T. Kong and A. Rosenfeld, Digital topology: Introduction and survey, Computer Vision, Graphics, and Image Processing, vol.48, issue.3, pp.357-393, 1989.
DOI : 10.1016/0734-189X(89)90147-3

T. Pavlidis, Structural Pattern Recognition, pp.90-123, 1977.
DOI : 10.1007/978-3-642-88304-0

S. Beucher and C. , Use of watersheds in contour detection, in: procs. Int Workshop on Image Processing Real-Time Edge and Motion Detection/Estimation, 1979.

L. Vincent and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.6, pp.583-598, 1991.
DOI : 10.1109/34.87344

F. Meyer, Un algorithme optimal de ligne de partage des eaux, Actes du 8` eme Congrès AFCET, pp.847-859, 1991.

S. Beucher and F. Meyer, The morphological approach to segmentation: the watershed transformation, Mathematical Morphology in Image Processing, pp.443-481, 1993.

M. Couprie and G. Bertrand, Topological grayscale watershed transform, SPIE Vision Geometry V Proceedings, pp.136-146, 1997.

P. Jasiobedzki, C. Taylor, and J. Brunt, Automated analysis of retinal images, Image and Vision Computing, vol.11, issue.3, pp.139-144, 1993.
DOI : 10.1016/0262-8856(93)90052-I

K. Haris, S. N. Efstratiadis, N. Maglaveras, and A. K. Katsaggelos, Hybrid image segmentation using watersheds and fast region merging, IEEE Transactions on Image Processing, vol.7, issue.12, pp.1684-1699, 1998.
DOI : 10.1109/83.730380

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.8622

A. Bleau and L. Leon, Watershed-based segmentation and region merging, Comp. Vision and Image Und, pp.317-370, 2000.
DOI : 10.1006/cviu.1999.0822

S. Beucher, Watershed, Hierarchical Segmentation and Waterfall Algorithm, Mathematical Morphology and its Applications to Image Processing, pp.69-76, 1994.
DOI : 10.1007/978-94-011-1040-2_10

F. Meyer, The Dynamics of Minima and Contours, Mathematical Morphology and its Application to Image and Signal Processing, pp.329-336, 1996.
DOI : 10.1007/978-1-4613-0469-2_38

L. Najman and M. Schmitt, Geodesic saliency of watershed contours and hierarchical segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.12, pp.1163-1173, 1996.
DOI : 10.1109/34.546254

URL : https://hal.archives-ouvertes.fr/hal-00622128

G. Bertrand, On Topological Watersheds, Journal of Mathematical Imaging and Vision, vol.34, issue.6, pp.217-230, 2005.
DOI : 10.1007/s10851-005-4891-5

URL : https://hal.archives-ouvertes.fr/hal-00622398

M. Couprie, L. Najman, and G. Bertrand, Quasi-Linear Algorithms for the Topological Watershed, Journal of Mathematical Imaging and Vision, vol.13, issue.6, pp.231-249, 2005.
DOI : 10.1007/s10851-005-4892-4

URL : https://hal.archives-ouvertes.fr/hal-00622399

L. Najman, M. Couprie, and G. Bertrand, Watersheds, mosaics, and the emergence paradigm, Discrete Applied Mathematics, vol.147, issue.2-3, pp.301-324, 2005.
DOI : 10.1016/j.dam.2004.09.017

URL : https://hal.archives-ouvertes.fr/hal-00622113

J. Cousty, G. Bertrand, M. Couprie, and L. Najman, Fusion Graphs, Region Merging and Watersheds, Procs. of the 13th International Conference on Discrete Geometry for Computer Imagery, pp.343-354, 2006.
DOI : 10.1007/11907350_29

URL : https://hal.archives-ouvertes.fr/hal-00622035

J. Cousty, G. Bertrand, M. Couprie, and L. Najman, Fusion Graphs: Merging Properties and Watersheds, Also in technical report IGM2005-04, 2005.
DOI : 10.1007/s10851-007-0047-0

URL : https://hal.archives-ouvertes.fr/hal-00622473

J. Cousty, M. Couprie, L. Najman, and G. Bertrand, Grayscale Watersheds on Perfect Fusion Graphs, Procs. of the 11th International Workshop on Combinatorial Image Analysis, pp.60-73, 2006.
DOI : 10.1007/11774938_6

URL : https://hal.archives-ouvertes.fr/hal-00622038

G. Bertrand, On the dynamics, Image and Vision Computing, vol.25, issue.4, pp.447-454, 2007.
DOI : 10.1016/j.imavis.2006.04.017

URL : https://hal.archives-ouvertes.fr/hal-00621988

A. Rosenfeld, The fuzzy geometry of image subsets, Pattern Recognition Letters, vol.2, issue.5, pp.311-317, 1984.
DOI : 10.1016/0167-8655(84)90018-7

F. Meyer, Minimum Spanning Forests for Morphological Segmentation, Procs. of the second international conference on Mathematical Morphology and its Applications to Image Processing, pp.77-84, 1994.
DOI : 10.1007/978-94-011-1040-2_11

J. K. Udupa and S. Samarsekara, Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation, Graphical Models and Image Processing, vol.58, issue.3, pp.246-261, 1996.
DOI : 10.1006/gmip.1996.0021

A. X. Falcão, J. Stolfi, R. De-alencar, and . Lotufo, The image foresting transform: theory, algorithms, and applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.1, pp.19-29, 2004.
DOI : 10.1109/TPAMI.2004.1261076

J. Cousty, G. Bertrand, L. Najman, M. Couprie, J. Cousty et al., Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle, Procs. of the 8th International Symposium on Mathematical Morphology, 2007.
DOI : 10.1109/TPAMI.2008.173

URL : https://hal.archives-ouvertes.fr/hal-00622410

L. Najman and M. Couprie, Building the Component Tree in Quasi-Linear Time, IEEE Transactions on Image Processing, vol.15, issue.11, pp.3531-3539, 2006.
DOI : 10.1109/TIP.2006.877518

URL : https://hal.archives-ouvertes.fr/hal-00622110

J. Maxwell, On Hills and Dales, Philosophical Magazine, vol.440, pp.421-427, 1870.
DOI : 10.1017/CBO9780511710377.018

C. Jordan, Nouvelles observations sur les lignes de fa??tesfa??tes et de thalweg, Comptes Rendus des Séances de l'Académie des Sciences, pp.1023-1025, 1872.

S. Beucher and C. , Use of watersheds in contour detection, Procs. of the International Workshop on Image Processing Real-Time Edge and Motion Detection/Estimation, 1979.

F. Meyer, Un algorithme optimal de ligne de partage des eaux, Procs. of 8` eme Congrès AFCET, pp.847-859, 1991.

L. Vincent and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.6, pp.583-598, 1991.
DOI : 10.1109/34.87344

S. Beucher and F. Meyer, The morphological approach to segmentation: the watershed transformation, Mathematical Morphology in Image Processing, pp.443-481, 1993.

M. Couprie and G. Bertrand, Topological grayscale watershed transform, Procs. of SPIE Vision Geometry V, pp.136-146, 1997.

G. Bertrand, On Topological Watersheds, Journal of Mathematical Imaging and Vision, vol.34, issue.6, pp.217-230, 2005.
DOI : 10.1007/s10851-005-4891-5

URL : https://hal.archives-ouvertes.fr/hal-00622398

M. Couprie, L. Najman, and G. Bertrand, Quasi-Linear Algorithms for the Topological Watershed, Journal of Mathematical Imaging and Vision, vol.13, issue.6, pp.231-249, 2005.
DOI : 10.1007/s10851-005-4892-4

URL : https://hal.archives-ouvertes.fr/hal-00622399

L. Najman, M. Couprie, and G. Bertrand, Watersheds, mosaics, and the emergence paradigm, Discrete Applied Mathematics, vol.147, issue.2-3, pp.301-324, 2005.
DOI : 10.1016/j.dam.2004.09.017

URL : https://hal.archives-ouvertes.fr/hal-00622113

F. Meyer, Minimum Spanning Forests for Morphological Segmentation, Procs. of the second international conference on Mathematical Morphology and its Applications to Image Processing, pp.77-84, 1994.
DOI : 10.1007/978-94-011-1040-2_11

A. X. Falcão, J. Stolfi, R. De-alencar, and . Lotufo, The image foresting transform: theory, algorithms, and applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.1, pp.19-29, 2004.
DOI : 10.1109/TPAMI.2004.1261076

R. Lotufo and A. Falcão, The Ordered Queue and the Optimality of the Watershed Approaches, Procs. of the 5th International Symposium on Mathematical Morphology, pp.341-350, 2000.
DOI : 10.1007/0-306-47025-X_37

J. K. Udupa and S. Samarsekara, Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation, Graphical Models and Image Processing, vol.58, issue.3, pp.246-261, 1996.
DOI : 10.1006/gmip.1996.0021

P. K. Saha and J. K. Udupa, Relative Fuzzy Connectedness among Multiple Objects: Theory, Algorithms, and Applications in Image Segmentation, Computer Vision and Image Understanding, vol.82, issue.1, pp.42-56, 2001.
DOI : 10.1006/cviu.2000.0902

T. Kong and A. Rosenfeld, Digital topology: Introduction and survey, Computer Vision, Graphics, and Image Processing, vol.48, issue.3, pp.357-393, 1989.
DOI : 10.1016/0734-189X(89)90147-3

F. Meyer, Topographic distance and watershed lines, Signal Processing, vol.38, issue.1, pp.113-125, 1993.
DOI : 10.1016/0165-1684(94)90060-4

L. Najman and M. Schmitt, Watershed of a continuous function, Signal Processing, vol.38, issue.1, pp.68-86, 1993.
DOI : 10.1016/0165-1684(94)90059-0

URL : https://hal.archives-ouvertes.fr/hal-00622129

P. Soille and C. Gratin, An Efficient Algorithm for Drainage Network Extraction on DEMs, Journal of Visual Communication and Image Representation, vol.5, issue.2, pp.181-189, 1994.
DOI : 10.1006/jvci.1994.1017

J. B. Roerdink and A. Meijster, The watershed transform: Definitions, algorithms and parallelization strategies, Fundamenta Informaticae, vol.41, issue.12, pp.187-228, 2001.

J. Cousty, G. Bertrand, L. Najman, and M. Couprie, The drop of water principle: comparison of classical watershed algorithms

J. Nesetril, E. Milková, and H. Nesetrilová, Otakar Bor??vka on minimum spanning tree problem Translation of both the 1926 papers, comments, history, Discrete Mathematics, vol.233, issue.1-3, pp.3-36, 2001.
DOI : 10.1016/S0012-365X(00)00224-7

R. Prim, Shortest connection networks and some generalizations, Bell Syst, Tech. J, vol.36, pp.1389-1401, 1957.
DOI : 10.1002/j.1538-7305.1957.tb01515.x

R. L. Graham and P. Hell, On the History of the Minimum Spanning Tree Problem, IEEE Annals of the History of Computing, vol.7, issue.1, pp.43-57, 1985.
DOI : 10.1109/MAHC.1985.10011

C. Zahn, Graph-theoretical methods for detecting and descibing gestalt clusters, IEEE Transactions on Computers C, vol.20, issue.1, pp.99-112, 1971.

T. H. Cormen, C. Leiserson, and R. Rivest, Introduction to algorithms, 2001.

B. Chazelle, A minimum spanning tree algorithm with inverse-Ackermann type complexity, Journal of the ACM, vol.47, issue.6, pp.1028-1047, 2000.
DOI : 10.1145/355541.355562

A. N. Moga, T. Viero, M. Gabbouj, M. Nölle, G. Schreiber et al., Parallel watershed algorithm based on sequential scanning, Procs. of IEEE Workshop on Nonlinear Signal and Image Processing, p.31, 1995.

J. Cousty, M. Couprie, L. Najman, and G. Bertrand, Grayscale Watersheds on Perfect Fusion Graphs, Procs. of the 11th International Workshop on Combinatorial Image Analysis, pp.60-73, 2006.
DOI : 10.1007/11774938_6

URL : https://hal.archives-ouvertes.fr/hal-00622038

R. Audigier and R. A. Lotufo, Duality between the Watershed by Image Foresting Transform and the Fuzzy Connectedness Segmentation Approaches, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing, pp.53-60, 2006.
DOI : 10.1109/SIBGRAPI.2006.14

G. Bertrand, On the dynamics, Image and Vision Computing to appear

A. Rosenfeld, On connectivity properties of grayscale pictures, Pattern Recognition, vol.16, issue.1, pp.47-50, 1983.
DOI : 10.1016/0031-3203(83)90007-9

J. K. Udupa, P. K. Saha, and R. A. Lotufo, Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.11, pp.1485-1500, 2002.
DOI : 10.1109/TPAMI.2002.1046162

J. Cousty, G. Bertrand, M. Couprie, and L. Najman, Fusion graphs: merging properties and watershed, submitted. Also in technical report, pp.2005-2009, 2006.
DOI : 10.1007/s10851-007-0047-0

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.219.1082

J. Cousty, G. Bertrand, M. Couprie, and L. Najman, Fusion Graphs, Region Merging and Watersheds, Procs. of the 13th International Conference on Discrete Geometry for Computer Imagery, pp.343-354, 2006.
DOI : 10.1007/11907350_29

URL : https://hal.archives-ouvertes.fr/hal-00622035

P. K. Saha, J. K. Udupa, and D. Odhner, Scale-Based Fuzzy Connected Image Segmentation: Theory, Algorithms, and Validation, Computer Vision and Image Understanding, vol.77, issue.2, pp.145-174, 2000.
DOI : 10.1006/cviu.1999.0813

Y. Zhuge, J. K. Udupa, and P. K. Saha, Vectorial scale-based fuzzy-connected image segmentation, Computer Vision and Image Understanding, vol.101, issue.3, pp.177-193, 2006.
DOI : 10.1016/j.cviu.2005.07.009

R. Deriche, Using Canny's criteria to derive a recursively implemented optimal edge detector, International Journal of Computer Vision, vol.1, issue.2, pp.167-187, 1987.
DOI : 10.1007/BF00123164

J. Serra and L. Vincent, An overview of morphological filtering, Circuits Systems Signal Process, vol.11, issue.1, pp.48-107, 1992.

E. Breen and R. Jones, Attribute Openings, Thinnings, and Granulometries, Computer Vision and Image Understanding, vol.64, issue.3, pp.377-389, 1996.
DOI : 10.1006/cviu.1996.0066

L. Najman and M. Couprie, Building the Component Tree in Quasi-Linear Time, IEEE Transactions on Image Processing, vol.15, issue.11, pp.3531-3539, 2006.
DOI : 10.1109/TIP.2006.877518

URL : https://hal.archives-ouvertes.fr/hal-00622110

P. Soille, Morphological Image Analysis, p.32, 1999.

J. Cousty, L. Najman, G. Bertrand, and M. Couprie, Minimum spanning tree by watershed in preparation

L. Najman and M. Schmitt, Geodesic saliency of watershed contours and hierarchical segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.12, pp.1163-1173, 1996.
DOI : 10.1109/34.546254

URL : https://hal.archives-ouvertes.fr/hal-00622128

P. Proof, We will prove that for any point x 0 in V , there exists in X a path from x 0 to M (F ) which is a path with steepest descent for F . Thus, by Lem. 9, this will establish the first part of Prop. 13. From Lem. 9, it may be seen that there exists in X an M-path (for H), denoted by ? = x 0 , . . . , x l , which is a path with steepest descent for H. By Lem. 42.ii, ? is a path with steepest descent for F . Since x l is a vertex of M (H), by Lem. 42.i, there exists in M (H) a path ? = x l , . . . , x m from x l to M (F ) which is a path with steepest descent for F . Since X is an extension of, M (H) ? X. Hence, ? is a path in X. Moreover, p.38

P. T. Buser, W. Auffermann, W. W. Holt, S. Wagner, B. Kircher et al., Noninvasive evaluation of global left ventricular function with use of cine nuclear magnetic resonance, Journal of the American College of Cardiology, vol.13, issue.6, pp.1294-1300, 1989.
DOI : 10.1016/0735-1097(89)90304-5

L. Najman, J. Cousty, M. Couprie, H. Talbot, S. Clément-guinaudeau et al., An open, clinically-validated database of 3D+t cine- MR images of the left ventricle with associated manual and automated segmentations, Insight JournalSpecial, 2007.

T. Mcinerney and D. Terzopoulos, A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis, Computerized Medical Imaging and Graphics, vol.19, issue.1, pp.69-83, 1995.
DOI : 10.1016/0895-6111(94)00040-9

R. J. Van-der-geest, V. G. Buller, E. Jansen, H. J. Lamb, L. H. Baur et al., Comparison Between Manual and Semiautomated Analysis of Left Ventricular Volume Parameters from Short-Axis MR Images, Journal of Computer Assisted Tomography, vol.21, issue.5, pp.756-765, 1997.
DOI : 10.1097/00004728-199709000-00019

S. C. Mitchell, B. P. Lelieveldt, R. J. Van-der-geest, H. G. Bosch, J. H. Reiber et al., Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images, IEEE Transactions on Medical Imaging, vol.20, issue.5, pp.415-423, 1997.
DOI : 10.1109/42.925294

M. R. Kaus, J. Von-berg, J. Weese, W. Niessen, and V. Pekar, Automated segmentation of the left ventricle in cardiac MRI, Medical Image Analysis, vol.8, issue.3, pp.245-254, 2004.
DOI : 10.1016/j.media.2004.06.015

J. Lötjönen, S. Kivistö, J. Koikkalainen, D. Smutek, and K. Lauerma, Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images, Medical Image Analysis, vol.8, issue.3, pp.371-386, 2004.
DOI : 10.1016/j.media.2004.06.013

H. Van-assen, M. G. Danilouchkine, A. F. Frangi, S. Ordàs, J. J. Westenberg et al., SPASM: A 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data, Medical Image Analysis, vol.10, issue.2, pp.286-303, 2006.
DOI : 10.1016/j.media.2005.12.001

R. Van-der-geest, B. Lelieveldt, E. Angelié, M. Danilouchkine, C. Swingen et al., Evaluation of a New Method for Automated Detection of Left Ventricular Boundaries in Time Series of Magnetic Resonance Images Using an Active Appearance Motion Model, Journal of Cardiovascular Magnetic Resonance, vol.6, issue.3, pp.609-617, 2004.
DOI : 10.1081/JCMR-120038082

M. ¨. Uzümcü, R. Van-der-geest, C. Swingen, J. Reiber, and B. Lelieveldt, Time continuous tracking and segmentation of cardiovascular magnetic resonance images using multidimensional dynamic programming, Investigative Radiology, vol.41, issue.1, pp.52-62, 2006.

J. Berg and C. Lorenz, Multi-surface Cardiac Modelling, Segmentation, and Tracking, Lecture Notes in Computer Science, vol.3504, pp.1-11, 2005.
DOI : 10.1007/11494621_1

K. Fritscher, R. Pilgram, and R. Schubert, Automatic Cardiac 4D Segmentation Using Level Sets, Lecture Notes in Computer Science, vol.3504, pp.113-122, 2005.
DOI : 10.1007/11494621_12

M. Lorenzo-valdés, G. I. Sanchez-ortiz, A. G. Elington, R. H. Mohiaddin, and D. Rueckert, Segmentation of 4D Cardiac MR Images Using a Probabilistic Atlas and the EM Algorithm, Medical Image Analysis, vol.10, pp.286-303, 2006.
DOI : 10.1007/978-3-540-39899-8_55

J. Montagnat and H. Delingette, 4D deformable models with temporal constraints: application to 4D cardiac image segmentation, Medical Image Analysis, vol.9, issue.1, pp.87-100, 2005.
DOI : 10.1016/j.media.2004.06.025

URL : https://hal.archives-ouvertes.fr/hal-00443361

S. Beucher and F. Meyer, The morphological approach to segmentation: the watershed transformation, Mathematical Morphology in Image Processing, pp.443-481, 1993.

P. Soille, Morphological Image Analysis, 1999.

J. Serra, A Lattice Approach to Image Segmentation, Journal of Mathematical Imaging and Vision, vol.2, issue.2, pp.83-130, 2006.
DOI : 10.1007/s10851-005-3616-0

URL : https://hal.archives-ouvertes.fr/hal-00622192

S. Beucher and C. , Use of watershed in contour detection, in: Int. Workshop on Image Processing: Real-time Edge and Motion detection/estimation, 1979.

G. Bertrand, On Topological Watersheds, Journal of Mathematical Imaging and Vision, vol.34, issue.6, pp.217-230, 2005.
DOI : 10.1007/s10851-005-4891-5

URL : https://hal.archives-ouvertes.fr/hal-00622398

M. Couprie, L. Najman, and G. Bertrand, Quasi-Linear Algorithms for the Topological Watershed, Journal of Mathematical Imaging and Vision, vol.13, issue.6, pp.231-249, 2005.
DOI : 10.1007/s10851-005-4892-4

URL : https://hal.archives-ouvertes.fr/hal-00622399

L. Najman, M. Couprie, and G. Bertrand, Watersheds, mosaics, and the emergence paradigm, Discrete Applied Mathematics, vol.147, issue.2-3, pp.301-324, 2005.
DOI : 10.1016/j.dam.2004.09.017

URL : https://hal.archives-ouvertes.fr/hal-00622113

P. E. Danielson, Euclidean distance mapping, Computer Graphics and Image Processing, vol.14, issue.3, pp.227-248, 1980.
DOI : 10.1016/0146-664X(80)90054-4

T. Saito and J. Toriwaki, New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications, Pattern Recognition, vol.27, issue.11, pp.1551-1565, 1994.
DOI : 10.1016/0031-3203(94)90133-3

T. Hirata, A unified linear-time algorithm for computing distance maps, Information Processing Letters, vol.58, issue.3, pp.129-133, 1996.
DOI : 10.1016/0020-0190(96)00049-X

A. Meijster, J. Roerdink, and W. Hesselink, A General Algorithm for Computing Distance Transforms in Linear Time, of Computational Imaging and Vision, pp.331-340, 2000.
DOI : 10.1007/0-306-47025-X_36

G. Bertrand, Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters, vol.15, issue.10, pp.1003-1011, 1994.
DOI : 10.1016/0167-8655(94)90032-9

URL : https://hal.archives-ouvertes.fr/hal-00621999

M. Couprie, D. Coeurjolly, and R. Zrour, Discrete bisector function and Euclidean skeleton in 2D and 3D, Image and Vision Computing, vol.25, issue.10, pp.1543-1556, 2007.
DOI : 10.1016/j.imavis.2006.06.020

URL : https://hal.archives-ouvertes.fr/hal-00180616

M. Couprie, A. V. Saúde, and G. Bertrand, Euclidean homotopic skeleton based on critical kernels, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing, pp.307-314, 2006.
DOI : 10.1109/SIBGRAPI.2006.16

URL : https://hal.archives-ouvertes.fr/hal-00622050

P. Dokládal, I. Bloch, M. Couprie, D. R. Urtasun, and L. Garnero, Topologically controlled segmentation of 3D magnetic resonance images of the head by using morphological operators, Pattern Recognition, vol.36, issue.10, pp.2463-2478, 2003.
DOI : 10.1016/S0031-3203(03)00118-3

N. Passat, C. Ronse, J. Baruthiob, J. Armspachb, and J. Foucherc, Watershed and multimodal data for brain vessel segmentation: Application to the superior sagittal sinus, Image and Vision Computing, vol.25, issue.4, pp.512-521, 2007.
DOI : 10.1016/j.imavis.2006.03.008

J. Cousty, G. Bertrand, L. Najman, and M. Couprie, Watersheds, minimum spanning forests, and the drop of water principle, submitted. Also in technical report IGM2007-01

J. Cousty, G. Bertrand, L. Najman, and M. Couprie, Watershed cuts, International Symposium on Mathematical Morphology, p.8, 2007.
DOI : 10.1007/978-3-540-79126-3_39

URL : https://hal.archives-ouvertes.fr/hal-00622036

J. Cousty, L. Najman, M. Couprie, S. Clément-guinaudeau, T. Goissen et al., Automated, Accurate and Fast Segmentation of 4D Cardiac MR Images, Lecture Notes in Computer Science, vol.4466, pp.474-483, 2007.
DOI : 10.1007/978-3-540-72907-5_48

URL : https://hal.archives-ouvertes.fr/hal-00622242

T. Kong and A. Rosenfeld, Digital topology: Introduction and survey, Computer Vision, Graphics, and Image Processing, vol.48, issue.3, pp.357-393, 1989.
DOI : 10.1016/0734-189X(89)90147-3

M. Couprie and G. Bertrand, Topological grayscale watershed transform, SPIE Vision Geometry V Proceedings, pp.136-146, 1997.

J. Cousty, M. Couprie, L. Najman, and G. Bertrand, Grayscale Watersheds on Perfect Fusion Graphs, Combinatorial Image Analysis Lecture Notes in Computer Science, vol.4040, pp.60-73, 2006.
DOI : 10.1007/11774938_6

URL : https://hal.archives-ouvertes.fr/hal-00622038

N. Aspert, D. Santa-cruz, and T. Ebrahimi, MESH: measuring errors between surfaces using the Hausdorff distance, Proceedings. IEEE International Conference on Multimedia and Expo, pp.705-708, 2002.
DOI : 10.1109/ICME.2002.1035879

X. Daragon, M. Couprie, and G. Bertrand, Discrete Frontiers, Lecture Notes in Computer Science, vol.2886, pp.236-245, 2003.
DOI : 10.1007/978-3-540-39966-7_22

URL : https://hal.archives-ouvertes.fr/hal-00622040

J. Udupa, V. Leblanc, Y. Zhuge, C. Imielinska, H. Schmidt et al., A framework for evaluating image segmentation algorithms, Computerized Medical Imaging and Graphics, vol.30, issue.2, pp.75-87, 2006.
DOI : 10.1016/j.compmedimag.2005.12.001

L. Bonilha, E. Kobayashi, F. Cendes, and L. Min-li, Protocol for volumetric segmentation of medial temporal structures using high-resolution 3-D magnetic resonance imaging, Human Brain Mapping, vol.6, issue.2, pp.145-154, 2004.
DOI : 10.1002/hbm.20023

L. Vincent and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.6, pp.583-598, 1991.
DOI : 10.1109/34.87344

T. H. Cormen, C. Leiserson, and R. Rivest, Introduction to algorithms, 2001.

A. Rosenfeld, Picture Processing by Computer, Berge. Graphes et hypergraphes. Dunod, 1969.
DOI : 10.1145/356551.356554

G. Matheron, Random sets and integral geometry, Segmentation techniques, pp.4-5, 1975.

P. Giblin, Graphs, surfaces and homology, 1981.
DOI : 10.1017/CBO9780511779534

J. Serra, Image Analysis and Mathematical Morphology, 1982.

A. Rosenfeld and A. C. Kak, Digital picture processing, 1982.

J. Serra, Image Analysis and Mathematical Morphology, volume II : Theoretical Advances, 1988.

H. J. Heijmans, Morphological Image Operators Advances in ELECTRONICS and ELECTRON PHYSICS, 1994.

M. Gondran and M. Minoux, Graphes et algorithmes, 1995.

P. Soille, Morphological Image Analysis, 1999.

T. H. Cormen, C. Leiserson, and R. Rivest, Introduction to algorithms, second edition, 2001.

L. Najman and H. Talbot, Morphologie mathématique. IC2 -Information-Commande- Communication Traité en 240 volumes, Hermes Sciences, 2008.

L. W. Beineke, On derived graphs and digraphs, Beiträge zur graphen theorie, pp.17-23, 1968.

G. Bertrand, M. Couprie, J. Cousty, and L. Najman, Morphologie mathématique, chapitre Ligne de partage des eaux dans les espaces discrets. IC2 -Information -Commande - Communication Traité en 240 volumes, Hermes Sciences

J. Cousty, L. Najman, and M. Couprie, Morphologie mathématique, chapitre Segmentation cardiaque spatio-temporelle. IC2 -Information -Commande -Communication Traité en 240 volumes, Hermes Sciences

X. Daragon, Surfaces discrètes etfrontì eres d'objets dans les ordres, Thèse de doctorat, 2005.

J. Maxwell, On Hills and Dales, 23] C. Jordan. Nouvelles observations sur les lignes de fa??tesfa??tes et de thalweg. Comptes Rendus des Séances de l'Académie des Sciences, pp.421-4271023, 1870.
DOI : 10.1017/CBO9780511710377.018

J. Radon, Uber die bestimmung von funktionen durch ihre integralwerte langs gewisser mannigfaltigkeiten En allemand. Voir S. R. Deans : The Radon Transform and Some of Its Application, Ber. Ver. Sächs. Akad. Wiss. Leipzig, Math-Phys. Kl, vol.69, pp.262-277, 1917.
DOI : 10.1090/psapm/027/692055

R. C. Prim, Shortest Connection Networks And Some Generalizations, Bell System Technical Journal, vol.36, issue.6, pp.1389-1401, 1957.
DOI : 10.1002/j.1538-7305.1957.tb01515.x

C. R. Brice and C. L. Fenema, Scene analysis using regions, Artificial Intelligence, vol.1, issue.3-4, pp.205-226, 1970.
DOI : 10.1016/0004-3702(70)90008-1

C. T. Zahn, Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters, IEEE Transactions on Computers, vol.20, issue.1, pp.99-112, 1971.
DOI : 10.1109/T-C.1971.223083

G. N. Hounsfield, Computerized transverse axial scanning (tomography): Part 1. Description of system, The British Journal of Radiology, vol.46, issue.552, pp.1016-1022, 1973.
DOI : 10.1259/0007-1285-46-552-1016

R. E. Tarjan, Efficiency of a Good But Not Linear Set Union Algorithm, Journal of the ACM, vol.22, issue.2, pp.215-225, 1975.
DOI : 10.1145/321879.321884

S. L. Horowitz and T. Pavlidis, Picture Segmentation by a Tree Traversal Algorithm, Journal of the ACM, vol.23, issue.2, pp.368-388, 1976.
DOI : 10.1145/321941.321956

R. Ohlander, K. Price, and D. R. Reddy, Picture segmentation using a recursive region splitting method, Computer Graphics and Image Processing, vol.8, issue.3, pp.313-333, 1978.
DOI : 10.1016/0146-664X(78)90060-6

A. Rosenfeld, On connectivity properties of grayscale pictures, Pattern Recognition, vol.16, issue.1, pp.47-50, 1983.
DOI : 10.1016/0031-3203(83)90007-9

R. L. Graham and P. Hell, On the History of the Minimum Spanning Tree Problem, IEEE Annals of the History of Computing, vol.7, issue.1, pp.43-57, 1985.
DOI : 10.1109/MAHC.1985.10011

R. Deriche, Using Canny's criteria to derive a recursively implemented optimal edge detector, Digital topology : Introduction and survey. Computer Vision, Graphics, and Image Processing, pp.167-187, 1987.
DOI : 10.1007/BF00123164

P. T. Buser, W. Auffermann, W. W. Holt, S. Wagner, B. Kircher et al., Noninvasive evaluation of global left ventricular function with use of cine nuclear magnetic resonance, Journal of the American College of Cardiology, vol.13, issue.6, pp.1294-1300, 1989.
DOI : 10.1016/0735-1097(89)90304-5

L. Vincent and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.6, pp.583-598, 1991.
DOI : 10.1109/34.87344

C. Gratin and F. Meyer, Mathematical morphology in three dimensions, Acta Stereologica, pp.551-558, 1992.

J. Serra and L. Vincent, An overview of morphological filtering, Circuits Systems Signal Process, vol.11, issue.1, pp.48-107, 1992.

S. Beucher and F. Meyer, The morphological approach to segmentation : the watershed transformation, Mathematical Morphology in Image Processing, pp.443-481, 1993.

F. Meyer, Topographic distance and watershed lines, Signal Processing, vol.38, issue.1, pp.113-125, 1993.
DOI : 10.1016/0165-1684(94)90060-4

L. Najman and M. Schmitt, Watershed of a continuous function, Signal Processing, vol.38, issue.1, pp.68-86, 1993.
DOI : 10.1016/0165-1684(94)90059-0

URL : https://hal.archives-ouvertes.fr/hal-00622129

J. Cenens, R. Huis, B. Chauvaux, J. Dereppe, C. Gratin et al., 3D cellular structure characterization of flexible polyurethane foam, American Society of Mechanical Engineers, Materials Division (Publication) MD, vol.53, pp.29-44, 1994.

P. Soille and C. Gratin, An Efficient Algorithm for Drainage Network Extraction on DEMs, Journal of Visual Communication and Image Representation, vol.5, issue.2, pp.181-189, 1994.
DOI : 10.1006/jvci.1994.1017

T. Saito and J. I. Toriwaki, New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications, Pattern Recognition, vol.27, issue.11, pp.1551-1565, 1994.
DOI : 10.1016/0031-3203(94)90133-3

G. Bertrand, Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters, vol.15, issue.10, pp.1003-1011, 1994.
DOI : 10.1016/0167-8655(94)90032-9

URL : https://hal.archives-ouvertes.fr/hal-00621999

T. Mcinerney and D. Terzopoulos, A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis, Computerized Medical Imaging and Graphics, vol.19, issue.1, pp.69-83, 1995.
DOI : 10.1016/0895-6111(94)00040-9

J. K. Udupa and S. Samarsekara, Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation, Graphical Models and Image Processing, vol.58, issue.3, pp.246-261, 1996.
DOI : 10.1006/gmip.1996.0021

L. Najman and M. Schmitt, Geodesic saliency of watershed contours and hierarchical segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.12, pp.1163-1173, 1996.
DOI : 10.1109/34.546254

URL : https://hal.archives-ouvertes.fr/hal-00622128

E. J. Breen and R. Jones, Attribute Openings, Thinnings, and Granulometries, Computer Vision and Image Understanding, vol.64, issue.3, pp.377-389, 1996.
DOI : 10.1006/cviu.1996.0066

T. Hirata, A unified linear-time algorithm for computing distance maps, Information Processing Letters, vol.58, issue.3, pp.129-133, 1996.
DOI : 10.1016/0020-0190(96)00049-X

R. J. Van-der-geest, V. G. Buller, E. Jansen, H. J. Lamb, L. H. Baur et al., Comparison Between Manual and Semiautomated Analysis of Left Ventricular Volume Parameters from Short-Axis MR Images, Journal of Computer Assisted Tomography, vol.21, issue.5, pp.756-765, 1997.
DOI : 10.1097/00004728-199709000-00019

K. Haris, S. N. Efstratiadis, N. Maglaveras, and A. K. Katsaggelos, Hybrid image segmentation using watersheds and fast region merging, IEEE Transactions on Image Processing, vol.7, issue.12, pp.1684-1699, 1998.
DOI : 10.1109/83.730380

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.8622

A. Bleau and L. J. Leon, Watershed-Based Segmentation and Region Merging, Computer Vision and Image Understanding, vol.77, issue.3, pp.317-370, 2000.
DOI : 10.1006/cviu.1999.0822

B. Chazelle, A minimum spanning tree algorithm with inverse-Ackermann type complexity, Journal of the ACM, vol.47, issue.6, pp.1028-1047, 2000.
DOI : 10.1145/355541.355562

P. K. Saha, J. K. Udupa, and D. Odhner, Scale-Based Fuzzy Connected Image Segmentation: Theory, Algorithms, and Validation, Computer Vision and Image Understanding, vol.77, issue.2, pp.145-174, 2000.
DOI : 10.1006/cviu.1999.0813

F. Meyer, AN OVERVIEW OF MORPHOLOGICAL SEGMENTATION, International Journal of Pattern Recognition and Artificial Intelligence, vol.15, issue.07, pp.1089-1118, 2001.
DOI : 10.1142/S0218001401001337

T. Cootes, G. Edwards, and C. Taylor, Active appearance models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.6, pp.681-685, 2001.
DOI : 10.1109/34.927467

J. B. Roerdink and A. Meijster, The watershed transform : Definitions, algorithms and parallelization strategies, Fundamenta Informaticae, vol.41, issue.12, pp.187-228, 2001.

P. K. Saha and J. K. Udupa, Relative Fuzzy Connectedness among Multiple Objects: Theory, Algorithms, and Applications in Image Segmentation, Computer Vision and Image Understanding, vol.82, issue.1, pp.42-56, 2001.
DOI : 10.1006/cviu.2000.0902

Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.11, pp.1222-1239, 2001.
DOI : 10.1109/34.969114

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.6806

S. C. Mitchell, B. P. Lelieveldt, R. J. Van-der-geest, H. G. Bosch, J. H. Reiber et al., Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images, IEEE Transactions on Medical Imaging, vol.20, issue.5, pp.415-423, 2001.
DOI : 10.1109/42.925294

J. Nesetril, E. Milková, and H. Nesetrilová, Otakar Bor??vka on minimum spanning tree problem Translation of both the 1926 papers, comments, history, Discrete Mathematics, vol.233, issue.1-3, pp.3-36, 2001.
DOI : 10.1016/S0012-365X(00)00224-7

M. Couprie, F. N. Bezerra, and G. Bertrand, Topological operators for grayscale image processing, Journal of Electronic Imaging, vol.10, issue.4, pp.1003-1015, 2001.
DOI : 10.1117/1.1408316

URL : https://hal.archives-ouvertes.fr/hal-00622474

J. K. Udupa, P. K. Saha, and R. A. Lotufo, Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.11, pp.1485-1500, 2002.
DOI : 10.1109/TPAMI.2002.1046162

U. Braga-neto and J. Goutsias, A theoretical tour of connectivity in image processing and analysis, Journal of Mathematical Imaging and Vision, vol.19, issue.1, pp.5-31, 2003.
DOI : 10.1023/A:1024476403183

A. X. Falcão, J. Stolfi, R. De-alencar, and . Lotufo, The image foresting transform: theory, algorithms, and applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.1, pp.19-29, 2004.
DOI : 10.1109/TPAMI.2004.1261076

J. Lötjönen, S. Kivistö, J. Koikkalainen, D. Smutek, K. Lauerma et al., Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images, Medical Image Analysis, vol.8, issue.3, pp.371-386245, 2004.
DOI : 10.1016/j.media.2004.06.013

G. Bertrand, On Topological Watersheds, Journal of Mathematical Imaging and Vision, vol.34, issue.6, pp.217-230, 2005.
DOI : 10.1007/s10851-005-4891-5

URL : https://hal.archives-ouvertes.fr/hal-00622398

L. Najman, M. Couprie, and G. Bertrand, Watersheds, mosaics, and the emergence paradigm, Discrete Applied Mathematics, vol.147, issue.2-3, pp.301-324, 2005.
DOI : 10.1016/j.dam.2004.09.017

URL : https://hal.archives-ouvertes.fr/hal-00622113

M. Couprie, L. Najman, and G. Bertrand, Quasi-Linear Algorithms for the Topological Watershed, Journal of Mathematical Imaging and Vision, vol.13, issue.6, pp.231-249, 2005.
DOI : 10.1007/s10851-005-4892-4

URL : https://hal.archives-ouvertes.fr/hal-00622399

J. Montagnat and H. Delingette, 4D deformable models with temporal constraints: application to 4D cardiac image segmentation, Medical Image Analysis, vol.9, issue.1, pp.87-100, 2005.
DOI : 10.1016/j.media.2004.06.025

URL : https://hal.archives-ouvertes.fr/hal-00443361

J. K. Udupa, V. R. Leblanc, Y. Zhuge, C. Imielinska, H. Schmidt et al., A framework for evaluating image segmentation algorithms, Computerized Medical Imaging and Graphics, vol.30, issue.2, pp.75-87, 2006.
DOI : 10.1016/j.compmedimag.2005.12.001

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.5, issue.6035, pp.75-87, 2006.
DOI : 10.1007/BF00133570

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.5318

J. Serra, A Lattice Approach to Image Segmentation, Journal of Mathematical Imaging and Vision, vol.2, issue.2, pp.83-130, 2006.
DOI : 10.1007/s10851-005-3616-0

URL : https://hal.archives-ouvertes.fr/hal-00622192

L. Najman and M. Couprie, Building the Component Tree in Quasi-Linear Time, IEEE Transactions on Image Processing, vol.15, issue.11, pp.3531-3539, 2006.
DOI : 10.1109/TIP.2006.877518

URL : https://hal.archives-ouvertes.fr/hal-00622110

Y. Zhuge, J. K. Udupa, and P. K. Saha, Vectorial scale-based fuzzy-connected image segmentation, Computer Vision and Image Understanding, vol.101, issue.3, pp.177-193, 2006.
DOI : 10.1016/j.cviu.2005.07.009

M. Lorenzo-valdés, G. I. Sanchez-ortiz, A. G. Elington, R. H. Mohiaddin, and D. Rueckert, Segmentation of 4D Cardiac MR Images Using a Probabilistic Atlas and the EM Algorithm, Medical Image Analysis, vol.10, pp.286-303, 2006.
DOI : 10.1007/978-3-540-39899-8_55

H. Van-assen, M. G. Danilouchkine, A. F. Frangi, S. Ordàs, J. J. Westenberg et al., SPASM: A 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data, Medical Image Analysis, vol.10, issue.2, pp.286-303, 2006.
DOI : 10.1016/j.media.2005.12.001

J. K. Udupa, V. R. Leblanc, Y. Zhuge, C. Imielinska, H. Schmidt et al., A framework for evaluating image segmentation algorithms, Computerized Medical Imaging and Graphics, vol.30, issue.2, pp.75-87, 2006.
DOI : 10.1016/j.compmedimag.2005.12.001

G. Bertrand, On the dynamics, Image and Vision Computing, vol.25, issue.4, pp.447-454, 2007.
DOI : 10.1016/j.imavis.2006.04.017

URL : https://hal.archives-ouvertes.fr/hal-00621988

L. Najman, G. Bertrand, M. Couprie, and J. Cousty, Discrete region merging and watersheds. Acta series of Uppsala University, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00622458

M. Couprie, D. Coeurjolly, and R. Zrour, Discrete bisector function and Euclidean skeleton in 2D and 3D, Image and Vision Computing, vol.25, issue.10, pp.1543-1556, 2007.
DOI : 10.1016/j.imavis.2006.06.020

URL : https://hal.archives-ouvertes.fr/hal-00180616

L. Najman, J. Cousty, M. Couprie, H. Talbot, S. Clément-guinaudeau et al., An open, clinically-validated database of 3D+t cine-MR images of the left ventricle with associated manual and automated segmentations, Insight Journal, 2007.

J. Cousty, G. Bertrand, M. Couprie, and L. Najman, Fusion Graphs: Merging Properties and Watersheds, accepté, ´ egalement dans rapport technique Institut-Gaspard-Monge IGM 2005-04, voir aussi Annexe 1, 2008.
DOI : 10.1007/s10851-007-0047-0

URL : https://hal.archives-ouvertes.fr/hal-00622473

G. Bertrand and M. Couprie, Two-dimensional thinning algorithms based on critical kernels. rapport technique Institut-Gaspard-Monge IGM, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00622001

J. Cousty, M. Couprie, L. Najman, and G. Bertrand, Weighted fusion graphs: Merging properties and watersheds, Discrete Applied Mathematics, vol.156, issue.15, 2007.
DOI : 10.1016/j.dam.2008.01.005

URL : https://hal.archives-ouvertes.fr/hal-00622473

J. Cousty, G. Bertrand, L. Najman, and M. Couprie, Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.8, 2007.
DOI : 10.1109/TPAMI.2008.173

URL : https://hal.archives-ouvertes.fr/hal-00622410

J. Cousty, L. Najman, M. Couprie, S. Clément-guinaudeau, T. Goissen et al., Automated accurate and fast segmentation of 4D cardiac MR images based on discrete mathematical morphology, 2007.

. Communications-dans-une-conférence, Digabel et C. Lantuéjoul. Iterative algorithms, Proc. 2nd European Symp, pp.85-99, 1978.

S. Beucher and C. Lantuéjoul, Use of watersheds in contour detection, Proc. of the International Workshop on Image Processing Real-Time Edge and Motion Detection/Estimation, 1979.

F. Meyer, Un algorithme optimal de ligne de partage des eaux, Actes du 8` eme Congrès AFCET, pp.847-859, 1991.

M. Grimaud, P. Gader, E. Dougherty, and J. Serra, New measure of contrast : dynamics, Image algebra and morphological image processing III, volume SPIE- 1769, pp.292-305, 1992.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis, Complexity of multiway cuts, Proc. of the 24th Annual ACM Symposium on the Theory of Computing, pp.241-251, 1992.

S. Beucher, Watershed, Hierarchical Segmentation and Waterfall Algorithm, Proc. of the second international conference on Mathematical Morphology and its Applications to Image Processing, pp.69-76, 1994.
DOI : 10.1007/978-94-011-1040-2_10

F. Meyer, Minimum Spanning Forests for Morphological Segmentation, Proc. of the second international conference on Mathematical Morphology and its Applications to Image Processing, pp.77-84, 1994.
DOI : 10.1007/978-94-011-1040-2_11

A. N. Moga, T. Viero, M. Gabbouj, M. Nölle, G. Schreiber et al., Parallel watershed algorithm based on sequential scanning [102] F. Meyer. The dynamics of minima and contours, Proc. of IEEE Workshop on Nonlinear Signal and Image Processing ISMM 3rd, Comp. Im. and Vision, pp.329-336, 1995.

M. Thorup, On RAM Priority Queues, Proc. of the 7th ACM-SIAM Symposium on Discrete Algorithms, pp.59-67, 1996.
DOI : 10.1137/S0097539795288246

M. Couprie and G. Bertrand, Topological grayscale watershed transform, Proc. of SPIE Vision Geometry V, pp.136-146, 1997.

R. Lotufo and A. Falcão, The Ordered Queue and the Optimality of the Watershed Approaches
DOI : 10.1007/0-306-47025-X_37

A. Meijster, J. B. Roerdink, and W. H. Hesselink, A General Algorithm for Computing Distance Transforms in Linear Time, of Computational Imaging and Vision, pp.331-340, 2000.
DOI : 10.1007/0-306-47025-X_36

N. Aspert, D. Santa-cruz, and T. Ebrahimi, MESH: measuring errors between surfaces using the Hausdorff distance, Proceedings. IEEE International Conference on Multimedia and Expo, pp.705-708, 2002.
DOI : 10.1109/ICME.2002.1035879

C. Doublier, M. Couprie, J. Garot, and Y. Hamam, Computer assisted segmentation, quantification and visualization of an infarcted myocardium from MRI images, Proc. Biomedsim'03, pp.151-156, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00622060

X. Daragon, M. Couprie, and G. Bertrand, Discrete Frontiers, Lecture Notes in Computer Science, vol.2886, pp.236-245
DOI : 10.1007/978-3-540-39966-7_22

URL : https://hal.archives-ouvertes.fr/hal-00622040

L. Brun, M. Mokhtari, and F. Meyer, Hierarchical Watersheds Within the Combinatorial Pyramid Framework, Proc. of 12th International Conference on Discrete Geometry for Computer Imagery, volume LNCS 3429, pp.34-44, 2005.
DOI : 10.1007/978-3-540-31965-8_4

URL : https://hal.archives-ouvertes.fr/hal-00126316

J. Cousty, G. Bertrand, M. Couprie, and L. Najman, Fusion Graphs, Region Merging and Watersheds, Proc. of the 13th International Conference on Discrete Geometry for Computer Imagery, volume LNCS 4245, pp.343-354, 2006.
DOI : 10.1007/11907350_29

URL : https://hal.archives-ouvertes.fr/hal-00622035

J. Cousty, M. Couprie, L. Najman, and G. Bertrand, Grayscale Watersheds on Perfect Fusion Graphs, Proc. of the 11th International Workshop on Combinatorial Image Analysis, volume LNCS 4040, pp.60-73, 2006.
DOI : 10.1007/11774938_6

URL : https://hal.archives-ouvertes.fr/hal-00622038

R. Audigier and R. A. Lotufo, Duality between the Watershed by Image Foresting Transform and the Fuzzy Connectedness Segmentation Approaches, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing, pp.53-60, 2006.
DOI : 10.1109/SIBGRAPI.2006.14

G. Bertrand and M. Couprie, New 3d parallel thinning algorithms based on critical kernels, Proc. 13th International Conference on Discrete geometry for computer imagery, volume LNCS 4245, pp.580-591, 2006.

G. Bertrand and M. Couprie, New 2D Parallel Thinning Algorithms Based on Critical Kernels, Proc. 11th International Workshop on Combinatorial Image Analysis, volume LNCS 4040, pp.45-59, 2006.
DOI : 10.1007/11774938_5

URL : https://hal.archives-ouvertes.fr/hal-00622002

J. Cousty, G. Bertrand, L. Najman, and M. Couprie, Watershed cuts, Mathematical Morphology and its Applications to Signal and Image Processing, proc. 8th International Symposium on Mathematical Morphology, pp.301-312, 2007.
DOI : 10.1007/978-3-540-79126-3_39

URL : https://hal.archives-ouvertes.fr/hal-00622036

C. Alì-ene, J. Audibert, M. Couprie, J. Cousty, and R. Keriven, Optimal structures in graph segmentation, Mathematical Morphology and its Applications to Signal and Bibliographie Image Processing, proc. 8th International Symposium on Mathematical Morphology, pp.253-264, 2007.

J. Cousty, L. Najman, M. Couprie, S. Clément-guinaudeau, T. Goissen et al., Automated, Accurate and Fast Segmentation of 4D Cardiac MR Images, Proc. of Functional Imaging and Modeling of the Heart, pp.474-483, 2007.
DOI : 10.1007/978-3-540-72907-5_48

URL : https://hal.archives-ouvertes.fr/hal-00622242

.. Bassin-d-'attraction, 62 par inondation, p.16

.. Connexité-floue, .. Par, and F. , 60 par bassin 65, 68 par flux, 62 optimalité . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 par M, pp.75-83

F. Famille-de, 71 fermeture (morphologique), p.90

.. Fraction-d-'´-ejection, 94 fusion de régions, p.33

.. Ligne-de-partage-des-eaux, 11 en 4D 89, 95 inter-pixel (par inondation) 17 par inondation (immersion), 16 topologique . . . . . . . . . . . . . 18, p.75

.. Masse-myocardique, 94 mince pour une fonction, p.35

.. De-bord, 29 F-simple, 30 uniconnecté, vol.20, pp.11-50

.. Principe-de-la-goutte-d-'eau, 61 puits (d'un flux), p.70

.. Segmentation-manuelle, 91 séparation, p.23

.. Valeur-de-connexion, 21, 22, 73 voisin d'une région