Methodes de filtrage pour du suivi dans des sequences d'images - Application au suivi de points caracteristiques

Elise Arnaud 1
1 VISTA - Vision spatio-temporelle et active
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : This thesis is concerned with the use of filtering methods for tracking in image sequences. For the algorithms introduced here, the system is represented by a Hidden Markov Chain, described by a dynamic law and a likelihood. In order to construct a general method, the dynamic law is estimated from the images. This choice underlines some limitations of the simple model of Hidden Markov Chains. Indeed, such a modelisation does not describe the dependance of the system's components to the image sequence.
We first propose an original modelisation of the problem where the image data are explicitely taken into account. Such a model allows us to consider algorithms that do not rely on a priori information. Different kinds of filters associated with this new modelisation are derived. Then, a validation of this modelisation is presented. Three feature point trakers are proposed on this basis. They combine a dynamical law relying on an estimated motion, and measurements provided by a matching technique. Finally, this approach is extended to planar objet tracking.
Complete list of metadatas

Cited literature [210 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00307896
Contributor : Elise Arnaud <>
Submitted on : Tuesday, July 29, 2008 - 3:14:54 PM
Last modification on : Friday, November 16, 2018 - 1:30:01 AM
Long-term archiving on : Saturday, November 26, 2016 - 12:45:15 AM

Identifiers

  • HAL Id : tel-00307896, version 1

Citation

Elise Arnaud. Methodes de filtrage pour du suivi dans des sequences d'images - Application au suivi de points caracteristiques. Traitement du signal et de l'image [eess.SP]. Université Rennes 1, 2004. Français. ⟨tel-00307896⟩

Share

Metrics

Record views

406

Files downloads

5368