.. Secuencia-de-operaciones-para-obtener-la-representación-puntual-esparsa-de-una-función, DW T : transformada del dato inicial, tr ? k : operador de truncamiento, E: inclusión de safety points, IW T : transformada de ondelette inversa y R: reconstrucción de malla uniforme

[. Componentes-de-la-separación-del-flujo-numérico-en-la-frontera, h j es el interpolador ENO para la celda ]x j?1, p.20

. Izquierda, Solución (rayas) y solución numérica de multiresolución (asteriscos) en el paso temporal n = 1000 para la ec. de Burgers viscosa, con Re = 0,001

. Izquierda, Solución (rayas) y solución numérica de multiresolución (asteriscos) en el paso temporal n = 200 para la ec. de Burgers viscosa, con Re = 10, p.49

. Izquierda, Solución analítica (linea), y solución numérica sin multiresolución (círculos) en el tiempo t = 0,5 para la ec. de Burgers viscosa, con Re = 1000 Derecha: Errores entre las soluciones analítica y de volúmenes finitos con y sin multiresolución, p.51

.. Perfil-de-concentración, Sedimentación-consolidación, primer ejemplo t = 7200, p.68

. Perfil-de-concentración, Sedimentación-consolidación, t = 3600, p.71

. Perfil-de-concentración, Sedimentación-consolidación, t = 7200, p.72

. Perfil-de-concentración, Sedimentación-consolidación, t = 43200, p.73

. Perfil-de-concentración, Sedimentación-consolidación, t = 3600, p.76

. Perfil-de-concentración....., Sedimentación continua, t = 36000, p.77

.. Solución-numérica-de-la-ecuación-de-burgers, condición inicial (3.6) Tolerancia prescrita ? = 10 ?5 , N 0 = 257 puntos en la malla fina y L = 7 niveles de multiresolución, p.26

.. Solución-numérica-de-la-ecuación-de-burgers, condición inicial (3.6) Tolerancia prescrita ? = 10 ? 3, N 0 = 1025 puntos en la malla fina y L = 10 niveles de multiresolución, p.26

. Solución-numérica-de-la......, Ecuación de Burgers viscosa en 1D, condición inicial (4.39) Se adjuntan figuras para los casos marcados con (*), p.47

.. Caso-batch-de-suspensiones-floculadas,-segundo-ejemplo, Tolerancia prescrita ? = 10 ?3 , N 0 = 257 puntos en la malla fina y L = 5 niveles de multiresolución, p.70

]. F. Bibliografía1, F. Arandiga, R. Candela, and . Donat, Fast multiresolution algorithms for solving linear equations, SIAM J. Sci. Comp, vol.16, pp.581-600, 1995.

L. A. Baughman and N. J. Walkington, Co-volume methods for degenerate parabolic problems, Numerische Mathematik, vol.14, issue.1, pp.45-67, 1993.
DOI : 10.1007/BF01388680

S. Berres, R. Bürger, A. Coronel, and M. Sepúlveda, Numerical identification of parameters for a flocculated suspension from concentration measurements during batch centrifugation, Chemical Engineering Journal, vol.111, issue.2-3, p.aceptado, 2005.
DOI : 10.1016/j.cej.2005.02.005

B. L. Bihari, Multiresolution Schemes for Conservation Laws with Viscosity, Journal of Computational Physics, vol.123, issue.1, pp.207-225, 1996.
DOI : 10.1006/jcph.1996.0017

S. Berres, R. Bürger, and K. H. Karlsen, Central schemes and systems of conservation laws with discontinuous coefficients modeling gravity separation of polydisperse suspensions, Journal of Computational and Applied Mathematics, vol.164, issue.165, pp.164-165, 2004.
DOI : 10.1016/S0377-0427(03)00496-5

R. Bürger, A. Coronel, and M. Sepúlveda, A semi-implicit monotone difference scheme for an PVIF of a strongly degenerate parabolic equation modelling sedimentation-consolidation processes, 2005.

R. Bürger, A. Coronel, and M. Sepúlveda, Convergence of upwind schemes for an initial-boundary value problem of a strongly degenerate parabolic equation modelling sedimentation-consolidation processes, pp.2004-2013, 2004.

R. Bürger, S. Evje, and K. H. Karlsen, Analysis and Numerics of Strongly Degenerate Convection-Diffusion Problems Modelling Sedimentation- Consolidation Processes, J. Math. An. & App, vol.247, pp.517-556, 2000.
DOI : 10.1016/B978-008043568-8/50013-4

R. Bürger, S. Evje, K. H. Karlsen, and K. A. Lie, Numerical methods for the simulation of the settling of flocculated suspensions, Chemical Engineering Journal, vol.80, issue.1-3, pp.91-104, 2000.
DOI : 10.1016/S1383-5866(00)00080-0

R. Bürger and K. H. Karlsen, On some upwind difference schemes for the phenomenological sedimentation-consolidation model, Journal of Engineering Mathematics, vol.41, issue.2/3, pp.145-166, 2001.
DOI : 10.1023/A:1011935232049

R. Bürger, W. L. Wendland, and F. Concha, Model Equations for Gravitational Sedimentation-Consolidation Processes, ZAMM, vol.80, issue.2, pp.79-92, 2000.
DOI : 10.1002/(SICI)1521-4001(200002)80:2<79::AID-ZAMM79>3.0.CO;2-Y

M. C. Bustos, F. Concha, R. Bürger, and E. M. Tory, Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory, 1999.
DOI : 10.1007/978-94-015-9327-4

J. A. Carrillo and J. L. Vazquez, Fine asymptotics for fast diffusion equations, Comm, pp.1023-1056, 2003.

T. F. Chan and H. M. Zhou, Adaptive ENO-Wavelet Transforms for Dicontinuous Functions, 12th Int. Conf. on Domain Dec, 2001.

A. Cohen, N. Dyn, S. M. Kaber, and M. , Multiresolution Schemes on Triangles for Scalar Conservation Laws, Journal of Computational Physics, vol.161, issue.1, pp.161-264, 2001.
DOI : 10.1006/jcph.2000.6503

A. Cohen, S. M. Kaber, S. Müller, and M. , Fully adaptive multiresolution finite volume schemes for conservation laws, Mathematics of Computation, vol.72, issue.241, pp.183-225, 2002.
DOI : 10.1090/S0025-5718-01-01391-6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.8562

F. Concha and M. C. Bustos, Settling velocities of particulate systems, 6. Kynch sedimentation processes: batch settling, International Journal of Mineral Processing, vol.32, issue.3-4, pp.193-212, 1991.
DOI : 10.1016/0301-7516(91)90068-T

A. Coronel, F. James, and M. Sepúlveda, Numerical identification of parameters for a model of sedimentation processes, Inverse Problems, vol.19, issue.4, pp.951-972, 2003.
DOI : 10.1088/0266-5611/19/4/311

URL : https://hal.archives-ouvertes.fr/hal-00079236

R. Donat, Studies on Error Propagation for Certain Nonlinear Approximations to Hyperbolic Equations: Discontinuities in Derivatives, SIAM Journal on Numerical Analysis, vol.31, issue.3, p.665, 1994.
DOI : 10.1137/0731035

B. Engquist and S. Osher, One-sided difference approximations for nonlinear conservation laws, Mathematics of Computation, vol.36, issue.154, pp.321-351, 1981.
DOI : 10.1090/S0025-5718-1981-0606500-X

S. Evje and K. H. Karlsen, Solutions To Degenerate Convection-Diffusion Equations, SIAM Journal on Numerical Analysis, vol.37, issue.6, pp.1838-1860, 2000.
DOI : 10.1137/S0036142998336138

R. Eymard, T. Gallouët, and R. Herbin, Finite Volume Methods, Handbook of Num. An, vol.VII, pp.713-1020, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00346077

E. Godlewski and P. A. Raviart, Hyperbolic systems of conservation laws, volume 3-4, Mathématiqhes et applications, 1991.

E. Godlewski and P. A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Apl. Math. Sci, vol.118, 1996.
DOI : 10.1007/978-1-4612-0713-9

B. Gottschlicht-müller and S. Müller, Adaptive finite volume schemes for conservation laws based on local multiresolution techniques, Hyperbolic Problems: Theory, pp.385-394, 1999.

A. Harten, Adaptive Multiresolution Schemes for Shock Computations, Journal of Computational Physics, vol.115, issue.2, pp.319-338, 1994.
DOI : 10.1006/jcph.1994.1199

A. Harten, On a Class of High Resolution Total-Variation-Stable Finite-Difference Schemes, SIAM Journal on Numerical Analysis, vol.21, issue.1, pp.1-23, 1984.
DOI : 10.1137/0721001

A. Harten, Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Communications on Pure and Applied Mathematics, vol.43, issue.12, pp.1305-1342, 1995.
DOI : 10.1002/cpa.3160481201

A. Harten and I. Yad-shalom, Fast Multiresolution Algorithms for Matrix-Vector Multiplication, SIAM Journal on Numerical Analysis, vol.31, issue.4, pp.92-55, 1992.
DOI : 10.1137/0731062

M. Holmström, Solving Hyperbolic PDE's Using Interpolating Wavelets, Report, vol.189, 1996.

F. James, M. Postel, and M. Sepúlveda, Numerical comparison between relaxation and nonlinear equilibrium models. Application to chemical engineering, Physica D: Nonlinear Phenomena, vol.138, issue.3-4, pp.3-4, 2000.
DOI : 10.1016/S0167-2789(99)00203-1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.2634

A. J. Kozakevicius and L. C. Santos, High resolution method for solving 1D Euler equation in wavelet, 2003.

A. J. Kozakevicius and L. C. Santos, Wavelets interpolatórias como ferramenta para resolu´cãoresolu´cão adaptativa de EDP's hiperbólicas, PhD in Applied Mathematics. USP, 2002.

J. Liandrat and P. Tchamitchian, Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation: algorithms and numerical results, ICASE, 1990.

M. Pérez, R. Font, and C. Pastor, A mathematical model to simulate batch sedimentation with compression behavior, Computers & Chemical Engineering, vol.22, issue.11, pp.1531-1541, 1998.
DOI : 10.1016/S0098-1354(98)00246-4

O. Roussel, K. Schneider, A. Tsigulin, and H. Bockhorn, A conservative fully adaptive multiresolution algorithm for parabolic PDEs, Journal of Computational Physics, vol.188, issue.2, pp.493-523, 2003.
DOI : 10.1016/S0021-9991(03)00189-X

C. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report, vol.89, pp.97-65, 1997.
DOI : 10.1016/0021-9991(90)90120-P