(n \)-ary query languages

Pattern-matching approach

- satisfiability problem
- is there an expressive **decidable** TQL fragment that can define \(n \)-ary queries?

- adaptation to ordered trees
- automata-based satisfiability algorithm
Outline

1. Composing Binary Queries
 - definitions
 - expressiveness, query evaluation
 - application to n-ary XPath logics

2. The Spatial Logic TQL
 - Examples, Definition
 - Expressiveness, Satisfiability
 - Tree Automata with Global Constraints

3. Summary and Perspectives
PART I: Composing Binary Queries
Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet $\Sigma = f, g, a, b \ldots$.

Queries
Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet \(\Sigma = f, g, a, b, \ldots \).

Unary Relations: nodes\((t)\)

Queries

\[E.Filiot \] Logics for \(n \)-ary Queries in Trees

2008, October
Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet \(\Sigma = \{f, g, a, b, \ldots\} \).

Unary Relations: \(\text{nodes}(t) \) , \(\text{root}(t) \)

Queries
Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet $\Sigma = f, g, a, b \ldots$.

Unary Relations: $\text{nodes}(t)$, $\text{root}(t)$, $(\text{lab}_a(t))_{a \in \Sigma}$

Queries
Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet
\[\Sigma = f, g, a, b, \ldots \]

Unary Relations: \(\text{nodes}(t), \text{root}(t), (\text{lab}_a(t))_{a \in \Sigma} \)

Binary Relations: \(\text{ns} \)

Queries
Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet \(\Sigma = f, g, a, b \ldots \).

Unary Relations: \(\text{nodes}(t) \), \(\text{root}(t) \), \((\text{lab}_a(t))_{a \in \Sigma} \)

Binary Relations: \(\text{ns} \), \(\text{ns}^* \)

Queries

E.Filiot

Logics for \(n \)-ary Queries in Trees

2008, October
Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet \(\Sigma = f, g, a, b \ldots \)

Unary Relations: \(\text{nodes}(t), \text{root}(t), (\text{lab}_a(t))_{a \in \Sigma} \)

Binary Relations: \(\text{ns}, \text{ns}^*, \text{ch} \)

Queries
Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet $\Sigma = f, g, a, b, \ldots$.

Unary Relations: $\text{nodes}(t), \text{root}(t), (\text{lab}_a(t))_{a \in \Sigma}$

Binary Relations: $\text{ns}, \text{ns}^*, \text{ch}, \text{ch}^*$

Queries
Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet $\Sigma = f, g, a, b, \ldots$.

Unary Relations: $\text{nodes}(t)$, $\text{root}(t)$, $(\text{lab}_a(t))_{a \in \Sigma}$

Binary Relations: ns, ns^*, ch, ch^*

Queries

Let $n \in \mathbb{N}$. An n-ary query q maps trees t to n-tuples of nodes

$$q(t) \subseteq \text{nodes}(t)^n$$
The navigational language XPath

- to navigate and select sets of nodes in XML trees
- by defining path expressions
- complex counting conditions
- \textit{CoreXPath}: navigational core (GottlobKP02)
The navigational language XPath

Example: select all director names

\texttt{ch :: DVD/ch :: director/ch :: name}
The navigational language XPath

Example: select all director names

\(ch :: DVD/ch :: director/ch :: name \)
The navigational language XPath

Example: select all director names

\texttt{ch :: DVD/ch :: director/ch :: name}
The navigational language XPath

Example: select all director names

ch :: DVD/ch :: director/ch :: name
The navigational language XPath

Example: select all awarded director names

\[
\text{ch :: DVD[ch :: awards]/ch :: director/ch :: name}
\]
Expressions of CoreXPath and their semantics

Axis
- self, ch, ch^+, ns, ns^+
- ch^{-1}, (ch^{-1})^+, ns^{-1}, (ns^{-1})^+

Steps
- Axis::a
- Axis::*

Composition
- P_1/P_2

Union
- $P_1 \cup P_2$

Tests
- $P[T]

Path existence
- P

Negation
- not T

Conjunction
- T_1 and T_2
Expressions of CoreXPath and their semantics

Axis
self, ch, ch+, ns, ns+
ch⁻¹, (ch⁻¹)+, ns⁻¹, (ns⁻¹)+

\[[.]\]^t \subseteq \text{nodes}(t) \times \text{nodes}(t)

Steps
\[[\text{Axis::a}]\]^t = \{(v_1, v_2) \mid v_1 \text{ Axis } v_2 \text{ and } v_2 \in \text{lab}_a(t)\}
\[[\text{Axis::*}]\]^t = \{(v_1, v_2) \mid v_1 \text{ Axis } v_2\}

Composition
\[[P_1/P_2]\]^t = \[[P_1]\]^t \circ \[[P_2]\]^t

Union
\[[P_1 \cup P_2]\]^t = \[[P_1]\]^t \cup \[[P_2]\]^t

Tests
\[[P[\mathcal{T}]]\]^t = \{(v_1, v_2) \in \[[P]\]^t \mid v_2 \in \[[\mathcal{T}]\]_{\text{test}}\}

\[[.]\]_{\text{test}}^t \subseteq \text{nodes}(t)

Path existence
\[[P]\]_{\text{test}}^t = \{v \mid (v, v') \in \[[P]\]^t\}

Negation
\[[\text{not } \mathcal{T}]\]_{\text{test}}^t = \text{nodes}(t) - \[[\mathcal{T}]\]_{\text{test}}^t

Conjunction
\[[\mathcal{T}_1 \text{ and } \mathcal{T}_2]\]_{\text{test}}^t = \[[\mathcal{T}_1]\]_{\text{test}}^t \cap \[[\mathcal{T}_2]\]_{\text{test}}^t
How to turn XPath into an n-ary query language?
How to turn XPath into an n-ary query language?

- use path expressions p to navigate
- use node variables x_1, x_2, \ldots, x_n to select n-tuples
How to turn XPath into an n-ary query language?

- use path expressions p to navigate
- use node variables x_1, x_2, \ldots, x_n to select n-tuples

Example (All triples (title, year, director name))

$\phi(x, y, z) =$

![Diagram showing the structure of DVDs and DVDs with nodes for title, year, director, writer, awards, and name, birthday, award, birthday, name, birthday]
How to turn XPath into an n-ary query language?

- use path expressions p to navigate
- use node variables x_1, x_2, \ldots, x_n to select n-tuples

Example (All triples (title, year, director name))

$\phi(x, y, z) = ch^* :: title$
How to turn XPath into an \(n \)-ary query language?

- use path expressions \(p \) to navigate
- use node variables \(x_1, x_2, \ldots, x_n \) to select \(n \)-tuples

Example (All triples \((\text{title}, \text{year}, \text{director name})\))

\[
\phi(x, y, z) = \text{ch}^* :: \text{title}/x
\]
How to turn XPath into an \(n \)-ary query language?

- use path expressions \(p \) to navigate
- use node variables \(x_1, x_2, \ldots, x_n \) to select \(n \)-tuples

Example (All triples (title, year, director name))

\[\phi(x, y, z) = \text{ch}^* :: \text{title}/x/\text{ns} :: \text{year} \]
How to turn XPath into an \(n \)-ary query language?

- use path expressions \(p \) to navigate
- use node variables \(x_1, x_2, \ldots, x_n \) to select \(n \)-tuples

Example (All triples \((\text{title}, \text{year}, \text{director name})\))

\[
\phi(x, y, z) = \text{ch}^* :: \text{title}/x/\text{ns} :: \text{year}/y
\]
How to turn XPath into an \(n \)-ary query language?

- use path expressions \(p \) to navigate
- use node variables \(x_1, x_2, \ldots, x_n \) to select \(n \)-tuples

Example (All triples (\texttt{title},\texttt{year},\texttt{director name}))

\[
\phi(x, y, z) = \text{ch}^* :: \text{title}/x/\text{ns} :: \text{year}/\text{ns} :: \text{director}/\text{ch} :: \text{name}
\]
How to turn XPath into an n-ary query language?

- use path expressions p to navigate
- use node variables x_1, x_2, \ldots, x_n to select n-tuples

Example (All triples (title, year, director name))

$$\phi(x, y, z) = ch^* :: title/x/\text{ns} :: year/\text{ns} :: director/ch :: name/z$$
How to turn XPath into an n-ary query language?

- use path expressions to navigate
- use node variables x_1, x_2, \ldots, x_n to select n-tuples
How to turn XPath into an \(n \)-ary query language?

- use path expressions to navigate
- use node variables \(x_1, x_2, \ldots, x_n \) to select \(n \)-tuples

Example (All triples (title, year, director name))

\[
\phi(x, y, z) =
\]
How to turn XPath into an n-ary query language?

- use path expressions to navigate
- use node variables x_1, x_2, \ldots, x_n to select n-tuples

Example (All triples $\langle \text{title}, \text{year}, \text{director name} \rangle$)

$$ \phi(x, y, z) = \text{ch} :: \text{DVD} $$
How to turn XPath into an n-ary query language?

- use path expressions to navigate
- use node variables x_1, x_2, \ldots, x_n to select n-tuples

Example (All triples $(title, year, director, name)$)

$$\phi(x, y, z) = ch :: DVD[ch :: title/x]$$
How to turn XPath into an n-ary query language?

- use path expressions to navigate
- use node variables x_1, x_2, \ldots, x_n to select n-tuples

Example (All triples (title, year, director name))

$$\phi(x, y, z) = ch :: DVD[ch :: title/x][ch :: year/y]$$
How to turn XPath into an \(n\)-ary query language?

- use path expressions to navigate
- use node variables \(x_1, x_2, \ldots, x_n\) to select \(n\)-tuples

Example (All triples \((\text{title}, \text{year}, \text{director name})\))

\[
\phi(x, y, z) = \text{ch} :: \text{DVD}[\text{ch} :: \text{title}/x][\text{ch} :: \text{year}/y][\text{ch} :: \text{director}/\text{ch} :: \text{name}/z]
\]
Idea of the composition language

- use path expressions to navigate
- use variables x_1, x_2, \ldots, x_n to select output n-tuples
- composition operator \circ to compose queries
Idea of the composition language

- use binary queries from some binary query language \(L \) to navigate
- use variables \(x_1, x_2, \ldots, x_n \) to select output \(n \)-tuples
- composition operator \(\circ \) to compose queries
Idea of the composition language

- use binary queries from some binary query language L to navigate
- use variables x_1, x_2, \ldots, x_n to select output n-tuples
- composition operator \circ to compose queries

Example (Composition of CoreXPath expressions)

\[
\begin{align*}
\text{ch* :: title} & / x / \text{ns :: year} / y / \text{ns :: director/ch :: name} / z \\
q_1 & \circ x \circ q_2 & \circ y \circ q_3 & \circ z
\end{align*}
\]

where $q_1, q_2, q_3 \in \text{CoreXPath}$.
The composition language \textbf{Comp}(L)

Syntax of composition formulas \textbf{Comp}(L)

We start from \(L \) a binary query language, and \(\text{Var} \) a set of variables.

\[
\phi \;:=\; q \quad q \in L \\
\quad | \quad x \quad \text{variable} \\
\quad | \quad \phi \circ \phi \quad \text{composition} \\
\quad | \quad [\phi] \quad \text{test} \\
\quad | \quad \phi \lor \phi \quad \text{disjunction}
\]

- thanks to variables, you can define \(n \)-ary queries
- \(\text{Ans}(\phi, t) \): set of answers.
Query Evaluation

Query evaluation problem

- **Input**: a tree t, a formula $\phi(x_1, \ldots, x_n) \in \text{Comp}(L)$
- **Output**: $\text{Ans}(\phi, t)$
Query Evaluation

Query evaluation problem

- **Input**: a tree t, a formula $\phi(x_1, \ldots, x_n) \in \text{Comp}(L)$
- **Output**: $\text{Ans}(\phi, t)$

Polynomial-time query evaluation

- The number of n-tuples of nodes is exponential in $|t|$ and:
 $$|\text{Ans}(\phi, t)| << |t|^n$$
- one needs **polynomial-time** query evaluation:
 $$\text{poly}(|t|, |\phi|, |\text{Ans}(\phi, t)|)$$
Query Evaluation Algorithm for $\text{Comp}^{\text{nvs}}(L)$

Non-variable sharing fragment

- variable sharing: $q \circ x \circ q' \circ y \circ q'' \circ x$
- disallow variable sharing: $\phi_1 \circ \phi_2 \rightarrow \text{Var}(\phi_1) \cap \text{Var}(\phi_2) = \emptyset$
- $\text{Comp}^{\text{nvs}}(L) = \text{Comp}(L) + \text{non-variable sharing}$
- related to acyclicity of conjunctive queries (Yannakakis81)
Query Evaluation Algorithm for $\text{Comp}^{\text{nvs}}(L)$

Non-variable sharing fragment
- variable sharing: $q \circ x \circ q' \circ y \circ q'' \circ x$
- disallow variable sharing: $\phi_1 \circ \phi_2 \rightarrow \text{Var}(\phi_1) \cap \text{Var}(\phi_2) = \emptyset$
- $\text{Comp}^{\text{nvs}}(L) = \text{Comp}(L) + \text{non-variable sharing}$
- related to acyclicity of conjunctive queries (Yannakakis81)

Theorem

Query evaluation for $\text{Comp}^{\text{nvs}}(L)$ is in PTIME if query evaluation for L is in PTIME.
Query Evaluation Algorithm for $\text{Comp}^{\text{nvs}}(L)$

Non-variable sharing fragment

- variable sharing: $q \circ x \circ q' \circ y \circ q'' \circ x$
- disallow variable sharing: $\phi_1 \circ \phi_2 \rightarrow \text{Var}(\phi_1) \cap \text{Var}(\phi_2) = \emptyset$
- $\text{Comp}^{\text{nvs}}(L) = \text{Comp}(L) + \text{non-variable sharing}$
- related to acyclicity of conjunctive queries (Yannakakis81)

Theorem

Query evaluation for $\text{Comp}^{\text{nvs}}(L)$ is in PTIME if query evaluation for L is in PTIME.

Idea (Yannakakis81): process the formula recursively:

1. at each step, check if there is a solution \rightarrow remain linear in $|\text{Ans}(\phi, t)|$
2. use memoization to avoid redundant calculus
Expressiveness

Two yardstick logics, FO and MSO

- MSO = FO + set quantification
- formulas $\psi(x_1, \ldots, x_n) \in FO (MSO)$ define n-ary queries
- $FO_n = n$-ary FO queries
- $MSO_n = n$-ary MSO queries
Exressiveness

Two yardstick logics, FO and MSO

- **MSO** = **FO** + set quantification
- formulas \(\psi(x_1, \ldots, x_n) \in \text{FO (MSO)} \) define \(n \)-ary queries
- **FO**\(_n\) = \(n \)-ary FO queries
- **MSO**\(_n\) = \(n \)-ary MSO queries

Theorem

\[
\begin{align*}
\text{FO}_n & = \text{Comp}^{\text{nvs}}(\text{FO}_2) \\
\text{MSO}_n & = \text{Comp}^{\text{nvs}}(\text{MSO}_2)
\end{align*}
\]

Remark

It uses folklore result from finite model theory based on the Shelah’s decomposition method. (Schwentick’00 or Marx’05 for instance).
Conditional XPath (Marx’04)

- extends CoreXPath with a “while” operator \((\text{axis} :: l[\text{test}])^+\)
- \(\text{CXPath} = FO_2\)
- query evaluation of a path expression \(p\) is in \(O(|p|.|t|)\)
n-ary XPath Extensions (I)

Conditional XPath (Marx’04)

- extends CoreXPath with a “while” operator \((\text{axis} :: l[\text{test}])^+)\)
- \(\text{CXPath} = FO_2\)
- query evaluation of a path expression \(p\) is in \(O(|p|.|t|)\)

n-ary Conditional XPath

- path expressions \(p\) + non-variable sharing
 \[
 p ::= \text{axis} :: l \mid p/p \mid p[\text{test}] \mid p \cup p \mid (\text{axis} :: l[\text{test}])^+
 \]
n-ary XPath Extensions (I)

Conditional XPath (Marx’04)

- extends CoreXPath with a “while” operator \((axis :: l[test])^+\)
- \(\text{CXPath} = FO_2\)
- query evaluation of a path expression \(p\) is in \(O(|p|.|t|)\)

n-ary Conditional XPath

- path expressions \(p\) + non-variable sharing
 \[p ::= \text{axis} :: l | p/p | p[test] | p \cup p | (axis :: l[test])^+ | x \in \text{Var} \]
n-ary XPath Extensions (I)

Conditional XPath (Marx’04)

- extends CoreXPath with a “while” operator \((axis :: l[test])^+\)
- \(CXPath = FO_2\)
- query evaluation of a path expression \(p\) is in \(O(|p|.|t|)\)

n-ary Conditional XPath

- path expressions \(p +\) non-variable sharing
 \[p ::= axis :: l | p/p | p[test] | p \cup p | (axis :: l[test])^+ | x \in \text{Var}\]
- linear-time back and forth translations into \(\text{Comp}^{\text{nvs}}(CXPath)\)
- \(\rightarrow\) captures \(FO_n\)
- \(\rightarrow\) query evaluation in time \(O(|p|.|t|^2(1 + |\text{Ans}(p, t)|))\)

Remark: query evaluation of FO 0-ary queries is PSPACE-complete
n-ary XPath Extensions (II)

XPath 2.0

- extends XPath (1.0) with:
 - path intersection $p_1 \cap p_2$
 - path complement $\text{compl}(p)$
 - variables x
 - quantification $\text{for}\ x\ \text{in}\ p_1\ \text{return}\ p_2$

- captures FO_n modulo linear-time

- CoreXPath2.0 formalized by ten Cate and Marx (07)
n-ary XPath Extensions (II)

XPath 2.0
- extends XPath (1.0) with:
 - path intersection \(p_1 \cap p_2 \)
 - path complement \(\text{compl}(p) \)
 - variables \(x \)
 - quantification \(\text{for } x \text{ in } p_1 \text{ return } p_2 \)
- captures \(\text{FO}_n \) modulo linear-time
- \(\text{CoreXPath2.0} \) formalized by ten Cate and Marx (07)

Application of the composition language
- to define a syntactic fragment of \(\text{CoreXPath2.0} \)
- \(\text{FO}_n \)-expressive
- with query evaluation problem in \(O(|p| \cdot |t|^3 + |p| \cdot |t|^2 \cdot |\text{Ans}(p, t)|) \)
Outline

PART II: The Spatial Logic TQL
TQL Examples

Example (Check if there is an awarded movie)

\[DVDs[- \ | DVD[- | awards[-]] \ | -] \]
TQL Examples

Example (Check if there is an awarded movie)

\[DVDs[_ | DVD[_ | awards[_]] | _] \]
TQL Examples

Example (Select all awarded movies)

\[\phi(X) = DVDs[- | X] \wedge DVD[- | awards[-]] | -] \]

↓

tree variable
Example (Select all pairs of (director, writer))

\[
\phi(X, Y) = DVDs[- | DVD[-|year[-|X|Y|-]]]
\]
Example (Select all names of persons who are both director and writer)

\[\phi(X) = DVDs[-|DVD[-|director[name[X]|-]|writer[name[X]|-]|-|]-] \]
Example (Select all director names who is not a writer)

\[\phi(X) = DVDs[- | DVD[-|director[name[X]]-]|writer[name[\neg X]]-]|-]|-] \]
TQL Examples

Tree (dis)equality tests

- main difficulty of TQL satisfiability problem
- incomparable to FO fragments with data-value comparison (BojanczykDMSS06)
Hedge Algebra H_Λ

- Λ: countable set of labels
- hedge = ordered sequence of unranked trees
Hedge Algebra H_{Λ}

- Λ: countable set of labels
- hedge = ordered sequence of unranked trees
- constant 0: empty hedge
Hedge Algebra H_Λ

- Λ: countable set of labels
- hedge = ordered sequence of unranked trees
- constant 0: empty hedge
- unary symbols $a \in \Lambda$:

$$a(\ldots) = \begin{array}{c} a \\ \ldots \end{array}$$
Hedge Algebra H_Λ

- Λ: countable set of labels
- hedge = ordered sequence of unranked trees
- constant 0: empty hedge
- unary symbols $a \in \Lambda$:

\[a(...) = \]

\[a \]

\[\ldots \]

binary symbol $|$
empty hedge 0
location $\alpha[\phi]$ $\alpha \subseteq \Lambda$ (co)finite
concatenation $\phi|\phi'$
TQL: Syntax and Semantics

- **empty hedge**: 0
- **location**: $\alpha[\phi]$
- **concatenation**: $\phi|\phi'$
- **truth**
- **conjunction**: $\phi \land \phi'$
- **negation**: $\neg\phi$

$\alpha \subseteq \Lambda$ (co)finite
empty hedge
location
concatenation
truth
conjunction
negation
tree variable
recursion variable
least fixpoint

\[\begin{align*}
0 & \quad \alpha[\phi] \\
\phi|\phi' & \\
\neg \phi & \\
\mu \xi. \phi & \\
\end{align*} \]

\(\alpha \subseteq \Lambda \) (co)finite
TQL: Syntax and Semantics

- **semantics modulo** $\rho : \text{TreeVars} \rightarrow T_\Lambda$ and $\delta : \text{RecVars} \rightarrow 2^{H_\Lambda}$
- **set-based semantics**: $[[\cdot]]_{\rho,\delta} \subseteq H_\Lambda$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>empty hedge location</td>
</tr>
<tr>
<td>$\alpha[\phi]$</td>
<td>$\alpha \subseteq \Lambda$ (co)finite concatenation</td>
</tr>
<tr>
<td>$\phi</td>
<td>\phi'$</td>
</tr>
<tr>
<td>$\neg\phi$</td>
<td>conjunction</td>
</tr>
<tr>
<td>$\mu\xi.\phi$</td>
<td>negation</td>
</tr>
<tr>
<td>X</td>
<td>tree variable</td>
</tr>
<tr>
<td>ξ</td>
<td>recursion variable</td>
</tr>
<tr>
<td>$\mu\xi.\phi$</td>
<td>least fixpoint</td>
</tr>
</tbody>
</table>
TQL: Syntax and Semantics

- semantics modulo $\rho : \text{TreeVars} \rightarrow T_{\Lambda}$ and $\delta : \text{RecVars} \rightarrow 2^{H_{\Lambda}}$
- set-based semantics: $\llbracket \cdot \rrbracket_{\rho,\delta} \subseteq H_{\Lambda}$

- empty hedge $\llbracket 0 \rrbracket_{\rho,\delta} = \{ 0 \}$
- location $\llbracket \alpha[\phi] \rrbracket_{\rho,\delta} = \{ a(h) \mid h \in \llbracket \phi \rrbracket_{\rho,\delta}, a \in \alpha \}$
- concatenation $\llbracket \phi | \phi' \rrbracket_{\rho,\delta} = \{ h|h' \mid h \in \llbracket \phi \rrbracket_{\rho,\delta}, h' \in \llbracket \phi' \rrbracket_{\rho,\delta} \}$

- truth \bot
- conjunction $\phi \land \phi'$
- negation $\neg \phi$

- tree variable X
- recursion variable ξ
- least fixpoint $\mu \xi. \phi$
TQL: Syntax and Semantics

- semantics modulo $\rho : \text{TreeVars} \rightarrow T^\Lambda$ and $\delta : \text{RecVars} \rightarrow 2^{H^\Lambda}$
- set-based semantics: $\llbracket \cdot \rrbracket_{\rho,\delta} \subseteq H^\Lambda$

empty hedge $\llbracket [0] \rrbracket_{\rho,\delta} = \{0\}$

location $\llbracket \alpha[\phi] \rrbracket_{\rho,\delta} = \{a(h) \mid h \in \llbracket \phi \rrbracket_{\rho,\delta}, a \in \alpha\}$

concatenation $\llbracket \phi|\phi' \rrbracket_{\rho,\delta} = \{h|h' \mid h \in \llbracket \phi \rrbracket_{\rho,\delta}, h' \in \llbracket \phi' \rrbracket_{\rho,\delta}\}$

truth $\llbracket [_] \rrbracket = H^\Lambda$

conjunction $\llbracket \phi \land \phi' \rrbracket = \llbracket \phi \rrbracket \cap \llbracket \phi' \rrbracket$

negation $\llbracket \neg \phi \rrbracket = H^\Lambda \setminus \llbracket \phi \rrbracket$

- tree variable X
- recursion variable ξ
- least fixpoint $\mu \xi. \phi$
TQL: Syntax and Semantics

- semantics modulo $\rho : \text{TreeVars} \rightarrow T_\Lambda$ and $\delta : \text{RecVars} \rightarrow 2^{H_\Lambda}$
- set-based semantics: $\llbracket . \rrbracket_{\rho,\delta} \subseteq H_\Lambda$

empty hedge $\llbracket 0 \rrbracket_{\rho,\delta} = \{0\}$
location $\llbracket \alpha[\phi] \rrbracket_{\rho,\delta} = \{a(h) \mid h \in \llbracket \phi \rrbracket_{\rho,\delta}, a \in \alpha\}$
concatenation $\llbracket \phi | \phi' \rrbracket_{\rho,\delta} = \{h|h'| \mid h \in \llbracket \phi \rrbracket_{\rho,\delta}, h' \in \llbracket \phi' \rrbracket_{\rho,\delta}\}$

truth $\llbracket _ \rrbracket = H_\Lambda$
conjunction $\llbracket \phi \land \phi' \rrbracket = \llbracket \phi \rrbracket \cap \llbracket \phi' \rrbracket$

negation $\llbracket \neg \phi \rrbracket = H_\Lambda \setminus \llbracket \phi \rrbracket$

tree variable $\llbracket X \rrbracket_{\rho,\delta} = \{\rho(X)\}$
recursion variable $\llbracket \xi \rrbracket_{\rho,\delta} = \delta(\xi)$
least fixpoint $\llbracket \mu \xi . \phi \rrbracket_{\rho,\delta} = \cap\{S \subseteq H_\Lambda \mid \llbracket \phi \rrbracket_{\rho,\delta}[\xi \mapsto S] \subseteq S\}$
Examples with fixpoint

Example (Select all subtrees reachable from the root by following an 'a'-path)

\[\phi(X) = \mu \xi. (a[-|\xi|-] \lor X) \]
Examples with fixpoint

Example (Select all subtrees reachable from the root by following an 'a'-path)

\[\phi(X) = \mu \xi. (a \xi \lor X) \]

Example \((a^n b^n)\)

\[\mu \xi. (a[0] \xi | b[0] \lor 0) \]
Examples with fixpoint

Example (Select all subtrees reachable from the root by following an 'a'-path)

$$\phi(X) = \mu \xi. (a[-|\xi|] \lor X)$$

Example ($a^n b^n$)

$$\mu \xi. (a[0]|\xi|b[0] \lor 0)$$

- vertical recursion \rightarrow regular tree languages
- horizontal recursion \rightarrow context-free word languages
A Decidable Fragment: Bounded TQL

Satisfiability problem

Input: TQL formula ϕ
Output: $\exists h \exists \rho \exists \delta, \ h \in [\phi]_{\rho, \delta}$?
A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.
A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

- recursion variables are guarded by some $\alpha[.]$
A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

- recursion variables are **guarded** by some $\alpha[.]$

\[
\mu \xi . (a[-|\xi|-] \lor X) \rightarrow \text{guarded}
\]
\[
\mu \xi . (a[0]|\xi|b[0] \lor 0) \rightarrow \text{not guarded}
\]
A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

- recursion variables are **guarded** by some $\alpha[.]$
A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

- recursion variables are **guarded** by some $\alpha[.]$
- add Kleene star ϕ^* for horizontal recursion
A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

- recursion variables are **guarded** by some $\alpha[.]$
- add Kleene star ϕ^* for horizontal recursion

\[
[\phi^*]_\rho = 0 \cup \bigcup_{i>0} [\phi]_\rho \cdots [\phi]_\rho
\]

i times
A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

- recursion variables are **guarded** by some $\alpha[.]$
- add Kleene star ϕ^* for horizontal recursion
A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

- recursion variables are **guarded** by some $\alpha[.]$
- add Kleene star ϕ^* for horizontal recursion
- restriction negative variables: only a **bounded number of disequality tests** along the paths
A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

- recursion variables are **guarded** by some $\alpha[.]$
- **add Kleene star** ϕ^* for horizontal recursion
- restriction negative variables: only a **bounded number of disequality tests** along the paths

$$b[X \mid \mu\xi. (\neg X \land a[\xi] \lor 0)] \rightarrow \text{not bounded}$$

$$(-X)^* \mid X \mid (-X)^* \rightarrow \text{bounded}$$
A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

- recursion variables are **guarded** by some $\alpha[.]$
- add Kleene star ϕ^* for horizontal recursion
- restriction negative variables: only a **bounded number of disequality tests** along the paths
A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

- recursion variables are **guarded** by some $\alpha[.]$
- add Kleene star ϕ^* for horizontal recursion
- restriction negative variables: only a **bounded number of disequality tests** along the paths
- no **negative** occurrences of Kleene star and |
Theorem

1. Bounded TQL sentences capture MSO.
2. Satisfiability of bounded TQL is decidable (in 3NEXPTIME).
Theorem

1. **Bounded TQL sentences capture MSO.**
2. **Satisfiability of bounded TQL is decidable (in 3NEXPTIME).**
 - 2EXPTIME / EXPTIME-hard when no negated variables occur
 - EXPTIME for sentences
Expressiveness and Satisfiability of Bounded TQL

Theorem

1. Bounded TQL sentences capture MSO.
2. Satisfiability of bounded TQL is decidable (in 3NEXPTIME).
 - 2EXPTIME / EXPTIME-hard when no negated variables occur
 - EXPTIME for sentences

The proof is by reduction to emptiness of bounded TAGEDs.
Bottom-up Tree Automata for Binary Trees

- Σ: finite alphabet
- Q: set of states
- $F \subseteq Q$: set of final states
- Δ: rules of the form $f(q_1, q_2) \rightarrow q$ or $a \rightarrow q$
Bottom-up Tree Automata for Binary Trees

- Σ: finite alphabet
- Q: set of states
- $F \subseteq Q$: set of final states
- Δ: rules of the form $f(q_1, q_2) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)

A tree and a successful run transitions

<table>
<thead>
<tr>
<th>\lor</th>
<th>\land</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Final states

$F = \{ q_1 \}$
Bottom-up Tree Automata for Binary Trees

- Σ: finite alphabet
- Q: set of states
- $F \subseteq Q$: set of final states
- Δ: rules of the form $f(q_1, q_2) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions

$$
\begin{array}{c}
\land \\
\lor \\
0 \quad q_0 \\
\lor \\
1 \\
\land \\
\land \\
1 \\
\lor \\
0 \\
\lor \\
1
\end{array}
$$

\[
\begin{align*}
0 & \rightarrow q_0 & 1 & \rightarrow q_1 \\
\land(q_{b_1}, q_{b_2}) & \rightarrow q_{b_1} \land q_{b_2} \\
\lor(q_{b_1}, q_{b_2}) & \rightarrow q_{b_1} \lor q_{b_2} \\
F & = \{ q_1 \}
\end{align*}
\]
Bottom-up Tree Automata for Binary Trees

- Σ: finite alphabet
- Q: set of states
- $F \subseteq Q$: set of final states
- Δ: rules of the form $f(q_1, q_2) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)

A tree and a successful run:

```
∧  ∧
/ \ / \ / \ /
∨  0  1  ∧ 1
   q0  q1  ∧ 1
   0   1
```

Transitions:

- $0 \rightarrow q_0$
- $1 \rightarrow q_1$
- $\land(q_{b_1}, q_{b_2}) \rightarrow q_{b_1} \land b_2$
- $\lor(q_{b_1}, q_{b_2}) \rightarrow q_{b_1} \lor b_2$

Final states:

$F = \{q_1\}$
Bottom-up Tree Automata for Binary Trees

- Σ: finite alphabet
- Q: set of states
- $F \subseteq Q$: set of final states
- Δ: rules of the form $f(q_1, q_2) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)

A tree and a successful run

Transitions

Final states

$F = \{q_1\}$
Bottom-up Tree Automata for Binary Trees

- Σ: finite alphabet
- Q: set of states
- $F \subseteq Q$: set of final states
- Δ: rules of the form $f(q_1, q_2) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)

A tree and a successful run:

```
\begin{align*}
\land \quad \land \\
\lor q_1 \\
0 & q_0 & 1 & q_1 \\
\lor & & \lor \\
1 & q_1 & 0 \\
\end{align*}
```

Transitions:

```
0 \rightarrow q_0 \quad 1 \rightarrow q_1
\land(q_{b_1}, q_{b_2}) \rightarrow q_{b_1} \land q_{b_2}
\lor(q_{b_1}, q_{b_2}) \rightarrow q_{b_1} \lor q_{b_2}
```

Final states:

$F = \{q_1\}$
Bottom-up Tree Automata for Binary Trees

- \(\Sigma \): finite alphabet
- \(Q \): set of states
- \(F \subseteq Q \): set of final states
- \(\Delta \): rules of the form \(f(q_1, q_2) \rightarrow q \) or \(a \rightarrow q \)

Example (variable-free satisfiable Boolean formulas)

A tree and a successful run

\[
\begin{array}{c}
\land \\
\lor q_1 \\
0 q_0 & 1 q_1 \\
\lor q_1 \\
1 q_1 & 0 q_0 \\
\land \\
0 \rightarrow q_0 & 1 \rightarrow q_1 \\
\land(q_{b_1}, q_{b_2}) \rightarrow q_{b_1} \land q_{b_2} \\
\lor(q_{b_1}, q_{b_2}) \rightarrow q_{b_1} \lor q_{b_2} \\
F = \{ q_1 \}
\end{array}
\]
Bottom-up Tree Automata for Binary Trees

- Σ: finite alphabet
- Q: set of states
- $F \subseteq Q$: set of final states
- Δ: rules of the form $f(q_1, q_2) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)

A tree and a successful run

Transitions

- $0 \rightarrow q_0$
- $1 \rightarrow q_1$
- $\land(q_{b_1}, q_{b_2}) \rightarrow q_{b_1} \land q_{b_2}$
- $\lor(q_{b_1}, q_{b_2}) \rightarrow q_{b_1} \lor q_{b_2}$

Final states

$F = \{ q_1 \}$
Bottom-up Tree Automata for Binary Trees

- Σ: finite alphabet
- Q: set of states
- $F \subseteq Q$: set of final states
- Δ: rules of the form $f(q_1, q_2) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)

A tree and a successful run:

```
∧
∨ q₁
0 q₀ 1 q₁
∧
∨ q₁
1 q₁ 0 q₀
```

Transitions:

- $0 \rightarrow q_0$
- $1 \rightarrow q_1$
- $\land(q_{b₁}, q_{b₂}) \rightarrow q_{b₁} \land b₂$
- $\lor(q_{b₁}, q_{b₂}) \rightarrow q_{b₁} \lor b₂$

Final states:

$F = \{ q₁ \}$
Bottom-up Tree Automata for Binary Trees

- Σ: finite alphabet
- Q: set of states
- $F \subseteq Q$: set of final states
- Δ: rules of the form $f(q_1, q_2) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run

 transitions

\[
\begin{align*}
0 & \rightarrow q_0 \\
1 & \rightarrow q_1 \\
\land(q_{b_1}, q_{b_2}) & \rightarrow q_{b_1} \land q_{b_2} \\
\lor(q_{b_1}, q_{b_2}) & \rightarrow q_{b_1} \lor q_{b_2}
\end{align*}
\]

final states

$F = \{ q_1 \}$
Bottom-up Tree Automata for Binary Trees

- Σ: finite alphabet
- Q: set of states
- $F \subseteq Q$: set of final states
- Δ: rules of the form $f(q_1, q_2) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)

A tree and a successful run:

```
and (q_1)

or (q_1)

0 q_0 1 q_1
```

Transitions:

- $0 \rightarrow q_0$
- $1 \rightarrow q_1$
- $\land(q_{b_1}, q_{b_2}) \rightarrow q_{b_1} \land q_{b_2}$
- $\lor(q_{b_1}, q_{b_2}) \rightarrow q_{b_1} \lor q_{b_2}$

Final states:

$F = \{q_1\}$
Tree Automata with Global Equalities and Disequalities

A tree automaton A with global equalities and disequalities (TAGED) is given by:

$$\begin{align*}
\Sigma & \text{ alphabet} \\
Q & \text{ set of states} \\
F & \text{ set of final states} \\
\Delta & \text{ set of rules}
\end{align*}$$

\text{tree automaton}
Tree Automata with Global Equalities and Disequalities

A tree automaton A with global equalities and disequalities (TAGED) is given by:

- Σ alphabet
- Q set of states
- F set of final states
- Δ set of rules

$A = \subseteq Q^2$ reflexive and symmetric relation on a subset of Q
$\not= A \subseteq Q^2$ irreflexive and symmetric relation

E. Filiot
Logics for n-ary Queries in Trees
2008, October
Successful Runs

$q_f \in F$

$q = A q' \implies t t' = t t'$
Successful Runs

$q_f \in F$

$q \neq_A q' \Rightarrow t' \neq t'$
Successful Runs

- equalities and disequalities can be tested arbitrarily far away
- different from usual **Automata with Constraints** where tests are **local** (BogaertT92, DauchetCC95, KariantoL07)
Example: \(\{ f(t, t) \mid t \in T_\Sigma \} \)

- \(\Sigma = \{ f, a \} \)
- \(Q = \{ q, q_f, q_1, q_2 \} \)
- \(F = \{ q_f \} \)
- \(\Delta = \)

 \[
 a \rightarrow q \\
 f(q, q) \rightarrow q \\
 f(q, q) \rightarrow q_1 \\
 f(q, q) \rightarrow q_2 \\
 f(q_1, q_2) \rightarrow q_f
 \]

- \(q_1 = q_2 \)
Example: \(\{ f(t, t) \mid t \in T_\Sigma \} \)

- \(\Sigma = \{ f, a \} \)
- \(Q = \{ q, q_f, q_1, q_2 \} \)
- \(F = \{ q_f \} \)
- \(\Delta = \)

 - \(a \rightarrow q \)
 - \(f(q, q) \rightarrow q \)
 - \(f(q, q) \rightarrow q_1 \)
 - \(f(q, q) \rightarrow q_2 \)
 - \(f(q_1, q_2) \rightarrow q_f \)

- \(q_1 = A q_2 \)
Example: \(\{ f(t, t) \mid t \in T_\Sigma \} \)

- \(\Sigma = \{ f, a \} \)
- \(Q = \{ q, q_f, q_1, q_2 \} \)
- \(F = \{ q_f \} \)
- \(\Delta = \)
 - \(a \rightarrow q \)
 - \(f(q, q) \rightarrow q \)
 - \(f(q, q) \rightarrow q_1 \)
 - \(f(q, q) \rightarrow q_2 \)
 - \(f(q_1, q_2) \rightarrow q_f \)
- \(q_1 = A q_2 \)
Example: \[\{ f(t, t) \mid t \in T_\Sigma \} \]

- \(\Sigma = \{ f, a \} \)
- \(Q = \{ q, q_f, q_1, q_2 \} \)
- \(F = \{ q_f \} \)
- \(\Delta = \)

 \[
 a \rightarrow q \\
 f(q, q) \rightarrow q \\
 f(q, q) \rightarrow q_1 \\
 f(q, q) \rightarrow q_2 \\
 f(q_1, q_2) \rightarrow q_f \\
 \]

- \(q_1 = A \) \(q_2 \)
Example: \(\{ f(t, t) \mid t \in T_\Sigma \} \)

- \(\Sigma = \{ f, a \} \)
- \(Q = \{ q, q_f, q_1, q_2 \} \)
- \(F = \{ q_f \} \)
- \(\Delta = \)

 \[
 \begin{align*}
 a &\rightarrow q \\
 f(q, q) &\rightarrow q \\
 f(q, q) &\rightarrow q_1 \\
 f(q, q) &\rightarrow q_2 \\
 f(q_1, q_2) &\rightarrow q_f \\
 \end{align*}
 \]

- \(q_1 \equiv A q_2 \)
Example: \(\{ f(t, t) \mid t \in T_{\Sigma} \} \)

\[\Sigma = \{ f, a \} \]

\[Q = \{ q, q_f, q_1, q_2 \} \]

\[F = \{ q_f \} \]

\[\Delta = \]

\[a \rightarrow q \]

\[f(q, q) \rightarrow q \]

\[f(q, q) \rightarrow q_1 \]

\[f(q, q) \rightarrow q_2 \]

\[f(q_1, q_2) \rightarrow q_f \]

\[q_1 = A q_2 \]
Example: \(\{ f(t, t) \mid t \in T_\Sigma \} \)

- \(\Sigma = \{ f, a \} \)
- \(Q = \{ q, q_f, q_1, q_2 \} \)
- \(F = \{ q_f \} \)
- \(\Delta = \)

 \[
 \begin{align*}
 a & \rightarrow q \\
 f(q, q) & \rightarrow q \\
 f(q, q) & \rightarrow q_1 \\
 f(q, q) & \rightarrow q_2 \\
 f(q_1, q_2) & \rightarrow q_f \\
 \end{align*}
 \]

- \(q_1 = A \quad q_2 \)
Example: \(\{ f(t, t) | t \in T_\Sigma \} \)

- \(\Sigma = \{ f, a \} \)
- \(Q = \{ q, q_f, q_1, q_2 \} \)
- \(F = \{ q_f \} \)
- \(\Delta = \)
 - \(a \rightarrow q \)
 - \(f(q, q) \rightarrow q \)
 - \(f(q, q) \rightarrow q_1 \)
 - \(f(q, q) \rightarrow q_2 \)
 - \(f(q_1, q_2) \rightarrow q_f \)
- \(q_1 = A q_2 \)
Example: \(\{ f(t, s) \mid t, s \in T_\Sigma, \ t \neq s \} \)

- \(\Sigma = \{ f, a \} \)
- \(Q = \{ q, q_f, q_1, q_2 \} \)
- \(F = \{ q_f \} \)
- \(\Delta = \)
 - \(a \rightarrow q \)
 - \(f(q, q) \rightarrow q \)
 - \(f(q, q) \rightarrow q_1 \)
 - \(f(q, q) \rightarrow q_2 \)
 - \(f(q_1, q_2) \rightarrow q_f \)

- \(q_1 \neq A q_2 \)
Some properties of TAGEDs

Proposition

- TAGED-recognizable languages are closed by union and intersection, but not by complement;
- Membership is NP-complete;
- TAGED are not determinizable (counter-example \(\{ f(t, t) \mid t \in T_\Sigma \} \));
- Universality is undecidable.
Some properties of TAGEDs

Proposition

- TAGED-recognizable languages are closed by union and intersection, but not by complement;
- Membership is NP-complete;
- TAGED are not determinizable (counter-example \(\{ f(t, t) \mid t \in T_\Sigma \} \));
- Universality is undecidable.

Emptiness Problem

Input: a TAGED \(A \)
Output: \(L(A) \neq \emptyset \)?

Theorem

Emptiness is:

- \(\text{EXPTIME-complete for positive TAGED (} \neq_A = \emptyset \) \)
- decidable in \(\text{NEXPTIME} \) for negative TAGED (\(=_A = \emptyset \))
- decidable in linear-time for positive TAGED such that \(=_A \subseteq id_Q \)
Bounded TAGEDs

Definition
A bounded TAGED is a pair \((A, k)\) where \(A\) is a TAGED and \(k \in \mathbb{N}\) is a natural number.
Bounded TAGEDs

Definition
A bounded TAGED is a pair \((A, k)\) where \(A\) is a TAGED and \(k \in \mathbb{N}\) is a natural number.

Definition (Successful Runs)
Additional condition: along any branch, the number of states from \(\text{dom}(\neq_A)\) is smaller than \(k\).
Bounded TAGEDs

Definition
A bounded TAGED is a pair \((A, k)\) where \(A\) is a TAGED and \(k \in \mathbb{N}\) is a natural number.

Definition (Successful Runs)
Additional condition: along any branch, the number of states from \(\text{dom}(\neq A)\) is smaller than \(k\).

By using a pumping technique one can show that:

Theorem
Emptiness of bounded TAGEDs is decidable in 2NEXPTIME.
Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree t then t is not too big (its size is bounded in $|A|$).
Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree t then t is not too big (its size is bounded in $|A|$).

Lemmata

- $=_{A} \subseteq id_{Q}$ is always possible
- in a successful run, same (sub)run below same states of $=_{A}$
- pumping technique preserving the constraints induced by $=_{A}$
Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree t then t is not too big (its size is bounded in $|A|$).

Lemmata

- $=_{A} \subseteq id_{Q}$ is always possible
- in a successful run, same (sub)run below same states of $=_{A}$
- pumping technique preserving the constraints induced by $=_{A}$

Algorithm

1. find a tree and a run satisfying the constraints from $=_{A}$ but maybe not from \neq_{A}
2. test whether (and its run) can be repaired (polynomial algorithm)
3. if the test fails, choose another tree.
Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree t then t is not too big (its size is bounded in $|A|$).

Lemmata

- $=_A \subseteq id_Q$ is always possible
- in a successful run, same (sub)run below same states of $=_A$
- pumping technique preserving the constraints induced by $=_A$

Algorithm

1. find a tree and a run satisfying the constraints from $=_A$ but maybe not from \neq_A
2. test whether (and its run) can be repaired (polynomial algorithm)
3. if the test fails, choose another tree.

Termination

If the automaton accepts a tree, then it accepts a repairable tree satisfying the constraints from $=_A$ whose size is exponential in $|A|$ and k.
TQL to TAGED

TAGED for hedges over an infinite alphabet

- extends hedge automata (Murata’99) with global tests;
- transitions $\alpha(L) \rightarrow q$ where $L \subseteq Q^*$;
- lift all the results via a binary encoding of hedges.
TQL to TAGED

TAGED for hedges over an infinite alphabet

- extends hedge automata (Murata’99) with global tests;
- transitions $\alpha(L) \rightarrow q$ where $L \subseteq Q^*$;
- lift all the results via a binary encoding of hedges.

Bounded TQL \rightarrow Bounded TAGED

- new construction;
- two difficulties: variables and hedge operations;
TQL to TAGED

TAGED for hedges over an infinite alphabet

- extends hedge automata (Murata’99) with global tests;
- transitions $\alpha(L) \rightarrow q$ where $L \subseteq Q^*$;
- lift all the results via a binary encoding of hedges.

Bounded TQL \rightarrow Bounded TAGED

- new construction;
- two difficulties: variables and hedge operations;
- states: sets of subformulas $\alpha[\phi], X, \neg X$;
- variables are added non-deterministically to the states;
- hedge operations are interpreted as operations on state languages

- $\{\ldots, X, \ldots\} \equiv_A \{\ldots, X, \ldots\}$
- $\{\ldots, X, \ldots\} \not\equiv_A \{\ldots, \neg X, \ldots\}$
Conclusion
Summary of the contributions

Query composition (FNTT, PODS’07)

- extends the navigational XPath paradigm to n-ary queries
- simple acyclicity notion
- FO-complete and polynomial n-ary XPath languages
Summary of the contributions

Query composition (FNTT, PODS’07)
- extends the navigational XPath paradigm to n-ary queries
- simple acyclicity notion
- FO-complete and polynomial n-ary XPath languages

TQL (FTT, CSL’07)
- tree pattern language for hedges
- decidable fragment with tree variables
- by reduction to TAGED (FTT, DLT’08)
- new automaton construction
Some Perspectives

Query composition

- query answering algorithms specific to $\text{Comp}(\text{ch}, \text{ch}^*, \text{lab}_a)$
- streaming (GauwinCNT08), enumeration (collaboration with O.Gauwin, A.Durand, ANR Enum)
Some Perspectives

Query composition
- query answering algorithms specific to $\text{Comp}(\text{ch}, \text{ch}^*, \text{lab}_a)$
- streaming (GauwinCNT08), enumeration (collaboration with O. Gauwin, A. Durand, ANR Enum)

TQL
- lower bounds ($\text{TQL} + \text{TAGED}$)
- guarded fragment
Some Perspectives

Query composition

- query answering algorithms specific to $\text{Comp}(\text{ch}, \text{ch}^*, \text{lab}_a)$
- streaming (GauwinCNT08), enumeration (collaboration with O.Gauwin, A.Durand, ANR Enum)

TQL

- lower bounds ($\text{TQL} + \text{TAGED}$)
- guarded fragment
- ... or at least, a decidable fragment closed by negation
- query inclusion $\forall \overline{x} \ (\phi(\overline{x}) \rightarrow \psi(\overline{x}))$ iff not $\exists \overline{x}, \phi(\overline{x}) \land \neg \psi(\overline{x})$.
Some Perspectives

Query composition

- query answering algorithms specific to $\text{Comp}(\text{ch, ch}^*, \text{lab}_a)$
- streaming (GauwinCNT08), enumeration (collaboration with O.Gauwin, A.Durand, ANR Enum)

TQL

- lower bounds (TQL + TAGED)
- guarded fragment
- ... or at least, a decidable fragment closed by negation
- query inclusion $\forall \overline{x} \ (\phi(\overline{x}) \rightarrow \psi(\overline{x}))$ iff not $\exists \overline{x}, \ \phi(\overline{x}) \land \neg \psi(\overline{x})$.
- emptiness of full TAGED
- application to security protocols (C.Vacher, F.Jacquemard, F.Klay)
Thank You