C. Bloqués, 1 CNTFET passant + 1 CNTFET bloqué. (1) Défauts fonctionnels doubles de type CNTFETs passants. Pour la porte INV, il y a au total 28 cas différents de paires de transistors CNTFETs mais il y a seulement 6 cas de paires de transistors CNTFETs passants entraînant un disfonctionnement de la porte, P1,P2), (P1,P4), (P2,P3), (P3,P4), (N1,N2), (N3,N4)

S. La-probabilité-de-défaut-d, un transistor CNTFET est de Dt et si cette probabilité est distribuée également entre les deux sortes de défauts (bloqué ou passant), nous avons alors une probabilité pour chaque type de défaut égale à Dh=Dt/2. Considérons par exemple la porte NAND2 redondante, se composant de 16 transistors CNTFETs. Cette porte fonctionne correctement quand les 16 transistors sont bons, ce qui survient avec une probabilité, -Dt) 16 ], ou si seulement l'un de ces 16 transistors est défectueux, cas ayant une probabilité

L. Anghel and M. Nicolaidis, Defects Tolerant Logic Gates for Unreliable Future Nanotechnologies, Computational and Ambient Intelligence, 9th International Work- Conference on Artificial Neural Networks -IWANN, pp.422-429, 2007.
DOI : 10.1007/978-3-540-73007-1_52

URL : https://hal.archives-ouvertes.fr/hal-00547514

J. Appenzeller, J. Knoch, . Ph, and . Avouris, Carbon nanotube field-effect transistors-an example of an ultra-thin body Schottky barrier device, 61st Device Research Conference. Conference Digest (Cat. No.03TH8663), pp.167-170, 2003.
DOI : 10.1109/DRC.2003.1226919

J. Appenzeller, J. Knoch, M. Radosavljevic, . Ph, and . Avouris, Multimode Transport in Schottky-Barrier Carbon-Nanotube Field-Effect Transistors, Physical Review Letters, vol.92, issue.22, pp.226802-226803, 2004.
DOI : 10.1103/PhysRevLett.92.226802

J. Appenzeller, Y. M. Lin, J. Knoch, . Ph, and . Avouris, Band-to-Band Tunneling in Carbon Nanotube Field-Effect Transistors, Physical Review Letters, vol.93, issue.19, pp.196805-196806, 2004.
DOI : 10.1103/PhysRevLett.93.196805

A. Ph, Molecular Electronics with Carbon Nanotubes, Accounts of Chemical Research, vol.35, issue.12, pp.1026-1034, 2002.

P. Avouris and J. Appenzeller, Electronics and optoelectronics with carbon nanotube, The Industrial Physicist, vol.10, issue.18, 2004.

A. Bachtold, Logic Circuits with Carbon Nanotube Transistors, Science, vol.294, issue.5545, pp.1317-1320, 2001.
DOI : 10.1126/science.1065824

D. Baschiera, modélisation de panes et méthodes de test de circuits intégrés CMOS, thèse de doctorat, 1986.

D. Bhanduri, Design and analysis of defect-and faut-tolerant nano-computing systems, thèse de doctorat, 2007.

L. Castro, Modeling of Carbon Nanotube Field-Effect Transistors " , thèse de doctorat, university of British Columbia, 2006.

H. Chen, A Reconfiguration-Based Defect-Tolerant Design Paradigm for Nanotechnologies, IEEE Design and Test of Computers, vol.22, issue.4, pp.316-326, 2005.
DOI : 10.1109/MDT.2005.76

Z. H. Chen, An Integrated Logic Circuit Assembled on a Single Carbon Nanotube, Science, vol.311, issue.5768, pp.1735-1735, 2006.
DOI : 10.1126/science.1122797

I. Connor07-]-o-'connor, J. Liu, F. Gaffiot, F. Pregaldiny, C. Lallement et al., CNTFET Modeling and Reconfigurable Logic-Circuit Design, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.54, issue.11, pp.2365-2379, 2007.
DOI : 10.1109/TCSI.2007.907835

. Crou98 and A. Crouch, Semiconductor IC Test and Design-for-Test Fundamentals, 1998.

M. Daenen, The Wondrous world of carbon nanotubes, 2003.

T. Dang, Nanotubes de carbone, SET et QCA en logique : modélisation de fautes, 2005.

V. Derycke, Carbon Nanotube Inter- and Intramolecular Logic Gates, Nano Letters, vol.1, issue.9, pp.453-456, 2001.
DOI : 10.1021/nl015606f

C. Dwyer, Design tools for a DNA-guided self-assembling carbon nanotube technology, Nanotechnology, vol.15, issue.9, pp.1240-1245, 2004.
DOI : 10.1088/0957-4484/15/9/022

C. Dwyer, M. Cheung, and D. J. Sorin, Semi-empirical SPICE models for carbon nanotube FET logic, 4th IEEE Conference on Nanotechnology, 2004., pp.35-39, 2004.
DOI : 10.1109/NANO.2004.1392359

M. Fourfath, The effect of device geometry on the static a dynamic response of Carbon nanotube field effect transistors, IEEE conf. on Nanotechnology, 2005.

M. S. Fuhrer, High-Mobility Nanotube Transistor Memory, Nano Letters, vol.2, issue.7, pp.755-759, 2002.
DOI : 10.1021/nl025577o

N. Fumiyuki, Possibility and Fabrication of Carbon-Nanotube Transistors " , International Workshop for Carbon Nanotube and its applications, 2005.

B. Gojman, H. Hsin, J. Liang, N. Nezhdanova, and J. Saini, Y-Junction carbon nanotube implementation of intramolecular electronic NAND gate, 2004.

S. Goldstein, Reconfigurable computing and electronic nanotechnology, Proc. IEEE ASAP'03, pp.132-143, 2003.
DOI : 10.1109/asap.2003.1212837

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3909

J. Guo, A Numerical Study of Scaling Issues for Schottky-Barrier Carbon Nanotube Transistors, IEEE Transactions on Electron Devices, vol.51, issue.2, pp.172-177, 2004.
DOI : 10.1109/TED.2003.821883

J. Guo, Performance Analysis and Design Optimization of near ballistic carbon nanotube field-effect transistors, IEDM technical Digest, pp.703-706, 2004.

J. Guo, Towards Multi-Scale Modeling of Carbon Nanotube Transistors, 1818.

J. Han and D. Jonker, A system architecture solution for unreliable nanoelectronic devices, IEEE Transactions On Nanotechnology, vol.1, issue.4, pp.201-208, 2002.
DOI : 10.1109/TNANO.2002.807393

J. Han and P. Jonen, A defect- and fault-tolerant architecture for nanocomputers, Nanotechnology, vol.14, issue.2, pp.224-230, 2003.
DOI : 10.1088/0957-4484/14/2/324

J. Han and P. Jonker, A defect- and fault-tolerant architecture for nanocomputers, Nanotechnology, vol.14, issue.2, pp.224-230, 2003.
DOI : 10.1088/0957-4484/14/2/324

J. Han, Thesis " Fault-tolerant architectures for nanoelectronic and quantum devices, thèse de doctorat, 2004.

J. Han and P. Jonker, Toward Hardware-Redundant, Fault-Tolerant Logic for Nanoelectronics, IEEE Design and Test of Computers, vol.22, issue.4, pp.328-339, 2005.
DOI : 10.1109/MDT.2005.97

S. Han, Synthesis and Device Applications of Aligned Single-Walled Carbon Nanotubes on Sapphire " , International Workshop for Carbon Nanotube and its applications, 2005.

S. Hasan and J. Guo, Monte Carlo Simulation of Carbon Nanotube Devices, Journal of Computational Electronics, vol.38, issue.12, pp.333-336, 2005.
DOI : 10.1007/s10825-004-7071-8

. Heath98 and J. R. Heath, A defect-tolerant architecture for, nanotechnology Science, vol.280, pp.1716-1731, 1998.

S. H. Hur, Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks, Journal of Applied Physics, vol.98, issue.11, pp.114302-114303, 2005.
DOI : 10.1063/1.2135415

A. Javey, High-?? dielectrics for advanced carbon-nanotube transistors and logic gates, Nature Materials, vol.1, issue.4, pp.241-246, 2002.
DOI : 10.1038/nmat769

A. Javey and Q. Wang, Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators, Nano Letters, vol.2, issue.9, pp.929-932, 2002.
DOI : 10.1021/nl025647r

A. Javey, Electrical properties and devices of large-diameter single-walled carbon nanotubes, Applied Physics Letters, vol.80, issue.6, pp.1064-1066, 2002.
DOI : 10.1063/1.1448850

A. Javey, Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-?? Gate Dielectrics, Nano Letters, vol.4, issue.3, pp.447-450, 2004.
DOI : 10.1021/nl035185x

A. Javey, High Performance n-Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts, Nano Letters, vol.5, issue.2, pp.345-348, 2005.
DOI : 10.1021/nl047931j

D. L. John, A Schrodinger Poisson Solver for modeling Carbon nanotube FETs, Proc. NSTI Nanotech, pp.65-68, 2004.

J. Knoch, S. Mantl, and J. Appenzeller, Comparison of transport properties in carbon nanotube field-effect transistors with Schottky contacts and doped source/drain contacts, Solid-State Electronics, vol.49, issue.1, pp.73-76, 2005.
DOI : 10.1016/j.sse.2004.07.002

S. Li, Silicon nitride gate dielectric for top-gated carbon nanotube field effect transistors, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.6, pp.3112-3114, 2004.
DOI : 10.1116/1.1824048

Y. M. Lin, J. Appenzeller, . Ph, and . Avouris, Novel structures enabling bulk switching in carbon nanotube FETs, Conference Digest [Late News Papers volume included]Device Research Conference, 2004. 62nd DRC., pp.133-134, 2004.
DOI : 10.1109/DRC.2004.1367820

Y. M. Lin, High-Performance Carbon Nanotube Field-Effect Transistor With Tunable Polarities, IEEE Transactions On Nanotechnology, vol.4, issue.5, pp.481-489, 2005.
DOI : 10.1109/TNANO.2005.851427

J. J. Liou, Advanced Semiconductor Device Physics and Modeling, 1994.

J. J. Liou, A. Ortiz-conde, and G. J. Sánchez-f, Extraction of the threshold voltage of MOSFETs: an overview, 1997 IEEE Hong Kong Proceedings Electron Devices Meeting, pp.31-38, 1997.
DOI : 10.1109/HKEDM.1997.642325

J. J. Liou, A. Ortiz-conde, and G. J. Sánchez-f, Analysis and design of MOSFETs: Modeling, Simulation and Parameter Extraction, 1998.
DOI : 10.1007/978-1-4615-5415-8

X. Liu, Synthesis Devices and Applications of Carbon Nanotubes, 2006.

C. Maneux, Analysis of CNTFET physical compact model, International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006., 2006.
DOI : 10.1109/DTIS.2006.1708733

URL : https://hal.archives-ouvertes.fr/hal-00181481

R. Martel, Carbon Nanotube Field-Effect Transistors and Logic Circuits, DAC, vol.7, issue.4, pp.94-98, 2002.

J. B. Mary, Design and simulation of fault-tolerant quantum-dot cellular automata (QCA) NOT gates " ; Thesis, 2006.

N. Neophytou, Electrostatics of 3D Carbon Nanotube Field-Effect Transistors, pp.175-176, 2004.

J. V. Neuman, Probabilistic Logics and the Synthesis of Reliable Organisms From Unreliable Components, pp.43-98, 1956.
DOI : 10.1515/9781400882618-003

K. Nikolic, A. Sadek, and M. Forshaw, Fault-tolerant techniques for nanocomputers, Nanotechnology, vol.13, issue.3, pp.357-362, 2002.
DOI : 10.1088/0957-4484/13/3/323

F. Peper, Fault-Tolerance in Nanocomputers: A Cellular Array Approach, IEEE Transactions On Nanotechnology, vol.3, issue.1, pp.187-201, 2004.
DOI : 10.1109/TNANO.2004.824034

H. W. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, Carbon Nanotube Single-Electron Transistors at Room Temperature, Science, vol.293, issue.5527, pp.76-79, 2001.
DOI : 10.1126/science.1061797

F. Prégaldiny, C. Lallement, and J. B. Kammerer, Design-oriented compact models for CNTFETs, International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006., 2006.
DOI : 10.1109/DTIS.2006.1708732

M. Radosavljevic, Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transistors, Nano Letters, vol.2, issue.7, pp.761-764, 2002.
DOI : 10.1021/nl025584c

A. Rahman, Theory of ballistic nanotransistors, IEEE Transactions on Electron Devices, vol.50, issue.9, pp.1853-1864, 2003.
DOI : 10.1109/TED.2003.815366

A. Raychowdhury, A Circuit-Compatible Model of Ballistic Carbon Nanotube Field-Effect Transistors, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.23, issue.10, pp.1411-1420, 2004.
DOI : 10.1109/TCAD.2004.835135

A. Raychowdhury and K. Roy, Carbon-Nanotube-Based Voltage-Mode Multiple-Valued Logic Design, Reed03] Reed M.A. and Lee T. (edited): " Molecular Nanoelectronics, pp.168-179, 2003.
DOI : 10.1109/TNANO.2004.842068

D. Rondoni and J. Hoekstra, Toward models for CNT devices, Proceedings of 16th Annual Workshop on Circuits, Systems and Signal Processing ProRISC'05, pp.272-278, 2005.

S. Rosenblatt, High Performance Electrolyte Gated Carbon Nanotube Transistors, Nano Letters, vol.2, issue.8, pp.869-872, 2002.
DOI : 10.1021/nl025639a

T. Rueckes, Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing, Science, vol.289, issue.5476, pp.94-97, 2000.
DOI : 10.1126/science.289.5476.94

R. Sordan, K. Balasubramanian, M. Burghard, and K. Kern, Exclusive-OR gate with a single carbon nanotube, Applied Physics Letters, vol.88, issue.5, pp.53119-53120, 2006.
DOI : 10.1063/1.2171474

. Tans98, S. J. Tans, A. R. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, vol.393, pp.49-52, 1998.

D. Tomanek and R. J. Enbody, Science and Application of Nanotubes, Fundamental Materials Research, 2002.

S. Wang, Nonvolatile Memory from Single-walled Carbon Nanotube-based Field Effect Transistors, Current Nanoscience, vol.1, issue.1, pp.43-46, 2005.
DOI : 10.2174/1573413052953147

B. Q. Wei, R. Vajtai, and P. M. Ajayan, Reliability and current carrying capacity of carbon nanotubes, Applied Physics Letters, vol.79, issue.8, pp.117-118, 2001.
DOI : 10.1063/1.1396632

N. H. Weste and K. Eshraghian, Principles of CMOS VLSI design, 1997.

S. J. Wind, Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes, Applied Physics Letters, vol.80, issue.20, pp.3817-3819, 2002.
DOI : 10.1063/1.1480877

T. Yamada, Modeling of carbon nanotube Schottky barrier reduction for holes in air, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003., pp.244-247, 2003.
DOI : 10.1109/NANO.2003.1231761

Z. X. Yan and M. J. Deen, Physically-based method for measuring the threshold voltage of MOSFETs, IEE Proceedings G Circuits, Devices and Systems, vol.138, issue.3, pp.351-357, 1991.
DOI : 10.1049/ip-g-2.1991.0060

W. Zhang and N. K. Jha, ALLCN: an automatic logic-to-layout tool for carbon nanotube based nanotechnology, 2005 International Conference on Computer Design, pp.281-288, 2005.
DOI : 10.1109/ICCD.2005.21

C. Zhou, J. Kong, and H. Daia, Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters, Applied Physics Letters, vol.76, issue.12, pp.1597-1599, 2000.
DOI : 10.1063/1.126107

X. Zhou, Band Structure, Phonon Scattering, and the Performance Limit of Single-Walled Carbon Nanotube Transistors, Physical Review Letters, vol.95, issue.14, pp.146805-146806, 2005.
DOI : 10.1103/PhysRevLett.95.146805

O. Connor, I. Liu, J. Gaffiot, F. Pregaldiny, F. Lallement et al., CNTFET Modeling and Reconfigurable Logic-Circuit Design, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.54, issue.11, pp.2365-2379, 2007.
DOI : 10.1109/TCSI.2007.907835

URL : https://hal.archives-ouvertes.fr/hal-00187137

L. T. Dang, R. Anghel, and . Leveugle, CNTFET basics and simulation, International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006., 2006.
DOI : 10.1109/DTIS.2006.1708731

URL : https://hal.archives-ouvertes.fr/hal-00105481

T. Dang, L. Anghel, and R. Leveugle, CNTFET-based Logic Gates and Simulation, Dubai, United Arab Emirates (UAE), 2006.
URL : https://hal.archives-ouvertes.fr/hal-00156737

L. T. Dang, R. Anghel, and . Leveugle, CNTFET-based Logic Gates and Characteristics, Silicon Nanoelectronics Workshop, 2007.
DOI : 10.1109/idt.2007.4437449

URL : https://hal.archives-ouvertes.fr/hal-00173965

T. Dang, L. Anghel, and R. Leveugle, CNTFET-based Logic Gates and Dispersion of Characteristics, International Design and Test Workshop (IDT'07), 2007.

L. T. Dang, R. Anghel, and . Leveugle, Structures robustes pour circuits logiques à base de CNTFET, Journées nationales du réseau doctoral en microélectronique 2008 (jnrdm08), 2008.
URL : https://hal.archives-ouvertes.fr/hal-00347976