J. Stubbe and W. A. , Protein Radicals in Enzyme Catalysis, Chemical Reviews, vol.98, issue.2, pp.705-762, 1998.
DOI : 10.1021/cr9400875

A. Ivancich, H. Jouve, and J. Gaillard, EPR Evidence for a Tyrosyl Radical Intermediate in Bovine Liver Catalase, Journal of the American Chemical Society, vol.118, issue.50, pp.12852-12853, 1996.
DOI : 10.1021/ja9628361

S. K. Smoke, J. Teller, B. A. Bernad, C. L. Rife, R. N. Armstrong et al., EPR Study of Substrate Binding to the Man(II) active site of the Bacterial Antibiotic Resistance Enzyme Forsa: A Better Way to Examine Man(II), J. Am. Chem. Soc, vol.124, pp.2318-2326, 2002.

B. E. Schultz, B. Ye, X. Li, and S. I. Chan, Electronic Paramagnetic Resonance and Magnetic Properties of Model Complexes for Binuclear Active Sites in Hydrolase Enzymes, Inorganic Chemistry, vol.36, issue.12, pp.2617-2622, 1997.
DOI : 10.1021/ic960988r

J. B. Innes and G. W. Brudvig, Location and magnetic relaxation properties of the stable tyrosine radical in photosystem II, Biochemistry, vol.28, issue.3, pp.1116-1125, 1989.
DOI : 10.1021/bi00429a028

S. Un, M. Atta, M. Fontecave, and A. W. , g-Values as a Probe of the Local Protein Environment: High-Field EPR of Tyrosyl Radicals in Ribonucleotide Reductase and Photosystem II, Journal of the American Chemical Society, vol.117, issue.43, pp.10713-10719, 1995.
DOI : 10.1021/ja00148a013

K. V. Lakshmi, M. J. Reifler, G. W. Brudvig, O. G. Poluektov, A. M. Wagner et al., High-Field EPR Study of Carotenoid and Chlorophyll Cation Radicals in Photosystem II, The Journal of Physical Chemistry B, vol.104, issue.45, pp.10445-10448, 2000.
DOI : 10.1021/jp002558z

G. Lassmann, R. Odenwaller, J. F. Curtis, J. A. Degray, R. P. Mason et al., Electron Spin Resonance Investigation of Tyrosyl Radicals of Prostaglandin H Synthase. Relation to Enzyme Catalysis, J. Biol. Chem, vol.266, 1991.

C. Galli, M. Atta, K. Andersson, A. Graslund, and G. W. Brudvig, Variations of the Diferric Exchange Coupling in the R2 Subunit of Ribonucleotide Reductase from Four Species as Determined by Saturation-Recovery EPR Spectroscopy, Journal of the American Chemical Society, vol.117, issue.2, pp.740-746, 1995.
DOI : 10.1021/ja00107a017

A. Ivancich, H. M. Jouve, and J. Gaillard, EPR Evidence for a Tyrosyl Radical Intermediate in Bovine Liver Catalase, Journal of the American Chemical Society, vol.118, issue.50, pp.12852-12853, 1996.
DOI : 10.1021/ja9628361

A. Ivancich, T. A. Mattioli, and S. Un, Effect of Protein Microenvironment on Tyrosyl Radicals. A High-Field (285GHz) EPR, Resonance Raman and Hybrid Density Functional Study, Journal of the American Chemical Society, vol.121, pp.5742-5753, 1999.

M. Engström, F. Himo, A. Graslund, B. Minaev, O. Vahtras et al., Hydrogen Bonding to Tyrosyl Radical Analyzed by Ab Initio g-Tensor Calculations, The Journal of Physical Chemistry A, vol.104, issue.21, pp.5149-5153, 2000.
DOI : 10.1021/jp0006633

G. Valverde-aguilar, X. Wang, S. F. Nelsen, and J. I. Zink, -Butyl-3-(Anthracen-9-yl)-2,3-Diazabicyclo[2.2.2]octane, Journal of the American Chemical Society, vol.128, issue.18, pp.6180-6185, 2006.
DOI : 10.1021/ja0588205

URL : https://hal.archives-ouvertes.fr/in2p3-00024730

D. Romstad, G. Granucci, and M. Persico, Nonadiabatic transitions and interference in photodissociation dynamics, Chemical Physics, vol.219, issue.1, pp.21-30, 1997.
DOI : 10.1016/S0301-0104(97)00077-3

E. U. Condon, Nuclear Motions Associated with Electron Transitions in Diatomic Molecules, Physical Review, vol.32, issue.6, pp.858-872, 1928.
DOI : 10.1103/PhysRev.32.858

M. Gouterman, Study of the effects of substitution of the absorption spectra of porphyn, J. Chem. Phys, 1139.

M. Gouterman, Spectra of porphyrins, Journal of Molecular Spectroscopy, vol.6, pp.138-163, 1961.
DOI : 10.1016/0022-2852(61)90236-3

G. R. Schonbaum and S. Lo, Interaction of Peroxidases with Aromatic Peracids and Alkyl Peroxides, J. Biol. Chem, vol.247, pp.3353-3360, 1972.

J. S. Stillman, M. J. Stillman, and H. B. Dunford, Photochemical reactions of horseradish peroxidase compounds I and II at room temperature and 10??K, Biochemistry, vol.14, issue.14, pp.3183-3188, 1975.
DOI : 10.1021/bi00685a023

S. Solar, W. Solar, and N. Getoff, Reactivity of hydroxyl with tyrosine in aqueous solution studied by pulse radiolysis, The Journal of Physical Chemistry, vol.88, issue.10, pp.2091-2095, 1984.
DOI : 10.1021/j150654a030

J. Feitelson and E. Hayon, Electron ejection and electron capture by phenolic compounds, The Journal of Physical Chemistry, vol.77, issue.1, pp.10-15, 1973.
DOI : 10.1021/j100620a003

W. A. Prütz and E. J. Land, Charge transfer in peptides Pulse radiolysis investigation of one-electron reactions in dipeptides of tryptophan and tyrosine, Int. J. Radiat. Biol, vol.36, pp.513-520, 1979.

S. Solar and N. Getoff, Oxidation of Tryptophan and N-Methylindole by N 3 °

D. W. Christianson, Structural chemistry and biology of manganese metalloenzymes, Progress in Biophysics and Molecular Biology, vol.67, issue.2-3
DOI : 10.1016/S0079-6107(97)88477-5

M. W. Fraaije, H. P. Roubroeks, W. R. Hagen, and W. J. Van-berkel, Purification and Characterization of an Intracellular Catalase-Peroxidase from Penicillium Simplicissimum, European Journal of Biochemistry, vol.108, issue.1-2, pp.192-198, 1996.
DOI : 10.1016/0959-440X(92)90230-5

H. Ruis, F. Koller, and J. G. Scandalios, Oxidative stress and the molecular biology of antioxidant defenses, pp.309-342, 1997.

S. Mueller, H. Riedel, and W. Stremmel, Determination of Catalase Activity at Physiological Hydrogen Peroxide Concentrations, Analytical Biochemistry, vol.245, issue.1, pp.55-60, 1997.
DOI : 10.1006/abio.1996.9939

A. U. Khan and T. Wilson, Reactive oxygen species as cellular messengers, Chemistry & Biology, vol.2, issue.7, pp.437-445, 1995.
DOI : 10.1016/1074-5521(95)90259-7

R. H. Burdon, Superoxide and Hydrogen peroxide in relation to mammalian cell proliferation, Free Rad, Biol. Med, vol.18, pp.775-794, 1995.

B. K. Vainshtein, W. R. Melik-adamyan, V. V. Barynin, A. A. Vagin, and A. I. Grebenko, Three-dimensional structure of the enzyme catalase, Three dimensional structure of the enzyme catalase, pp.411-412, 1981.
DOI : 10.1038/293411a0

T. J. Reid, I. , M. R. Murthy, A. Sicignano, N. Tanaka et al., Structure and Heme environment of beef liver catalase at 2.5A resolution, Proc. Natl. Acad. Sci, pp.4767-4771, 1981.

G. N. Murshudov, .. I. Grebenko, J. A. Brannigan, A. A. Antson, V. V. Barynin et al., catalase, its ferryl intermediate (compound II) and NADPH complex, Acta Crystallographica Section D Biological Crystallography, vol.58, issue.12, pp.1972-1982, 2002.
DOI : 10.1107/S0907444902016566

I. Fita and M. G. Rossmann, The active center of catalase, Journal of Molecular Biology, vol.185, issue.1, pp.21-37, 1985.
DOI : 10.1016/0022-2836(85)90180-9

I. Fita, A. Silva, M. R. Murthy, and M. G. Rossmann, The refined structure of beef liver catalase at 2??5 ?? resolution, Acta Crystallographica Section B Structural Science, vol.42, issue.5, pp.497-515, 1986.
DOI : 10.1107/S0108768186097835

B. K. Vainshtein, W. R. Melik-adamyan, V. V. Barynin, A. I. Grebenko, V. V. Borisov et al., Three-dimensional structure of catalase from Penicillium vitale at 2.0 ?? resolution, Journal of Molecular Biology, vol.188, issue.1, pp.49-61, 1986.
DOI : 10.1016/0022-2836(86)90479-1

J. Bravo, M. J. Mate, T. Schneider, J. Switala, K. S. Wilson et al., Structure of catalase HPII fromEscherichia coli at 1.9 ??? resolution, Proteins: Structure, Function, and Genetics, vol.111, issue.2, pp.155-166, 1999.
DOI : 10.1002/(SICI)1097-0134(19990201)34:2<155::AID-PROT1>3.0.CO;2-P

K. G. Stern, R. B. Frydman, M. L. Tomaro, J. Awruch, and B. Frydman, The constitution of the prosthetic group of catalase Isolation from rat liver of a peroxisomal enzyme which converts molecular form 1 of biliverdin reductase into molecular form 3, J. Biol. Chem. Biochem. Biophys. Res. Commun, vol.112, issue.121, pp.661-669, 1936.

P. Gouet, H. Jouve, and O. Dideberg, Crystal Structure ofProteus mirabilisPR Catalase With and Without Bound NADPH, Journal of Molecular Biology, vol.249, issue.5, pp.933-954, 1995.
DOI : 10.1006/jmbi.1995.0350

A. Diaz, E. Horjales, E. Rudino-pinnera, R. Arreola, and W. Hansberg, Unusual Cys-Tyr Covalent Bond in a Large Catalase, Journal of Molecular Biology, vol.342, issue.3, pp.971-985, 2004.
DOI : 10.1016/j.jmb.2004.07.027

J. T. Chiu, P. C. Loewen, J. Switala, R. B. Gennis, and R. Timkovich, Proposed structure for the prosthetic group of the catalase HPII from Escherichia coli, Journal of the American Chemical Society, vol.111, issue.18, pp.7046-7050, 1989.
DOI : 10.1021/ja00200a023

H. N. Kirkman and G. F. Gaetani, Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH., Proc. Natl. Acad. Sci, pp.4343-4347, 1984.
DOI : 10.1073/pnas.81.14.4343

I. Fita and M. G. Rossmann, The NADPH binding site on beef liver catalase., Proc. Natl. Acad. Sci, pp.1604-1608, 1985.
DOI : 10.1073/pnas.82.6.1604

M. J. Mate, M. Zamocky, L. M. Nykyri, C. Herzog, P. M. Alzari et al., Structure of catalase-A from Saccharomyces cerevisiae, Journal of Molecular Biology, vol.286, issue.1, pp.135-149, 1999.
DOI : 10.1006/jmbi.1998.2453

C. D. Putnam, .. S. Arvai, Y. Bourne, and J. A. Tainer, Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism, Journal of Molecular Biology, vol.296, issue.1, pp.295-309, 2000.
DOI : 10.1006/jmbi.1999.3458

A. Hillar and P. Nicholls, A mechanism for NADPH inhibition of catalase compound II formation, FEBS Letters, vol.201, issue.2, pp.179-182, 1992.
DOI : 10.1016/0014-5793(92)80969-N

L. P. Olson and T. C. Bruice, Electron tunneling and ab initio calculations related to the one-electron oxidation of NAD(P)H bound to catalase, Biochemistry, vol.34, issue.22, pp.7335-7347, 1995.
DOI : 10.1021/bi00022a006

O. Almarsson, A. Sinha, E. Gopinath, and T. C. Bruice, Mechanism of one-electron oxidation of NAD(P)H and function of NADPH bound to catalase, Journal of the American Chemical Society, vol.115, issue.16, pp.7093-7102, 1993.
DOI : 10.1021/ja00069a005

H. N. Kirkman, M. Rolfo, A. M. Ferraris, and G. Gaetani, Mechanisms of Protection of Catalase by NADPH: KINETICS AND STOICHIOMETRY, Journal of Biological Chemistry, vol.274, issue.20, pp.13908-13914, 1999.
DOI : 10.1074/jbc.274.20.13908

D. E. Heck, A. M. Vetrano, T. M. Mariano, and J. D. Laskin, UVB Light Stimulates Production of Reactive Oxygen Species: UNEXPECTED ROLE FOR CATALASE, Journal of Biological Chemistry, vol.278, issue.25, pp.22432-22436, 2003.
DOI : 10.1074/jbc.C300048200

J. Switala and P. C. Loewen, Diversity of properties among catalases, Archives of Biochemistry and Biophysics, vol.401, issue.2, pp.145-154, 2002.
DOI : 10.1016/S0003-9861(02)00049-8

G. R. Schonbaum, C. Britton, and C. , The enzymes, pp.363-407, 1976.

B. Chance and D. Herbert, The enzyme-substrate compounds of bacterial catalase and peroxides, Biochemical Journal, vol.46, issue.4, pp.402-414, 1950.
DOI : 10.1042/bj0460402

P. Nicholls, The formation and catalytic role of catalase peroxide compound II, Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects, vol.81, issue.3, pp.479-495, 1963.
DOI : 10.1016/0926-6569(64)90133-6

D. Dolphin, A. Forman, D. C. Borg, J. Fajer, and R. H. Felton, Compounds I of Catalase and Horse Radish Peroxidase: ??-Cation Radicals, Proceedings of the National Academy of Sciences, vol.68, issue.3, pp.614-618, 1971.
DOI : 10.1073/pnas.68.3.614

W. L. Baker, C. Key, and G. T. Lonergan, A Note Concerning Acetate Activation of Peroxidative Activity of Catalases Using 2,2???-Azino-bis(3-ethylbenzthiazoline)-6-sulfonic Acid as a Substrate, Biotechnology Progress, vol.256, issue.3, pp.751-755, 2005.
DOI : 10.1021/bp0500617

G. I. Berglund, G. H. Carlsson, A. T. Smith, A. Szöke, J. Henriksen et al., The catalytic pathway of horseradish peroxidase at high resolution, Nature, vol.417, issue.6887, pp.463-468, 2002.
DOI : 10.1038/417463a

K. Nilsson, H. Hersleth, T. H. Rod, K. K. Andersson, and U. Ryde, The Protonation Status of Compound II in Myoglobin, Studied by a Combination of Experimental Data and Quantum Chemical Calculations: Quantum Refinement, Biophysical Journal, vol.87, issue.5, pp.3437-3447, 2004.
DOI : 10.1529/biophysj.104.041590

C. Rovira, Structure, Protonation State and Dynamics of Catalase Compound II, ChemPhysChem, vol.118, issue.9, pp.1820-1826, 2005.
DOI : 10.1002/cphc.200400633

R. Silaghi-dumitrescu, The nature of the high-valent complexes in the catalytic cycles of hemoproteins, Journal of Biological Inorganic Chemistry, vol.9, issue.4, pp.471-476, 2004.
DOI : 10.1007/s00775-004-0543-2

M. T. Green, J. H. Dawson, and H. B. Gray, Oxoiron(IV) in Chloroperoxidase Compound II Is Basic: Implications for P450 Chemistry, Science, vol.304, issue.5677, pp.1653-1656, 2004.
DOI : 10.1126/science.1096897

H. Hersleth, U. Ryde, P. Rydberg, C. H. Gorbitz, and K. K. , Structures of the high-valent metal-ion haem???oxygen intermediates in peroxidases, oxygenases and catalases, Journal of Inorganic Biochemistry, vol.100, issue.4, pp.460-476, 2006.
DOI : 10.1016/j.jinorgbio.2006.01.018

X. Carpena, B. Wiseman, T. Deemagarn, R. Singh, J. Switala et al., A molecular switch and electronic circuit modulate catalase activity in catalase-peroxidases, EMBO reports, vol.1080, issue.12, pp.1156-1162, 2005.
DOI : 10.1038/358591a0

M. T. Green, Application of Badger's Rule to Heme and Non-Heme Iron???Oxygen Bonds:?? An Examination of Ferryl Protonation States, Journal of the American Chemical Society, vol.128, issue.6, pp.1902-1906, 2006.
DOI : 10.1021/ja054074s

R. K. Behan and M. T. Green, On the status of ferryl protonation, Journal of Inorganic Biochemistry, vol.100, issue.4, pp.448-459, 2006.
DOI : 10.1016/j.jinorgbio.2005.12.019

M. Alfonso-prieto, A. Borovik, X. Carpena, G. N. Murshudov, W. R. Melik-adamyan et al., The Structures and Electronic Configuration of Compound I Intermediates of Helicobacter pylori and Penicillium vitale Catalases Determined by X-Ray Crystallography and QM/MM Density Functional Theory Calculations, J. Am. Chem. Soc, vol.129, pp.13436-13446, 2007.

A. Ivancich, H. Jouve, and J. Gaillard, EPR Evidence for a Tyrosyl Radical Intermediate in Bovine Liver Catalase, Journal of the American Chemical Society, vol.118, issue.50, pp.12852-12853, 1996.
DOI : 10.1021/ja9628361

C. E. Schulz, P. W. Devaney, H. Winkler, P. G. Degrunner, N. Doan et al., Horseradish peroxidase compound I: evidence for spin coupling between the heme iron and a ???free??? radical, FEBS Letters, vol.21, issue.1, pp.102-105, 1979.
DOI : 10.1016/0014-5793(79)81259-4

B. Chance, The spectra of the enzyme-substrate complexes of catalase and peroxidase, Archives of Biochemistry and Biophysics, vol.41, issue.2, pp.404-415, 1952.
DOI : 10.1016/0003-9861(52)90469-4

H. Jouve, J. Gaillard, and J. Pelmont, Characterization and spectral properties of <i>Proteus mirabilis</i> PR catalase, Biochemistry and Cell Biology, vol.62, issue.10, pp.935-944, 1984.
DOI : 10.1139/o84-120

P. Gouet, H. Jouve, P. A. Williams, I. Andersson, P. Andreoletti et al., Ferryl intermediates of catalase captured by time-resolved Weissenberg crystallography and UV-VIS spectroscopy, Nature Structural Biology, vol.25, issue.11, pp.951-956, 1996.
DOI : 10.1107/S0021889891004399

URL : https://hal.archives-ouvertes.fr/hal-00314294

M. J. Benecky, J. E. Frew, N. Scowen, P. Jones, and B. M. Hoffman, EPR and ENDOR detection of compound I from Micrococcus lysodeikticus catalase, Biochemistry, vol.32, issue.44, pp.11929-11933, 1993.
DOI : 10.1021/bi00095a024

W. R. Patterson, T. L. Poulos, and D. B. Goodin, Identification of a Porphyrin .pi. Cation Radical in Ascorbate Peroxidase Compound I, Biochemistry, vol.34, issue.13, pp.4342-4345, 1995.
DOI : 10.1021/bi00013a024

M. M. Palcic and H. B. Dunford, The reaction of human erythrocyte catalase with hydroperoxides to form compound I, J. Biol. Chem, vol.255, pp.6128-6132, 1980.

C. Obinger, M. Maj, P. Nicholls, and P. C. Loewen, Activity, Peroxide Compound Formation, and Heme d Synthesis inEscherichia coliHPII Catalase, Archives of Biochemistry and Biophysics, vol.342, issue.1, pp.58-67, 1997.
DOI : 10.1006/abbi.1997.9988

P. C. Loewen, Probing the structure of catalase HPII of Escherichia coli ??? a review, Gene, vol.179, issue.1, pp.39-44, 1996.
DOI : 10.1016/S0378-1119(96)00321-6

A. Ivancich, T. A. Mattioli, and S. Un, Effect of Protein Microenvironment on Tyrosyl Radicals. A High-Field (285 GHz) EPR, Resonance Raman, and Hybrid Density Functional Study, Journal of the American Chemical Society, vol.121, issue.24, pp.5742-5753, 1999.
DOI : 10.1021/ja990562m

P. Andreoletti, A. Pernoud, G. Sainz, P. Gouet, and H. Jouve, Structural studies of Proteus mirabilis catalase in its ground state, oxidized state and in complex with formic acid, Acta crystallographica, pp.59-2163, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00314280

X. Carpena, M. Soriano, M. G. Klotz, H. W. Duckworth, L. J. Donald et al., Structure of the Clade 1 catalase, CatF of Pseudomonas syringae, at 1.8 ?? resolution, Proteins: Structure, Function, and Bioinformatics, vol.10, issue.3, pp.423-436, 2003.
DOI : 10.1002/prot.10284

O. Horner, J. Oddou, J. Mouesca, and H. Jouve, M??ssbauer identification of a protonated ferryl species in catalase from Proteus mirabilis: Density functional calculations on related models, 69 S. P. de Visser, What external Perturbations Influence the Electronic Properties of catalase Compound I?, pp.9551-9557, 2006.
DOI : 10.1016/j.jinorgbio.2005.12.010

V. Schünemann, F. Lendzian, C. Jung, J. Contzen, A. Barra et al., Tyrosine Radical Formation in the Reaction of Wild Type and Mutant Cytochrome P450cam with Peroxy Acids: A MULTIFREQUENCY EPR STUDY OF INTERMEDIATES ON THE MILLISECOND TIME SCALE, Journal of Biological Chemistry, vol.279, issue.12, pp.10919-10930, 2004.
DOI : 10.1074/jbc.M307884200

A. T. Smith and N. C. Veitch, Substrate binding and catalysis in heme peroxidases, Current Opinion in Chemical Biology, vol.2, issue.2, pp.269-278, 1998.
DOI : 10.1016/S1367-5931(98)80069-0

W. Blodig, A. T. Smith, W. K. , and K. Piontek, Evidence from Spin-Trapping for a Transient Radical on Tryptophan Residue 171 of Lignin Peroxidase, Archives of Biochemistry and Biophysics, vol.370, issue.1, pp.86-92, 1999.
DOI : 10.1006/abbi.1999.1365

S. G. Kalko, J. L. Gelpi, I. Fita, and M. Orozco, Theoretical Study of the Mechanisms of Substrate Recognition by Catalase, Journal of the American Chemical Society, vol.123, issue.39, pp.9665-9672, 2001.
DOI : 10.1021/ja010512t

P. Jones, Roles of Water in Heme Peroxidase and Catalase Mechanisms, J. Biol. Chem, vol.276, pp.13791-13796, 2001.

A. Ivancich, C. Jakopitsch, M. Auer, S. Un, and C. Obinger, PCC6803:?? A Multifrequency EPR Investigation of Wild-Type and Variants on the Environment of the Heme Active Site, Journal of the American Chemical Society, vol.125, issue.46, pp.14093-14102, 2003.
DOI : 10.1021/ja035582+

S. Chouchane, S. Girotto, S. Yu, and R. S. Magliozzo, Identification and Characterization of Tyrosyl Radical Formation in Mycobacterium tuberculosis Catalase-Peroxidase (KatG), Journal of Biological Chemistry, vol.277, issue.45, pp.42633-42638, 2002.
DOI : 10.1074/jbc.M207916200

Y. Zhang, B. Heym, B. Allen, D. Young, and S. Cole, The catalase???peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis, Nature, vol.358, issue.6387, pp.591-593, 1992.
DOI : 10.1038/358591a0

A. Claiborne and I. Fridovich, Purification of the o-dianistidine peroxidase from Escherichia coli. Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities, J. Biol. Chem, vol.254, pp.4245-4252, 1979.

B. L. Triggs-raine, B. W. Doble, M. R. Mulvey, P. A. Sorby, and P. C. Loewen, Nucleotide sequence of katG, encoding catalase HPI of Escherichia coli., Journal of Bacteriology, vol.170, issue.9, pp.4415-4419, 1988.
DOI : 10.1128/jb.170.9.4415-4419.1988

X. Carpena, S. Loprasert, S. Mongkolsuk, J. Switala, P. C. Loewen et al., Catalase-peroxidase KatG of Burkholderia pseudomallei at 1.7?? resolution, Journal of Molecular Biology, vol.327, issue.2, pp.475-489, 2003.
DOI : 10.1016/S0022-2836(03)00122-0

Y. Yamada, T. Fujiwara, S. Sato, N. Igarashi, and N. Tanaka, The 2.0 ?? crystal structure of catalase-peroxidase from Haloarcula marismortui, Nature Structural Biology, vol.9, issue.9, pp.691-695, 2002.
DOI : 10.1038/nsb834

URL : https://hal.archives-ouvertes.fr/in2p3-00609764

T. Bertrand, N. A. Eady, J. N. Jones, N. J. Jesmin, B. Jamart-gregoire et al., Crystal Structure of Mycobacterium tuberculosis Catalase-Peroxidase, Journal of Biological Chemistry, vol.279, issue.37, pp.38991-38999, 2004.
DOI : 10.1074/jbc.M402382200

K. G. Welinder, Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1080, issue.3, pp.215-220, 1991.
DOI : 10.1016/0167-4838(91)90004-J

K. Wada, T. Tada, Y. Nakamura, T. Kinoshita, M. Tamoi et al., PCC 7942, Acta Crystallographica Section D Biological Crystallography, vol.58, issue.1, pp.157-159, 2002.
DOI : 10.1107/S0907444901017735

B. C. Finzel, T. L. Poulos, and J. Kraut, Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution, J. Biol. Chem, vol.259, pp.13027-13036, 1984.

W. R. Patterson, T. L. Poulos, and D. B. Goodin, Identification of a Porphyrin .pi. Cation Radical in Ascorbate Peroxidase Compound I, Biochemistry, vol.34, issue.13, pp.4342-4345, 1995.
DOI : 10.1021/bi00013a024

A. Ivancich, C. Jakopitsch, M. Auer, S. Un, and C. Obinger, PCC6803:?? A Multifrequency EPR Investigation of Wild-Type and Variants on the Environment of the Heme Active Site, Journal of the American Chemical Society, vol.125, issue.46, pp.14093-14102, 2003.
DOI : 10.1021/ja035582+

C. Jakopitsch, C. Obinger, S. Un, and A. Ivancich, Identification of Trp106 as the tryptophanyl radical intermediate in Synechocystis PCC6803 catalase-peroxidase by multifrequency Electron Paramagnetic Resonance spectroscopy, Journal of Inorganic Biochemistry, vol.100, issue.5-6, pp.1091-1099, 2006.
DOI : 10.1016/j.jinorgbio.2006.02.009

M. Zamocky, G. Regelsberger, C. Jakopitsch, and C. Obinger, The molecular peculiarities of catalase-peroxidases, FEBS Letters, vol.4, issue.3, pp.177-182, 2001.
DOI : 10.1016/S0014-5793(01)02237-2

C. Ostenmeier, A. Harrenga, U. Ermler, and H. Michel, Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment, Proceedings of the National Academy of Sciences, vol.94, issue.20, pp.10547-10553, 1997.
DOI : 10.1073/pnas.94.20.10547

S. Yoshikawa, Beef heart cytochrome c oxidase, Current Opinion in Structural Biology, vol.7, issue.4, pp.574-579, 1997.
DOI : 10.1016/S0959-440X(97)80124-8

G. Buse, T. Soulimane, M. Dewor, H. E. Meyer, and M. Bluggel, Evidence for a copper-coordinated histidine-tyrosine cross-link in the active site of cytochrome oxidase, Protein Science, vol.160, issue.5, pp.985-990, 1999.
DOI : 10.1110/ps.8.5.985

N. Ito, S. E. Phillips, K. D. Yadav, and P. F. Knowles, Crystal Structure of a Free Radical Enzyme, Galactose Oxidase, Journal of Molecular Biology, vol.238, issue.5, pp.794-814, 1994.
DOI : 10.1006/jmbi.1994.1335

L. J. Donald, O. V. Krokhin, H. W. Duckworth, B. Wiseman, T. Deemagran et al., Characterization of the Catalase-Peroxidase KatG from Burkholderia pseudomallei by Mass Spectrometry, Journal of Biological Chemistry, vol.278, issue.37, pp.35687-35692, 2003.
DOI : 10.1074/jbc.M304053200

C. Jakopitsch, M. Auer, A. Ivancich, F. Ruker, P. G. Furtmuller et al., Total Conversion of Bifunctional Catalase-Peroxidase (KatG) to Monofunctional Peroxidase by Exchange of a Conserved Distal Side Tyrosine, Journal of Biological Chemistry, vol.278, issue.22, pp.20185-20191, 2003.
DOI : 10.1074/jbc.M211625200

R. A. Ghiladi, G. M. Knudsen, K. F. Medzihradszky, and P. R. Ortiz-de-montellano, The Met-Tyr-Trp Cross-link in Mycobacterium tuberculosis Catalase-peroxidase (KatG): AUTOCATALYTIC FORMATION AND EFFECT ON ENZYME CATALYSIS AND SPECTROSCOPIC PROPERTIES, Journal of Biological Chemistry, vol.280, issue.24, pp.22651-22663, 2005.
DOI : 10.1074/jbc.M502486200

E. Santoni, C. Jakopitsch, C. Obinger, and G. Smulevich, Manipulating the covalent link between distal side tryptophan, tyrosine, and methionine in catalase-peroxidases: An electronic absorption and resonance Raman study, Biopolymers, vol.37, issue.1-2, pp.46-50, 2004.
DOI : 10.1002/bip.20041

X. Carpena, B. Wiseman, T. Deemagran, R. Singh, J. Switala et al., A molecular switch and electronic circuit modulate catalase activity in catalase-peroxidases, EMBO reports, vol.1080, issue.12, pp.1156-1162, 2005.
DOI : 10.1038/358591a0

. Fita, Roles for Arg426 and Trp111 in the modulation of NADH oxidase activity of catalase-peroxidase KatG from Burkholderia pseudomallei inferred from pH induced structural changes, Biochemistry, vol.45, pp.5171-5179, 2006.

T. Deemagran, X. Carpena, R. Singh, B. Wiseman, I. Fita et al., Structural Characterization of the Ser324Thr Variant of the Catalase-peroxidase (KatG) from Burkholderia pseudomallei, Journal of Molecular Biology, vol.345, issue.1, pp.21-28, 2005.
DOI : 10.1016/j.jmb.2004.10.020

R. Singh, B. Wiseman, T. Deemagran, L. J. Donald, H. W. Duckworth et al., Catalase-peroxidases (KatG) Exhibit NADH Oxidase Activity, Journal of Biological Chemistry, vol.279, issue.41, pp.43098-43106, 2004.
DOI : 10.1074/jbc.M406374200

F. Miller, M. A. Miller, L. Geren, and B. Durham, Electron transfer between cytochrome c and cytochrome c peroxidase, J. Bioenerg. Biomembr, vol.27, pp.341-351, 1995.

A. T. Smith and N. C. Veith, Substrate binding and catalysis in heme peroxidases, Current Opinion in Chemical Biology, vol.2, issue.2, pp.269-278, 1998.
DOI : 10.1016/S1367-5931(98)80069-0

A. Ivancich, H. Jouve, B. Sartor, and J. Gaillard, and Bovine Liver Catalases:?? Formation of Porphyrin and Tyrosyl Radical Intermediates, Biochemistry, vol.36, issue.31, pp.9356-9364, 1997.
DOI : 10.1021/bi970886s

A. Ivancich, P. Dorlet, D. B. Goodin, and S. Un, Peroxidase, Journal of the American Chemical Society, vol.123, issue.21, pp.5050-5058, 2001.
DOI : 10.1021/ja0036514

URL : https://hal.archives-ouvertes.fr/hal-00259308

S. Chouchane, S. Girotto, S. Yu, and R. S. Magliozzo, Identification and Characterization of Tyrosyl Radical Formation in Mycobacterium tuberculosis Catalase-Peroxidase (KatG), Journal of Biological Chemistry, vol.277, issue.45, pp.42633-42638, 2002.
DOI : 10.1074/jbc.M207916200

R. Singh, J. Switala, P. C. Loewen, and A. Ivancich, Two [Fe(IV)=O Trp°] intermediates in M. tuberculosis catalase-peroxidase discriminated by multifrequency (9-285-GHz) EPR spectroscopy: reactivity towards isoniazid, J. Am. Chem. Soc, 2007.

L. A. Fishel, F. M. Farnum, J. M. Mauro, M. A. Miller, and J. Kraut, Compound I radical in site-directed mutants of cytochrome c peroxidase as probed by electron paramagnetic resonance and electron-nuclear double resonance, Biochemistry, vol.30, issue.7, pp.1986-1996, 1991.
DOI : 10.1021/bi00221a036

D. B. Goodin and D. E. Mcree, The Asp-His-iron triad of cytochrome c peroxidase controls the reduction potential electronic structure, and coupling of the tryptophan free radical to the heme, Biochemistry, vol.32, issue.13, pp.3313-3324, 1993.
DOI : 10.1021/bi00064a014

C. Tommos, X. Tang, K. Wamcke, C. W. Hoganson, S. Styring et al., Spin-Density Distribution, Conformation, and Hydrogen Bonding of the Redox-Active Tyrosine YZ in Photosystem II from Multiple-Electron Magnetic-Resonance Spectroscopies: Implications for Photosynthetic Oxygen Evolution, Journal of the American Chemical Society, vol.117, issue.41, pp.10325-10335, 1995.
DOI : 10.1021/ja00146a017

B. A. Barry and G. T. Babcock, Tyrosine radicals are involved in the photosynthetic oxygen-evolving system., Proceedings of the National Academy of Sciences, vol.84, issue.20, pp.7099-70103, 1987.
DOI : 10.1073/pnas.84.20.7099

W. Blodig, A. T. Smith, K. Winterhalter, and . Pionetek, Evidence from Spin-Trapping for a Transient Radical on Tryptophan Residue 171 of Lignin Peroxidase, Archives of Biochemistry and Biophysics, vol.370, issue.1, pp.86-92, 1999.
DOI : 10.1006/abbi.1999.1365

C. Jakopitsch, A. Ivancich, F. Schmuckenschlager, A. Wanasinghe, G. Poltl et al., Influence of the Unusual Covalent Adduct on the Kinetics and Formation of Radical Intermediates in Synechocystis Catalase Peroxidase: A STOPPED-FLOW AND EPR CHARACTERIZATION OF THE MET275, TYR249, AND ARG439 VARIANTS, Journal of Biological Chemistry, vol.279, issue.44, pp.46082-46095, 2004.
DOI : 10.1074/jbc.M408399200

S. L. Scott, W. Chen, A. Bakac, and J. H. Espenson, Spectroscopic parameters, electrode potentials, acid ionization constants, and electron exchange rates of the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) radicals and ions, The Journal of Physical Chemistry, vol.97, issue.25, pp.6710-6714, 1993.
DOI : 10.1021/j100127a022

R. Pierattelli, L. Banci, N. A. Eady, J. Bodiguel, J. N. Jones et al., Enzyme-catalyzed Mechanism of Isoniazid Activation in Class I and Class III Peroxidases, Journal of Biological Chemistry, vol.279, issue.37, pp.39000-39009, 2004.
DOI : 10.1074/jbc.M402384200

C. L. Metcalfe, I. K. Macdonald, E. J. Murphy, K. A. Brown, E. L. Raven et al., The tuberculosis pro-drug isoniazid bound to activating peroxidases, J. Biol. Chem, 2007.

M. Sivaraja, D. B. Goodin, M. Smith, and B. M. Hoffman, Identification by ENDOR of Trp191 as the free-radical site in cytochrome c peroxidase compound ES, Science, vol.245, issue.4919, pp.738-740, 1989.
DOI : 10.1126/science.2549632

A. T. Smith and N. C. Veith, Substrate binding and catalysis in heme peroxidases, Current Opinion in Chemical Biology, vol.2, issue.2, pp.269-278, 1998.
DOI : 10.1016/S1367-5931(98)80069-0

A. Ivancich, H. Jouve, B. Sartor, and J. Gaillard, and Bovine Liver Catalases:?? Formation of Porphyrin and Tyrosyl Radical Intermediates, Biochemistry, vol.36, issue.31, pp.9356-9364, 1997.
DOI : 10.1021/bi970886s

A. Ivancich, P. Dorlet, D. B. Goodin, and S. Un, Peroxidase, Journal of the American Chemical Society, vol.123, issue.21, pp.5050-5058, 2001.
DOI : 10.1021/ja0036514

URL : https://hal.archives-ouvertes.fr/hal-00259308

A. T. Smith, S. Santama, M. Dacey, R. C. Edwards, R. N. Bray et al., Expression of a synthetic Gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca 2+ and heme, J. Biol. Chem, vol.265, pp.13335-13343, 1990.

M. Gajhede, D. J. Schuller, A. Henriksen, A. T. Smith, and T. L. Poulos, Crystal structure of horseradish peroxidase C at 2.15 ?? resolution, Nature Structural Biology, vol.6, issue.12, pp.1032-1038, 1997.
DOI : 10.1016/0263-7855(96)00018-5

G. I. Berglund, G. H. Carisson, A. T. Smith, A. Szöke, J. Henriksen et al., The catalytic pathway of horseradish peroxidase at high resolution, Nature, vol.417, issue.6887, pp.463-468, 2002.
DOI : 10.1038/417463a

K. G. Welinder, Covalent structure of the glycoprotein horseradish peroxidase (EC 1.11.1.7), FEBS Letters, vol.42, issue.1, pp.19-23, 1976.
DOI : 10.1016/0014-5793(76)80804-6

R. H. Haschke and J. M. Friedhoff, Calcium-related properties of horseradish peroxidase, Biochemical and Biophysical Research Communications, vol.80, issue.4, pp.1039-1042, 1978.
DOI : 10.1016/0006-291X(78)91350-5

B. D. Howes, A. Feis, L. Raimondi, C. Indiani, and G. Schmulevich, The Critical Role of the Proximal Calcium Ion in the Structural Properties of Horseradish Peroxidase, Journal of Biological Chemistry, vol.276, issue.44, pp.35005-35011, 2001.
DOI : 10.1074/jbc.M107489200

K. G. Welinder, Superfamily of plant, fungal and bacterial peroxidases, Current Opinion in Structural Biology, vol.2, issue.3, pp.388-393, 1992.
DOI : 10.1016/0959-440X(92)90230-5

I. Frias, J. M. Siverio, C. Gonzales, J. M. Trujillo, and J. A. Perez, Purification of a new peroxidase catalysing the formation of lignan-type compounds, Biochemical Journal, vol.273, issue.1, pp.109-113, 1991.
DOI : 10.1042/bj2730109

B. H. Dunford, N. Veitch, and A. T. Smith, Heme peroxidases, Adv. Inorg. Chem, vol.16, issue.51, pp.107-162, 1999.

T. L. Poulos and J. Kraut, A hypothetical Model of the Cytochrome c peroxidase-Cytochrome c Electron transfer, J. Biol. Chem, vol.255, pp.10322-10330, 1980.

V. Thanabal, J. S. De-ropp, and G. N. La, Proton NMR characterization of the catalytically relevant proximal and distal hydrogen-bonding networks in ligated resting state horseradish peroxidase, Journal of the American Chemical Society, vol.110, issue.10, pp.3027-3035, 1988.
DOI : 10.1021/ja00218a005

A. Ivancich, H. Jouve, B. Sartor, and J. Gaillard, and Bovine Liver Catalases:?? Formation of Porphyrin and Tyrosyl Radical Intermediates, Biochemistry, vol.36, issue.31, pp.9356-9364, 1997.
DOI : 10.1021/bi970886s

L. Casella, E. Monzani, P. Fantucci, M. Gullotti, L. De-gioia et al., Axial Imidazole Distortion Effects on the Catalytic and Binding Properties of Chelated Deuterohemin Complexes, Distortion Effects on the Catalytic and Binding Properties of Chelated Deuterohemin Complexes, pp.439-444, 1996.
DOI : 10.1021/ic950148x

L. Casella, L. De-gioia, G. F. Silvestry, E. Monzani, C. Redaelli et al., Covalently modified microperoxidases as heme-peptide models for peroxidases, Journal of Inorganic Biochemistry, vol.79, issue.1-4, pp.31-40, 2000.
DOI : 10.1016/S0162-0134(99)00243-3

E. Monzani, L. Linato, L. Casella, L. De-gioia, M. Favretto et al., Synthesis, characterization and stereoselective catalytic oxidations of chelated deuterohaemin-glycyl-L-histidine complexes, Inorganica Chimica Acta, vol.273, issue.1-2, pp.339-345, 1998.
DOI : 10.1016/S0020-1693(97)06029-5