La localisation des activités productives : les tensions entre forces centrifuges et forces centripètes.

Yassine Mansouri

▶ To cite this version:

Yassine Mansouri. La localisation des activités productives : les tensions entre forces centrifuges et forces centripètes. Economies et finances. Université du Sud Toulon Var, 2008. Français. tel-00326119

HAL Id: tel-00326119
https://tel.archives-ouvertes.fr/tel-00326119

Submitted on 1 Oct 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
UNIVERSITE DU SUD, TOULON-VAR
FACULTE DES SCIENCES ECONOMIQUES ET DE GESTION

LABORATOIRE D’ECONOMIE APPLIQUEE AU DEVELOPPEMENT
(LEAD EA 3163)

Thèse pour le Doctorat es Sciences économiques
(PhD Thesis in Economics)

présentée et soutenue publiquement
par

Monsieur Yassine MANSOURI

le 8 juillet 2008

LA LOCALISATION DES ACTIVITES PRODUCTIVES : LES TENSIONS ENTRE FORCES CENTRIFUGES ET FORCES CENTRIPETES

Membres du Jury :

Monsieur Hervé BOISMERY, Maître de conférences, Habilité à diriger les recherches, Université de la Méditerranée, Aix-Marseille II, Codirecteur de Recherche ;

Monsieur Maurice CATIN, Professeur, Université du Sud, Toulon-Var, Suffragant ;

Monsieur Michel DIMOU, Maître de conférences, Habilité à diriger les recherches, Université de la Réunion, Rapporteur ;

Monsieur Philippe GILLES, Professeur, Doyen de la Faculté des Sciences économiques et de gestion, Université du Sud, Toulon-Var, Codirecteur de Recherche ;

Monsieur Bernard GUILLON, Professeur emérite, Université de la Méditerranée, Aix-Marseille II, Rapporteur.
REMERCIEMENTS

Une thèse est le fruit d’un travail de longue haleine. Que toutes les personnes qui ont contribué, de près ou de loin, à la réalisation de ce travail soient toutes vivement remerciées.

Je voudrais en particulier adresser mes sincères remerciements à Monsieur le Professeur Philippe Gilles qui a accepté de me guider tout au long de l’élaboration de cette thèse. Sa disponibilité, ses conseils, ses encouragements et la confiance qu’il m’a accordée me furent très précieux.

Je tiens également à exprimer mes remerciements à Monsieur Hervé Boismery pour son soutien et ses encouragements.

Je remercie le Professeur Maurice Catin, le Professeur Bernard Guilhon, Michel Dimou, de m'avoir fait l'honneur de participer à ce jury de thèse, et pour l'intérêt qu'ils manifestent ainsi pour ma recherche.

Je profite de cette occasion pour remercier le Professeur Pierre Philippe Combes qui m'a aidé à vérifier mes modèles, mais aussi pour son goût de la recherche, son sens des relations humaines et le temps qu'il m’a accordé.

Mes remerciements vont aussi à tous les membres du LEAD : professeurs, chercheurs, personnels administratifs, pour leur disponibilité et la sympathie dont ils ont toujours fait preuve.

Enfin, tout ce travail n’aurait pu avoir ce dénouement sans la patience de ma femme Sabine (RANIA) - que je remercie vivement pour son travail de relecture- et l’encouragement de toute ma famille et la confiance qu’ils m’ont accordée et leur soutien de tous les instants.

Qu’ils trouvent tous ici ma profonde reconnaissance.
A la mémoire de ma sœur NADIA
Introduction générale

Les modèles proposés par la Nouvelle Economie Géographique (NEG) intègrent divers éléments dérivés de la théorie traditionnelle à propos de la localisation de l’activité économique. Cependant, cette théorie de localisation basée sur la disponibilité des ressources rares, nous apporte peu sur les causes de l’agglomération et la raison de sa croissance. La NEG propose des modèles d’équilibres généraux au sein desquels la distribution spatiale des activités économiques peut être expliquée au moyen de décisions de localisations endogènes. Les phénomènes de localisation, de concentration et de spécialisation spatiales ont été mis en exergue par ce courant en utilisant une nouvelle technique de modélisation pouvant lier théories micro et macroéconomiques.

Les interactions entre les différents marchés, entre les entreprises et leurs fournisseurs et consommateurs, ainsi que le rôle du travail en tant que facteur de production et de consommation, sont les éléments clés de ces modèles. La nouvelle économie géographique, établie sur la base du modèle de Paul Krugman (1991), a largement renouvelé la problématique théorique en la matière en proposant un ensemble de modèles stylisés des processus « centre-périphérie » et a relancé le débat entre économistes dans la mesure où elle propose une connexion entre différents thèmes de recherches en économie industrielle, de la croissance endogène et de l’économie internationale. Nous privilégierons tout au long de ce travail cette dernière voie en mettant l’accent sur la relation entre intégration régionale et localisation productive de l’activité économique. En effet, notre étude au sein de cette thèse vise à montrer, à partir d’une lecture orientée des travaux concernant l’ouverture
commercial et la localisation productive, qu’il est possible de dégager des résultats concernant la localisation industrielle en zone rurale, au sein des pays en voie de développement. Ainsi, notre étude consiste à mettre en évidence les mécanismes de diffusion de l’activité industrielle qui peuvent concerner les bassins ruraux à partir de modèles à trois régions dans les PVD durant leur première phase d’industrialisation (Catin, M et Van Huffel, C 2003-a). Dans ces modèles tri-régionaux, les facteurs de localisation sont nombreux : concurrence imparfaite, coûts de transport et économies d’échelles internes. La combinaison de ces hypothèses est à la source d’interactions marchandes entre producteurs et consommateurs.

L’analyse de l’impact de l’intégration économique sur la concentration spatiale et le développement des territoires a été profondément renouvelée à partir des théories récentes du commerce (Helpman et Krugman, 1985) et de la Nouvelle Économie Géographique (Krugman, 1991a et b).

Le modèle centre-périphérie, initialement proposé par Krugman (1991a, b 1995), offre une approche stylisée de la localisation et de la concentration géographique des activités industrielles en prenant en compte les économies d’échelle (internes et externes), les mouvements migratoires inter-régionaux et les coûts de transport. Ce modèle de base a été élargi en suivant différents axes de recherche en considérant les forces centrifuges et centripètes qui en découlent (voir la recension donnée dans Catin et Ghio 2000).

Le propos de cette thèse est de développer, dans cette perspective, une analyse de l’influence de intégration régionale sur la localisation productive en posant deux questions centrales :

De quelle manière évolue la répartition spatiale des activités économiques à mesure que les régions/pays s’intègrent davantage ?

Toutes les régions réagissent-elles de manière identiques à l’intégration ou existe-t-il un impact différencié selon les zones ou régions étudiées ?

Selon Ghio, S (1999), pendant le processus d’intégration économique, la localisation des firmes est influencée par trois facteurs :

- Les économies d’échelles et les externalités positives sont à la base de l’effet taille du marché qui constitue une force de concentration.
- L’écart de coût de production entre région provoque une concentration des firmes au centre provoquant une force centrifuge et d’autres effets de congestion.
- Un coût de transaction qui constitue non seulement un coût de délocalisation mais aussi un coût du commerce inter-régional.

La configuration spatiale de l’activité économique dépend alors de l’intensité relative des deux forces (centrifuges et centripètes), quand la force d’agglomération domine la force de dispersion, les firmes tendent à se concentrer dans la région centrale. Dans le cas contraire, les firmes seront incitées à se disperser. Les modèles de la NEG indiquent que
le rapport entre ces deux forces dépend des coûts de transaction entre les deux régions et le processus cumulatif qui en découle. En outre, l’évolution des forces d’agglomération et de dispersion est liée à la mobilité inter-régionale des travailleurs. En effet plus les entreprises se regroupent dans la région centrale, plus les opportunités d’emploi sont nombreuses dans la région. Les travailleurs de la périphérie migrent ainsi vers le centre, attirés par un différentiel salarial.

D’après Venables (2001), la distance est un facteur explicatif majeur des inégalités. En effet, la distance crée des coûts (recherche d’un partenaire, transport, contrôle/management, temps passé à échanger) qui sont intégralement supportés par la périphérie. Cette dernière région se trouve alors dans un cercle vicieux : une région périphérique, donc éloignée du centre, doit payer le coût de son éloignement, ce qui l’appauvrit d’autant plus et l’empêche d’accéder au statut du centre.

Une baisse des coûts de transport est-elle alors favorable pour la périphérie qui souhaite la rupture de ce cercle vicieux ?

Bien qu’il soit très difficile d’estimer le niveau des coûts de transport interrégionaux, il semble que la plupart des pays en voie de développement soient caractérisés par des coûts élevés et des distorsions significatives concernant les différents accès aux marchés régionaux et internationaux. La NEG a aussi investi l’économie urbaine. La littérature portant sur les villes tente de cerner les raisons qui portent les acteurs et agents économiques à se regrouper dans l’espace. Elle tente aussi de comprendre les avantages que retirent ces acteurs de l’agglomération spatiale. Une question importante abordée aujourd’hui est celle de la croissance urbaine : Dimou M., Scaffar, M et Chen, Z (2008), et Baumont, C (1999) analysent la relation entre croissance et taille de ville. Le modèle des lieux centraux de Christaller et le modèle des aires de marchés hexagonales de Lösch ont été revisités sous une version linéaire et peuvent être élargis dans cette approche à l’existence de sites particuliers, ports ou nœuds de transport, qui ont été souvent à l’origine de villes importantes.
(Fujita et Krugman, 1995 ; Fujita et Mori, 1997 ; Fujita, Mori et Krugman, 1999 ; Fujita, Krugman et Venables, 1999). De manière particulière, Krugman et Livas Elizondo (1996), dénommé KL, ont proposé un modèle centre périphérie appliquée aux PVD, où les régions sont représentées par des villes linéaires avec une rente foncière et coût de transport pendulaire domicile-travail, cherchant à spécifier les effets de l’intégration internationale de ces pays sur la concentration urbaine.

A la lumière de l’abondante littérature concernant la localisation productive de l’activité économique, nous avons tenté, au sein du premier chapitre de cette thèse, de présenter les fondements économiques du mécanisme central de la dynamique de répartition spatiale reposant sur le jeu contraire de forces centrifuges et centripètes.

Le deuxième chapitre, s’appuie sur le modèle central en économie géographique. Nous mettons en particulier l’accent sur le modèle centre-périphérie à la Krugman, (1991a, b), qui combine un modèle de concurrence monopolistique et des externalités pécuniaires associées avec des liens en amont et en aval afin de montrer et expliquer l’émergence de grandes agglomérations. Nous essaierons, à travers ce chapitre, de résumer les principaux résultats, souvent contradictoires, en les exposant dans le cadre de leurs hypothèses afin que leurs interprétations soient relativisées. L’analyse qui sera effectuée au deuxième chapitre ainsi que tout le long de notre thèse, se penchera sur les migrations interrégionales. La théorie prévoit qu’en cas de libre mobilité des travailleurs, ceux-ci doivent rejoindre la région leur proposant le revenu réel le plus important.

Nous nous sommes inspirés du modèle KL (1996), tout au long du troisième chapitre, en majorant les coûts liés aux barrières tarifaires internationales au moyen de coûts de transport intra régionaux, afin de prendre en compte le désavantage des régions périphérique (internes). Cette hypothèse nous paraît particulièrement réaliste au sein des PVD où la qualité médiocre des infrastructures de transport rend difficile le commerce 'bilatéral direct' entre des villes périphériques et le reste du monde, sauf politiques ou situation
géographique particulières. Il convient aussi de noter que notre modèle se situe dans les premières étapes de développement (d’industrialisation), c’est aussi dans ce sens que notre investigation concerne les PVD en particulier le bassin sud méditerranéen.

A partir de ces résultats, deux principaux enseignements de l’impact de la libéralisation des échanges sur la distribution entre bassins d’emploi des activités peuvent être dégagés. Tout d’abord, l’importance des infrastructures de transport dans la convergence des régions domestiques. La baisse de ces coûts motive alors les travailleurs et les firmes à s’implanter en région périphérique sans perdre les avantages liés à l’agglomération. Ainsi, les entreprises peuvent desservir le marché central, en bénéficiant d’une "rente spatiale" moins élevée.

Le second grand enseignement de cette étude est que la tendance au redéploiement des activités des grands pôles urbains vers les zones de moindre densité se confirme avec la considération des effets externes de congestion (Brakman et alii, 1996, Brakman, Van Marrewijk et Garretsen, 2001). En effet, les différents niveaux d’analyse, concernant la concentration des emplois industriels et de la population, et donc les processus de formation des villes, insistent particulièrement sur les forces d’agglomérations. Notre approche, au sein du quatrième chapitre, en introduisant un effet de congestion qui touche directement la fonction de production des firmes, vise à apporter des éléments de réponses
quant à l’importance de cette force de dispersion dans la répartition spatiale de l’activ-
décidant de se localiser dans une région, prennent en compte la taille de cette dernière
approchée par le nombre de producteurs. Ainsi, les coûts liés à la congestion ne sont pas
spécifiques ni à l’industrie ni aux firmes, mais à la taille de la ville ou de la région entière
considérée. Nous démontrons que la considération de cette force de dispersion permet de
dégager d’autres résultats élargissant les possibilités des équilibres stables de répartition
spatiale de l’activité économique.

Nous tenterons, au dernier chapitre, d’apporter une vérification empirique des prévi-
sions de l’économie géographique, en utilisant le coefficient de Pareto comme une mesure
de l’inégalité entre les villes. Tout en contribuant au débat méthodologique relatif à la
détermination et au choix le plus efficace des méthodes d’estimation du coefficient de
hiérarchisation d’une distribution rang-taille des villes (Gabaix et Ibragimov (2006) ; Di-
mou, M et Schaffar A (2007)), nous analysons la relation entre les variables de la nouvelle
economie géographique (économie d’échelle, coût de transport, congestion, part du secteur
industriel) et la variation du coefficient de Pareto (degré d’urbanisation).
Première partie

La Nouvelle Économie Géographique (NEG) : fondements et outils d’analyse
Introduction

Les éléments clés des modèles de la NEG sont la considération explicite des coûts de transport, la mesure de l’économie d’échelle, la fondation microéconomique des forces centrifuges et centripètes dans l’espace ainsi que des externalités pécuniaires. L’utilisation des économies d’échelle et des coûts de transport a favorisé le fondement d’une concurrence imparfaite. Cette dernière a été mise en avant par Dixit-Stiglitz au sein de leur approche de concurrence monopolistique. Dans cette optique, la NEG considère que la concentration géographique de l’activité économique reflète l’interaction entre la présence des rendements d’échelle croissants et des coûts de transports. Quand les coûts de transport attirent des unités de production, favorisant des économies d’échelle au sein de ces localisations proches des marchés (backward linkages), ainsi que l’offre des biens intermédiaires (forward linkages), toute chose étant égale par ailleurs, alors la concentration de la production dans une localisation tend à attirer davantage de facteurs mobiles de production, du travail notamment. Le résultat de la concentration de la force de travail mène à une demande plus importante de biens de consommation au sein de cette localisation, ce qui rend la région plus attrayante aux producteurs. Cette concentration génère différents types d’économies et de déséconomies d’agglomération qui vont conditionner les mécanismes de répartition spatiale de l’activité économique et qui peuvent en cas extrême aboutir à une configuration centre-périphérie.
Chapitre 1

Les fondements microéconomiques de l’agglomération

Le mécanisme central de la dynamique spatiale repose sur le jeu contraire de forces *centrifuges et centripètes*. Celles-ci influencent les choix de localisation des agents qui sont conduits, selon la puissance respective de ces deux types de forces, à se regrouper dans une zone et à former des villes ou des régions à forte densité, ou bien à s’éloigner les uns des autres et se répartir dans l’espace. L’étude de cette dynamique nécessite, tout d’abord, de définir les agglomérations et les forces dictant les choix de localisation dans l’espace.

1 Typologie des économies d’agglomération

La question des économies d’agglomération a été analysée, dans la littérature, de deux manières différentes : statique d’une part et dynamique d’autre part. Dans le premier cas, nous chercherons à expliquer la formation des villes ainsi que les concentrations spatiales de l’activité économique ; dans le second cas, nous nous intéresserons à l’inégalité de croissance des régions.
Chapitre 1 : La nouvelle économie géographique : fondement et outils d’analyse

1.1 Les économies d’agglomération statiques

Marshall (1890, 1892) a été le premier à se référer aux économies d’agglomération proprement dites, soit aux avantages que les firmes retirent de la proximité géographique des autres. Cette proximité géographique génère, selon lui, trois types d’économies : tout d’abord les économies reliées à la proximité d’un grand nombre de fournisseurs spécialisés (biens intermédiaires et services), puis celles reliées à la présence d’un plus grand bassin de main-d’œuvre qualifiée et stable, et finalement celles liées à la diffusion des connaissances. De ce fait, les entreprises d’une région profitent d’économies d’échelle qui ne leur sont pas internes, mais qui proviennent d’effets externes régionaux.

Le concept d’économies d’agglomérations fait référence aux avantages que les entreprises peuvent retirer de la concentration spatiale des activités économiques. Rappelons à cet égard, que s’il n’y avait pas d’économies d’échelles et d’indivisibilités à l’intérieur des entreprises, il n’y aurait aucun avantage à la concentration spatiale et, de ce fait, les activités tendraient à se disperser spatialement.

Selon Parr (2002) et Dicken et Lloyd (1990), les économies d’agglomération (baisses de coûts – au sens large – pour les entreprises) sont liées au fait qu’un grand nombre d’acteurs économiques sont agglomérés au sein d’un espace restreint. Ces baisses de coûts ne doivent pas être confondues avec celle de tous les prix auxquels font face les entreprises. Souvent, afin de bénéficier des avantages des agglomérations, les entreprises doivent payer plus cher leur loyer, leurs employés ainsi que leurs assurances. Cependant, en contre partie, ces entreprises auront toutefois accès à un grand marché, à une panoplie de fournisseurs diversifiée, ainsi qu’aux infrastructures d’une grande ville et aux fournisseurs de services. De plus, une grande ville se trouve, en général, au centre d’un réseau de communication (transports routiers, ferroviaires, aériens, mais aussi communications téléphoniques et informatiques), qui contient une grande diversité ainsi qu’une grande quantité de main
d’œuvre, et, souvent, attire une main d’œuvre qualifiée. Au sein d’une grande ville, nous trouvons également des institutions importantes telles des universités, des institutions gouvernementales (ministères, agences, système judiciaire) ainsi que des institutions culturelles, qui sont d’un intérêt économique direct (contact facile avec les chercheurs, les décideurs, ...) mais aussi indirect (création d’un milieu de vie attractif pour la main d’œuvre recherchée, accès aux diplômés, ...). Ces économies sont reliées entre elles du fait qu’elles soient externes à l’entreprise : toute entreprise qui se localise au sein de la ville en bénéficie. Cependant, un prix peut-être payé par l’ensemble des entreprises sous forme de loyers, de salaires, et parfois de taxes plus élevées : face à ces coûts, l’entreprise décide si les bénéfices générés par l’agglomération sont plus élevés aux coûts supplémentaires qui y sont associés.

Les auteurs distinguent deux types d’économies d’agglomérations statiques. D’une part les économies d’urbanisation, et d’autre part les économies de localisation :

1.1.1 Les économies de localisation

Ces économies sont celles qui sont attribuables à la présence, au sein d’une ville, d’entreprises dans la même filière. De nombreux facteurs attractifs motivent les firmes à s’y installer afin de bénéficier des externalités offertes :

i) Main d’œuvre : Des connaissances et aptitudes spécifiques sont souvent requises dans chaque type d’industrie ou de service. Très souvent, celles-ci sont acquises de manière informelle dans le cadre d’un emploi. Même la main d’œuvre qualifiée acquiert un savoir-faire important dans le marché du travail. Si une industrie est installée dans une ville, il existera donc un bassin de main d’œuvre expérienté, auquel pourra faire appel toute entreprise qui en a besoin. Les effets de ces avantages sont cumulatifs, car la main d’œuvre, elle-même, sera attirée vers une ville où il existe un grand éventail d’employeurs, recherchant les qualifications propres à l’industrie en question.
ii) **Sous-traitants et fournisseurs** : Souvent, les entreprises d’une industrie donnée feront appel à des sous-traitants semblables. Par exemple, les entreprises de fabrication de vêtements feront appel à des spécialistes afin de coudre les boutons, et auront ainsi affaire à des fournisseurs de textile. L’apparition de fournisseurs et de sous-traitants locaux fait appel aux notions de division du travail, qui remontent à Adam Smith : plus une industrie se développe au sein d’une ville, plus il sera efficace de diviser le travail. La sous-traitance et la spécialisation se multiplieront dans une ville où l’on retrouve une concentration, dans un secteur particulier. Mais, ceci est aussi fonction du secteur en question, de la valeur ajoutée des diverses étapes, ainsi que du degré de spécialisation : par exemple, un fournisseur de matériel électronique de pointe aura, sans doute, un marché international, et ne se localisera pas en fonction de la demande locale.

iii) **Economies d’échelle** : Si la sous-traitance est développée, alors chaque sous-traitant pourra, non seulement se spécialiser, mais également augmenter l’échelle de son opération, car il aura accès à un grand marché. Ces économies d’échelle, bien qu’internes à l’entreprise, ne seraient possibles – dans ce cas de figure – que lorsque l’agglomération d’entreprises spécialisées, dans une industrie donnée, aura lieu en un seul et même endroit. Un débat existe autour de la manière de traiter ce type d’économie dans un contexte d’analyse des économies d’agglomération (Parr (2002) ; Malmberg (2000)).

iv) **Clientèle** : La disponibilité de secteurs industriels variés, ainsi que l’offre d’une variété de biens, rend plus facile l’accès aux clients. Par exemple, nous retrouvons souvent, dans les centres commerciaux, une multitude de magasins de vêtements. De manière paradoxale, la multiplication de compétiteurs entraîne la multiplication de clients, car ces derniers savent où se rendre afin d’accéder à une plus grande variété de boutiques. Évidemment, ceci suppose aussi une compétition importante entre les entreprises œuvrant dans cette industrie, ce qui entraîne des baisses de coûts, mais aussi la différenciation entre produits, ainsi que l’innovation. Nous voyons, d’ailleurs, comment ces notions liées aux
économies de localisation se rapprochent de celles liées aux milieux d’innovation et aux districts industriels.

v) **Infrastructures spécialisées** : Chaque industrie nécessite l’accès à certaines infrastructures. Parfois, celles-ci sont spécialisées (comme des pistes d’atterrissage pour les entreprises de l’aéronautique ou des quais de débarquement spécialisés pour le transport du bétail). Là où il y a spécialisation industrielle, nous retrouverons de telles installations spécialisées, car le coût sera divisé entre de nombreux utilisateurs. Un volume suffisant justifiera la construction et le maintien de ces installations.

vi) **Institutions spécialisées** : Dans le cadre d’économies de localisation, les institutions dont il est question, sont celles liées au secteur comme des institutions financières spécialisées, des chambres de commerce ainsi que des groupes de lobbying représentant, au niveau local, les intérêts de l’industrie.

1.1.2 Les économies d’urbanisation

Ces économies sont d’ordre plus général, par rapport aux économies de localisation. Elles sont liées, sur un territoire donné, à la présence d’un grand nombre d’activités différentes, parfois complémentaires ou sans aucun lien, excepté lors de leur présence sur un seul et même territoire. En pratique, il devient de moins en moins sûr que les économies de localisation puissent vraiment se développer en dehors d’agglomérations assez grandes. Ceci est dû, en partie, au fait que les compétences dans l’économie du savoir sont de plus en plus transversales. Ce serait de plus en plus de professions ou d’occupations particulières que chercheraient les entreprises, plutôt que des connaissances spécifiques à une industrie particulière (Markusen 2002 ; Markusen et King, 2003). Par ailleurs, le rôle d’infrastructures spécifiques revêt de moins en moins d’importance dans le contexte de l’économie du savoir, les économies d’urbanisation ont tendance à croître avec la taille urbaine. Une fois de plus, nous pouvons identifier plusieurs types d’économies liées à la
localisation au sein d’une ville.

i) diversité de la main d’oeuvre : De plus en plus, les entreprises nécessitent, outre des spécialistes, des main-d’oeuvres possédant des capacités transversales (en informatique, en vente, en gestion), ou bien sans compétence particulière (centres téléphoniques, secrétariat de base, agents de sécurité…). Ces deux types de main-d’oeuvres sont facilement disponibles au sein d’une grande agglomération, mais ne sont pas particulièrement attirées par une industrie spécifique.

ii) facilité d’expansion et de contraction : Au sein d’une grande ville, une entreprise peut facilement croître, grâce à la présence d’une grande quantité de main d’oeuvre, qu’elle formera, si son expansion en dépend. Une grande diversité de locaux existe également. Concernant les travailleurs, une grande ville rend plus facile la perspective de perte d’emploi, du fait qu’une multitude d’employeurs (et d’industries) existe. De ce fait, si une entreprise (ou une industrie) est en difficulté, des alternatives sont toutefois possibles.

iii) infrastructures générales : Les entreprises ont besoin d’accès à des infrastructures générales, comme un aéroport international avec des vols directs, ou encore des autoroutes permettant l’accès facile aux grands marchés, une bande passante aussi large que possible pour les réseaux informatiques, un réseau routier local, un réseau électrique, ainsi qu’un réseau d’évacuation des eaux, etc… La plupart de ces infrastructures opèrent au moyen d’économies d’échelles importantes comme les lignes aériennes, les transports routiers, le traitement des eaux, ou les réseaux de communication, etc… Tous sont moins chers s’ils desservent un volume important de consommateurs, Graham et Marvin (1996). Ainsi, au sein des grandes villes, nous accédons aux infrastructures générales les plus performantes et les moins chères.

iv) accès aux marchés : Dans une économie de plus en plus globalisée, les marchés et les informations sont dispersés. Les métropoles constituent des hauts points d’accessibilité. Ce sont des noeuds au sein des réseaux de communication (Castells, 1996 ; Veltz, 1999) qui
Chapitre 1 : La nouvelle économie géographique : fondement et outils d’analyse

permettent l’accès aux clients, aux fournisseurs, aux centres de recherches, aux colloques, aux foires commerciales, aux services spécialisés, ou encore aux spécialistes.

v) accès aux entreprises d’autres secteurs : La division du travail ne s’opère pas exclusivement au sein de secteurs donnés. De plus en plus d’entreprises verticales se désinent. Au sein d’un secteur manufacturier, de nos jours, une entreprise aura tendance à sous-traiter sa comptabilité, ses travaux juridiques, la reliure de ses documents ou encore son marketing. Au sein d’une grande agglomération, la division du travail peut opérer, à la fois, au sein d’industries (économies de localisation) entre industries et secteurs très différents (économies d’urbanisation). Nous voyons donc que les économies d’urbanisation reposent souvent sur deux aspects de l’agglomération : tout d’abord sur le volume (de main d’œuvre, de travail, de consommateurs...) puis sur la diversité (de qualifications, de spécialités, etc...). De telles économies sont souvent associées à Jane Jacobs (1969) qui a écrit sur l’importance de la diversification.

Les études empiriques mesurent difficilement les économies d’urbanisation par rapport aux économies de localisation (Henderson, 1997). Ce sont, souvent, des économies plus diffuses et difficilement attribuables à telle ou telle cause. Cependant, le phénomène de métropolisation lui même semble confirmer leur existence. Evidemment, de telles économies sont particulièrement importantes pour les secteurs de services.

1.2 Les économies d’agglomération dynamiques

nologie n’est pas commune à toutes les firmes et exogène, mais elle est plutôt définie selon une fonction technologique propre.

Dans le modèle de Romer (1986), les firmes entreprennent des efforts de R-D dans l’espoir de générer des innovations technologiques qui pourront, à terme, améliorer leur productivité. Une partie de ces innovations peut alors se transmettre aux firmes voisines, à travers les externalités technologiques. Par conséquent, chaque unité de capital investie par une entreprise augmente non seulement son stock de capital physique, mais aussi le niveau technologique de toutes les autres firmes dans la région, par la transmission des externalités technologiques.

Le « stock » de connaissances d’une région constitue donc un capital social qui s’accumule par l’action délibérée des firmes voulant augmenter leur propre rendement individuel. Plus le niveau technologique de la région est élevé, plus la productivité de la firme s’accroît. Ainsi, l’augmentation du taux de croissance provient des variations du stock de connaissances totales (Romer, 1986) ou du stock de capital humain (Lucas, 1988) de la région. Le niveau technologique peut aussi être représenté par le degré de sophistication technologique des biens intermédiaires (Romer, 1990). Arrow (1962) et Young (1991) développent de tels modèles par lesquels la sophistication des biens intermédiaires favorise un processus d’apprentissage par la production (learning-by-doing). Les firmes acquièrent une plus grande compréhension de leurs procédés de fabrication et découvriront ainsi de nouvelles innovations, par le fait de produire et d’utiliser des intrants avec une plus grande sophistication technologique. Cependant, les firmes, en s’agglomérant, ne prennent en compte ni les effets négatifs qu’elles entraînent dans leur localité d’arrivée (accroissement des tensions sur les marchés du travail et foncier) et d’origine (accroissement des coûts d’approvisionnement pour les agents restants), ni, réciproquement, les effets positifs sur leur localisation d’arrivée (externalités pécuniaires) et sur les agents demeurant dans la région de localisation initiale (baisse des prix des marchandises). Or, malgré les effets con-
Chapitre 1 : La nouvelle économie géographique : fondement et outils d’analyse

1.3 Mesure des économies d’agglomération

Plus récemment, certains auteurs, en se référant au modèle de la concurrence monopolistique, ont analysé plus formellement les économies d’agglomération liées à la présence plus ou moins grande, au sein d’une région, de biens intermédiaires spécialisés. D’une part, dans un marché de concurrence monopolistique, les firmes maximisent les économies d’échelle internes en concentrant la production de biens et services différenciés, dans un seul site. D’autre part, elles peuvent bénéficier d’économies d’échelle externes (économies d’agglomération citées ci-dessus) attribuables au bassin plus ou moins grand de biens intermédiaires et services spécialisés. En effet, plus les biens intermédiaires et les services sont spécialisés, plus ils sont en mesure de répondre efficacement aux besoins particuliers des entreprises et ainsi leur permettre de tirer profit d’économies d’agglomération. Selon le modèle de concurrence monopolistique de Dixit et Stiglitz (1977), comme il n’est pas...
optimal pour plusieurs firmes de produire un même bien différencié (présence de coûts fixes), il devient plus avantageux d’introduire une nouvelle variété du bien. En l’absence de barrière à l’entrée, l’apparition de nouvelles firmes force le marché à se différencier davantage. Le nombre optimal de firmes produisant des biens différenciés est déterminé en fonction des trois facteurs classiques qui, dans le modèle de concurrence monopolistique, sont : le degré de substitution, les coûts fixes reflétant le degré d’économies d’échelle et le niveau de la demande. En utilisant ce type de modèle, nous pourrons alors déterminer la taille optimale d’une ville ou d’une région. Les firmes tendent à se concentrer là où elles trouvent une grande variété de ces biens et services différenciés et spécialisés : nous appelons cela des liens en amont (backward linkages) entre producteurs et fournisseurs. Le niveau de la demande locale est également essentiel, afin de déterminer le nombre de firmes produisant des biens et services intermédiaires, au sein d’un marché de concurrence monopolistique. Ainsi, l’évaluation empirique des économies d’agglomération se fait souvent de façon indirecte ; c’est-à-dire sans observer nécessairement des relations précises de causalité. Une industrie, par exemple, est sensible à l’agglomération, si sa productivité augmente avec la taille de celle-ci (globale ou par travailleur). Donc, sans que l’on puisse mesurer précisément les externalités, la taille d’une ville ou la concentration d’une industrie peuvent être acceptées comme indice de l’existence d’économies d’agglomérations.

2 Les mécanismes de concentration spatiale en économie géographique

Le champ d’analyse de la NEG trouve ses sources dans l’observation de l’activité économique inégalement répartie à travers l’espace. La concentration de l’activité économique peut être partiellement attribuée aux différences dans les caractéristiques soulignées (Géo-

Nous démontrerons au cours du deuxième chapitre comment déterminer ce nombre optimal d’entreprise.
L’économie géographique n’est devenue un domaine de recherche prolifique, que lorsque la théorie des rendements croissants lui a été attribuée. L’application de cette dernière théorie a révolutionné l’économie industrielle, en introduisant les modèles de concurrence imparfaite dans les années 1970. Des économistes comme Chamberlin (1933), Spence (1976), ou encore Dixit et Stiglitz (1977), ont investi ce domaine, en formalisant le concept de concurrence monopolistique. Ces nouveaux outils d’analyse ont été utilisés dans le domaine du commerce international, dès la fin des années 1970 (Helpman et Krugman (1985), Grossman (1992)). La prolifération de divers modèles, dont les conclusions et les notations sont différentes, n’a pas facilité leur intégration. D’ailleurs, les avancées théoriques sont tellement variées, que les éléments communs peuvent être difficilement distingués de nos jours. Dès lors, développer une synthèse des travaux apparaît utile et nécessaire, concernant les prolongements théoriques à venir. Nous essayerons, de ce fait, d’exposer, au cours de notre analyse, les modèles de base, tout en gardant les mêmes notations, afin de faciliter la compréhension des différentes extensions qui ont tenté d’expliquer le phénomène de localisation spatiale de l’activité économique.

Au sein des premiers modèles d’économie géographique, Krugman (1991b, 1996) part d’une situation d’équilibre « instable » avec une distribution initiale des ressources (ou des firmes) aléatoires et dispersées, puis montre comment une perturbation initiale, même très faible -qui en économie spatiale peut être le choix de localisation d’une firme- peut conduire à un paysage hautement structuré avec « l’émergence » de concentrations des ressources dans certaines localités.
2.1 Choix de localisation et agglomérations : équilibre du producteur

Les coûts de transport ainsi que la localisation des sites de production ont attiré, depuis longtemps, l’attention de plusieurs économistes. Le douzième chapitre du célèbre traité d’Ohlin (1933) est intitulé "Interegional Trade Theory as Location Theory" ; les rôles primordiaux joués par la localisation des sites de production et les coûts de transport y sont déjà soulignés. Plusieurs chercheurs, dont Lösch (1940), ont tenté d’intégrer la théorie traditionnelle de la localisation des sites de production à la théorie pure du commerce international. Ohlin, Hesselborn et Wijkman (1977) pensaient y parvenir en rassemblant, dans le cadre d’un séminaire, les spécialistes de ces deux courants théoriques. Pour diverses raisons (Findlay, 1995, chap. 6), ces tentatives ont échoué.

Comme l’ont montré Scotchmer & Thisse (1992), et Fujita & Thisse (2001), l’analyse des choix de localisation spatiale des agents n’est pertinente, qu’au sein d’un univers économique affranchi des lois de la concurrence pure et parfaite. En effet, si les technologies sont convexes, la fragmentation des unités de production n’augmente pas les coûts. Dès lors, en supposant que le transport est coûteux, chaque firme peut se scinder en autant d’unités qu’il existe de localisations possibles, et toute analyse des choix de localisation et des dynamiques spatiales est évacuée. Ce résultat est connu sous le nom de « Folk theorem of spatial economics ». Plus encore, Fujita & Thisse (2001) montrent très simplement qu’un environnement concurrentiel où les producteurs sont preneurs de prix, est incompatible avec la définition d’un équilibre spatial (où les firmes et les consommateurs convergent vers des choix de localisation stables), dans une économie homogène. Le seul équilibre possible correspond à une économie où les échanges interrégionaux sont nuls.

Alfred Weber (1929), au sein de son ouvrage "Theory of the location of industries", a introduit les grandes hypothèses de localisation de la firme. Ce dernier s’est intéressé à trois arguments afin de définir le choix de localisation tels les coûts de transport, le travail
et enfin la concentration des firmes au sein d’une région.

Les coûts de transport concernent, à la fois, les inputs qu’il faut acheminer vers le lieu de production, ainsi que les produits finis qui servent le marché local. Ces coûts dépendent de la distance séparant le marché et le lieu de production, ainsi que de leurs poids (l’acheminement des inputs lourds vers les lieux de production coûte plus cher que celui des matières plus légères). Le choix optimal de localisation d’une firme s’établira dans un lieu minimisant les coûts de transports.

Le second facteur capable d’affecter les décisions de localisation des firmes est la disponibilité de la main d’œuvre et le différentiel de coûts qui en découle. Le choix de localisation de la firme dépend alors de la détermination d’un lieu, minimisant à la fois les coûts de transport et les coûts de la main d’œuvre.

Le troisième argument est la proximité des lieux de production. Weber (1929) note quatre facteurs d’agglomération : tout d’abord, le développement d’équipements techniques, puis le développement de l’organisation du travail, puis le marketing et finalement les coûts fixes. Ces facteurs, ont pour effet de concentrer la production de l’industrie sur une même localité. La démarche adoptée par Weber dans le but d’analyser les choix de localisation de la firme, a permis d’établir les bases d’un véritable débat autour de ces questions. Par contre, son travail a présenté quelques limites, à savoir l’utilisation de l’hypothèse concurrence parfaite entre les firmes. Cette hypothèse est difficile à maintenir, à cause de l’existence des coûts de transport qui influencent la localisation des firmes. De plus, Weber considère, au sein de son analyse, une fonction de production dont les coefficients techniques sont constants. Par suite, cette condition restrictive ne permet pas de voir l’impact des effets de substitution sur le choix de localisation. Son hypothèse de concurrence parfaite entre les firmes reste très difficile à maintenir dès lors que l’existence des coûts de transport peut avantager quelques firmes par rapport à d’autres.

Losch (1940) poursuit le développement de l’analyse présentée par Hotelling (1929), en
Chapitre 1 : La nouvelle économie géographique : fondement et outils d’analyse

intégrant, au sein de ses travaux, l’économie d’échelle, démontrant que la prise en compte de cette variable en plus des coûts de transport, conduit à l’émergence d’une structure de marché monopolistique. Ce dernier montre également de quelle manière la concurrence monopolistique définit la répartition spatiale de l’activité économique. Sachant que chaque firme détient un pouvoir de monopole sur son marché local, alors l’aire du marché est déterminée par la distance séparant la firme de la demande finale, ainsi que de l’économie d’échelle réalisée, qui dépend des parts de marchés détenues et donc de la proximité d’autres firmes concurrentes.

Le modèle suppose :
- Une distribution géographique uniforme de consommateurs identiques.
- Des coûts de transports proportionnels à la distance séparant les firmes des marchés.
- Des économies d’échelles

Le comportement de la localisation d’une firme, pour chaque marché, dépend de l’arbitrage que fait cette dernière entre économie d’échelle et coût de transport. Ces choix conduisent à la détermination des aires de marchés hexagonales de même taille. Au total, l’offre de monopoles de même taille permet de couvrir les besoins de tous les consommateurs uniformément répartis.

Le travail de Losch (1940) constitue une tentative sérieuse et très importante de formalisation de l’équilibre spatial. Cependant, son modèle reste limité.

En effet :
- Il suppose que les matières premières sont disponibles sur tout le territoire et, de ce fait, ne s’intéresse pas à l’importance des coûts de transport des matières premières et de leur importance dans le choix de localisation des firmes.
- Toute l’analyse est faite du côté de la production. Il ne tient donc pas compte des

2Pour une analyse plus approfondie voir Roberto Camagni (1997)
comportements des consommateurs et de leurs demandes.

- Il ne considère pas non plus l’interdépendance des biens, leur complémentarité / substituabilité ni la relation achat / vente malgré le fait que cette dernière puisse avoir une influence majeure sur le choix de localisation, à travers les réductions des coûts de transport.

2.2 Caractéristiques locales et avantages de localisation

Les agents sont aussi naturellement sensibles aux caractéristiques exogènes des localisations. Chaque région dispose de dotations en facteurs immobiles ou de ressources naturelles, influençant positivement ou négativement le bien-être des résidents ou la rentabilité des firmes locales, ce qui permet d’expliquer certains choix de localisation.

La proximité de ressources naturelles, des infrastructures de transport à caractère extranationales (ports et aéroports), ou d’instances publiques internationales, sont en général sources d’externalités positives concernant les firmes. En effet, cette proximité permet de minimiser les coûts de transport et/ou d’être à la source d’informations pouvant se révéler cruciales pour diverses entreprises du point de vue de la prise de décision. Dans la plupart des études empiriques, les auteurs ne testent pas directement ces variables dans le cadre d’une analyse dynamique de la localisation des activités. Ils supposent que les avantages naturels sont déjà réalisés au début de la période d’investigation et qu’ils ne
constituent donc plus des facteurs moteurs de la localisation des firmes. En effet, ceux-ci sont pertinents pour expliquer la configuration spatiale actuelle d’un pays, fortement conditionnée par des facteurs de type ‘avantages naturels’ ainsi que des facteurs politiques. Ces facteurs ont forgé la géographie des pays, mais plusieurs auteurs, à l’instar de Glaeser E.L., Kallal H.D., Scheinkman J.A. et Shleifer A (1992), ont émis l’hypothèse que les avantages tirés de ce type de facteurs ont déjà été réalisés en début de période, de sorte qu’ils ne sont plus pertinents dans un cadre dynamique.

S’il faut assurément prendre en considération ces caractéristiques dans les analyses empiriques, il est plus discutable d’utiliser de ce type d’arguments dans une modélisation rigoureuse. Si la différence est majeure, elle suffira à déterminer l’équilibre de répartition spatiale. Celle-ci ne sera alors plus totalement endogène, mais déterminée par une forte dissemblance naturelle des zones, ce qui interdit de tirer des conclusions d’ordre général, ou nous ramène simplement à une analyse des spécialisations qui évacue toute réflexion sur les choix de localisation et sur le développement des agglomérations spatiales. Cet argument ne peut expliquer l’essor de régions que rien ne prédisposait à devenir des centres d’activités importants. L’exemple de Los Angeles, avancé par Krugman (1991b) est une preuve évidente de l’existence d’autres facteurs déterminants de l’agglomération plus fondamentaux.

phénomènes relativement restreints, ces facteurs demeurent insuffisants afin d’expliquer le phénomène d’agglomération. Ces derniers ne sont que des prédispositions particulières, des conditions éventuellement nécessaires mais assurément insuffisantes.

Les caractéristiques locales n’expliquent donc, tout au plus, que l’émergence d’un pôle parmi différentes localisations possibles, mais non pourquoi les pôles se développent. Elles n’ont donc de valeur que dans le cadre d’une modélisation plus générale définissant le territoire à partir d’autres critères et décrivant des phénomènes d’agglomération fondés sur d’autres bases que la recherche d’aménités locales ou de facteurs immobiles.

2.3 Mécanisme de causalité cumulative et/ou circulaire

La NEG considère que la concentration de l’activité économique dans une localisation crée un environnement économique favorable, qui supporte une concentration encore plus grande. L’interaction de la demande, des rendements croissants et du coût de transport créent un processus de causalité circulaire. En présence de rendements croissants et de coûts de transports, les firmes tendent à se localiser au même endroit, et à trouver une localisation caractérisée par une large demande locale. Cette présence motive d’autres firmes à se localiser au même endroit. Ces décisions de localisations prises par les firmes et les consommateurs/travailleurs, forment ce qu’on appelle un processus d’auto-renforcement.
Chapitre 1 : La nouvelle économie géographique : fondement et outils d’analyse

Figure 1 : causalité circulaire dans la formation d’une agglomération d’entreprise et de travailleurs
Source : Fujita & Thisse, (1997)

Le schéma ci-dessus montre que toute agglomération de firme entraîne une diminution des prix des biens industriels, ainsi qu’une augmentation du nombre de variété offerts. Ces deux arguments impliquent une migration des travailleurs qui cherchent un emploi et ont une préférence pour la diversité. La localisation des travailleurs s’accompagne d’une augmentation de la demande, c’est la raison pour laquelle la concentration prend encore davantage d’ampleur et qu’un schéma centre-périphérie apparaît.

Le processus est permis grâce au double effet taille du marché. Du côté amont, l’industrie se concentre là où la demande est vaste, et du côté aval, les consommateurs se regroupent là où les biens sont les plus variés, les moins coûteux, et où les salaires offerts sont les plus attractifs. Ces deux effets s’auto-entretiennent et représentent les deux forces centripètes des modèles à mobilité parfaite. Parallèlement à ces effets centripètes, d’autres forces centrifuges interviennent. L’effet procompétitif tend, par une plus forte concurrence dans une localité, à abaisser les prix offerts, les profits et l’attractivité de la région. La
présence des agriculteurs immobiles dans la région périphérique constitue aussi une force de dispersion, car ils représentent une source de débouchés, et donc une demande localisée.

La relation circulaire dans laquelle la localisation de la demande détermine celle de la production, et vice versa, peut-être une force profondément conservatrice. Ces relations circulaires renforcent les différences dans les structures de production, et engendrent l’apparition de différentes tailles de marché, qui au départ étaient similaires. Les localisations avec une large population se spécialisent dans la production des biens pour lesquelles l’économie d’échelle, la différenciation des produits et les coûts de transport sont significatifs. Avec un large marché local, les producteurs de biens hautement différenciés peuvent trouver une demande suffisante afin d’exploiter les économies d’échelle, contrairement aux localisations des petits marchés qui tendront à se spécialiser dans la production de produits standards ou de produits pour lesquels le coût de transport ou les économies d’échelle ne sont pas significatives.

2.4 Tension entre forces centripètes et forces centrifugues

Le "corpus" théorique qui s’est installé au début des années 1990, visant à étudier les éléments déterminants de la localisation géographique des activités industrielles, dans une zone d’intégration économique caractérisée par une baisse des coûts de transport au sens large, est similaire à ce que l’on peut rencontrer en sciences physiques : des forces complémentaires ou antagonistes s’affrontent dans le temps et l’espace, et leur résultante détermine la localisation géographique des industries. Elles peuvent être classées en deux catégories. Des forces centripètes poussent à la concentration des activités de production. A l’opposé, des forces centrifugues conduisent à une dispersion des industries. L’enjeu est de connaître, pour des valeurs de coûts de transport données, lequel de ces deux ensembles de forces domine.

Selon Krugman, (1998b), Fujita et Thisse (2002), les firmes font face à trois sources
potentielles de forces centripètes :

- Liens en aval (forward linkages) Liens en amont (backward linkages)
- Bassin d’emploi qualifié : la concentration géographique de l’activité économique favorise la spécialisation de la main d’œuvre qualifiée.
- Les externalités.

Outre les forces d’agglomération, les forces de dispersion expliquent l’existence de plusieurs concentrations. Les forces centrifuges qui poussent l’activité économique à s’éloigner du centre, sont dues aux coûts de transport qui font face aux facteurs immobiles (terre, ressources naturelles, les agriculteurs et les consommateurs) et des externalités négatives. La compétition entre les entreprises peut aussi représenter une force de dispersion (Duranton, 1997). En effet, étant donné le haut degré de compétition situé au centre, les entreprises ont tendance à se localiser en périphérie, dans le but d’éviter une concurrence acharnée.

d’échelle sont externes aux firmes. La source de ces externalités intra-industrielles n’est pas précisée. Cependant selon Marshall (1920), l’agglomération se produit à cause de la proximité des entreprises dans un même lieu où l’apprentissage et l’échange d’idées sont facilitées.

2.4.1 Les externalités

 Forces centripètes par excellence, ces externalités positives sont indispensables à l’explication des phénomènes d’agglomération résultant des choix de localisation des individus et des firmes. Les introduire dans les modèles (en supposant toutefois que leur intensité décroît avec la distance séparant les agents) revient à admettre l’existence d’un intérêt intrinsèque à la recherche de la proximité entre les agents économiques.

Nous pouvons distinguer deux grands types d’externalités : tout d’abord, les externalités technologiques et, ensuite, les externalités pécuniaires.

2.4.1.1 Les externalités technologiques : Elles regroupent l’ensemble des influences hors-marché, traduites directement au sein des fonctions de production et d’utilité. Elles correspondent essentiellement aux échanges de savoir-faire et de connaissances entre agents, et aux relations non économiques de la socialisation. Elles comprennent donc les
efforts de R&D ou les échanges informels de savoir-faire venant améliorer l’efficacité des autres firmes, de façon totalement fortuite, incontrôlable et imperceptible par la simple observation des marchés. Elles regroupent aussi le plaisir que les individus peuvent tirer des relations humaines. L’introduction de telles relations représentent une explication si évidente des phénomènes d’agglomération, qu’il est tentant de s’en remettre à elles afin d’expliquer la concentration des activités. Ainsi, lorsque Lucas écrit cette phrase si souvent reprise : “What can people be paying Manhattan [. . .] rents for, if not for being near people? ”, il sous-entend que l’agglomération résulte exclusivement de l’avantage tiré de ces économies informelles, et justifie ainsi l’introduction d’une externalité technologique dans son modèle. Cependant, l’intérêt que les individus peuvent tirer d’un choix de localisation dans une zone de forte densité, ne réside pas forcément dans la volonté d’être physiquement proche des autres, mais aussi à la recherches d’externalités pécuniaires.

Par ailleurs, le nombre d’externalités technologiques est forcément important et croissant avec la taille de l’économie et la variété des agents et des secteurs de production. Chacune d’entre elle utilise un canal propre, a une influence particulière sur certains agents et, surtout, possède un champ d’action différent des autres. Ainsi, certaines de ces externalités demeurent confinées à une rue ou un quartier, d’autres à une ville, une région ou un pays, d’autres enfin ne connaissent pas, a priori, de limites spatiales (voir notamment Martin & Ottaviano (1999) pour un exemple de l’importance que revêt la définition de l’étendue spatiale des externalités). Sans mesure précise du champ d’influence de ces externalités, nous ne pouvons expliquer les dynamiques spatiales au sein d’un territoire homogène mais seulement observer leur impact sur des territoires prédéfinis.

Si les externalités technologiques peuvent donc être perçues comme insuffisantes pour élaborer un cadre théorique, visant à avoir une portée aussi large que possible, elles ne sont pas pour autant sans pertinence. De nombreuses études empiriques démontrent leur importance (Henderson (1995), Coe & Helpman (1995), Audresch & Feldman (1996), Bap-
tista (2000), Keller (2000)). Toutefois, nous ne pouvons pas déterminer, avec exactitude, l’ampleur spatiale et la nature de ces externalités, ni dans quelle mesure les estimations ne couvrent des dynamiques d’agglomération plus profondes (Ellison & Gleaser (1997)). Le fait de ne pas pouvoir affirmer clairement si elles sont internes à un secteur ou issues de la diversification (des secteurs), est une preuve supplémentaire des difficultés à cerner ces forts déterminants de la localisation (Combes (2000), Maurel (1997)). Les externalités pécuniaires regroupent elles aussi des interactions entre individus ; elles représentent l’influence que chaque individu a, du simple fait de son activité économique, sur la taille et les prix du marché local.

2.4.1.2 Les externalités pécuniaires : Les externalités pécuniaires et leurs conséquences sont plus difficiles à cerner. Elles viennent valoriser les choix de localisation dans les territoires accueillant déjà une activité économique importante, et sont donc, elles aussi, susceptibles de provoquer une agglomération spatiale. Nous en distinguons trois familles (déjà énoncées par Marshall) :

- La taille et les caractéristiques du marché du travail : Plus une région regroupe de firmes hétérogènes, plus la demande de travail sera importante et diversifiée. La constitution d’un vaste bassin d’emploi, issu des demandes indépendantes de chaque firme, profitera ainsi à l’ensemble des firmes, qui pourront y trouver les quantités, et surtout les qualités de travail correspondant au mieux à leurs besoins.

- Les relations de sous-traitance (input-output) : De même que pour le marché du travail, la présence au sein d’une même localisation, d’un grand nombre de firmes, accroît la demande globale de biens et services intermédiaires, ce qui attire les firmes de ces secteurs. La densité industrielle accroît donc, pour chaque firme, les chances de trouver des biens intermédiaires correspondant à ses besoins précis, sans supporter de coûts de transport et de recherche importants. De même, une forte densité des activités économiques autorise
la création de biens publics. La qualité des infrastructures, lorsqu’elle est en partie endogène, peut donc être vue, par extension, comme un canal de transmission d’externalités pécuniaires.

- La taille du marché de bien final : Les firmes (produisant à rendements croissants) ont intérêt à s’implanter dans les territoires les plus denses, regroupant le plus de consommateurs, puisque la présence d’un coût de transport vient affaiblir sa compétitivité dans les autres régions. Puisque les rendements croissants leur imposent de choisir une localisation unique, elles auront naturellement tendance à s’implanter dans la région la plus grande (centrale).

Les externalités pécuniaires n’ont de caractère spatial, que si l’on prend en compte des limites à la mobilité des biens et/ou des facteurs. Les coûts de transport des marchandises, les coûts de déplacement devant être payés par un individu dans le but de consommer un service non échangeable. La puissance des externalités pourra donc être parfaitement intégrée au calcul économique, sans imposer des limites spatiales aux forces d’agglomération.

2.4.2 La concurrence

Les forces centrifuges sont plus simples à caractériser. Elles sont issues des diverses limites spatio-économiques susceptibles de distinguer géographiquement les marchés, et d’introduire, de ce fait, des distorsions de la concurrence interrégionale.

La concurrence observée sur les trois marchés concernés (marché du travail, marché des biens finals, marché des biens intermédiaires) naît des mêmes origines que ces dernières et constituent leur principale force de rappel.

Les limites à la mobilité des biens, assimilées à un coût parfois élevés, sont à l’origine des forces centrifuges, dans la mesure où les firmes auront toujours tendance à fuir la concurrence des territoires les plus denses. En effet, chaque firme dispose d’un avantage
chapitre 1 : la nouvelle économie géographique : fondement et outils d’analyse

relatif à répondre à la demande locale, puisque les biens qu’elle fournit seront moins chers que ceux provenant du territoire voisin (soit que les biens importés subissent un coût de transport reflété dans les prix, soit que le consommateur doive se déplacer d’une région à l’autre, ce qui entraîne un coût supplémentaire direct, soit encore que les firmes intègrent le coût de transport dans leurs fonction de profit, ce qui donne un avantage de profitabilité à la firme locale). Les analyses des choix stratégiques de localisation de la production s’inscrivant dans la continuité de Hotelling (1929) (Hamilton (1989), Anderson & Neven (1991), Combes (1997), Mayer (2000)) montrent que les profits de chaque firme sont, toutes choses égales par ailleurs, décroissants avec le nombre de firmes présentes dans la région. D’autre part, le coût de transport et les rendements croissants donnent, à chaque firme, un avantage à se localiser sur le marché central. Elles sont donc face à un arbitrage entre l’intensité de la concurrence et l’importance du marché local. L’équilibre spatial sera alors atteint lorsque le coût issu de la proximité des concurrents égale le gain à se localiser au plus près des centres, offrant le meilleur accès à la demande. Ce type de raisonnement développé sur les conditions d’offre de la firme, est compatible aussi avec les marchés amonts des biens intermédiaires et du travail. Une forte concentration de firmes dans une région, attire une main d’œuvre (respectivement production d’intrants) abondante et diversifiée, ce qui constitue une force d’attraction, mais, sur ce marché plus large, la concurrence entre demandeurs de travail (respectivement de biens intermédiaires) est plus importante et les salaires (respectivement prix des intrants) peuvent y être plus élevés qu’en périphérie. Ce désavantage compétitif endogène constitue alors une force de dispersion.

Cette force de dispersion est, sans aucun doute, pertinente, mais, il est difficile de l’isoler pour la mettre clairement en lumière dans des analyses empiriques. Théoriquement, l’étude des choix de localisation doit conduire à l’observation d’une influence négative du nombre de firmes déjà installées dans le territoire sur l’attractivité de ce dernier. Pourtant,
les analyses de choix de localisation des IDE aboutissent, dans l’immense majorité des cas, à l’existence d’externalités technologiques fortes, dépassant en intensité l’influence de la concurrence locale (l’impact global du nombre de firmes concurrentes sur le choix de la localisation est positif). Notons cependant, que le fait d’observer le comportement des firmes multinationales, s’il est pleinement justifié, puisque les IDE sont les seules décisions d’implantations nouvelles clairement identifiables, entraîne cependant un biais dans l’analyse, dans la mesure où ces firmes sont, sans aucun doute, plus affectées par les externalités technologiques que la moyenne des entreprises. Leur mauvaise connaissance du milieu local les incite à adopter un comportement mimétique afin d’économiser les coûts d’exploration et minimiser les risques. Leur origine étrangère laisse aussi plus de place aux complémentarités technologiques et aux transferts de connaissances. Les FMN sont aussi, à priori, moins affectées par la concurrence locale, dans la mesure où l’on peut penser qu’elles proposent des produits plus différenciés. Surtout, une analyse plus détaillée (sectoriellement et géographiquement) et une meilleure prise en compte des autres déterminants de la localisation (notamment de la demande qui leur est adressée) permet de mieux cerner les externalités pécuniaires, et donc de réduire l’importance observée des externalités technologiques. Crozet, Mayer & Mucchielli (2000), qui analysent les choix de localisation des IDE en France, parviennent ainsi à faire ressortir pour certains couples pays/secteurs, un effet négatif de la concentration de la concurrence et montrent que le jeu concurrentiel apparaît plus déterminant, au fur et à mesure que l’intégration s’intensifie et que les FMN développent leur connaissance du territoire d’accueil.
3 Les modèles de la "NEG" : résultats antagonistes ou complémentaires ?

Les externalités pécuniaires présentées ci-dessus se combinent naturellement pour engendrer des processus d’agglomération auto-entretenus. Ces processus cumulatifs sont au coeur de la dynamique décrite par les modèles d’économie géographique, mais ils ont été pleinement définis bien avant que les progrès des techniques de modélisation n’autorisent leur inscription dans un cadre d’analyse formel.

Les rendements croissants et les coûts de transport sont à l’origine d’une externalité pécuniaire qui incite les firmes à se localiser dans les régions les plus grandes et les plus centrales, et qui offrent un accès privilégié à la demande finale. La concentration vient réduire les prix dans cette localisation (les consommateurs ne payent pas le coût de transport sur un grand nombre de produits), ce qui attire de nouveaux consommateurs. Nous avons bien une dynamique double : la concentration de la production dans les régions à forte demande constitue un effet d’entraînement amont (forward linkage), qui est soutenu et complété par un effet d’entraînement aval (backward linkage), résultant de l’intérêt des consommateurs à se rapprocher physiquement des lieux concentrant l’offre.

Nous comprenons aisément que ce type de relation peut survenir sur les trois marchés (travail, biens intermédiaires et biens finals), mentionnés par Marshall comme lieu d’expression d’externalités pécuniaires spatiales. De fait, nous pouvons additionner ces relations cumulatives, en intensifiant ainsi les forces d’agglomération. La nouvelle économie géographique développe les intuitions présentées ci-dessus dans un cadre théorique de concurrence monopolistique. L’utilisation de la concurrence monopolistique libère l’analyse de la prise en considération du jeu stratégique des firmes. Si cela nuit certainement à la précision des modèles, cette spécification simplifie grandement l’analyse et lui donne

un caractère macro-économique plus propice aux analyses portant sur les dynamiques régionales.

3.1 Modèles de biens différenciés

Ces modèles demeurent conceptuellement proches des modèles de commerce international de biens différenciés (Krugman (1980), Helpman & Krugman (1985)). En démontrant qu’en présence de coûts de transport non nuls la taille des marchés locaux influence la compétitivité des firmes et les spécialisations, ces théories contiennent les germes d’une analyse spatiale plus poussée. Ignorées pendant une décennie, les implications de ces modèles sur les questions de la concentration endogène des activités économiques sont mises en lumière par Krugman & Venables (1990). En ajoutant simplement un secteur à rendement constant, ils montrent que le pays disposant du plus large marché tendra à se spécialiser dans la production du bien différencié bénéficiant d’économies d’échelle. Le degré de spécialisation des économies dépend surtout du niveau des coûts de transport. En effet, si les coûts de transport sont importants, les exportations ne représentent qu’une très faible part des ventes de chaque firme, elles seront donc incitées à préférer une localisation dans une région plus petite mais où la concurrence est moins forte. En revanche, des coûts de transport faibles intensifient la concurrence dans l’ensemble de l’économie, et les firmes auront tendance à se localiser dans la plus grande région afin de bénéficier des économies d’échelle et de demeurer compétitives. Comme le montrent Fujita & Thisse (1997), l’introduction d’une différenciation des produits et d’une demande de variété vient, par ailleurs, renforcer les forces d’agglomération. Tout d’abord, lorsque les firmes produisent non plus un bien homogène, mais des variétés distinctes d’un même bien, leurs productions sont alors imparfaitement substituables et la concurrence qu’elles exercent les unes sur les autres s’en trouve amoindrie. De ce fait, la principale force centrifuge (la pression de la concurrence intra-régionale) se fait moins pesante, ce qui accroît les risques d’aggloméra-
Chapitre 1 : La nouvelle économie géographique : fondement et outils d’analyse

Toutefois, les consommateurs expriment surtout un “amour pour la variété” . En effet, pour une dépense totale donnée, ils consomment l’ensemble des variétés, quelle que soit leur provenance, et leur utilité croît avec le nombre de variétés consommées. De ce fait, les consommateurs résidant dans une région centrale bénéficieront d’un indice de prix de leur consommation plus faible et leur utilité y sera donc plus élevée. S’ils peuvent, eux aussi, choisir leur localisation, ils migreront vers cette région. La différenciation permet donc de coupler l’effet d’entraînement amont à un effet d’entraînement aval et d’expliquer ainsi, la formation d’une structure centre-périphérie. Ce cas correspond au modèle de Krugman (1991a, b), qui introduit les migrations dans le modèle de 1990, postulant que les travailleurs sont mobiles, ce qui veut dire qu’une migration immédiate aura lieu devant le moindre différentiel de salaire entre les deux régions. Cette caractéristique conduit au mécanisme d’agglomération, et à égaliser les salaires régionaux. Ce modèle sera présenté au cours du deuxième chapitre.

3.2 Modèles de biens homogènes

Il est évident que l’effet d’agglomération, décrit ci-dessus, ne peut apparaître si les biens de consommation sont parfaitement homogènes. Dans ce cas, aucune firme ne peut trouver de part de marché en proposant son bien à un prix plus élevé que les autres. Se rapportant à la situation de “dumping réciproque” (Brander & Krugman (1983)) où les firmes proposent un prix à l’exportation identique à celui pratiqué par les firmes locales, mais différent du prix à la production, et en prenant donc à leur charge le coût de transport, alors dans ce cas, les prix sont identiques dans l’ensemble des régions, et l’effet d’entraînement aval disparaît. Les modèles de biens homogènes offrent donc un cadre pertinent dans le but d’analyser les choix de localisations des firmes dans un espace donné (notamment en mettant l’accent sur les jeux stratégiques), mais ne peuvent pas rendre compte pleinement des dynamiques spatiales macro-économiques.
3.3 Intégrations économiques et polarisation

Chapitre 1 : La nouvelle économie géographique : fondement et outils d’analyse

Chapitre 1 : La nouvelle économie géographique : fondement et outils d’analyse

dans l’industrie), ce qui rend moins probable l’émergence d’une structure polarisée, en cas de faible mobilité intersectorielle. Il montre surtout que le retour à un équilibre dispersé, avec de très faibles valeurs des coûts de transport, n’est possible qu’en cas d’absence de migrations.

Ludema & Wooton (1997) parviennent au même type de résultat, en introduisant simplement des coûts de migrations (ce qui rend ce modèle particulièrement pertinent pour l’analyse des dynamiques au sein de l’Union Européenne). Le surplus de salaire que doivent payer les firmes du centre, afin de compenser le coût de migration, et attirer de nouveaux travailleurs, est, là encore, une force de dispersion suffisante pour briser la stabilité de l’équilibre polarisé, pour de faibles valeurs des coûts de transport. Trionfetti (1997) montre aussi qu’une politique budgétaire appropriée peut faciliter le retour à un équilibre dispersé pour de faibles valeurs des coûts de transport. Par ailleurs, Martin & Rogers (1995) ont montré qu’une politique appropriée d’investissements publics d’infrastructures pouvait favoriser le retour à davantage de cohésion régionale. Ainsi, la relation positive entre l’intégration et la concentration des activités mise en évidence par les modèles de la NEG, apparaît effectivement comme un fort résultat que l’on retrouve dans tous les cas de figures étudiés. Cependant, en nuançant les hypothèses de ces modèles, nous pouvons faire apparaître des forces centrifuges supplémentaires (comme la congestion⁵), multiplier les équilibres susceptibles de surpasser la dynamique profonde du modèle. Nous montrons ainsi que la relation entre intégration et divergence des structures économiques régionales n’est pas aussi solide que le laissaient penser les premiers travaux. Une intégration très poussée peut renforcer la cohésion régionale (KL (1996). Ces modèles plus récents, introduisent ainsi un espace d’expression des politiques économiques d’aménagement du territoire et de développement régional, et déplacent le débat d’un arbitrage entre intégration et cohésion vers un arbitrage plus délicat à analyser, entre la libéralisation des

⁵Cette force centrifuge sera exploitée au cours du quatrième chapitre.
Chapitre 1 : La nouvelle économie géographique : fondement et outils d’analyse

43

mouvements de facteurs et la cohésion dans une économie intégrée.

4 Croissance et localisation

Nous faisons référence, à travers cette section, au rapprochement effectué entre les théories de la croissance endogène et l’économie géographique. Formaliser à la fois une croissance endogène et une répartition endogène des activités est une tâche particulièrement difficile. Ceci peut expliquer pourquoi l’association de ces deux domaines fut relativement tardive. Deux faits stylisés soulignent pourtant d’éventuelles relations entre croissance et répartition (Martin & Ottaviano, 1996). D’une part, la concentration spatiale et la croissance des activités sont positivement corréllées. D’autre part, la géographie des secteurs productifs et innovants sont relativement proches. Ces faits incitent à préciser la nature des liens entre activités de production et d’innovation. La croissance influence effectivement la décision de localisation des firmes, ce qui altère le rythme de la croissance.

L’introduction d’un troisième secteur tel que la R&D et les externalités (spillovers) qui en découlent, permet d’analyser l’impact qu’elles peuvent avoir, non seulement sur les décisions de localisation géographique des firmes, mais aussi sur le développement global et régional de l’industrie. En effet, deux formes de spillovers sont prises en compte :

- "Global spillovers"

C’est l’hypothèse selon laquelle les externalités de l’investissement en R&D effectué
par un pays bénéficient à l’ensemble de la région (Grossman-Helpman (1990)). Dans ce cas l’économie géographique et la croissance sont indépendantes, puisque l’innovation est considérée comme un bien collectif. Ainsi, les firmes ne sont plus motivées à investir individuellement en R&D, et par conséquent ceci affecte négativement la croissance de l’économie, dans le sens où cette dernière dépend de la création de nouvelles unités de production, et non pas du transfert de productions entre les deux régions.

— "Local spillovers"

Le second cas se caractérise par la considération de la région où s’effectue l’investissement de R&D qui bénéficie des externalités (local spillovers Gleaser et al (1992)). Rappelons que les externalités de R&D sont analysées en termes de baisse du coût des prochaines innovations. Cet avantage offert aux firmes d’accéder aux nouvelles innovations, avec des moindres coûts, est à l’origine de l’attraction spatiale et de l’agglomération des unités de production. La géographie économique exerce une grande influence sur le taux de croissance de l’économie. En effet, l’agglomération des entreprises crée une réelle incitation à la R&D, puisque les économies de coûts liées à l’innovation, sont initialement bénéfiques à la région où il y a concentration. Cependant, le déclenchement d’un processus d’intégration régionale peut-être la cause d’une délocalisation des capitaux de la région centrale vers la région périphérique, diminuant ainsi la croissance inégale entre les deux régions.

En menant des analyses différenciées par rapport à chacun des deux cas de ‘spillovers’ Martin et Ottaviano (1999), font apparaître des interactions très intéressantes entre la géographie économique et la croissance endogène.

Chapitre 1 : La nouvelle économie géographique : fondement et outils d’analyse

4.1 Mouvement des capitaux et interaction entre croissance et localisation

Dans le cas où le capital est mobile (physique), avec un rendement d’échelle constant, la croissance et la localisation sont indépendants (pas de convergence ni de divergence), ils montrent que les firmes nouvellement crées peuvent se localiser dans les régions pauvres, si l’industrie est compétitive et le rendement du capital bas.

Si le capital est immobile (humain), alors un processus de convergence aura lieu entre les régions, si les coûts de transactions des biens sont suffisamment élevés. Mais si ces coûts sont très élevés, alors l’agglomération sera ”catastrophique”.

Avec des externalités de technologie, une concentration spatiale élevée de l’activité économique stimule la croissance, si le capital est mobile ou non ; ceci implique que la diminution des coûts de transactions des biens peut stimuler la croissance, mais augmente également l’inégalité régionale, alors que la diminution des coûts de transactions dans le ”commerce de la technologie” entre régions doit augmenter simultanément l’égalité régionale et la croissance. Pour un retour à la croissance endogène localisée, et dans une première tentative afin de rendre endogène le processus de croissance d’une agglomération, Fujita T. Krugman et Venables (1997), vont introduire le rôle de la demande intersectorielle, c’est à dire le rôle des liaisons amont - aval entre firmes au sein d’une même filière. Ceci permet de dépasser la contrainte stricte de la demande finale liée à la taille de la population locale, et étudier le cas où l’accroissement de la production conduit à un accroissement cumulatif de la demande de biens intermédiaires.

En faisant l’hypothèse qu’il existe une préférence des firmes industrielles pour la variété, identique à celle des agents pour les biens de consommation finale (Catin et Ghio, 2000), la multiplication des biens intermédiaires non échangeables au sein d’une localité conduit à l’apparition d’externalités d’agglomération de type Marshall, générateurs d’un processus de croissance semblable à celui décrit par (Romer, 1994 Premer et Walz, 1994).

4.2 Sources de croissance endogène d’une agglomération

Les processus d’apprentissage et les efforts de formation professionnelle engagés par les firmes sont perçus comme une deuxième source de croissance endogène d’une agglomération.

Deux cas de figure apparaissent : d’une part, ces processus sont fonction de la croissance passée et conduisent à l’accumulation progressive de connaissances sectorielles spécifiques, assimilables à un capital humain localisé. Ce dernier est à l’origine d’externalités d’agglomération de type MAR qui conditionnent la croissance future, selon un processus semblable à celui décrit par Lucas (Premer et Walz, 1994). D’autre part, ces processus sont liés à la diversité du tissu régional et à la production de biens différenciés. Ils permettent l’apparition d’un savoir générique localisé qui est source d’externalités d’agglomérations de type Jacobs. Celles-ci conduisent à une baisse des coûts du changement technologique, et par-là, à un processus de croissance de type Romer (Martin et Ottaviano, 1999). Ainsi, de façon générale, la formation du capital humain expliquerait pourquoi dans telle localité, lors d’une crise, les ressources productives arrivent à se recomposer, tandis que dans telle autre, elles abandonnent les lieux. La troisième source de croissance endogène d’une agglomération se trouve dans les infrastructures et surtout dans les politiques publiques locales. En mettant sur place des infrastructures spécialisées ou en allégeant le coût de la recherche-développement, les pouvoirs publics de proximité créent des externalités technologiques d’agglomération dont bénéficient les firmes résidant dans la localisation concernée. Tout en tenant compte du besoin de financement de cet effort institutionnel (qui
Chapitre 1 : La nouvelle économie géographique : fondement et outils d'analyse

pèse nécessairement sur les agents et les firmes économiques par l'intermédiaire de l'imposition), Martin et Rogers (1995) montrent que, dans certains cas de figure, les politiques locales, visant la baisse du coût de production des firmes, peuvent induire un processus de croissance endogène au sein d'une agglomération. De la même façon, les institutions peuvent avoir un rôle fondamental dans la détermination des limites des forces centripètes, et donc plus globalement des "frontières" de l'agglomération.

En réintègrant les apports de la croissance endogène, les modèles de l'économie géographique s'enrichissent considérablement et permettent, à la fois, l'étude d'un plus grand nombre de configurations organisationnelles spatiales (systèmes de type centre - périphérie avec mono-spécialisation, systèmes multicentriques, agglomérations multi-spécialisées, etc.), et celle d'une pluralité de processus, permettant d'engager une agglomération dans un processus de croissance endogène (multiplicité des biens intermédiaires, formation du capital humain, politiques publiques locales). Catin et Ghio (1999) tentent même la construction d'un modèle de développement permettant de passer d'étape en étape, d'une région à industrie banalisée, à une agglomération spécialisée à la production d'un bien technologique, et enfin à une région métropolitaine caractérisée par la quantité et la variété de services proposés aux firmes.

Ces approches arrivent à expliquer, non seulement le processus d'agglomération, mais aussi son "sens d'évolution" en terme de combinaison des ressources productives. Deux questions restent, cependant, en suspens :

Comment aborder le cas d'une agglomération spécialisée qui ne bénéficie pas de sa propre demande finale mais exporte la majorité de son produit fini, comme c'est le cas dans la quasi-totalité des districts industriels contemporains et des systèmes localisés de production spécialisée ? La demande de biens intermédiaires pourrait, certes, justifier elle-même l'agglomération (à travers l'apparition d'externalités pécuniaires); il y a aussi une distorsion spatiale entre le marché final et le système de production. Les travaux de
Thisse (1997), sur les effets de congestion métropolitaine, d’autre part, ceux de Martin et Rogers (1995) sur les retombées interrégionales des politiques publiques en matière d’infrastructures de communication, apportent des éléments de réponse significatifs (Charlot et Lafourcade, 2000). Ainsi, Thisse (1997) met en évidence le fait qu’il existe également des coûts de transports internes (congestion), et que dans leurs choix de localisation, les firmes mesurent surtout l’importance des coûts de transport externes (à l’agglomération) par rapport aux coûts internes. Ceci expliquerait le choix de certains producteurs de se situer en dehors d’une agglomération métropolitaine, tout en sachant que les faibles coûts de transport entre la région périphérique et la région centrale (grâce aussi à l’action des pouvoirs publics) leurs permet d’aborder facilement les consommateurs de cette dernière.

Dans le couple "spécialisation productive - processus d’agglomération", pourquoi certains secteurs répondent mieux que d’autres aux conclusions des modèles de l’économie géographique ? Déjà certains secteurs semblent plus propices à l’agglomération et ceci n’est pas uniquement lié à leurs complexités industrielles (c’est le cas du textile et de l’informatique face à l’industrie agroalimentaire et automobile). Certaines localisations (évidemment l’exemple le plus frappant est la Silicon Valley, avec la production informatique) arrivent à une position de quasi-monopole mondial, tellement leur pouvoir d’attraction est important ; d’autres partagent des ressources régionales à une distance très proche l’une de l’autre (les systèmes textiles du Veneto ou de la région Midi-Pyrénées), sans que cela ne conduise à une seule et grande agglomération d’activités similaires.
La mise à l’épreuve de "l’effet taille du marché domestique" est un premier pas dans le but de tester les nouvelles approches de la géographie économique. Il indique également la méthode la plus prometteuse afin d’évaluer la pertinence empirique des modèles de la NEG.

Etant donné que l’augmentation de la demande d’une région, pour un bien industriel, se traduit par (d’une façon plus que proportionnel) une augmentation de la production de cette même région, de ce fait, les tests économétriques dépendent de l’élasticité de l’offre de travail dans les modèles fondamentaux de la NEG. Si l’offre de travail n’est pas parfaitement élastique, seule, l’augmentation de la demande, ne pourra ni mener à une hausse de la production, ni à une hausse des salaires nominaux dans cette région. A partir de cela, plusieurs auteurs ont supposé que l’offre de travail n’était pas parfaitement élastique. De ce fait, il serait intéressant de voir si les régions dotées d’une demande relativement plus importante en biens industriels, paieraient également des salaires relativement plus hauts. Autrement dit, les salaires sont-ils plus élevés au centre qu’en périphérie, comme le prévoit les modèles de la NEG ?

La relation négative entre les salaires manufacturiers, dans une région, et la distance séparant cette dernière du centre de production, est une des divergences majeures entre la NEG et les théories néoclassiques du commerce. En effet, aucun fondement en vue d’une structure spatiale des salaires n’existe dans la théorie néoclassique du commerce. L’existence de centre économique est justifiée par l’emplacement des dotations spécifiques. Même avec les agglomérations (attirées par les dotations), la prédiction principale de la théorie néo-classique du commerce est décrite par une égalisation des prix des facteurs.
Dans les nouvelles modélisations du commerce international, Krugman (1980) et son modèle à deux régions, les salaires sont plus élevés dans le pays doté d’une plus grande force de travail, mais dans l’analyse de l’effet du marché local, les salaires sont équivalents entre les deux régions. Cette égalisation provient du fait que chaque pays se spécialise dans la production d’une variété de biens.

En employant des données de régions Américaines, Gordon Hanson (1998, 1999) examine la possibilité d’une preuve empirique qui puisse appuyer l’idée d’une structure spatiale du salaire. Il utilise le travail de Helpman (1998), qui est une extension du modèle de Krugman (1991), afin de tester la forme réduite de l’équilibre de long terme (équation de salaire spatiale). De ce fait, il est le premier qui emploie directement les conditions des modèles d’équilibre de la NEG dans une recherche empirique.

La conclusion majeure est en faveur d’une telle structure de salaire. Bien que cette méthode soit très attrayante méthodologiquement, elle présente également plusieurs inconvénients.

Tout d’abord, afin de tirer une forme applicable de l’équation de salaire d’équilibre, Hanson doit supposer que des salaires réels soient égalisés. Cela signifie qu’il suppose implicitement que la distribution spatiale de salaire réelle est aussi un équilibre de long terme, ce qui n’est pas souvent le cas. Deuxièmement, nous devons trouver des évaluations concernant les paramètres dans l’affirmation du modèle de compétition monopolistique de Dixit-Stiglitz, pour lequel Fujita, Krugman et Venables (1999, p. 45) disent ; "que cela est extrêmement peu réaliste, . . . , (et) mène à des résultats spéciaux mais très suggestifs ".

Ces difficultés ont mené Hanson à une deuxième spécification de l’équation du salaire spatial, qui est une approximation de l’équation de salaire nominal dans le modèle de Krugman (1991). Cette équation est semblable au concept bien connu de fonction du marché potentiel de "la vieille" géographie économique. Cependant, nous devons tenir compte du
fait que nous discutons d’une équation de salaire spatial et non pas d’une équation de demande spatiale ou quelque autre variable commerciale.

Le point de départ d’Hanson est "que le niveau de l’activité économique dans un emplacement est conditionnée par l’accès de ce dernier au marché pour ses biens". Tandis que ce point de vue peut sembler étroit - il ignore le climat, l’offre de ressource naturelle et d’autres facteurs qui influencent sûrement la localisation des villes - il essaye de montrer que l’accès du marché présente une voie efficace pour caractériser les forces qui contribuent à la concentration géographique de l’activité économique (Hanson, 1998).

6 Conclusion :

Le corpus théorique, lié à l’économie géographique, vise à étudier les déterminants de la localisation géographique des activités industrielles dans une zone d’intégration régionale caractérisée par une baisse des coûts de transport. Les mécanismes influençant cette localisation peuvent être classés en deux catégories. Des forces centripètes poussent à la concentration des activités (interaction de la demande, rendement croissant, coût de transport, etc). À l’opposé, des forces centrifuges poussent les firmes à se disperser afin d’éviter les déséconomies d’agglomération (congestion, concurrence, etc). Le mouvement
des travailleurs et des entreprises est motivé par la baisse des coûts de transport au sens large. L’enjeu est de connaître lequel de ces deux types de forces domine.

Le chapitre suivant, en exposant le modèle central d’économie géographique, vise à apporter un éclairage sur le fonctionnement des forces d’agglomération et de dispersion en se basant sur les techniques de modélisation en concurrence monopolistique.
Chapitre 2

Structure du modèle central en Economie Géographique :
Concurrence monopolistique et équilibre spatial

Introduction

La raison pour laquelle la principale théorie de la géographie économique n’a été mise en avant que récemment, est principalement due à l’utilisation des rendements d’échelle croissants associés avec l’indivisibilité de la production, ainsi que dans l’explication des agglomérations.

Sous le rendement d’échelle constant, les entreprises peuvent être localisées partout dans l’espace. La présence des rendements croissants conduit les entreprises à concentrer leurs opérations au sein d’une localisation précise dans le but de travailler d’une manière plus efficace. Par conséquent, le trait distinctif de la NEG est d’utiliser des outils analytiques provenant de la théorie de l’organisation industrielle dans le but de modéliser les rendements croissants et la concurrence imparfaite. La NEG se base principalement sur
Chapitre 2 : Concurrence monopolistique et équilibre spatial

Le modèle spatial de concurrence monopolistique de Dixit-Stiglitz [1977]. L’utilisation des coûts de transport et de l’espace requiert un certain nombre de formules de modélisation qui seront décrites tout au long de ce chapitre.

Comme nous allons le voir, les équations d’équilibre ne sont pas linéaires, ceci veut dire qu’une faible variation des paramètres ne produit pas toujours les mêmes effets. Une application directe de ce constat en économie régionale et urbaine peut nous renseigner sur les conséquences d’une décision de localisation d’un seul producteur. Ainsi, il est possible que le mouvement d’un producteur d’une région à l’autre puisse engendrer un processus cumulatif qui est capable de redéssiner entièrement le schéma spatial de toute la région. Cependant, la caractéristique qui distingue les modèles d’économie géographique de ceux des sciences régionales et urbaines est, sans doute, l’existence d’équilibres multiples.

1 De la concurrence parfaite à la concurrence monopolistique :

1.1 Théorème d’impossibilité spatiale :

En supposant que les prix et les biens sont distingués selon leur localisation, l’espace est alors considéré comme homogène, lorsque :

(i) les ménages ont la même fonction d’utilité, quel que soit le lieu de résidence et
(ii) la production de la firme est indépendante du lieu de production choisi.

En se basant sur ces hypothèses, les firmes et les ménages ne détiennent aucune préférence du point de vue localisation. Ainsi, selon Starrett (1978), le théorème de l’impossibilité spatiale nous dit que si l’espace est homogène et si les coûts de transports sont élevés, alors il ne doit y avoir d’équilibre de commerce entre deux localisations distantes. Un modèle avec des agents mobiles, un espace homogène et une technologie de production avec un rendement d’échelle constant, ne peut jamais expliquer la présence d’aggloméra-
Chapitre 2 : Concurrence monopolistique et équilibre spatial

Dans un tel modèle, l’activité économique peut être dispersée sans être compensée puisque le partage de la production, en différentes localisations, n’engendre pas des coûts supplémentaires. Avec la suppression des rendements d’échelle constants, nous avons besoin des hypothèses de compétition imparfaite afin de comprendre une grande partie de la formation d’agglomérations. Autrement dit, le théorème d’impossibilité spatiale nous apprend qu’il n’existe pas d’équilibre concurrentiel dans le cas où l’activité économique n’est pas divisible, c’est-a-dire le cas où le transport devient inévitable. Nous supposons, afin de simplifier au mieux, deux lieux X et Y, où les prix favorisent le commerce entre les deux localisations, tout en assurant l’équilibre des marchés locaux. Si des biens sont exportés de X vers Y, alors les producteurs en X, cherchant à maximiser leur profit se délocaliseront vers Y et les consommateurs localisés en Y cherchant des biens à moindre coût se délocaliseront en X. De façon analogue, l’exportation de biens de Y vers X encourage une "relocalisation croisée" du même type.

Afin de simplifier au mieux, nous illustrerons les difficultés rencontrées au sein d’un graphique, en se basant sur l’article de Fujita et Thisse (2001). Pour ce faire, nous supposons le cas de deux localisations et la production d’un seul bien i, échangé entre X et Y. Supposons également que la production d’une unité du bien i nécessite un ensemble fixe de facteurs (pour simplifier, le coût des facteurs de production est le même quel que soit le lieu) et soit produite en un des deux lieux. Le coût de transport est du type "iceberg", seule une partie $1/\tau$ du bien arrive à destination puisque $\tau > 1$ (Samuelson, 1983). Si la firme est localisée en X, la quantité de produits disponibles est représentée par le point E, sur l’axe vertical du graphique 1. En revanche, si la totalité des produits est transportée vers Y, alors la quantité $1/\tau$ disponible en Y est représentée par le point F de l’axe horizontal. Dans ce dernier cas, l’ensemble des allocations réalisables est donné par le triangle OEF et OE’F’, dans le cas où la firme est localisée en Y. Dans le cas où la firme n’est pas encore installée, alors l’ensemble des allocations est formé par l’union des deux triangles.
Admettons que la firme se localise en X et que le bien i peut être consommé en chacun des deux lieux, alors toute distribution réalisable est représentée par le segment EF, de sorte que les prix d’équilibre \((p_{iX}, p_{iY})\) doivent satisfaire l’égalité \(\frac{p_{iX}}{p_{iY}} = \frac{1}{\tau}\); à ces prix, les firmes ont intérêt à s’implanter en Y afin d’obtenir un profit plus élevé, en choisissant un plan de production \(E'\).Il en va de même si la firme est implantée en Y. De ce fait, aucune localisation ne peut offrir à la fois un équilibre des échanges et une maximisation du profit (voir Fig 2.1).

Graph 1: Les allocations réalisables dans un espace homogène

1.2 Economie d’échelle et concurrence monopolistique

La Nouvelle Economie Géographique dispose d’un cadre intégrant des rendements croissants ainsi que d’une concurrence imparfaite (monopolistique), au sein d’une structure d’équilibre général, afin que les interactions entre marchés des produits et du travail soient présentes. La particularité de la concurrence monopolistique se traduit par le fait que chaque firme produit et vend un bien spécifique dont elle choisit le prix. Toutefois, nous ne devons pas oublier le fait que la taille du marché où la firme écoule sa production dépend du comportement des autres entreprises. Ainsi, la fixation du prix est délimitée
par ceux des biens concurrents. Autrement dit, le pouvoir du monopole n’est pas absolu.

Le marché de concurrence monopolistique entre variété d’un bien est, le plus souvent, analysé à l’aide d’un modèle à la Chamberlin (1933), qui repose sur deux principes essentiels. Le premier est la libre entrée du marché par les firmes. Pour ce faire, ces dernières doivent supporter des coûts fixes de recherche, publicité, marketing ; s’accompagnant d’économies d’échelle. Toute nouvelle entrée a pour effet de détourner certains consommateurs qui préfèrent des nouveaux produits. Le deuxième principe est que chaque nouvelle firme présente un pouvoir de monopole et satisfait donc quelques consommateurs qui veulent bénéficier du nouveau bien.

Les économies d’échelle qui nous intéressent, au début de notre étude, sont internes à la firme, qui se manifestent par un coût moyen décroissant. Ce dernier atteint son minimum pour une large demande. Le coût marginal est supposé constant, cette hypothèse est souvent adoptée par les modèles de commerce international incorporant les économies d’échelle.

Le concept de concurrence monopolistique formalise une situation de marché dans laquelle les produits offerts sont d’imparfaits substituts les uns des autres. Dans ce cas, même si chaque producteur détient un certain pouvoir de monopole sur sa production spécifique, la concurrence persiste puisque les biens restent substituables. Le volume de clients ou la part du marché de chaque monopole, dépend de la politique de prix pratiquée par la concurrence. Notons que dans un univers de concurrence monopolistique, le nombre de concurrents présents sur le marché affecte la fonction de demande qui s’adresse à une entreprise. A prix constant, plus le nombre de concurrents est grand, plus la demande est petite et inélastique au prix. Tant qu’une opportunité de réaliser un profit existe sur le marché, de nouvelles firmes entrent, ce qui réduit le profit individuel, puisqu’avec l’entrée d’une nouvelle firme sur le marché, la demande adressée aux entreprises, déjà installées, diminue. Ainsi, le principal apport du modèle de Chamberlin est de rendre endogène une
nouvelle variable, à savoir le nombre de variétés (ou le nombre de firmes, si on suppose que chaque firme se spécialise dans la production d’une seule variété). L’équilibre consiste alors à déterminer le nombre optimal de variétés d’un bien différencié, ce dernier étant le résultat de deux forces opposées : un plus grand nombre de variétés maximise l’utilité des consommateurs qui préfèrent la variété, mais réduit également le profit des producteurs qui ne bénéficient plus des effets d’échelle.

Le modèle prototype utilisé dans la majorité des travaux est dû aux travaux de Spence (1976) et Dixit et Stiglitz (1977). Ces auteurs supposent l’existence d’un grand nombre de firmes, de telle façon que les décisions de l’une n’influencent pas les autres, mais dispose d’un pouvoir de marché suffisant pour fixer son prix au-dessus du coût marginal (monopole). Bien que ces deux modèles aient marqué le renouveau de l’économie industrielle, une différence majeure subsiste entre les deux. En effet, le premier article (celui de Spence, 1976) est centré sur l’équilibre partiel, alors que le second analyse le phénomène en Equilibre général, ce qui lui donne un aspect plus complet. D’ailleurs, nous nous baserons sur les propriétés de ce dernier modèle afin d’étudier l’importance et l’influence d’un continuum d’entreprises sur les équilibres.

Le modèle de compétition monopolistique présenté par Dixit-Stiglitz (1977) peut être utilisé afin de contourner les problèmes dérivés de l’utilisation des rendements d’échelle croissants. Ce modèle, connu par son application dans les nouvelles théories de croissance et de commerce, est basé sur une hypothèse principale et pratique définissant la structure du marché.

Le modèle de Dixit-Stiglitz utilise une forme fonctionnelle, spécifique de la préférence des consommateurs, tenant compte de la préférence pour la variété. Cela signifie que l’utilité des consommateurs dépend positivement du nombre des biens disponibles. Afin de minimiser le pouvoir des producteurs, la gamme des biens est supposée très importante et chaque producteur infiniment petit. En pleine concurrence, le bien est supposé homogène.
et le seul critère de sélection est le prix. Avec une compétition monopolistique, le consommateur distingue différentes variétés et les produits des différents producteurs sont imparfaitement substituables.

2 Modèle central d’économie géographique

Les travaux de Dixit-Stiglitz (1977) et ceux de Krugman (1980) ont stimulé une large gamme d’études sur la nouvelle théorie du commerce. Ce n’est que par l’introduction de la mobilité internationale des facteurs, de Krugman(1991), que ces travaux ont donné naissance au modèle fondamental d’économie géographique. Cette structure est illustrée, dans la figure ci-dessous (Fig 2.2), qui nous servira de "plate-forme" afin de mieux comprendre la dynamique de ce type de modèle.
2.1 Concurrence monopolistique : Dixit-Stiglitz

2.1.1 La demande

Les préférences sont les mêmes pour tous les travailleurs et sont décrites par une fonction d’utilité du type Cobb-Douglas. Chaque consommateur maximise son utilité en
consommant une combinaison de deux types de biens :

\[U = D^\alpha S^{1-\alpha} \] (2.1)

Où \(D \) représente la consommation des biens manufacturiers, \(S \) représente la consommation du bien traditionnel (en général un bien traditionnel lié à l’exploitation du sol), et \(0 < \alpha < 1 \) une constante représentant la part des dépenses dans les biens manufacturiers \((1-\alpha, \) représente par conséquent la part des dépenses consacrée au bien traditionnel). Il est supposé que la fonction de consommation des biens industriels, \(D \), est définie par une fonction du type CES telle que (Fig 2.2 :b) :

\[D = \left[\sum_{0}^{n} d(i)^{\rho \theta i} \right]^{1/\rho} \] (2.2)

Avec \(0 < \rho < 1 \) : Dans cette spécification, le paramètre \(\rho \) représente l’intensité de préférence pour la variété des biens manufacturés\(^1\), et \(n \) le nombre de variété. Si nous posons \(\sigma = \frac{1}{1-\rho} \) alors ce paramètre représente l’élasticité de substitution entre deux variétés de biens. L’élasticité de substitution varie donc entre 1 et \(\infty \). Les variétés sont totalement indépendantes lorsque \(\sigma = 1 \) et des substituts parfaits lorsque \(\sigma \to \infty \). En revanche, pour toute valeur intermédiaire de \(\sigma \), elles sont des substituts imparfaits.

Chaque consommateur maximise son utilité \(U \) en respectant sa contrainte budgétaire :

\[p^s S + \sum_{0}^{n} p(i)di\theta_i = R \] (2.3)

Ce problème peut-être résolu en deux étapes : la première consiste à minimiser la dépense \(di \) en biens manufacturiers, ceci implique la résolution du problème de minimisation suivant :

\(^1\)L’utilité du consommateur est croissante en fonction du nombre de biens consommés.
Chapitre 2 : Concurrence monopolistique et équilibre spatial

\[
\min \sum_{i=0}^{n} p(i)d(i)\theta_i \quad \text{S/C} \quad D = \left[\sum_{i=0}^{n} d(i)^{\rho} \theta_i \right]^{1/\rho} \quad (2.4)
\]

Les conditions de premiers ordres pour ce problème de minimisation des dépenses nous donne l’égalité entre le taux marginal de substitution et le ratio des prix.

\[
\frac{d(i)^{\rho-1}}{d(j)^{\rho-1}} = \frac{p(i)}{p(j)} \quad (2.5)
\]

En substituant cette dernière équation dans la contrainte budgétaire, nous obtenons directement la fonction de demande de la \(j^{\text{ème}}\) variété en biens manufacturés :

\[
d(j) = \frac{p(j)^{1/\rho-1}}{\left[\sum_{i=0}^{n} p(i)^{\rho/(\rho-1)} \theta_i \right]^{(\rho-1)/\rho}} D \quad (2.6)
\]

L’expression ci-dessus implique, en outre, que l’introduction d’une nouvelle variété provoque une augmentation de la valeur du dénominateur et, par conséquent, une diminution de la demande des variétés \(i = 1, \ldots, n\), du moins tant que leurs prix restent inchangés. En d’autres termes, l’entrée de nouvelles variétés provoque un accroissement de la fragmentation de la demande.

Nous pouvons alors trouver la dépense minimum pour atteindre \(D\), sachant que la dépense en la \(j^{\text{ème}}\) variété est \(p(j)d(j)\) nous aurons :

\[
\sum_{j=0}^{n} p(j)d(j)\theta_j = \left[\sum_{i=0}^{n} p(i)^{\rho/(\rho-1)} \theta_i \right]^{(\rho-1)/\rho} D \quad (2.7)
\]

Le terme multipliant \(D\) peut être défini comme étant l’indice des prix, puisque en multipliant ce dernier par la quantité des biens manufacturés, nous trouvons la somme des dépenses.

Pour des raisons de simplification et d’interprétation, les modèles de la NEG supposent que \(\sigma = \frac{1}{(1-\rho)}\); et en notant par \(G\) l’indice des prix alors ce dernier peut s’écritre de la manière suivante :
Une propriété se dégage de l’indice des prix, à savoir que celui-ci décroit avec le nombre de biens disponibles. Cette propriété ne fait que confirmer la préférence pour la diversité. En effet, si nous supposons que tous les biens industriels ont le même prix \(p^D \) alors \(G \) devient :

\[
G = p^D n^{1/(1-\sigma)} \tag{2.9}
\]

Par suite la fonction de demande devient :

\[
d(j) = \left(\frac{p(j)}{G} \right)^{1/(\rho-1)} D = \left(\frac{p(j)}{G} \right)^{-\sigma} D \tag{2.10}
\]

La contrainte du consommateur consiste alors à répartir son revenu entre la dépense en biens manufacturés et le bien agricole (rattaché au sol), d’où son problème qui se définit comme suit :

\[
Max U = D^\alpha S^{1-\alpha} \frac{S}{C} \quad GD + p^* S = R \tag{2.11}
\]

La résolution de ce dernier problème nous donne les fractions de dépenses d’équilibre en biens industriels et traditionnels (a) :

\[
D = \alpha R/G \quad \& \quad S = (1 - \alpha) R/p^* \quad (\text{fig : a}) \tag{2.12}
\]

2.1.2 Propriétés de la fonction de demande (Fig 2.2-c)

De l’équilibre ci-dessus, nous pouvons déduire la fonction de demande individuelle en biens manufacturés :

\[
d(j) = [\alpha R G^{(\sigma-1)}] \ast p(j)^{-\sigma} \quad \text{pour tout} \quad j \in [0, n] \tag{2.13}
\]
Comme nous pouvons le constater, cette demande dépend des éléments suivants :

i) αR : Plus la part des dépenses consacrée aux biens industriels augmente, plus élevée sera la demande en variété j.

ii) La demande d’une variété (j) dépend aussi du prix fixé par la firme produisant cette variété. Cette remarque paraît simple, mais est très importante dans le sens où les autres variables (dépenses en biens manufacturiers en général et indice des prix) sont des entités macroéconomiques que la firme, produisant la variété j, considère comme données, et donc, ne les contrôle pas. Ainsi, nous pouvons simplifier cette demande en considérant $(\alpha RG^{-(\sigma-1)}) \equiv cte$. Autrement $d(j) = cte * p(j)^{-\sigma}$. Ceci implique que l’élasticité prix de la demande est constante et égale à $\sigma > 1$. Cette dernière propriété se découle directement de l’approche de (Dixit-Stiglitz) et simplifie la fixation des prix par les firmes, dans un cadre de concurrence monopolistique. Le schéma suivant représente la demande d’une variété (j), en fonction de son prix, pour différentes valeurs de σ, qui représente aussi l’élasticité de substitution entre deux variétés2.

\[2-\frac{\partial(d_i/d_j)}{\partial(p_i/p_j)} = \sigma\]
iii) La spécification de l’indice des prix des biens industriels dépend des prix pratiqués par les producteurs. Ainsi, afin d’enrayer l’impact d’une variation des prix sur l’indice général, nous assumons souvent un nombre très élevé de producteurs. La considération d’un grand nombre de variété (firme) est illustrée dans le schéma qui suit (Fig 2.4), où nous avons représenté, d’une part, la fonction de demande réelle, qui correspond au cas où le prix fixé par la firme j influence l’indice des prix3, et d’autre part, la demande des biens industriels, en supposant que le prix pratiqué par la firme j n’a aucun impact sur l’indice des prix4. La plus mauvaise approximation est obtenue pour un nombre d’entreprises égal à 2 (Fig 2.4-a). Cependant, pour un nombre égal à 2000, aucune déviation entre les demandes n’est possible (Fig 2.4-d). Ainsi, l’impact des prix, pour un nombre

$^3 \begin{align*}
&d_j^{supposé} = \frac{p_j^{-\sigma}(\alpha R)}{N} \\
&d_j^{rel} = \frac{p_j^{-\sigma}(\alpha R)}{(N-1)+p_j}
\end{align*}$
très élevé de firmes, est négligeable.

\[U = \alpha^\alpha (1 - \alpha)^{1-\alpha} R G^{-\alpha} (p^s)^{-(1-\alpha)} \] (2.14)

L’utilité indirecte dépend du revenu du consommateur et des prix de marché. Cette dernière peut être interprétée comme étant le revenu réel qui varie en fonction des régions,
déterminant ainsi les choix de localisation des consommateurs / travailleurs\(^5\).

2.1.3 Localisation multiple et coût de transport

La particularité du modèle de Dixit-Stiglitz (1977) est de considérer plusieurs régions \((X : \text{nombre de région})\). Dès lors, nous supposons que chaque variété est produite dans une seule région. Soit \(n_x\) le nombre de variétés produites dans la région \(x\) et \(p^D_x\) le prix d’une variété des biens industriels. Les biens traditionnels et les biens industriels peuvent être répartis entre les régions, et leurs transferts d’une région à l’autre induit des coûts de transport du type "iceberg" introduit par Von Thunen et Paul Samuelson. Ceci implique que si une unité d’un bien d’agriculture [industriel] est exporté d’une région \(x\) vers une région \(y\), seule une fraction \(1/\tau^S_{xy} \cdot [1/\tau^D_{xy}]\) arrive à destination.

Cette formalisation du coût de transport signifie que si un bien industriel est vendu au prix \(p^D_x\) dans la région \(x\) alors son prix dans la région \(y\) est :

\[
p^D_{xy} = p^D_x \cdot \frac{1}{\tau^D_{xy}}
\]

Nous supposons que les biens industriels produits dans la même région ont le même prix, sachant que l’indice des prix varie d’une région à l’autre, nous avons l’indice des prix dans la région \(y\) :

\[
G_y = \left[\sum_{x=1}^{X} n_y \left(p^D_x \cdot \frac{1}{\tau^D_{xy}} \right)^{1-\sigma} \right]^{\frac{1}{1-\sigma}}
\]

La fonction de demande d’un bien produit dans la région \(x\) et consommé dans la région \(y\) est :

\[
d_y = \alpha R_y (p^D_x \cdot \frac{1}{\tau^D_{xy}})^{-\sigma} G_y^{(\sigma-1)}
\]

\(^5\)Cette comparaison des revenus réels se fait dans le cas où on a une mobilité interrégionale du travail.
Chapitre 2 : Concurrence monopolistique et équilibre spatial

Où R_y est le revenu de la région y. En multipliant cette dernière équation par τ_{xy}^D, nous obtenons le volume des ventes afin de subvenir à ce niveau de consommation. Le volume total des ventes d’une localisation x est donnée par :

$$O_x^D = \alpha \sum_{y=1}^{X} R_y(p_x^D \tau_{xy}^D)^{-\sigma} G_y^{\sigma-1} \tau_{xy}^D$$

(2.18)

Ceci signifie simplement que l’offre dépend du revenu, de l’indice des prix dans chaque localisation, ainsi que du prix industriel et du coût de transport.

2.1.4 L’offre (Graph 2-d)

La production au sein du secteur manufacturier est caractérisée par des économies d’échelles internes, ce qui se traduit par une compétition imparfaite. Les variétés sont symétriques et produites avec la même technologie. Cette production nécessite un coût fixe f et un coût marginal β en utilisant le travail comme seul input, la production d’une quantité q^D dans une région donnée est présentée par la technologie de production suivante :

$$l^D = f + \beta q^D$$

(2.19)

Le coût fixe en travail, défini ci-dessus, capte l’effet économie d’échelle interne, puisque l’expansion de production entraîne une baisse en besoin moyen du facteur travail. Ceci est illustré à la figure (Fig 2.5), représentant la différence entre besoin total et fixe en travail, pour la production d’une quantité donnée d’output.
En supposant que chaque variété de biens est produite par une seule firme, cela signifie que chaque variété est produite dans une seule région, alors le nombre de firmes est égale au nombre de variétés.

2.1.4.1 Maximisation du profit (Fig 2.2-e) Considérons une firme particulière produisant une variété spécifique dans une région \(x \) offrant un taux de salaire égal à \(w_x^D \). Du fait que cette dernière entreprise produise une variété unique de biens, cela lui donne un pouvoir de monopole qui sert à maximiser son profit. Le modèle Dixit-Stiglitz de compétition monopolistique retient, dans ce contexte, deux hypothèses. Tout d’abord, dans son programme de maximisation de profits, chaque firme considère le prix fixé par les autres entreprises comme donné. Ensuite le poids de chaque entreprise est supposé petit, comparé au nombre de firmes existant sur le marché. Ainsi, chaque producteur ignore l’impact que peut avoir sa politique de fixation de prix sur l’indice général des prix.

\[
\pi_x = p_x^D q_x^D - w_x^D (f + \beta q_x^D) \tag{2.20}
\]

La condition de maximisation du profit d’une firme revient à considérer un profit nul. Ce choix est expliqué par le fait que si une entreprise réalise un profit positif en produisant
Chapitre 2 : Concurrence monopolistique et équilibre spatial

une variété de biens manufacturés, il est évident que ce secteur motivera d’autres firmes à y investir tout en produisant d’autres variétés. Ainsi, la part du marché de la firme déjà en place commence à baisser : ce phénomène est justifié par la substitution des variétés.

\[p^D_x (1 - 1/\sigma) = \beta w^D_x \quad \text{ou} \quad p^D_x = \beta w^D_x / \rho \quad (2.21) \]

La libre entrée et sortie sur le marché implique qu’à l’équilibre, le profit est nul, et donc la quantité produite à l’équilibre est :

\[q^* = f(\sigma - 1)/\beta \quad (2.22) \]

Le secteur industriel peut se développer ou se contracter en produisant plus ou moins de variétés, cependant, la quantité d’output par variétés reste constante \((q^*)\). Nous pouvons ainsi en déduire la quantité de travail d’équilibre :

\[l^* = f + \beta q^* = f\sigma \quad (2.23) \]

En équilibre, le taux de substitution \(\sigma\) sert à mesurer l’économie d’échelle. Cet avantage peut être approché de différentes manières, mais une mesure spécifique est définie par le rapport entre le coût moyen et le coût marginal. Si le coût moyen est au-dessus du coût marginal, alors une hausse de la production réduit le coût unitaire. Nous pouvons, dès lors, calculer cette mesure pour la quantité d’output d’équilibre (Coût moyen/ coût marginal \(=\sigma/\sigma - 1\)) qui dépend, en équilibre, du taux de substitution \(\sigma\). Ainsi, une valeur élevée du taux de substitution se traduit par une baisse des économies d’échelle et inversement. Autrement dit, les variétés deviennent de plus en plus de parfaits substituts.

Soit \(L^D_x\) le nombre de travailleurs dans la région \(x\), sachant que le nombre de firmes dans chaque région est équivalent au nombre de variétés \((n_x)\) nous pouvons alors le calculer :

\[n_x = L^D_x / l^* = L^D_x / f\sigma \quad (2.24) \]

\(^6\text{cout moyen/ cout marginal} = (l^*/q^*)/\beta = [\alpha\sigma/(\alpha(\sigma - 1)/\beta)/\beta]/\beta = \sigma/(\sigma - 1)\)
2.1.4.2 Le taux de salaire d’équilibre Nous avons vu que la firme réalise un profit nul et équivalent à la production de la quantité \(q^* \) d’output, en utilisant la fonction de demande, nous avons :

\[
q^* = \alpha \sum_{x=1}^{X} R_y(p^D_x)\tau^{D}_{xy}^{1-\sigma} G_y^{\sigma-1}
\]

Nous déduisons :

\[
(p^D_x)^\sigma = \frac{\alpha}{q^*} \sum_{y=1}^{X} R_y(\tau^{D}_{xy})^{1-\sigma} G_y^{\sigma-1}
\]

En substituant ce prix dans l’équation (2.21), nous aurons directement le salaire d’équilibre \(w^D_x \)

\[
w^D_x = \left(\frac{\sigma - 1}{\sigma \beta} \right) \left[\frac{\alpha}{q^*} \sum_{y=1}^{X} R_y(\tau^{D}_{xy})^{1-\sigma} G_y^{\sigma-1} \right]^{1/\sigma}
\]

Cette dernière équation est très importante pour nos analyses, puisqu’elle nous donne le salaire industriel auquel les sociétés, dans chaque emplacement, atteignent l’équilibre, étant donné les revenus et indices des prix au sein de chaque région.

Nous pouvons remarquer quelques dynamiques qui se dégagent de l’équation du salaire d’équilibre, qui est d’autant plus élevé que le revenu régional, \(R_y \) est élevé. En effet, le salaire sera plus élevé si l’accès au marché est plus facile (pour un niveau bas de \(\tau^{D}_{xy} \)). Nous savons également que l’indice des prix est décroissant avec le nombre de variétés (ou de firmes). De ce fait, si le nombre de firmes diminue, ou si la concurrence diminue, alors l’indice de prix augmente et par conséquent le salaire également. Ainsi, cette dernière équation peut nous aider à expliquer les dynamiques de mouvements interrégionales (consommateurs/travailleurs et firmes).

En admettant quelques normalisations\(^7\), les équations d’indices de prix et du salaire

\(^7\)Afin de simplifier, nous choisissons : \(\beta = \frac{\sigma - 1}{\sigma} (= \rho) \) et \(f = \alpha/\sigma \); Cette normalisation signifie que \(p^D_x = w^D_x \) et \(q^* = l^* \), ainsi le nombre de firmes définies par l’équation (2.24) devient \(n_x = L^D_x/\alpha \), alors nous pouvons écrire : \(q^* = l^* = \alpha \). (voir FKV, 1999)
deviennent respectivement :

\[G_x = \left[\sum_{y=1}^{X} n_y (p_x^D \tau_{xy}^D)^{1-\sigma} \right]^{1/(1-\sigma)} = \left[\frac{1}{\alpha} \sum_{y=1}^{X} L_x^D (u_x^D \tau_{xy}^D)^{1-\sigma} \right]^{1/(1-\sigma)} \] (2.28)

\[w_x^D = \left(\frac{\sigma - 1}{\sigma \beta} \right) \left[\frac{\alpha}{q'} \sum_{y=1}^{X} R_y (\tau_{xy}^D)^{1-\sigma} G_y^{\sigma-1} \right]^{1/\sigma} = \left[\sum_{y=1}^{X} R_y (\tau_{xy}^D)^{1-\sigma} G_y^{\sigma-1} \right]^{1/\sigma} \] (2.29)

Ces deux dernières équations sont fondamentales dans le but de caractériser l’équilibre et d’étudier sa stabilité.

Selon Quigly (1998), les modèles de la NEG, basés sur l’approche de Dixit-Stiglitz, peuvent être utilisés dans le contexte de l’économie urbaine afin d’expliquer de quelle manière la diversité des biens à consommer ainsi que les biens intermédiaires peuvent produire un effet d’échelle externe. L’intuition derrière ce résultat est que la dimension des villes et des marchés du travail doivent déterminer le nombre des biens spécifiques locaux et les producteurs des inputs déterminent le taux de substitution à partir de ces biens et de ces inputs.

Les grandes villes disposent d’une plus grande variété en biens de consommations et d’inputs, ce qui augmente le nombre des outputs. Cette abondance influence positivement l’utilité et le bien être des habitants.

3 Configuration Centre - Périmérie : une approche par la concurrence monopolistique

Les premiers travaux sur la modélisation centre-périphérie se focalisent uniquement sur les "effets de taille", afin de déterminer la localisation spatiale de l’activité économique. La problématique exploitée par ces modèles est de montrer, comment, dans un cadre de concurrence monopolistique et de rendements croissants, les différences de taille des marchés locaux peuvent structurer les spécialisations économiques des nations, même
lorsqu’elles ne disposent d’aucun avantage comparatif (en dotations factorielles). L’analyse des équilibres spatiaux se basera sur la considération de deux régions de tailles différentes (une grande dite centrale et une petite région dite périphérie). En effet, deux vagues de formalisations sont apparues, dont la première fut initiée par Krugman et Helpman (1985), qui n’appartient, pas à proprement parler, aux modèles de la NEG, mais en constitue les prémices. Dans ces travaux, la différence de taille des régions est fixée d’une façon exogène, tandis que dans la deuxième vague de modélisation, dirigée par le travail de Krugman, (1991), la configuration centre périphérie est endogène au modèle.

Les travaux de Krugman-Venables (1990), par l’introduction de deux secteurs à rendements d’échelles différents (constants pour le secteur traditionnel et croissants pour le secteur industriel), constituent, et pour la première fois en économie géographique, la prise en compte de l’impact de l’intégration économique sur la configuration spatiale des activités industrielles (baisse des coûts de transport entre régions). Le cadre analytique que propose ce modèle, celui repris dans toute la littérature récente, est exposé brièvement dans la partie qui suit.

3.1 Le modèle Centre-périphérie KRUGMAN 1991

Le modèle de base de Krugman (1991) combine un modèle de compétition monopolistique et des externalités pécuniaires associées avec des liens en amont et en aval afin de montrer et expliquer l’émergence de grandes agglomérations. Sous certaines hypothèses, les liens en amont et en aval peuvent promouvoir un auto-renforcement du processus de concentration industrielle. Les forces conductrices derrière ce processus sont la mobilité des travailleurs et des firmes entre localisation. L’immobilité des agriculteurs joue en sens opposé. La particularité de ce modèle, par rapport à celui de Krugman et Helpman, (1985), tient au fait que l’équilibre n’est pas globalement stable, à cause de la détermination endogène des effets de taille. Par conséquent, la structure de l’équilibre spatial,

3.1.1 Hypothèses du modèle

<table>
<thead>
<tr>
<th></th>
<th>Agriculture</th>
<th>Industrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concurrence</td>
<td>Pure et parfaite</td>
<td>Imparfaite, monopolistique</td>
</tr>
<tr>
<td>Inputs</td>
<td>Agriculteurs immobiles et également répartis entre régions</td>
<td>Ouvriers (leurs caractéristiques varient suivant le contexte étudié)</td>
</tr>
<tr>
<td>Rendements</td>
<td>Constants</td>
<td>Croissants</td>
</tr>
<tr>
<td>Production</td>
<td>Biens homogènes</td>
<td>Biens différenciés</td>
</tr>
</tbody>
</table>

Nous considérons un modèle de type 2x2x2 (bien connu en théorie de commerce international) où l’on considère deux régions X et Y. Deux facteurs de production se distinguent : les travailleurs qualifiés et les travailleurs inqualifiés. L’économie considère deux secteurs : le secteur industriel D (qui utilise le travail qualifié \(L_q \) dans la production du bien différencié et qui sont mobiles entre régions) ainsi que le secteur traditionnel S, utilisant le travail inqualifié \(L_I \) et qui sont immobiles. Dans ce contexte, nous essaierons d’exposer l’émergence des agglomérations et d’analyser la nature des équilibres des différentes configurations spatiales, Fujita, Krugman et Venables, "FKV (1999)".

Une fonction du type Cobb-Douglas représente la consommation agrégée des ménages, cette dernière variable représente le bien être :
Chapitre 2 : Concurrence monopolistique et équilibre spatial

\[U = D^\alpha S^{1-\alpha} \]

(2.30)

\(\alpha \) représente toujours la part des dépenses consacrées aux biens manufacturiers (pour des raisons de simplification, on gardera les mêmes notations que celles utilisées dans le modèle de Dixit- Stiglitz présenté ci-dessus) et \(1 - \alpha \) la part des dépenses pour les biens traditionnels.

La demande de ces biens est représentée par une fonction CES :

\[D = \left[\sum_{i=0}^{n} d(i)^{\frac{\sigma - 1}{\sigma}} \theta_i \right]^{\frac{\sigma}{\sigma - 1}} \]

(2.31)

\(\sigma > 1 \) est l’élasticité de substitution entre les biens manufacturiers.

Nous supposons que le secteur traditionnel est soumis à des rendements d’échelles constants et que les agriculteurs sont immobiles entre les deux régions. Les coûts de transports des biens rattachés au sol sont supposés nuls.

Les économies d’échelles du secteur industriel sont représentées par la décroissance des coûts fixes des firmes, les coûts marginaux sont constants. À l’équilibre, le profit de la firme est nul et le prix égale le coût moyen\(^8\).

Dans le modèle CP de FKV (1999), les deux régions sont dotées de \(L_i / 2 \) travailleurs inqualifiés et se partagent \(L_q \) travailleurs qualifiés, à raison de \(\lambda(1 - \lambda) \), respectivement dans les régions \(x \) (région \(y \)). \(\lambda \) est une variable d’intérêt puisqu’elle détermine la migration des travailleurs qualifiés entre les deux régions, elle est une variable endogène à long terme.

3.1.2 Equilibre spatial

Soit \(v_i(\lambda) \) l’utilité indirecte d’un travailleur qualifié résident dans la région \(i = (x, y) \). En supposant que la distribution spatiale de ces travailleurs soit donnée respectivement par

\(^8\)À l’équilibre les économies sont une fonction inverse de l’élasticité de la demande qui prend la forme \(\frac{\sigma}{\sigma - 1} \), les économies d’échelles peuvent être mesurées comme le rapport entre le coût moyen et le coût marginal.
Chapitre 2 : Concurrence monopolistique et équilibre spatial

$(\lambda, 1 - \lambda)$, alors l’équilibre spatial se définit comme suit :

- en $\lambda \in (0, 1)$ si $\Delta v(\lambda) \equiv v_x(\lambda) - v_y(\lambda) = 0$

Pour ces valeurs de λ, si $\Delta v(\lambda) > 0$ alors les travailleurs migrent de y vers x s’il est négatif ils se dirigent dans la direction opposée.

- en $\lambda = 0$ si $\Delta v(\lambda) \leq 0$
- en $\lambda = 1$ si $\Delta v(\lambda) \geq 0$

Dans les cas où $\lambda = 0$ ou 1, l’agglomération est la répartition spatiale d’équilibre. La stabilité de l’équilibre spatial est induite par l’effet de l’équation de mobilité, qui, après toute variation marginale des travailleurs qualifiés, entre les deux régions, cette dernière ramène ceux-ci à l’équilibre initial.

Les salaires s’ajustent dans chaque région, de sorte que les firmes ne fassent jamais de profits. Cela implique que le nombre de firmes implantées dans chaque région doit satisfaire les conditions d’équilibres du marché du travail.

Un équilibre n’est pas nécessairement unique, c’est pourquoi nous définissons une fonction de mobilité $\frac{d\lambda}{dt} = \lambda(1 - \lambda)\Delta v(\lambda)$. Cette dernière nous renseigne sur la stabilité de l’équilibre qui est considérée comme critère de sélection.

Rappelons que le seul facteur de production est le travail. La fonction de coût d’une firme représentative s’écrit $C(q) = I^D w = (f + \beta q^D) w$, où q^D est la quantité d’output, f le travail fixe nécessaire, β la quantité de travail utilisée en fonction de la quantité produite et w le salaire du travail qualifié ; quand c’est nécessaire nous utiliserons les index x ou y pour distinguer les salaires dans les deux régions.

La tarification du monopole implique un prix déjà calculé dans la section précédente $p^D_x (1 - 1/\sigma) = \beta w^D_x$. La libre entrée élimine tout forme de profit, ce dernier s’annule et nous donne $pq^D - C(q^D) = 0$, ce qui implique $\beta q = (\sigma - 1)f$. Nous pouvons remarquer qu’à l’équilibre, la quantité d’output est constante :
La fixation de prix par chaque firme est supposée indépendante des choix des autres firmes, puisque son poids est considéré comme négligeable. Par conséquent, le prix fixé par chaque entreprise n’a aucun effet, ni sur le revenu régional, ni sur l’indice général des prix. En effet le revenu régional s’écrit :

\[R_r = \lambda_r L_q w_r + L_I/2 \quad r = x, y \] \hspace{1cm} (2.33)

Nous pouvons également remarquer que le prix d’équilibre dépend du nombre de firmes et des travailleurs dans chaque région (\(p_r = \frac{w_r}{\rho}, \ r = x, y \)) .

La différenciation des biens baisse la concurrence des prix entre les entreprises. Une analyse similaire peut-être développée dans le cas du travail : les salariés perçoivent une meilleure offre de travail dans un bassin d’emploi diversifié, ce qui explique, en partie, le mouvement de ces derniers d’une région vers une autre. En même temps, la concurrence salariale entre les employeurs agit comme une force centrifuge.

Les régions (x, y) se partagent (\(n_x = \lambda L_q/\sigma f \); \(n_y = (1 - \lambda)L_q/\sigma f \)) de firmes.

Nous voyons bien que le nombre de firmes par région est directement lié au nombre de travailleurs qualifiés qui y résident. C’est la raison pour laquelle nous insisterons sur le mouvement de ces derniers par la considération du différentiel salarial entre régions. En effet, cette mobilité de la main d’œuvre qualifiée n’est autre que la source d’une configuration centre-périphérie et la stabilité des équilibres spatiaux qui en découle, FKV (1999).

En se basant toujours sur le modèle de concurrence monopolistique de Dixit-Stiglitz, présenté ci-dessus, et la considération du coût de transport du type iceberg, nous pouvons affirmer que lorsque la variété i est vendue dans la région r au prix \(P_r(i) \), le prix payé par

\[q^* = (\sigma - 1)f/\beta. \] \hspace{1cm} (2.32)

Il est supposé que \(\beta = 1 \), voir Fujita & Thisse (2003)

10 On voit clairement que le nombre total des firmes du secteur industriel est constant (\(N = L/\sigma f \))
un consommateur résidant dans la région $s \neq r$ sera majoré par le coût de transport tel que $P_{rs}(i) = P_r(i)\tau$. Réécrivons maintenant l’équation de l’indice régional des prix G_r :

$$G_r = \left[\sum_{x}^{n_x} P_x^{1-\sigma} d_i + \tau^{1-\sigma} \sum_{y}^{n_y} P_y^{1-\sigma} d_i \right]^{1/1-\sigma} = \varepsilon_1 \left[\lambda w_x^{1-\sigma} + (1 - \lambda)(\tau w_y)^{1-\sigma} \right]^{1/1-\sigma} (2.34)$$

avec $\varepsilon_1 = (\frac{L_q}{\sigma f \rho} - \sigma)^{1/1-\sigma}$

La demande d’équilibre sur le marché du travail est égale à $(\sigma - 1)f$ lorsque les firmes réalisent un profit nul autrement dit :

$$q = \alpha \left(\frac{w}{\rho} \right)^{-\sigma} \left[R_x G_x^{\sigma-1} + R_y \tau^{1-\sigma} G_y^{\sigma-1} \right] = (\sigma - 1)f \quad (2.35)$$

Cette dernière équation nous permet d’écrire l’équation implicite des salaires, Soit :

$$w_r^{*} = \varepsilon_2 \left[R_x G_x^{\sigma-1} + R_y \tau^{1-\sigma} G_y^{\sigma-1} \right]^{1/\sigma} \quad (2.36)$$

avec $\varepsilon_2 = \rho (\frac{\alpha}{(\sigma - 1)f})^{1/\sigma}$

Malgré la simplicité de construction du modèle, celui-ci n’admet pas de solution analytique. Le fonctionnement de ce modèle nécessite alors des simulations numériques afin de comprendre les dynamiques économiques poussant à l’agglomération ou à la dispersion de l’activité industrielle, et/ou de la main d’œuvre. Nous considérons, d’abord, le cas où toute l’activité industrielle est concentrée en région 1. Cette configuration spatiale nous permettra d’isoler les rapports entre forces centrifuges et forces centripètes. Puis, nous analyserons une répartition spatiale symétrique de la main d’œuvre qualifiée afin d’étudier le bien-être régional et total.

3.1.3 Agglomération totale : $\lambda = 1$

Nous admettons d’abord que la totalité de la main d’œuvre qualifiée (Lq) soit totalement concentrée au sein de la région (X). Techniquement, ceci revient à remplacer λ par 1 dans les équations décrivant les revenu, les indices de prix et les salaires régionaux, soit :
Chapitre 2 : Concurrence monopolistique et équilibre spatial

\[R_x = \alpha w_x + \frac{1 - \alpha}{2} \quad ; \quad R_y = \frac{1 - \alpha}{2} \quad (2.37) \]

\[G_x = \varepsilon_1 w_x \quad ; \quad G_y = \varepsilon_2 \tau w_y \quad (2.38) \]

\[w_x = \varepsilon_2 \left[R_x G_x^{\sigma-1} + R_y \tau^{1-\sigma} G_y^{\sigma-1} \right]^{1/\sigma} \quad ; \quad w_y = \varepsilon_2 \left[R_x \tau^{1-\sigma} G_x^{\sigma-1} + R_y G_y^{\sigma-1} \right]^{1/\sigma} \quad (2.39) \]

\[W_x = w_x G_x^{-\alpha} \quad ; \quad W_y = w_y G_y^{-\alpha} \quad (2.40) \]

Nous représentons la variation du différentiel salarial réel en fonction du coût de transport, FKV (1999). Ainsi, nous déduisons du système ci-dessus, la relation suivante :

\[\frac{W_y}{W_x} = \left[\frac{1 + \alpha}{2} \tau^{-\sigma(\alpha+\rho)} + \frac{1 - \alpha}{2} \tau^{-\sigma(\alpha-\rho)} \right]^{1/\sigma} \quad (2.41) \]

Dans l’équation du rapport des salaires réels entre les régions, le premier terme du membre de droite est toujours décroissant en fonction de \(\tau \), le second terme est décroissant à condition que \(\alpha \geq \rho \). Ainsi, pour tout \(\tau > 1 \) nous pouvons déduire que le salaire nominal payé au sein de la région X est supérieur à celui payé dans la région Y (\(\frac{W_y}{W_x} < 1 \)). L’équilibre centre-périphérie est alors stable. Dans ce cas, (\(\alpha \geq \rho \)), la force d’agglomération (ici le degré de différenciation) est tellement forte que l’activité industrielle est concentrée totalement dans une seule région.

La situation où \(\alpha < \rho \), est plus riche car les forces poussant à l’agglomération ne sont plus puissantes, comme le cas cité ci-dessus, à cause de la baisse du degré de différenciation des biens.
Nous remarquons l’existence d’un équilibre unique pour lequel les salaires payés au sein des deux régions sont égaux ($\frac{W_y}{W_x} = 1$), appelé point de "soutien". La valeur analytique de ce point est trouvée en égalisant le différentiel de salaire à 1. Ainsi, l’agglomération est un équilibre stable si le salaire réel dans la région (y) n’incite pas les travailleurs localisés en (x) à migrer vers (y) ($\frac{W_y}{W_x} < 1$). Du point de vue des entreprises, celles-ci restent implantées dans la même région, tant que le coût de transport τ est inférieur à $\tau_{soutien}$. Les firmes bénéficient des avantages liés à l’agglomération, sans être fortement taxées par l’acheminement de leurs produits vers l’autre région. Quand les coûts de transport deviennent très élevés, $\tau > \tau_{soutien}$, les entreprises auront des difficultés à exporter leurs produits, et perdront, de ce fait, leur part du marché dans la région y, ce qui représente une motivation pour se délocaliser. L’équilibre centre-périphérie n’est plus stable, ainsi, le secteur moderne sera géographiquement dispersé.

Remarquons que les travailleurs qualifiés ne choisissent pas, au départ, de se concentrer ou de se disperser. Par contre, leurs mouvements dépendent d’un choix rationnel, puisqu’ils se basent sur le calcul différentiel du salaire réel entre région, et des prix fixés par le marché. La mobilité des travailleurs qualifiés est justifiée par le fait que les travailleurs diplômés
possèdent davantage de chance de s’adapter, avec leur nouvel entourage. Aussi, le revenu d’un travailleur qualifié lui permet d’assurer le coût supplémentaire dû à la migration. L’immobilité des travailleurs inqualifiés joue alors un rôle de forces centrifuges, puisqu’ils consomment les deux types de biens.

Insistons sur le fait qu’une agglomération possède une "composante réseau" qui la rend très robuste aux chocs externes. En effet, la rente d’agglomération qui est mesurée par la différence du salaire d’un travailleur qualifié au centre avec celui qu’il pouvait toucher en résidant en périphérie, est assez puissante pour freiner la délocalisation vers la zone traditionnelle, même si le salaire en périphérie est subventionné. Un nouvel éclairage sur la concurrence fiscale se dégage directement de la définition de la rente d’agglomération : les pays les plus avancés, où le capital est déjà concentré, bénéficient d’un avantage fiscal leur permettant de maintenir des taux d’impositions plus élevés. Nous pouvons ainsi définir un "écart d’imposition soutenable" avec les pays concurrents, en deçà duquel le capital ne se délocalise pas.

3.1.4 La structure symétrique : $\lambda = 1/2$,

Partant d’une situation d’équiqué-répartition, un travailleur est supposé changer de région à un moment de l’histoire. Cette perturbation engendre deux types de forces centripètes ou d’agglomérations, dont la conjugaison crée une causalité circulaire et cumulative déstabilisante pour l’équilibre géographique.

La première de ces forces est liée à un effet de demande. Tout mouvement migratoire vers une région s’accompagne d’une délocalisation des dépenses individuelles, favorables à cette région, et qui modifie la taille relative des marchés. L’existence des rendements d’échelles croissants pousse alors les firmes à suivre le mouvement des individus afin de bénéficier de l’effet taille du marché. Cet avantage régional, en terme de taille de marché, implique aussi une plus grande variété de biens, ce qui attire davantage de consommateurs.
qui préfèrent la diversité. Ces derniers percevront des salaires réels plus élevés, puisque l’indice de prix baisse dans la région la plus spécialisée en biens différenciés. Nous assistons alors à une nouvelle augmentation de la demande locale. L’importance de ces forces, comme nous venons de le voir ci-dessus, dépend de la valeur du coût de transport séparant les deux régions.

La substituabilité des biens ou le degré de préférence pour la variété interviennent dans la détermination du coût de transport critique, en-dessous duquel l’équilibre symétrique n’est plus stable. Sachant que la variation d’une variable endogène dans la région "X" se traduit par une variation égale en valeur absolue d’une variable correspondante dans la région "Y" mais en sens opposé. Nous pouvons alors écrire \(dR \equiv dR_x = -dR_y \), et d’une façon similaire pour les autres variables. Les hypothèses de base de notre modèle deviennent :

\[
\lambda = \frac{1}{2}, \quad R_x = R_y = \frac{1}{2}, \quad w_x = w_y = 1,
\]

Ceci nous permet de trouver les indices régionaux de prix :

\[
G_{1-\sigma}^x = G_{1-\sigma}^y = \frac{1 + \tau^{1-\sigma}}{2}
\]

La dérivée totale des équations des revenus régionaux nous donne :

\[
dR = \alpha d\lambda + \frac{\alpha}{2} dw
\]

Nous appliquons la même technique sur les équations des indices de prix, des salaires nominaux et réels. De plus, la définition du paramètre \(c = \frac{1-\tau^{1-\sigma}}{1+\tau^{1-\sigma}} = \frac{(1-\tau^{1-\sigma})}{2\alpha^{1-\rho}} \), avec \(0 < c < 1 \), comme un indice de commerce, prenant la valeur 0 quand le coût de transport est nul entre les régions, \((\tau = 1) \), et 1 lorsque les coûts de transport sont très élevés \((\tau \rightarrow \infty) \), permet de déduire la fonction suivante :

\[
\frac{dW}{d\lambda} = 2cG^{-\alpha} \left(\frac{1-\rho}{\rho} \right) \left[\frac{\alpha(1 + \rho) - c(\alpha^2 + \rho)}{1 - \alpha c(1 - \rho) - \rho c^2} \right]
\]

L’équilibre symétrique est stable, si \(\frac{dW}{d\lambda} \) est négatif. Il est instable dans le cas contraire.

En effet pour une variation de \(d\lambda \) (c’est-a-dire un mouvement de la main d’œuvre dans
l’un des deux sens, entraînant une rupture de la configuration symétrique), une variation en sens opposé de dW permet de retrouver l’équilibre symétrique stable.

Nous constatons que le dénominateur est toujours positif11, alors le signe de l’équation dépend uniquement de celui du numérateur :

Dans le cas où le coût de transport est nul ($c = 0$), le numérateur est toujours positif, ce qui se traduit par l’instabilité de l’équilibre symétrique.

Pour des coûts de transport très élevés ($c = 1$), le signe du numérateur dépendra de la discussion faite ci-dessus, concernant le point de soutien12. Autrement dit, l’équilibre symétrique est stable (instable) pour $\rho > \alpha$ ($\rho < \alpha$).

Le différentiel de salaire entre les deux régions, suite à une relocalisation des travailleurs, prend l’allure d’une courbe composée de deux parties définies par un point appelé "point de rupture "$(\tau_{rupture})^{13}$. Pour un coût de transport élevé, $\tau > \tau_{rupture}$, la hausse de la force de travail dans une région, réduit le salaire réel payé par les firmes de cette région, ce qui rend l’équilibre symétrique stable. Le graphique ci-dessous montre plus nettement cette analyse.

11En effet $0 < ac(1 - \rho) < (1 - \rho)$ et $0 < c^2 \rho < \rho$ d’où $0 < ac(1 - \rho) + c^2 \rho < 1$

12Le signe du numérateur dépend de celui de : $(\rho - \alpha)(\alpha - 1) < 0$.

13"break point" selon FKV(1999).
L’égalisation de l’équation (2.44) à 0 nous permet de trouver la valeur analytique de $\tau_{rupture}$:

$$\frac{dW}{d\lambda} = 0 \quad \text{si} \quad \tau_{rupture} = \frac{(\alpha + \rho)(1 + \alpha)}{(\rho - \alpha)(1 - \alpha)} \quad (2.45)$$

Neary (2001) démontre analytiquement que la valeur de $\tau_{rupture}$ est inférieure à $\tau_{soutien}$; ce qui est primordial afin de dresser un diagramme de bifurcation, montrant l’existence d’équilibres multiples.

3.1.5 Diagramme de bifurcation

Comme nous l’avons vu plus haut, lorsque le coût de transport est $\tau < \tau_{soutien}$, le modèle centre-périphérie nous a fourni des équilibres d’agglomération stables ($\lambda = 0 ; \lambda = 1$).

Dans le cas de la configuration symétrique, ($\lambda = 1/2$), la stabilité de l’équilibre est vérifiée pour des valeurs de coûts de transport $\tau > \tau_{rupture}$. Le degré d’intégration correspondant au point de rupture est supérieur à celui définissant le point de soutien. Il existe donc une zone dite de chevauchement où l’équilibre symétrique et les équilibres d’agglomérations complètes sont stables, lorsque le degré d’intégration est compris entre les deux points. En assemblant ces dernières remarques, nous concluons que pour des valeurs intermédiaires
de coût de transport, $\tau_{\text{rupture}} < \tau < \tau_{\text{soutien}}$, nous avons une multiplicité d’équilibres (agglomération ou dispersion). La distribution finale dépendra de la localisation initiale des travailleurs qualifiés14. Le diagramme de bifurcation résume les résultats définis ci-dessus.

![Diagramme de bifurcation "tomahawk bifurcation"](image)

FIG. 2.9 – Diagramme de bifurcation "tomahawk bifurcation"

Nous pouvons noter qu’il existe un autre type de dynamique endogène d’agglomération, en fonction de la nature du basculement, qualifié de "pitchfork bifurcation", dans le vocabulaire de la NEG, où le passage de l’équilibre symétrique à l’agglomération s’opère progressivement. Au contraire, dans le cas présenté ci-dessus, le basculement est instantané, ce qui entraîne des conséquences négatives pour le bien-être des pays.

En résumé, pour des valeurs suffisamment basses du coût de transport, toute l’activité industrielle est attirée vers une seule région appelée Centre. L’autre région se spécialisera alors dans la fourniture des produits du secteur traditionnel. Cette concentration des firmes en une seule localisation leur permettra de bien exploiter les économies d’échelles afin de mieux maîtriser les coûts de production (effet taille du marché). De plus, le voisinage est une source de bénéfices en terme d’externalités technologiques. *En effet, ce résul-

14Du fait de l’existence d’équilibres multiples, le moindre changement dans les paramètres clés du modèle, peut engendrer des changements importants dans la configuration d’équilibre.
tat d’agglomération des entreprises, au sein de la même région centrale, peut-être considéré comme le nouvel apport de la NEG, par rapport aux modèles néoclassiques basés sur des rendements d’échelles constants, en concurrence parfaite, pour lesquels l’équilibre se réalise toujours dans le cas de distribution symétrique.

4 Résultats provisoires et reformulations du modèle de Krugman (1991)

L’existence de coûts fixes de productions est un facteur important pour l’explication de l’émergence des agglomérations. Sans rendements d’échelles croissants, il est profitable, pour le producteur, de disperser sa production à travers les régions. L’indivisibilité de la production rend la concentration plus avantageuse. Il y a un arbitrage entre économie d’échelle (effet taille du marché) et coût de transport.

Bien que le modèle Centre-Périphérie de première génération, initié par Krugman (1991), représente une pierre angulaire dans l’analyse des inégalités régionales, et dans la distribution spatiale de l’activité économique, ses résultats demeurent limités. En effet, la mobilité du travail qualifié, qui est la base des agglomérations ou dispersion, ne représente pas le cas de la majorité des pays. Selon les résultats de l’enquête Formation Qualification Professionnelle de l’INSEE, 2003, en France 85 % des quelques 24,5 millions d’actifs occupés en 2005 travaillaient dans leur entreprise depuis plus d’un an et près de 75 % travaillaient déjà l’année précédente sur le même poste de travail. La part des salariés ayant moins d’un an d’ancienneté dans leur entreprise est de 15 % en France contre 26 % aux États-Unis.15 D’ailleurs, en Europe, la main d’œuvre qualifiée est presque immobile, du coup, l’ancienneté moyenne dans l’entreprise, telle qu’on la mesure dans les enquêtes, est de 11 ans environ en France, alors qu’elle est de 6,5 ans aux États-Unis. L’écart ne provient pas d’une fréquence plus faible de l’emploi temporaire : la part des emplois temporaires dans l’emploi total est de 15 % en France contre 4 % aux États-Unis. Il s’explique bien par le fait que la mobilité de l’ensemble des salariés est moindre en France qu’au EU (voir enquêtes sur www.strategie.gouv.fr).
et pourtant, nous y trouvons des concentrations fortement industrialisées. À ce propos, les conclusions alarmantes du modèle de Krugman signifient que l’intégration croissante des marchés de l’UE devrait entraîner une polarisation plus forte de l’espace économique européen, conduisant ainsi à une configuration Centre-Périphérie auto-entretenue. Cette proposition va en sens inverse de l’objectif d’unification des pays membres de l’UE, puisque de nombreuses régions (pays) seront désertifiées, devenues, par conséquent, périphériques, au profit d’autres régions centrales. Nous devons, de ce fait, confronter les hypothèses du modèle aux données réelles.

De plus, le modèle néglige l’interaction stratégique entre les firmes puisqu’il ne tient pas compte des biens intermédiaires qui peuvent jouer un rôle déterministe dans la configuration spatiale de l’activité économique. Nous pouvons également nous interroger sur la persistence d’un besoin en travail qualifié et la non-considération des travailleurs inqualifiés. En effet, si cette hypothèse est réelle dans certaines productions, elle l’est beaucoup moins dans d’autres, puisque dans les grandes productions industrielles, les tâches nécessitent une main d’oeuvre hautement qualifiée, et sans doute, celles de la recherche et du développement, le marketing, la logistique de distribution, qui contribuent à la conception et la vente de nouveaux produits ayant une durée de vie plus au moins longue, alors que la production en soi a besoin d’une main d’oeuvre très peu ou non qualifiée. L’exemple le plus explicatif est le choix des entreprises multinationales de délocaliser leur production vers des pays à très bas salaires, caractérisés par des travailleurs peu qualifiés.

16Pour une étude plus détaillée, voir Forslid et Ottaviano (2003)
activités à rendements croissants.

En gardant l’hypothèse de mobilité de travail entre région, le fait d’ajouter des liens input-output entre les firmes ne changent pas radicalement les résultats du modèle exposé ci-dessus. En effet, un résultat intéressant, qui découle du modèle de Puga (1999), est de montrer que, même lorsque la part de consommation intermédiaire dans la fonction de production est nulle (pas de liens input-output entre les firmes), les rendements d’échelles croissants et la mobilité du travail sont suffisants pour rendre l’équilibre symétrique instable à partir d’un certain degré d’intégration régionale, tout en justifiant la polarisation de l’activité industrielle. Il serait donc plus intéressant de développer l’hypothèse d’immobilité interrégionale du travail, et de voir quelles en seraient les conséquences sur les résultats.

4.1 Immobilite de la main d’oeuvre et consommation intermediaire-Krugman & Venables (1995)

Le travail de Krugman, Venables (1995) tient compte des critiques citées ci-dessus, et reformule le modèle de base, en considérant une seule catégorie de main d’œuvre homogène (il n’y a plus de distinction entre travailleurs qualifiés et travailleurs inqualifiés), ce qui justifie la mobilité entre secteurs (supposée sans coût), mais immobiles entre les régions. La particularité de leur modèle est qu’une variété de biens produits par une firme est à la fois destinée aux consommateurs des deux régions, et constitue également un bien intermédiaire pour toutes les autres firmes. Ainsi, les relations verticales entre les firmes sont privilégiées dans le choix de localisations industrielles. Tout comme les consommateurs dans le modèle de Krugman (1991) qui préfèrent la diversité des biens, les entreprises valorisent la diversité des biens intermédiaires offerts sur le marché.

Les auteurs considèrent, qu’au départ, l’espace est structuré symétriquement entre les deux régions (équi-répartition de la main d’oeuvre), ceci à cause d’un coût de transport
élevé. Les économies des deux régions sont alors en autarcie et subviennent à leur besoin, en produisant les deux types de biens. L’entretien d’un processus d’intégration régionale graduelle, induit par la baisse des coût de l’échange, rend l’équilibre symétrique instable et favorise l’émergence d’une structure centre-périphérie. Le commerce international est de nature intra-industrielle et la spécialisation des deux régions reste partielle. L’effet d’entraînement amont (effet de demande) indique que la taille du secteur est un facteur d’attraction de la production. L’existence d’une demande de biens intermédiaires plus importants au centre renforce la localisation des entreprises du secteur manufacturier dans cette région, et contribue à la différenciation des produits offerts. L’effet d’entraînement aval (effet de coût) indique qu’une plus grande disponibilité des biens intermédiaires baisse les coûts de production des biens finaux.

Puga (1999), montre qu’une baisse suffisamment importante, dans les coûts de transport, peut conduire les firmes à se délocaliser en périphérie\(^{17}\). En effet, l’immobilité interrégionale de la main d’œuvre (en supposant ex ante que le travail est partagé équitablement entre les deux régions) obligent les firmes à recruter au secteur agricole de la même région, ceci fait augmenter les salaires locaux (force centrifuge), ce qui rend la région peu industrialisée plus attractive. La différence avec le modèle centre-périphérie de Krugman est que la hausse de la demande, est due à l’augmentation des salaires et non à l’accroissement de la taille de la population. Dans de tels cas, la baisse du coût de transport est interprétée comme une force de dispersion puisque les firmes seront indifférentes entre produire/consommer les biens intermédiaires au marché local ou les importer. Ce résultat est très important dans l’analyse de l’intégration régionale et sa conséquence sur la convergence des régions, puisque les firmes bénéficient d’un côté d’une main d’œuvre peu

\(^{17}\) Afin d’économiser les coûts de transport les entreprises se délocalisent vers la région où il y a plus de variété de biens intermédiaires tout comme les consommateurs qui migrent d’une région à l’autre à la recherche de la diversité dans le modèle centre -périphérie standard. Ce choix du grand marché se justifie aussi par la recherche d’une plus grande demande en présence de rendements croissants.
chère et de l'autre côté elles peuvent toujours alimenter, en biens industriels, le grand marché dans le centre.

L'intégration économique conduit donc à deux étapes différentes :

(i) La baisse des coûts de transport incitent à la formation d'une configuration centre-périphérie motivée par l'effet d'entrainement liés aux consommations intermédiaires ce qui augmente les salaires au centre.

(ii) Au fur et à mesure que les coûts d'échange baissent entre les deux régions, les entreprises seront indifférentes entre produire au centre ou se délocaliser en périphérie à la recherche d'une main d'œuvre moins chère, donc certaines firmes se relocaliseront en périphérie et on assistera alors à une convergence des structures industrielles régionales.

Il existe, par conséquent, une valeur critique de coût de transport en dessous de laquelle la configuration spatiale de l'économie mondiale est caractérisée par une structure centre-périphérie dans laquelle toutes les firmes industrielles sont concentrées dans une seule région. Les externalités qui en découlent renforcent encore plus l'agglomération et accroissent ainsi l'inégalité. Les coûts de transport baissent encore plus pour atteindre un seuil critique pour lequel la région en périphérie redevient plus attractive que celle du centre. La globalisation dans sa phase finale, réduit les inégalités.

La différence du modèle de Krugman Venables (1995) par rapport à celui de Krugman (1991) est le type d'externalité en jeu dans le processus de localisation. En effet, dans la reformulation de ce dernier modèle par la considération des consommations intermédiaires, les externalités sont créées par le lien input-output entre les firmes alors que dans le premier modèle de Krugman (1991), ce mécanisme dépend des liens de demande et de revenu réel par la considération de relations entre firmes et travailleurs (consommateurs).
4.1.1 Equilibre de court terme

Tout comme l’équilibre de court terme défini dans notre présentation du modèle de Krugman (1991), où l’auteur est parti d’une situation où les travailleurs (qualifiés) sont répartis arbitrairement entre les régions. L’intégration du secteur intermédiaire permet de trouver les prix et les salaires d’équilibre dans chaque région. L’équation de migration des travailleurs a défini la nature des équilibres spatiaux quant à leurs stabilités, qui dépendaient du taux d’intégration représenté par une baisse du coût de transport. La nouvelle hypothèse -considérant une mobilité intersectorielle du travail (une partition arbitraire), mais peu ou totalement immobile entre région, avancée par Krugman et Venables (1995), et suivant la même démarche de détermination et d’analyse d’équilibre,- caractérise le nombre de variétés produit dans chaque région, les prix et les salaires correspondants. La production d’une firme fait face, à la fois à la demande locale et extérieure en biens finaux émanant des consommateurs des deux régions, mais aussi à la demande en biens intermédiaires émanant d’autres entreprises localisées dans les deux régions.

4.1.2 Equilibre de long terme

L’équilibre de long terme se caractérise par trois configurations spatiales possibles, dispersion totale, agglomération totale et agglomération partielle. L’analyse du dernier cas intermédiaire nécessite un développement technique très poussé, c’est la raison pour laquelle Charlot S et Gaigné C. (2002) se sont seulement intéressés à l’étude des deux

\[^{18}\text{Voir Puga (1999) pour, à notre connaissance, la seule analyse analytique de ce modèle, qui malheureusement reste lourde et partielle.}\]
premiers cas extrêmes de configurations spatiales :

(i) dispersion totale, qui est toujours un équilibre, mais dont la stabilité dépend du coût de transport (stable pour des coûts de transfert élevés).

Dans ce cas, nous avons une symétrie au sein des paramètres clés de notre modèle, autrement dit, égalisation des prix, des nombres de variétés offerts, des salaires, ce qui démotive les entreprises à se délocaliser.

(ii) agglomération totale, ce cas extrême de polarisation totale de l’activité industrielle au sein d’une seule région, nous offre la possibilité de trouver une condition de stabilité de l’équilibre. Nous supposons que l’agglomération s’effectue dans la région Y. Dans ce cas, \(n_x = 0 \) et \(L_y = 1 \). Cela signifie que toute la population de la région Y œuvre dans le secteur manufacturier, laissant l’autre région (X) spécialisée dans le secteur agricole.

4.1.3 Analyse du bien-être régional et collectif

Charlot et Gaigné (2002) montrent que deux valeurs de coûts de transport annulent les profits dans la région Y. L’agglomération est stable pour une valeur de coût de transfert, comprise entre les deux extrêmes. D’autres paramètres influencent sensiblement l’équilibre. En effet, un faible taux de substitution entre biens industriels, au sein d’une région, se traduit par une faible concurrence entre les firmes, ce qui favorise un plus large intervalle, en termes de coûts de transport, pour la stabilité de l’agglomération. En plus d’une faible substituabilité entre les biens (\(\sigma \) faible), l’intensité des relations input-output entre les entreprises, au sein d’une même région, rend cette dernière plus attrayante, et donc les forces de polarisation plus fortes. À l’inverse, nous pouvons conclure qu’une région caractérisée par un niveau élevé de concurrence (\(\sigma \) élevé) et peu intensive en biens internmédiaires, poussent les firmes à se disperser.

L’équation d’utilité indirecte des agents dépend aussi bien du salaire d’équilibre que
Chapitre 2 : Concurrence monopolistique et équilibre spatial

des indices des prix régionaux. Cette piste fut poursuivie par Charlot et Gaigné afin de comparer le bien-être en situation d’agglomération et de dispersion. Pour ce faire, ils étudient successivement les variables endogènes constituant les indices de prix (nombre et prix des biens). Ils parviennent ainsi à prouver que le nombre de biens offerts en situation de dispersion est supérieur à celui trouvé lors d’une configuration d’agglomération totale.

Par contre, le prix de biens industriels est moins élevé en cas de dispersion :

\[n^* \leq n^d \quad \& \quad p^* > p^d \quad : \text{agglomération} ; \quad d : \text{dispersion} \]

L’immobilité interrégionale de la main d’œuvre implique un niveau constant d’offre de travail dans chaque région, le nombre de firmes dans la zone d’agglomération dépend alors du nombre total des travailleurs qui y résident. Ceci explique la baisse du nombre des biens offerts industriels en configuration de polarisation totale.

Charlot et Gaigné ont conclu que l’agglomération totale n’est pas souhaitable du point de vue bien-être, puisqu’elle génère des indices de prix plus élevés, envers les ménages de la région périphérique, et ce quelles que soient les valeurs de coûts de transport. Par contre, cette dernière configuration spatiale avantage les ménages de la région centrale, par rapport à la dispersion totale. Comme nous pouvons le constater, l’analyse du bien-être faite jusqu’ici, se caractérise par la considération des deux régions séparément (gain au centre ; perte en périphérie). Nous devons donc, avant de conclure trop hâtivement, nous interroger sur le bien-être collectif afin de déterminer si l’augmentation des salaires, grâce à l’agglomération, compensait la hausse de l’indice des prix. En effet, tout comme Ottaviano et Thissé (2002) ; Charlot et Gaigné (2002) montrent que pour des valeurs intermédiaires de coûts de transports, la dispersion est la configuration spatiale d’équilibre optimale, même si les forces du marché conduisent à l’agglomération des agents économiques mobiles (les entreprises dans ce cas).

4.2 L’importance de l’amélioration des infrastructures publiques sur la localisation des entreprises

Les théories macroéconomiques de croissance endogène ont longtemps considéré que les dépenses publiques d’infrastructures, en particulier leur composante transport, constituent un facteur de production permettant d’améliorer l’efficacité technologique des économies. Dans ces modèles, la mesure empirique des avantages, induits par l’amélioration et le développement des infrastructures, est analysée par la considération d’un agrégat de capital public. Ce dernier est construit sur la base du montant investi pour la réalisation et l’entretien de ces infrastructures. Cependant, diverses études empiriques montrent des résultats souvent contradictoires. Paradoxalement, les modèles de croissance endogène n’intègrent pas la dimension spatiale (celle des réseaux de transport et celles des régions), qui est primordial dans l’analyse de "l’effet de débordement" ou de proximité. En effet, la présence de rendements croissants et de mobilité des facteurs de production, ou des biens, favorise l’agglomération de l’activité industrielle, au sein d’une région conditionnée aussi, par l’importance et la qualité des infrastructures publiques. Dans ce cadre d’étude, la Nouvelle Économie Géographique constitue un outil d’étude plus puissant, en s’approchant d’autant plus de la réalité économique, au moyen de l’association des baisses des coûts de transport, de l’exploitation des externalités (pécuniaires ou technologiques) et du niveau des disparités régionales.

Partant de l’idée que l’impact des infrastructures de transport ne réside pas nécessairement dans le surcroît de richesse, induit par l’accroissement du taux d’investissement public, mais dans la réduction des coûts de transaction, Martin et Rogers (1995) distinguent deux niveaux de coûts de transport : un niveau inter-régional et un niveau intra-régional. En liant ces coûts aux dotations et qualités des infrastructures, les auteurs parviennent à prouver que les entreprises tendent à se localiser dans la région au sein de laquelle les coûts de transport internes sont les plus faibles.
Tout en conservant les mêmes hypothèses de bases de Krugman (1991), Martin et Rogers (1995) considèrent que chaque région est dotée d’un certain stock d’infrastructures. L’accroissement de ce stock est financé au moyen d’une taxe payée par les agents, dans chaque région. Une amélioration des infrastructures au sein d’une région, nécessite alors un accroissement de la taxe. En fait, un stock d’infrastructures plus élevé implique un prix domestique plus faible, ce qui entraîne une augmentation de la demande relative. Cette hausse de la demande pousse de nouvelles firmes à se concentrer dans cette région, afin de bénéficier de l’effet taille du marché. Les consommateurs trouvent alors leur intérêt, grâce à l’augmentation du nombre de biens offerts. Cependant, comme nous l’avons vu précédemment, l’amélioration du stock d’infrastructures est directement liée à une augmentation des taxes payées par les agents, résidant au sein de la région considérée. De ce fait, la concentration de l’activité se réalise, si et seulement si la hausse de la demande pour les biens domestiques, liée à l’amélioration des infrastructures, est supérieure à la diminution de la demande due à l’augmentation de la taxe. Un autre aspect est à prendre en compte, la différence initiale entre régions : lorsque le stock d’infrastructures influence les coûts d’échanges interrégionaux, le désavantage initial d’une région (capital ou/et taille) sera amplifié par une chute des coûts d’échanges intrarégionaux, ce qui augmentera le flux d’exportations de la région centrale vers la région périphérique.

Le résultat central, démontré par Martin et Rogers (1995), est le suivant : plus les barrières à l’échange diminuent, plus les firmes deviennent sensibles aux différentiels d’infrastructures domestiques, dans leurs choix de localisation. Ces effets sont d’autant plus amplifiés que les économies d’échelles sont fortes. Les infrastructures sont alors considérées comme une source de causalité cumulatives.

Sylvie Charlot (1999) traite la même problématique différemment, en considérant que les infrastructures régionales influencent directement la fonction de production des firmes, par la réduction de leurs coûts fixes et/ou variables de production. L’auteur part d’un
Chapitre 2 : Concurrence monopolistique et équilibre spatial

modèle similaire à celui de Krugman, en tous points, sauf les fonctions de productions, qui sont propres à chaque région, et où le secteur public ponctionne de manière homogène le produit industriel régional, afin de financer le capital public. L’intervention dépend alors de l’influence des infrastructures sur les coûts fixes ou les coûts variables des firmes :

* Une amélioration des infrastructures publiques entraînant une baisse du coût fixe (coût variable constant entre région) implique une hausse des biens différenciés et donc du bien-être régional. Dans ce cas, la politique publique agit sur le nombre des biens offerts et non sur leurs prix.

* Les services publics ont un impact direct sur la productivité des travailleurs régionaux, dans le cas où se sont les coûts variables qui décroissent avec l’amélioration des infrastructures régionales.

Charlot démontre que le capital public joue d’une manière identique sur les équilibres de localisation des activités, en aboutissant à un résultat central de stabilité de l’équilibre centre-périphérie.

4.3 Politiques commerciales et industrialisation régionale

Une partie des modèles de la NEG s’intéresse à l’influence des formes d’intégrations économiques et des politiques de libéralisation commerciale sur l’émergence d’une configuration Centre-Périphérie. Les modèles étudiés jusqu’ici, considèrent seulement deux régions afin d’analyser les déterminants concernant les choix de localisations des firmes, qui restent fondamentalement dépendant des gains purement économiques ou technologiques. Différents travaux, comme Puga et Venables (1997a-b, 1998), ont cherché à démontrer que d’autres phénomènes pouvaient également influencer la localisation industrielle, notamment les accords commerciaux entre différentes régions. Les modèles utilisés dans ce cadre traitent des cas ayant plus de deux localisations, donnant un schéma, certes plus complexe mais plus réaliste.
Chapitre 2 : Concurrence monopolistique et équilibre spatial

L’extension du modèle de Krugman et Venables (1995) par Puga et Venables (1997-a) à plus de deux régions, leur a permis d’exploiter les résultats afin de développer l’impact de deux formes d’accords tarifaires préférentiels :

i) Zone de libre échange (Free Trade Area)

ii) Accord du type " hub and spoke"19

En partant d’une situation autarcique, avec des barrières commerciales très élevées entre les régions, et en supposant que les entreprises détiennent le même pouvoir d’implantation sur les marchés, l’équilibre symétrique s’établit et perdure (même nombre de firmes au sein de chaque région). La diminution des barrières tarifaires permet de développer un commerce intra-industriel, jusqu’à atteindre une certaine limite pour laquelle l’équilibre symétrique cesse d’être stable. De même, certaines régions bénéficient d’une part plus importante d’industries que les autres. Ainsi, l’agglomération est directement liée, selon les

auteurs, aux accords commerciaux. Cependant, puisque les régions sont, d’habord, considérées identiques, le processus d’intégration ne permet pas de prédire la région où polarisation de l’activité économique aura lieu. Lorsqu’une zone de libre échange est établie entre deux des trois régions, les auteurs retrouvent le même résultat que Baldwin et Venables (1995) appelé "production shifting" c’est-à-dire que les firmes de la troisième région vont migrer vers la zone de libre échange, afin de maximiser leurs profits, puisqu’elles ne peuvent plus exporter (pas de barrières tarifaires). De plus, la relocalisation des entreprises est aussi motivée par la disponibilité d’une variété importante de biens intermédiaires moins chers, ainsi que par l’augmentation du nombre de biens offerts favorisant un plus grand bien-être (plus grand marché).

Par ailleurs, la polarisation de production est renforcée, en cas de ZLE, par les liens inputs_outputs entre les entreprises, qui est d’autant plus forte que la disponibilité des biens de consommation intermédiaires est plus importante. De plus, même si les relations liées aux biens intermédiaires ne sont pas significatives, l’effet taille du marché de la zone intégrée est suffisante pour motiver à la concentration au sein de cette région.

Dans l’accord du type "hub and spoke", les auteurs considèrent d’abord qu’il n’existe pas de relation input-output entre les firmes ; ils parviennent alors à prouver que la région "hub" attire plus d’entreprises que la région "spoke". Ce mouvement de relocalisation est dû à la baisse des coûts d’échanges en étant implanté dans la zone hub, qui implique une demande relative plus importante au sein de cette région. En effet, l’implantation des firmes dans la région "hub" leur permet d’exporter aux deux autres régions "spoke", à des coûts d’échanges relativement faibles que celles entre régions "spoke". L’introduction des biens intermédiaires vient renforcer le mouvement des entreprises vers la région "hub" et pénalisent d’autant plus les firmes et les habitants des autres régions. Nous devons également préciser que la concentration, accentuant la concurrence au sein de la région "hub", et les salaires, relativement plus élevés, jouent comme forces centrifuges.
Les premières conclusions de Puga et Venables (1997-a) stipulent que les régions "spoke" possèdent le même nombre de firmes et de bien être, autrement dit, elles sont en équilibre symétrique. Une baisse graduelle des barrières tarifaires, au-dessous d’une certaine valeur critique, entraîne une divergence entre les régions "spoke". En ce qui concerne les politiques commerciales unilatérales, telle que la substitution des importations et libéralisation commerciale\(^{20}\), les simulations montrent que ces dernières politiques détient un effet attractif sur l’industrie, mais possèdent également des implications différentes sur le bien être des agents.

Les auteurs prouvent que, même si la substitution des importations peut entrainer une hausse du bien-être, la libéralisation commerciale unilatérale procure une augmentation plus importante du bien-être. Ceci s’explique par le fait que les firmes locales enregistrent une hausse dans leurs coûts de production, suite à l’achat plus cher de biens intermédiaires, induit par l’augmentation des barrières commerciales.

5 Conclusion

Ce domaine de la NEG peut être appréhendé comme un "corpus" théorique de la troisième génération des modèles du commerce international. La première génération est constituée par les analyses en concurrence pure et parfaite de type H.O.S qui place les avantages comparatifs au centre de l’échange. Au début des années quatre-vingt, une

\(^{20}\) Libéralisation commerciale unilatérale : baisse des barrières commerciales.

\(^{2}\) Substitution des importations : hausse des barrières commerciales.
seconde génération tente d’expliquer l’importance du commerce intra-branche mondial, en rejetant l’hypothèse peu satisfaisante de concurrence parfaite. Dans la lignée de ces travaux, l’article de Krugman (1991) propose alors la pierre angulaire de la troisième génération, en considérant une modélisation dynamique en équilibre général. De nombreuses extensions ont été faites à partir de ce modèle en intégrant différentes variables telle que l’impact de la politique commerciale, la qualité des infrastructures de transport ou encore les consommations intermédiaires. Cependant, et malgré l’intérêt que suscite ces modèles, il est malheureusement difficile de tirer des conclusions générales ou d’établir un raisonnement unique, dans la mesure où de nombreuses hypothèses contraignantes sont prises en compte par les auteurs (la quasi-totalité des modèles partant d’un équilibre initial défini par une symétrie parfaite des régions)21. Ainsi, à ce stade d’analyse, l’élaboration d’un cadre final et unique qui décrit l’équilibre industriel régional paraît impossible.

Nous focaliserons notre attention, durant la deuxième partie de cette thèse, sur l’importance du processus d’intégration régionale et du phénomène de la congestion dans la configuration spatiale régionale, en mettant au centre de nos simulations les coûts de transport intra et interrégionaux.

21L’une des raisons tient sûrement au fait que ces modélisations, hautement non linéaires, demeurent difficile à résoudre en présence de fortes asymétries.
Deuxième partie

Processus d’ouverture internationale et inégalité spatiale
Bien que les coûts de l’échange des biens entre pays différents soient pris en compte par la NEG, la représentation de l’espace qu’adopte ce courant reste sommaire. En effet, la majorité des modélisations supposent deux régions (deux pays). A cet égard le travail de Krugman et Livas Elizondo (1996) peut être considéré comme pionnier en utilisant deux pays dont l’un est composé de deux régions domestiques, avec l’existence de coûts de déplacement et d’une rente foncière, et le reste du monde qui n’est pas subdivisé. Ainsi, la deuxième partie de notre thèse s’inspire de ce modèle à trois régions afin de mettre en évidence le rôle de l’intégration régionale (ouverture commerciale) dans la répartition spatiale de l’activité économique.

Notre apport consiste d’abord, à tenir compte de la qualité des infrastructures de transport nationales quand le pays entame un processus d’intégration régionale. En effet, les résultats de Krugman et Livas Elizondo (1996) concernant l’évolution de l’armature urbaine du Mexique, suite aux accords de libre échange avec les États-Unis, paraissent moins évidents pour d’autres pays en voie de développement caractérisés par des coûts de transport intra-régionaux élevés. Ainsi, le modèle que nous avons développé en partant du modèle central de KL (1996), au sein du troisième chapitre, est censé expliquer l’avantage comparatif que détiennent les villes cotières dotées d’une bonne qualité d’infrastructure de transport et maritime, dans le commerce international.\(^{22}\) Ensuite, la prise en compte de la congestion comme conséquence d’une agglomération excessive, qui par ailleurs représente le cas de la quasi-totalité des PVD, nous permettra d’avoir une idée plus précise sur la nature des équilibres et leurs stabilités, dépendants non seulement des forces centripètes et centrifuges en jeu, mais aussi du nombre de forces considérées. Enfin, nous adopterons le coefficient de Pareto, comme mesure de l’inégalité de répartition spatiale à travers le

\(^{22}\)Notre modèle, en majorant les coûts de transport internationaux par ceux intra-régionaux, peut expliquer la singularité des pays Sud Méditerranéen qui ont une grande activité (économique, démographique...) littorale et où, la concentration cotière est très marquée, notamment le cas de Tunis avec une population équivalente à celle des 18 villes qui viennent après. En 1956, Tunis présentait une population égale à celle des six villes moyennes, ce nombre est passé à 15 en 1966, 16 en 1975, 18 depuis 1994 (A Belhedi 2004).
monde, afin de tester la sensibilité de ce coefficient aux variables de la NEG.
Chapitre 3

Intégration régionale : polarisation ou dispersion de l’activité économique ?

Introduction

Il convient de noter qu’une partie des modèles de la nouvelle économie géographique s’intéresse à l’influence des formes d’intégration économique et des politiques de libéralisation commerciale sur l’émergence d’une configuration centre-périphérie, la concentration spatiale des activités et croissance des territoires (Krugman et Venables (1995) ; Venables (1996) ; Ghio (1999)). L’enjeu sous-jacent de ces études est la question de la convergence économique : la réduction des barrières commerciales permet-elle le rattrapage des pays riches par les pays pauvres et/ou les régions centrales par les régions périphériques ?

Si l’on raisonne au niveau des pays, l’article de référence sur la question est celui de Sachs et Warner (1995), qui tentent de mettre en évidence une relation empirique robuste entre libéralisation et croissance sur la période 1970-1989. Ils montrent que les pays ouverts croissent plus vite que ceux fermés et que l’ouverture est une condition
nécessaire afin que les pays pauvres puissent rattraper les pays riches (nous observons une convergence relative entre les pays menant des politiques commerciales ouvertes mais non parmi les pays plus fermés).

Rodrik et Rodriguez (2000) insistent sur la difficulté de mettre en évidence une relation claire entre croissance et ouverture. Isoler l’effet de la politique commerciale de celui des autres politiques corrélées à la croissance est difficile. Rien n’assure le fait que la politique commerciale et la croissance ne soient liées à une troisième variable explicative de politique économique. Econométriquement, la question n’est donc toujours pas tranchée. D’un autre point de vue, la mondialisation peut aussi être un facteur d’inégalités entre pays ou à l’intérieur même d’un pays.

1 Baisse des coûts de transport et maintien des inégalités

Les coûts de transport ont toujours été un paramètre décisif dans la localisation des activités économiques. Bien que la baisse de ces coûts de transport des marchandises soit un phénomène ancien, la capacité de transport des avions et des navires s’est considérablement accrue depuis cinq décennies (Ferrandéry, 1996 ; p17). Alors que les transports aériens ne concernent plus que les passagers, les transports maritimes sont devenus un facteur essentiel de la globalisation. Dans les années 1960-1970, la diminution des coûts de transports maritimes avait déjà concouru à la littoralisation de l’activité économique. Ce phénomène n’a cessé de s’amplifier, marquant davantage la divergence régionale. Cette baisse des coûts de transports sans précédent débouche aujourd’hui sur une nouvelle Division Internationale du Travail (DIT) : la Division Internationale des Processus Productifs (DIPP). Les firmes choisissent les pays d’implantation en fonction de ses avantages comparatifs, durant une étape donnée d’un processus global parcellisé. Chaque unité de
production est spécialisée dans une étape de production, en fonction du potentiel du pays où elle se trouve (l’exemple type est la production de l’Airbus A380 entre l’Allemagne, la France, l’Angleterre, l’Espagne).

L’économie géographique s’inscrit dans une lignée de travaux qui prennent en compte les gains et les coûts de la mondialisation et qui montrent que les coûts de l’échange ne sont pas nécessairement également répartis entre les acteurs : la périphérie supporte davantage les coûts de la mondialisation et, de ce fait, les gains nets qu’elle peut espérer tirer de la participation à la mondialisation ne sont plus automatiques.

Plus précisément, l’économie géographique donne une interprétation originale des inégalités de rémunérations des facteurs de production (salaires, par exemple) entre le centre (le lieu où se trouvent le marché et les fournisseurs de biens intermédiaires pour la production) et la périphérie : au centre les revenus sont plus élevés qu’en périphérie du fait de la distance qui sépare la périphérie du centre.

D’après Venables (2001), la distance est un facteur explicatif majeur des inégalités. En effet, la distance crée des coûts, (recherche d’un partenaire, transport, contrôle/management, temps passé à échanger), qui sont intégralement supportés par la périphérie. Cette dernière rentre alors dans un cercle vicieux : un pays périphérique, donc éloigné du centre, doit payer le coût de son éloignement, ce qui l’appauvrit d’autant plus et l’empêche d’accéder au statut de centre.

La baisse des coûts de transport permet-elle la rupture de ce cercle vicieux ?

D’après Venables, nous ne devons nous réjouir de cette soi-disant baisse des coûts pour deux raisons : d’une part, en ce qui concerne les moyens de transport, leur coût diminue mais non plus rapidement que la valeur des marchandises. De ce fait, la distance ne coûte en réalité pas moins cher en termes relatifs. D’autre part, le coût d’opportunité du temps ne diminue pas, car même si nous couvrons des distances plus rapidement, il faut aujourd’hui être plus réactif aux évolutions du marché et donc plus proche de ce dernier. Par
ailleurs, les premiers modèles de géographie économique apportent un éclairage étonnant sur les effets des baisses de coûts de transport : paradoxalement, il semblerait qu’au moins dans un premier temps, la réduction des coûts de transport provoque la concentration des activités. En effet, avec le développement des moyens de transport, les activités n’ont plus intérêt à être dispersées, car la dispersion ne les protège plus de la concurrence et les prive d’économies d’échelle. Ainsi, l’amélioration des transports bénéficierait au Nord au détriment du Sud, qui se désindustrialiserait.

2 Ouverture et inégalité au sein des PVD

Les approches multiples, concernant l’influence des formes d’intégration économique et des politiques de libéralisation commerciale sur la répartition spatiale de l’activité économique, présentées dans la littérature théorique ne font pas apparaître de résultats clairs quant à l’effet de l’ouverture internationale sur la concentration géographique au sein des pays, en général, et les PVD, en particulier. En effet, la relation entre le commerce international et l’urbanisation n’a été que peu analysée, tant sur le plan conceptuel, que de manière empirique. Alors que la littérature insiste essentiellement sur les processus d’agglomération et de croissance (Puga (1996), (1999); Duranton (1997); Eaton et Eckstein (1997)) ou sur les liens entre le commerce et la distribution spatiale de la production (Puga et Venables (1997); Fujita, M., Krugman P., Venables A.J (1999); Ricci (1999)), il existe comparativement très peu de développements concernant l’interaction entre commerce international et concentration urbaine (Krugman (1994); Krugman et Livas-Elizando (1996) et ses extensions (Catin et Alii (2001); Alonso-Villar (1999)).

S’inspirant du cas du Mexique, Krugman et Livas Elizando (1996), en partant d’un modèle identique à celui de Krugman (1991), montrent que l’existence d’un coût de transport pousse les firmes à s’agglomérer dans la région centrale afin de bénéficier d’économies d’échelle. Ceci va de pair avec un faible taux d’ouverture commerciale. La relocalisation
Chapitre 3 : Polarisation ou dispersion de l’activité économique

Tabuchi et Thisse (2002) considèrent que l’hypothèse d’immobilité de la main d’œuvre agricole n’est pas compatible au PVD du fait des mouvements ruraux-urbains connus par ces pays. Par contre, ces auteurs appuient l’hypothèse d’importants coûts de congestion, particulièrement représentative des grandes villes des PVD.

Dans cette optique, le choix des pays du sud et de l’est de la méditerranée (PSEM), constitue un travail original et un défi considérable de point de vue technique. Selon ces auteurs, "Cette question est d’autant plus cruciale dans les territoires sud-méditerranéens qui présentent déjà un déséquilibre marqué de l’armature urbaine en faveur des grandes métropoles. Une croissance accélérée et non maîtrisée des populations des grandes villes apparaît d’autant plus dangereuse dans un contexte d’écosystème déjà fragilisé" (Boiscuvier, Cuenca et Menegaldo (2001)).
2.1 L’expérience des pays du sud et de l’est de la méditerranée (PSEM)

2.1.1 La singularité des pays sud méditerranéens

Quand on parle de disparités en Méditerranée, on a tendance à faire appel à ces catégories géographiques de Nord et de Sud, et à se focaliser sur les disparités entre rives. Ce qui revient à se focaliser sur les différenciations entre pays en développement et pays anciennement développés, et donc à englober à cette échelle toute une rive sous une image commune de pauvreté. L’approche géographique multi-scalaire appelle au contraire à nuancer les catégories et à affiner l’analyse. En effet, on parle de disparités lorsque ces différenciations atteignent des valeurs fortes, lorsqu’elles peuvent avoir un impact plus ou moins grand, qualitatif ou quantitatif, sur le fonctionnement du territoire et le développement de l’économie.

Tel est l’objet de cette sous section portant sur les disparités spatiales et économiques de la rive sud de la Méditerranée. Celle-ci est comprise de Gibraltar à Suez et englobe donc le Maroc, l’Algérie, la Tunisie, la Libye et l’Égypte dans leur partie littorale et méditerranéenne. Ainsi, sur l’ensemble de la rive, on observe ce phénomène de domination renforcée du littoral qui concentre la majorité des hommes et des activités.

Au Maroc, les taux d’accroissement les plus forts sont enregistrés dans les centres proches des grandes métropoles notamment Berrechid et Mohammedia dans les prolongement spatial de Casablanca, Témara dans celui de Rabat, ou encore Inezgane dans celui d’Agadir. L’exode rural explique l’accroissement des villes et la multiplication de leur nombre. La région casablancaise à cause de son fort pouvoir d’attraction et de son rayonnement à travers tout le pays a accueilli la majorité des migrants vers la région Casablanca-Kénitra. La puissance attractive de cette région s’explique par son rôle de développement très dynamique où Casablanca représente toujours le grand foyer industriel et le principal centre des échanges internationaux et nationaux. La forte concentration de la population
dans cette région atlantique marocaine a pour conséquence la concentration des activités économiques dans cet axe connu pour ses potentialités industrielles et agricoles depuis les années 19501.

L’exemple de la Tunisie avec :

- une configuration des réseaux exprimant primauté du littoral : réseau routier très dense sur le littoral, mailles s’élargissent vers l’intérieur avec un gradient nord-sud. C’est par cet axe littoral que le pays s’ouvre sur l’extérieur : six ports de commerce qui polarisent la quasi-totalité du commerce extérieur, quatre aéroports internationaux, un terminal pétrolier, des marinas (Sousse, Monastir, Tabarka, Hammamet), deux zones franches récentes (Bizerte, Zarzis).

- une dissymétrie et une concentration littorale des flux : l’axe lourd de la circulation est littoral, les autres axes ne forment que de simples bretelles. Le littoral est aussi le principal axe de télécommunications (entre Tunis, Sfax, le Sahel et Jerba)2. Sur le plan économique, le littoral tunisien est un espace vital : principale région agricole (60% de la valeur ajoutée et des exportations agricoles), 42% de l’emploi agricole, 49% des périmètres irrigués, essentiel de l’arboriculture, de l’aviculture et de la serriculture. 85% de l’emploi manufacturier, 90% de la VA industrielle, dans un tissu industriel diversifié. Clivage quantitatif mais aussi qualitatif opposant industrie moderne sur le littoral (importance du salariat) à l’artisanat et aux petits métiers de l’intérieur, Belhedi (1999).

En Lybie, 3 mouvements rendent compte de la littoralisation de la population :

1) Depuis l’indépendance en 1951, forte croissance de la population qui atteint 5500000 habitants.

1Le fait que la principale métropole du pays ne soit pas la capitale nationale est un fait rare en PED et unique dans le monde arabe.

2Cette disparité au sein même d’un pays, notamment la Tunisie, met en avant l’avantage des villes côtières dans le commerce international. C’est justement ce constat qui a motivé notre modification du modèle KL (1996) en majorant les coûts de transferts internationaux par ceux intrarégionaux afin de tenir compte de l’éloignement des régions périphériques dans le processus d’intégration régional.
2) Les années 1960 correspondent au début des retombées de l’exploitation pétrolière qui a pour conséquence un fort exode rural et de nombreuses migrations interurbaines.

3) Enfin, retour des rapatriés des pays voisins et arrivée d’étrangers.

Ces trois mouvements se traduisent par une littoralisation de la population entre 1964 et 1973. Le littoral, fortement attractif, et notamment la région de Tripoli, contraste avec le reste de la Libye au solde migratoire négatif. Après 1973, la population de Tripoli et Benghazi s’accroît plus lentement que le reste du pays, et en particulier que la région du Fezzan et de Koufra qui connaît une rapide croissance. Cependant, on ne peut pas parler d’inversement du phénomène de littoralisation car la partie centrale du littoral garde une forte croissance (villes de Syrte et de Misratah).

Pour d’autres pays, comme la Syrie ou la Turquie, la littoralisation moins marquée cache d’autres formes de disparités spatiales (Van Huffel, C, 2001). En Syrie, seuls 9,7% des habitants sont dans des circonscriptions littorales. Les disparités sont plus le fait d’une bipolarité intérieure entre les deux grands centres urbains que sont Damas et Alep.

En Egypte, la littoralisation reste également faible, et les disparités spatiales s’analysent plutôt en terme de fracture entre le Delta et la vallée du Nil. Le sud, assisté, s’affiche comme un espace extrêmement dépendant des subsides de l’Etat et des bailleurs de fonds internationaux, alors que le nord, intégré, s’affirme autour de ses pôles urbains comme un territoire disposant de marges de croissance économique, agricole et industrielle, et d’une incontestable dynamique de développement.

Dans cette optique, nous pouvons nous demander si les modèles d’économie géographique appréhendent ou non le fonctionnement des forces centripètes qui façonnent l’espace Sud méditerranéen. La zone littorale est, alors, prise au sens large, elle désigne l’espace qui, de façon directe ou indirecte, est façonné par la proximité de la mer, s’opposant ainsi à l’espace intérieur\(^3\).

\(^3\)- extrême concentration de la population : 85% en Libye ;
2.1.2 Mondialisation, disparités et organisation de l’espace sud méditerranéen

Selon Bruxelles, l’instauration d’une zone de libre-échange généralisée entre le Nord et le Sud constitue la base d’un développement économique favorable aux deux côtés. Les flux commerciaux et financiers constituerait alors le ciment d’une intégration économique plus étroite. De ce fait, les effets sociaux de l’ajustement nécessiteront un soutien politique et financier. Dans cette optique, les effets indirects liés à la redistribution spatiale des hommes et des activités au sein du bassin méditerranéen ne sont pas explicitement pris en compte. Pourtant, la suppression des barrières douanières ou l’intensification des flux d’investissements directs étrangers (IDE), en renforçant la concurrence dans certains secteurs sensibles, peuvent avoir des effets sur l’organisation spatiale.

Le degré d’ouverture et les caractéristiques des spécialisations des économies sud-méditerranéennes influencent l’impact que l’ouverture peut avoir sur leurs structures spatiales. D’une part, l’importance des flux commerciaux et leur concentration géographique, avec une forte orientation vers les marchés européens, renforce l’attractivité des villes côtières (ports internationaux). En Méditerranée, ce sont majoritairement les capitales qui jouent ce rôle. La qualité inégale des autres infrastructures de transport accentue encore cet effet : la localisation à proximité de ces noeuds de communication devient une variable stratégique de la compétitivité des exportations.

Les IDE sont également susceptibles d’influencer les formes spatiales. Les flux d’IDE sont une force centripète s’ils se localisent dans la capitale ou une force centrifuge s’ils sont investis ailleurs. L’hypothèse d’une polarisation accentuée des structures spatiales, consécutive à un afflux d’IDE, semble toutefois plus probable selon la plupart des développements théoriques (De Melo (1997)). En effet, les choix de localisations sont conditionnés par la

- concentration forte au Maroc (50%), Tunisie (70%) ;
- concentration prononcée en Egypte, mais nettement secondaire face à la domination du système nilotique.
Chapitre 3 : Polarisation ou dispersion de l’activité économique

présence d’une base industrielle large et d’un bassin d’emploi important. Par la suite, des mécanismes cumulatifs – comportements de mimétisme, minimisation des risques, externalités positives...etc. – renforcent les clusters. Si nous observons les flux d’IDE dans les pays sud-méditerranéens, nous constatons une double polarisation. Tout d’abord, ils se concentrent sur certains secteurs industriels : industries extractives et activités complémentaires (Bellon et Gouia (1998)). La concentration des IDE se remarque aussi dans les choix de localisation, les capitales étant souvent préférées à d’autres sites. Le regroupement de l’activité industrielle dans la capitale économique est partout frappante, notamment car elles offrent une meilleure connexion aux marchés internationaux. De même, elles recherchent une main d’œuvre abondante et disponible localisée le plus souvent dans les grandes villes. Les IDE en Méditerranée semblent soutenir les processus d’agglomérations autour des capitales. Mais, il faut souligner qu’ils restent pour l’instant faibles : ils n’ont peut-être pas atteint des montants suffisants pour influer significativement sur les structures urbaines comme c’est le cas pour la Chine.

Les résultats trouvés par Boiscuvier, Cuenca et Menegaldo (2001), démontrent que la part de l’investissement direct étranger dans la formation de capital fixe n’a apparemment aucune influence sur les systèmes urbains des pays de leur échantillon (PSEM). Ce résultat peut être largement attribuable à l’instabilité et à la faiblesse des IDE. Nous pouvons penser qu’ils n’atteignent pas le seuil critique à partir duquel des processus cumulatifs peuvent se mettre en place.

Selon les auteurs, au début de leurs analyses, les variables commerciales utilisées ne tiennent pas compte des spécialisations afin d’expliquer la structuration des systèmes urbains (Henderson (1988)). Dans le but de préciser cette question, ils se sont intéressés plus spécifiquement à deux types d’échanges : les échanges de produits agricoles, ainsi que les biens technologiques qui semblent plus sensibles que d’autres productions, aux économies d’agglomération.
Selon Catin et Van Huffel (2004), la croissance progressive de l’ouverture commerciale en termes de volume d’échanges est étroitement liée au processus de développement. Ainsi, les conséquences que peuvent avoir les flux d’échanges doivent être considérées, en parallèle, avec le niveau du développement des pays ou des régions. Les auteurs, de ce fait, distinguent entre une ouverture endogène qui s’effectue à long terme et une ouverture «exogène» qui dépend des politiques commerciales mises en place dans une période donnée. Cette forme trouve son application spécialement au sein des IDE reçus récemment par certains PVD, qui aboutit à une répartition régionale inégale (Centre/ Périphérie).

2.2 Ouverture endogène et processus de développement

Williamson (1965) a testé l’évolution des inégalités spatiales au sein d’un pays donné au cours de son processus de développement. Durant la première étape de développement, une configuration Centre/ Périphérie prend place et se traduit par un différentiel de revenu croissant entre le Nord et le Sud. La deuxième phase se caractérise par une réduction d’inégalité, autrement dit l’agglomération cède la place à une dispersion relative de l’activité. D’où l’apparition d’une forme en cloche entre l’ouverture et le degré de concentration urbaine.

Le coefficient de variation du revenu régional par rapport à la moyenne nationale est la variable utilisée par Williamson afin de mesurer l’inégalité régionale en termes de revenus. Les résultats obtenus, en utilisant des séries temporelles ou en coupe transversale, sem-
blent confirmer l’intuition de base de Williamson. Cependant, l’analyse des mécanismes explicatifs reste limitée.

De nombreux travaux empiriques ont été réalisés afin de vérifier le constat de Williamson (1965), notamment : Hansen (1990), Mac Keller (1995), Ades et Glaesar (1995)… Le point commun de ces tests réalisés est la mesure du degré de concentration urbaine, au cours des différentes étapes de développement. Toutes ces études convergent vers la théorie selon laquelle la polarisation urbaine tend à diminuer à partir d’un revenu par tête de 5000$ (année 85).

L’aboutissement à la production de biens technologiques suit ainsi un certain cycle « dispersion-concentration-dispersion » passant par la production de biens industriels « banalisés ». La base théorique de cette analyse trouve son origine au sein des modèles centres-périphérie qui, par la baisse des coûts de transport, considèrent une intégration régionale ou une ouverture « endogène », accompagnant le processus d’industrialisation.
2.3 Ouverture exogène

Concernant les PVD, les résultats trouvés en littérature sont parfois paradoxaux. Dans cette optique, nous devons considérer une autre forme d’ouverture commerciale entretenue par ces pays, caractérisée par une baisse brutale des coûts de transactions du type barrière tarifaire ainsi qu’une politique d’encouragement des IDE. Ce type d’ouverture définit un choc exogène qui influence largement la structure de la répartition spatiale de l’activité, favorisant une persistance de polarisation, voire une configuration spatiale spécifique au sein des PVD.

La spécificité d’une ouverture exogène est le fait que la politique d’intégration régionale adoptée par les PVD, provoque des sursauts spectaculaires de polarisations ou de dispersions. Ainsi, durant la deuxième phase de concentration identifiée par Maurice Catin et Van Huffel (2003), les conditions initiales (avantages comparatifs ; localisation géographique..) des régions centrales ou périphériques, peuvent accélérer le rythme de concentration ou de dispersion. L’étude comparative du Mexique par rapport à la Chine...
décrit bien l’impact de ce choc exogène causé par une accélération de l’ouverture commerciale.

La troisième phase se caractérise par les déséconomies d’agglomération et la croissance des forces centrifuges, du fait de la polarisation du quasi totalité de l’activité industrielle au centre, au détriment de la périphérie. Cependant, la dynamique de concentration urbaine peut-être liée à la spécialisation régionale, en intégrant le degré de sophistication des biens (industrie technologique). Giannetti (2002) montre, au sein d’une étude testée empiriquement sur les régions espagnoles, que la disparité interrégionale favorisée par l’ouverture, dépend des spillovers internationaux. Le processus de déconcentration ne concerne alors que les industries banalisées.

2.4 Ouverture commerciale et concurrence des territoires

La transformation de l’économie mondiale s’accélère depuis le début des années 1990. Cinq indicateurs sont significatifs de cette mutation et du poids grandissant des pays du Sud. D’abord, le commerce international continue à croître plus rapidement que la production mondiale : entre 1991 et 1994, les exportations ont augmenté de 6% l’an et la production de 1% (World urbanization prospects, the 1994 revision, ONU 1995). Par ailleurs, en dix ans, la part des pays en développement au sein de la production mondiale, est passée de 34 à 40 %, et leur participation aux échanges est aujourd’hui de 27%. Les flux de capitaux vers les pays en développement ont atteint, en 1995, le niveau record de 231 milliards de dollars. Les économies émergentes ont connu une croissance très supérieure à la moyenne mondiale. Leur part dans le PIB mondial est passée de 14% à plus de 30% entre 1960 et 1997 et celle de leurs exportations de produits manufacturés de 7% à 18% du commerce mondial. Depuis la fin des années quatre-vingt, le phénomène s’accélère, gagne les investissements directs internationaux, et s’élargit à d’autres zones, notamment les pays de l’Europe de l’Est. Avant la crise de 1997, on estimait que la moitié
de la croissance mondiale proviendrait des pays émergents. Parmi ces pays émergents un certain nombre pèsent sur l’ensemble de l’économie mondiale, à long terme du fait de leur poids démographique, mais aussi à plus court terme par le poids et les perspectives de croissance de leur industrie. En 1995 les cinq grands pays émergents (Chine, Inde, Brésil, Mexique, Indonésie) représentaient 55% de l’offre industrielle de l’ensemble des pays en voie de développement. Leur croissance industrielle apparaît près de trois fois supérieure à la moyenne mondiale\(^4\).

Enfin, l’évolution du commerce maritime traduit la réorganisation des échanges à l’échelle planétaire : ainsi, la part du commerce atlantique est aujourd’hui de 33% (60% trente ans plus tôt), et celle du pacifique a atteint 40%. La mondialisation de l’économie conduit à l’émergence de nouveaux pôles économiques régionaux, se structurant autour de réseaux de villes qui sont amenés à développer leurs atouts dans le but d’attirer les investisseurs internationaux, les grandes multinationales et leurs filiales. La concurrence entre les villes, au niveau régional, mais également au niveau international, est l’une des conséquences directes de cette vague d’ouverture commerciale et de mondialisation en général.

Nous ne devons pas négliger les autres dimensions de la mondialisation qui peuvent, elles aussi, influencer le taux de croissance. O’Rourke (2001) rappelle que la dimension de la mondialisation qui a eu le plus d’impact sur la convergence au 19 ème siècle, était les migrations de populations, et non le commerce. Plus de 60 % de la population mondiale vivra en zone urbaine d’ici 2030 contre 30 % en 1950 et 48 % en 2003. La croissance urbaine sera particulièrement forte dans les pays du Sud. À l’heure actuelle, 70 % des habitants vivent en milieu rural, 30% en milieu urbain. En 2030, la tendance s’inversera pour les pays émergents, les pays moins avancés suivant un peu plus tard. Avant 2015,

\(^4\)Nous devons distinguer les PVD des pays émergents, dès lors que ces derniers ont un taux de croissance très élevé qui accélère les phénomènes migratoires et d’organisation spatiale.
la planète comptera 23 agglomérations de plus de dix millions d’habitants contre 19 en 2000. 80 % de ces constructions seront localisées dans les pays en développement et les pays émergents comme c’est déjà le cas actuellement. Tandis qu’au Nord, l’urbanisation est allée, le plus souvent, de pair avec la croissance économique et l’augmentation du niveau de vie, au Sud, en revanche, l’urbanisation a souvent été synonyme de paupérisation, notamment en Afrique où 70 % de la population urbaine ne dispose pas de réseaux d’eau, d’assainissement, de collecte des déchets et de transports publics.

La théorie économique est favorable aux investissements directs, s’ils viennent toutefois en complément de l’ouverture commerciale : Dollar et Kraay (2001b), en étudiant un groupe de PVD qui ont entamé une ouverture commerciale élevée avec le reste du monde durant les deux dernières décennies, montrent que le commerce et les investissements directs sont corrélés à une accélération de la croissance (mais que le taux d’investissement seul n’est pas corrélé à la croissance). Il semblerait que la mondialisation, au sens strict, (ouverture commerciale) ne soit pas suffisante afin d’expliquer la croissance. Toutefois, la mondialisation, au sens large, (échange de biens et investissements directs) stimule la croissance. Avant de procéder aux simulations numériques, il nous paraît intéressant de déterminer quelles sont les idées qui soutiennent l’hypothèse selon laquelle l’ouverture commerciale réduit les inégalités régionales et celles qui affirment le contraire (soutenir et renforcer l’inégalité), spécialement dans le cas des investissements directs étrangers.

3 Intégration régionale et convergence

La littérature de la Nouvelle Economie Géographique s’est concentrée sur deux types de modèles. La première catégorie de modèles traite les explications théoriques des causes sous-jacentes des modèles de l’urbanisation, au sein des pays en voie de développement. Elle cherche également des réponses au sujet des distributions inégales de population ainsi que des activités économiques qui existent indépendamment de grandes différences

Dans ce contexte, Krugman et Livas Elizondo (1996) (nous l’appellerons modèle KL) mobilisent un modèle d’équilibre général avec des interactions entre les forces centripètes, comme la migration de travail, le rendement croissant et les coûts de transport qui motivent la concentration des activités économiques et de la population, au sein de la région urbaine. D’autre part, les forces centrifuges, comme la congestion et le coût de location de la terre urbaine, favorisent la dispersion des firmes et des travailleurs. La considération de ces deux types de forces détermine les liens entre régions urbaines et rurales. Catin, Ghio et Van Huffel (2001) ont étendu le modèle KL (1996) en introduisant, d’une part, les consommations intermédiaires et, d’autre part, l’entrée des investissements directs étrangers au sein des PVD. Les auteurs démontrent que pendant la première étape de développement, le niveau de concentration de l’activité industrielle "banalisée" est influencée par le niveau d’ouverture commerciale de PVD au commerce mondial. La constitution d’une activité technologique, nécessitant une main d’œuvre qualifiée et une consommation des biens intermédiaires fournie par l’industrie "banalisée", définit une deuxième étape de développement des PVD. La configuration spatiale relative à cette dernière étape de développement est caractérisée par une concentration de l’activité économique, sauf si le PVD atteint un niveau d’intégration économique beaucoup plus élevé que dans la première étape. Les auteurs mettent, en particulier, l’accent sur l’influence sur l’influence de
Chapitre 3 : Polarisation ou dispersion de l’activité économique

l’implantation des firmes multinationales sur la structure spatiale des PVD.

Nous nous concentrerons, au cours ce chapitre, sur les rapports entre politiques commerciales et la concentration spatiale de la production et des populations, au cours d’un processus d’ouverture commerciale. En majorant les coûts liés aux barrières tarifaires internationales au moyen de coûts de transport intra régionaux, nous prenons en compte le désavantage des régions périphérique (internes). Cette hypothèse nous paraît particulièrement réaliste au sein des PVD où la qualité médiocre des infrastructures de transport rend difficile le commerce 'bilateral direct' entre des villes périphériques et le reste du monde, sauf politiques ou situation géographique particulières. Il convient aussi de noter que notre modèle se situe dans les premières étapes de développement (d’industrialisation), c’est aussi dans ce sens que notre investigation concerne les PVD en particulier le bassin sud méditerranéen.

A partir de la deuxième moitié des années 1980, le Mexique commença un processus spectaculaire de libéralisation commerciale qui atteignit son plus haut degré avec l’ALENA. Une décentralisation considérable de l’industrie a été associée au processus d’ouverture économique mexicain, loin de la ville de Mexico et vers le centre et le nord du pays. Cette décentralisation a été suivie par un détournement de l’activité industrielle loin du marché intérieur et vers des exportations aux Etats-Unis.
KL expliquent la cause sous-jacente du changement au sein de la distribution régionale de l’industrie du Mexique comme suit. La concentration d’industries à Mexico était le résultat d’une stratégie d’industrialisation orientée vers le marché local suivie pendant les décennies précédentes. Les entreprises industrielles produisaient principalement pour le marché domestique et avaient, de ce fait, une motivation à choisir des sites de production avec un bon accès aux clients. En effet, la population relativement riche s’était concentrée dans la ville de Mexico ; conduisant à l’émergence de liens en aval (des marchés pour les marchandises et les services) et des liens en amont (les firmes comme des fournisseurs). Les avantages liés à ces liens ont dépassé les inconvénients liés aux locations des terres urbaines, aux salaires, à la congestion et à la pollution. Ainsi, le modèle KL a été développé afin de formaliser l’observation de l’expérience de la ville de Mexico.

Le but de ce chapitre est d’examiner l’applicabilité du modèle KL à d’autres scénarios établis concernant les politiques d’ouverture commerciales telles que les coûts d’exportation et les coûts intra-régionaux. Comme dans le modèle KL, nous assumons une petite économie en voie de développement ouverte avec deux régions domestiques et une région externe (le reste du monde), dans le but de mettre en avant le rôle de l’ouverture commerciale. Au sein de chaque région, une industrie agrégée produit un composite de biens différenciés, tout en utilisant le travail comme seul et unique facteur de production. La main-d’œuvre nationale fixée est mobile entre les régions domestiques, mais non internationalement. Toutes les régions agissent réciproquement au marché de biens, avec les expéditions de marchandises entre régions, impliquant des dépenses commerciales.

Au sein de leur modèles, (KL) assumaient le fait que seules les firmes étrangères, au sein de l’accès au marché intérieur, supportaient des coûts de transfert (transport), mais les exportations des régions intérieures vers le reste du monde se faisaient sans barrières tarifaires. Étant données les circonstances au Mexique, dont la libéralisation commerciale atteignit son plus haut niveau avec l’établissement de l’ALENA, ainsi que l’emplacement
industriel des régions mexicaines bordant les EU, la supposition de coût de commerce d’exportation nulles, dans le modèle KL, pourrait être réaliste dans ce contexte. Cependant, ces conditions sont peu probables dans le but d’être appliquées au reste des pays en voie de développement qui ont mis en œuvre des réformes de politiques commerciales libérales.

4 Le modèle

Nous employons un modèle d’économie géographique qui génère des interactions entre les forces "centripètes", qui ont tendance à concentrer les travailleurs/consommateurs et les entreprises dans des secteurs urbains, et les forces "centrifuges", qui ont tendance à les disperser vers les régions périphériques. Les forces centripètes incluent les économies pures externes, et des effets de taille du marché (liens en amont et liens en aval). Les forces centrifuges pourraient être les déséconomies pures externes, comme la congestion, la pollution, des loyers de terres urbaines, l’éloignement d’emplacements fortement compétitifs urbains, à moins compétitifs ruraux (KL, 1996, p. 141). Nous gardons ici les forces centripètes qui résultent de l’interaction entre la taille du marché, des économies d’échelle et des dépenses commerciales. De la même manière, la seule force centrifuge permise est le loyer de la terre urbaine (rente spatiale pour ceux qui possèdent les terres).

Nous imaginons une économie ouverte avec deux régions domestiques : urbaine et rurale. Chaque région interagit avec le reste du monde sur le marché des biens. Chaque région, y compris le reste du monde, possède un secteur de biens agrégés qui utilise le travail comme seul facteur de production. L’économie domestique est caractérisée par le plein emploi de la main-d’œuvre, donné par L, qui est mobile entre les régions (national), mais immobile internationalement. Nous utiliserons 1, 2 et 0 afin de spécifier respectivement la région 1, la région 2 et le reste du monde.
4.1 Coût de déplacement

Nous employons la notion d’une structure mono-centrale urbaine, dans le but de montrer les rapports entre les salaires, les coûts du trajet entre le lieu résidentiel et le lieu de travail. (Fujita et Krugman, 1995). La figure 3.3 représente une structure simplifiée qui propose une économie longue et étroite, uni-dimensionnelle, avec un centre commercial au centre (C) et des espaces résidentiels qui s’étendent efficacement sur le long d’une ligne (OO’). La production a lieu à une place simple centrale (au point C). Les places résidentielles des ouvriers sont étendues des deux côtés du centre commercial central, avec une unité de terre par ouvrier. Le trajet que parcourt le dernier ouvrier vivant en localisation r, (à O et O’) est donné par le rapport suivant :

$$d_r = \frac{L_r}{2}$$

L est le nombre total des travailleurs et d la distance séparant les deux extrémités (O, O').

Le loyer de terre le plus haut est payé au point C, mais le niveau de loyer de terre baisse avec la distance du centre commercial central. Le dernier ouvrier qui vit aux extrémités de la ville ne paye pas de loyer de terre. Cela motive les ouvriers à s’implanter au sein
des banlieues de la ville (plus loin du centre) et où le loyer de terre est bon marché. Cependant, chacun assume, en parallèle, le temps que cela lui prendra afin de se rendre sur son lieu de travail, au sein même de la ville.

Étant donné qu’un ouvrier dispose d’une unité de travail disponible, en faisant le trajet entre le domicile et le lieu de travail dans le centre commercial, alors il arrive avec une quantité nette de travail égale :

\[
S = 1 - 2\gamma d \tag{3.2}
\]

\(\gamma\) est le ratio de temps de travail passé par unité de distance.

L’équation ci-dessus suggère que le coût "pendulaire" soit inclus au sein du travail. Avec un taux de salaire régional donné \((W_r)\), une commutation d’ouvriers d’un certain emplacement reçoit un salaire net seulement de \((1 - \gamma L_r)W_r\). Un travailleur qui vit tout près du centre ville, cependant, reçoit la quasi-totalité du taux de salaire régional, \(W_r\), mais paye un loyer de terre qui compense exactement la somme qu’ils ont économisé en évitant le trajet. Ainsi, le salaire net des coûts pendulaires (de commutation) et des loyers de terre est \((1 - \gamma L_r)W_r\) pour tous les travailleurs.

La dotation totale de travail pour chaque région est donnée par :

\[
Z_r = L_r(1 - 0.5\gamma L_r) \tag{3.3}
\]

\(L_r\) est la force de travail dans la région r et \(Z_r\) est l’offre de travail totale nette des coûts de déplacements pendulaires (ou la rente).

Nous supposons que les loyers de terre sont dépensés au sein des régions où ils sont produits. Ainsi, le revenu régional, incluant celui des propriétaires urbains se présente comme suit :

\[
R_r = W_r Z_r
\]
Chapitre 3 : Polarisation ou dispersion de l'activité économique

En se basant toujours sur la représentation de la concurrence monopolistique à la Dixit-Stiglitz, 1977, nous supposons qu'il existe une infinité de biens composites, et par suite un large nombre de producteurs. Chaque agent, au sein de cette économie, partage une fonction d’utilité CES de la forme :

$$U = \left[\sum_{i}^{n} C_i^{\frac{\sigma-1}{\sigma}} \right]^{\frac{1}{\sigma-1}}$$

Avec n le nombre de biens différenciés et $\sigma > 1$, l’élasticité de substitution entre les variétés.

Le processus de production implique des économies d’échelle au niveau de variété. En outre, nous supposons que les producteurs emploient la même technologie dans chaque région avec un coût fixe, α, et un coût variable, β, du seul facteur de production travail, la production d’une quantité, Q, d’une variété (i) à un emplacement donné (j) se présente alors comme suit :

$$Z_{ij} = \alpha + \beta Q_{ij}$$

Les propriétés de ce modèle sont maintenant familières. Une combinaison de rendement croissant, la préférence des variétés et le nombre illimité de variétés potentielles, suggère que les entreprises ne veuillent pas produire la même variété fournie par une autre société. Ainsi, seule une firme spécialisée produit une certaine variété et assure la provision aux consommateurs dans tous les emplacements. Cela implique que le nombre de firmes est équivalent au nombre de variétés disponibles.

Chaque producteur fait face à une élasticité de demande équivalente à l’élasticité de substitution, et fixe un prix qui correspond à un "mark-up" constant sur le coût marginal :

$$p_j = \frac{\sigma}{\sigma - 1} Bw_j$$

Etant donné cette condition sur les prix et l’hypothèse de libre-entrée des firmes (profits
Chapitre 3 : Polarisation ou dispersion de l’activité économique

nuls), ceci se traduit par une quantité unique d’outputs :

\[Q^* = \frac{\alpha}{\beta} (\sigma - 1) \]

(3.7)

Le fait que la production d’une variété soit une constante, suggère que le nombre de biens produits sur un site soit proportionnel à l’input de travail utilisé net des coûts de déplacement :

\[n_j = \frac{Z_j}{\alpha \sigma} \]

(3.8)

La dernière équation révèle une particularité essentielle de rendements croissants au niveau des firmes. Elle démontre qu’un emplacement avec un grand input du facteur travail (\(Z \uparrow\)) produit une plus grande variété de biens (\(n \uparrow\)) qu’un autre avec un plus petit input en main d’oeuvre.

Nous supposons, pour la suite, que \(\alpha \sigma\) soit égal à l’unité ainsi \(n_j\) égalise \(Z_j\) et de ce fait nous pouvons définir :

\[\lambda_r = \frac{n_r}{\sum_s n_s} = \frac{Z_r}{\sum_s Z_s} \]

(3.9)

Cela signifie que la part de chaque région en variétés industrielles est égale à sa part en force de travail. Les expéditions des biens entre les régions impliquent des dépenses. D’une façon classique, nous utilisons un coût de transport du type "iceberg" proposé par Samuelson qui est équivalent à \(\tau\) entre les deux régions domestiques et \(\rho\) entre le pays et le reste du monde. Ce dernier taux rend compte du degré d’ouverture du pays au commerce extérieur, à travers sa composite barrière tarifaire, même si elle n’est pas différenciée du coût de transport.

4.2 Détermination des équilibres

L’introduction des coûts de transport entre les régions se répercute non seulement sur le prix des biens mais aussi sur les indices des prix régionaux (déjà vue au cours du
Chapitre 3 : Polarisation ou dispersion de l’activité économique

deuxième chapitre) qui devient :

\[G = \left[\sum_r n_r (p_r \{ \tau; \rho \})^{1-\sigma} \right]^{\frac{1}{1-\sigma}} \quad (3.10) \]

En prenant le taux de salaire en localisation 0 (reste du monde) comme numéraire, nous pouvons déduire les indices de prix au sein de chaque région :

\[G_0 = K \left[Z_0 + \lambda_1 (w_1 \rho_{1,0})^{1-\sigma} + \lambda_2 (w_2 \rho_{2,0})^{1-\sigma} \right]^{\frac{1}{1-\sigma}} \]

\[G_1 = K \left[Z_0 \lambda_1^{1-\sigma} + \lambda_1 w_1^{1-\sigma} + \lambda_2 (\tau w_2)^{1-\sigma} \right]^{\frac{1}{1-\sigma}} \quad (3.11) \]

\[G_2 = K \left[Z_0 \lambda_2^{1-\sigma} + \lambda_1 (\tau w_1)^{1-\sigma} + \lambda_2 w_2^{1-\sigma} \right]^{\frac{1}{1-\sigma}} \]

avec \(K = (n_0 + n_1 + n_2)^{\frac{1}{1-\sigma}} \)

Les indices des prix ont tendance à décroître au sein de la région qui détient la plus grande part d’activité économique. La raison est qu’une plus grande proportion de marchandises localement consommées ne génère pas des coûts commerciaux supplémentaires. Cela fait de la région un emplacement attirant pour les travailleurs/consohmateurs.

Supposons que \(Z_0 \) soit donné et que l’allocation de travail entre les deux localisations 1 et 2 soit connue, alors le modèle peut être résolu pour les taux de salaires \((W_j) \) en déterminant \(Z_1 \) et \(Z_2 \). Le travail étant mobile entre les deux sites domestiques, les salariés reçoivent le même salaire réel net. Ce salaire est défini comme suit :

\[\omega_1 = W_1 \left(1 - \gamma_1 L_1 \right) \frac{G_1}{G} \]

\[\omega_2 = W_2 \left(1 - \gamma_2 L_2 \right) \frac{G_2}{G} \quad (3.13) \]

L’équilibre instantané du modèle peut être déterminé en résolvant simultanément les équations de revenus, équations des indices des prix, les équations de salaires nominaux et les équations de salaires réels.
Nos simulations effectuées au cours de cette partie sont inspirées de celles de Brakman, Garretsen, Van Marrewijk et Van Den Berg (2003). L’installation du système d’équation nécessaire à la détermination des équilibres provient du travail de Fujita, Krugman et Venables (1999, le Chapitre 18.1). Puisque le travail est mobile, seulement entre les régions domestiques (intérieures), nous prenons la main-d’œuvre au sein de la région externe (reste du monde) comme donnée, \(Z_0 \). Les régions centrales et périphériques se partagent la main-d’œuvre domestique, à raison de \(\lambda_1 \) et \(\lambda_2 \). Le taux de salaire du reste du monde est employé comme un numéraire, \(W_0 \) égale à 1. Par conséquent, les équations de revenus concernant les trois régions peuvent être écrites de la manière suivante :

\[
\begin{align*}
R_0 &= Z_0 \\
R_1 &= \lambda_1 W_1 \\
R_2 &= \lambda_2 W_2
\end{align*}
\] (3.14)

Sachant que le salaire du reste du monde est pris comme numéraire, les équations des salaires deviennent :

\[
\begin{align*}
W_1 &= \left[R_0 G_0^{\sigma-1} \rho_{1,0}^{1-\sigma} + R_1 G_1^{\sigma-1} + R_2 (G_2/\tau)^{\sigma-1} \right]^{1/\sigma} \\
W_2 &= \left[R_0 G_0^{\sigma-1} \rho_{2,0}^{1-\sigma} + R_1 (G_1/\tau)^{\sigma-1} + R_2 G_2^{\sigma-1} \right]^{1/\sigma}
\end{align*}
\] (3.15)

Les équations de salaire exposent une propriété importante du modèle. Toutes choses étant égales par ailleurs, le taux de salaire nominal au sein d’une région est croissant en fonction des revenus disponibles dans cette dernière. Ainsi, la localisation qui possède un plus grand marché domestique détient également une meilleure position afin d’exporter des biens et des services vers d’autres régions.

La mobilité des travailleurs entre les régions dépend du différentiel du salaire entre elles. Cela conduit à des changements de l’activité économique entre les localisations au
Chapitre 3 : Polarisation ou dispersion de l’activité économique

cours du temps.

\[
\frac{d\lambda_1}{dt} = -\frac{d\lambda_2}{dt} - \delta(\omega_1 - \omega_2) \tag{3.16}
\]

Avec \(\delta\) la vitesse d’ajustement de la mobilité du travail.

Bien que la logique de ce modèle soit simple par construction, les rapports entre les variables sont suffisamment complexes pour être résolus analytiquement. De ce fait, nous recourons aux simulations numériques.

4.3 Forces centrifuges et forces centripètes

Afin de comprendre le fonctionnement de ce type de modèles, il serait intéressant de considérer une économie fermée au commerce extérieur (caractérisée par des barrières tarifaires très élevées). Dans ce cas, sous quelles conditions la concentration, de toute la population dans l’un des emplacements (1 ou bien 2), serait un équilibre ? De plus, comment l’ouverture commerciale pourrait influencer la nature et la stabilité de ce dernier. Considérons alors une situation, au sein de laquelle, \(\rho\) est très élevé, afin que nous puissions ignorer le rôle du reste du monde. Ce cas restrictif nous permettra de déterminer le salaire relatif réel lorsque la totalité du travail domestique se concentre au sein de la région 1. Cette répartition spatiale reste alors un équilibre stable tant que \(\omega_1 > \omega_2\).

Nous devons d’abord noter le fait que le salaire nominal payé au centre de la région 2 doit être moins élevé que celui payé au centre de la région 1. La raison est que la totalité des outputs en provenance de la région 2 doivent être vendus en région 1, ainsi ils encourrent des coûts de transport.

L’équation des taux de salaires nominaux d’équilibres s’écrit de la manière suivante :

\[W_j = \left[\sum R_j G_j^{\sigma-1} \tau^{1-\sigma} \right]^{1/\sigma} \tag{3.17}\]

Avec \(Z_2 = 0\)
Nous pouvons alors déduire le différentiel de salaire nominal qui résulte de la dominance de la région 1 :

\[W_1 = \tau \frac{\sigma - 1}{\sigma} W_2 \quad \text{avec} \quad \tau \frac{\sigma - 1}{\sigma} > 1 \]

(3.18)

Ce surplus de salaire reçu par les travailleurs de la région 1 correspond au concept de lien en amont offert par cette région.

Cette répartition spatiale extrême de l’activité économique se répercute aussi sur les indices des prix régionaux. Ainsi, tous les biens consommés en région 2 doivent être importés, impliquant un indice de prix majoré par le coût de transport interrégional :

\[\frac{G_2}{G_1} = \tau \]

(3.19)

L’effet taille du marché, qui caractérise l’emplacement 1, génère aussi un effet congestion décrit ci-dessus. Cependant, la minorité de travailleurs habitant la région 2 ne payent ni une "rente spatiale" ni un coût de déplacement \((\gamma_2 = 0)\). De ce fait, le différentiel de salaire réel s’écrit alors :

\[\frac{\omega_1}{\omega_2} = \tau^{(2\sigma - 1)}(1 - \gamma L) \]

(3.20)

Dans cette expression, le premier terme représente les forces centripètes en jeu, les liens en amont et en aval décrits par les deux équations précédentes. Cependant, le terme de droite représente les forces centrifuges liées aux coûts de déplacement, rente spatiale.

4.4 Equilibres et simulations

Nous avons un triple objectif quant à nos simulations numériques. Tout d’abord, nous répliquerons les résultats du modèle KL qui ignore les coûts liés aux exportations. Techniquement, ceci revient à considérer l’hypothèse \(\rho_{1,0} = \rho_{2,0} = \rho_c = 1 \). Ensuite, nous essaierons de tester la sensibilité des résultats trouvés avec la prise en compte de ces coûts.
d’expédition liés aux exportations, Gelan Ayele(2003)5. Enfin, nous tenterons de fournir des explications alternatives aux rapports entre la politique commerciale et les inégalités régionales. En effet, notre extension consiste à majorer les coûts liés aux barrières tarifaires internationales au moyen de coûts de transport nationaux. Cette hypothèse nous paraît particulièrement réaliste au sein des PVD où la qualité médiocre des infrastructures de transport rend difficile le commerce ‘bilateral direct’ entre des villes périphériques et le reste du monde 6.

Nous nous concentrerons particulièrement sur la variation du différentiel du salaire à mesure que la main d’œuvre se concentre en région 1. Chaque allocation pour laquelle le différentiel de salaires réels est égal à l’unité constitue alors un équilibre. Cet équilibre est :

i- stable lorsque le différentiel de salaires réels est décroissant après ce point \(\frac{\partial(\omega_1/\omega_2)}{\partial \lambda_1} < 0 \). En effet, à chaque fois qu’une région prend une avance en terme de dotation en main-d’œuvre, le salaire réel baisse au-dessous de celui de l’autre région. De là, les travailleurs migreraient vers la région qui offre un plus grand niveau de bien-être mesuré par un salaire réel plus élevé. Cette migration entraîne alors une baisse des salaires réels au sein de la nouvelle région ; maintenant un niveau stable de salaire réel relatif. Ce mécanisme est garanti par la relation inverse entre le salaire relatif et la dotation en main d’œuvre.

ii- instable lorsque ce différentiel est croissant après ce point, à cause de la relation positive entre \(\omega_1/\omega_2 \) et \(\lambda_1 \) \(\frac{\partial(\omega_1/\omega_2)}{\partial \lambda_1} > 0 \). Ainsi, les travailleurs migreront vers la région qui possède une part plus importante de main d’œuvre. Ceci conduit à des solutions en coin pour lesquelles la main d’œuvre se concentre dans une région (par exemple 1), elle y reste concentrée si \(\omega_1 > \omega_2 \) (et son cas symétrique).

5Les coûts d’exportations liés aux barrières commerciales sont considérés comme des coûts de transport du type iceberg, donc ils sont appliqués de la même manière que les coûts de transport interrégionaux domestiques.

6Nous supposons aussi que \(\rho_{0,1} = \rho_{0,2} = \rho_m \), où \(\rho_m \) définit le paramètre lié aux barrières tarifaires à l’importation.
Les revenus nominaux, les indices des prix régionaux et les revenus réels pour chaque partition de la main d’œuvre entre régions, sont les variables endogènes qui définissent notre équilibre de court terme. Cependant, l’équilibre de long terme correspond aux taux de partition \(\lambda \) pour lequel les salaires réels sont égaux. Ainsi, dans la partie qui suit, nous mettrons en œuvre un algorithme qui nous permettra de simuler l’impact du mouvement des travailleurs entre les régions, sur la détermination de l’équilibre et surtout l’analyse de sa stabilité.

4.4.1 Méthode de simulation :

Cinq étapes sont nécessaires afin d’effectuer nos simulations :

1) Tout d’abord, nous devons spécifier clairement notre système d’équations basé sur la détermination simultanée de nos variables endogènes (revenu, indices des prix et salaires réels).

2) La solution dépendra des paramètres clés du modèle \((\sigma, \tau, \gamma, Z_0, L) \), ainsi que de la dotation de la région 1 en main d’œuvre \((\lambda_1) \). Ceci implique que nous devons commencer par considérer comme donnés des paramètres et variables exogènes.

\[
\begin{align*}
L &= 1 \\
\gamma &= 0.2 \\
Z_0 &= 10 \\
\tau &= 1.55 \\
\sigma &= 5
\end{align*}
\]

3) Nous utilisons la méthode d'"itération séquentielle" par la spécification d’un certain ordre, dans la détermination des variables \((W, R \text{ puis } G) \) :

 i- Supposons un taux de salaire initial \((W_{1,0}; W_{2,0}) \) où le 0 indique le nombre d’itération \((W_{1,0} = W_{2,0} = 1) \)

 ii- Avec \((W_{1,0}; W_{2,0}) \) nous déterminons \((R_{1,0}; R_{2,0}) \) ainsi que \((G_{0,0}; G_{1,0}; G_{2,0}) \).

 iii- En utilisant \((R_{1,0}; R_{2,0}) \) et \((G_{0,0}; G_{1,0}; G_{2,0}) \), nous calculons alors le nouveau salaire \((W_{1,1}; W_{2,1}) \).

 iv)- Répéter les étapes ii) et iii) jusqu’à atteindre notre objectif.
4) La résolution se fera en optimisant une variable objective. Nous devons alors trouver une condition, dans le but de stopper notre itération. À titre d’exemple, le changement relatif du taux de salaire ne doit excéder une petite valeur \(\psi \) entre une itération et la suivante pour toute région :

\[
\frac{|W_{\text{r,itération}} - W_{\text{r,(itération-1)}}|}{W_{\text{r,(itération-1)}}} < \psi = 0.000001
\]

(3.21)

5) Finalement, nous devons utiliser un langage de programmation afin de mettre en œuvre les étapes précédentes. Nous avons élaboré un algorithme qui traite trois régions, tout en utilisant le langage de programmation sous GAMS (voir Annexe 4).

5 Processus de libéralisation commerciale

5.1 Sans barrières tarifaires à l’exportation : \(\rho_e = 1 \)

Nous considérons, tout d’abord, le cas d’une économie fermée où les coûts liés aux barrières tarifaires à l’importation sont élevés (\(\rho_m = 2,15 \)). Dans ce premier cas, les importations en provenance du reste du monde, sont très coûteuses et les agents préfèrent...
Chapitre 3 : Polarisation ou dispersion de l’activité économique

consommer les biens produits à l’intérieur du pays. Rappelons-nous que les travailleurs mobiles sont incités à migrer vers la région qui leur offre un meilleur bien-être en terme de salaires réels. L’équilibre de court terme représente aussi un équilibre de long terme, si et seulement si le salaire réel régional des travailleurs mobiles est identique. Ainsi, les équilibres de long terme correspondent, au sein de nos simulations, au cas où le salaire réel relatif est équivalent à l’unité, sauf pour ceux qui conduisent à une agglomération totale ($\lambda_1 = 1$ ou $\lambda_2 = 1$), dans ce cas le salaire réel relatif ($\omega_1/\omega_2 \neq 1$).

![Diagram](image)

Fig. 3.4 – (a)

Nous retrouvons sur le graphique (fig 3.5 (a)) les résultats trouvés précédemment : deux sortes d’équilibre de long terme, *agglomération totale* des travailleurs et de l’activité économique au sein de la même région (1, point C ou 2, point A), ou encore *dispersion totale* décrit par le point B. Quant à leur stabilité, elle est décrite de la manière suivante : au point "E" (équilibre de court terme), le taux de salaire réel relatif $\omega_1/\omega_2 < 1$, ceci entraîne une migration de la région 1 vers la région 2. Or, en ce point, la dotation de la région 2 en main d’œuvre est déjà supérieure ($\lambda_1 < 1/2$). De ce fait, le mouvement des travailleurs tend à se concentrer davantage au sein de la région 2, jusqu’au point limite "A" qui définit alors un équilibre stable. Par analogie, nous pouvons démontrer que le même
processus prend place en partant du point "B", qui représente un équilibre instable vers le point "C". Le résultat qui en découle est qu’une économie fermée favorise la concentration totale des travailleurs et de l’activité économique. Ce premier constat s’explique par le fait que la force centripète relative au marché domestique domine la force centrifuge qui découle de l’effet congestion en ville centrale.

Imaginons maintenant une baisse progressive des tarifs à l’importation, autrement dit, imaginons que le pays entame un processus d’ouverture commerciale. Pour représenter ce dernier cas, nous supposons une baisse de \(\rho_m = 2,15 \) en \(\rho_m = 2 \).

Nous remarquons que l’équilibre de configuration spatiale symétrique "B" devient un équilibre stable, contrairement au cas précédent en économie fermée ; tout comme les deux cas de concentration extrême représentés par les points "A" et "C". Cependant, le graphique (fig 3.6 (b)) illustre l’existence d’autres types d’équilibres de long terme pour lesquels la production industrielle est partiellement agglomérée dans l’une des deux régions (points D et E). En utilisant le même raisonnement exposé ci-dessus, afin d’analyser la stabilité des équilibres de long terme, nous pouvons définir un "bassin d’attraction" entre les deux points "D" et "E". Ainsi, la répartition spatiale symétrique (au point B) est...
un équilibre stable, dans le sens où, n’importe quelle déviation des travailleurs mobiles à partir du point "B", à l’intérieur du bassin d’attraction, déclenche des forces économiques qui ramènent à cet équilibre. Le même phénomène explique la stabilité des équilibres "A" et "C".

Le troisième scénario décrit davantage d’ouverture commerciale, qui se traduit par un niveau relativement bas des tarifs à l’importation jusqu’à atteindre, $\rho_m = 1.85$.

Le seul équilibre de long terme stable est représenté par le point "B". Cet équilibre est caractérisé par une distribution égale (symétrique) des travailleurs/firmes entre les deux régions. En effet, un équilibre de court terme qui se situe au dessus du point "B" (à gauche) est défini par un salaire réel relatif $\omega_1/\omega_2 > 1$. Ce surplus de salaire réel perçu par la région (1), rend cette dernière plus attractive aux travailleurs de la région (2). Or, en ce point la dotation de la région (2), en main d’œuvre, est supérieure à celui de la région (1), ce qui motive la migration des travailleurs de la région (2) vers la région (1) équilibrant la dotation régionale en main d’œuvre. Ainsi, selon ce modèle, l’ouverture commerciale conduit à une répartition égale des travailleurs, et par suite, l’activité productive, en réduisant l’inégalité régionale en termes de dotation en main d’œuvre et de structures

Fig. 3.6 – (c)
industrielles. En effet, le niveau d’intégration du pays au commerce international, rend les firmes particulièremment sensibles à la force de congestion au sein des deux centres urbains. Leurs incitations à se localiser en villes périphériques s’accroît ainsi avec une plus grande ouverture à l’économie mondiale.

Résultat : Diffusion spatiale de l’activité productive

Lorsqu’un pays connaît un faible degré d’ouverture au commerce international, les firmes fournissent, en premier lieu, le marché domestique. La concentration des activités productives (et des travailleurs/ consommateurs) en une seule ville est motivée par les économies d’échelle ainsi que par la minimisation des coûts de transport intra-nationaux. Les mécanismes poussant à la concentration sont les mêmes que ceux exposés au début de ce travail (Krugman (1991)). Durant ce processus de concentration, la congestion augmente et nous pouvons la remarquer à travers l’équation (3.1) : le trajet pendulaire, que doit parcourir un travailleur situé à l’extrémité de la ville, pour se rendre à son lieu de travail, augmente avec la dotation de la ville en force de travail. Nos simulations présentées ci-dessus rejoignent celles de Krugman et Livas Elizondo, afin de prouver que lorsqu’un pays se situe au sein d’une étape de faible libéralisation commerciale, les avantages liés à la concentration de l’activité économique dépassent les inconvénients liés aux des-économies d’agglomérations (rente spatiale et coût de déplacement).
5.2 Avec barrières tarifaires à l’exportation $\rho_e > 1$:

Au cours de cette section, nous abandonnons l’hypothèse selon laquelle les biens produits en marché domestique sont acheminés vers le reste du monde sans coût de transport, et nous maintiendrons le niveau des coûts d’importation assez bas ($\rho_m = 1,85$) pour la suite de nos simulations. L’objectif de cette hypothèse est de tester la sensibilité des forces centrifuges et centripètes aux variations des barrières à l’exportation, ainsi que l’impact sur la répartition des travailleurs entre les deux régions domestiques.

Sur la figure (fig 3.9 (d)), nous avons construit les résultats de deux simulations. La courbe en trait solide représente le troisième scénario construit plus haut avec ($\rho_m = 1,85 ; \rho_e = 1$). Quant à la courbe en trait fin, celle-ci correspond à $\rho_e = 1,02$. Les deux courbes représentent un équilibre stable de dispersion de l’activité économique. Cependant, la courbe en trait fin tend à définir d’autres équilibres moins stables.
En augmentant davantage les barrières à l’exportation \((\rho_e = 1, 035) \), nous retrouvons les résultats du graphique (fig 3.6 (b)) relatifs aux équilibres d’agglomérations partielles instables (D , E). En effet, le marché domestique est suffisamment ouvert afin de garantir une partition équitable des travailleurs. Cependant, l’existence des barrières commerciales liées au marché extérieur tendent à entraver le développement des régions périphériques.

Le troisième cas considéré est celui pour lequel les biens domestiques encourent des
coûts suffisamment élevés afin d’être acheminés vers le reste du monde ($\rho_m = 1,85 ; \rho_e = 1,085$). Les avantages tirés de l’ouverture commerciale, et qui poussent à la dispersion, se trouvent alors contrés par les barrières commerciales qu’encourent les entreprises locales afin d’exporter leurs produits. Le développement régional qui en découle est alors polarisé.

![Graphique](image.png)

Fig. 3.10 – (e)

L’importance de la considération des barrières commerciales à l’exportation, auxquelles font face les PVD, réside dans la définition des politiques des réformes commerciales entretenues entre les PVD et les pays développés. L’objectif de cette analyse est de tenter d’améliorer la relation centre-périphérie entre les centres urbains et les régions rurales au sein des PVD, tout en mettant l’accent sur l’accès au marché international durant le processus de libéralisation commerciale. Cependant, jusqu’ici, l’analyse a été faite en dehors de toute variation dans les niveaux des infrastructures entres les régions domestiques. Au sein de leurs modèles de 1995, Martin et Rogers montrent que la réduction des coûts de transports interurbains sur les biens industriels conduit à une accentuation de la concentration en zone urbaine. La force centrifuge est assurée par l’existence des travailleurs du secteur agricole qui sont immobiles. Ainsi, un coût de transport interrégional
élevé inciterait les firmes à s’implanter en zone rurale afin de garantir la demande des consommateurs ruraux en biens industriels. L’investissement public en infrastructures de transport pousse alors à une concentration de la quasi totalité des producteurs en région centrale, afin de bénéficier des avantages d’agglomération, tout en assurant la demande de la région périphérique en biens industriels.

5.3 Régions centrale-périphérique et coûts de transports

Testons maintenant l’impact d’une baisse du coût de transport interrégional, sur la répartition spatiale de l’activité économique. Tout d’abord, nous supposons que les coûts relatifs à l’importation des biens en provenance du reste du monde par les régions domes-tiques (1 et 2), sont majorés par une partie des coûts de transport interrégionaux. En effet, la périphérie se caractérise souvent par une capacité de commerce insuffisante en direction du centre et avec le reste du monde. Les rapports sur le commerce et le développement de la CNUCED insistent davantage sur les restrictions d’accès des PVD aux marchés des pays développés, en particulier en ce qui concerne les produits manufacturés à forte intensité de main-d’oeuvre. Ainsi, nous admettons pour la suite de nos simulations que les importations des biens industriels, en provenance du reste du monde, s’acheminent vers la région (1) via la région (2) et vers la région (2) via la région (1). En effet, les consommateurs payeront un coût supplémentaire $t \times \tau$ ($0 \leq t \leq 1$) pour tout bien importé du reste du monde. Cette hypothèse nous permettra de prendre en considération l’avantage de localisation dont bénéficient les villes côtières des PVD, (où en général les capitales et les villes sont mieux dotées en infrastructures de transport), qui détiennent un accès plus facile au marché mondial, au détriment des régions périphériques qui payent le coût de leur éloignement7. Le schéma ci-dessous expose les hypothèses formulées ci-dessus :

7La région centrale paye un coût à l’importation égal à ρ_m alors que la région périphérique paye $(\rho_m + t\tau)$
Nous gardons les mêmes équations définissant l’équilibre qu’au début de ce chapitre. Cependant, la considération d’une majoration des coûts liés à l’importation des biens industriels du reste du monde par le coût de transport inter-régional se répercute sur les indices des prix régionaux domestiques G_1 et G_2 qui deviennent alors :

\[
G_1 = K \left[Z_0 (\rho_m + t\tau)^{1-\sigma} + \lambda_1 w_1^{1-\sigma} + \lambda_2 (\tau w_2)^{1-\sigma} \right]^{\frac{1}{1-\sigma}}
\]

\[
G_2 = K \left[Z_0 (\rho_m + t\tau)^{1-\sigma} + \lambda_1 (\tau w_1)^{1-\sigma} + \lambda_2 w_2^{1-\sigma} \right]^{\frac{1}{1-\sigma}}
\] (3.22)

Afin de simplifier les simulations, nous supposons que les exportations se font sans coût vers le reste du monde. Rappelons que pour un niveau élevé d’ouverture commerciale, KL (1996), l’activité économique est également répartie entre les deux régions domestiques.

Au cours des simulations réalisées plus haut, nous avons considéré un niveau exogène de coût de transport inter-régions ($\tau = 1.55$). Nous garderons d’abord ce même coût et représentons sur le même graphique la variation relative des salaires réels régionaux (toujours en fonction de la dotation de la région 1 en main d’œuvre) pour une économie caractérisée par un taux d’ouverture assez élevé. Rappelons aussi qu’avec un coût de transport régional $\tau = 1.55$ et un taux d’ouverture $\rho_m = 1.85$, l’économie était caractérisée par une dispersion totale de l’activité. Ce cas de figure correspond ici à $t = 0$.

Fig. 3.11 –
Dès que l’on considère que les régions internes supportent un coût supplémentaire dû à leur éloignement, l’équilibre de dispersion n’est plus stable et l’activité économique tend à s’agglomérer totalement au sein de l’une des deux régions. Ce cas est représenté dans la figure (fig 3.13 (f)) qui suit (\(t = 0.3 \)).

Malgré le fait que l’ouverture commerciale ait atteint un niveau très élevé, qui se traduit par une baisse des barrières tarifaires à l’importation relativement bas, l’activité économique tend vers des équilibres de polarisations extrêmes. Le seul équilibre de long terme, pour lequel les salaires réels régionaux sont égaux, est instable, contrairement au résultat de KL (1996). Les forces centripètes telles que l’effet taille du marché et les économies d’agglomération l’emportent sur les désavantages liés à la congestion.

Nous supposons maintenant que les Autorités publiques du PVD adoptent une politique d’investissements publics en infrastructures de transport, Charlot(1999). Technique-ment, ceci consiste à simuler une baisse progressive du paramètre \(\tau \) (coût de transport interrégional), tout en gardant le niveau d’ouverture au commerce international assez élevé (\(\rho_m = 1.85 \)).
Nous retrouvons le cas intermédiaire caractérisé par cinq équilibres de localisation de long terme : Un équilibre parfaitement symétrique stable (qui était instable pour $\rho_m = 1.85$ et $\tau = 1.55$), compris entre deux équilibres d’agglomération partielles instables, et deux équilibres de concentration totale stables. La baisse des coûts de transport interurbains réduit l’influence, comme force centripète, de la taille du marché de la ville centrale, les entreprises peuvent alors se délocaliser en zone périphérique et vendre leurs produits sur le marché central à moindre coût, tout en supportant une congestion plus faible.

Dans le dernier cas (fig 3.15 (h)), le niveau assez bas du coût de transport interrégional ($\tau = 1.35$) rend les firmes installées au centre, particulièrement sensibles au niveau de la congestion, au sein des deux centres urbains. Le seul équilibre stable est alors celui pour lequel les travailleurs se répartissent équitablement entre les deux régions, ce qui conduit à une convergence de la structure industrielle des deux villes.
Nos simulations ont conduit, ici, à prouver et appuyer l’importance des infrastructures de transport dans la convergence des régions domestiques. En effet, nos résultats coïncident avec ceux de KL (1996) à condition que le pays en voie de développement entretienne une politique d’investissements publics en termes d’infrastructures de transports. La baisse de ces coûts motive alors les travailleurs et les firmes à s’implanter en région périphérique sans perdre les avantages liés à l’agglomération. Ainsi, les entreprises peuvent desservir le marché central, en bénéficiant d’une "rente spatiale" moins élevée.

5.3.1 Sensibilité à l’effet "rente spatiale"

Nos analyses effectuées jusqu’ici neutralisaient les coûts liés à la déséconomie d’agglomération. En effet, nous avons supposé, durant les simulations, que "la rente spatiale" supportée par les habitants des deux régions était la même ($\gamma_1 = \gamma_2 = 0.2$). Concentrons-nous maintenant sur les coûts que peut générer l’agglomération spatiale. Ainsi, et afin de tester la sensibilité du modèle aux coûts relatifs à la rente spatiale, qui, par définition, dépend de la dotation régionale en main d’œuvre, nous supposons d’abord une hausse de la rente spatiale au sein de la région (1), $\gamma_1 = 0.204$. Puis, nous appliquons
Chapitre 3 : Polarisation ou dispersion de l’activité économique

la même simulation au sein de la région (2), $\gamma_2 = 0,204$. Les résultats sont reportés sur le graphique (i), tout en conservant les mêmes hypothèses du cas (fig 3.14 (g)) décrit ci dessus, qui représentait deux équilibres d’agglomération partielles instables et un équilibre de répartition symétrique stable.

Nous remarquons que la hausse des coûts liés à la concentration des travailleurs au sein de la région (1), $(\gamma_1 = 0,204)$, décale la courbe des équilibres de court terme en bas. Mais surtout, la disparition de l’équilibre symétrique stable qui cède la place à une concentration partielle stable en faveur de la région (2)($L_2 \simeq 0,63$), compris entre deux autres équilibres d’agglomérations partielles instables. Ce résultat paraît logique puisque les travailleurs, tout comme les entreprises, ont tendance à "fuir" les hauts niveaux de rente spatiale. C’est ainsi que la région (2) devient plus attractive à la main d'oeuvre en offrant un salaire plus élevé. De même, la hausse de la rente spatiale du même taux, au sein de la région (2), déclenche le même processus de migration vers la région (1). Ce phénomène décale l’équilibre symétrique stable à une situation d’agglomération partielle stable en faveur de la région (1) ($L_1 \simeq 0,63$). La somme de ces deux forces centrifuges de même intensité nous reconduit à la situation d’équilibre symétrique stable compris entre

Fig. 3.15 – (i)
deux équilibres de concentration partielles instables.

6 Conclusion

La formalisation en économie géographique est soumise à un choix crucial concernant le degré de mobilité de la main d’œuvre. Ce choix conditionne implicitement les mécanismes d’agglomération, puisque la mobilité des travailleurs permet de combler les différentiels nominaux salariaux régionaux. Avec une économie en autarcie, caractérisée par des coûts à l’importation élevés, des forces centripètes s’instaurent et conduisent à l’agglomération totale de l’activité économique. Une ouverture commerciale assez poussée du pays, conduit à une dispersion de l’activité et des travailleurs entre les deux régions domestiques KL (1996). La situation s’inverse lorsque nous considérons que les exportations, vers le reste du monde se font avec un coût de transaction (Geland Ayele, 2003). Cette analyse s’est faite en fixant le coût de transport interrégional.

En supposant que les Autorités publiques entretiennent une politique d’investissement en infrastructures de transport, les avantages tirés de l’agglomération des unités de production diminuent et les firmes installées en région centrale deviennent plus sensibles aux déséconomies d’agglomération, notamment la "rente spatiale". La proximité du marché d’offre et de la demande perd de son importance. Par contre, le bas niveau des taux de salaire au sein de la périphérie devient un élément déterminant dans le calcul des coûts de production. Les coûts de transport peuvent donc diminuer à un niveau tel que l’avantage salarial, au sein de la périphérie, devient plus important que les désavantages liés à l’éloignement géographique des marchés d’offre et de la demande ainsi qu’à la congestion. Il devient à nouveau profitable de localiser les unités de production manufacturières dans la périphérie. De plus, l’augmentation (diminution) de la demande de travail en périphérie (dans le centre) provoque une convergence des salaires réels.

Nous avons répliqué les résultats du modèle KL (1996) qui ignorait les coûts liés aux
Chapitre 4

Equilibre spatial et congestion en économie ouverte

Introduction

Nous effectuons, tout au long de la première section, un récapitulatif des résultats sou-

1 Intégration régionale et relocalisation productive

Contrairement aux autres articles dans ce domaine qui insistaient particulièrement sur les forces centripètes afin d’expliquer les mécanismes de répartitions spatiales de l’activité économique, celui ci focalise son attention aux forces centrifuges. L’auteur démontre que le nombre de ces forces centrifuges joue, aussi, un rôle déterminant dans la répartition spatiale de l’activité économique.
L'étude suggère aussi que dans une économie à deux emplacements les résultats sem-
blent tout à fait robustes au changement de modélisation des coûts de transport. Ainsi,
considérer que les dépenses de transport sont multiplicatives (iceberg) ou additive (numéraire),
ne change pas les prédictions. Cependant étendre la modélisation d’une structure bidimen-
sionnelle à une autre multidimensionnelle rend l’interprétation plus ardue suggérant que la
modélisation du type Iceberg paraît plus adaptée à une configuration multidimensionnelle
Mc Cann (2005).

1.1 Deux localisations avec mobilité du travail

Selon Krugman (1991) l’agglomération provient du rendement d’échelle croissant due
au nombre d’entreprises installées, des préférences de variétés ainsi que de la mobilité de
la main d’œuvre du secteur industriel. D’une part, les rendements d’écrêches croissants
incitent les firmes à se concentrer. D’autre part, la fonction CES démontre une préférence
pour la variété. Ainsi le revenu réel individuel augmente au sein d’une large aggloméra-
en plus du fait qu’ils ont accès à une large gamme de biens. Ceci encourage d’autres
individus à migrer vers cette localisation.

Cette migration crée une large demande qui motivent d’autre firmes à venir s’installer
afin de bénéficier de l’effet taille du marché. Ce sont les externalités pécuniaires qui sont
en jeu.

Cependant dans le modèle de Krugman (1991) les fermiers ne sont pas mobiles, ainsi
ce marché rural joue comme une force centrifuge du moment où il représente une force de
dispersion dû à la demande du bien industriel par le marché rural.

Résultat : Dans un modèle Centre/Périphérie, une baisse du coût de transport incite
les firmes à s’agglomérer en une seule localisation.

Forsslid et Ottaviano (2003), développent une version admettant une solution analy-
tique du modèle krugman (1991), et trouvant les mêmes résultats (les auteurs distinguent
entre travailleurs qualifiés mobiles et inqualifiés immobiles).

Résultat : quand la dispersion est assurée par la demande et si l’économie est composée de deux régions, les résultats du modèle CP restent robustes malgré une nouvelle modélisation des préférences et des coûts de transport.

1.2 Considération des coûts urbains

Contrairement au modèle avec un marché rural immobile, la considération des coûts urbains génère une grande dispersion de l’activité économique, Murata et Thisse (2005), Helpman (1998). Quand les infrastructures de transport sont d’une bonne qualité, les individus peuvent bénéficier du grand marché tout en étant installé dans la petite ville où les coûts urbains sont moindres.

Deux forces centrifuges sont généralement prises en compte dans le cadre de la NEG. D’abord, la demande rurale est considérée, par la quasi-totalité des modèles, comme force centrifuge ; quant à la deuxième force de dispersion elle est attribuée à l’effet coût urbain et d’autre travaux qui l’attribue aux différentiels salariaux. Dans cette perspective et en effectuant des simulations numériques, Tabuchi (1998) montre que la considération des coûts urbains en plus de la demande rurale, la dispersion de l’activité économique émerge relativement à des coûts de transport bas ou élevés. En effet pour des coûts de transport bas, ce sont les coûts urbains qui sont à l’origine de la force de dispersion alors que lorsque les coûts de transports sont élevés, la demande du marché traditionnel est à l’origine de la dispersion.

Résultat : en considérant les coûts urbains en plus de l’effet demande du marché rural,
une baisse des coûts de transport entraîne d’abord une agglomération puis une dispersion de l’activité économique.

1.3 Économie à deux localisations avec immobilité du travail

La considération de la mobilité des travailleurs du secteur industriel entre différentes localisations dans le contexte de pays comme les Etats Unis, peut être réaliste cependant dans d’autre pays, cette mobilité est très limitée.\(^1\)

Résultat : en considérant la demande rurale en plus du différentiel salarial entre deux localisations, la relation entre agglomération et le coût de transport confirme les résultats antérieurs cités ci-dessus. En effet, avec un coût de transport élevé la dispersion est assurée par l’effet de la demande, cependant avec un coût de transport bas, c’est le différentiel de salaire qui assure la dispersion de l’activité économique.

1.4 Coûts ruraux versus coût urbains

\(^1\)La part des salariés ayant moins d’un an d’ancienneté dans leur entreprise est de 15 % en France contre 21 % au Danemark, 19 % au Royaume-Uni, 25 % aux États-Unis. Et la part des salariés qui ont plus de 10 ans d’ancienneté dans leur emploi est de 44 % en France contre 32 % au Danemark et au Royaume-Uni, 26 % aux États-Unis.

Résultat : La considération des forces centrifuges joue un rôle déterminant dans la distribution de l’activité économique à travers les territoires en fonction d’une réduction progressive des coûts de transport. Ainsi, avec un modèle du type Dixit-Stiglitz-Iceberg, la réduction des coûts de transport (international/domestique) dans un monde composé de trois localisations génèrent des configurations spatiales analogues à celle obtenues dans le cas de deux régions. Tout dépend de la manière dont sont définis les forces centrifuges.

1.5 Coût de transport à rendement croissant

1.6 Récapitulatif des résultats

Résultat 1 : avec un modèle Dixit-Stiglitz-Iceberg, l’impact d’une baisse du coût de transport international dans une économie à plusieurs localisations dépend du rendement d’échelle des coûts de transport.

Résultat 2 : l’effet d’une réduction du coût de transport domestique ne semble pas dépendre de ces rendements d’échelle, mais de la force centrifuge considérée au sein du modèle.

Résultat 3 : les coûts de transport interrégional international n’ont pas nécessairement le même effet sur la répartition spatiale de l’activité économique.

Dans cette alignée, Behrens (2004) développe un modèle à trois régions basé sur le travail d’Ottaviano, G ; Tabuchi, T ; Thisse, J.F. (2001), nomé OTT, afin d’analyser l’effet relatif du coût de transport domestique et international. Il montre que la variation relative du coût de transport interrégional par rapport au coût de transport international joue un rôle important dans la détermination de la distribution spatiale de la production. Il insiste particulièrement sur le cas des pays en voie de développement où le coût de transport interrégional est très élevé et où le commerce interrégional est quasi nul. Cependant, il démontre que dans les pays développés caractérisé par un coût de transport domestique très bas et d’un volume d’échange interrégional important, une baisse du coût de transport international favorise la convergence régionale. Il démontre aussi que dans ce dernier cas, la baisse du coût de transport interne (interrégional) tend à concentrer la production.

Résultat Avec un modèle du type OTT l’impact d’une baisse du coût de transport international dépend du niveau du coût de transport domestique.

Résultat : l’effet de la baisse des coûts de transport interrégionaux dépend uniquement de la force centrifuge considérée.

Olga Alonso Villar (2005) conclut que l’impact des coûts de transport internationaux
dans une économie à plusieurs localisations, dépend étroitement de la manière dont le coût de transport est modélisé. En particulier, quand les coûts de transport ne sont plus du type iceberg, les résultats sont significativement affectés.

2 Le modèle

Nous reprenons pour cette section les mêmes hypothèses du modèle central d’économie géographique en intégrant le secteur traditionnel en plus du commerce avec une troisième région (reste du monde). Ainsi, nous rappelons brièvement les hypothèses de base retenues.

Notre monde est composé de trois régions (deux domestiques et une troisième représentant le reste du monde), deux secteurs (agricole et industriel) et un facteur de production qui est le travail. Les préférences sont les mêmes pour tous les travailleurs (consommateurs) et sont décrites par une fonction d’utilité du type Cobb-Douglas; chaque consommateur maximise son utilité en consommant une combinaison de deux types de biens :

\[
U = D^\gamma S^{1-\gamma}
\]

(4.1)

Où \(D \) représente la consommation des biens manufacturiers, \(S \) la consommation du bien agricole (lié au sol) , et \(0 < \gamma < 1 \) une constante représentant la part des dépenses consacrées aux biens industriels (1-\(\gamma\) la part du secteur agricole). On suppose que \(D \) est défini par une fonction CES, tel que :

\[
D = \left[\sum_0^n d(i)^\rho \theta_i \right]^{1/\rho} \quad \text{avec} \quad \sigma = \frac{1}{1-\rho}
\]

(4.2)

Du côté de la demande les étapes établies durant le deuxième chapitre demeurent inchangées. Cependant la reformulation des coûts de congestion intervient du coté de l’offre.
2.1 Congestion : force centrifuge additionnelle

2.1.1 Urbanisation et congestion

Le principal inconvénient de l’agglomération urbaine est, sans doute, l’effet congestion que doit supporter les habitants d’une région en contre partie de leur bien être relatif au grand marché local. En effet, la concentration de l’activité économique et démographique au sein d’une région est limitée par l’espace physique disponible et la rareté des ressources naturelles (comme l’eau par exemple), la pollution de l’environnement et l’utilisation chargée des routes, des réseaux de télécommunications. La congestion et les coûts qui en découlent sont difficilement mesurables, cependant, selon la disponibilité des données, le trafic urbain peut être considéré comme une bonne approximation de la congestion. Le tableau qui suit démontre que la hausse de l’agglomération urbaine va de pair avec le nombre de véhicules pour quelques pays européens entre 1980 et 1998.

<table>
<thead>
<tr>
<th>Véhicules par 1000 habitants</th>
<th>Véhicules par Km de route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgique</td>
<td>349</td>
</tr>
<tr>
<td>Finlande</td>
<td>288</td>
</tr>
<tr>
<td>France</td>
<td>402</td>
</tr>
<tr>
<td>Allemagne</td>
<td>399</td>
</tr>
<tr>
<td>Italie</td>
<td>334</td>
</tr>
<tr>
<td>Pays bas</td>
<td>343</td>
</tr>
<tr>
<td>Pologne</td>
<td>86</td>
</tr>
<tr>
<td>Espagne</td>
<td>239</td>
</tr>
<tr>
<td>UK</td>
<td>303</td>
</tr>
</tbody>
</table>

Source : Banque mondiale, World development indicators 2000, table 3.12

Nous remarquons que non seulement le nombre de véhicules par habitant qui croît, mais aussi le nombre de véhicules par Km de route, avec une exception pour l’Espagne\(^2\). Ceci souligne clairement la hausse de la congestion. Effectuer des estimations précises des\(^2\)L’exception pour l’Espagne s’explique avec l’amélioration de la qualité des infrastructures de transport, notamment les routes, avec son entrée en CEE en 1986.
coûts générés par la congestion du trafic urbain est une tâche ardue, cependant il est certain que ces coûts sont considérables (Henderson, Shalizi et Venables (2001)).

2.1.2 Modélisation de la congestion

La croissance des agglomérations urbaines attirées par les économies d’échelle externe conduit aussi à l’apparition de "déséconomie d’échelle externe". Notre objectif est d’essayer d’analyser les conséquences de ces coûts de congestion et non leur origine. Ainsi, la conséquence directe qui se dégage de ce type de modèle est la relocalisation des travailleurs-firmes du centre urbain vers les zones périphériques. En d’autres termes, analyser l’impact que la congestion pouvait avoir sur la balance entre forces d’agglomérations et forces de dispersion. Pour répondre à cette question nous mobilisons le même modèle exposé au chapitre troisième de cette thèse, en appliquant une nouvelle forme des coûts de congestion au sein d’une économie ouverte. La fonction de production utilisée dans la majorité des modèles de la NEG, peut être facilement adaptée à l’introduction des coûts de congestion. Selon Brakman, S, Garetsen, H et Marrewijk, CH (2003), les firmes, en décidant de se localiser dans une région, prennent en compte la taille de cette dernière approchée par le nombre de producteurs (qui est égal au nombre de biens produits N). Ainsi, les coûts liés à la congestion ne sont pas spécifiques ni à l’industrie ni aux firmes, mais à la taille de la ville ou de la région entière considérée :

$$l_r = N^{\psi/(1-\psi)}(f + \beta q)$$

avec $-1 < \psi < 1$ (4.3)

Où l_r est la quantité de travail disponible en région r pour produire q unités de la variété, et ψ représente l’économie d’échelle externe. En effet, au cours du deuxième et troisième chapitre nous avons considéré que les économies d’echelles sont internes aux firmes et non pas externes, ce cas correspond à $\psi = 0$. Nous parlons alors d’économies externes positives ou externalités positives lorsque $-1 < \psi < 0$. Cependant, ce qui nous intéresse dans notre étude est le cas correspondant à la congestion c’est-à-dire, $0 < \psi < 1$. Dans ce
cas, chaque firme déjà installée en région r se trouve confrontée à une hausse de ses coûts dès qu’une autre entreprise vient s’installer dans cette même localisation.

2.2 Fixation des prix et profit

Chaque firme produit une variété unique du bien industriel avec des rendements d’échelle internes. Ceci implique que cette firme à un pouvoir de monopole qui lui donne la possibilité de maximiser son profit. A cet égard, le modèle de compétition monopolistique de Dixit-Stiglitz considère deux hypothèses. D’abord, chaque firme suppose le comportement de fixation des prix par les autres firmes comme donné, autrement dit si l’entreprise 1 change son prix, les prix des autres (N − 1) firmes restent inchangés. Ensuite, ce changement de prix supposé n’ayant aucun effet sur l’indice des prix régional puisque le nombre N de firme est très grand.

Une firme qui produit la quantité \(q \) dans la région \(r \), en utilisant la fonction de production citée ci-dessus, réalise un profit \(\pi_r \) si le salaire que perçoit les employés est \(W_r \):

\[
\pi_r = p_r q_r - W_r N^{\psi/(1-\psi)}(f + \beta q)
\] (4.4)

Si la demande d’une variété \((i) \) à la particularité d’une élasticité prix de la demande constante et égale à \(\sigma \), alors la maximisation du profit nous permet de dégager le prix d’équilibre, qui dépendra cette fois du nombre de biens produits et du taux de congestion.

\[
p^*_r = \frac{\sigma}{\sigma - 1} \beta W_r N^{\psi/(1-\psi)}
\] (4.5)

Maintenant que le prix optimal est déterminé, les firmes peuvent l’utiliser afin de maximiser leurs profits. C’est là que l’utilisation de la concurrence monopolistique démontre son utilité. En effet, si un secteur d’activité réalise un profit positif il est clair que ce dernier attirera d’autres entreprises qui produiront d’autres variétés de biens. La hausse du nombre de variété influence directement les consommateurs qui répartissent leurs revenus sur une gamme plus large de variété. En plus, du moment où les variétés
Chapitre 4 : équilibre spatial et congestion en économie ouverte

sont des parfaits substituts, le profit des firmes déjà installées est décroissant avec l’entrée de nouvelles firmes. Ce processus d’entrée de nouvelles entreprises se poursuit jusqu’à l’annulation des profits du secteur manufacturé\(^3\).

La concurrence monopolistique impose alors la condition de profit nul qui est primordial pour le calcul de la quantité optimal d’output et de travail.

\[
q^* = \frac{f(\sigma - 1)}{\beta} ; \quad l^* = N^{\psi/(1-\psi)}(f \sigma) \tag{4.6}
\]

Nous retenons en plus l’hypothèse selon laquelle les travailleurs du secteur primaire sont immobiles entre les régions formant une force centrifuge supplémentaire. Soit \(\phi_r\) la part de la région \(r\) en travailleurs du secteur traditionnel. Nous retraçons maintenant les mêmes étapes élaborées lors du chapitre précédent en déterminant les équilibres de court terme, nous comparons par la suite les résultats trouvés avec l’introduction de la congestion. Nous gardons la même notation utilisée au cours de nos précédentes simulations afin de pouvoir comparer les résultats. Le système d’équation qui suit détermine l’équilibre de court terme en intégrant les coûts de congestion dans la fonction de production (voir Annexe 1 pour les démonstrations) :

\[
R_r = \gamma \lambda_r W_r + (1 - \gamma) \phi_r \tag{4.7}
\]

\[
G_r = \left(\frac{\beta}{\rho}\right) \left(\frac{\gamma L}{1-\sigma}\right) \left(\frac{1-\psi}{f \sigma}\right) \sum_{i=1}^{R} \lambda_i^{(1-\psi)\sigma} r_{ri}^{(1-\sigma)W_i^{(1-\sigma)}} 1/(1-\sigma)
\]

\[
W_i = \rho \beta^{-\rho} \left(\frac{\gamma L}{(\sigma - 1)f}\right)^{1/(\sigma - 1)} \lambda_i^{-\psi} \left(\sum_{r=1}^{R} R_{ri}^{(1-\sigma)G_r^{(\sigma-1)1/\sigma}}\right)
\]

\[
\omega_i = W_i G_i^{-\gamma} \tag{4.8}
\]

\(R_r\), désigne les revenus des régions (1), (2) et le reste du monde (0). \(\lambda_r\), est la dotation de la région \(r\) en main d’œuvre industriel. Nous pouvons directement constater que

\(^3\)Notons qu’un processus inverse aura lieu si les profits réalisés par les firmes du secteur manufacturé sont négatifs.
notre équilibre est identique à celui obtenu au chapitre précédent en annulant le secteur traditionnel et en prenant $\psi = 0$.

Une hausse de la congestion en région i, résultant de la hausse de la main d’oeuvre industriel λ_i au sein de cette même région, a tendance à réduire simultanément le taux de salaire nominal en localisation (i) et l’indice des prix en région r. Ces deux forces rendent la ville r plus attractive.

Avant de se pencher sur l’allocation de l’activité économique à long terme, avec la prise en compte de la congestion, une analyse du bien être et des préférences des consommateurs pour la variété pourrait éclaircir la motivation de la mobilité de la main d’oeuvre entre les régions.

2.3 Congestion et bien-être régional

La répartition des travailleurs du secteur industriel entre régions, nous permettra de déduire le nombre de biens produits en équilibre qui est égal au nombre d’entreprises implantées. Ainsi pour chaque région r, on a :

$$
\lambda_r = \frac{n_r}{N_T} = \frac{L_r}{L_T}
$$

(4.9)

avec $N_T = \sum n_r = n_0 + n_1 + n_2$ et $L_T = \sum L_r = L_0 + L_1 + L_2$

Le nombre de biens industriel d’équilibre avec congestion est alors égal à :

$$
N_r = (\gamma \lambda_r L / f \sigma)^{1-\psi}
$$

(4.10)

Le cout fixe de la fonction de production dépend du nombre de biens produits. Avec un taux de congestion $0 < \psi < 1$, une hausse de λ_r entraine une hausse moins que proportionnelle de N_r. Nous avons déjà montré au chapitre 2 que, par l’effet "préférence pour la variété", une augmentation du bien être individuel dépend de la hausse du nombre
de biens produits. Supposons alors que $\lambda_1 > \lambda_2$, un mouvement des travailleurs du secteur industriel de la région (1) vers la région (2) contribue à une hausse du nombre de variétés produites au sein de cette région accompagnée d’une amélioration du niveau du bien être individuel.

Normalisation :

Nous supposons que la force de travail augmente d’un multiplicateur κ, et que l’allocation de la main d’oeuvre entre région soit donnée. Nous pouvons aisément remarquer que les revenus régionaux augmentent du même taux κ alors que l’indice des prix augmente de $\kappa^{(1-\psi\sigma)/(1-\sigma)}$. En appliquant ces deux résultats à l’équation des salaires nominaux nous remarquons que ces derniers ne sont pas affectés par l’augmentation de la force du travail. Le salaire réel régional change équiproportionnellement de $\kappa^{-\gamma(1-\psi\sigma)/(1-\sigma)}$ contrairement aux salaires réels relatifs qui restent inchangés. L’application de la même technique aux paramètres f et β prouve qu’ils n’affectent pas les salaires nominaux régionaux4. Ainsi, le changement équiproportionnel du salaire réel implique que les paramètres L, f et β n’affectent pas la dynamique et la stabilité du modèle. Cependant, ces paramètres influencent le niveau des salaires réels (bien être).

En se basant sur les normalisations exposées ci-dessus nous pouvons simplifier notre modèle tout en gardant la même dynamique. Ainsi, nous pouvons prendre ($\beta = \rho$, $f = \gamma L/\sigma$). Notre système d’équation se réduit alors à :

\[
\begin{align*}
R_r &= \gamma \lambda_r W_r + (1 - \gamma) \phi_r \\
G_r &= \left(\sum_{i=1}^{R} \lambda_i^{(1-\psi\sigma)r(1-\sigma)W_i^{(1-\sigma)}} \right)^{1/(1-\sigma)} \\
W_i &= \lambda_i^{-\psi} \left(\sum_{r=1}^{R} R_{r} \tau^{(1-\sigma)}G_r^{(\sigma-1)} \right)^{1/\sigma} \\
\omega_i &= W_i G_i^{-\gamma}
\end{align*}
\]

4Voir Annexe 1, pour les démonstrations.
2.4 Congestion dans un monde à trois régions

Les simulations effectuées de notre modèle qui considère deux régions (1) et (2) qui commercialisent avec le reste du monde (0), supposent que la production du bien traditionnel soit également réparti entre les régions (1) et (2). Nous procédons de la même manière que le chapitre précédent en calculant comment le salaire réel relatif \(\frac{\omega_1}{\omega_2} \) détermine le changement de direction dans la distribution de la main d’œuvre industrielle, et la stabilité de l’équilibre de long terme. Ainsi, pour chaque valeur de \(\lambda_1 \), la dotation de la région 1 en main d’œuvre industriel, correspond à un équilibre de court terme déterminé par la résolution de notre système d’équation défini ci-dessus, autrement dit \((R_1; G_1; W_1; \omega_1) \).

Nous représententons par la suite la fonction \(\frac{\omega_1}{\omega_2} = f(\lambda_1) \).

Afin d’illustrer l’impact de l’introduction de la congestion sur la nature des équilibres, nous commençons d’abord par simuler le cas d’une économie formée de deux régions en autarcie par rapport au reste du monde. Cette dernière hypothèse suggère que les coûts liés aux barrières tarifaires à l’importation des biens en provenance du reste du monde sont assez élevés (\(\rho = 2,15 \)).

\[
L = 1 \quad \sigma = 5 \quad \gamma = 0,4 \\
L_0 = 10 \quad \phi = 0,5
\]

2.4.1 Congestion en économie fermée

Avec des coûts, à l’importation, élevés et un coût de transport régional élevé (\(\tau = 1,5 \)), nous retrouvons le résultat du chapitre précédent : une économie fermée se caractérise par une répartition spatiale agglomérée de l’activité économique. Ce résultat correspond à une congestion égale à 1%. Cependant il parait que ce niveau de congestion n’a pas encore atteint un seuil qui peut influencer l’état de l’équilibre. Avec une hausse progressive des

\[\rho_e = 1.\]
coûts de congestion ($\psi = 0,04$) nous retrouvons deux états d’équilibre d’agglomération partielle. Contrairement au chapitre précédent, l’équilibre symétrique reste instable dans les deux cas de figure, quant aux équilibres d’agglomérations partielles ils deviennent stables. En effet, la force centrifuge de dispersion commence à agir malgré le fait que les avantages liés à l’agglomération restent élevés ce qui explique la stabilité de la concentration partielle de l’activité économique (fig 4.6 (a)). Ce n’est que lorsque la congestion devient relativement élevée ($\psi = 0,06$), que la répartition symétrique de l’activité devient un équilibre de long terme stable (fig 4.7 (b)).
Afin d’isoler la force centrifuge de congestion, nous avons simulé le cas d’une économie fermée avec des coûts de transport régional et international élevés. Le modèle montre alors que les acteurs économiques sont sensibles aux coûts de congestion à condition que celle-ci soit assez élevée. Remarquons aussi que les deux régions se partagent équitablement les travailleurs du secteur agricole ($\phi = 1/2$). Cette hypothèse permet de tenir compte de la force centrifuge due à l’immobilité des agriculteurs.

Un résultat intéressant se dégage des simulations effectuées ci-dessus, à savoir que même au sein d’une économie en autarcie et contrairement aux résultats de KL (1996) l’équilibre d’équirépartition de l’activité économique peut être une configuration spatiale stable. Qu’en est-il lorsque l’économie en question entame un processus de libéralisation commerciale qui se traduit par une baisse des coûts liés à l’importation ?

2.4.2 Congestion en économie ouverte

La considération de coûts liés à la congestion au sein d’une économie ouverte nous a permis de remarquer que la répartition spatiale de l’activité économique au sein du pays reste agglomérée en une seule région. En effet, l’introduction d’une force centrifuge
supplémentaire dans nos simulations, la congestion, nous permet de relativiser le résultat selon lequel les agents économiques tendent à se disperser quand l’économie nationale s’ouvre au commerce international. Le processus de convergence régionale n’aura pas lieu même pour un niveau assez poussé d’intégration ($\rho_m = 1, 8 ; 1, 7 ; 1, 5$) (fig 4.8 (c)). Ainsi, nous pouvons penser que, au sein de notre modélisation, l’ouverture commerciale n’a aucun effet sur la répartition spatiale de l’activité économique.

A ce stade de simulation, les avantages de l’agglomération dépassent les déséconomies et les ménages sont près à tolérer un certain niveau de congestion (1%). Avec une hausse supplémentaire de ces coûts ($\psi = 0, 02$), nous retrouvons les équilibres d’agglomération partiels stables représentés plus haut (fig 4.9 (d)). Ce n’est que lorsque $\psi = 0, 04$, que l’équilibre symétrique prend place et demeure stable (fig 4.10 (e)).
Nous pouvons faire un constat intéressant en comparant les simulations représentées par les fig 4.6 (a) et fig 4.10 (e) : En économie fermée au commerce international, les acteurs économiques sont moins sensibles aux coûts liés à la congestion. Cependant, le même seuil de congestion ($\psi = 0,04$) aboutit à deux configurations spatiales différentes : agglomérations partielles stables dans une économie fermée et dispersion symétrique stable au sein d’une économie ouverte. Ainsi, comme prédit par Krugman.P, Elizondo.R (1996), nous
pouvons déduire que l’ouverture commerciale joue son rôle en tant que force centrifuge qui amplifie l’intensité de la force de dispersion attribuée aux coûts de congestion.

2.5 Ouverture commerciale et baisse des coûts de transport

La sensibilité de la configuration spatiale aux forces de dispersion, notamment l’ouverture commerciale et la congestion analysées plus haut, a été faite en dehors de toute variation des coûts de transport interrégionaux. Afin d’insister encore sur l’importance des infrastructures de transport national, spécialement dans les pays en voie de développement où ces coûts restent très élevés alors que la majorité de ces pays ont déjà entamé un processus d’ouverture assez poussé, nous simulons une baisse progressive du niveau des coûts de transport. Nous gardons, pour la suite, \(\psi = 0,01 \).

Une baisse progressive des coûts de transport, \((T=1,35 ; T=1,2 ; T=1,1) \), au sein d’une économie ouverte \((\rho_m = 1,5) \) ne change pas, à première vue, la nature et la stabilité de l’équilibre d’agglomération totale, même si T baisse jusqu’à 1,1. A ce stade d’analyse, nous retrouvons les résultats selon lesquels les forces centripètes, qui favorisent l’agglomération et la proximité du grand marché pour bénéficier des économies d’échelle, sont plus fortes. Les courbes reportées sur la fig 4.11 (f) décrivent bien ces constats.
Chapitre 4 : équilibre spatial et congestion en économie ouverte

Une baisse supplémentaire du coût de transport régional ($T=1,07$) entraîne des équilibres intermédiaires d’agglomération stables, contrairement au chapitre précédent. Ce résultat stipule qu’il est possible d’avoir des centres urbains de tailles différentes. Cependant, la répartition symétrique de l’activité économique reste instable. Avec une congestion de 1%, les consommateurs-travailleurs choisiront de se délocaliser et de changer de région quand les coûts de transport deviennent négligeables ; ainsi les avantages liés à la concentration restent supérieur aux effets de congestion tant qu’on reste proche (en terme de coût) de la ville centrale. La main d’œuvre et/ou les firmes peuvent migrer vers la région où il y a moins de "déséconomies externes" tout en bénéficiant de la taille du marché central puisque les coûts de transport sont très bas, les forces centripètes restent plus puissantes que celles poussant à la dispersion totale ce qui explique la stabilité de l’agglomération intermédiaire (fig 4.12 (g)) (les équilibres stables sont représentés par des points pleins). Nous pouvons, alors, anticiper qu’une hausse supplémentaire de la congestion, (+1%), déplace les équilibres intermédiaires vers une répartition plus égalitaire (fig 4.12 (h)).
Cette sensibilité à la congestion s'explique par le fait que l’ouverture commerciale représente une force de dispersion, Krugman.P, Elizondo.R (1996), qui se trouve ainsi amplifiée par les "déséconomies externes" caractérisant les grands centres urbains. Les forces centrifuges dépasseront alors les forces centripètes (fig 4.12 (i)) et l’activité économique tend à être complètement dispersée, d’autant plus que la bonne qualité des infrastructures de transport motive les consommateurs/ travailleurs et les entreprises à s’implanter en région périphérique.

La hausse de la congestion et la baisse du coût de transport régional agissent dans le même sens du point de vue de la distribution spatiale de l’activité économique. En effet, en maintenant \(\psi = 0,01 \) et en faisant encore baisser \(T \) à un niveau très bas (\(T=1,01 \)) nous retrouvons le même graphique qui décrit une situation de dispersion totale symétrique (comme fig 4.12 (i)).

Rappelons qu’à la section (3.4) de ce chapitre nous avons supposé que le secteur industriel représentait 40 % de l’activité économique, \(\gamma = 0,4 \), ou ce taux d’industrialisation...
correspond plus aux pays en voie de développement que les pays industrialisés (avoisinant 80 %). Ainsi, simuler des baisses "vertigineuses" de coûts de transport interrégionaux, afin d’atteindre des équilibres d’agglomérations partielles et symétriques stables, nous paraît peu réaliste au sein des PVD. En effet, la quasi-totalité des pays les moins développés sont connus par la qualité médiocre de leurs infrastructures de transport.

2.6 Économie industrialisée et inégalité des villes

Selon Krugman, si le poids de l’agriculture (force centrifuge via une dispersion de la demande) devient trop faible, l’économie serait aspirée par les forces d’agglomération urbaine, dans un mécanisme analogue au « trou noir » des physiciens. Or, aujourd’hui, l’agriculture ne représente plus qu’une très faible part de la population des pays développés, au sens de producteurs attachés au sol qui, en tant que consommateurs, doivent supporter un coût de transport pour obtenir les biens industriels urbains ; pourtant l’activité économique et par suite démographique n’est pas totalement agglomérée. Dans le cadre du marché intérieur d’un pays développé, les coûts de transport des biens industriels urbains sont faibles. Pour la France, l’INSEE a montré que les écarts des prix à la consommation entre les métropoles et des villes plus petites étaient minimes (INSEE, 1990). Qu’en est-il avec la prise en compte des coûts de congestion ?

Afin de tester l’intensité de l’agriculture comme force centrifuge dans notre modèle nous considérons une économie industrialisée où le secteur traditionnel ne représente qu’une part infime de l’activité économique, soit \(\gamma = 0.75 \) (le secteur agricole représente par conséquent 25% de l’activité économique). Nous gardons l’hypothèse d’une économie ouverte \((\rho_m = 1.5) \) et un taux de congestion égale à 1%. Nous simulons alors une baisse progressive du coût de transport régional \((T=1.35 ; 1.07 ; 1.025 \text{ puis } 1.01) \) afin de pouvoir

\[^6 \text{En astrophysique, un trou noir est un objet massif dont le champ gravitationnel est si intense qu’il empêche toute forme de matière ou de rayonnement de s’en échapper. C’est dans ce sens que les forces d’agglomération urbaine sont assimilées à ce phénomène.} \]
comparer nos résultats aux cas précédents.

Nous retrouvons une tendance à la polarisation totale de l’activité économique qui correspond à un coût de transport interrégional relativement élevé $T=1,3$ (fig 4.13 (j)). En effet, la part des travailleurs du secteur traditionnel, qui sont aussi consommateurs du bien industriel, n’a plus le même poids qu’au cas précédent, ce qui affaiblit la force centrifuge assurée par l’immobilité de la main d’œuvre traditionnelle. Les habitants de la région centrale se trouvent confrontés aux coûts de transport s’ils veulent fuir la congestion en plus du désavantage de l’éloignement du grand marché.

L’importance du secteur industriel se traduit aussi par la persistance de l’agglomération liée aux avantages du grand marché, même pour un coût de transport interrégional assez bas $T=1,07$. Rappelons qu’à ce niveau de coût de transport et avec un taux d’industrialisation $\gamma = 40\%$, la configuration spatiale d’équilibre de l’activité économique était caractérisée par des agglomérations partielles stables. Ce n’est que lorsque T atteint...
la valeur de 1,025 que l’équilibre d’agglomération partielle apparait et reste stable. Le dernier cas met l’accent sur un phénomène très intéressant que nous allons développer au dernier chapitre à savoir la hiérarchie des villes. En effet, en faisant encore baisser le coût de transport jusqu’a T=1,01 (fig 4.13 (M)), nous retrouvons un équilibre de dispersion stable mais non symétrique, cette fois, contrairement aux cas précédents. Nous parlons alors de dispersion partielle stable, autrement dit l’existence de villes de tailles proches (fig 4.13 (M) ; $\lambda_1 = 0,4 ; \lambda_2 = 0,6$). Ce résultat est appuyé par maintes études économétriques et urbaines au sein des pays développés qui se caractérisent par la coexistence de villes de tailles économique et démographique très proches, Khaus D et Afchamp, F (2005) ; Riguelle, F Thomas, I et Verhetsel, A (2007).

3 Analyse du bien-être

Nous introduisons également dans le modèle une mesure du bien-être au niveau régional et de l’ensemble du pays (région 1 et région 2). Nous ferons l’hypothèse que le bien-être (V) peut être approximé par le revenu réel, ainsi :

\[
V_1 = W_1 G_1^{-\gamma} \text{ pour la région 1}
\]

\[
V_2 = W_2 G_2^{-\gamma} \text{ pour la région 2}
\]

\[
V_T = V_1 + V_2 = W_1 G_1^{-\gamma} + W_2 G_2^{-\gamma}
\]

La dernière équation définit le bien-être pour l’ensemble du pays et va être utilisée afin de simuler la variation du bien-être en fonction des différents scénarios envisagés ci-dessus.
Chapitre 4 : équilibre spatial et congestion en économie ouverte

Nous analysons ici les conditions pour lesquelles le bien-être collectif est le plus élevé. Ainsi, nous observons sur la fig 4.14 (U_1) que le niveau le plus élevé est atteint pour un taux assez élevé de taux de congestion (en économie ouverte ou fermée). Ce résultat paraît paradoxal, cependant il est intéressant de remarquer que ce degré de congestion ($\psi = 0.06$ ou $\psi = 0.04$) correspond à un équilibre de dispersion stable parfaitement symétrique de l’activité économique. Quant à l’agglomération totale (fig 4.6 (a) pour $\psi = 0.01$), elle nous fournit le plus bas niveau de bien être national. En effet, nous mettons en évidence que si les salaires sont plus élevés pendant la phase d’agglomération, l’indice des prix y est également plus élevé. L’accroissement de l’indice des prix n’est pas compensé par l’augmentation des salaires pendant la phase d’agglomération. Ainsi, nous démontrons que l’agglomération totale de l’activité économique n’est pas socialement désirable. L’analyse de Carl Gaigné et Sylvie Charlot (2002) aboutit au même résultat selon lequel l’effet taille de marché n’est pas toujours efficient et confirme les conclusions d’Ottaviano G.I.P., T. Tabuchi et J.-F. Thisse (2002). L’agglomération partielle pour une économie fermée avec une congestion $\psi = 0.04$, donne un niveau intermédiaire de bien être.

Rappelons que l’ouverture de l’économie au commerce international, en gardant une congestion ψ égale à 0.01, passe par des équilibres d’agglomérations totales puis partielles.
Chapitre 4 : équilibre spatial et congestion en économie ouverte

stables et enfin dispersion symétrique stable, tout dépend des coûts de transport. La figure (fig 4.15 (U_2)) représente le cas correspondant à la baisse des coûts de transport interrégional (T) en terme de bien être. On peut remarquer que le maximum de bien être est obtenu lorsque la répartition de la main d’œuvre s’effectue équitablement entre les régions (équilibre symétrique stable). Cet équilibre correspond à un niveau très bas de coût de transport. Ainsi, nous soulignons l’importance de l’investissement en infrastructure de transport afin de minimiser les coûts de transport et par suite chacune des deux villes peut consommer les biens de l’autre à un coût réduit maximisant le bien être de toute l’économie. Le graphique ci-dessous illustre ces résultats :

![Graphique de la baisse de T en économie ouverte et bien être](image)

Fig. 4.11 – (U_2)

Le dernier cas de nos simulations considérerait une économie industrialisé ($\gamma = 0,75$), pour laquelle une baisse progressive du coût de transport conduisait à une répartition spatiale de la main d’œuvre d’une situation de concentration vers une configuration de dispersion. Cependant, ce dernier équilibre de dispersion stable n’est pas parfaitement symétrique, il est légèrement en faveur d’une seule ville (fig 4.13 (M)). En effet, en terme de bien être au niveau national, la perte relative de main d’œuvre de la ville périphérique est plus que compensée par le gain de la main d’œuvre de la ville centrale. Ceci s’explique par la surproductivité relative de cette dernière suite à la réduction des coûts de migration.
entre villes. Ainsi, une concentration relativement supérieure des activités industrielles en ville centrale constitue, dans ce dernier cas, un optimum aussi bien du point de vue de la localisation des activités que du bien-être national mesuré par la somme des revenus réels régionaux. Le graphique (fig 4.16(U_3)) explique bien ces constats.

![Graphique de l'économie industrialisée et bien-être](image)

Fig. 4.12 – (U_3)

Notre modèle a été inspiré du travail de Fabrice Darrigues et Jean Marc Montaud (2001) qui ont analysé le processus d’intégration le plus abouti d’Amérique latine, le MERCOSUR. Le développement du Mercosur reste toutefois imparfait et se heurtait à l’existence de fortes asymétries entre les pays. Il est aussi intéressant de noter que l’introduction de la force de congestion a non seulement freiné le processus de migration vers l’Argentine mais a également empêché l’agglomération totale dans ce dernier pays. Notre approche est plus générale puisqu’elle tient compte du secteur agricole en plus de la congestion et s’est intéressé surtout à la répartition de l’activité économique à l’intérieur d’un pays ouvert au commerce international. Ainsi, les paramètres utilisés comme support pour notre algorithme, peuvent être plus généraux et appliqués en fonction du choix des pays ou de la zone d’intégration régionale considérée.
4 Conclusion

Nos simulations, au cours du chapitre 3, ont prouvé et appuyé les résultats de l’économie géographique selon lesquels l’équilibre de long terme est caractérisé par une activité économique tantôt concentrée tantôt dispersée. Tout dépend des hypothèses de base retenue décrivant les forces centrifuges et centripètes du modèle\(^7\) (demande rurale, coût de transport d’exportation, niveau d’intégration régionale...). Nous avons effectué, au sein du présent chapitre, une extension du modèle général d’économie géographique à trois régions discuté en chapitre 3 en démontrant l’impact de la considération d’une force centrifuge supplémentaire. En effet, nous avons introduit des coûts de congestion, dépendant du nombre d’entreprises installées en une localisation particulière, ou plus généralement déséconomie d’échelle externe, cette hypothèse implique que l’agglomération de l’activité économique est étroitement liée aux désavantages dus à la concentration excessive par rapport à l’espace local et aux ressources disponibles. Cette extension influence directement la fonction de production et conduit à une répartition plus égale de l’activité économique entre deux régions. Ainsi, nous concluons que la polarisation totale n’est plus la règle, mais une exception. De ce fait, les possibilités d’équilibres de long terme sont plus larges avec la prise en compte des coûts de congestion.

\(^7\)Voir pour une généralisation : Catin et Alii (2001,2002).
appréhender, dans le cadre de la nouvelle économie géographique, la répartition spatiale
et l’évolution des hiérarchies urbaines au moyen de la distribution rang-taille?
Introduction

Nous mobilisons la première section de ce chapitre à une représentation de la méthodolo-
Chapitre 5 : évolution des hiérarchies urbaines, la loi rang-taille

La méthode utilisée par Brakman, S. and H. Garretsen, C. V Marrewijk (2001), afin de mettre en exergue la persistance de la distribution rang-taille des villes. La seconde section sera consacrée à l’estimation des coefficients de Pareto relatifs à notre échantillon de pays qui vont être utilisés, au sein de la dernière section, comme mesure d’inégalité des tailles des villes afin de tester la signicativité de quelques variables d’économie géographique dans l’explication de la configuration spatiale de l’armature urbaine.

1 Système urbain et loi de Zipf

1.1 Les approches de la croissance urbaine

Deux grands corps théoriques peuvent décrire la nature et les causes de la croissance urbaine (Dimou M., Scaffar, M et Chen, Z, 2008).

En premier lieu, les approches en termes de croissance urbaine aléatoire, Gabais (1999), postulent que l’apparition de chocs ponctuels exogènes distribués de façon aléatoire entre les villes, favorise la croissance des villes. Ces chocs sont liés à des causes exogènes. Au sein de ces modèles, la dynamique urbaine suit une loi de Gibrat, ce qui signifie que le taux de croissance des villes est indépendant de leur taille.

En second lieu, les approches en termes de croissance urbaine endogène, développées essentiellement par Henderson (2004), supposent que les firmes se concentrent géographiquement afin de bénéficier des effets d’agglomération qui sont généralement du type marshalien (dynamique de spécialisation) ou du type Jacobs (dynamique de diversification). La présence du capital humain et des externalités d’information permet de tester si la croissance est parallèle ou conduit à une convergence ou une divergence des tailles urbaines. A l’opposé, les firmes subissent des déséconomies d’agglomération, liées à l’augmentation des coûts migratoires pendulaires et de congestion. Selon les approches de la croissance urbaine endogène, les villes ont des tailles variables car elles dépendent des
choix de localisation des firmes, effectués en fonction des avantages et des inconvénients de chacune d’entre elles.

A l’instar de Krugman (1996), plusieurs travaux en économie géographique, se sont intéressés au phénomène de la croissance urbaine en mettant l’accent sur les caractéristiques de la relation entre les avantages géographiques des villes et les choix de localisation des firmes. Cependant, la croissance relative des villes et l’évolution de la distribution rang-taille, sauf exception (Krugman 1996 ; Fujita, Krugman et Venables, 1999), n’étaient pas au centre de ces travaux.

Selon ces modèles la spécificité géographique d’un site de localisation (proximité de l’eau, climat, etc.) déclenche l’émergence des villes d’une façon aléatoire. Ce choix de localisation initial peut décrire l’émergence d’une ville particulière mais n’explique pas la dynamique de croissance de ces villes. L’apparition de rendements croissants localisés renforce, par la suite, les choix initiaux et génère une croissance urbaine autoentretenue. Dans son modèle de dépendance du passé où les conditions initiales jouent un rôle fondamental, Arthur (1990) décrit un processus de croissance urbaine explosive, lié à l’accumulation d’un stock d’externalités d’échelle localisées. Les trajectoires divergentes de chaque ville conduisent, ainsi, à une distribution rang-taille qui ne confirme pas la loi de Zipf.

L’ensemble de ces modèles admet l’hypothèse de technologies à rendement croissant, contrairement aux modèles à la Henderson qui restent résolument dans un environnement à rendements constants. Sans traiter directement la question de la croissance urbaine,
ils apportent néanmoins des éléments importants dans l’étude de l’interaction entre la dynamique économique et les processus d’urbanisation.

1.2 Localisation multiples et congestion : distribution rang-taille

Brakman, Van Marrewijk et Garretsen, (2001) ont étendu les simulations de leur modèle, avec la prise en compte des déséconomies d’agglomération, à plusieurs villes (24 centres urbains plus au moins grands). En utilisant un modèle à trois régions nos résultats trouvés au chapitre 4 de cette thèse, se rejoignent à ceux de Brakman, Van Marrewijk et Garretsen, (2001), en prouvant la ‘viabilité’ des petits centres urbains liés à l’activité industrielle. Ces derniers supposent que la distribution initiale des travailleurs du secteur industriel est fixée d’une façon aléatoire, mais similaire pour deux valeurs de coût de transport (T=1,2 ; T=1,3) durant le processus d’ajustement des villes.
Chapitre 5 : évolution des hiérarchies urbaines, la loi rang-taille

La figure (5.1 ; a,b) représente les distributions initiales et finales, en équilibre de long terme, des travailleurs du secteur industriel. La distance entre chaque point et le centre du cercle décrit la taille de chaque ville en terme de sa force travail. Ainsi, les villes (1) et (21) sont initialement très petites contrairement aux villes (20) et (23) qui sont initialement très larges. Les histogrammes (c,d) représentent la distribution finale (équilibre de long

Figure 7.3. The racetrack economy with congestion (c = 5; δ = 0.7; τ = 0.1).

Chapitre 5 : évolution des hiérarchies urbaines, la loi rang-taille

La redistribution des travailleurs détermine, alors, un nouvel équilibre de court terme. Une nouvelle vague de migration se met en place et se poursuit jusqu’à atteindre l’équilibre de long terme caractérisé par une égalisation des salaires réels.

L’observation de la Fig (5.1 ; a-c) montre qu’avec la prise en compte de la congestion, l’équilibre de long terme des villes est caractérisé par une répartition considérablement variée au niveau de la main d’œuvre industrielle. La distribution finale est bien structurée autour de deux centres d’activité économique dans des villes 3 et 15.

Brakman, Van Marrewijk et Garretsen, (2001) concluent que la croissance ou la décroissance des villes pendant le processus d’ajustement vers l’équilibre de long terme dépendent en grande partie de leurs places relatives dans la distribution initiale de leurs tailles par rapport au villes voisines (autrement dit leur rang).

Les villes 20 et 23, par exemple, sont initialement très grandes, mais isolées. Par conséquent, elles se contractent considérablement pendant le processus d’ajustement. D’autre part, la ville 15 est initialement tout à fait petite, mais entourée par des grandes villes, à savoir les villes 13, 14, 16 et 17. Cela permet à la ville 15 de devenir finalement la plus grande ville d’entre toutes. Même plus grande que les villes 20 et 23. Le même phénomène opère en faveur de la ville 3 qui était entourée par deux villes de plus grande taille, 3 et 4.

Avec un coût de transport, T=1,3 les simulations représentées par la Fig (5.1 ; b,d) montrent un résultat supplémentaire : la distribution finale dépend non seulement de la distribution initiale de la taille des villes mais aussi des conditions historiques de chaque ville, ce qui explique que cette distribution finale est beaucoup moins structurée que celle des simulations précédentes Fig (5.1,d).
2 La loi de Zipf : définition, données, et estimation

Une des régularités les plus saisissantes dans l’emplacement de l’activité économique est de savoir dans quel ordre cette dernière se répartit entre les villes. Ainsi, la distribution de taille de villes dans un pays, peut être rapprochée par une distribution de Pareto. Au cours des années, la proposition de base d’Auerbach a été investit par d’autres spécialistes, notamment Zipf (1949), de là le terme "la loi de Zipf" est fréquemment employé, afin d’apporter des explications à l’idée selon laquelle les tailles des villes suivent une distribution de Pareto. La loi de Zipf déclare que non seulement la distribution des tailles de villes suit une distribution de Pareto, mais que l’exposant de Pareto est égal à 1\(^1\).

La loi rang-taille se présente comme une loi de répartition interne d’un système urbain où la taille des villes est fonction de leur rang, ce rapport est mesuré par la pente (\(\alpha\)) qui exprime de combien diminue la taille d’une ville (en %) lorsque son rang augmente de 1%. La connaissance de la croissance de la première ville permettrait de connaître celle des autres. Ainsi, pour \(\alpha=1\), la deuxième ville est deux fois plus petite que la première, la troisième trois fois plus petite... Donc, comme les villes d’un système sont interdépendantes, la croissance plus rapide d’une ville, remontant ainsi le classement hiérarchique, ne peut se faire qu’aux dépens d’une/plusieurs autres villes du système. Cette approche de la hiérarchie des villes est utilisée tout au long de ce chapitre pour l’étude de la polarisation de la population et de l’emploi. Habituellement cette forme doit être linéarisée par une droite de régression de forme logarithmique, ce qui revient à réécrire la relation "rang-taille" :

\[
y = Kx^{-\alpha}
\]

\[\text{ou } \log y = -\alpha \log x + \beta \quad \text{avec } \beta = \log K\]

\(^1\)Ce constat a été testé maintes fois, cependant les avis restent toujours divergents et dépendent de l’échantillon choisi.
(x) représente la taille d’une population particulière, (y) les populations ayant des tailles supérieures à x (ou encore le rang de x au sein de la hiérarchie urbaine)\(^2\), et K la population de la ville principale. La distribution rang-taille donne une description synthétique de l’organisation territoriale et permet la comparaison par rapport à une distribution que l’on pourrait qualifier "d’idéale" d’un point de vue théorique. La valeur de la pente, toujours négative, donne une indication du contraste de la hiérarchie. Plus sa valeur est inférieure à l’unité et plus la distribution de la population entre les villes considérées est inégale. Autrement dit, plus la valeur du paramètre \(\alpha\) est au dessous de 1, plus la hiérarchie urbaine est marquée. On considère généralement que pour \(\alpha < 1\), la hiérarchie des villes devient importante. Les études ont montré que la valeur de \((\alpha)\) est souvent proche de l’unité. Le paramètre \(\beta\) nous renseigne sur la dominance de la première ville, généralement la capitale. Ainsi, si \(\beta\) (calculé) est inférieur à la valeur observée \((\beta^*)\), alors le système urbain est caractérisé par une forte primatie. A l’inverse, lorsque \(\beta > \beta^*\), le système n’est pas nécessairement organisé autour de la capitale. Autrement dit, la configuration de l’espace urbain n’est pas monocéphale comme le laisse croire les estimations. L’augmentation de \(\beta^*\) observée durant une grande partie du vingtième siècle, traduit un processus d’urbanisation croissante et de concentration de la population dans la plus grande ville. Cependant, depuis une dizaine d’années, dans de nombreux systèmes urbains, \(\beta^*\) a tendance à stagner, voire baisser, notamment à cause des effets de congestion observés dans les grandes capitales qui conduisent à une migration relative de la population vers des centres urbains secondaires dont le taux de croissance démographique s’accélère.

\(^2\)Nous pouvons effectuer une régression de la taille des populations des villes sur leurs rangs respectifs, cependant Gabais et Ioannides (2002) démontrent qu’il est préférable de régresser le rang sur la taille des villes car cette deuxième spécification implique des écarts type moins importants.
2.1 Validation empirique de la loi rang-taille

2.1.1 Littérature et échantillonnage

Rosen et Resnick (1980), ont utilisé un petit échantillon de pays (principalement des EU), afin de prouver la soutenabilité d’une telle loi. Cependant, leur travaux considérant des données, relativement anciennes, collectées jusqu’à 1970, inciteraient à relativiser la portée de leur résultats. Ainsi, nous essaierons, à la prochaine section, d’évaluer la loi "rang-taille", employant un nouvel ensemble de données qui inclut un plus grand échantillon de pays et surtout une nouvelle méthode de régression, Xavier Gabaix et Rustam Ibragimov (2006). Afin de pouvoir comparer nos résultats à d’autres études, deux approches de choix d’échantillon sont envisageables :

i) utiliser le même nombre de villes au sein de chaque pays ou

ii) choisir un seuil minimum de populations (20000 habitants dans notre cas).

Nous avons choisi la deuxième option en collectant nos données pour contourner le problème posé par les tailles des pays. Enfin, ces mesures nous seront utiles afin d’explorer le rapport entre l’inégalité entre les tailles des villes mesuré par "l’exposant de Pareto" et quelques variables économiques, en particulier les paramètres clés en économie géographique tels que le coût de transport, économie d’échelle, taux de substitution entre les biens ainsi que le taux d’ouverture commerciale et de congestion.

L’article de base empirique dans ce champ d’analyse est celui de Rosen et Resnick (1980). Leur étude examine les valeurs de l’exposant de Pareto pour un échantillon composé de 44 pays. Les estimations qui en découlent s’étendent de 0.81 (Maroc) à 1.96
Chapitre 5 : évolution des hiérarchies urbaines, la loi rang-taille

(Australie), avec une moyenne de 1.14. L’exposant de Pareto, dans 32 des 44 pays, est supérieur à l’unité. Rosen et Resnik constatent aussi que les résultats diffèrent selon l’utilisation des données concernant les agglomérations urbaines en comparaison des villes. Des études plus détaillées de la loi de Zipf (par exemple, Guerin-Pace (1995) étudie le système urbain de la France pour des villes avec plus de 2000 habitants) montrent que l’estimation du coefficient dépend de l’échantillon choisi. Cela implique que la distribution de Pareto n’est pas précisément appropriée comme une description de la distribution de la taille des villes. Cette question a été aussi levée par Rosen et Resnick, qui ont exploré l’addition de termes quadratiques et cubiques à la forme de base :

\[
\log y = (\beta') + \alpha' \log x + \delta'(\log x)^2
\]

(5.2)

\[
\log y = (\beta'') + \alpha'' \log x + \delta''(\log x)^2 + \theta''(\log x)^3
\]

Les régressions supplémentaires effectuées nous renseignent sur la convexité \((\delta' > 0)\) et la concavité \((\delta' < 0)\) de la distribution de Pareto, avec plus des deux tiers (32 sur 44) représentant une convexité dans leur distribution\(^3\). D’autres études empiriques sur la loi rang-taille, Alperovich (1984, 1988) et Kamecke (1990), ont utilisé des méthodes appropriées afin de tester la distribution de Pareto. Cependant, ces papiers, contraints par la disponibilité statistique de données, se basaient sur des populations de villes de plus de 100,000 habitants\(^4\). Le problème c’est que seule la zone supérieure de la distribution est représentée puisque le seuil de nombre d’habitants pour les villes incluses dans l’échantillon est très haut, tandis que pour d’autres, de plus grands pays, la plupart des villes dans le système urbain sont incluses. Dans cette optique nous utilisons dans notre étude une autre base de données plus récente et surtout plus complète, ceci nous donnera un plus grand nombre de villes dans chaque pays, qui nous permet de capturer une plus grande

\(^3\)Notons que ces résultats dépendent aussi du choix de l’échantillon.

\(^4\)Ces études dépendaient des données de l’Annuaire Démographique de l’ONU.
proportion du système de villes, particulièrement pour des pays plus petits\(^5\).

2.1.2 Méthodes d’estimation du coefficient de Pareto \(\alpha\)

\[
\log (y - 1/2) = -\alpha \log x + \beta \quad (5.3)
\]

Selon Gabaix et Ibragimov (2006), les "nouveaux" écarts types obtenus sont asymptotiquement égaux à \(\sqrt{(2/n)\alpha}\).\(^7\)

\(^5\)Nous utilisons la base de donnée de Thomas Brinkhoff : City Population, http://www.citypopulation.de

\(^6\)Le "1/2" provient de la régression rang-taille et de son programme dual.

\(^7\)Pour une analyse comparative entre la régression en utilisant la méthode des MCO et celle de Hills,
L’estimation du coefficient de Pareto, au sein de cette section, n’est pas une fin en soi. L’examen des facteurs qui peuvent influencer cet exposant peut nous donner une idée sur le pouvoir explicatif des inégalités par les modèles d’économie géographique. En effet, le coefficient α peut être interprété comme une mesure de l’inégalité entre les villes engendré par les effets économiques, démographiques politiques... Rosen et Resnick (1980) démontrent que ce coefficient est positivement corrélé avec le PNB (produit national brut), la population totale et la densité de chemin de fer, mais négativement lié à la superficie. Mills et Becker (1986), dans leur études du système urbain indien, montrent que le coefficient de Pareto est positivement corrélé à la population totale, au pourcentage des travailleurs dans le secteur manufacturé. Alperovich (1993) utilise les coefficients trouvé par Rosen et Resnick (1980) et démontre que ces derniers sont croissants en fonction du PNB par tête, densité de la population et la superficie, mais décroissants en fonction de la part des dépenses gouvernementales et la part de la valeur ajoutée industrielle dans le PIB.

2.1.3 Résultats

Nous avons reporté les résultats de nos régressions sur l’Annexe 2 tableau (1) pour la dernière année disponible de chaque pays de notre échantillon. Nous trouvons que la plus grande valeur de l’exposant de Pareto est obtenue pour le Kouweit (1.778) suivi par la Belgique (1.737). Quant aux valeurs les plus basses du coefficient α, elles sont obtenues pour le Sénégal (0.795), l’Arabie Saoudite (0.814) et la Syrie (0.8). Les résultats trouvés sont attendus puisque les deux premiers pays sont caractérisés par un grand nombre de petites villes sans que le système urbain ne soit dominé par une ville primate (configuration centre-périphérie). Cependant, au sein des trois derniers pays une ou deux villes dominent leurs configurations urbaines. En effet, les agglomérations constituant les capitales de ces pays croissent trop rapidement par rapport aux autres villes du système urbain. Du point voir Ibragimov et Phillips (2004), Phillips, (2007)
de vue des mouvements migratoires, les immigrants ont tendance à se concentrer dans les grandes agglomérations où les opportunités d’emploi sont perçues comme étant plus importantes, pour se rapprocher de leurs familles ou de leurs amis. Ainsi, l’exode rural serait à l’origine d’une plus forte croissance de la population au sein de ces capitales. Les concentrations agissent comme des centres de gravité et il devient de plus en plus difficile d’opérer des recompositions territoriales, Fujita et Thisse (1996)\(^8\).

Nous pouvons aussi aisément remarquer, dans le cas où le coefficient de Pareto est inférieur à 1, que la valeur observée de la taille de la ville de premier rang est souvent supérieure à la valeur calculée \((\beta^* > \beta)\), autrement dit, dans le cas des pays caractérisés par une structure monocéphale. Le tableau (2) de l’Annexe 2 présente les exposants de Pareto par continent. Sur la première ligne, nous avons calculé la moyenne de \((\alpha)\) de tout notre échantillon qui avoisine (1.13). Ce résultat soutient celui de Rosen et Resnick qui trouvent une valeur de \((\alpha)\) égale à 1,13. En regardant les résultats par continent nous remarquons aisément que l’Europe, l’Amérique du nord et l’Australie ont une valeur moyenne de l’exposant de Pareto assez élevé \((\simeq 1.3)\). L’Afrique, l’Amérique du Sud et l’Asie présentent une moyenne plus faible \((\simeq 1)\). Ces résultats indiquent que la répartition spatiale des villes au sein des trois premiers continents est plus dispersée que celle des autres continents. Ce constat appuie le résultat mentionné au cours du troisième chapitre, selon lequel le taux de polarisation ou dispersion dépend du niveau de développement des pays.

La récapitulation des résultats de régression des équations (2) et (3) pour l’échantillon de pays employé dans Rosen et Resnick rapporte une valeur moyenne de l’exposant Pareto de 1.179. La raison pour laquelle cette moyenne est légèrement plus élevée que celle obtenue pour notre échantillon est que leur base de données de 44 pays, inclut 20 pays européens.

\(^8\)Le facteur politique, à travers la centralisation des institutions, joue également un rôle non négligeable en ce qui concerne les tendances à la polarisation dans la capitale, Ades et Glaeser (1995).
4 Sud-Américains, 3 Nord-Américains, 6 Africains, 10 pays asiatiques et l’Australie, n’est pas représentatif de l’ensemble du monde et les pays européens représentent l’exposant de Pareto le plus élevé. L’explication de leurs choix d’échantillons c’est qu’en 1970 une proportion significative de la population urbaine du monde entier était en Europe, avant qu’une vague rapide d’urbanisation ne soit arrivée dans les pays les moins développés, justifiant ainsi un échantillon plus "Euro-central".

La représentation graphique de l’évolution du rang des villes en fonction de leur population prouve que la distribution de Pareto est plus adaptée à des systèmes urbains plus que d’autres (la distribution idéale serait une droite linéaire décroissante). Nous avons choisi de représenter des pays appartenant à différents continents et dont le système urbain est composé d’un grand nombre de villes.
Chapitre 5 : évolution des hiérarchies urbaines, la loi rang-taille

2.1.4 Villes ou agglomérations ?

Jusqu’à présent, nous avons travaillé avec des données concernant les villes, et non les agglomérations, à cause de la contrainte des données statistiques. Cependant, la prise en compte des villes pose le problème de la définition des municipalités et le phénomène de périurbanisation qui s’est dessiné ces dernières années rendant de plus en plus floues les frontières des villes. Dans cette optique, le travail de Kwok Tong Soo (2005), en considérant les agglomérations urbaines, nous permettra de comparer la distribution du coefficient de Pareto en utilisant les villes ou les agglomérations.

FIG. 5.2 – FIG A : Evolution du rang des villes en fonction de leurs populations
Nous pouvons constater en construisant la fonction de densité de Kernel, relative aux exposants de Pareto trouvés par la régression des MCO, que les données qui proviennent des mesures des agglomérations (à gauche) sont plus appropriées aux coefficients trouvés, puisque la distribution qui en découle est plus proche de la distribution normale.

3 Variation du coefficient de Pareto et NEG

L’exposant de Pareto peut être interprété comme une mesure d’inégalité de l’activité économique et des populations : plus la valeur de l’exposant Pareto est élevée, plus les populations sont également réparties entre les villes. Maintes explications peuvent potentiellement expliquer cette variation, notamment celles des modèles de géographie économique. Nous avons pu remarquer au cours des chapitres précédents que ces modèles traitaient la configuration spatiale dans la distribution d’activité économique. Les paramètres clefs du modèle sont : la valeur des rendements d’échelle, les coûts de transports et les autres barrières tarifaires relatives au commerce international, la part du secteur industriel ou traditionnel dans l’économie. Notre apport au sein de ce chapitre consiste à intégrer une
variable qui capte l’effet congestion, telle que la densité de véhicules par Km de route, afin de tester la robustesse de cette force de dispersion et nous permettra de vérifier les résultats de nos simulations au cours du quatrième chapitre. Selon Fujita, Krugman et Venables (1999), chapitre 12, l’activité économique se concentre (exposant de Pareto faible), si les économies d’échelle sont élevées, les coûts de transport sont faibles, la part du secteur industriel est faible et une économie relativement fermée aux échanges internationaux.

Cependant, il y a d’autres variables qui peuvent affecter "nos" coefficients de Pareto, telles que des spécifications économétriques (PIB par tête, superficie, population..). Tout comme Ades et Glaeser (1995), nous pouvons aussi utiliser quelques variables politiques qui peuvent influencer la décision de localisation des firmes et des populations. La stabilité politique et la disponibilité des infrastructures et institutions au sein des villes "capitales", leur donnent un pouvoir attractifs et favorise la concentration. Le PIB, la superficie et la population sont utilisés aussi afin de spécifier la taille des pays et peuvent ainsi influencer le coefficient de Pareto.

3.1 Spécification du modèle

La forme réduite de notre modèle de régression peut être écrite comme suit :

\[
\alpha_{it} = \beta_0 + \sum \beta_1 \text{NEG} + \sum \beta_2 \text{CONT} + \sum \beta_3 \text{POLITIC} + \sum \beta_4 \text{DICTO} + \epsilon_{it} \tag{5.4}
\]

\(\alpha_{it}\) représente les exposants de Pareto calculés pour les pays de notre échantillon durant les années disponibles.

\(\sum \text{NEG}\) est la liste des variables obtenues de la nouvelle économie géographique :

\(\text{RECHEL}\) représente le degré d’économie d’échelle du secteur industriel mesuré par la part des productions à rendement d’échelle élevé\(^9\) dans l’ensemble des ‘output’ manufacturiers.

\(^9\)La définition des industries à rendement d’échelle élevé est déterminée par le tableau 5.3 établi par
DENSITE Cette variable est déterminée par la densité des routes au sein de chaque pays\(^{10}\). Nous pouvons supposer que les coûts de transports sont indirectement et inversement liés à cette densité. Ainsi, un maillage routier dense engendre des coûts de transports relativement faibles.

INDUSTOT mesure le pourcentage du secteur industriel et des services dans le PIB

OUVERT mesure le pourcentage de commerce international dans le PIB, ce qui nous donne une idée sur le taux d’ouverture de chaque économie au commerce mondial.

CONGESTION est la densité de véhicules par Km de route. Nous tentons de capter l’effet "déséconomie d’agglomération" décrite au cours du quatrième chapitre afin de tester la portée de cette force décrite comme étant "centrifuge".\(^{11}\)

\[\sum CONT \] les variables de contrôles utilisées au sein de notre régression sont

- lnPIBPT (le log du PIB par tête en dollars américain à prix constant),
- lnSUPERFICIE (log de la superficie) et
- lnPOP (log de la population).

\[\sum POLITIC \] est composé de :

- GOVDEP (totale des dépenses gouvernementales),
- NOUVPAYS est un indicateur qui indique la période ou chaque pays a achevé son indépendance. Cette variable a été créée par Gallup, Sachs et Mellinger (1999), et prend la valeur 0 si le pays est déclaré indépendant avant 1914, 1 entre 1914 et 1945, 2 entre 1946 et 1989 et enfin 3 après 1989.
- GUERR une variable qui prend la valeur 1 si le pays a eu une guerre entre 1960

Pratten (1988). Nous identifions à partir de la base de données UNIDO, les 3-digit industries qui sont caractérisées par un rendement d’échelle élevé.

\(^{10}\) densité = total des routes / superficie

\(^{11}\) Il faut noter que le taux de congestion utilisé aux simulations effectuées durant le chapitre 4 dépend du nombre d’entreprises implantées dans chaque région. Ainsi, nous pouvons supposer que la densité de véhicules est positivement corrélée avec le nombre de firmes/travailleurs.
et 1985 et 0 sinon, Gallup, Sachs et Mellinger (1999).

GASTIL est un indice de liberté qui classe les pays selon leur degré de liberté. La valeur de cet indice varie entre 1 et 7, et représente une combinaison entre les droits politiques et les libertés civiles. Plus cet indice est faible, plus les libertés sont importantes.

$\sum DICTO$ est un ensemble de variables muettes qui caractérisent l’appartenance continentale de chaque pays afin de supprimer le problème de multicollinéarité12.

3.2 Méthode d’estimation

Selon Lewis (2000), l’utilisation du résultat d’une première régression comme variable dépendante dans seconde régression, peut engendrer des estimateurs inefficaces au sein de la deuxième.

12Voir Annexe 3, pour les sources de la construction de notre base de données.
Chapitre 5 : évolution des hiérarchies urbaines, la loi rang-taille

données, qui est en moyenne mobile). Cependant, il n’est pas réaliste de supposer que le coefficient de corrélation est le même pour tous les panels. En effet, notre base de données contient des observations concernant des pays très différents, pour lesquels les facteurs non-observables affectant les résidus risquent de ne pas suivre le même processus. Ainsi, les résultats trouvés avec PCSE sont meilleurs que ceux des moindres carrés généralisés faisables (FGLS) dans le sens où ils ne sous-estiment pas les variances des erreurs, mais ils tiennent compte de la structure des données de panel et le fait que ces données pouvaient être hétéroscédastiques et corrélées13. L’intuition liée à cette approche serait d’utiliser les estimateurs des MCO en corrigeant l’estimation des écarts types avec l’information donnée par les résidus.

13Il faut noter que la méthode de PCSE est utilisée si et seulement s’il n’y a pas d’autocorrélation temporelle ni de colinéarité entre variables explicatives.
3.3 Résultats : estimation du panel de l’équation (5.4) (variable dépendante = coefficient MCO)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Colonne (1)</th>
<th>Colonne (2)</th>
<th>Colonne (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{it})</td>
<td>0.0006 (0.19)</td>
<td>0.0072 (1.64)</td>
<td>0.0056 (-1.34)</td>
</tr>
<tr>
<td>RECHEL</td>
<td>0.7328 (5.30***)</td>
<td>0.8341 (5.60***)</td>
<td>0.7555 (3.52***)</td>
</tr>
<tr>
<td>DENSITE</td>
<td>0.0783 (3.95***)</td>
<td>0.0473 (2.14**)</td>
<td>0.0533 (1.80*)</td>
</tr>
<tr>
<td>INDUSTOT</td>
<td>0.0077 (2.18**)</td>
<td>0.0104 (2.43**)</td>
<td>0.0077 (1.82*)</td>
</tr>
<tr>
<td>OUVERT</td>
<td>-0.0001 (0.40)</td>
<td>-0.0004 (0.97)</td>
<td>-0.0027 (0.49)</td>
</tr>
<tr>
<td>CONGESTION</td>
<td>0.1299 (2.21**)</td>
<td>0.1334 (2.08**)</td>
<td>0.1653 (2.54**)</td>
</tr>
<tr>
<td>lnPIBPT</td>
<td>0.0783 (3.95***)</td>
<td>0.0473 (2.14**)</td>
<td>0.0533 (1.80*)</td>
</tr>
<tr>
<td>lnSUPERFICIE</td>
<td>0.1299 (2.21**)</td>
<td>0.1334 (2.08**)</td>
<td>0.1653 (2.54**)</td>
</tr>
<tr>
<td>lnPOP</td>
<td>0.0006 (0.19)</td>
<td>0.0072 (1.64)</td>
<td>0.0056 (-1.34)</td>
</tr>
<tr>
<td>GOVDEP</td>
<td>-0.0004 (0.97)</td>
<td>-0.0027 (0.49)</td>
<td>-0.0017 (0.32)</td>
</tr>
<tr>
<td>NOUVPAYS</td>
<td>0.0173 (0.68)</td>
<td>0.0479 (1.71*)</td>
<td>0.0601 (2.48**)</td>
</tr>
<tr>
<td>GUERR</td>
<td>0.0018 (0.16)</td>
<td>0.0111 (0.91)</td>
<td>0.0139 (0.98)</td>
</tr>
<tr>
<td>GASTIL</td>
<td>-0.1466 (2.47**)</td>
<td>-0.1537 (2.93***)</td>
<td>-0.1517 (2.89***)</td>
</tr>
<tr>
<td>DICTOAF</td>
<td>-0.0936 (3.12***)</td>
<td>-0.1515 (3.09***)</td>
<td>-0.1502 (2.95***)</td>
</tr>
<tr>
<td>DICTOOCC</td>
<td>-0.1720 (5.90***)</td>
<td>-0.1529 (5.03***)</td>
<td>-0.1517 (2.95***)</td>
</tr>
<tr>
<td>DICTOASI</td>
<td>-0.2489 (3.43***)</td>
<td>-0.2972 (3.31***)</td>
<td>-0.2961 (3.29***)</td>
</tr>
<tr>
<td>DICTONAM</td>
<td>-0.2889 (9.75***)</td>
<td>-0.3037 (10.94***)</td>
<td>-0.3026 (10.91***)</td>
</tr>
<tr>
<td>DICTOSAM</td>
<td>0.7121 (6.48***)</td>
<td>0.8768 (7.03***)</td>
<td>0.702 (2.06**)</td>
</tr>
<tr>
<td>CTE</td>
<td>0.0018 (0.16)</td>
<td>0.0111 (0.91)</td>
<td>0.0139 (0.98)</td>
</tr>
<tr>
<td>R²</td>
<td>0.4488</td>
<td>0.5704</td>
<td>0.5807</td>
</tr>
<tr>
<td>Nobservations</td>
<td>122</td>
<td>122</td>
<td>122</td>
</tr>
<tr>
<td>Pays</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
</tbody>
</table>

Le tableau (A), ci dessus, présente les résultats utilisant les estimations du coefficient de Pareto comme variable dépendante par la méthode des MCO en corrigant les écarts types par la PCSE. Nous avons été contraint par l’indisponibilité des données statistiques pour quelques pays durant quelques années, ce qui explique le nombre d’observation qui est inférieur à la totalité de notre échantillon. La colonne (1) représente la régression
sans tenir compte des variables de contrôles (pop, superficie, Pib/tête), ni des variables dictomiques. Nous remarquons que les paramètres clés de l’économie géographique sont hautement significatifs excepté le taux d’ouverture. En effet, les variables mises en œuvre représentent toutes des forces de dispersion puisqu’elles ont un effet positif sur le coefficient de Pareto. Ainsi, un niveau élevé de rendement d’échelle, de densité routière (bas coût de transport), de la part du secteur industriel dans l’économie ou de la congestion, engendrent des populations plus égalitaires réparties entre les villes de chaque pays ce qui se traduit par une activité économique plus dispersée. Mis à part les rendements d’échelle qui ont un impact positif sur le coefficient de Pareto, la majorité des variables de la NEG interviennent avec un signe correspondant aux modèles théoriques. Aucune des variables politiques n’est significatif, contrairement à l’étude de Kwok Tong Soo (2005).

Sur la colonne 2 du tableau (A), ci-dessus, nous avons ajouté les variables dictomiques concernant l’appartenance géographique de chaque pays, qui sont hautement significatives, et nous constatons que le pouvoir explicatif de notre modèle s’accroît sensiblement (R^2 (1)=0,4488 ; R^2 (2)=0,5704) avec une robustesse des variables de la NEG qui demeurent elles aussi significatives. Cependant, la spécification complète de notre modèle qui est représentée sur la colonne 3, en introduisant la population totale, la superficie et le PIB par tête, ne modifie pas nos résultats précédents\(^{14}\).

Nous constatons que nos résultats diffèrent complètement de ceux de Rosen et Resnick (1980) qui ont pu établir une relation positive entre l’exposant de Pareto et le niveau du PIB/tête, ainsi qu’avec la population totale et la densité des routes. Cette différence peut être expliqué par notre spécification ($R^2 = 0,5704$) qui est plus complète que celle de Rosen et Resnick ($R^2 = 0,23$). En plus l’introduction d’une nouvelle variable, la congestion et l’utilisation de la densité routière à la place des coûts de transport par rapport

\(^{14}\)Les variables contrôlant la taille des pays ont un impact négligeable dans la spécification totale de notre modèle (augmentation de 1% en R^2)
au travail de Kwok Tong Soo (2005) nous ont permis, contrairement à lui, de souligner la robustesse des modèles d’économie géographique quant à leurs pouvoirs explicatifs de la répartition spatiale des populations et de l’activité économique. En particulier, nous retrouvons les conclusions des simulations numériques effectuées au cours du chapitre 4 qui définissent la congestion comme une puissante force centrifuge poussant les populations et les firmes à s’implanter en régions périphériques.

4 Conclusion

Nous avons utilisé, tout au long de ce chapitre, le coefficient de Pareto en tant que mesure de l’inégalité de répartition spatiale des populations au sein de chaque pays. En effet, la construction de notre base de données est établie à partir de récentes données (www.citypopulation.de) et l’estimation du coefficient de Pareto dépend de la méthode utilisée. Gabaix et Ioannides (2002) ont démontré, en effectuant des simulations de Monte Carlo, que l’utilisation des MCO engendre des écarts types hautement sous-estimés, particulièrement en ce qui concerne les petits échantillons. Dans cette perspective, nous avons opté en faveur d’une nouvelle méthode déterminée par Gabaix et Ibragimov (2006), qui régresse le (rang-1/2) sur la taille des populations afin de calculer les coefficients de Pareto et donne également des écarts types corrects.

Enfin et afin d’expliquer les variations observées du coefficient de Pareto, nous avons estimé un modèle basé sur des variables de la nouvelle économie géographique et d’autres issues des modèles de politiques économiques. Nous démontrons que les paramètres clés des modèles d’économie géographique, tels que le coût de transport, les économies d’échelle, la part du secteur industriel ou encore la congestion sont très significatifs dans l’explication de la variation des coefficients de Pareto contrairement aux variables politiques (indice de Gastil, Guerr, etc). En effet, un niveau élevé de rendement d’échelle, de densité routière (bas coût de transport), de la part du secteur industriel dans l’économie ou de la conges-
tion, engendrent des populations plus égalitaires réparties entre les villes de chaque pays ce qui se traduit par une activité économique plus dispersée.

Malgré la haute significativité des paramètres de l’économie géographique, la majeure faiblesse de notre spécification surgit du fait que cette dernière ne provient pas directement d’un modèle théorique clairement établi par un courant théorique. De plus, nous ne pouvons pas appréhender de la même façon avec les mêmes horizons temporels une dynamique spatiale des PVD et des pays émergents. En effet, nous devons tenir compte de la dynamique macroéconomique de ces pays et de la pluralité des secteurs d’activité dans le PIB : au plus on a un éclatement du PIB, au plus on a des phénomènes de spatialisation qui opèrent ; au plus on a une monoproduction au moins les phénomènes de spatialisation opéreront. Nous pouvons prendre l’exemple de la localisation de l’activité économique en Arabie Saoudite qui est consacrée exclusivement, à 90% au secteur pétrolier ; dans ce contexte la spatialisation est incorrélée à la structure du PIB.

Cependant, les résultats demeurent très suggestifs et affirment les conclusions du quatrième chapitre de ce travail où nous avons pu distinguer l’importance de quelques forces centrifuges ou centripètes qui déterminent la configuration spatiale d’un pays.
Conclusion Générale

Le développement récent du courant dit de la « Nouvelle économie géographique » offre des outils qui permettent d’analyser la localisation des industries et des populations entre régions. Ce cadre théorique offre, en effet, l’avantage de se fonder sur les mécanismes microéconomiques et de raisonner dans le cadre d’un modèle d’équilibre général. A ce propos, le rappel des mécanismes présents dans le modèle de Krugman (1991) et la présentation de certaines de ses extensions, proposés dans le deuxième chapitre de cette thèse, montrent que la plupart de ces modèles, au sein desquels la principale force de dispersion est constituée par la localisation de la demande, mettent l’accent sur les forces centripètes qui poussent à l’agglomération de l’activité économique. Analytiquement, ces modèles peuvent être répertoriés en trois groupes selon Ghio (1999) :

* L’immobilité ou la mobilité de la main d’œuvre.
* L’importance de la consommation intermédiaire à travers les liens inputs-outputs entre les firmes.

* L’amélioration des infrastructures publiques.

L’économie géographique permet de constater, en présence de coûts de transaction, des phénomènes d’agglomération à proximité des plus grands marchés stimulés par des demandes locales importantes de biens différenciés. En effet, dans un modèle à deux pays, deux secteurs (agricole et manufacturier), si l’un d’entre eux offre un plus grand marché et que la production des biens du secteur manufacturier est à rendements croissants, les firmes auront un intérêt à concentrer la production de ces biens dans une seule localité. La localité offrant le plus grand marché finit donc par exporter vers l’autre localité les biens produits en rendements croissants, une fois la demande locale satisfaite. Parallèlement, dans le modèle de Krugman (1991), la parfaite mobilité du facteur travail implique que les travailleurs se localisent là où les firmes choisissent de se concentrer créant ainsi un phénomène de "causalité circulaire et cumulative" des forces entrant en jeu dans le choix de la localisation des firmes. Ce phénomène de concentration extrême des firmes aboutit à une répartition du tissu industriel du type "centre-périphérie". Par ailleurs, Venables (1996), en introduisant des liens verticaux entre les firmes dans un modèle sans mobilité du facteur travail ce qui engendre les mêmes effets d’agglomération du fait que toutes les firmes produisant des biens intermédiaires souhaitent se localiser près de leurs clients (les firmes produisant des biens finaux). Ce type de modèle (voir également Krugman et Venables (1995), Puga et Venables (1997,1998)) ne conserve cependant pas la structure centre-périphérie puisque la concentration des firmes dans un unique marché et la non
mobilité du facteur travail impliquent que les coûts de production croissent de telle sorte que les firmes se relocalisent là où ces coûts sont plus faibles.

Dans ce contexte, le rôle des Etats Nations, en tant qu’organisateurs de l’espace économique, est primordial. Des processus d’agglomération peuvent être facilités ou accompagnés au moyen de politiques d’attractivité territoriale, permettant la création de liens étroits entre le privé et le public, et favoriser des infrastructures autoroutières, maritimes et aéroportuaires. Ceci permettra un abaissement des coûts de communication qui se traduira par une symbiose entre la politique d’agglomération et le comportement de localisation des entreprises. Ainsi, il est nécessaire que les Etats parviennent à intégrer le concept d’agglomération dans leur comportement d’attractivité territoriale, telle a été le cas de la Sued qui a réussi à appliquer cette politique tout en redistribuant les richesses générees par la suite.

Or, les politiques publiques demeurent confrontées au problème de l’égalité des territoires entre eux. Selon elles, le mieux serait de gommer les disparités, de subventionner les "pauvres" et d’empêcher les "riches" de se développer trop vite. Le problème étant que l’égalisation spatiale est difficile avec des stratégies d’entreprise basées sur la recherche de l’agglomération, ce qui les conduit à la recherche et à l’amplification des phénomènes de déséquilibre. Ainsi, le débat entre croissance et équité n’est toujours pas tranché. Cependant, l’explication de la dispersion vers les espaces ruraux se basait souvent sur un cadre théorique développé afin d’expliquer la formation des agglomérations : ces travaux offrent un panorama très documenté de ces forces. La description des forces centrifuges reste, à l’inverse, souvent sommaire.

ouverte avec deux régions domestiques et une région externe (le reste du monde), dans le but de mettre en avant le rôle de l’ouverture commerciale. Au sein de chaque région, une industrie agrégée produit un composite de biens différenciés, tout en utilisant le travail comme seul et unique facteur de production. La main-d’œuvre nationale fixée est mobile entre les régions domestiques, mais non internationalement. Toutes les régions agissent réciproquement au marché de biens, avec les expéditions de marchandises entre régions, impliquant des dépenses commerciales.

En supposant que les Autorités publiques entretiennent une politique d’investissement en infrastructures de transport, les avantages tirés de l’agglomération des unités de production diminuent et les firmes installées en région centrale deviennent plus sensibles aux déséconomies d’agglomération, notamment la "rente spatiale". La proximité du marché d’offre et de la demande perd de son importance. Par contre, le bas niveau des taux de salaire au sein de la périphérie devient un élément déterminant dans le calcul des coûts de production. Les coûts de transport peuvent donc diminuer à un niveau tel que l’avantage salarial, au sein de la périphérie, devient plus important que les désavantages liés à l’éloignement géographique des marchés d’offre et de la demande ainsi qu’à la congestion. Il devient à nouveau profitable de localiser les unités de production manufacturières dans la périphérie. De plus, l’augmentation (diminution) de la demande de travail en périphérie (dans le centre) provoque une convergence des salaires réels.

En effet, la reformulation de ce modèle, en majorant les coûts à l’importation par les coûts de transport interrégional, nous a permis, d’une part, de prendre en compte le désavantage des régions « internes » dans leurs accès au marché international, et, d’autre part, de relativiser le résultat selon lequel une économie ouverte aboutit, nécessairement, à une convergence régionale. Selon nos simulations, ce résultat dépend directement de la qualité des infrastructures de transport, et par suite, des coûts engendrés par ces dernières.

Cependant, il est important de noter que ce modèle reste très simple. Il n’envisage bien
évidemment pas toutes les conséquences d’une libéralisation des échanges, notamment sur les spécialisations commerciales ou encore sur les investissements directs étrangers par exemple. Il ne peut nous éclairer que sur les modifications éventuelles de la répartition industrielle entre les pays. De plus, ces hypothèses sont, comme dans de nombreux modèles théoriques, très simplificatrices. Ses résultats ne révèlent donc qu’une partie des réelles conséquences de la mise en place d’une zone de libre-échange comme la ZLEA et ne prennent pas en compte tous les facteurs intervenant dans le rattrapage économique des pays du Sud. Il serait également intéressant de modifier le modèle en introduisant des différences de dotations de facteur capital, ou des coûts de transaction sur les échanges agricole par exemple. Si l’hypothèse d’égalité de dotation en facteur travail semble éloignée de la réalité, elle l’est d’autant plus en ce qui concerne le facteur capital. Il apparaît effectivement très peu probable que le pays du Sud ait la même dotation en capital que le Nord. Il est évident que si le Nord possède un pouvoir d’achat nettement supérieur à celui du Sud, l’effet de richesse qui s’ensuit impliquera qu’il existe plus d’entrepreneurs possédant un capital pour investir dans une firme. Ce modèle nous laisse donc encore de nombreux champs d’études à poursuivre.

Baldwin et Forslid (2000) ajoutent des remarques intéressantes puisque selon les secteurs touchés par la diminution des coûts de transaction, les conséquences ne sont pas les mêmes sur le processus de concentration industrielle : une libéralisation des échanges commerciaux a un effet de dispersion sur l’activité industrielle. Lorsque la libéralisation touche les flux d’information et de capitaux, on observe une concentration accrue des activités. Les auteurs démontrent de plus que l’agglomération des firmes dans une seule région est bénéfique aux deux pays même si les effets de congestion dus à une trop grande quantité de firmes dans la même région atténuent cet aspect positif. Il leur semble donc favorable pour la croissance d’observer des phénomènes d’agglomération dans l’économie.

L’introduction d’une force centrifuge supplémentaire, au sein du quatrième chapitre,
la congestion supposée proportionnelle au nombre d’entreprises implantées au sein d’une région, permet de comparer entre l’intensité de cette dernière et le taux d’ouverture. L’originalité de notre approche consiste à considérer théoriquement l’impact de cette force centrifuge dans le cadre d’une économie ouverte d’une façon endogène. En effet, avec la prolifération des accords d’intégration régionale, la prise en compte de cette force centrifuge (selon Krugman) démontre que le commerce d’un pays avec le reste du monde peut jouer un rôle décisif sur la configuration spatiale de ce dernier (chapitre III). Notre modèle, étant une variété du travail de Krugman, P, Elizondo, R (1996) et Charles van Marrewijk (2005), s’inscrit dans cette perspective et essaye de porter quelques explications à la concentration-dispersion de l’activité économique, tout d’abord dans le cadre d’une économie fermée, puis une économie caractérisée par un degré d’intégration plus avancé.

Le résultat est irréfutable, les agents économiques sont davantage sensibles à la congestion qu’au taux d’ouverture. Ainsi, même au sein d’une économie très ouverte, la dispersion n’aura lieu qu’à partir d’un certain seuil de congestion. Notre résultat coïncide parfaitement avec le propos de Fujita, Thisse (1997) « les forces en action ou du moins leurs intensités respectives, ne sont pas nécessairement les mêmes selon l’entité géographique retenue ».

Fabrice Darrigues et Jean Marc Montaud (2001) ont analysé le processus d’intégration le plus abouti d’Amérique latine, le MERCOSUR. En effet, le développement du Mercosur reste toutefois imparfait et se heurta à l’existence de fortes asymétries entre les pays. Il est aussi intéressant de noter que l’introduction de la force de congestion a non seulement freiné le processus de migration vers l’Argentine mais a également empêché l’agglomération totale dans ce dernier pays. Notre approche est plus générale dans le sens où nous considérons deux secteurs, l’industrie et le secteur agricole, en plus de la congestion et s’intéresse surtout à la répartition de l’activité économique à l’intérieur d’un pays ouvert au commerce international. Ainsi, les paramètres utilisés comme support pour notre al-
gorithme, peuvent être plus généraux et appliqués en fonction du choix des pays ou de la zone d’intégration régionale considérée. Une application de notre modèle serait de le calibrer en se basant sur des données réelles pour les paramètres concernant une zone d’intégration régionale telle que le bassin méditerranéen, cependant l’absence de données fiables ou homogène en ce domaine nous a contraint à nous contenter des résultats trouvés par les simulations effectuées précédemment. Ils n’ont pas la prétention de représenter exactement la situation de chaque région mais retrace simplement l’ordre de grandeur des principales configurations spatiales.

Deux autres résultats importants trouvés à la fin du quatrième chapitre démontrent à l’aide de simulations numériques que l’équilibre de répartition symétrique est préférable à celui de l’agglomération totale, du point de vue du bien-être global. Le second résultat rend compte de la possibilité d’obtenir un équilibre stable et caractérisé par une répartition inégale mais proche de l’activité économique entre villes ou régions. Ce dernier résultat dépend totalement de « l’excellente qualité » des infrastructures de transport inter-régional. Une des études empiriques les plus détaillées est due à Combes et Lafourcade, (2001) qui testent un modèle à 71 secteurs industriels et 341 zones d’emplois. Les coûts de transport utilisés sont calculés en fonction de la distance, du temps, du réseau routier, du prix de l’essence... etc. Ils montrent qu’une baisse de 40% du coût de transport déclenche un renforcement de la spécialisation et des disparités régionales.

Les estimations économétriques effectuées au sein de notre dernier chapitre, viennent confirmer la consistance des paramètres clés de l’économie géographique (rendement d’échelle croissant, coût de transport, congestion) dans le but d’expliquer la répartition spatiale de populations ainsi que de l’activité économique.

Nous remarquons que les paramètres clé de l’économie géographique sont hautement significatifs excepté le taux d’ouverture. En effet, les variables mises en oeuvre représentent toutes des forces de dispersion puisqu’elles ont un effet positif sur le coefficient de Pareto.
Ainsi, un niveau élevé de rendement d’échelle, de densité routière (bas coûts de transport), de la part du secteur industriel dans l’économie ou de la congestion, engendrent des populations plus également réparties entre les villes de chaque pays ce qui ce traduit par une activité économique plus dispersée. Mis à part les rendements d’échelles qui ont un impact positif sur le coefficient de Pareto, la majorité des variables de la NEG interviennent avec un signe correspondant aux modèles théoriques. Aucune des variables politiques n’est significatif, contrairement à l’étude de Kwok Tong Soo (2005).

Plusieurs articles montrent d’ailleurs que l’économie géographique offre un cadre fécond pour l’analyse du monde rural (Schmitt, Henry (2000); Jayet (2000)). Si les forces centripètes sont effectivement à l’origine de la formation de villes ou de régions très urbanisées, il est tout aussi vrai que les forces centrifuges sont à la source du développement des zones rurales.

Malgré leurs apports révolutionnaires en termes d’interactions entre commerce international, économie régionale et croissance économique, les modèles de la NEG présentent quelques ambiguïtés théoriques telles que la considération de l’espace, la croissance ou encore la non considération de l’importance informationnelle dans les décisions de localisations des entreprises. Ainsi, plusieurs axes de développement peuvent être investis, notamment celui de l’importance de l’asymétrie d’information sur le marché du travail, afin de déterminer d’autres forces susceptibles d’enrichir notre connaissance concernant la localisation productive. En effet, la considération de différents niveaux de qualification des travailleurs peut influer la nature des équilibres via la portion des travailleurs qualifiés/inqualifiés.

L’interaction entre forces centrifuges et forces centripètes au sein des modèles d’économie géographique parait plus adaptée dans le cas de l’économie américaine. Cependant, cette logique ne peut pas expliquer l’émergence de nombreuses villes européennes où leur formation a précédé et conditionné leur processus d’industrialisation. Toutefois, et
contrairement aux approches de Krugman, l’apparition de nouvelles unités spécialisées et productives dans les régions périphériques de l’Europe s’est faite indépendamment des anciennes régions industrielles. De plus, en réduisant la mesure de la distance aux seuls coûts de transport, les premiers modèles de l’économie géographique font abstraction de toute une série d’approches originales qui attribuent aux concepts de distance et de proximité un contenu nettement plus complexe.
ANNEXES

ANNEXE 1 : Démonstration du modèle chapitre 4

\[U = D^\gamma S^{1-\gamma} \quad ; \quad D = \left[\sum_0^n d(i)^\rho \theta_i \right]^{1/\rho} \]

Pour maximiser \(U \) sous la contrainte budgétaire de \(R = DG + S \). Nous utilisons le Lagrangien \(\Gamma \) utilisant le multiplicateur \(\varrho \):

\[\Gamma = D^\gamma S^{1-\gamma} + \varrho (R - (DG + S)) \]

Différencions \(\Gamma \) par rapport à \(D \) et \(S \) afin d’obtenir la condition de première ordre :

\[DG = \gamma R \quad \text{et} \quad S = (1-\gamma)R \]

Nous avons déjà démontré au cours du deuxième chapitre de ce travail l’équation de la fonction de demande, soit :

\[d_j = [\gamma R^G(\sigma-1)] \ast p_j^{-\sigma} \]

La prise en compte de la congestion intervient du coté de l’offre puisqu’elle influence directement la fonction de production des entreprises et par suite leurs profit :

\[\pi = p_j q_j - W_j \left(N^{\psi/(1-\psi)}(f + \beta q) \right) \]
De la fonction de demande nous pouvons déduire que

\[q_j = Cte \cdot p_j^{-\sigma} \quad \text{avec} \quad \sigma = 1/1 - \rho \]

\[\pi = Cte \cdot p_j^{1-\sigma} - W_j (N^\psi/(1-\psi) (f + \beta Cte \cdot p_j^{-\sigma})) \]

\[\frac{\partial \pi}{\partial p_j} = 0 \quad \implies \quad p_j = \frac{\sigma}{\sigma - 1} \beta W_j N_j^{\psi/(1-\psi)} \]

Un profit nul impliquera :

\[\pi = p_j q_j - W_j (N^\psi/(1-\psi) (f + \beta q_j)) = 0 \]

\[\frac{\sigma}{\sigma - 1} \beta W_j N_j^{\psi/(1-\psi)} q_j = W_j (N^\psi/(1-\psi) (f + \beta q_j)) \]

la fonction de production \(\implies q^* = f(\sigma - 1)/\beta \) et \(l_j^* = N_j^{\psi/(1-\psi) f\sigma} \)

le nombre de firme en région j \(\iff \) \(N_j^* = (\gamma \lambda_j L/f\sigma)^{1-\psi} \)

Avec la localisation multiple l’introduction des coûts de transport \((\tau) \) nous permet de définir les équilibres, ainsi une firme localisée en région j et vend ses biens en région r est :

\[p_r = \frac{\sigma}{\sigma - 1} \beta W_j N_j^{\psi/(1-\psi) \tau_{jr}} \]

Supposons qu’il existe plus de deux régions alors l’équation générale des indices des prix nous donne :

\[G_r = G_x = \left[\sum_{j=1}^{X} N_j \left(\frac{\sigma}{\sigma - 1} \beta W_j N_j^{\psi/(1-\psi) \tau_{jr}} \right)^{1/(1-\sigma)} \right]^{1/(1-\sigma)} \]

\[= \left[\sum_{j=1}^{X} N_j^{(1-\sigma\psi)/(1-\psi)} \left(\frac{\sigma}{\sigma - 1} \beta W_j \tau_{jr} \right)^{1/(1-\sigma)} \right]^{1/(1-\sigma)} \]

\[= \left(\frac{\sigma}{\sigma - 1} \beta \right) (\gamma L/f\sigma)^{(1-\sigma\psi)/(1-\sigma)} \left[\sum_{j=1}^{X} N_j^{(1-\sigma\psi)/(1-\sigma)} \right]^{((1-\sigma)/(1-\sigma))} \]

\[= \left(\frac{\sigma}{\sigma - 1} \beta \right) (\gamma L/f\sigma)^{(1-\sigma\psi)/(1-\sigma)} \left[\sum_{j=1}^{X} N_j^{(1-\sigma\psi)/(1-\sigma)} \right]^{((1-\sigma)/(1-\sigma))} \]
L’équilibre de court terme détermine les salaires régionaux nominaux et se déduit de l’équation générale des indices de prix et la fonction de demande :

\[
[\gamma R_r G_r^{(\sigma-1)}] \cdot \left(\frac{\sigma}{\sigma-1} \beta W_j N_j^{\psi/1-\psi} \tau_{jr} \right)^{-\sigma} = \gamma \left(\frac{\sigma}{\sigma-1} \beta \right)^{-\sigma} R_r W_j^{-\sigma} N_j^{-\sigma\psi/1-\psi} \tau_j \tau_{jr} G_r^{(\sigma-1)}
\]

Nous pouvons maintenant déduire la demande totale des régions si \(X \geq 2\) : en multipliant par \(\tau_{jr}\) :

\[
D_{totale} = \gamma \left(\frac{\sigma}{\sigma-1} \beta \right)^{-\sigma} W_j^{-\sigma} N_j^{-\sigma\psi/1-\psi} \sum_{r=1}^{X} R_r G_r^{(\sigma-1)} \tau_{jr}^{(1-\sigma)}
\]

A l’équilibre, cette demande doit être égale à l’offre \(q^* = f(\sigma - 1)/\beta \) ⇔

\[
q^* = f(\sigma - 1)/\beta = \gamma \left(\frac{\sigma}{\sigma-1} \beta \right)^{-\sigma} W_j^{-\sigma} N_j^{-\sigma\psi/1-\psi} \sum_{r=1}^{X} R_r G_r^{(\sigma-1)} \tau_{jr}^{(1-\sigma)}
\]

Le salaire nominal d’équilibre \(W_i\) devient :

\[
W_i = \rho \beta^{-\rho} \left(\frac{\gamma}{(\sigma-1)f} \right)^{1/\sigma} \left(\frac{\gamma L}{f^\sigma} \right)^{-\psi} \lambda^{-\psi} \left(\sum_{r=1}^{R} R_r \tau^{(1-\sigma)} G_r^{(\sigma-1)} \right)^{1/\sigma}
\]

Normalisation : Système d’équation d’équilibre

\[
R_r = \gamma \lambda_r W_r + (1-\gamma)\psi_r,
\]

\[
G_r = \left(\frac{\beta}{\rho} \right) \left(\frac{\gamma L}{f^\sigma} \right)^{(1-\sigma)} \left(\sum_{i=1}^{R} \lambda_i^{(1-\psi_\sigma)} \tau_{ri}^{(1-\sigma)} W_i^{(1-\sigma)} \right)^{1/(1-\sigma)}
\]

\[
W_i = \rho \beta^{-\rho} \left(\frac{\gamma}{(\sigma-1)f} \right)^{1/\sigma} \left(\frac{\gamma L}{f^\sigma} \right)^{-\psi} \lambda^{-\psi} \left(\sum_{r=1}^{R} R_r \tau^{(1-\sigma)} G_r^{(\sigma-1)} \right)^{1/\sigma}
\]

\[
\omega_i = W_i G_i^{-\gamma}
\]

Proposition 1 Supposons que \((R_r, G_r, W_r, \omega_r)\) soit une solution pour notre système d’équation défini ci-dessus ; alors un changement dans la taille de la population \(L\), ou dans les paramètres de la fonction de production \(f\) et \(\beta\) par un facteur multiplicateur \(\kappa\) change la
solution respectivement à

\[(κR_r, κ^{(1−σψ)/(1−σ)} G_r, W_r, κ<−γ(1−σψ)/(1−σ) ω_r)}) \quad (pour \, κL)\]

\[(R_r, κ^{−(1−σψ)/(1−σ)} G_r, W_r, κ<γ(1−σψ)/(1−σ) ω_r}) \quad (pour \, κα)\]

\[(R_r, κG_r, W_r, κ<−γω_r}) \quad (pour \, κβ)\]
ANNEXE 2

<table>
<thead>
<tr>
<th>Tableau 1</th>
<th>ANNEE</th>
<th>AFRIQUE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>α</td>
<td>β</td>
</tr>
<tr>
<td>Algérie</td>
<td>1996</td>
<td>1,4986</td>
<td>20,1160</td>
</tr>
<tr>
<td>Egypte</td>
<td>1996</td>
<td>1,0616</td>
<td>15,7720</td>
</tr>
<tr>
<td>Ethiopie</td>
<td>2006</td>
<td>1,1573</td>
<td>15,8468</td>
</tr>
<tr>
<td>Kenya</td>
<td>1999</td>
<td>0,9223</td>
<td>12,7081</td>
</tr>
<tr>
<td>Maroc</td>
<td>2004</td>
<td>0,9442</td>
<td>14,0075</td>
</tr>
<tr>
<td>Nigeria</td>
<td>1991</td>
<td>1,0910</td>
<td>16,5350</td>
</tr>
<tr>
<td>Sud Afr</td>
<td>1995</td>
<td>0,9294</td>
<td>14,1387</td>
</tr>
<tr>
<td>Sénégal</td>
<td>2004</td>
<td>0,7958</td>
<td>11,0852</td>
</tr>
<tr>
<td>Soudan</td>
<td>1993</td>
<td>1,0300</td>
<td>14,4202</td>
</tr>
<tr>
<td>Tanzanien</td>
<td>2002</td>
<td>0,9074</td>
<td>12,6769</td>
</tr>
<tr>
<td>Cameroun</td>
<td>2001</td>
<td>0,9532</td>
<td>13,4671</td>
</tr>
<tr>
<td>Australie</td>
<td>2004</td>
<td>1,2583</td>
<td>18,0177</td>
</tr>
<tr>
<td>Asie</td>
<td>2004</td>
<td>1,2583</td>
<td>18,0177</td>
</tr>
<tr>
<td>Beqaldech</td>
<td>1991</td>
<td>1,3777</td>
<td>19,0726</td>
</tr>
<tr>
<td>Chine</td>
<td>1990</td>
<td>1,1854</td>
<td>19,6067</td>
</tr>
<tr>
<td>Indonésie</td>
<td>2000</td>
<td>0,9935</td>
<td>15,8128</td>
</tr>
<tr>
<td>Iran</td>
<td>1996</td>
<td>1,1158</td>
<td>16,9063</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>2004</td>
<td>1,2187</td>
<td>16,4155</td>
</tr>
<tr>
<td>JORDANIE</td>
<td>1994</td>
<td>0,9976</td>
<td>13,0478</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>1999</td>
<td>1,0851</td>
<td>15,0292</td>
</tr>
<tr>
<td>Kuwait</td>
<td>2005</td>
<td>1,7786</td>
<td>21,4580</td>
</tr>
<tr>
<td>Malaisie</td>
<td>2000</td>
<td>0,9539</td>
<td>14,2783</td>
</tr>
<tr>
<td>Nepal</td>
<td>2001</td>
<td>1,3656</td>
<td>17,4881</td>
</tr>
<tr>
<td>Pakistan</td>
<td>2001</td>
<td>1,0038</td>
<td>15,4915</td>
</tr>
<tr>
<td>Philippie</td>
<td>2000</td>
<td>1,2466</td>
<td>18,7826</td>
</tr>
<tr>
<td>Arabie S</td>
<td>2004</td>
<td>0,8144</td>
<td>12,5239</td>
</tr>
<tr>
<td>Kore Sud</td>
<td>2002</td>
<td>1,0019</td>
<td>15,9200</td>
</tr>
<tr>
<td>Taiwan</td>
<td>2004</td>
<td>1,0782</td>
<td>16,0142</td>
</tr>
<tr>
<td>Tailande</td>
<td>2000</td>
<td>1,2763</td>
<td>17,6572</td>
</tr>
<tr>
<td>Turquie</td>
<td>2000</td>
<td>1,0337</td>
<td>15,9708</td>
</tr>
<tr>
<td>Vietnam</td>
<td>1989</td>
<td>1,0676</td>
<td>15,1308</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>1990</td>
<td>1,2661</td>
<td>17,3465</td>
</tr>
<tr>
<td>Azerbaidjan</td>
<td>1997</td>
<td>1,1548</td>
<td>15,0421</td>
</tr>
<tr>
<td>INDE</td>
<td>2001</td>
<td>1,0883</td>
<td>18,4174</td>
</tr>
<tr>
<td>Japon</td>
<td>2005</td>
<td>1,4244</td>
<td>22,1115</td>
</tr>
<tr>
<td>Syrie</td>
<td>1991</td>
<td>0,8000</td>
<td>12,0465</td>
</tr>
</tbody>
</table>

Fig. 5.4 – Tableau 1 : résultats de la régression de l’équation (5.3) pour l’échantillon des villes de la dernière année pour chaque pays.
Tableau 1 (suite) : résultats de la régression de l’équation (5.3) pour l’échantillon des villes de la dernière année pour chaque pays.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Année</th>
<th>Coefficient</th>
<th>Constante</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentine</td>
<td>2001</td>
<td>0.9476</td>
<td>14.8621</td>
<td>14.9366</td>
</tr>
<tr>
<td>Chilie</td>
<td>2002</td>
<td>0.9949</td>
<td>14.3784</td>
<td>15.3538</td>
</tr>
<tr>
<td>Cuba</td>
<td>2002</td>
<td>1.0339</td>
<td>14.2480</td>
<td>14.6047</td>
</tr>
<tr>
<td>Colombie</td>
<td>2003</td>
<td>0.9265</td>
<td>14.3352</td>
<td>15.7398</td>
</tr>
<tr>
<td>Equateur</td>
<td>2004</td>
<td>0.9153</td>
<td>12.9065</td>
<td>14.5013</td>
</tr>
<tr>
<td>Pérou</td>
<td>1993</td>
<td>0.9987</td>
<td>13.0714</td>
<td>15.8594</td>
</tr>
<tr>
<td>Venezuela</td>
<td>2001</td>
<td>1.0913</td>
<td>16.0460</td>
<td>14.4231</td>
</tr>
<tr>
<td>Mexique</td>
<td>2005</td>
<td>1.3600</td>
<td>21.2189</td>
<td>14.3388</td>
</tr>
<tr>
<td>USA</td>
<td>2005</td>
<td>1.3541</td>
<td>21.1350</td>
<td>15.9127</td>
</tr>
<tr>
<td>Canada</td>
<td>2004</td>
<td>1.2445</td>
<td>15.3594</td>
<td>13.8377</td>
</tr>
<tr>
<td>Brazil</td>
<td>2005</td>
<td>1.2486</td>
<td>19.9354</td>
<td>16.1465</td>
</tr>
<tr>
<td>Suisse</td>
<td>2003</td>
<td>1.0828</td>
<td>14.2033</td>
<td>14.0847</td>
</tr>
<tr>
<td>Belarus</td>
<td>2004</td>
<td>0.9082</td>
<td>12.8746</td>
<td>14.3702</td>
</tr>
<tr>
<td>Belgique</td>
<td>2004</td>
<td>1.7370</td>
<td>22.1053</td>
<td>13.0284</td>
</tr>
<tr>
<td>Bulgarie</td>
<td>2004</td>
<td>1.1499</td>
<td>15.3732</td>
<td>13.9456</td>
</tr>
<tr>
<td>R Tcheque</td>
<td>2004</td>
<td>1.2738</td>
<td>16.7578</td>
<td>13.9687</td>
</tr>
<tr>
<td>Danemark</td>
<td>2005</td>
<td>1.4686</td>
<td>18.6970</td>
<td>13.1271</td>
</tr>
<tr>
<td>Finland</td>
<td>2005</td>
<td>1.0011</td>
<td>13.2785</td>
<td>13.8424</td>
</tr>
<tr>
<td>France</td>
<td>1990</td>
<td>1.5389</td>
<td>21.2333</td>
<td>14.5694</td>
</tr>
<tr>
<td>Allemagne</td>
<td>2005</td>
<td>1.2171</td>
<td>18.3623</td>
<td>15.0359</td>
</tr>
<tr>
<td>Grece</td>
<td>2003</td>
<td>1.5531</td>
<td>20.2225</td>
<td>13.5218</td>
</tr>
<tr>
<td>Hongrie</td>
<td>2003</td>
<td>1.1533</td>
<td>15.4122</td>
<td>14.3575</td>
</tr>
<tr>
<td>Italie</td>
<td>2004</td>
<td>1.4035</td>
<td>20.0079</td>
<td>14.7485</td>
</tr>
<tr>
<td>Pays bas</td>
<td>2005</td>
<td>1.5346</td>
<td>20.8082</td>
<td>13.5125</td>
</tr>
<tr>
<td>Norvege</td>
<td>2004</td>
<td>1.4154</td>
<td>17.7956</td>
<td>13.1626</td>
</tr>
<tr>
<td>Pologne</td>
<td>2005</td>
<td>1.1854</td>
<td>17.2411</td>
<td>14.3419</td>
</tr>
<tr>
<td>Portugal</td>
<td>2005</td>
<td>1.4684</td>
<td>19.0797</td>
<td>13.2300</td>
</tr>
<tr>
<td>Roumanie</td>
<td>2002</td>
<td>1.0992</td>
<td>15.6366</td>
<td>14.4711</td>
</tr>
<tr>
<td>Slovaquie</td>
<td>2003</td>
<td>1.4681</td>
<td>18.1158</td>
<td>12.9611</td>
</tr>
<tr>
<td>Sued</td>
<td>2004</td>
<td>1.4788</td>
<td>19.5942</td>
<td>13.5477</td>
</tr>
<tr>
<td>Ukraine</td>
<td>2005</td>
<td>0.9225</td>
<td>15.2526</td>
<td>14.7940</td>
</tr>
<tr>
<td>Continent</td>
<td>obs</td>
<td>α moyenne</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>échantillon</td>
<td>68</td>
<td>1,1318</td>
<td>0,7442</td>
<td>1,7786</td>
</tr>
<tr>
<td>Afrique</td>
<td>13</td>
<td>0,9721</td>
<td>0,7958</td>
<td>1,4686</td>
</tr>
<tr>
<td>Amérique du nord</td>
<td>3</td>
<td>1,3195</td>
<td>0,9725</td>
<td>1,3781</td>
</tr>
<tr>
<td>Amérique du sud</td>
<td>8</td>
<td>0,99</td>
<td>0,8967</td>
<td>1,1341</td>
</tr>
<tr>
<td>Asie</td>
<td>23</td>
<td>1,137</td>
<td>0,8000</td>
<td>1,7786</td>
</tr>
<tr>
<td>Europe</td>
<td>20</td>
<td>1,305</td>
<td>0,9082</td>
<td>1,7370</td>
</tr>
<tr>
<td>Australie</td>
<td>1</td>
<td>1,258</td>
<td>1,258</td>
<td>1,258</td>
</tr>
</tbody>
</table>

Fig. 5.6 – Tableau 2 : Exposant de Pareto par continent en moyenne
ANNEXE 3 : Sources

<table>
<thead>
<tr>
<th>Variables</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECHEL</td>
<td>Pratten (1988), UNIDO 2005</td>
</tr>
<tr>
<td>DENSITE</td>
<td>World Development Indicators 2005, International Road Federation, 2003</td>
</tr>
<tr>
<td>INDUSTOT</td>
<td>World Development Indicators 2005</td>
</tr>
<tr>
<td>OUVERT</td>
<td>World Development Indicators 2005</td>
</tr>
<tr>
<td>CONGESTION</td>
<td>World Development Indicators 2005, International Road Federation, 2003</td>
</tr>
<tr>
<td>PIBPT</td>
<td>World Development Indicators 2005</td>
</tr>
<tr>
<td>SUPERFICIE</td>
<td>World Development Indicators 2005</td>
</tr>
<tr>
<td>POP</td>
<td>World Development Indicators 2005</td>
</tr>
<tr>
<td>GOVDEP</td>
<td>World Development Indicators 2005</td>
</tr>
<tr>
<td>NOUVPAYS</td>
<td>Gallup, Sachs et Mellinger (1999)</td>
</tr>
<tr>
<td>GUERR</td>
<td>Gallup, Sachs et Mellinger (1999)</td>
</tr>
<tr>
<td>GASTIL</td>
<td>Gallup, Sachs et Mellinger (1999)</td>
</tr>
</tbody>
</table>
ANNEXE 4 : Modèle d’économie géographique : modèle à trois régions (algorithme de simulation avec GAMS)

<table>
<thead>
<tr>
<th>Sets</th>
<th>scen</th>
<th>/1*99/</th>
</tr>
</thead>
<tbody>
<tr>
<td>labels</td>
<td>/"Salaire réel"/</td>
<td></td>
</tr>
</tbody>
</table>

SCALARS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMV</td>
<td>Dotation en main d’oeuvre de la région 1</td>
<td>0.0</td>
</tr>
<tr>
<td>sigma</td>
<td>Taux de substitution</td>
<td>1/1</td>
</tr>
<tr>
<td>T</td>
<td>Coût de transport intra-national</td>
<td>1.55</td>
</tr>
<tr>
<td>rhoVM</td>
<td>Coût d'exportation de V vers M</td>
<td>1/1</td>
</tr>
<tr>
<td>rhoPM</td>
<td>Coût d'exportation de P vers M</td>
<td>1/1</td>
</tr>
<tr>
<td>rhoMV</td>
<td>Coût d'importation de M vers V</td>
<td>1.85</td>
</tr>
<tr>
<td>rhoMP</td>
<td>Coût d'importation de M vers P</td>
<td>1.85</td>
</tr>
<tr>
<td>ZM</td>
<td>Dotation en main d'oeuvre du reste du monde</td>
<td>1/10</td>
</tr>
<tr>
<td>gamma</td>
<td>Rente spatiale</td>
<td>0.2/1</td>
</tr>
<tr>
<td>step</td>
<td>Étape de la dotation en travail de la région V</td>
<td>0.01</td>
</tr>
</tbody>
</table>

PARAMETERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigma;</td>
<td></td>
</tr>
</tbody>
</table>

VALEURS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YY</td>
<td>Revenu en V</td>
</tr>
<tr>
<td>YP</td>
<td>Revenu en P</td>
</tr>
<tr>
<td>WV</td>
<td>Salaire Nominal en V</td>
</tr>
<tr>
<td>WP</td>
<td>Salaire nominal en P</td>
</tr>
<tr>
<td>GINDM</td>
<td>Indice des prix en M</td>
</tr>
<tr>
<td>GINDV</td>
<td>Indice des prix en V</td>
</tr>
<tr>
<td>GINDP</td>
<td>Indice des prix en P</td>
</tr>
<tr>
<td>WR</td>
<td>Taux de salaire réel relatif</td>
</tr>
<tr>
<td>PSI</td>
<td>Variable d’aide qui définit solution</td>
</tr>
<tr>
<td>REPORT(SCEN, LABELS)</td>
<td></td>
</tr>
<tr>
<td>BUT</td>
<td>Variable d’aide qui définit solution</td>
</tr>
</tbody>
</table>

POSITIVE VARIABLES

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YY, YP, WV, WP, GINDM, GINDV, GINDP;</td>
<td></td>
</tr>
</tbody>
</table>

EQUATIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTE Q</td>
<td>Objectif function</td>
</tr>
</tbody>
</table>

YVV

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YVV ..</td>
<td>YVV = E = LAMV * WV;</td>
</tr>
<tr>
<td>YPP ..</td>
<td>YPP = E = (1-LAMV) * WP;</td>
</tr>
<tr>
<td>GINDM ..</td>
<td>GINDM = E = (ZM + LAMV * ((rhoVM * WV)(1-sigma)) + (1-LAMV) * ((rhoPM * WP)(1-sigma)))**((1/1-sigma));</td>
</tr>
<tr>
<td>GINDV ..</td>
<td>GINDV = E = (ZM * rhoMV**((1-sigma)) + LAMV * (WV**((1-sigma)) + (1-LAMV) * ((T * WP)(1-sigma))((1/1-sigma));</td>
</tr>
<tr>
<td>GINDP ..</td>
<td>GINDP = E = (ZM * rhoPM**((1-sigma)) + LAMV * ((T * WV)((1-sigma)) + (1-LAMV) * ((WP)(1-sigma))**((1/1-sigma));</td>
</tr>
<tr>
<td>WVV ..</td>
<td>WVV = E = (ZM * rhoVM**((1-sigma)) * GINDM**((sigma-1)) + YV * (GINDV**((sigma-1)) + YP * (T**((1-sigma))((sigma-1)) * (GINDP((sigma-1))**((1/1-sigma));</td>
</tr>
<tr>
<td>WRR ..</td>
<td>WRR = E = (WVV**((1-gamma) * LAMV) / GINDV) / (WP**((1-gamma) * LAMV) / GINDP);</td>
</tr>
<tr>
<td>BUTE Q ..</td>
<td>BUTE Q = 100 - 100 * PSI;</td>
</tr>
</tbody>
</table>
ANNEXE 4 (suite)

\[
PSI = E WP - (ZM * (\rho PM ** (1 - \sigma) \rho P M) * (GIN D M ** (\sigma - 1)) + Y V * (T ** (1 - \sigma)) \rho P M) * (GIN D V ** (\sigma - 1)) + Y P * (GIN D P ** (\sigma - 1))) ** (1/\sigma);
\]

* Lower bound on endogenous variables

\[
WV_{lo} = 1;
WP_{lo} = 1;
PSI_{lo} = 0.00001;
\]

\[
GINDM_{lo} = 0.001;
GINDV_{lo} = 0.001;
\]

\[
YV_{lo} = 0.001;
YP_{lo} = 0.001;
\]

* Solution options

\[
option iterlim = 99990;
option reallim = 99999;
option solprint = off;
option limrow = 0;
option limcol = 0;
model geo /all/;
\]

** SOLUTION OF MODEL **

\[
loop (SCEN, LAMV = LAMV + step$(ord(SCEN) gt 1);
solve geo maximizing BUT using NLP;
\]

\[
file REPORTFILE /c:yessine geo1.txt/;
put REPORTFILE;
REPORTFILE.lo = 0;
REPORTFILE.ad = 5;
REPORTFILE.pw = 999;
\]

\[
loop (labels, put 'lambda_{V}:', 10;
put labels.ii:10 : put /
loop(SCEN, put (LAMV-step$(card(SCEN)-ord(SCEN))):8;
put REPORT.1(SCEN,labels):10:5;
put /;
);
\]

** Fig. 5.8 – **
Bibliographie

Artur, B., (1990), "Silicon Valley locational clusters : when do increasing returns imply monopoly, Mathématical social Sciences, 19(3).

Auerbach F (1913) "Does Gesetz der Bevölkerungskonzentration" Regional Science and Urban Economics, 31, pp 601-615.

Baumont, C (1999) "Les tests économétriques des modèles urbains multicentriques"
13 Working paper, LATEC (Laboratoire d’Analyse Techniques Economiques).

Benko, Georges et Alain Lipietz (2000), "La richesse des regions. La nouvelle géographie socio-économique", Paris, PUF.

Broersma, L et Van Dijk, J (2007) "The effect of congestion and agglomeration on multifactor productivity growth in Dutch regions" Journal of Economic Geography,

Dollar, D., Kraay, A (2001) "Growth is good for the poor", Working Paper N 2587,

Graham, S. et S.Marvin (1996), "Telecommunications and the City", Routledge : Lon-

Henderson J.V (2000), «The effects of urban concentration on economic growth »,

études urbaines et régionales", en ligne : http://www.inrs.ucs.quebec.ca/cours/lemelin/EUR8213/in
Losch A. (1940) The economics of location, New Haven, Yale University Press).
Markusen, A (2002), "Targeting Occupations in Regional and Community Economic Development," working paper 248, Project on Regional and Industrial Economics, University of Minnesota : Minneapolis

Michael W. M. Roos(2005) "How important is geography for agglomeration?", Journal of Economic Geography, 5 p. 605-620

Rivera-Batiz F. (1988) "Increasing Returns, Monopolistic Competition, and Agglom-

Table des matières

Introduction générale 2

I La Nouvelle Économie Géographique (NEG) : fondements et outils d’analyse 9

<table>
<thead>
<tr>
<th>1 Les fondements microéconomiques de l’agglomération 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Les économies d’agglomération statiques 12</td>
</tr>
<tr>
<td>1.2 Les économies d’agglomération dynamiques 17</td>
</tr>
<tr>
<td>1.3 Mesure des économies d’agglomération 19</td>
</tr>
<tr>
<td>2 Les mécanismes de concentration spatiale en économie géographique 20</td>
</tr>
<tr>
<td>2.1 Choix de localisation et agglomérations : équilibre du producteur 22</td>
</tr>
<tr>
<td>2.2 Caractéristiques locales et avantages de localisation 25</td>
</tr>
<tr>
<td>2.3 Mécanisme de causalité cumulative et/ou circulaire 27</td>
</tr>
<tr>
<td>2.4 Tension entre forces centripètes et forces centrifuges 29</td>
</tr>
<tr>
<td>3 Les modèles de la "NEG" : résultats antagonistes ou complémentaires ? 37</td>
</tr>
<tr>
<td>3.1 Modèles de biens différenciés 38</td>
</tr>
<tr>
<td>3.2 Modèles de biens homogènes 39</td>
</tr>
<tr>
<td>3.3 Intégrations économiques et polarisation 40</td>
</tr>
</tbody>
</table>
Table des matières

4 Croissance et localisation ... 43
 4.1 Mouvement des capitaux et interaction entre croissance et localisation 45
 4.2 Sources de croissance endogène d’une agglomération 46
5 Mise à l’épreuve de la pertinence de la Nouvelle Géographie Économique :
 la structure du salaire spatial .. 49
6 Conclusion: ... 51

2 Structure du modèle central en Economie Géographique : Concurrence monopolistique et équilibre spatial 53

 Introduction ... 53
1 De la concurrence parfaite à la concurrence monopolistique: 54
 1.1 Théorème d’impossibilité spatiale: 54
 1.2 Economie d’échelle et concurrence monopolistique 56
2 Modèle central d’économie géographique 59
 2.1 Concurrence monopolistique :Dixit-Stiglitz 60
3 Configuration Centre - Périphérie : une approche par la concurrence monopolistique ... 72
 3.1 Le modèle Centre-périphérie KRUGMAN 1991 73
4 Résultats provisoires et reformulations du modèle de Krugman (1991) ... 86
 4.1 Immobilité de la main d’oeuvre et consommation intermédiaire-
 Krugman & Venables (1995) ... 88
 4.2 L’importance de l’amélioration des infrastructures publiques sur la
 localisation des entreprises .. 94
 4.3 Politiques commerciales et industrialisation régionale 96
5 Conclusion ... 99
II Processus d’ouverture internationale et inégalité spatiale 101

3 Intégration régionale : polarisation ou dispersion de l’activité économique ? 104

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>104</td>
</tr>
<tr>
<td>1 Baisse des coûts de transport et maintien des inégalités</td>
<td>105</td>
</tr>
<tr>
<td>2 Ouverture et inégalité au sein des PVD</td>
<td>107</td>
</tr>
<tr>
<td>2.1 L’expérience des pays du sud et de l’est de la méditerranée (PSEM)</td>
<td>109</td>
</tr>
<tr>
<td>2.2 Ouverture endogène et processus de développement</td>
<td>114</td>
</tr>
<tr>
<td>2.3 Ouverture exogène</td>
<td>116</td>
</tr>
<tr>
<td>2.4 Ouverture commerciale et concurrence des territoires</td>
<td>117</td>
</tr>
<tr>
<td>3 Intégration régionale et convergence</td>
<td>119</td>
</tr>
<tr>
<td>4 Le modèle</td>
<td>123</td>
</tr>
<tr>
<td>4.1 Coût de déplacement</td>
<td>124</td>
</tr>
<tr>
<td>4.2 Détermination des équilibres</td>
<td>127</td>
</tr>
<tr>
<td>4.3 Forces centrifuges et forces centripètes</td>
<td>130</td>
</tr>
<tr>
<td>4.4 Equilibres et simulations</td>
<td>131</td>
</tr>
<tr>
<td>5 Processus de libéralisation commerciale</td>
<td>134</td>
</tr>
<tr>
<td>5.1 Sans barrières tarifaires à l’exportation : $\rho_e = 1$</td>
<td>134</td>
</tr>
<tr>
<td>5.2 Avec barrières tarifaires à l’exportation $\rho_e > 1$</td>
<td>139</td>
</tr>
<tr>
<td>5.3 Régions centrale-périphérique et coûts de transports</td>
<td>142</td>
</tr>
<tr>
<td>6 Conclusion</td>
<td>148</td>
</tr>
</tbody>
</table>

4 Équilibre spatial et congestion en économie ouverte 150

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>150</td>
</tr>
<tr>
<td>1 Intégration régionale et relocalisation productive</td>
<td>151</td>
</tr>
<tr>
<td>1.1 Deux localisations avec mobilité du travail</td>
<td>152</td>
</tr>
<tr>
<td>1.2 Considération des coûts urbains</td>
<td>153</td>
</tr>
</tbody>
</table>
Table des matières

<table>
<thead>
<tr>
<th>Numéro</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>Economie à deux localisations avec immobilité du travail</td>
<td>154</td>
</tr>
<tr>
<td>1.4</td>
<td>Coûts ruraux versus coût urbains</td>
<td>154</td>
</tr>
<tr>
<td>1.5</td>
<td>Coût de transport à rendement croissant</td>
<td>155</td>
</tr>
<tr>
<td>1.6</td>
<td>Récapitulatif des résultats</td>
<td>156</td>
</tr>
<tr>
<td>2</td>
<td>Le modèle</td>
<td>157</td>
</tr>
<tr>
<td>2.1</td>
<td>Congestion : force centrifuge additionnelle</td>
<td>158</td>
</tr>
<tr>
<td>2.2</td>
<td>Fixation des prix et profit</td>
<td>160</td>
</tr>
<tr>
<td>2.3</td>
<td>Congestion et bien-être régional</td>
<td>162</td>
</tr>
<tr>
<td>2.4</td>
<td>Congestion dans un monde à trois régions</td>
<td>164</td>
</tr>
<tr>
<td>2.5</td>
<td>Ouverture commerciale et baisse des coûts de transport</td>
<td>169</td>
</tr>
<tr>
<td>2.6</td>
<td>Economie industrialisée et inégalité des villes</td>
<td>172</td>
</tr>
<tr>
<td>3</td>
<td>Analyse du bien-être</td>
<td>174</td>
</tr>
<tr>
<td>4</td>
<td>Conclusion</td>
<td>178</td>
</tr>
<tr>
<td>5</td>
<td>Economie géographique et évolution des hiérarchies urbaines : la loi rang-taille</td>
<td>180</td>
</tr>
<tr>
<td>Introduction</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Système urbain et loi de Zipf</td>
<td>181</td>
</tr>
<tr>
<td>1.1</td>
<td>Les approches de la croissance urbaine</td>
<td>181</td>
</tr>
<tr>
<td>1.2</td>
<td>Localisation multiples et congestion : distribution rang-taille</td>
<td>183</td>
</tr>
<tr>
<td>2</td>
<td>La loi de Zipf : définition, données, et estimation</td>
<td>186</td>
</tr>
<tr>
<td>2.1</td>
<td>Validation empirique de la loi rang-taille</td>
<td>188</td>
</tr>
<tr>
<td>3</td>
<td>Variation du coefficient de Pareto et NEG</td>
<td>195</td>
</tr>
<tr>
<td>3.1</td>
<td>Spécification du modèle</td>
<td>196</td>
</tr>
<tr>
<td>3.2</td>
<td>Méthode d’estimation</td>
<td>198</td>
</tr>
<tr>
<td>Table des matières</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Résultats : estimation du panel de l’équation (5.4) (variable dépendante = coefficient MCO)</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>4 Conclusion</td>
<td>202</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion Générale
204

Annexes
214

Bibliographie
224