A. Agarwal and B. Triggs, Hyperfeatures ??? Multilevel Local Coding for Visual Recognition, ECCV, p.37, 2006.
DOI : 10.1007/11744023_3

URL : https://hal.archives-ouvertes.fr/inria-00548592

S. Agarwal, A. Awan, and D. Roth, Learning to detect objects in images via a sparse, part-based representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.11, pp.1475-1490, 2004.
DOI : 10.1109/TPAMI.2004.108

S. Agarwal and D. Roth, Learning a Sparse Representation for Object Detection, ECCV, pp.113-130, 2002.
DOI : 10.1007/3-540-47979-1_8

A. Hillel, T. Hertz, N. Shental, and D. Weinshall, Learning a mahalanobis metric from equivalence constraints, Journal of Machine Learning Research, issue.6, pp.937-965, 2005.

A. Berg, T. Berg, and J. Malik, Shape Matching and Object Recognition Using Low Distortion Correspondences, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.26-33, 2005.
DOI : 10.1109/CVPR.2005.320

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.8044

I. Biederman, An Invitation to, Cognitive Science, vol.2, p.17, 1995.

C. Bishop, Pattern Recognition and Machine Learning, p.23, 2006.

G. Bouchard and B. Triggs, Hierarchical Part-Based Visual Object Categorization, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.710-715, 2005.
DOI : 10.1109/CVPR.2005.174

URL : https://hal.archives-ouvertes.fr/inria-00548513

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, 1984.

L. Breiman, Random forests, ML Journal, vol.45, issue.1, pp.5-32, 2001.

M. Burl, M. Weber, and P. Perona, A probabilistic approach to object recognition using local photometry and global geometry, ECCV, pp.628-641, 1998.
DOI : 10.1007/BFb0054769

S. Chopra, R. Hadsell, and Y. Lecun, Learning a Similarity Metric Discriminatively, with Application to Face Verification, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.539-546, 2005.
DOI : 10.1109/CVPR.2005.202

T. M. Cover and J. A. Thomas, Elements of Information Theory, p.104, 1991.

T. M. Covert and P. E. Hart, Nearest neighbour pattern classification, Transactions on Information Theory, issue.101, pp.21-27, 1967.

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, Visual categorization with bags of keypoints, ECCV'04 workshop on Statistical Learning in Computer Vision, pp.59-74, 2004.

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.886-893, 2005.
DOI : 10.1109/CVPR.2005.177

URL : https://hal.archives-ouvertes.fr/inria-00548512

M. Everingham, The 2005 PASCAL Visual Object Classes Challenge, First PASCAL Challenges Workshop, pp.29-50, 2006.
DOI : 10.1007/11736790_8

URL : https://hal.archives-ouvertes.fr/inria-00548597

M. Everingham, A. Zisserman, C. K. Williams, and L. Van-gool, The PAS- CAL Visual Object Classes Challenge, 2006.

M. R. Everingham, J. Sivic, and A. Zisserman, Hello! My name is... Buffy'' -- Automatic Naming of Characters in TV Video, Procedings of the British Machine Vision Conference 2006, pp.889-908, 2006.
DOI : 10.5244/C.20.92

L. Fei-fei, R. Fergus, and P. Perona, One-shot learning of object categories, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.4, pp.594-611, 2006.
DOI : 10.1109/TPAMI.2006.79

P. Felzenszwalb and D. Huttenlocher, Pictorial Structures for Object Recognition, International Journal of Computer Vision, vol.61, issue.1, pp.55-79, 2005.
DOI : 10.1023/B:VISI.0000042934.15159.49

A. Ferencz, E. G. Miller, and J. Malik, Building a classification cascade for visual identification from one example, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.286-293, 2005.
DOI : 10.1109/ICCV.2005.52

A. D. Ferencz, E. G. Learned-miller, and J. Malik, Learning hyper-features for visual identification, NIPS'05, pp.425-432, 2005.

R. Fergus, L. Fei-fei, P. Perona, and A. Zisserman, Learning object categories from Google's image search, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.1816-1823, 2005.
DOI : 10.1109/ICCV.2005.142

R. Fergus, P. Perona, and A. Zisserman, Object class recognition by unsupervised scale-invariant learning, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., pp.264-271, 2003.
DOI : 10.1109/CVPR.2003.1211479

M. Fischler and R. Elschlager, The Representation and Matching of Pictorial Structures, IEEE Transactions on Computers, vol.22, issue.1, pp.67-92, 1973.
DOI : 10.1109/T-C.1973.223602

M. A. Fischler and R. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, pp.381-395, 1981.

A. W. Fitzgibbon and A. Zisserman, Joint manifold distance: a new approach to appearance based clustering, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., pp.26-33, 2003.
DOI : 10.1109/CVPR.2003.1211334

F. Fleuret and G. Blanchard, Pattern recognition from one example by chopping, NIPS'05, pp.371-378, 2005.

F. Fleuret, Fast binary feature selection with conditional mutual information, Journal of Machine Learning Research, vol.103, pp.1531-1555, 2004.

G. Forman, An extensive empirical study of feature selection metrics for text classification, Journal of Machine Learning Research, issue.103, pp.1289-1305, 2003.

Y. Freund and E. Shapire, A decision-theoretic generalization of online learning and an application to boosting, Journal of Computer and System Sciences, vol.5, pp.119-139, 1997.

P. Geurts, D. Ernst, and L. Wehenkel, Extremely randomized trees, Machine Learning, pp.3-42, 2006.
DOI : 10.1007/s10994-006-6226-1

URL : https://hal.archives-ouvertes.fr/hal-00341932

A. Globerson and S. Roweis, Metric learning by collapsing classes, NIPS'05, p.139, 2005.

C. Goad, SPECIAL PURPOSE AUTOMATIC PROGRAMMING FOR 3D MODEL-BASED VISION, Proceedings of the DARPA Image Understanding Workshop, pp.371-381, 1983.
DOI : 10.1016/B978-0-08-051581-6.50041-6

J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov, Neighbourhood components analysis, NIPS'04, p.139, 2004.

K. Grauman and T. J. , Efficient Image Matching with Distributions of Local Invariant Features, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.627-634, 2005.
DOI : 10.1109/CVPR.2005.138

W. E. Grimson and T. Lozano-pérez, Localizing Overlapping Parts by Searching the Interpretation Tree, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.9, issue.4, pp.469-482, 1987.
DOI : 10.1109/TPAMI.1987.4767935

D. P. Huttenlocher and S. Ullman, Recognizing solid objects by alignment with an image, International Journal of Computer Vision, vol.35, issue.3, pp.195-212, 1990.
DOI : 10.1007/BF00054921

V. Jain, A. Ferencz, E. G. Learned, and . Miller, Discriminative Training of Hyper-feature Models for Object Identification, Procedings of the British Machine Vision Conference 2006, pp.357-366, 2006.
DOI : 10.5244/C.20.37

T. Joachims, Text categorization with Support Vector Machines: Learning with many relevant features, ECML-98, 10th European Conference on Machine Learning, pp.137-142, 1998.
DOI : 10.1007/BFb0026683

G. H. John, R. Kohavi, and K. Pfleger, Irrelevant Features and the Subset Selection Problem, ICML, pp.121-129, 1994.
DOI : 10.1016/B978-1-55860-335-6.50023-4

F. Jurie and B. Triggs, Creating efficient codebooks for visual recognition, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, p.121, 2005.
DOI : 10.1109/ICCV.2005.66

URL : https://hal.archives-ouvertes.fr/inria-00548511

Y. Lamdan, J. T. Schwartz, and H. J. Wolfson, Object recognition by affine invariant matching, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition, pp.335-344, 1988.
DOI : 10.1109/CVPR.1988.196257

S. Landeau and T. Dagobert, Image database generation using image metric constraints: an application within the CALADIOM project, Automatic Target Recognition XVI, p.58, 2006.
DOI : 10.1117/12.665193

S. Lazebnik, C. Schmid, and J. Ponce, Affine-invariant local descriptors and neighborhood statistics for texture recognition, Proceedings Ninth IEEE International Conference on Computer Vision, pp.649-655, 2003.
DOI : 10.1109/ICCV.2003.1238409

URL : https://hal.archives-ouvertes.fr/inria-00548231

B. Leibe and B. Schiele, Interleaved Object Categorization and Segmentation, Procedings of the British Machine Vision Conference 2003, pp.98-174, 2003.
DOI : 10.5244/C.17.78

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.3586

T. Leung and J. Malik, Representing and recognizing the visual appearance of materials using three-dimensional textons, International Journal of Computer Vision, vol.43, issue.1, pp.29-44, 2001.
DOI : 10.1023/A:1011126920638

T. Lindeberg, Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention, International Journal of Computer Vision, vol.8, issue.8, pp.283-318, 1993.
DOI : 10.1007/BF01469346

H. Liu and L. Yu, Toward integrating feature selection algorithms for classification and clustering, Transactions on Knowledge and Data Engineering, issue.103, pp.491-502, 2005.

D. Lowe, Object recognition from local scale-invariant features, Proceedings of the Seventh IEEE International Conference on Computer Vision, pp.1150-1157, 1999.
DOI : 10.1109/ICCV.1999.790410

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.4065

D. G. Lowe, The viewpoint consistency constraint, International Journal of Computer Vision, vol.171, issue.1, pp.57-72, 1987.
DOI : 10.1007/BF00128526

D. G. Lowe, Similarity Metric Learning for a Variable-Kernel Classifier, Neural Computation, vol.4, issue.1, pp.72-85, 1995.
DOI : 10.1016/0893-6080(90)90027-I

D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.4931

E. Haritaglu, M. Betke, and L. Davis, Multiple vehicle detection and tracking in hard real time, IEEE Intelligent Vehicles Symposium, p.98, 1996.

V. N. Mapnik, The nature of statistical learning theory, 1995.

K. Mikolajczyk and C. Schmid, An Affine Invariant Interest Point Detector, ECCV02, page I: 128 ff, p.43, 2002.
DOI : 10.1007/3-540-47969-4_9

URL : https://hal.archives-ouvertes.fr/inria-00548252

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas et al., A Comparison of Affine Region Detectors, International Journal of Computer Vision, vol.65, issue.1-2, pp.43-72, 2005.
DOI : 10.1007/s11263-005-3848-x

URL : https://hal.archives-ouvertes.fr/inria-00548528

E. G. Miller, N. E. Matsakis, and P. A. Viola, Learning from one example through shared densities on transforms, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), pp.464-471, 2000.
DOI : 10.1109/CVPR.2000.855856

D. Mladenic and M. Grobelnik, Feature selection on hierarchy of web documents, Decision Support Systems, vol.35, issue.1, pp.45-87, 2003.
DOI : 10.1016/S0167-9236(02)00097-0

F. Moosmann, E. Nowak, and F. Jurie, Randomized clustering forests for image classification . PAMI, to appear, pp.31-177, 2007.
DOI : 10.1109/tpami.2007.70822

URL : https://hal.archives-ouvertes.fr/inria-00548666

F. Moosmann, B. Triggs, and F. Jurie, Randomized clustering forests for building fast and discriminative visual vocabularies, NIPS'06, pp.144-177, 2006.

H. Murase and S. Nayar, Visual learning and recognition of 3-d objects from appearance, International Journal of Computer Vision, vol.37, issue.10, pp.5-24, 1995.
DOI : 10.1007/BF01421486

S. A. Nene, S. K. Nayar, and H. Murase, Columbia object image library (coil-100), CUCS, p.147, 1996.

W. Niblack, R. Barber, W. Equitz, M. D. Flickner, D. Glasman et al., The qbic project: Querying image by content using color, texture, and shape, SPIE, vol.27, pp.173-187, 1908.

E. Nowak and F. Jurie, Vehicle Categorization: Parts for Speed and Accuracy, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp.31-98, 2005.
DOI : 10.1109/VSPETS.2005.1570926

URL : https://hal.archives-ouvertes.fr/inria-00548506

E. Nowak and F. Jurie, Learning Visual Similarity Measures for Comparing Never Seen Objects, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.382969

URL : https://hal.archives-ouvertes.fr/hal-00203958

E. Nowak, F. Jurie, and B. Triggs, Sampling Strategies for Bag-of-Features Image Classification, European Conference on Computer Vision, pp.141-149, 1998.
DOI : 10.1007/11744085_38

URL : https://hal.archives-ouvertes.fr/hal-00203752

A. Opelt, A. Fussenegger, and P. Auer, Weak Hypotheses and Boosting for Generic Object Detection and Recognition, ECCV, p.28, 2004.
DOI : 10.1007/978-3-540-24671-8_6

M. Pontil and A. Verri, Support vector machines for 3D object recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.6, pp.637-646, 1998.
DOI : 10.1109/34.683777

S. Rajan and J. Ghosh, An Empirical Comparison of Hierarchical vs. Two-Level Approaches to Multiclass Problems, pp.118-134, 2004.
DOI : 10.1007/978-3-540-25966-4_28

A. Rakotomamonjy and F. Suard, Svm variable selection with application to pedestrian detection, RFIA, p.105, 2004.

D. Ramanan, D. Forsyth, and A. Zisserman, Strike a Pose: Tracking People by Finding Stylized Poses, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.271-278, 2005.
DOI : 10.1109/CVPR.2005.335

I. Rish, An empirical study of the naive bayes classifier, In Workshop on Empirical Methods in Artificial Intelligence, issue.101, 2001.

M. Rogati and Y. Yang, High-performing feature selection for text classification, Proceedings of the eleventh international conference on Information and knowledge management , CIKM '02, 2002.
DOI : 10.1145/584792.584911

B. Schiele and J. Crowley, Recognition without correspondence using multidimensional receptive field histograms, International Journal of Computer Vision, vol.36, issue.1, pp.31-50, 2000.
DOI : 10.1023/A:1008120406972

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.19

C. Schmid and R. Mohr, Local grayvalue invariants for image retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, issue.5, pp.530-534, 1997.
DOI : 10.1109/34.589215

URL : https://hal.archives-ouvertes.fr/inria-00548358

H. Schneiderman and T. Kanade, A statistical method for 3D object detection applied to faces and cars, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), pp.746-751, 2000.
DOI : 10.1109/CVPR.2000.855895

S. Shalev-shwartz, Y. Singer, and A. Y. Ng, Online and batch learning of pseudometrics, ICML '04, p.139, 2004.

J. Sivic and A. Zisserman, Video Google: a text retrieval approach to object matching in videos, Proceedings Ninth IEEE International Conference on Computer Vision, pp.1470-1477, 2003.
DOI : 10.1109/ICCV.2003.1238663

G. Stockman, Object recognition and localization via pose clustering, Computer Vision, Graphics and Image Processing, pp.361-387, 1987.
DOI : 10.1016/s0734-189x(87)80147-0

D. W. Thompson and J. L. Mundy, Three-dimensional model matching from an unconstrained viewpoint, Proceedings. 1987 IEEE International Conference on Robotics and Automation, pp.208-220, 1987.
DOI : 10.1109/ROBOT.1987.1088004

A. Torralba, K. P. Murphy, and W. T. Freeman, Sharing features: efficient boosting procedures for multiclass object detection, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., pp.762-769, 2004.
DOI : 10.1109/CVPR.2004.1315241

M. Turk and A. Pentland, Face recognition using eigenfaces, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.586-591, 1991.
DOI : 10.1109/CVPR.1991.139758

V. Vapnik, Statistical Learning Theory, pp.66-101, 1998.

M. Vidal-naquet and S. Ullman, Object recognition with informative features and linear classification, Proceedings Ninth IEEE International Conference on Computer Vision, pp.281-288, 2003.
DOI : 10.1109/ICCV.2003.1238356

P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, pp.511-518, 2001.
DOI : 10.1109/CVPR.2001.990517

M. Weber, M. Welling, and P. Perona, Unsupervised Learning of Models for Recognition, ECCV, pages I, pp.18-32, 2000.
DOI : 10.1007/3-540-45054-8_2

K. Weinberger, J. Blitzer, and L. Saul, Distance metric learning for large margin nearest neighbor classification, NIPS'05, p.139, 2006.

J. Willamowski, D. Arregui, G. Csurka, C. R. Dance, and L. Fan, Categorizing nine visual classes using local appearance descriptors, International Workshop on Learning for Adaptable Visual Systems (LAVS04), p.100, 2004.

J. Winn, A. Criminisi, and T. Minka, Object categorization by learned universal visual dictionary, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.37-43, 2005.
DOI : 10.1109/ICCV.2005.171

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.8714

H. J. Wolfson and I. Rigoutsos, Geometric hashing: an overview, IEEE Computational Science and Engineering, vol.4, issue.4, pp.10-21, 1997.
DOI : 10.1109/99.641604

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, Distance metric learning, with application to clustering with side-information, NIPS'02, p.139, 2002.

Y. Yang and J. O. Pedersen, A comparative study on feature selection in text categorization, ICML, pp.412-420, 1997.

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local features and kernels for classifcation of texture and object categories: An in-depth study, INRIA Rhône-Alpes, vol.50, pp.49-98, 1928.