Métodos de Multiresolución y su Aplicación a un Modelo de Ingeniería
Ricardo Ruiz Baier

To cite this version:

HAL Id: tel-00304348
https://tel.archives-ouvertes.fr/tel-00304348
Submitted on 22 Jul 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Métodos de Multiresolución
y su Aplicación a un Modelo de Ingeniería

Tesis para optar al título de Ingeniero Matemático

Ricardo Esteban Ruiz Baier

Marzo 2005
Índice general

1. Introducción .. 1

2. Multiresolución y compresión de datos 8
 2.1. Análisis de multiresolución para valores puntuales 8
 2.2. Análisis de multiresolución por medias en celda 11
 2.3. Análisis de regularidad 14
 2.4. Compresión de datos 16
 2.5. Estructura de datos 18

3. Caso hiperbólico ... 19
 3.1. Esquema ENO Lax-Friedrichs 19
 3.2. Evolución temporal 22
 3.3. Adaptatividad de la representación esparsa 23
 3.4. Método adaptativo de alta resolución 24
 3.5. Resultados numéricos 25

4. Caso parabólico .. 31
 4.1. Método numérico ... 31
 4.1.1. Leyes de conservación parabólicas 31
 4.1.2. Discretización .. 32
ÍNDICE GENERAL

4.1.3. Integración temporal ... 33
4.1.4. Flujo numérico .. 34
4.1.5. Reconstrucción ENO de segundo orden 34
4.1.6. Solución exacta de la onda viajera 35
4.1.7. Estabilidad numérica ... 36
4.1.8. Árbol graduado dinámico 37
4.1.9. Análisis del error .. 38
4.1.10. Cálculo del flujo conservativo 39
4.1.11. Implementación del algoritmo 40
4.2. Resultados numéricos ... 42
4.2.1. Ecuación de convección-difusión en 1D 42
4.2.2. Ecuación de Burgers viscosa en 1D 46
4.2.3. Ecuación de reacción-difusión en 1D 54

5. Ecuación de convección-difusión fuertemente degenerada 56
5.1. Esquema de segundo orden 59
5.2. Ejemplos numéricos ... 62
5.2.1. Sedimentación batch de suspensión ideal 62
5.2.2. Caso batch de suspensiones floculadas: primer ejemplo 65
5.2.3. Caso batch de suspensiones floculadas: segundo ejemplo 69
5.2.4. Simulación de sedimentación continua 74

6. Conclusiones y perspectivas 79
6.1. Conclusiones ... 79
6.2. Perspectivas .. 81

A. Cálculo de los coeficientes de interpolación en la multiresolución 82
ÍNDICE GENERAL

A.1. Multiresolución de valores puntuales .. 82
A.2. Multiresolución de medias en celda ... 83

B. Análisis de estabilidad para el caso parabólico no lineal 85

C. Código y documentación .. 88
Agradecimientos

A Dios en primer lugar por su constante cuidado y demostración de fidelidad.

Deseo agradecer al Departamento de Ingeniería Matemática de la Universidad de Concepción por el apoyo brindado. En este marco, deseo agradecer especialmente a mi profesor guía Dr. Mauricio Sepúlveda por su apoyo infinito en este último período de estudios, y a los asesores de tesis Dr. Freddy Paiva, Dr. Raimund Bürger y Dra. Alice Kozakevicius por sus valiosísimos consejos y comentarios. Agradezco también el apoyo de FONDECYT mediante su proyecto 1030718 por el financiamiento de este trabajo.

También quiero mencionar (en orden aleatorio) a varios profesores que fueron siempre un apoyo para mí: Dr. Alberto Foppiano, Dr. Gabriel Gatica, Dr. Manuel Campos, Dr. Gabriel Barrenechea, Dr. Fabián Flores y Dr. Rodolfo Rodríguez.

Estoy en especial agradecido de mi polola quien me motivó constantemente a esforzarme y dedicarme a este trabajo. Espero poder volver a agradecerle en mi próxima tesis.

Finalmente quiero agradecer profundamente a mi familia, que me ha apoyado y alentado para que concluya éste y todos mis proyectos de vida. Cariños para papá, mamá, Feña, Alexis, Joel, Welo, Abuela, Vero, Cutys.
Capítulo 1

Introducción

El principal objetivo de este trabajo es presentar una adaptación de los métodos de volúmenes finitos utilizados en la resolución de problemas provenientes de los procesos de sedimentación de suspensiones floculadas (o sedimentación con compresión). Esta adaptación está basada en la utilización de técnicas de multiresolución, originalmente ideadas para rebajar el costo computacional en la resolución numérica de leyes de conservación hiperbólicas, en conjunto con esquemas de alta resolución.

Se introducirán los métodos utilizados para la resolución numérica de leyes de conservación y ecuaciones parabólicas y la importancia del algoritmo de multiresolución en la aplicación de estos métodos.

Leyes de conservación hiperbólicas

Los sistemas de leyes de conservación son modelos matemáticos para situaciones físicas en que la cantidad total de la variable no varía con respecto al tiempo. En este tipo de situaciones, la cantidad de una variable física contenida en una región acotada del espacio sólo puede variar debido al flujo de la variable a través de la frontera de dicha región. Esto puede traducirse en una formulación integral que, bajo ciertas hipótesis de regularidad, se convierte en un sistema de ecuaciones en derivadas parciales. Si se toma el caso unidimensional (en espacio), las ecuaciones correspondientes son de la forma

\[\partial_t u(x,t) + \partial_x f(u(x,t)) = 0, \]

(1.1)

donde \(u : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^m \) es el vector de variables conservadas o variables de estado, y \(f : \mathbb{R}^m \rightarrow \mathbb{R}^m \) es el vector de flujos. En problemas de dinámica de fluidos, estas variables son densidad, momento y energía.

La ecuación (1.1) está provista de condiciones iniciales y posiblemente condiciones de
frontera en el dominio espacial acotado.

Un ejemplo clásico para ilustrar el comportamiento de las soluciones en leyes de conservación, es el problema de Riemann en un tubo de shock: dinámica de los gases. Se tiene un tubo lleno con gas, inicialmente dividido en dos secciones por una membrana. El gas tiene densidad y presión, en reposo, más alta en una mitad del tubo que en la otra. En el tiempo \(t = 0 \) se rompe la membrana y el gas fluye. Si se supone que el flujo es uniforme a lo largo del tubo, la variación se produce sólo en una dirección y pueden aplicarse las ecuaciones de Euler en una dimensión.

La estructura de la solución del problema de Riemann implica tres ondas distintas que separan regiones en las que las variables son constantes. La onda de choque se propaga hacia la región de más baja presión; a través de esta onda, la densidad y la presión asumen valores más altos y todas las variables son discontinuas. Luego aparece una discontinuidad de contacto, a través de la cual la densidad es discontinua, pero las demás variables son constantes. La tercera es la onda de rarefacción (recibe este nombre debido a que la densidad del gas decrece cuando esta onda pasa a través de él) que se mueve en dirección contraria a las otras dos y tiene una estructura diferente: todas las variables son continuas y presentan una suave transición \[23\].

Ecuaciones parabólicas

Se quiere estudiar un problema de valores iniciales para una ecuación parabólica. Para ello, para \((x, t) \in \Omega \times [0, \infty[\), considérese la ecuación

\[
\partial_t u(x, t) + \partial_x F(u(x, t), \partial_x u(x, t)) = S(u),
\]

\[
u(x, 0) = u_0(x)
\]

donde ahora el flujo \(F \) incluye a la derivada de \(u \) y este se define por un operador diferencial con difusividad constante \(\nu > 0 \), es decir,

\[
F(u(x, t), \partial_x u(x, t)) := f(u) - \nu \partial_x u(x, t).
\]

Se tienen versiones lineales y no lineales. Para la ecuación de convección-difusión unidimensional, se tiene

\[
f(u) = cu,
\]

\[
S(u) = 0,
\]

con \(c > 0 \). Este tipo de ecuaciones es de gran utilidad, por ejemplo, para calcular el transporte de sedimentos así como el transporte de constituyentes en estudios de calidad de agua \[13\].
En el caso de la ecuación viscosa de Burgers unidimensional, se tiene
\[f(u) = \frac{u^2}{2}, \]
\[S(u) = 0. \]
Esta ecuación es un modelo sencillo para la propagación de fluidos, tomando en cuenta que existe viscosidad constante en el fluido.

Para la ecuación de reacción-difusión \((\alpha > 0, \beta > 0)\),
\[f(u) = 0, \]
\[S(u) = \frac{\beta^2}{2} (1-u) \exp \frac{\beta(1-u)}{\alpha(1-u) - 1}. \]
Esta ecuación conduce al modelo unidimensional de la propagación de llama premezclada \[36\], donde las difusividades de masa y calor son iguales. La función \(u\) representa la temperatura adimensional, que varía entre 0 y 1, y la masa parcial de gas sin quemar es representada por \(1-u\).

Ecuaciones parabólicas fuertemente degeneradas

Considérese una ecuación parabólica de la forma
\[\partial_t u + \partial_x f(u) = \partial_x^2 A(u), \tag{1.2} \]
con \((x,t) \in]0,1[\times]0,T[\) y
\[A(u) := \int_0^u a(s)ds, \quad a(u) \geq 0. \]
En general se permite que \(a(u)\) sea cero en incluso un intervalo \([0,u_c]\), en el cual la ecuación es de naturaleza hiperbólica, y \(a(u)\) es discontinua en \(u = u_c\). Dada la forma degenerada de \(a(u)\) y la naturaleza generalmente no lineal de \(f(u)\), las soluciones de la ecuación son generalmente discontinuas y es necesario considerar soluciones entrópicas.

Una ecuación de convección-difusión fuertemente degenerada, con una función de flujo no necesariamente convexa que depende del tiempo, asociada a ciertas condiciones iniciales y de frontera como \(1.2\) se considera como el modelo clásico para los procesos de sedimentación-consolidación. La sedimentación es, a grandes rasgos, un proceso en que partículas o agregados son separados de un líquido bajo la acción de la fuerza de gravedad. Este es probablemente el método industrial a gran escala más importante utilizado en química y minería \[35\]. En soluciones relativamente diluidas, las partículas no se comportan en forma discreta sino que tienden a agregarse unas a otras durante el
Capítulo 1: Introducción

proceso de sedimentación. Conforme se produce la floculación, la masa de partículas va aumentando, y se deposita a mayor velocidad. La medida en que se desarrolle el fenómeno de floculación depende de la posibilidad de contacto entre las diferentes partículas, que a su vez es función de la carga de superficie, de la profundidad del tanque, del gradiente de velocidad del sistema, de la concentración de partículas y de los tamaños de las mismas. El efecto de estas variables sobre el proceso sólo puede determinarse mediante ensayos de sedimentación. Esto hace que sea de gran utilidad en la modelación de estos fenómenos, la teoría de problemas inversos (ver [3, 18] entre otros).

Desde hace ya varios años se ha estado trabajado con mucho énfasis en mejorar los fundamentos de los modelos existentes para este tipo de procesos. Grandes avances se deben al trabajo de Bürger et al. [5, 6, 8, 9, 10, 11] entre otros. Para una descripción detallada de estos procesos y su modelación, se recomienda consultar [5, 12].

Por las características de este tipo de ecuaciones, no es posible aplicar ni la teoría de ecuaciones estrictamente parabólicas, ni la teoría establecida de soluciones de entropía de leyes de conservación [11].

Método de multiresolución: Motivación

Generalmente, el vector de flujos en una ecuación hiperbólica o parabólica, está formado por funciones cuya dependencia de las variables de estado es no lineal y esto hace que no sea posible deducir soluciones exactas para estas ecuaciones. De aquí nace la necesidad de diseñar métodos numéricos que aproximen convenientemente estas soluciones. Este es un problema general que afecta a la mayor parte de las ecuaciones en derivadas parciales no lineales, sin embargo, existen razones para estudiar esta clase particular de sistemas:

- Muchos problemas prácticos en ingeniería y ciencia involucran cantidades que se conservan y conducen a problemas del tipo ley de conservación.
- Existen dificultades especiales y específicas a esta clase de sistemas (por ejemplo la formación de ondas de choque) que no se observan en otros problemas no lineales y que deben tenerse en cuenta en el diseño de métodos numéricos que aproximen sus soluciones.
- Aunque se conocen pocas soluciones exactas, la estructura matemática de las ecuaciones y sus soluciones es cada día más estudiada. Este conocimiento se puede aprovechar para desarrollar métodos adecuados a las características de estos sistemas y sus soluciones.

El hecho de que las soluciones de este tipo de ecuaciones admitan discontinuidades plantea varios problemas, tanto desde el punto de vista matemático como numérico. Es evidente
Capítulo 1: Introducción

que una solución discontinua no puede satisfacer la ecuación en derivadas parciales en el sentido clásico. La teoría de distribuciones provee de una herramienta matemática muy útil, pues permite caracterizar las discontinuidades admisibles y definir el concepto de solución débil de un problema diferencial.

Sin embargo, la clase de funciones continuas a trozos es demasiado amplia para garantizar unicidad de solución. Generalmente existen soluciones débiles con los mismos datos iniciales. Puesto que estas ecuaciones son modelos para situaciones físicas reales (o al menos esa es la motivación), es obvio que sólo una de estas soluciones puede ser aceptable desde el punto de vista físico. El hecho de que existan otras soluciones espúreas es consecuencia de que nuestras ecuaciones son tan sólo un modelo que ignora algunos efectos físicos, particularmente en el caso de leyes de conservación, los efectos difusivos y viscosos. Aunque estos efectos (y otros) pueden ignorarse en la mayor parte del fluido, cerca de las discontinuidades juegan un rol esencial.

Estas consideraciones conducen a la imposición de determinados criterios basados en consideraciones físicas que permiten aislar la solución físicamente relevante entre todas las posibles soluciones débiles. Este tipo de criterios se conocen como condiciones de entropía de nuevo por analogía con la dinámica de gases (en este caso, la segunda ley de la Termodinámica: La entropía nunca decrece). En particular cuando las moléculas del gas pasan a través de una onda de choque, su entropía deberá aumentar, y esto proporciona el principio físico adecuado para determinar de manera unívoca la solución con sentido físico.

La aproximación numérica de este tipo de soluciones incorpora un nuevo conjunto de problemas. Las discretizaciones de la ecuación en derivadas parciales mediante diferencias finitas ocasionarán problemas si las soluciones que se quieren aproximar son discontinuas. Estos problemas son de dos tipos. En general, los métodos numéricos de primer orden incorporan difusión numérica; esto facilita la convergencia a la solución entrópica, pero limita la utilidad real de estos métodos. Los métodos clásicos de orden superior reducen la viscosidad numérica pero incorporan términos dispersivos y dan lugar a oscilaciones numéricas que pueden desencadenar inestabilidades no lineales o hacer que las aproximaciones numéricas no converjan a la solución físicamente relevante.

Los esquemas numéricos diseñados para la aproximación de las soluciones de este tipo de ecuaciones deben poder escribirse en forma conservativa. Esto garantiza que si las aproximaciones numéricas convergen, lo hacen a una solución débil de la ecuación (Teorema de Lax-Wendroff).

Si un método conservativo satisface además algún análogo discreto de las condiciones de entropía, el límite de las aproximaciones numéricas será precisamente la solución relevante desde el punto de vista físico.
Capítulo 1: Introducción

Una excelente clase de métodos conservativos para la aproximación numérica de las ecuaciones hiperbólicas y parabólicas, son los métodos de alto orden de precisión. Estos proporcionan perfiles bien delimitados y sin oscilaciones cerca de las discontinuidades. Un aspecto importante a tener en cuenta de los métodos de alto orden de precisión, es su elevado costo computacional, el cual es aún mayor bajo las siguientes condiciones:

- Sistemas de ecuaciones.
- Más de una dimensión.
- Un gran número de puntos en la malla.
- Extensos períodos de simulación.

Método de multiresolución: Descripción

El método de multiresolución es una técnica destinada (al menos, originalmente) a rebajar el costo computacional asociado a los métodos de alta resolución. En situaciones estándar, el comportamiento de la solución $w(x,t)$ como función de x es altamente no uniforme, con fuertes variaciones en regiones puntuales y un comportamiento suave en la mayor parte del intervalo computacional. La técnica de multiresolución (al menos, en la forma en que será utilizada en este trabajo) fue diseñada originalmente por Harten [28] para ecuaciones hiperbólicas y utilizada por Bihari [4] y Roussel et al. [36] para ecuaciones parabólicas. Se desea estudiar la aplicación del método de multiresolución a los métodos existentes para modelar fenómenos de sedimentación de suspensiones flocculadas [12].

Dado un método en forma conservativa y una malla uniforme apropiada para la solución numérica del problema de valores iniciales para una ley de conservación hiperbólica escalar o una ecuación parabólica, el método de multiresolución aproxima la solución a una tolerancia prescrita de una forma más eficiente, entendiendo por eficiencia una reducción en el número de veces que se calcula el flujo numérico con el método de alta resolución. Para ello se consideran los valores puntuales o medias en celda de la solución numérica mediante un proceso jerárquico de mallas anidadas diádicas, en el cual la malla dada es la más fina, y se introduce una representación que contiene la misma información.

La representación de multiresolución de la solución numérica está formada por sus valores puntuales en la malla más gruesa y el conjunto de errores por interpolar los valores puntuales de cada nivel de resolución a partir de los del nivel próximo más grueso. La compresión de datos es realizada haciendo cero las componentes de la representación que están por debajo de una tolerancia prescrita, e incluso eliminando de la malla a los puntos cuyos errores son menores a esta tolerancia prescrita; por consiguiente en lugar de calcular la evolución en tiempo de la solución numérica en la malla dada, se calcula la evolución de su representación de multiresolución comprimida. Como la transformación entre una
función y su representación de ondelette es rápida, la proposición de efectuar la gran parte de los cálculos en la representación de multiresolución es factible y atractiva.

La información contenida en el análisis de multiresolución de la solución numérica es utilizada para identificar la localización de las discontinuidades en la solución numérica, y diseñar métodos que mejoren el cálculo del flujo numérico. Esta información es de gran utilidad al momento de calcular los flujos, pues el procedimiento correspondiente toma en cuenta la regularidad de la función. Además, la eficiencia computacional del método de multiresolución está directamente relacionada con la razón de compresión de los datos iniciales, es decir, la solución numérica en la malla más fina [28]. La eficiencia del algoritmo se mide mediante la tasa de compresión y el tiempo de CPU.

Programa

Este trabajo se organiza del siguiente modo: En el capítulo 2 se revisarán los conceptos básicos necesarios para el análisis de multiresolución propuesto por Harten [28]. En el capítulo 3, se utiliza este análisis para desarrollar un método de alta resolución en mallas generadas por multiresolución, diseñado por Kozakevicius y Santos [32], el que será aplicado a leyes de conservación hiperbólicas escalares. Se muestran resultados de los test numéricos realizados. En el capítulo 4 se analizan las ecuaciones parabólicas escalares y un método numérico que utiliza la multiresolución y la alta resolución (esquemas ENO de segundo orden y esquemas Runge-Kutta de segundo orden) como herramientas principales. Se utiliza una nueva estructura de datos desarrollada por Cohen et al. [16]. Se muestran los resultados de los experimentos numéricos realizados, coincidentes con los resultados obtenidos por Roussel et al. [36]. En el capítulo 5 se presentan los supuestos básicos para el problema de la sedimentación, analizando varios casos test. Se simula un proceso de sedimentación tipo *Batch* y se muestran resultados obtenidos aplicando métodos de multiresolución a los esquemas desarrollados por Bürger et al. [6, 8, 9, 10, 11]. Se observa que el método de multiresolución es de gran ayuda para reducir el costo computacional en este tipo de problemas sin afectar la calidad de la solución.
Capítulo 2

Multiresolución y compresión de datos

En este capítulo se presentan los conceptos y definiciones básicas introducidas por Harten [28] para el análisis de multiresolución. Se presentan además herramientas adicionales utilizadas por Kozakevicius y Santos [32] para el desarrollo de métodos con mallas generadas mediante análisis de multiresolución.

2.1. Análisis de multiresolución para valores puntuales

Considerar $N_0 = 2^{n_0}$ valores

$$u^0 = \{u_j^0\}_{j=1}^{N_0}, \quad (2.1)$$

correspondientes a los valores puntuales de una función $u(x)$ sobre una partición uniforme de $[-1,1]:$

$$G^0 = \{x_j^0\}_{j=0}^{N_0}, \quad x_j^0 = -1 + j \cdot h_L, \quad h_0 = \frac{2}{N_0}, \quad u_j^0 = u(x_j^0), \quad 1 \leq j \leq N_0. \quad (2.2)$$

Se supone que $u(x)$ es 2-periódica. Sus valores fuera de $[-1,1]$ son los de su extensión periódica: $u_0^0 = u_{N_0}^0$, etc.

Considerar el conjunto de mallas anidadas diádicas $G^k, \ k = 0, \ldots, L:$

$$G^k = \{x_j^k\}_{j=0}^{N_k}, \quad x_j^k = -1 + j \cdot h_k, \quad h_k = 2^{N_k+1}h_0, \quad N_k = \frac{N_0}{2^k}, \quad (2.3)$$

donde el nivel $k = 0$ corresponde a la malla original, que es la más fina; y $k = L$ corresponde a la malla más gruesa. Notar que G^{k-1} está formada a partir de la malla más fina G^k.
eliminando las componentes de la malla con índice impar, es decir
\[
G^{k-1} \setminus G^k = \{x_{2j-1}^{k-1}\}_{j=1}^{N_k}, \quad x_j^k = x_{2j}^{k-1}, \quad 0 \leq j \leq N_k.
\] (2.4)

Además se definen
\[
u_j^k = u(x_j^k) = u(x_{2j}^0) = u_{2^k, j}, \quad 0 \leq j \leq N_k,
\] (2.5)

por lo tanto este proceso (ver figura 2.1) permite obtener \(u^k\) a partir de \(u^{k-1}\) mediante
\[
u_j^k = \nu_{2j}^{k-1}, \quad 1 \leq j \leq N_k,
\] (2.6)
\[
u_j^{k-1} - \nu_j^k = \{u_{2j-1}^{k-1}\}_{j=1}^{N_k}.
\] (2.7)

Sea \(\mathcal{I}(x, u^k)\) una función de interpolación de la malla \(k\)-ésima, es decir,
\[
\mathcal{I}(x_j^k, u^k) = \nu_j^k, \quad 0 \leq j \leq N_k,
\] (2.8)
que puede utilizarse para obtener aproximaciones para los valores ausentes en la malla \(k - 1\)-ésima
\[
\tilde{u}_{2j-1}^{k-1} = \mathcal{I}(x_{2j-1}^{k-1}, u^k), \quad 0 \leq j \leq N_k.
\] (2.9)

Se \(D^k(u^0) = \{D_j^k\}_{j=1}^{N_k}\) la sucesión de errores de interpolación al predecir los valores puntuales de cada nivel de resolución a partir del próximo nivel más grueso

\[
D_j^k = u_{2j-1}^{k-1} - \tilde{u}_{2j-1}^{k-1} = u_{2j-1}^{k-1} - \mathcal{I}(x_{2j-1}^{k-1}, u^k), \quad 1 \leq j \leq N_k.
\] (2.10)

Estos \(D_j^k\) se conocen como coeficientes de ondelette o detalles. Es sencillo comprobar que los conjuntos de datos \((u^k, D^k)\) y \(u^{k-1}\) contienen exactamente la misma información,
\[
u_j^{k-1} \leftrightarrow (u^k, D^k)
\] (2.11)
en el sentido de que existe una transformación uno a uno entre ambos conjuntos (notar que la cardinalidad es la misma: $N_{k-1} = 2N_k$).

Claramente utilizando (2.11) sucesivamente para $1 \leq k \leq L$, se obtiene

$$u^0 \leftrightarrow (u^1, D^1) \Rightarrow (D^1, (D^2, u^2)) = (D^1, D^2, u^2) \Rightarrow \cdots$$

(2.12)

donde $u_M = (D^1, D^2, \ldots, D^L, u^L)^T$ es la representación de multiresolución de u^0, equivalente a la representación original. Esta permite extraer información sobre la suavidad de la solución a partir de los errores de interpolación. La transformación uno a uno entre u^0 y u_M

$$u_M = Mu^0, \quad u^0 = M^{-1}u_M$$

(2.13)

es lineal si $I(\cdot, u^k)$ es independiente de los datos. En principio, puede utilizarse cualquier técnica de interpolación para I. En este caso se utilizará interpolación central polinomial

$$I(x, u^k) = q_j(x), \quad x \in I_j = [x_{j-1}, x_j], \quad j = 1, \ldots, N_k$$

(2.14)

donde $q_j(x)$ es un polinomio de grado $r = 2s$ unívocamente determinado por los datos $(u^k_{j-s}, \ldots, u^k_{j+s-1})$ en los puntos $(x_{j-s}, \ldots, x_{j+s-1})$; el valor en x_{2j-1} se calcula a partir del polinomio de grado $r-1$ (es decir, cada esténcil está formado por r puntos consecutivos de la malla) que interpola los puntos $(u^k_{j-s}, \ldots, u^k_{j+s-1})$, por consiguiente

$$\tilde{u}^{k-1}_{2j-1} = I(x^{k-1}_{2j-1}, u^k) = \sum_{l=1}^{s} \beta_l (u^k_{j+l-1} + u^k_{j-l}), \quad r = 2s,$$

(2.15)

con

$$\begin{cases}
 r = 2 \Rightarrow \beta_1 = 1/2 \\
 r = 4 \Rightarrow \beta_1 = 9/16, \quad \beta_2 = -1/16
\end{cases}$$

(2.16)

Ver detalles en el apéndice A.1.

En este caso M es un operador lineal que puede ser representado por una matriz de $N_0 \times N_0$. Sin escribir la forma explícita de esta matriz, se sigue que $u_M = Mu^0$ puede ser calculado mediante el siguiente Algoritmo de Codificación

$$u_M = Mu^0 \begin{cases}
 FOR k = 1, 2, \ldots, L \\
 u^k_j = u^{k-1}_{2j}, \quad 1 \leq j \leq N_k, \\
 D^k_j = u^{k-1}_{2j-1} - \sum_{l=1}^{s} \beta_l (u^k_{j+l-1} + u^k_{j-l}), \quad 1 \leq j \leq N_k
\end{cases}$$

(2.17)
y además \(u^0 = M^{-1}u_M \) puede ser calculado mediante el siguiente Algoritmo de Decodificación

\[
\begin{aligned}
\text{FOR } k &= L, L - 1, \ldots, 1 \\
u_0^k &= u_j^k, \quad 1 \leq j \leq N_k, \\
u_{2j-1}^k &= \sum_{l=1}^{s} \beta_l(u_{j+l-1}^k + u_{j-l}^k) + D_j^k, \quad 1 \leq j \leq N_k.
\end{aligned}
\] (2.18)

Notar que el algoritmo de Codificación va de fino a grueso mientras que el algoritmo de Decodificación va de grueso a fino; ambos son algoritmos cuyo costo computacional es de \(O(N_0) \) operaciones \((N_0 - N_L) \cdot (s + 1) \) sumas y \((N_0 - N_L) \cdot s \) multiplicaciones.

Notar además que los algoritmos de Codificación y Decodificación representan una transformada de ondelette exacta, pues \(u = M^{-1}(Mu) \).

2.2. Análisis de multiresolución por medias en celda

En esta sección se considera la sucesión de \(N_0 \) valores

\[
u^0 = \{u_j^0\}_{j=1}^{N_0}
\] (2.19)

que se interpretarán como medias en celda (cell-averages) de cierta función \(u(x) \) sobre la malla fina \(G^0 \):

\[
u_j^0 = \frac{1}{h_0} \int_{x_{j-1}^0}^{x_j^0} u(x)dx, \quad 1 \leq j \leq N_0.
\] (2.20)

![Figura 2.2: Diferentes escalas de medias en celda](image)

Se consideran las mallas anidadas \(G^k, 1 \leq k \leq L \) y se definen

\[
u_j^k = \frac{1}{h_k} \int_{x_{j-1}^k}^{x_j^k} u(x)dx, \quad 1 \leq j \leq N_k.
\] (2.21)
Se sigue de esta definición y de (2.5) que

\[u_j^k = \frac{1}{h_k} \int_{x_j^{k-1}}^{x_j^k} u(x) dx \]
\[= \frac{1}{2h_{k-1}} \left(\int_{x_j^{k-1}}^{x_{j-1}^{k-1}} u(x) dx + \int_{x_{j-1}^{k-1}}^{x_j^k} u(x) dx \right) \]
\[= \frac{1}{2} (u_{2j-1}^{k-1} + u_{2j}^{k-1}) \]

Por lo tanto \(\{u_j^k\}_{j=1}^{N_k}, 1 \leq j \leq N_k \), puede ser calculado en forma directa del dato inicial \(u^0 \), y sin ningún conocimiento explícito de la función \(u(x) \), mediante el algoritmo

\[
\begin{align*}
\text{FOR } k = 1, 2, \ldots, L \\
\text{FOR } j = 1, \ldots, N_k \\
\quad u_j^k &= \frac{1}{2} (u_{2j-1}^{k-1} + u_{2j}^{k-1})
\end{align*}
\] (2.22)

Considerar la primitiva de \(u(x) \)

\[U(x) = \int_0^x u(y) dy, \] (2.23)

y observar que conocer las medias en celda \(u_k \) es equivalente al conocimiento de los valores puntuales \(U_k \) de la función primitiva, es decir,

\[U_k = \{U_j^k\}_{j=1}^{N_k} \leftrightarrow u_k = \{u_j^k\}_{j=1}^{N_k}, \]

lo cual es evidente de las siguientes dos relaciones:

\[U_j^k = \int_0^{x_j^k} u(y) dy = \sum_{i=1}^{j} \int_{x_{i-1}^{k-1}}^{x_i^k} u(y) dy = h_k \sum_{i=1}^{j} \tilde{u}_i^k, \] (2.24)

\[\tilde{u}_j^k = \frac{U(x_j^k) - U(x_{j-1}^k)}{h_k} = \frac{U_j^k - U_{j-1}^k}{h_k}. \] (2.25)

En consecuencia conociendo los valores de \(\tilde{u}_k \) es posible calcular \(U_k \) y utilizar una función de interpolación para aproximar el valor ausente \(U_{2j-1}^{k-1} \), 1 \(\leq \) \(j \) \(\leq \) \(N_k \) por \(\tilde{U}_{2j-1}^{k-1} \), es decir,

\[\tilde{U}_{2j-1}^{k-1} = \mathcal{I}(x_{2j-1}^{k-1}; U_k). \] (2.26)

Con esto, y teniendo en cuenta que \(U_j^k = U_{2j-1}^{k-1} \), es posible lograr una aproximación \(\tilde{u}_{k-1} \) para \(u_{k-1} \) mediante

\[\tilde{u}_{2j-1}^{k-1} = \frac{\tilde{U}_{2j-1}^{k-1} - \tilde{U}_{j-1}^{k-1}}{h_{k-1}}, \quad \tilde{u}_{2j}^{k-1} = \frac{\tilde{U}_j^{k-1} - \tilde{U}_{2j-1}^{k-1}}{h_{k-1}}. \] (2.27)
Notar que
\[\frac{1}{2}(\tilde{u}_{2j-1}^{k-1} + \tilde{u}_{2j}^{k-1}) = \frac{U_j^k - U_{j-1}^k}{2h_{k-1}} = \tilde{u}_j^k, \] (2.28)
por lo tanto \(\tilde{u}_{2j}^{k-1} \) puede calcularse a partir de \(\tilde{u}_j^k \) y \(\tilde{u}_{2j-1}^{k-1} \) mediante
\[\tilde{u}_{2j}^{k-1} = 2\tilde{u}_j^k - \tilde{u}_{2j-1}^{k-1}. \] (2.29)
Se denota por \(d^k(\tilde{u}^0) = \{d_j^k\}_{j=1}^{N_k} \) a la sucesión de errores de aproximación cometidos al predecir \(\{\tilde{u}_{2j-1}^{k-1}\}_{j=1}^{N_k} \) desde \(\tilde{u}^k \)
\[d_j^k = \frac{\tilde{u}_{2j-1}^{k-1} - \tilde{u}_{2j-1}^{k-1}}{2h_{k-1}} = \frac{\tilde{u}_{2j-1}^{k-1} - I(U_{2j-1}^{k-1}, U^k) - U_{j-1}^k}{h_{k-1}}. \] (2.31)
Análogamente al caso de valores puntuales, puede concluirse que existe una transformación uno a uno entre \(\tilde{u}^0 \) y su representación de multiresolución
\[\tilde{u}_M = (d^1, \ldots, d^L, \tilde{u}^L)^T, \] (2.32)
que se denota por
\[\tilde{u}_M = M\tilde{u}^0, \quad \tilde{u}^0 = M^{-1}\tilde{u}_M. \] (2.33)
En (2.31) el valor en \(x_{2j-1}^{k-1} \) se calcula a partir de la función polinomial que interpola los puntos \((U_{j-s}^k, \ldots, U_{j+s-1}^k) \). Utilizando lo visto anteriormente para el caso de valores puntuales, y como \(2h_{k-1} = h_k \), se obtiene
\[d_j^k = \tilde{u}_{2j-1}^{k-1} - \frac{\sum_{l=1}^{s-1} \beta_l (U_{j+l-1}^k + U_{j-l}^k) - U_{j-1}^k}{2h_k}, \] (2.34)
con los \(\beta_l \) calculados en (2.16).

De este modo, los coeficientes de ondelette están dados por
\[d_j^k = \tilde{u}_{2j-1}^{k-1} - \tilde{u}_j^k - \sum_{l=1}^{s-1} \gamma_l (\tilde{u}_{j+l}^k - \tilde{u}_{j-l}^k), \quad 1 \leq j \leq N_k. \] (2.35)
Notar que se utiliza el esténcil \((\tilde{u}_{j-s+1}^k, \ldots, \tilde{u}_{j+s-1}^k) \) y por lo tanto el orden de precisión correspondiente es \(r = 2s - 1 \), y los coeficientes correspondientes \(\gamma_l \) son
\[
\begin{cases}
 r = 3 & \Rightarrow \quad \gamma_1 = -1/8 \\
 r = 5 & \Rightarrow \quad \gamma_1 = -22/128, \quad \gamma_2 = 3/128
\end{cases}
\]
Ver detalles en el apéndice A.2.
Cuando se utiliza interpolación central (o cualquier interpolación independiente de los datos), se tiene que \tilde{M} es un operador lineal que puede ser expresado por una matriz de $N_0 \times N_0$. En el caso de que $T(\cdot, U^k)$ sea el especificado en la sección anterior, con r y s dados, las transformaciones en (2.32) pueden ser llevadas a cabo sin escribir la forma explícita de la matriz, calculadas mediante los algoritmos siguientes:

Algoritmo de Codificación

$$\tilde{u}_M = \tilde{M}u^0$$

\[
\begin{cases}
 \text{FOR } k = 1, 2, \ldots, L \\
 \quad \tilde{u}_j^k = \frac{1}{2}(\tilde{u}_{2j-1}^{k-1} + \tilde{u}_{2j}^{k-1}), \quad 1 \leq j \leq N_k, \quad (2.36)\\
 \quad d_j^k = \tilde{u}_{2j-1}^{k-1} - \tilde{u}_j^k - \sum_{l=1}^{s-1} \gamma_l (\tilde{u}_{j+l}^{k} - \tilde{u}_{j-l}^{k-1}), \quad 1 \leq j \leq N_k
\end{cases}
\]

Algoritmo de Decodificación

$$u^0 = M^{-1}u_M$$

\[
\begin{cases}
 \text{FOR } k = L, L-1, \ldots, 1 \\
 \quad \text{FOR } j = 1, \ldots, N_k \\
 \quad \quad \Delta = \sum_{l=1}^{s-1} \gamma_l (\tilde{u}_{j+l}^{k} - \tilde{u}_{j-l}^{k-1}) + d_j^k; \\
 \quad \quad \tilde{u}_2^{k-1} = \tilde{u}_j^k + \Delta, \quad \tilde{u}_2^{k-1} = \tilde{u}_j^k - \Delta.
\end{cases}
\]

Ambos algoritmos poseen un costo computacional de $O(N_0)$ operaciones ($(N_0 - N_L) \cdot (s + 2)$ sumas en ambos algoritmos y $(N_0 - N_L) \cdot s$ multiplicaciones en ambos algoritmos).

Es interesante observar que dado que u^0 es equivalente a U^0, también \tilde{u}_M es equivalente a U_M, la representación de multiresolución de los valores puntuales de la función primitiva $U(x)$

$$(d^1, d^2, \ldots, d^L, \tilde{u}^L)^T = \tilde{u}_M \leftrightarrow U_M = (D^1, D^2, \ldots, D^L, U^L)^T.$$

Además la transformación entre $d_j^k(\tilde{u}^0)$ y $D_j^k(U^0)$ está dada por

$$d_j^k(\tilde{u}^0) = D_j^k(U^0)/h_{k-1}. \quad (2.38)$$

2.3. Análisis de regularidad

El análisis de multiresolución será de gran utilidad para obtener un algoritmo de compresión de datos de las medias en celda. Luego se estudiará su aplicación a la solución numérica v^n del esquema conservativo

$$v_j^{n+1} = v_j^n - \lambda (f_j - f_{j-1}), \quad \lambda = \tau/h. \quad (2.39)$$
Utilizando resultados de interpolación estándar y notando que $U(x)$ es más suave que $u(x)$, se obtiene de (2.38) la siguiente caracterización cualitativa de $d_j^k(u^0)$ (ver [28]):

Teorema 1. Si la función $u(x)$ en $x = x^*$ posee $p - 1$ derivadas continuas y una discontinuidad de salto en la derivada p-ésima, entonces en los puntos x_j^k cercanos a x^* se tiene

$$d_j^k(u^0) \sim \begin{cases} (h_k)^p[u^{(p)}], & \text{si } 0 \leq p \leq \bar{r}, \\ (h_k)^p u^{(p)}, & \text{si } p > \bar{r}, \end{cases}$$

(2.40)

donde \bar{r} es el orden de precisión de la aproximación ($\bar{r} = r - 1$), $p \leq 1$ y $[\]$ denota el salto en la discontinuidad.

Dem: Sea $I(x, U^{k-1})$ como en (2.14). Se tiene que

$$U(x) = I(x, U^{k-1}) + U[x_{j-s}^{k-1}, \ldots, x_{j+s-1}^{k-1}, x] \prod_{i=j-s}^{j+s-1} (x - x_i^{k-1}),$$

(2.41)

con $x \in [x_{j-s-1}^{k-1}, x_{j-1}^{k-1}]$. Notar que si $u(x)$ tiene $p - 1$ derivadas continuas en x^* y una discontinuidad de salto en $u^{(p)}$ cerca de x^*, entonces $U(x)$ tiene p derivadas continuas en x^* y una discontinuidad de salto en $U^{(p+1)}$ cerca de x^*. Con esto, de [1] se deduce que

$$U[x_{t}^{k-1}, \ldots, x_{t+t}^{k-1}] = \begin{cases} O\left(\frac{|U^{(p+1)}|}{h_k^{-(p+1)}}\right), & \text{si } 0 \leq p + 1 \leq t \\ O\left(\|U^{(t)}\|\right), & \text{si } t < p + 1. \end{cases}$$

(2.42)

Dado que $D_j^k = U_{2j-1}^{k-1} - I(x_{2j-1}^{k-1}, U^k)$, la relación (2.41) conduce a

$$D_j^k(U) = U[x_{j-s}^{k}, \ldots, x_{j+s-1}^{k}, x_{2j-1}^{k-1}] \prod_{i=j-s}^{j+s-1} (x_{2j-1}^{k-1} - x_i^{k}),$$

(2.43)

y teniendo en cuenta que $x_{2j-1}^{k-1} - x_i^{k}$ es aproximadamente del orden de h_k, con $i \in \{j - s, \ldots, j + s - 1\}$, se obtiene que

$$D_j^k(U) \sim \begin{cases} \frac{|U^{(p+1)}|}{h_k^{-(p+1)}} h_k^r, & \text{si } 0 \leq p + 1 \leq t \\ \|U^{(r)}\| h_k^r, & \text{si } t < p + 1. \end{cases}$$

(2.44)

Finalmente, de (2.38), (2.44) y remarcando que $U^{(n+1)}(x) \equiv u^{(n)}(x)$, se obtiene (2.40).
Ahora, la ecuación (2.40) en el nivel \(k - 1 \) corresponde a

\[
\begin{aligned}
\hat{d}^{k-1}_j &\sim \begin{cases}
(h_{k-1})^{p[u(p)]}, & \text{si } 0 \leq p \leq r - 1, \\
(h_{k-1})^{r-1}u^{(r-1)}, & \text{si } p > r - 1,
\end{cases}
\end{aligned}
\] (2.45)

y como \(h_k = 2h_{k-1} \), entonces

\[
\begin{aligned}
\hat{d}^k_{2j} &\sim \begin{cases}
2^{-r}(h_{k-2})^{p[u(p)]}, & \text{si } 0 \leq p \leq r - 1, \\
2^{-r+1}(h_{k-2})^{r-1}u^{(r-1)}, & \text{si } p > r - 1,
\end{cases}
\end{aligned}
\] (2.46)

Por lo tanto

\[
|\hat{d}^{k-1}_{2j}| \approx 2^{-\bar{p}}|d^k_j|, \quad \bar{p} = \text{mín}(p, \bar{r}).
\] (2.47)

Pueden obtenerse entonces algunas conclusiones útiles

- Lejos de las discontinuidades, los coeficientes \(d^k_j \) decrécen a medida que se va a niveles más finos.

- La tasa de decaimiento de los coeficientes \(d^k_j \) es determinada por la regularidad local de la función y el orden de precisión de la aproximación.

- En la vecindad de una irregularidad de \(u(x) \), los coeficientes \(d^k_j \) permanecen del mismo orden \(O(|u|) \), independiente del nivel de refinamiento.

Por lo tanto el análisis de multiresolución de \(\tilde{u}^0 \) puede verse como un estudio de la regularidad local de \(u(x) \).

Puede hacerse un análisis de regularidad similar si se considera el caso de valores puntuales en vez de medias en celdas. De forma análoga, Kozakevicus (ver [32]) propone que dependiendo de la regularidad de la función, un gran número de coeficientes de ondelette pueden ser extremadamente pequeños, y por lo tanto podrían ser descartados de la representación de multiresolución).

2.4. Compresión de datos

La idea principal es reducir la cantidad de datos mediante una técnica de truncamiento, que consiste en hacer ceros los coeficientes que están por debajo de una tolerancia prescrita.
Capítulo 2: Multiresolución y compresión de datos

Sea $\text{tr}_{\varepsilon_k}$ el operador de truncamiento definido por

$$
\hat{d}_j^k = \text{tr}_{\varepsilon_k}(d_j^k) = \begin{cases}
0, & \text{si } |d_j^k| \leq \varepsilon_k, \\
 d_j^k, & \text{en otro caso.}
\end{cases}
$$

(2.48)

Sea \hat{u}_M el resultado de la operación de truncamiento aplicada a u_M

$$
\hat{u}_M = (\hat{d}^1, \hat{d}^2, \ldots, \hat{d}^L, u^L).
$$

(2.49)

Si se aplica el algoritmo de decodificación al dato truncado \hat{u}_M, se obtiene una aproximación $u^0 = M^{-1}\hat{u}_M$, que por [28] se sabe que permanece cerca del dato inicial u^0.

Dado que se está en el caso de multiresolución por valores puntuales de u, cada coeficiente de ondelette est relacionado con una posición específica en la malla fina uniforme y por lo tanto los procesos de codificación y decodificación pueden ser simplificados. Los coeficientes d_j^k se calcularán entonces sólo para decidir si x_j^k seguirá o no en la malla y se evita así construir la representación de multiresolución completa [32]. Esto quiere decir, que en estos puntos, la información sobre la función puede ser obtenida mediante interpolación.

La representación de u^0 al cabo de este proceso, contendrá sólo los valores puntuales en las posiciones asociadas a coeficientes de ondelette significativos, y los puntos en el nivel más grueso. Esto se conoce como representación puntual esparsa de u, y se denota por u_S.

La elección de ε_k puede variar de acuerdo a las propiedades de los espacios funcionales [30], o suavidad de la función [28]. En este caso, con ε fijo, los niveles de tolerancia en cada nivel estarán dados por $\varepsilon_k = \varepsilon/2^{L-k}$. Notar que a escalas más finas, ε_k es más pequeño; esto con el fin de preservar la información asociada a la parte regular del dato inicial y descartar perturbaciones de alta frecuencia (pues una señal regular posee mayores coeficientes de ondelette en escalas más gruesas y una señal perturbada, o una función con singularidades, posee mayores coeficientes de ondelette en escalas más finas). Además esta elección de ε_k es óptima en el sentido que mantiene la mejor relación entre compresión de datos y disipación de información durante la evolución temporal de la solución.

La representación puntual esparsa u_S también incluirá algunos safety points necesarios para evitar la disipación numérica; este corresponde al operador de extensión E. Los safety points serán incluidos en las vecindades de puntos cuyos coeficientes de ondelette son significativos [32]. Se incluirán dos tipos de safety points: Puntos en el mismo nivel de multiresolución que el coeficiente de ondelette respectivo (con el fin de mantener la calidad del transporte de información desde un punto a su vecino en la malla) y puntos en un nivel de multiresolución más fino que el nivel del coeficiente de ondelette (sólo si el detalle es mayor que una tolerancia adicional $2\varepsilon_k$, esto con el fin de mejorar la captura de choques).
Figura 2.3: Secuencia de operaciones para obtener la representación puntual esparsa de una función. DWT: transformada del dato inicial, \(\text{tr}_{k} \): operador de truncamiento, \(E \): inclusión de safety points, IWT: transformada de ondelette inversa y \(R \): reconstrucción de malla uniforme.

2.5. Estructura de datos

Dado las características de los problemas hiperbólicos que poseen discontinuidades que se propagan, el número de puntos en la representación puntual esparsa es mucho menor que el número de puntos en la malla fina uniforme. Luego, será de gran utilidad almacenar la información relevante en algún tipo de estructura que saque provecho de ello, tal como se hace en [32] (MORSE, SPARSE, etc.)

Figura 2.4: Ejemplo de almacenamiento de datos sólo para posiciones significativas de la representación truncada (MORSE o SPARSE).
Capítulo 3

Caso hiperbólico

En esta sección se presenta una forma eficiente de resolver leyes de conservación hiperbólicas mediante un método de alta resolución en mallas generadas por ondelettes desarrollado por Kozakevicius y Santos [32]. La eficiencia de este método se basa en la asociación de dos técnicas independientes: mallas adaptativas generadas por una transformación de ondelettes [28, 16, 30] y métodos de alta resolución basados en interpolaciones ENO para el cálculo de los flujos [37, 32].

3.1. Esquema ENO Lax-Friedrichs

Se necesitan esquemas conservativos para la parte espacial del operador (forma semi-discreta)

\[
\frac{d}{dt}(u_j(t)) = -\frac{1}{\Delta x_j} \left(\hat{f}_{j+1/2} - \hat{f}_{j-1/2} \right),
\]

donde \(\hat{f}_{j+1/2} = \hat{f}(u_{j-r}, \ldots, u_{j-s}) \) es el flujo numérico, en que la primera posición del esténcil \(j - r \) es elegida mediante un algoritmo ENO, manteniendo la relación \(j - r < j + 1/2 < j - s \). Esta función de flujo numérico es Lipschitz continua en sus argumentos y es consistente con el flujo exacto, es decir, \(\hat{f}(u, \ldots, u) = f(u) \).

Para lograr un alto orden de aproximación para \(\frac{\partial f}{\partial x_j} \), se utilizarán posiciones escalonadas auxiliares \(\{x_{j+1/2}\}_j \) [23] con respecto a la malla gruesa esparsa. El flujo numérico evaluado en estas posiciones se obtiene mediante interpolación ENO.

Es necesario considerar esquemas upwind en la construcción del flujo numérico con el objetivo de mantener la estabilidad del esquema. Para ello se utilizará la forma más sencilla, más robusta y menos costosa de obtener esquemas upwind sin violar condiciones
Figura 3.1: Componentes de la separación del flujo numérico en la frontera. h_j es el interpolador ENO para la celda $[x_{j-1/2}, x_{j+1/2}]$ y h_{j+1} es el interpolador ENO para la celda $[x_{j+1/2}, x_{j+1+1/2}]$.

de entropía de la solución. Esta es, la separación de flujo de *Lax-Friedrichs*:

$$f(u) = f^+(u) + f^-(u), \quad f^+(u) = \frac{1}{2}(f(u) + \alpha u), \quad f^-(u) = \frac{1}{2}(f(u) - \alpha u),$$

donde

$$\alpha = \max_u |f'(u)|. \quad (3.1)$$

El número de puntos escogidos para la reconstrucción depende del orden de la interpolación. En este caso, se utilizará interpolación cónica.

El flujo numérico en las posiciones de la malla auxiliar corresponde a la suma de las aproximaciones generadas para cada parte de la separación de flujos

$$\hat{f}_{j+1/2} = \hat{f}^+_{j+1/2} + \hat{f}^-_{j+1/2}. \quad (3.2)$$

Notar que $\hat{f}^+_{j+1/2}$ y $\hat{f}^-_{j+1/2}$ son aproximaciones para el mismo borde $x_{j+1/2}$ del volumen de control $[x_{j-1/2}, x_{j+1/2}]$, obtenidas mediante interpoladores distintos.

Notar además, que una vez que se elige el número de puntos en el esténcil, este permanece igual para todos los puntos de la malla G^k. Esta forma de construir predictores para la transformada de ondelette no considera la suavidad local de la función a ser interpolada. Si la función es suave a trozos, una aproximación de esténcil fijo puede comportarse inadecuadamente cerca de las irregularidades, generando oscilaciones en las celdas correspondientes. Estas oscilaciones (conocidas como *fenómeno de Gibbs* en métodos espectrales) ocurren debido a que los esténciles contienen una *celda discontinua* (volumen de control que contiene una irregularidad), es decir, poseen un punto x_j bastante cerca de una irregularidad. Además, cada vez que el esténcil cruza una singularidad, la calidad de
la interpolación se ve reducida. Cuanto mayor es el grado del interpolador, mayor es la región afectada por la singularidad.

La idea es entonces utilizar interpolación ENO (Essentially non oscillatory), que aumenta la región de precisión para el interpolador, eligiendo un esténcil diferente, para evitar las oscilaciones cerca de las discontinuidades.

Se presenta a continuación la forma en que se prepara la reconstrucción ENO. Inicialmente se conocen los valores de los flujos en la malla esparsa S. Se define $V(x_{j+1/2})$, la primitiva de la componente de separación de flujo en la malla auxiliar con respecto a S. Se construirá un polinomio interpolador por partes de V, en la variable x: $H(x, V)$, sobre la malla auxiliar, es decir,

$$ H(x_{j+1/2}, V) = V_{j+1/2} = V(x_{j+1/2}) = \sum_{k=0}^{j} f(x_k), $$

$$ H(x, V) = q_m(x, V), \quad x_{j-1/2} \leq x \leq x_{j+1/2}, $$

donde q_m es el único polinomio interpolador de grado m, que utiliza $m + 1$ puntos consecutivos $(x_{i_{m}(j)}, \ldots, x_{i_{m}(j)+m})$, incluyendo a $x_{j-1/2}$ y $x_{j+1/2}$.

Notar que dependiendo de la elección del primer punto del esténcil $i_{m}(j)$, existen m polinomios interpoladores posibles. ¿Cuál elegir? El esténcil asociado a $[x_{j-1/2}, x_{j+1/2}]$ será aquel tal que $V(x)$ es más suave (en un sentido asintótico) y el valor x donde se evaluará el interpolador, será $x_{j-1/2}$ o $x_{j+1/2}$.

La información de la suavidad de V puede obtenerse de las diferencias divididas:

$$ w[x_{j-1/2}] = V(x_{j-1/2}) $$

$$ w[x_{j-1/2}, \ldots, x_{j-1/2+k}] = \frac{w[x_{j-1/2+1}, \ldots, x_{j-1/2+k}] - w[x_{j-1/2}, \ldots, x_{j-1/2+k-1}]}{x_{j-1/2+k} - x_{j-1/2}}. $$

El siguiente Teorema (ver [32, 19]) entrega un criterio para medir asintóticamente la suavidad de una función.

Teorema 2. Si $f(x)$ es $C^\infty([x_i, x_{i+k}])$, entonces

$$ w[x_i, \ldots, x_{i+k}] = \frac{1}{k!} \frac{d^k}{dx^k} f(\xi_{i,k}), \quad x_i \leq \xi_{i,k} \leq x_{i+k}; \quad (3.3) $$

pero si $f(x)$ tiene una discontinuidad de salto en su p–ésima derivada, $0 \leq p \leq k$, entonces

$$ w[x_i, \ldots, x_{i+k}] = O(d^{-k+p})[f^{(p)}], \quad d = |x_{i+k} - x_i|. \quad (3.4) $$

Luego, utilizando $|w[x_{j-1/2}, \ldots, x_{j-1/2+k}]|$ es posible medir asintóticamente la suavidad de $f(x)$ en $[x_{j-1/2}, x_{j-1/2+k}]$. El mejor esténcil, será aquel asociado a la diferencia dividida más pequeña [19].
La cuestión es ahora, cómo hallar $i_m(j)$. Para ello se seguirá el siguiente procedimiento ([32]):

1. $i_1(j) = j - \frac{1}{2}$, donde q_1 es el polinomio interpolador para V en $x_{j-1/2}$ y $x_{j+1/2}$.

2. Suponer un polinomio interpolador de grado n, q_n para V en $x_{i_n(j)}, \ldots, x_{i_n(j)+n}$.

3. De acuerdo con la diferencia dividida más pequeña, q_{n+1} comenzará con $i_{n+1}(j) = i_n(j) - 1$ (si el siguiente punto elegido está a la izquierda del último punto en el esténcil) o con $i_{n+1}(j) = i_n(j)$ (si el siguiente punto elegido está a la derecha del último punto en el esténcil).

Las aproximaciones $h_{j-1/2}$ y $h_{j+1/2}$ para cada componente de la separación de flujo serán entonces la derivada de H evaluada en $x_{j-1/2}$ y $x_{j+1/2}$ respectivamente. Una vez calculado el flujo numérico en las posiciones auxiliares, se obtiene una aproximación de alto orden para el término de la derivada espacial en las posiciones de la malla esparsa S.

3.2. Evolución temporal

Notar que se está frente a un proceso de discretización en dos etapas, primero se ha discretizado sólo espacio, dejando el problema continuo en tiempo. Esto conduce a las llamadas ecuaciones semi-discretas. La discretización puede hacerse utilizando un método numérico estándar para sistemas de ecuaciones diferenciales ordinarias. Este mecanismo es particularmente ventajoso en el desarrollo de métodos con orden de precisión mayor a dos, ya que permite alcanzar de forma relativamente sencilla la misma precisión espacial y temporal.

Los experimentos realizados en [37] indican que las formulaciones semi-discretas con discretización temporal Runge-Kutta TVD desarrollados por Shu y Osher no generan oscilaciones para $CFL \leq 0.5$ aproximadamente, y son óptimas en el sentido de que permiten el mayor CFL para esquemas explícitos, $CFL = 1$.

Se utilizarán entonces métodos Runge-Kutta TVD de segundo o tercer orden.

R-K TVD óptimo de segundo orden:

\[
\begin{align*}
 u^{(1)} &= u^n + \Delta t \mathcal{L}(u^n) \\
 u^{n+1} &= \frac{1}{2}u^n + \frac{1}{2}u^{(1)} + \Delta t \mathcal{L}(u^{(1)}),
\end{align*}
\]
Capítulo 3: Caso hiperbólico

R-K TVD óptimo de tercer orden orden:

\[u^{(1)} = u^n + \Delta t \mathcal{L}(u^n) \]
\[u^{(2)} = \frac{3}{4} u^n + \frac{1}{4} u^{(1)} + \Delta t \mathcal{L}(u^{(1)}) \]
\[u^{n+1} = \frac{1}{3} u^n + \frac{2}{3} u^{(2)} + \frac{2}{3} \Delta t \mathcal{L}(u^{(2)}) \]

con \(\mathcal{L}(u) = -(\Delta x)^{-1}(\hat{f}_j(u) - \hat{f}_{j-1}(u)) \).

La alta resolución (asociada a discretizaciones espaciales TVB, ENO o TVD) es necesaria para asegurar estabilidad. En los pasos intermedios del esquema de evolución temporal, se conserva la malla esparsa del paso \(n \).

3.3. Adaptatividad de la representación esparsa

Con el fin de actualizar la malla esparsa, es necesario aplicar el operador de reconstrucción \(R \) para reconstruir la solución en la malla uniforme. Una vez aplicada la transformada de ondelette, el operador de truncamiento y el operador de extensión, puede llevarse a cabo la evolución temporal.

Dado que recalcular la malla es costoso, puede utilizarse la misma malla para varios pasos temporales. Para problemas donde la velocidad de la onda es baja (en el sentido \(CFL \)), es posible utilizar la misma representación puntual esparsa para 5 o más pasos temporales sin aumentar la disipación numérica, y luego realizar la actualización de la configuración. Para problemas con una alta velocidad de onda, la reconstrucción de la malla puede hacerse cada dos pasos temporales, sin afectar la calidad de la solución [32].

Cuando se trabaja con ecuaciones multivariadas se construye una malla esparsa “unificada”. Es la unión de las posiciones significativas de la representación esparsa de cada componente y todos los safety points necesarios para la evolución, en cada componente. El criterio para la malla unificada es bastante simple. Una vez que una posición tiene asociado un coeficiente de ondelette significativo en cualquier componente del vector de cantidades, tal posición debe permanecer en la malla unificada, y todas las componentes del vector de cantidades deben tener sus valores puntuales en esta posición. Lo mismo sucede con el operador de extensión.

Notar que como cada variable del vector de cantidades desarrolla discontinuidades bastante localizadas, la malla unificada seguirá siendo esparsa [28, 29, 32].

La actualización de la malla es análoga al caso escalar. Los mismos operadores deben ser aplicados a cada componente del vector de cantidades para obtener la siguiente configuración de la malla unificada y realizar la evolución temporal.
3.4. Método adaptativo de alta resolución

Dado el número de puntos en la malla fina, N_0, el número de niveles de multiresolución, L, el grado r del predictor intermallas y del interpolador ENO, el nivel de truncamiento ε_k; dadas además las condiciones de contorno e inicial de la ley de conservación, el algoritmo del método descrito puede ser resumido como sigue:

1. Transformada de ondelette discreta (DWT) (u operador de codificación M) aplicada al dato inicial.
 - Representación puntual esparsa (SPR) de la solución. Esta incluye truncamiento, extensión, y transformada inversa de ondelette (IWT) (u operador de decodificación M^{-1}).

2. Cálculo del flujo exacto en malla esparsa (correspondiente al nivel más fino de multiresolución).
 - Cálculo del valor global de α (3.1).
 - Cálculo de Δt para la evolución temporal: $\Delta t = \frac{CFL h_0}{\alpha}$, donde h_0 es el paso espacial en la malla fina.
 - Factorización Lax-Friedrichs del flujo exacto: f^+ y f^-.
 - Cálculo del flujo numérico $\hat{f}_{j+1/2}$:
 - para f^+, construir la aproximación ENO h^-.
 - para f^-, construir la aproximación ENO h^+.
 - $\hat{f}_{j+1/2} = \hat{f}^+_{j+1/2} + \hat{f}^-_{j+1/2}$.

 - Repetir 2. para la solución intermedia necesaria para 3.
 - Evolución temporal de la solución intermedia (El método Runge-Kutta TVD de segundo orden completa el paso temporal, el método Runge-Kutta TVD de tercer orden necesita otro paso intermedio).

4. Aplicación del operador de reconstrucción de la solución en malla fina R.

5. Volver a 1., aplicar DWT a la solución obtenida y repetir (ver [32]).
3.5. Resultados numéricos

En esta sección se reproducirán algunos resultados obtenidos por Harten [28]. Para ello se aplicará el algoritmo de multiresolución a la solución numérica de una ley de conservación, tomando como modelo la ecuación de Burgers (caso escalar y unidimensional)

\[u_t + \left(u^2 / 2 \right)_x = 0 \]

(3.5)
asociada a la condición inicial

\[u(x, 0) = \begin{cases} 1, & \text{si } |x| \leq 1/2 \\ 0, & \text{si } 1/2 < |x| \leq 1. \end{cases} \]

(3.6)
Se utilizan condiciones periódicas en \(x = -1 \) y \(x = 1 \). Se opera hasta antes de que las discontinuidades alcancen las fronteras del dominio.

El primer objetivo es mostrar la relación existente entre la capacidad de compresión de este método de multiresolución y las propiedades de aproximación de las técnicas de reconstrucción utilizadas. La localización de los coeficientes de ondelette que están por sobre una tolerancia prescrita, ayuda a visualizar esta conexión. Recordar que los coeficientes de ondelette \(d_k^j \) representan los errores cometidos en el proceso de predicción y están directamente relacionados a errores de interpolación, los cuales son pequeños en regiones de suavidad. En las proximidades de las singularidades el proceso de reconstrucción podría conducir a regiones de exactitud pobre, por lo tanto, se examina el efecto del esquema de compresión basado en la multiresolución. Como una medida de la mejora en velocidad alcanzada mediante la utilización del análisis de multiresolución, se presenta la tasa de compresión o eficiencia \(\mu \) [4, 28] definida por \(\mu = \frac{N_0}{N_0/2^p + |D^n|} \), donde \(D^n \) es el conjunto de coeficientes de ondelette significativos, en todos los niveles de multiresolución, en el paso temporal \(n \).

Las figuras 3.2 a 3.9 y las tablas 3.1 y 3.2 resumen el resultado de los test numéricos realizados. En cada figura, la parte izquierda representa a la solución numérica con asteriscos. La parte derecha muestra el conjunto de los coeficientes de ondelette significativos en el plano \(x k \), dibujando un + alrededor de cada \((x_j^k, k) \). Cada tabla muestra resultados de multiresolución para la solución numérica de la ecuación de Burgers para diferentes tiempos \(t \). Se muestra la tasa de compresión \(\mu \), proporción \(V \) (entre el tiempo total de CPU de la solución numérica sin multiresolución y el tiempo total de CPU de la solución numérica con multiresolución) y los errores \(e_p = \| u^n - u^n_{MR} \|_p \), \(p = 1, 2, \infty \), donde

\[e_\infty = \max_j |u_j^n - u^n_{MR_j}|, \quad 1 \leq j \leq N_0 \]
y
\[e_p = \left(\frac{1}{N_0} \sum_{j=1}^{N_0} |u_j^n - u^n_{MR_j}|^p \right)^{1/p}, \quad p = 1, 2. \]
En ambas tablas se verá que el error obtenido es menor que la tolerancia prescrita. La norma L_{∞} obtiene el menor error principalmente en funciones discontinuas. Notar que e_{∞} mide el logro del método de multiresolución en imitar los detalles de transición del choque de la solución numérica sin multiresolución, pero no tiene relevancia en medir la exactitud del algoritmo de multiresolución como una aproximación a la solución exacta del problema, ya que el método en la malla fina, es decir, la solución numérica propiamente tal, no es exacta en los choques.

Se presentan los resultados correspondientes para el caso de $N_0 = 257$ puntos en la malla fina con $L = 7$ niveles de multiresolución y el caso de $N_0 = 1025$ puntos en la malla fina con $L = 10$ niveles de multiresolución. En ambos casos se utiliza una tolerancia de truncamiento $\varepsilon_k = \varepsilon/2^{L-k}$, condición $CFL = 0.5$, multiresolución con interpolador cuadrático, flujos numéricos calculados mediante reconstrucción ENO de segundo orden (ver sección 4.1.5) y evolución temporal Runge-Kutta de orden 2 (4.7).

<table>
<thead>
<tr>
<th>t</th>
<th>V</th>
<th>μ</th>
<th>e_1</th>
<th>e_2</th>
<th>e_{∞}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>1.9330</td>
<td>19.7633</td>
<td>8.89×10^{-7}</td>
<td>1.92×10^{-5}</td>
<td>1.80×10^{-4}</td>
</tr>
<tr>
<td>0.47</td>
<td>1.8334</td>
<td>19.8122</td>
<td>1.99×10^{-6}</td>
<td>3.15×10^{-5}</td>
<td>6.14×10^{-5}</td>
</tr>
<tr>
<td>0.62</td>
<td>1.7696</td>
<td>19.4591</td>
<td>2.46×10^{-5}</td>
<td>3.58×10^{-5}</td>
<td>5.91×10^{-5}</td>
</tr>
<tr>
<td>0.78</td>
<td>1.6881</td>
<td>19.7633</td>
<td>2.92×10^{-5}</td>
<td>3.96×10^{-5}</td>
<td>5.77×10^{-5}</td>
</tr>
</tbody>
</table>

Cuadro 3.1: Solución numérica de la Ecuación de Burgers, condición inicial (3.6). Tolerancia prescrita $\varepsilon = 10^{-5}$, $N_0 = 257$ puntos en la malla fina y $L = 7$ niveles de multiresolución.

<table>
<thead>
<tr>
<th>t</th>
<th>V</th>
<th>μ</th>
<th>e_1</th>
<th>e_2</th>
<th>e_{∞}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>2.7872</td>
<td>53.9446</td>
<td>8.94×10^{-6}</td>
<td>1.99×10^{-6}</td>
<td>4.79×10^{-6}</td>
</tr>
<tr>
<td>0.47</td>
<td>2.5986</td>
<td>53.0172</td>
<td>2.09×10^{-5}</td>
<td>3.01×10^{-6}</td>
<td>5.59×10^{-6}</td>
</tr>
<tr>
<td>0.62</td>
<td>2.6170</td>
<td>53.5019</td>
<td>2.49×10^{-5}</td>
<td>3.99×10^{-6}</td>
<td>7.26×10^{-6}</td>
</tr>
<tr>
<td>0.78</td>
<td>2.5029</td>
<td>53.2874</td>
<td>2.97×10^{-5}</td>
<td>4.26×10^{-6}</td>
<td>1.88×10^{-5}</td>
</tr>
</tbody>
</table>

Cuadro 3.2: Solución numérica de la Ecuación de Burgers, condición inicial (3.6). Tolerancia prescrita $\varepsilon = 10^{-3}$, $N_0 = 1025$ puntos en la malla fina y $L = 10$ niveles de multiresolución.
Capítulo 3: Caso hiperbólico

Figura 3.2: Izquierda: Solución inicial (rayas) y solución numérica de multiresolución (asteriscos) en el tiempo $t = 0.16$ para la ec. de Burgers en 1D asociada a la condición inicial (3.6), con $N_0 = 257$ y $L = 7$. Derecha: Estructura de coeficientes de ondelette significativos correspondientes.

Figura 3.3: Izquierda: Solución inicial (rayas) y solución numérica de multiresolución (asteriscos) en el tiempo $t = 0.47$ para la ec. de Burgers en 1D asociada a la condición inicial (3.6), con $N_0 = 257$ y $L = 7$. Derecha: Estructura de coeficientes de ondelette significativos correspondientes.
Figura 3.4: Izquierda: Solución inicial (rayas) y solución numérica de multiresolución (asteriscos) en el tiempo $t = 0.62$ para la ec. de Burgers en 1D asociada a la condición inicial (3.6), con $N_0 = 257$ y $L = 7$. Derecha: Estructura de coeficientes de ondelette significativos correspondientes.

Figura 3.5: Izquierda: Solución inicial (rayas) y solución numérica de multiresolución (asteriscos) en el tiempo $t = 0.78$ para la ec. de Burgers en 1D asociada a la condición inicial (3.6), con $N_0 = 257$ y $L = 7$. Derecha: Estructura de coeficientes de ondelette significativos correspondientes.
Figura 3.6: Izquierda: Solución inicial (rayas) y solución numérica de multiresolución (asteriscos) en el tiempo $t = 0.16$ para la ec. de Burgers en 1D asociada a la condición inicial (3.6), con $N_0 = 1025$, $L = 10$, $\varepsilon = 10^{-3}$. Derecha: Estructura de coeficientes de ondelette significativos.

Figura 3.7: Izquierda: Solución inicial (rayas) y solución numérica de multiresolución (asteriscos) en el tiempo $t = 0.47$ para la ec. de Burgers en 1D asociada a la condición inicial (3.6), con $N_0 = 1025$, $L = 10$, $\varepsilon = 10^{-3}$. Derecha: Estructura de coeficientes de ondelette significativos.
Figura 3.8: Izquierda: Solución inicial (rayas) y solución numérica de multiresolución (asteriscos) en el tiempo $t = 0.62$ para la ec. de Burgers en 1D asociada a la condición inicial (3.6), con $N_0 = 1025$, $L = 10$, $\varepsilon = 10^{-3}$. Derecha: Estructura de coeficientes de ondelette significativos.

Figura 3.9: Izquierda: Solución inicial (rayas) y solución numérica de multiresolución (asteriscos) en el tiempo $t = 0.78$ para la ec. de Burgers en 1D asociada a la condición inicial (3.6), con $N_0 = 1025$, $L = 10$, $\varepsilon = 10^{-3}$. Derecha: Estructura de coeficientes de ondelette significativos.
Capítulo 4

Caso parabólico

En este capítulo se aplicará el algoritmo de multiresolución a ecuaciones parabólicas. Se reproducirán los experimentos numéricos realizados por Roussel et al. [36], Bihari [4], Liandrat y Tchamitchian [34].

4.1. Método numérico

A continuación se presenta un método general de volúmenes finitos para ecuaciones hiperbólicas, incluyendo la descripción de los esquemas utilizados para la discretización espacial y evolución temporal [36].

4.1.1. Leyes de conservación parabólicas

Se considera el problema de valores iniciales para una ecuación parabólica en \((x, t) \in \Omega \times [0, \infty], \Omega \subset \mathbb{R}^d\) de la forma

\[
\frac{\partial u}{\partial t} + \nabla \cdot F(u, \nabla u) = S(u),
\]

\[
u(x, 0) = u_0(x)
\]

asociada a condiciones de borde apropiadas.

Se considerará la restricción al caso en que el flujo difusivo se define por un operador gradiente, suponiendo difusividad constante \(\nu > 0\), es decir,

\[
F(u, \nabla u) = f(u) - \nu \nabla u.
\]
Para la ecuación de convección-difusión en 1D, se tiene \((c > 0)\)

\[
\begin{align*}
 f(u) &= cu, \\
 S(u) &= 0.
\end{align*}
\]

En el caso de la ecuación viscosa de Burgers en 1D, se tiene

\[
\begin{align*}
 f(u) &= \frac{u^2}{2}, \\
 S(u) &= 0,
\end{align*}
\]

y para la ecuación de reacción-difusión \((\alpha > 0, \beta > 0)\),

\[
\begin{align*}
 f(u) &= 0, \\
 S(u) &= \frac{\beta^2}{2}(1 - u) \exp \left(\frac{\beta(1 - u)}{\alpha(1 - u) - 1}\right).
\end{align*}
\]

Se define el término fuente y de divergencia por

\[
\mathcal{D}(u, \nabla u) = -\nabla \cdot F(u, \nabla u) + S(u).
\]

Luego (4.1) puede escribirse como

\[
\frac{\partial u}{\partial t} = \mathcal{D}(u, \nabla u). \quad (4.2)
\]

4.1.2. Discretización

Para discretizar (4.2), se utiliza una formulación de volúmenes finitos en la forma conservativa estándar. En el caso general, considérese el dominio computacional \(\Omega\) y una partición de él en volúmenes de control \((\Omega_i)_{i \in \Lambda}, \Lambda = \{1, \ldots, i_{\text{max}}\}\). Se denota entonces por \(\bar{q}_i(t)\) al promedio de cierta cantidad \(q\) sobre \(\Omega_i\) en el instante \(t\),

\[
\bar{q}_i(t) = \frac{1}{|\Omega_i|} \int_{\Omega_i} q(x, t) \, dx. \quad (4.3)
\]

Integrando (4.2) y promediando sobre \(\Omega_i\),

\[
\frac{1}{|\Omega_i|} \int_{\Omega_i} \frac{\partial u}{\partial t}(x, t) \, dx = \frac{1}{|\Omega_i|} \int_{\Omega_i} \mathcal{D}(u(x, t), \nabla u(x, t)) \, dx. \quad (4.4)
\]

Luego

\[
\frac{\partial \bar{u}_i}{\partial t}(t) = \bar{D}_i(t). \quad (4.5)
\]
Si se aplica el teorema de la divergencia, se obtiene

\[
\bar{D}_i = -\frac{1}{|\Omega_i|} \int_{\partial \Omega_i} F(u, \nabla u) \cdot \sigma_i(x) \, dx + \bar{S}_i(t),
\]

(4.6)
donde \(\sigma_i(x)\) es el vector normal hacia \(\Omega_i\). La conservatividad en el cálculo del flujo se garantiza si y sólo si, para dos volúmenes de control adyacentes \(\Omega_{i1}\) y \(\Omega_{i2}\), el flujo que va de \(\Omega_{i1}\) a \(\Omega_{i2}\) se equilibra con el flujo que va de \(\Omega_{i2}\) a \(\Omega_{i1}\).

4.1.3. Integración temporal

Notar que se está frente a un proceso de discretización en dos etapas, debido a la adaptatividad de la discretización espacial. Primero se discretiza sólo en tiempo, y luego en espacio. Esto conduce a las ya mencionadas ecuaciones semi-discretas (ver sección 3.2). La discretización puede hacerse utilizando un método numérico estándar para sistemas de ecuaciones diferenciales ordinarias. Este mecanismo es particularmente ventajoso en el desarrollo de métodos con orden de precisión mayor a dos, ya que permite alcanzar de forma relativamente sencilla la misma precisión espacial y temporal. Los experimentos realizados en [37] indican que las formulaciones semi-discretas con discretización temporal Runge-Kutta TVD desarrollados por Shu y Osher no generan oscilaciones para \(CFL \leq 0.5\) aproximadamente, y son óptimas en el sentido de que permiten la mayor \(CFL\) para esquemas explícitos, \(CFL = 1\) [37, 14, 32].

Se utilizará entonces un método explícito Runge-Kutta TVD de segundo orden que en este caso se expresa por

\[
\begin{align*}
\bar{u}_i^{n+1/2} & = \bar{u}_i^n + \Delta t \bar{D}_i^n, \\
\bar{u}_i^{n+1} & = \frac{1}{2} \left[\bar{u}_i^n + \bar{u}_i^{n+1/2} + \Delta t \bar{D}_i^{n+1/2} \right].
\end{align*}
\]

(4.7)

Notar que (4.7) también se conoce como \textit{Método de Heun} [4].

Si se denota por \(\bar{u}^n\) al vector \((\bar{u}_i^n)_{i \in \Lambda}\), entonces el operador de evolución temporal discreto \(\bar{E}(\Delta t)\) está definido por

\[
\bar{u}^{n+1} = \bar{E}(\Delta t) \cdot \bar{u}^n,
\]

(4.8)
donde

\[
\bar{E}(\Delta t) = I + \frac{\Delta t}{2} \left[\bar{D} + \bar{D}(I + \Delta t \bar{D}) \right].
\]

(4.9)

La discretización del operador \(\bar{D}\) se describe en la siguiente sección.
4.1.4. Flujo numérico

Considérese ahora un tiempo fijo \(t^n \). Para el caso unidimensional general, \(\Omega_t \) es el intervalo \([x_{i-1/2}, x_{i+1/2}]\) de longitud \(\Delta x_i = x_{i+1/2} - x_{i-1/2} \). Mediante una discretización de volúmenes finitos estándar, la ecuación (4.6) puede escribirse como

\[
\mathcal{D}_i = -\frac{1}{\Delta x_i} \left(\bar{F}_{i+\frac{1}{2}} - \bar{F}_{i-\frac{1}{2}} \right) + \bar{S}_i,
\]

donde

\[
\bar{F}_{i+\frac{1}{2}} = f^R \left(\bar{u}^{-}_{i+\frac{1}{2}}, \bar{u}^{+}_{i+\frac{1}{2}} \right) - \nu \frac{\bar{u}_{i+1} - \bar{u}_i}{\Delta x_{i+\frac{1}{2}}},
\]

con \(\Delta x_{i+\frac{1}{2}} = \frac{1}{2}(\Delta x_i + \Delta x_{i+1}) \). El término \(f^R \) denota, para la parte advectiva, la solución aproximada de Roe para el problema de Riemann [23], dados los estados de derecha e izquierda de \(u \). La versión escalar correspondiente es

\[
f^R(u^-, u^+) = \frac{1}{2} [f(u^-) + f(u^+) - |a(u^-, u^+)| (u^+ - u^-)],
\]

donde

\[
a(u^-, u^+) = \begin{cases}
 \frac{f(u^+) - f(u^-)}{u^+ - u^-}, & \text{si } u^+ \neq u^-; \\
 f'(u^+), & \text{si } u^+ = u^-.
\end{cases}
\]

Los valores de izquierda y derecha \(\bar{u}^{-}_{i+\frac{1}{2}} \) y \(\bar{u}^{+}_{i+\frac{1}{2}} \), respectivamente, son obtenidos mediante interpolación ENO de segundo orden (ver sección 4.1.5).

Notar de (4.11) que los términos advectivo y difusivo son aproximados de diferente forma. Para la parte advectiva, se utiliza el esquema de Roe clásico con una interpolación ENO de segundo orden; mientras que para la parte difusiva, se escoge un esquema centrado en \(\bar{u}_i \) de segundo orden.

En [4] se prueba que el esquema global resultante, que es no lineal,

\[
\mathcal{D}_i = -\frac{1}{\Delta x_i} \left(f^R \left(\bar{u}^{-}_{i+\frac{1}{2}}, \bar{u}^{+}_{i+\frac{1}{2}} \right) - f^R \left(\bar{u}^{-}_{i-\frac{1}{2}}, \bar{u}^{+}_{i-\frac{1}{2}} \right) - \nu \frac{\bar{u}_{i+1} - 2\bar{u}_i + \bar{u}_{i-1}}{\Delta x_{i+\frac{1}{2}}} \right) + \bar{S}_i,
\]

es de segundo orden (en espacio).

El término fuente es aproximado por \(\bar{S}_i \approx S(\bar{u}_i) \). Para un término fuente no lineal, esta elección también implica una precisión de orden dos [36].

4.1.5. Reconstrucción ENO de segundo orden

Para obtener los valores de la función \(u \) en las fronteras de los volúmenes de control, se utiliza una reconstrucción lineal a trozos de \(u \) a partir de los valores de las medias en
celda. Es decir, los términos de izquierda y derecha \(\tilde{u}_{i+\frac{1}{2}}^- \) y \(\tilde{u}_{i+\frac{1}{2}}^+ \), respectivamente, son obtenidos mediante interpolación ENO de segundo orden \([32, 37, 14, 36]\). Este tipo de métodos utiliza una construcción adaptativa del esténcil a fin de evitar la generación de oscilaciones espúreas cerca de las discontinuidades. Se puede generar oscilaciones, pero del orden del error local de truncamiento en la parte suave de la solución. En este caso particular, se tiene

\[
\begin{align*}
\tilde{u}_{i+\frac{1}{2}}^- &= \tilde{u}_i + \frac{1}{2} M (\tilde{u}_{i+1} - \tilde{u}_i, \tilde{u}_i - \tilde{u}_{i-1}), \\
\tilde{u}_{i+\frac{1}{2}}^+ &= \tilde{u}_{i+1} + \frac{1}{2} M (\tilde{u}_{i+2} - \tilde{u}_{i+1}, \tilde{u}_{i+1} - \tilde{u}_i),
\end{align*}
\]

(4.14)

(4.15)

donde \(M \) es el limitador \(\text{Min-Mod} \), que escoge la pendiente mínima entre los extremos izquierdo y derecho, es decir,

\[
M(a, b) = \begin{cases}
 a, & \text{si } |a| \leq |b|, \\
 b, & \text{si } |a| > |b|.
\end{cases}
\]

Notar que (4.11) es la forma \(\text{semi-discreta} \) de (4.8). (4.11) se resuelve utilizando una actualización temporal Runge-Kutta de segundo orden; por lo tanto se obtiene un esquema de segundo orden tanto en tiempo como en espacio.

Mediante un argumento de producto tensorial, puede llevarse a cabo la extensión natural de la reconstrucción a 2D y 3D en geometrías cartesianas \([36]\).

4.1.6. Solución exacta de la onda viajera

Para formar una idea cualitativa de la estructura del choque, considérese la solución \(u(x, t) = u(\psi) \), \(\psi = (x - st)/\nu \) del problema de la onda viajera

\[
\begin{align*}
 & u_t + f(u)_x = \nu u_{xx}, \\
 & u(x, 0) = \begin{cases}
 u_L, & \text{si } x < 0, \\
 u_R < u_L, & \text{si } x \geq 0.
\end{cases}
\end{align*}
\]

(4.16)

(4.17)

La ecuación diferencial ordinaria resultante en \(\psi \) puede integrarse para obtener

\[
-su + f(u) + c = u',
\]

(4.18)

donde \(s \) y \(c \) pueden ser determinadas de las “condiciones de borde”

\[
\lim_{\psi \to -\infty} u(\psi) = u_L, \quad \lim_{\psi \to \infty} u(\psi) = u_R
\]
como sigue
\[c = su_L - f(u_L), \quad (4.19) \]
\[s = \frac{f(u_R) - f(u_L)}{u_R - u_L}, \quad (4.20) \]
donde la velocidad de la onda \(s \) puede ser identificada como la velocidad del choque (asume la misma expresión que en el caso puramente hiperbólico). Una nueva integración de \((4.18) \) entrega una fórmula implícita para \(u \):
\[\int \frac{du}{f(u) - su + c} = \psi + c_1. \quad (4.21) \]
En el caso particular de la ecuación de Burgers viscosa, es decir, \(f(u) = \frac{1}{2}u^2 \), se obtiene
\[u(\psi) = u_L \tanh \frac{u_L - u_R}{4} \psi. \quad (4.22) \]
Ver detalles en [4].

4.1.7. Estabilidad numérica

Como el paso temporal es el mismo para todas las escalas de multiresolución, la condición de estabilidad es la correspondiente al esquema de volúmenes finitos en la malla fina. Si denotamos por \(\Delta x \) al menor paso espacial, el número CFL \(\sigma \) está dado por
\[\sigma = u_{\text{máx}} \frac{\Delta t}{\Delta x}. \quad (4.23) \]
Para el caso lineal (ecuación de convección-difusión), si \(c \) es la velocidad,
\[\sigma = c \frac{\Delta t}{\Delta x} \quad (4.24) \]
y el número de Reynolds \(Re \) está dado por
\[Re = c \frac{\Delta x}{\nu}. \quad (4.25) \]
En [4] y [23] se muestra que una condición suficiente para asegurar la estabilidad del esquema de volúmenes finitos es
\[\sigma \leq \min \left(\frac{Re}{2}, \frac{6}{Re} \right). \quad (4.26) \]
Aún más, una condición suficiente para que el esquema sea TVD (ver apéndice B), es
\[\sigma \leq \frac{Re}{Re + 4}. \quad (4.27) \]
La mayor ventaja de utilizar un esquema explícito para el término difusivo, es que no se necesita resolver un sistema lineal. Sin embargo, esto generalmente implica que $\Delta t = O(\Delta x^2)$. Sólo para el caso $Re \gg 1$ se puede esperar $\Delta t = O(\Delta x)$ \cite{22}.

A continuación se analizará un Esquema de multiresolución conservativo completamente adaptativo diseñado por Roussel et al. \cite{36}.

4.1.8. Árbol graduado dinámico

El principio del análisis de multiresolución es representar un conjunto de datos dados en malla fina como valores en la malla más gruesa y un conjunto de detalles a diferentes escalas de mallas anidadas. Se propone organizar la estructura de datos como un árbol graduado dinámico, que posee una capacidad mayor de compresión que la estructura MORSE o SPARSE de la representación puntual esparsa.

En la terminología de las ondelettes, una estructura de árbol graduado corresponde a una aproximación adaptativa en la que está garantizada la conectividad para la estructura de árbol.

Para definir la estructura de árbol, se introduce la terminología utilizada por Cohen \cite{16, 36}:

- La raíz es la base del árbol.
- Un nodo es un elemento del árbol. Cada volumen de control será considerado un nodo.
- Un nodo padre tiene 2 nodos hijos; los nodos hijos de un mismo nodo padre son llamados hermanos.
- Un nodo tiene vecinos cercanos en cada dirección, llamados primos cercanos. Los nodos hermanos son también considerados como primos cercanos.
- Un nodo es llamado hoja cuando no tiene hijos.
- Para calcular los flujos entrantes y salientes de cada hoja, se necesitan los primos cercanos. Cuando alguno de ellos no existe, se crea una hoja virtual (representada por rayas en la figura 4.1). Esta no se considera como un nodo existente, sino sólo se utiliza para calcular flujos.

Un árbol dinámico es un árbol que cambia en el tiempo. Si es necesario, algunos nodos pueden ser agregados o quitados. Para permanecer graduado, el árbol debe respetar las condiciones siguientes:
■ Cuando un hijo es creado, todos sus hermanos son creados en el mismo tiempo;

■ Un nodo tiene siempre dos primos cercanos en cada dirección. Si no existe, debe ser creado como hoja virtual.

■ Un nodo puede ser quitado sólo si son quitados todos sus hermanos y sólo si no es el primo cercano de un nodo existente.

Figura 4.1: Estructura de datos tipo árbol graduado dinámico unidimensional.

4.1.9. Análisis del error

El error global entre los valores puntuales de la solución exacta en el nivel \(L \), \(u_{ex}^L \), y los valores de la solución numérica por multiresolución con un nivel máximo \(L \), \(u_{MR}^L \), puede ser descompuesto en dos errores [28, 36]:

\[
\|u_{ex}^L - u_{MR}^L\| \leq \|u_{ex}^L - u_{FV}^L\| + \|u_{FV}^L - u_{MR}^L\|,
\]

(4.28)

donde \(\| \cdot \| \) es la norma \(L^1 \), \(L^2 \), o \(L^\infty \). El primer error del lado derecho de (4.28), llamado error de discretización, es el error del esquema de volúmenes finitos en malla fina, para un nivel máximo \(L \). Puede ser acotado por

\[
\|u_{ex}^L - u_{FV}^L\| \leq C2^{-\xi L}, \quad C > 0,
\]

(4.29)

donde \(\xi \) es el orden de convergencia del esquema de volúmenes finitos. En este caso, se utilizarán esquemas de segundo orden (en tiempo y espacio). Luego \(\xi = 2 \).

El segundo error del lado derecho de (4.28) es llamado error de perturbación. En [16] se prueba que si los detalles en un nivel de multiresolución \(k \) son truncados bajo cierta tolerancia prescrita \(\varepsilon_k \), si el operador de evolución temporal discreto \(\tilde{E} \) es contractivo en la norma correspondiente, y si la tolerancia prescrita en el nivel \(k \) es

\[
\varepsilon_k = 2^{(k-L)}\varepsilon,
\]
entonces la diferencia entre la solución por volúmenes finitos en la malla fina y la solución obtenida mediante un algoritmo de multiresolución, se acumula en el tiempo y verifica

$$\| u_{MR}^L - u_{FV}^L \| \leq C n \varepsilon, \quad C > 0,$$

(4.30)
donde n es el número de pasos temporales. Considerando un tiempo fijo $T = n \Delta t$, esto es

$$\| u_{MR}^L - u_{FV}^L \| \leq C \frac{T}{\Delta t} \varepsilon, \quad C > 0.$$

Para la ecuación lineal de convección-difusión, de (4.27), el paso temporal Δt debe verificar

$$\Delta t \leq \frac{\Delta x^2}{4 \nu + c \Delta x}.$$

Si se denota por X a la longitud del dominio, Δx al paso espacial en la malla fina, y en el caso de que la raíz del árbol graduado contenga sólo un nodo, se tiene $\Delta x = X 2^{-L}$. Luego

$$\Delta t = C \frac{(\Delta x)^2}{4 \nu + c \Delta x} = C \frac{X 2^{-2L}}{4 \nu + c X 2^{-L}}, \quad 0 < C < 1.$$

Si se quiere que el error de perturbación sea del mismo orden que el error de discretización, debe suceder que

$$\varepsilon / \Delta t \propto 2^{-\xi L}.$$

Por lo tanto,

$$\varepsilon 2^{2L} (4 \nu + c X 2^{-L}) \propto 2^{-\xi L},$$

y si se define el número de Peclet como $Pe = \frac{cX}{\nu}$,

$$\varepsilon \propto \frac{2^{- (\xi + 1)L}}{Pe + 2^{(L+2)}},$$

(4.31)

Para el caso inviscido ($Pe \to \infty$), 4.31 es equivalente a los resultados obtenidos en [16]:

$$\varepsilon \propto 2^{-(\xi+1)L}.$$

Con esto, elegiremos una tolerancia de referencia:

$$\varepsilon_R = C \frac{2^{- (\xi + 1)L}}{Pe + 2^{(L+2)}}.$$

(4.32)

4.1.10. Cálculo del flujo conservativo

Considérese una hoja $\Omega_{k+1,2j+1}$ con primos virtuales $\Omega_{k+1,2j+2}$ y $\Omega_{k+1,2j+3}$ a la derecha. Su padre $\Omega_{k,j+1}$ es una hoja. Como se ve en la figura 4.2, el flujo que sale de $\Omega_{k+1,2j+1}$ hacia la derecha $F_{k+1,2j+1 \rightarrow k+1,2j+2}$ no está en equilibrio con el flujo que sale de $\Omega_{k,j+1}$ hacia
Capítulo 4: Caso parabólico

Figura 4.2: Flujo saliente y entrante para dos niveles diferentes.

la izquierda $F_{k,j+1 \rightarrow k,j}$. Es posible calcular directamente los flujos que salen de $\Omega_{k+1,2j+1}$ hacia $\Omega_{k,j+1}$ o pueden calcularse sólo los flujos en el nivel $k+1$ y para determinar el flujo entrante a la hoja en el nivel k, éste será igual a la suma de los flujos salientes de las hojas en el nivel $k+1$.

Esta elección asegura una conservatividad estricta en el cálculo de los flujos entre volúmenes de control de niveles diferentes, sin un aumento significativo de las evaluaciones (generalmente costosas) de los flujos.

4.1.11. Implementación del algoritmo

A continuación se presenta la estrategia a seguir por el algoritmo. En primer lugar, dependiendo de la condición inicial dada, se crea un árbol graduado inicial. Luego se realiza la evolución temporal sobre las hojas y finalmente se actualiza el árbol graduado.

Primer Paso: Inicialización.

- Inicialización de parámetros: tiempo de simulación, tamaño del dominio, niveles de multiresolución, número de puntos en la malla fina, condición CFL, etc.
- Creación de la estructura de árbol graduado inicial: Cálculo de detalles mediante transformada de multiresolución, obtención de la representación puntual esparsa.
- Evolución temporal: Cálculo del operador discreto de divergencia en todas las hojas, cálculo de los pasos intermedios de Runge-Kutta, Cálculo de la evolución temporal Runge-Kutta.
- Comprobación de la estabilidad. Si algún valor resulta overflow, entonces el proceso se considera numéricamente inestable.
- Actualización de la estructura de árbol.
- Análisis del error: cálculo de la solución exacta y estudio de distintos indicadores de error. Cálculo de la tasa de compresión.
Gráficos varios.

Notar que el algoritmo puede resumirse esquemáticamente por

\[
u^{n+1} = \mathcal{E}(\Delta t) \cdot \tilde{M}^{-1} \cdot \text{Tr}(\varepsilon) \cdot \tilde{M} \cdot u^n,
\]

(4.33)

donde \(\tilde{M}\) es el operador de multiresolución (Codificación), \(\text{Tr}(\varepsilon)\) es el operador de truncamiento con la tolerancia prescrita \(\varepsilon\), y \(\mathcal{E}(\Delta t)\) es el operador discreto de evolución temporal.
4.2. Resultados numéricos

En esta sección se reproducen los resultados numéricos en 1D obtenido por Roussell et al. [36] y Bihari [4], utilizando un esquema de segundo orden, con una precisión de multiresolución $r = 2$.

4.2.1. Ecuación de convección-difusión en 1D

En el caso de que el flujo sea lineal, se considera la ecuación lineal de convección-difusión para $(x, t) \in [-1, 1] \times [0, \infty[, c > 0, \nu > 0$,

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}. \quad (4.34)$$

Si se considera como escala espacial característica al largo del dominio X y como escala temporal característica a $T = c/X$, (4.34) puede escribirse en la forma adimensional siguiente

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \frac{1}{Pe} \frac{\partial^2 u}{\partial x^2}, \quad (4.35)$$

donde Pe denota el número de Peclet $Pe = cX/\nu$. Se estudia (4.35) asociada a la condición inicial

$$u(x, 0) = u_0(x) = \begin{cases} 1, & \text{si } x \leq 0, \\ 0, & \text{si } x > 0 \end{cases} \quad (4.36)$$

y condiciones de Dirichlet en la frontera

$$u(-1, t) = 1,$$

$$u(1, t) = 0.$$

La solución analítica está dada por Hirsch [4]

$$u(x, t) = \frac{1}{2} \text{erfc} \left(\frac{x - t}{\sqrt{2Pe}} \right). \quad (4.37)$$

Se testearon tres casos en que el parámetro de control es el número de Peclet Pe:

i) $Pe = 100$. En la figura 4.3 (izquierda) se muestra la solución numérica de (4.35) en el tiempo $t = 0,3125$. Se observa el fenómeno de propagación lineal de la discontinuidad.
hacia la derecha. Notar de la tabla 4.1, que los errores al comparar la solución obtenida mediante multiresolución y la solución obtenida sin aplicar el proceso de multiresolución, son bastante pequeños, pero se acumulan con el paso del tiempo.

ii) $Pe = 1000$. En la figura 4.4 (izquierda) se muestra la solución numérica de (4.35) en el tiempo $t = 0.5$. La suavidad de la solución se debe principalmente a la difusividad.

iii) $Pe = 10000$. Este caso es cercano al caso límite en que la viscosidad es baja en extremo, y el efecto “suavizante” es bastante lento. Este caso (y se verá lo mismo para el caso no lineal), es un ejemplo de que la solución inviscida puede obtenerse haciendo $\nu \to 0$. En la figura 4.5 (izquierda) se muestra la solución numérica de (4.35) en el tiempo $t = 0.7031$. Notar de la tabla 4.1, la tasa de compresión es considerablemente alta.

Figura 4.3: Izquierda: Solución inicial (rayas), solución analítica (línea), y solución numérica de multiresolución (círculos) en el tiempo $t = 0.31$ para la ec. de convección-difusión en 1D asociada a la condición inicial (4.36), con $Pe = 100$, $L = 7$, $\varepsilon = 10^{-3}$. Derecha: Estructura de coeficientes de ondelette significativos correspondientes.
Capítulo 4: Caso parabólico

Figura 4.4: Izquierda: Solución inicial (rayas), solución analítica (línea), y solución numérica de multiresolución (círculos) en el tiempo $t = 0.50$ para la ec. de convección-difusión en 1D asociada a la condición inicial (4.36), con $Pe = 1000$, $L = 7$, $\varepsilon = 10^{-3}$. Derecha: Estructura de coeficientes de ondelette significativos correspondientes.

Figura 4.5: Izquierda: Solución inicial (rayas), solución analítica (línea), y solución numérica de multiresolución (círculos) en el tiempo $t = 0.70$ para la ec. de convección-difusión en 1D asociada a la condición inicial (4.36), con $Pe = 10000$, $L = 7$, $\varepsilon = 10^{-3}$. Derecha: Estructura de coeficientes de ondelette significativos correspondientes.
Cuadro 4.1: Solución numérica de la Ecuación de Convección-difusión en 1D, con condición inicial (4.36). Se adjuntaron figuras para los casos marcados con (*).
4.2.2. Ecuación de Burgers viscosa en 1D

Se llevaron a cabo experimentos con la ecuación de Burgers viscosa, la que contiene un término convectivo no lineal, para la cual se conoce solución analítica. Para \((x, t) \in [-1, 1] \times [0, \infty[\), la ecuación puede ser escrita en su forma adimensional:

\[
\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} \right) = \frac{1}{Re} \frac{\partial^2 u}{\partial x^2},
\]

donde \(Re = \frac{\Delta x}{\nu}\) es el número de Reynolds.

Dato inicial suave

Asociada a la ecuación (4.38), considérese la condición inicial

\[
u(x, 0) = u_0(x) = \sin(\pi x), \quad -1 \leq x < 1
\]

y condiciones de borde periódicas. Excepto en el caso límite cuando \(Re\) es muy grande, nunca existe un choque completamente discontinuo. Como se muestra en los resultados siguientes, se obtienen tasas de compresión cercanas a 4.

Se presentan resultados para \(Re = 0.001\), \(Re = 1\), y \(Re = 10\):

i) \(Re = 0.001\). Este caso corresponde a una difusividad grande, lo que provoca que el dato inicial se mantenga suave para todo tiempo \(t\). Ver resultados en la tabla 4.2 y figura 4.6.

ii) \(Re = 1\). En \(n = 600\) se advierte la creación de una N-onda y el diagrama de coeficientes de multiresolución es similar al obtenido en el caso inviscido. Ver resultados en la tabla 4.2 y figura 4.7.

iii) \(Re = 10\). Este caso produce resultados similares a los obtenidos en el caso inviscido. Debido a la capacidad del algoritmo de mantener perfiles afilados, la tasa de compresión se mantiene bastante alta. La figura 4.8 muestra que el choque se encuentra en un estado casi estacionario. Ver resultados en la tabla 4.2 y figura 4.8.

Notar que en todos los casos, los errores son bastante pequeños; por lo tanto la calidad de la solución no se ve comprometida al aplicar el proceso de multiresolución.

En la sección siguiente se verá que para un número de Reynolds bastante grande, el problema viscoso no necesita un tratamiento especial, y puede utilizarse el proceso de multiresolución desarrollado para leyes de conservación hiperbólicas.
Cuadro 4.2: Solución numérica de la Ecuación de Burgers viscosa en 1D, condición inicial (4.39). Se adjuntan figuras para los casos marcados con (*).

<table>
<thead>
<tr>
<th>Re</th>
<th>n</th>
<th>μ</th>
<th>ϵ_1</th>
<th>ϵ_2</th>
<th>ϵ_∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>3.0963</td>
<td>1.54×10^{-4}</td>
<td>2.24×10^{-4}</td>
<td>5.12×10^{-4}</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>3.8254</td>
<td>5.19×10^{-4}</td>
<td>6.69×10^{-4}</td>
<td>1.01×10^{-3}</td>
</tr>
<tr>
<td>200</td>
<td>10</td>
<td>4.6491</td>
<td>6.23×10^{-4}</td>
<td>6.72×10^{-4}</td>
<td>7.49×10^{-4} (*)</td>
</tr>
<tr>
<td>600</td>
<td>10</td>
<td>5.1358</td>
<td>7.47×10^{-4}</td>
<td>6.56×10^{-4}</td>
<td>6.05×10^{-4}</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
<td>5.1358</td>
<td>8.17×10^{-4}</td>
<td>5.71×10^{-4}</td>
<td>2.91×10^{-3}</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>4.0198</td>
<td>9.86×10^{-5}</td>
<td>1.62×10^{-4}</td>
<td>4.21×10^{-3}</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>3.9876</td>
<td>2.31×10^{-4}</td>
<td>2.68×10^{-4}</td>
<td>1.61×10^{-4}</td>
</tr>
<tr>
<td>200</td>
<td>10</td>
<td>3.9902</td>
<td>2.92×10^{-4}</td>
<td>2.74×10^{-4}</td>
<td>3.48×10^{-5}</td>
</tr>
<tr>
<td>600</td>
<td>10</td>
<td>4.0299</td>
<td>3.47×10^{-4}</td>
<td>2.64×10^{-4}</td>
<td>5.55×10^{-5} (*)</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
<td>4.3742</td>
<td>3.71×10^{-4}</td>
<td>2.48×10^{-4}</td>
<td>1.06×10^{-4}</td>
</tr>
<tr>
<td>0.001</td>
<td>10</td>
<td>4.0279</td>
<td>1.15×10^{-5}</td>
<td>1.84×10^{-5}</td>
<td>4.52×10^{-5}</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>4.0198</td>
<td>5.71×10^{-5}</td>
<td>6.19×10^{-5}</td>
<td>3.30×10^{-4}</td>
</tr>
<tr>
<td>200</td>
<td>10</td>
<td>4.0198</td>
<td>7.42×10^{-5}</td>
<td>1.67×10^{-4}</td>
<td>4.79×10^{-4}</td>
</tr>
<tr>
<td>600</td>
<td>10</td>
<td>4.0021</td>
<td>1.24×10^{-4}</td>
<td>2.26×10^{-4}</td>
<td>6.85×10^{-4}</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
<td>4.0021</td>
<td>4.07×10^{-4}</td>
<td>4.71×10^{-4}</td>
<td>9.02×10^{-4} (*)</td>
</tr>
</tbody>
</table>
_capítulo 4: Caso parabólico

Figura 4.6: Izquierda: Solución \((\text{rayas})\) y solución numérica de multiresolución \((\text{asteriscos})\) en el paso temporal \(n = 1000\) para la ec. de Burgers viscosa, con \(Re = 0.001, L = 7, N_0 = 257\). Derecha: Estructura de coeficientes de ondelette significativos correspondientes.

Figura 4.7: Izquierda: Solución \((\text{rayas})\) y solución numérica de multiresolución \((\text{asteriscos})\) en el paso temporal \(n = 600\) para la ec. de Burgers viscosa, con \(Re = 1, L = 7, N_0 = 257\). Derecha: Estructura de coeficientes de ondelette significativos correspondientes.
Figura 4.8: Izquierda: Solución (rayas) y solución numérica de multiresolución (asteriscos) en el paso temporal \(n = 200 \) para la ec. de Burgers viscosa, con \(Re = 10 \), \(L = 7 \), \(N_0 = 257 \). Derecha: Estructura de coeficientes de ondelette significativos correspondientes.

Dato inicial discontinuo

Asociada a la ecuación (4.38), considérese la condición inicial

\[
 u(x, 0) = u_0(x) = \begin{cases}
 1, & \text{si } x \leq 0, \\
 0, & \text{si } x > 0
 \end{cases} \quad (4.40)
\]

y condiciones de Dirichlet en la frontera

\[
 u(-1, t) = 1, \\
 u(1, t) = 0.
\]

La solución analítica está dada por (4.22)

\[
 u_{ex}(x, t) = \frac{1}{2} \left[1 - \tanh \left(\left(x - \frac{t}{2} \right) \frac{Re}{4} \right) \right]. \quad (4.41)
\]

La solución numérica de (4.38) en el tiempo \(t = 0.5 \) se muestra en la parte izquierda de la figura 4.9 para \(Re = 1000 \), \(\varepsilon = 10^{-3} \) y \(L = 7 \) escalas de multiresolución, correspondientes a un máximo de 512 volúmenes de control en la malla fina. En la parte derecha de la
figura 4.9 se representan los coeficientes de ondelette significativos. Es posible notar el efecto de una propagación no lineal del choque hacia la derecha, además puede notarse la difusividad cerca de la discontinuidad.

También se presenta la solución numérica obtenida mediante el esquema ENO de segundo orden, con Runge-Kutta de segundo orden (ENO2-RK2) pero sin aplicar multiresolución (parte izquierda de la figura 4.10). La evolución temporal de los errores entre las soluciones analítica y calculada mediante volúmenes finitos con y sin multiresolución se presenta en la parte derecha de la figura 4.10. Notar que los errores están bajo la tolerancia prescrita de \(\varepsilon = 10^{-3} \). Como una medida de la mejora en velocidad alcanzada mediante la utilización del análisis de multiresolución, se utiliza la tasa de compresión definida por

\[
\mu = \frac{N_0}{N_0/2^L + |D^n|},
\]

donde \(D^n \) es el conjunto de coeficientes de ondelette significativos, en todos los niveles de multiresolución, en el paso temporal \(n \).

En las tablas 4.2.2 y 4.2.2 se muestra para diferentes tiempos la constante de proporción \(V \) entre el tiempo de CPU total para calcular la solución numérica sin multiresolución y el tiempo de CPU total para calcular la solución numérica con multiresolución. Nótese que de los resultados de las tablas se concluye que la solución numérica tarda alrededor de 1.6 veces el tiempo de CPU que la solución de multiresolución.
Figura 4.10: Izquierda: Solución analítica (línea), y solución numérica sin multiresolución (círculos) en el tiempo $t = 0.5$ para la ec. de Burgers viscosa, con $Re = 1000$, $L = 7$, $\varepsilon = 10^{-3}$. Derecha: Errores entre las soluciones analítica y de volúmenes finitos con y sin multiresolución.

Figura 4.11: Tasa de compresión para distintos niveles máximos de multiresolución, a distintos tiempos hasta $t = 0.5$.
Cuadro 4.3: Tasa de compresión para distintos niveles de multiresolución, hasta $t = 0.5$ para la ecuación de Burgers viscosa en 1D, condición inicial (4.40).
Cuadro 4.4: Proporción V entre el tiempo de CPU total de la solución numérica ENO2 en malla fina y el tiempo de la solución de multiresolución. $N_0 = 257$, $L = 7$.

<table>
<thead>
<tr>
<th>t</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>2.0011</td>
</tr>
<tr>
<td>0.12</td>
<td>1.9912</td>
</tr>
<tr>
<td>0.18</td>
<td>1.8123</td>
</tr>
<tr>
<td>0.24</td>
<td>1.7780</td>
</tr>
<tr>
<td>0.36</td>
<td>1.6761</td>
</tr>
<tr>
<td>0.42</td>
<td>1.6302</td>
</tr>
<tr>
<td>0.48</td>
<td>1.6079</td>
</tr>
</tbody>
</table>

Al aumentar el número de puntos en la malla fina, los resultados obtenidos son aún mejores, y en este caso la solución de multiresolución tarda menos de la mitad del tiempo total de CPU que tarda la solución numérica que no utiliza multiresolución.

Cuadro 4.5: Proporción V entre el tiempo de CPU total de la solución numérica ENO2 en malla fina y el tiempo de la solución de multiresolución. $N_0 = 513$, $L = 9$.

<table>
<thead>
<tr>
<th>t</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>3.0444</td>
</tr>
<tr>
<td>0.12</td>
<td>2.6358</td>
</tr>
<tr>
<td>0.18</td>
<td>2.5129</td>
</tr>
<tr>
<td>0.24</td>
<td>2.5089</td>
</tr>
<tr>
<td>0.36</td>
<td>2.4761</td>
</tr>
<tr>
<td>0.42</td>
<td>2.4341</td>
</tr>
<tr>
<td>0.48</td>
<td>2.4192</td>
</tr>
</tbody>
</table>

En el caso de sistemas de leyes de conservación o en el caso de problemas multidimensionales, se espera que V sea aún más significativo.
4.2.3. Ecuación de reacción-difusión en 1D

Otro prototipo de una ecuación parabólica no lineal es la ecuación de reacción-difusión. En este caso, la no linealidad no está más en el término advectivo (como en la ecuación de Burgers viscosa) sino en el término fuente. Para \((x, t) \in [0, 20] \times [0, \infty]\), la ecuación puede ser escrita en su forma adimensional:

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + S(u), \tag{4.43}
\]

con

\[
S(u) = \frac{\beta^2}{2} (1 - u) \exp \frac{\beta(1 - u)}{\alpha(1 - u) - 1}, \tag{4.44}
\]

donde \(\alpha\) es la tasa de temperatura y \(\beta\) es la energía de activación adimensional (número de Zeldovich). Se estudia (4.43) asociada a la condición inicial

\[
u(x, 0) = u_0(x) = \begin{cases}
1, & \text{si } x \leq 1, \\
\exp(1 - x), & \text{si } x > 1.
\end{cases} \tag{4.45}
\]

Esta ecuación conduce al modelo de la propagación de una llama premezclada en 1D, donde las difusividades de masa y calor son iguales. La función \(u\) representa la temperatura adimensional, que varía entre 0 y 1. La masa parcial de gas sin quemar es \(1 - u\). Se elige una condición de Neumann en la frontera izquierda y una condición de Dirichlet en la frontera derecha.

\[
\frac{\partial u}{\partial x}(0, t) = 0, \\
u(20, t) = 0.
\]

Los parámetros son \(\alpha = 0.8\) y \(\beta = 10\). El tiempo final (adimensional) es \(t_f = 10\). En este ejemplo, la no linealidad del término fuente implica que \(\Delta t \approx O(\Delta x)\).

La velocidad de la llama, definida por

\[
v_f = \int_{\Omega} S \, dx \tag{4.46}
\]

se compara con los valores asintóticos dados por Peters & Warnatz [36].

En la figura 4.12 se observa la propagación de la llama en la dirección \(x\). El mayor nivel es alcanzado en la región de la zona de reacción, es decir, para \(x \approx 10\).
Figura 4.12: Izquierda: Condición inicial (rayas) y $S(u)$ inicial (puntos), solución numérica sin multiresolución (línea), solución numérica con multiresolución (asteriscos) y $S(u)$ (puntos-rayas), en el tiempo $t = 10$ para la ec. de reacción-difusión, con $\alpha = 0.8$, $\beta = 10$, $CFL = 0.1$, $L = 7$, $N_0 = 513$ y $\varepsilon = 10^{-3}$. Derecha: Estructura de coeficientes de ondelette significativos, $t = 0.5$.

<table>
<thead>
<tr>
<th>Método</th>
<th>v_f</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>VF</td>
<td>0.9146</td>
<td></td>
</tr>
<tr>
<td>MR $\varepsilon = 5 \times 10^{-2}$</td>
<td>0.9182</td>
<td>12.5648</td>
</tr>
<tr>
<td>MR $\varepsilon = 10^{-3}$</td>
<td>0.9151</td>
<td>13.8977 (*)</td>
</tr>
<tr>
<td>Valor asintótico</td>
<td>0.9080</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 4.6: Velocidad de la llama y tasa de compresión para la solución numérica de (4.43) sin multiresolución (VF), y a dos niveles distintos de tolerancia prescrita para el caso multiresolutivo. (*) representado en la figura 4.12.
Capítulo 5

Ecuación de convección-difusión fuertemente degenerada

En este capítulo se presentará un método numérico para obtener soluciones aproximadas de problemas provenientes de la sedimentación de suspensiones floculadas. Estos procesos se utilizan para lograr la separación de una suspensión de pequeñas partículas suspendidas en un líquido viscoso, en sus componentes sólido y líquido bajo la acción de la fuerza de gravedad. Estos procesos se usan ampliamente en la industria minera, por ejemplo para recuperar el agua de las suspensiones que salen de los procesos de flotación [12].

La idea principal es aplicar los métodos de multiresolución a los esquemas desarrollados por Bürger et al. [6, 8, 9, 10, 11] y observar que el método de multiresolución descrito y ejemplificado en los capítulos anteriores es de gran ayuda para reducir el costo computacional en este tipo de problemas sin afectar la calidad de la solución.

Se dará una breve descripción del problema físico y su modelación mediante una ley de conservación fuertemente degenerada con flujo no lineal [8]. El efecto de la compresibilidad del sedimento puede ser descrito por un término difusivo fuertemente degenerado, mientras el flujo unidimensional contribuye una discontinuidad de flujo a la ecuación parcial diferencial. Se presentará un esquema de segundo orden desarrollado en Bürger y Karlsen [10] para resolver este tipo de problemas y finalmente se desarrollan ejemplos numéricos para comparar con los resultados publicados en [8, 9, 10].

Considérese el caso de una suspensión floculada en un ICT (*Ideal Continuous Thickener*) como el de la figura 5.1, derecha. Un ICT es un espesador cilíndrico sin efectos de pared, en que las variables dependen sólo de la altura x y el tiempo t. En $x = H$ se tiene una superficie de alimentación y en $x = 0$ se tiene una superficie de descarga, lo que produce una operación continua del proceso. Esta modelación es prácticamente obsoleta,
pero es de gran utilidad al momento de ejemplificar el comportamiento simplificado de los procesos de sedimentación. El caso especial de sedimentación batch se muestra en la parte izquierda de la figura 5.1. El recipiente es cerrado.

\[
\partial_t u + \partial_x f(u) = \partial_{xx} A(u),
\]

con \((x, t) \in [0, 1] \times [0, T]\) y el coeficiente de difusión integrado dado por

\[
A(u) := \int_0^u a(s)ds, \quad a(u) \geq 0.
\]

En general, se permite que el coeficiente de difusión \(a(u)\) sea cero sobre intervalos de \(u\). En tales casos, (5.1) es una ecuación hiperbólica. Por esto, (5.1) se denomina también ecuación hiperbólica-parabólica. Aún cuando este tipo de ecuaciones modelan una gran variedad de fenómenos, se enfatizará en las aplicaciones a los procesos de sedimentación-consolidación.

Las soluciones de (5.1) desarrollan discontinuidades debido a la no linealidad de la función de densidad de flujo \(f(u)\) y a la degeneración del coeficiente de difusión. Esto lleva a considerar soluciones entrópicas para tener un problema bien puesto. Aún más, cuando (5.1) es puramente hiperbólica, los valores de la solución se propagan sobre rectas características que podrían intersectar las fronteras del dominio espacio-tiempo desde el interior, y esto requiere tratar a las condiciones de Dirichlet como condiciones entrópicas [8].
Una gran parte de las ecuaciones constitutivas que se proponen para estos procesos, implican que \(a(u) \) tiene un comportamiento degenerado, es decir, \(a(u) = 0 \) para \(u \leq u_c \) y \(a(u) \) salta en \(u_c \) a un valor positivo, donde \(u_c \) es una constante llamada concentración crítica. Se enfatiza entonces el hecho de que el coeficiente de difusión \(a(u) \) es degenerado, lo que hace evidente la naturaleza hiperbólica-parabólica de la ecuación diferencial (5.1).

Considérese el problema de valores iniciales y de frontera (PVIF) siguiente

\[
\begin{align*}
\partial_t u + \partial_x(q(t)u + f(u)) &= \partial_{xx}^2 A(u), \quad (x,t) \in [0,H] \times [0,T], \\
u(x,0) &= u_0(x), \quad x \in [0,H], \\
u(H,t) &= 0, \quad t \in [0,T] \\
f(u(0,t)) - \partial_x A(u(0,t)) &= 0, \quad t \in [0,T],
\end{align*}
\]

conocido como el Problema A. Considérese además el Problema B

\[
\begin{align*}
\partial_t u + \partial_x(q(t)u + f(u)) &= \partial_{xx}^2 A(u), \quad (x,t) \in [0,H] \times [0,T], \\
u(x,0) &= u_0(x), \quad x \in [0,H], \\
q(t)u(H,t) - \partial_x A(u(H,t)) &= \Psi(t), \quad t \in [0,T] \\
f(u(0,t)) - \partial_x A(u(0,t)) &= 0, \quad t \in [0,T].
\end{align*}
\]

Para ambos problemas, \(f \) se supone continua y diferenciable a trozos, \(f \leq 0 \), \(\|f'\|_{\infty} \leq \infty \), \(a(u) \geq 0 \), sop \((a) \subset \text{sop} (f)\), \(a(u) = 0 \) para \(u \leq u_c \), \(0 < u_c < u_{\text{máx}} \), \(q(t) \leq 0 \), \(\forall t \in [0,T] \), \(TV(q) < \infty \), \(TV(q') < \infty \).

En [8] se prueba la existencia y unicidad de solución entropica para cada uno de estos problemas.

En los modelos de sedimentación-consolidación de suspensiones floculadas, la coordenada \(x \) aumenta verticalmente, \(u = u(x,t) \) representa la concentración volumétrica sólida local, \(q(t) \leq 0 \) es la velocidad media del flujo de la mezcla (puede ser controlada externamente), \(f(u) \) es una función dada que relaciona la velocidad relativa local sólido-íquido con la concentración de sólidos local, y

\[
a(u) = -\frac{f(u)\sigma'_e(u)}{\Delta g gu},
\]

donde \(\Delta g > 0 \) denota la diferencia de densidad de masa sólido-íquido, \(g \) es la aceleración de gravedad, y \(\sigma'_e(u) \geq 0 \) es la derivada de la función de rigidez sólida efectiva.

La propiedad de mayor interés, es que generalmente se supone el siguiente comportamiento para \(\sigma_e(u) \):

\[
\sigma_e(u) \begin{cases}
\text{cte.}, & \text{si } u \leq u_c, \\
> 0, & \text{si } u > u_c,
\end{cases} \quad \sigma'_e(u) := \frac{d\sigma_e}{du} \begin{cases}
= 0, & \text{si } u \leq u_c, \\
> 0, & \text{si } u > u_c.
\end{cases}
\]

58
Notar que la naturaleza degenerada de la ecuación diferencial (5.1) es heredada de esta propiedad.

Las propiedades materiales específicas de la suspensión son descritas por \(f(u) \) y \(\sigma_e(u) \). Ejemplos típicos para estas funciones modelo son la función de densidad de flujo del tipo Michaels and Bolger \[9\]

\[
f(u) = v_\infty u \left(1 - \frac{u}{u_{\max}} \right)^C, \quad v_\infty < 0, \quad C > 1 \quad (5.13)
\]
y la función de rigidez sólida efectiva ley de potencia

\[
\sigma_e(u) = \begin{cases}
0, & \text{si } u \leq u_c, \\
\sigma_0 \left(\frac{u}{u_c} \right)^n - 1, & \text{si } u > u_c,
\end{cases} \quad \sigma_0 > 0, \quad n > 1. \quad (5.14)
\]

Las condiciones (5.4) corresponden a una distribución inicial de concentración dada, la condición (5.5) corresponde a prescribir el valor de la concentración en \(x = L \), las condiciones (5.6) y (5.10) equivalen a reducir la densidad de flujo del volumen sólido en el fondo del recipiente a su parte convectiva \(q(t)u(0, t) \) y la condición (5.9) corresponde a una condición de flujo en \(x = L \).

5.1. Esquema de segundo orden

Para el esquema explícito a desarrollar, se utilizará una discretización similar a la utilizada en la sección 4.1.4 (ver detalles en [8]). Los términos advectivo y difusivo son aproximados de diferente forma, con el fin de obtener una discretización que mantenga la conservatividad en ambos términos. Para la parte advectiva puede utilizarse el esquema de Roe clásico con una interpolación ENO de segundo orden, ya utilizado en los capítulos anteriores, o bien puede utilizarse un esquema de Engquist-Osher \[20\] modificado para ser de segundo orden \[9, 10, 21\]. Para la parte difusiva, se necesita un esquema centrado de segundo orden que mantenga la conservatividad \[9\].

Dado que el principal interés se encuentra en la discretización del término difusivo, considérese la siguiente ecuación puramente difusiva:

\[
\partial_t u = \partial_{xx}^2 A(u), \quad (5.15)
\]

\[
A(u) = \int_0^u a(s)ds. \quad (5.16)
\]

Una formulación conservativa de diferencias finitas para esta ecuación es

\[
\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{A(u_{j+1}^n) - 2A(u_j^n) + A(u_{j-1}^n)}{(\Delta x)^2}. \quad (5.17)
\]
Este esquema es estable y convergente bajo la condición CFL (ver [10])

$$2 \max_u |a(u)| \frac{\Delta t}{(\Delta x)^2} \leq 1.$$ (5.18)

Además, debe recordarse que el esquema explícito utilizado para la ecuación puramente hiperbólica es estable bajo la condición CFL (ver [23])

$$\max_u |f'(u)| \frac{\Delta t}{\Delta x} \leq 1.$$ (5.19)

Luego, el esquema interior resultante (si se utiliza el esquema de Roe clásico (4.12) con una interpolación ENO de segundo orden para la parte advectiva) es

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + q(n\Delta t)\frac{u_{j+1}^n - u_{j-1}^n}{\Delta x} + \frac{F_{j+\frac{1}{2}} - F_{j-\frac{1}{2}}}{\Delta x} = A(u_{j-1}^n) - 2A(u_j^n) + A(u_{j+1}^n)$$ (5.20)

con

$$F_{j+\frac{1}{2}} = f^R(u_{j+1}^- , u_{j+1}^+) .$$ (5.21)

La evolución temporal se hará mediante el método Runge-Kutta de segundo orden utilizado en los capítulos anteriores.

Las condiciones de borde (5.6) y (5.10) prescritas en $x = 0$ se discretizan utilizando (5.20) haciendo:

$$f(u(0, t^n)) - \partial_x A(u(0, t^n)) \approx F_{-\frac{1}{2}} - \frac{A(u_0^n) - A(u_{-1}^n)}{\Delta x} = 0,$$ (5.22)

de donde se obtiene la expresión para la actualización del flujo en u_0^n

$$\frac{u_0^{n+1} - u_0^n}{\Delta t} + q(n\Delta t)\frac{u_1^n - u_0^n}{\Delta x} + \frac{F_{\frac{1}{2}}}{\Delta x} = \frac{A(u_1^n) - A(u_0^n)}{(\Delta x)^2} .$$ (5.23)

Esta formulación evita utilizar un valor artificial u_{-1}^n.

Para el problema A, la condición de borde en $x = H$ se aproxima simplemente poniendo $u_{N_0}^n = 0$, en cambio para el problema B, (5.9) se aproxima haciendo

$$q(n\Delta t)u_{N_0}^n + F_{N_0+\frac{1}{2}} - \frac{A(u_{N_0+1}^n) - A(u_{N_0}^n)}{\Delta x} = \Psi(n\Delta t).$$ (5.24)

Con esto, se obtiene la expresión para la actualización del flujo en $u_{N_0}^n$

$$\frac{u_{N_0}^{n+1} - u_{N_0}^n}{\Delta t} + \Psi(n\Delta t) - q(n\Delta t)u_{N_0}^n - \frac{F_{N_0-\frac{1}{2}}}{\Delta x} = \frac{A(u_{N_0-1}^n) - A(u_{N_0}^n)}{(\Delta x)^2} .$$ (5.25)
Como alternativa a la discretización de la parte advectiva, puede utilizarse un esquema de Engquist-Osher modificado mediante extrapolación de variables MUSCL (Monotonic Upwind Scheme for Conservation Laws) para lograr un esquema de segundo orden [9, 10, 21, 23, 22]. Para ello se introduce una función \(u^n(x) \) lineal a trozos definida por

\[
 u^n(x) = u^n_j + s^n_j (x - x_j), \quad x \in [x_{j-1/2}, x_{j+1/2}],
\]

donde \(s^n_j \) es una pendiente adecuada, construida a partir de \(u^n \). En las regiones donde \(s^n_j = 1 \), la reconstrucción es lineal y el error de truncamiento es \(O((\Delta x)^2) \). En las regiones donde \(s^n_j = 0 \), la reconstrucción es constante a trozos y el error de truncamiento es \(O(\Delta x) \). Es necesario utilizar limitadores de pendiente para forzar la monotonía de la reconstrucción. En este caso, se utilizará el \(\theta \)-limitador (ver [23, 24])

\[
 s^n_j = MM \left(\theta \frac{u^n_j - u^n_{j+1}}{\Delta x}, \frac{u^n_{j+1} - u^n_{j-1}}{2\Delta x}, \theta \frac{u^n_{j+1} - u^n_j}{\Delta x} \right), \quad \theta \in [0, 2],
\]

donde \(MM \) es otra función tipo \(\text{Min-Mod} \) definida por

\[
 MM(a, b, c) := \begin{cases}
 \min(a, b, c), & \text{si } a, b, c > 0, \\
 \max(a, b, c), & \text{si } a, b, c < 0, \\
 0, & \text{e.o.c.}
 \end{cases}
\]

Luego se extrapola la información hacia la frontera de cada volumen de control, con lo que

\[
 u^L_j := u^n_j - \frac{\Delta x}{2} s^n_j, \quad u^R_j := u^n_j + \frac{\Delta x}{2} s^n_j.
\]

Así, el esquema upwind interior de segundo orden, se escribe

\[
 \frac{u^{n+1}_j - u^n_j}{\Delta t} + q(n\Delta t) \frac{u^n_{j+1} - u^n_{j-1}}{\Delta x} + \frac{f^{EO}(u^n_{j+1}) - f^{EO}(u^n_{j-1})}{\Delta x} = A(u^n_{j-1}) - 2A(u^n_j) + A(u^n_{j+1}),
\]

donde \(f^{EO}(u^n_{j+1}) := f^+(u^n_j) + f^-(u^n_{j+1}) \) es el flujo numérico de Engquist-Osher [20],

\[
 f^+(u) = f(0) + \int_0^u \max(f'(s), 0) \, ds, \quad f^-(u) = \int_0^u \min(f'(s), 0) \, ds.
\]

Este esquema es estable bajo la condición CFL (ver [21])

\[
 \max_u |f'(u)| \frac{\Delta t}{\Delta x} + 2 \max_u |a(u)| \frac{\Delta t}{(\Delta x)^2} \leq 1.
\]

Las condiciones de borde (5.6) y (5.10) prescritas en \(x = 0 \) quedan entonces

\[
 \frac{u^{n+1}_0 - u^n_0}{\Delta t} + q(n\Delta t) \frac{u^n_1 - u^n_0}{\Delta x} + \frac{f^{EO}(u^n_0) - f^{EO}(u^n_1)}{\Delta x} = A(u^n_0) - A(u^n_1),
\]

y la condición de borde (5.9) queda

\[
 \frac{u^{n+1}_{N_0} - u^n_{N_0}}{\Delta t} + \Psi(n\Delta t) - q(n\Delta t)u^n_{N_0} - \frac{f^{EO}(u^n_{N_0-1}) - f^{EO}(u^n_{N_0})}{\Delta x} = A(u^n_{N_0-1}) - A(u^n_{N_0}).
\]
5.2. Ejemplos numéricos

Se calculan soluciones de los problemas A y B utilizando los esquemas numéricos descritos en la sección anterior, con una discretización de tipo Enquist-Osher. Se reproducen algunos resultados numéricos obtenidos por Bürger et al. [8, 9, 10] y Bustos et al. [12].

5.2.1. Sedimentación batch de suspensión ideal

Considerar en primer lugar, el proceso de sedimentación batch de suspensión ideal en una columna de asentamiento [17]. El caso ideal permite formular el proceso como

\[
\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0, \quad x \in \mathbb{R}, \quad t > 0,
\]

\[
u(x, 0) = u_0(x), \quad x \in [0, H],
\]

\[
u(0, t) = u_{\infty}, \quad t > 0,
\]

\[
u(L, t) = u_L, \quad t > 0.
\]

En el ejemplo se considera una columna de asentamiento de longitud \(H = 1 \), una concentración inicial \(u_0(x) = 0.25 \), condiciones de borde \(u_{\infty} = 0.642 \) y \(u_0 = 0 \). Se elige una ecuación constitutiva para la función de densidad de flujo sólido. Se utiliza la función descrita por Shannon (1963, consultar [12])

\[
f(u) = (-0.33843u + 1.37672u^2 - 1.62275u^3 - 0.11264u^4 + 0.902253u^5) \times 10^{-2} [m/s]. \quad (5.33)
\]

![Figura 5.2: Función de densidad de flujo \(f(u) \) para el problema de sedimentación batch de suspensión ideal. Unidad: [m/s].](image)

En las figuras 5.3-5.5 se muestran soluciones numéricas para \(t = 60 [s] \), \(t = 300 [s] \) y \(t = 3600 [s] \) obtenidas mediante el esquema de segundo orden descrito en la sección anterior, aplicando multiresolución. En \(t = 3600 [s] \) la solución ya alcanzó un estado estacionario.
Figura 5.3: Izquierda: Condición inicial (rayas) y perfil de concentración a $t = 60\,[s]$ para el problema de sedimentación batch de suspensión ideal (Asteriscos). Derecha: Coeficientes de ondelette significativos correspondientes.

Figura 5.4: Izquierda: Condición inicial (rayas) y perfil de concentración a $t = 300\,[s]$ para el problema de sedimentación batch de suspensión ideal (Asteriscos). Derecha: Coeficientes de ondelette significativos correspondientes.
Figura 5.5: Izquierda: Condición inicial (rayas) y perfil de concentración a $t = 3600\,[s]$ para el problema de sedimentación batch de suspensión ideal (Asteriscos). Derecha: Coeficientes de ondelette significativos correspondientes.

En la tabla 5.1 se muestran la proporción V, tasa de compresión y errores entre la solución calculada utilizando multiresolución y la solución calculada sin multiresolución (ver sección 3.5).

<table>
<thead>
<tr>
<th>$t,[s]$</th>
<th>V</th>
<th>μ</th>
<th>e_1</th>
<th>e_2</th>
<th>e_∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>4.3457</td>
<td>7.8456</td>
<td>2.64×10^{-5}</td>
<td>6.54×10^{-6}</td>
<td>9.03×10^{-6}</td>
</tr>
<tr>
<td>300</td>
<td>5.6212</td>
<td>5.8456</td>
<td>1.70×10^{-5}</td>
<td>6.39×10^{-6}</td>
<td>1.12×10^{-5}</td>
</tr>
<tr>
<td>1800</td>
<td>5.9443</td>
<td>14.9168</td>
<td>7.28×10^{-5}</td>
<td>2.98×10^{-5}</td>
<td>4.35×10^{-5}</td>
</tr>
<tr>
<td>3600</td>
<td>6.1385</td>
<td>29.8479</td>
<td>8.89×10^{-5}</td>
<td>4.04×10^{-5}</td>
<td>6.50×10^{-5}</td>
</tr>
</tbody>
</table>

Cuadro 5.1: Sedimentación de suspensión ideal. $\varepsilon = 1.0 \times 10^{-4}$, $N_0 = 257$, $L = 5$.

Notar que los errores permanecen siempre bajo la tolerancia prescrita $\varepsilon = 1.0 \times 10^{-4}$.
5.2.2. Caso batch de suspensiones floculadas: primer ejemplo

En este ejemplo se considera el caso batch de suspensión homogénea de concentración inicial \(u_0(x) = 0,15 \) en un a columna de asentamiento cerrada, es decir, se considera el caso de \(q \equiv 0 \), con una concentración prescrita en \(x = 1 \) dada por (5.5). El dominioespacial es [0,1] y la concentración crítica es \(u_c = 0,23 \). Notar que la discontinuidad entre \(u = 0 \) y \(u = u_0 \) es un choque. Aún más, el problema (5.3)-(5.6) es un problema de Riemann, en el sentido de que el dato inicial consiste en dos estados constantes y la solución, en general, consistirá en ondas elementales: choques, ondas de rarefacción y discontinuidades de contacto [12].

Como función de densidad de flujo, se utiliza una función Kynch batch Richardson-Zaki con parámetros correspondientes a suspensión de cobre [9].

\[
f(u) = -6,05 \times 10^{-4}u(1-u)^{12,59} \text{[m/s]}, \tag{5.34}\]

Se utilizará la función \(\sigma'_e(u) \) dada por ([10, 12])

\[
\sigma'_e(u) = \frac{d}{du} (100(u/u_c)^8 - 1) \text{[Pa]}, \quad \text{si } u > u_c. \tag{5.35}\]

Luego

\[
\sigma'_e(u) = \begin{cases}
0, & \text{si } u \leq u_c = 0,23, \\
\frac{800}{u_c} \left(\frac{u}{u_c} \right)^7 \text{[Pa]}, & \text{si } u > u_c.
\end{cases} \tag{5.36}\]

La función \(a(u) \) (5.11) está dada por

\[
a(u) = \begin{cases}
0, & \text{si } u \leq u_c = 0,23, \\
\frac{4,84 \times 10^{-1}u^7(1-u)^{12,59}}{u_c^2 \Delta \theta g}, & \text{si } u > u_c,
\end{cases} \tag{5.37}\]

con \(\Delta \theta = 1500 \text{[Kg/m}^3\text{]} \) y \(g = 9,81 \text{[Kg m/s}^2\text{]} \). Por lo tanto

\[
A(u) = \begin{cases}
0, & \text{si } u \leq u_c = 0,23, \\
[0,2042(1-u)^{20,59} - 1,5023(1-u)^{19,59} + \cdots \\
4,7495(1-u)^{18,59} - 8,3658(1-u)^{17,59} + \cdots \\
8,8701(1-u)^{16,59} - 5,6634(1-u)^{15,59} + \cdots \\
2,0172(1-u)^{14,59} - 0,3094(1-u)^{13,59}] & , \quad \text{si } u > u_c.
\end{cases} \tag{5.38}\]

El parámetro para el \(\theta – \)limitador corresponde a \(\theta = 1 \), que es el óptimo para este tipo de problemas [10].
La figura 5.6 muestra las funciones modelo \(f(u) \) y \(a(u) \).

Figura 5.6: Funciones modelo \(f(u) \) (izquierda) y \(a(u) \) (derecha) para el problema de sedimentación-consolidación. Las unidades son \([m/s]\) para \(f(u) \) y \([m^2/s]\) para \(a(u) \).

En la tabla 5.2 se muestran la proporción \(V \), tasa de compresión y errores entre la solución obtenida utilizando multiresolución y la solución obtenida sin multiresolución.

<table>
<thead>
<tr>
<th>(t) [s]</th>
<th>(V)</th>
<th>(\mu)</th>
<th>(e_1)</th>
<th>(e_2)</th>
<th>(e_\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>6.5737</td>
<td>9.8993</td>
<td>7.29x10^{-6}</td>
<td>8.12x10^{-6}</td>
<td>3.330x10^{-5}</td>
</tr>
<tr>
<td>600</td>
<td>7.1426</td>
<td>9.4132</td>
<td>7.99x10^{-6}</td>
<td>1.06x10^{-5}</td>
<td>3.42x10^{-5}</td>
</tr>
<tr>
<td>3600 (*)</td>
<td>7.7421</td>
<td>9.8993</td>
<td>2.46x10^{-5}</td>
<td>2.67x10^{-5}</td>
<td>4.01x10^{-5}</td>
</tr>
<tr>
<td>7200 (*)</td>
<td>16.9244</td>
<td>16.7021</td>
<td>4.92x10^{-5}</td>
<td>3.31x10^{-5}</td>
<td>4.77x10^{-5}</td>
</tr>
</tbody>
</table>

Cuadro 5.2: Suspensiones floculadas, primer ejemplo. \(\varepsilon = 5 \times 10^{-5} \), \(L = 5 \). (*) figuras 5.7-5.8.

Notar de la tabla 5.2, que los errores se encuentran por debajo de la tolerancia prescrita. Notar además los excelentes resultados en cuanto a proporción \(V \) (correspondiente al tiempo total de CPU en ambos casos). Los resultados en cuanto a tasa de compresión no son excelentes, pero hay que tomar en cuenta que se está considerando una malla de 129 puntos.

En la figura 5.7 se presenta un perfil de concentración en un tiempo \(t = 1[h] \), utilizando
multiresolución. La solución se calcula utilizando 128 volúmenes de control en la malla fina. Se presenta además la configuración de los coeficientes de ondelette significativos correspondientes. Notar que cuanto más perfilada es la discontinuidad, menor es el número de coeficientes de ondelette significativos asociados a esta discontinuidad.

Figura 5.7: Izquierda: Condición inicial (rayas) y perfil de concentración a $t = 1[h]$ para el problema de sedimentación-consolidación (cuadros). Derecha: Coeficientes de ondelette significativos correspondientes.

En la figura 5.8 se presenta un perfil de concentración en un tiempo $t = 2[h]$, utilizando multiresolución. La solución se calcula utilizando 128 volúmenes de control en la malla fina. Se presenta además la configuración de los coeficientes de ondelette significativos correspondientes. En este tiempo, la solución va a entrar en un estado estacionario [8].
Primer ejemplo, caso batch de suspensión floculada. $t = 2[h]$ Coeficientes de ondelette significativos, $N_0 = 129, L = 5, \varepsilon = 10^{-4}$

Figura 5.8: Izquierda: Condición inicial (rayas) y perfil de concentración a $t = 2[h]$ para el problema de sedimentación-consolidación, caso Batch. (cuadros). Derecha: Coeficientes de ondelette significativos correspondientes.

Los resultados numéricos concuerdan con los resultados obtenidos por Bürger et al. [8].
5.2.3. Caso batch de suspensiones floculadas: segundo ejemplo

En este ejemplo se considera el caso batch de suspensión homogénea de concentración inicial \(u_0(x) = 0,123 \) en una columna cerrada en su parte superior \((q \equiv 0) \) de longitud 6. La concentración crítica es \(u_c = 0,23 \). Como función de densidad de flujo, se utiliza la misma función que en el ejemplo anterior (5.34). Como función de rigidez sólida efectiva, se utilizará la función \(\sigma'(u) \) dada por

\[
\sigma'(u) = \begin{cases}
0, & \text{si } u \leq u_c = 0,23, \\
95,765 \exp 17,9 u, & \text{si } u > u_c.
\end{cases}
\] (5.40)

La función \(a(u) \) (5.11), con los parámetros \(\Delta \rho = 1500 \, [Kg/m^3] \) y \(g = 9,81 \, [Kg/m/s^2] \) queda entonces dada por

\[
a(u) = \begin{cases}
0, & \text{si } u \leq u_c = 0,23, \\
3,9373 \times 10^{-6} (1 - u)^{12,59} \exp(17,9 u), & \text{si } u > u_c.
\end{cases}
\] (5.41)

Ahora, haciendo \(12,59 \approx 13 \), para poder obtener explícitamente \(A(u) \),

\[
A(u) = \begin{cases}
0, & \text{si } u \leq u_c = 0,23, \\
-7,1755 \times 10^{-6} \cdot \exp(17,9 u) \cdot u + 3,8628 \times 10^{-5} \cdot \exp(17,9 u) \cdot u^2 - \cdots \\
1,2811 \times 10^{-4} \cdot \exp(17,9 u) \cdot u^3 + 2,9178 \times 10^{-4} \cdot \exp(17,9 u) \cdot u^4 - \\
4,8154 \times 10^{-4} \cdot \exp(17,9 u) \cdot u^5 + 5,9203 \times 10^{-4} \cdot \exp(17,9 u) \cdot u^6 - \\
5,4870 \times 10^{-4} \cdot \exp(17,9 u) \cdot u^7 + 3,8315 \times 10^{-4} \cdot \exp(17,9 u) \cdot u^8 - \\
1,9900 \times 10^{-4} \cdot \exp(17,9 u) \cdot u^9 + 7,4697 \times 10^{-5} \cdot \exp(17,9 u) \cdot u^{10} - \\
1,9181 \times 10^{-5} \cdot \exp(17,9 u) \cdot u^{11} + 3,0193 \times 10^{-6} \cdot \exp(17,9 u) \cdot u^{12} - \\
2,1996 \times 10^{-7} \cdot \exp(17,9 u) \cdot u^{13} + 6,2083 \times 10^{-7} \cdot \exp(17,9 u) \right], & \text{si } u > u_c.
\end{cases}
\] (5.42)

La figura 5.9 muestra las funciones modelo \(f(u) \) y \(a(u) \) en este caso.
Figura 5.9: Funciones modelo \(f(u) \) (izquierda) y \(a(u) \) (derecha) para el problema de sedimentación-consolidación, segundo ejemplo. Las unidades son [m/s] para \(f(u) \) y [m^2/s] para \(a(u) \).

<table>
<thead>
<tr>
<th>(t) [s]</th>
<th>(V)</th>
<th>(\mu)</th>
<th>(e_1)</th>
<th>(e_2)</th>
<th>(e_\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>7.5069</td>
<td>25.6100</td>
<td>4.31\times10^{-6}</td>
<td>2.34\times10^{-5}</td>
<td>1.46\times10^{-5}</td>
</tr>
<tr>
<td>600</td>
<td>8.8155</td>
<td>20.4944</td>
<td>6.87\times10^{-6}</td>
<td>5.78\times10^{-5}</td>
<td>7.88\times10^{-5}</td>
</tr>
<tr>
<td>3600</td>
<td>9.2384</td>
<td>20.4944</td>
<td>1.36\times10^{-5}</td>
<td>9.45\times10^{-5}</td>
<td>1.03\times10^{-4}</td>
</tr>
<tr>
<td>7200</td>
<td>22.3255</td>
<td>20.4944</td>
<td>6.74\times10^{-5}</td>
<td>3.32\times10^{-4}</td>
<td>4.43\times10^{-4}</td>
</tr>
</tbody>
</table>

Cuadro 5.3: Caso batch de suspensiones floculadas, segundo ejemplo. Tolerancia prescrita \(\varepsilon = 10^{-3} \), \(N_0 = 257 \) puntos en la malla fina y \(L = 5 \) niveles de multiresolución.

En la tabla 5.3 se muestran la proporción \(V \), tasa de compresión y errores entre la solución obtenida utilizando multiresolución y la solución obtenida sin multiresolución.

Análogamente al primer ejemplo, en la tabla 5.3 puede verse que los errores entre la solución obtenida utilizando multiresolución y la solución obtenida sin multiresolución, están por debajo de la tolerancia prescrita. De igual modo, se ve una gran rebaja en costo computacional, dada por la alta tasa de compresión y proporción \(V \) de tiempo total de CPU.
En la figura 5.10 se presenta un perfil de concentración en \(t = 1[h] \), para la solución utilizando multiresolución, y la solución sin multiresolución. La solución se calcula utilizando 512 volúmenes de control en la malla fina. Se presenta además la configuración correspondiente de los coeficientes de ondelette significativos.

Figura 5.10: Izquierda: Condición inicial (rayas) y perfil de concentración a \(t = 1[h] \) para el problema de sedimentación-consolidación, segundo caso (asteriscos). Derecha: Coeficientes de ondelette significativos correspondientes.

En la figura 5.10 se presenta un perfil de concentración en \(t = 2[h] \), para la solución utilizando multiresolución, y la solución sin multiresolución. La solución se calcula utilizando 512 volúmenes de control en la malla fina. Se presenta además la configuración correspondiente de los coeficientes de ondelette significativos.
Figura 5.11: Izquierda: Condición inicial (rayas) y perfil de concentración a \(t = 2[h] \) para el problema de sedimentación-consolidación, segundo caso (asteriscos). Derecha: Coeficientes de ondelette significativos correspondientes.

En la figura 5.12 se presenta un perfil de concentración en un tiempo \(t = 12[h] \), utilizando multiresolución. La solución se calcula utilizando 512 volúmenes de control en la malla fina. Se presenta además la configuración de los coeficientes de ondelette significativos correspondientes. En este tiempo, la solución entra en un estado estacionario (ver [9]).
Figura 5.12: Izquierda: Condición inicial (rayas) y perfil de concentración a $t = 12[h]$ para el problema de sedimentación-consolidación, segundo caso (*asteriscos*). Derecha: Coeficientes de ondelette significativos correspondientes.

Los resultados numéricos concuerdan con los resultados obtenidos por Bürger et al. [9].
5.2.4. Simulación de sedimentación continua

En este caso se utiliza como modelo el problema B (5.7)-(5.10), con una función de densidad de flujo dada por

\[
f(u) = -1.98 \times 10^{-4} u \left(1 - \frac{u}{0.3}\right)^{5.647},
\]

y una función de rigidez sólida efectiva dada por

\[
\sigma_e(u) = \begin{cases}
0, & \text{si } u \leq u_c := 0.1, \\
5.7 \left(\frac{u}{u_c}\right)^9 - 1, & \text{si } u > u_c := 0.1.
\end{cases}
\]

Estas aproximan a las funciones modelo determinadas para suspensión de carbonato de calcio [10].

![Figura 5.13: Funciones modelo \(f(u)\) (izquierda) y \(a(u)\) (derecha) para para la simulación de sedimentación continua. Las unidades son \([m/s]\) para \(f(u)\) y \([m^2/s]\) para \(a(u)\).](https://example.com/figura513.png)

En este caso, \(\Delta g = 1690 [Kg m^{-3}]\). Además

\[
a(u) = \begin{cases}
0, & \text{si } u \leq u_c := 0.1, \\
6.1267 \times 10^2 \cdot u^8 \left(1 - \frac{u}{0.3}\right)^{5.647}, & \text{si } u > u_c := 0.1,
\end{cases}
\]

(5.45)
Luego

\[
A(u) = \begin{cases}
0, & \text{si } u \leq u_c := 0,1, \\
-8,2332 \times 10^{-4} \left(1 - \frac{u}{0,3} \right)^{14,647} + 0,0071 \left(1 - \frac{u}{0,3} \right)^{13,647} \cdots \\
-0,0267 \left(1 - \frac{u}{0,3} \right)^{12,647} + 0,0580 \left(1 - \frac{u}{0,3} \right)^{11,647} \cdots \\
-0,0793 \left(1 - \frac{u}{0,3} \right)^{10,647} + 0,0700 \left(1 - \frac{u}{0,3} \right)^{9,647} \cdots \\
-0,0390 \left(1 - \frac{u}{0,3} \right)^{8,647} + 0,0126 \left(1 - \frac{u}{0,3} \right)^{7,647} \cdots \\
-0,0018 \left(1 - \frac{u}{0,3} \right)^{6,647}, & \text{si } u > u_c := 0,1.
\end{cases}
\]

(5.46)

Se modela un ICT de longitud 2, con una concentración inicial, \(u_0 = 0,052 \). En \(x = 1 \) se prescribe una alimentación dada por \(\Psi(t) = -8,55 \times 10^{-7} \). Se supone el ICT cerrado, es decir, \(q \equiv 0 \) y se simula el proceso de llenado hasta antes que el nivel de concentración en \(x = 0 \) alcance el valor \(u(0, t) = 0,171 \). En ese momento, el recipiente se abre, y se hace \(q(t) = -5 \times 10^{-6}[m/s] \). Notar que desde ese momento, \(\Psi(t) = 0,171 \cdot q(t) \), es decir, el flujo en la alimentación es igual al flujo de descarga y el perfil de concentración entra en estado constante [10].

En la tabla 5.4 se muestran la proporción \(V \), tasa de compresión y errores entre la solución obtenida utilizando multiresolución y la solución obtenida sin multiresolución.

<table>
<thead>
<tr>
<th>(t) [s]</th>
<th>(V)</th>
<th>(\mu)</th>
<th>(e_1)</th>
<th>(e_2)</th>
<th>(e_\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>41.2472</td>
<td>26.0312</td>
<td>5.89\times10^{-5}</td>
<td>6.48\times10^{-5}</td>
<td>7.43\times10^{-6}</td>
</tr>
<tr>
<td>600</td>
<td>14.6818</td>
<td>26.0312</td>
<td>8.99\times10^{-5}</td>
<td>9.83\times10^{-5}</td>
<td>1.10\times10^{-5}</td>
</tr>
<tr>
<td>3600</td>
<td>16.0845</td>
<td>26.0312</td>
<td>1.26\times10^{-4}</td>
<td>2.77\times10^{-4}</td>
<td>1.91\times10^{-5}</td>
</tr>
<tr>
<td>36000</td>
<td>29.5790</td>
<td>17.9210</td>
<td>7.92\times10^{-4}</td>
<td>6.57\times10^{-4}</td>
<td>8.43\times10^{-4}</td>
</tr>
<tr>
<td>43200</td>
<td>36.0489</td>
<td>17.9210</td>
<td>8.10\times10^{-4}</td>
<td>9.07\times10^{-4}</td>
<td>8.95\times10^{-4}</td>
</tr>
</tbody>
</table>

Cuadro 5.4: Simulación de sedimentación continua. Tolerancia prescrita \(\varepsilon = 5 \times 10^{-3} \), \(N_0 = 257 \) puntos en la malla fina y \(L = 5 \) niveles de multiresolución.

Al mirar la tabla 5.4, de nuevo los errores entre la solución obtenida utilizando multiresolución y la solución obtenida sin multiresolución, se encuentran por debajo de la tolerancia prescrita. Una alta tasa de compresión y proporción \(V \) de tiempo total de CPU
delatan la importancia del método de multiresolución en la aplicación de este tipo de problemas.

Figura 5.14: Izquierda: Condición inicial (rayas) y perfil de concentración a $t = 1[h]$ para el problema de sedimentación continua (*asteriscos*). Derecha: Coeficientes de ondelette significativos correspondientes.
Figura 5.15: Izquierda: Condición inicial (rayas) y perfil de concentración a $t = 10[h]$ para el problema de sedimentación continua (asteriscos). Derecha: Coeficientes de ondelette significativos correspondientes.
Figura 5.16: Izquierda: Condición inicial (rayas) y perfil de concentración a $t = 12[h]$ para el problema de sedimentación continua (asteriscos). Derecha: Coeficientes de ondelette significativos correspondientes.
Capítulo 6

Conclusiones y perspectivas

6.1. Conclusiones

En el presente trabajo se desarrolló un esquema numérico completamente adaptativo para acelerar los cálculos de volúmenes finitos de ecuaciones diferenciales parabólicas (originalmente desarrollado para leyes de conservación hiperbólicas) y ecuaciones parabólicas fuertemente degeneradas en una dimensión espacial. Se estudiaron varios casos test de ecuaciones hiperbólicas, parabólicas lineales y no lineales, y ecuaciones parabólicas fuertemente degeneradas provenientes de la teoría de procesos de sedimentación-consolidación.

Generalmente, al añadir un término viscoso a un esquema, la solución tiende a suavizar y en algunos casos puede estabilizar un esquema numérico originalmente inestable. Se pudo ver que excepto por una limitación de paso temporal (que en el caso inviscido es diferente) el problema viscoso no implica mayores complicaciones desde el punto de vista numérico.

El análisis de multiresoluciones se mantiene inalterado, pues sólo tiene que ver con la regularidad de los valores puntuales o medias en celda de la solución.

Es importante destacar que en el capítulo 5 se utilizaron esquemas de diferencias finitas, por lo que en los algoritmos de multiresolución empleados se considera un análisis de multiresolución para valores puntuales.

Se comienza con una discretización de volúmenes finitos (o diferencias finitas) en una malla uniforme, y una integración explícita en tiempo, ambas de segundo orden. Mediante técnicas de análisis de multiresolución, se reduce el tamaño de la malla, eliminando los puntos con detalles no significativos, pero manteniendo siempre un esquema de segundo orden.

La actualización temporal de la malla se realiza mediante una estrategia de adaptación
dinámica que aprovecha la representación puntual esparsa, agregando coeficientes vecinos en escala y espacio para mejorar la captura de la información.

Para la evaluación de los flujos numéricos, en la malla localmente refinada, se utilizaron esquemas ENO de segundo orden y esquemas de Engquist-Osher modificados de segundo orden.

Los algoritmos empleados son generalizables al caso de otras condiciones de borde (simplemente modificando el interpolador internallas y el cálculo de los flujos en los puntos de frontera), otra elección para la condición inicial, otro tipo de evolución temporal, otra elección para los predictores internallas, otra elección para el orden de las interpolaciones ENO, otra elección para el cálculo del flujo numérico, otro tipo de estructura de datos, etc.

La eficiencia del algoritmo fue medida mediante la tasa de compresión y el tiempo de CPU. La diferencia de tiempo total de CPU entre la solución numérica que no utiliza multiresolución y la que utiliza multiresolución está directamente relacionada con el hecho de que en una, la solución numérica sin multiresolución se evalúan todos los flujos numéricos mientras que en la otra solución numérica con multiresolución, sólo se calculan los flujos numéricos donde existen coeficientes de ondelette significativos. Lógicamente esta diferencia se ve incrementada cuando el flujo numérico es más costoso.

La aplicación del método de multiresolución resulta aún más provechosa en la simulación de procesos de sedimentación de suspensiones floculadas. El que las ecuaciones sean de naturaleza más compleja, se suma el hecho de que los resultados experimentales publicados requieren un tiempo de simulación de varias horas, en contraste con las fracciones de segundo suficientes para estudiar la solución numérica de los problemas hiperbólicos y parabólicos incluidos en este trabajo. Además, la condición CFL en este caso, hace que Δt sea muy pequeño. Esto hace pensar en la utilización de un esquema implícito o semi-implícito [7].

La gran desventaja de utilizar algoritmos de multiresolución, es quizás el hecho de que los resultados en cuanto a convergencia aún no tienen un gran auge. Una gran parte de los argumentos del análisis de multiresolución desarrollado por Harten es de naturaleza heurística.

En la parte final se presentó un método numérico para obtener soluciones aproximadas de problemas provenientes de fenómenos de sedimentación. La idea desarrollada fue aplicar los métodos de multiresolución a los esquemas diseñados por Bürger et al. [6, 8, 9, 10, 11] y se observó que el método de multiresolución es de gran ayuda para reducir el costo computacional en este tipo de problemas sin afectar la calidad de la solución.

Todos los experimentos se realizaron en equipos con procesadores Pentium 4 de 1.6 Mhz, con 1GB de memoria RAM, tanto en plataforma Linux como Windows.
6.2. Perspectivas

- Para el caso de ecuaciones parabólicas fuertemente degeneradas, la perspectiva a más corto plazo es modificar el algoritmo para poder aplicarlo a las ecuaciones que modelan otros tipos de fenómenos de sedimentación.

- Aplicar métodos de multiresolución a la resolución de problemas inversos.

- Utilizar esquemas ENO de orden superior a dos. Combinar esto con la utilización de esquemas con varios switches [26].

- Aplicar métodos de multiresolución a problemas que modelan la separación de suspensiones polidispersas [5].

- Realizar los experimentos del capítulo 5 utilizando esquemas semi-implícitos e implícitos. Esto se traduce en pasar de un Δt de orden de $(\Delta x)^2$ a un orden de Δx. Sin embargo las complicaciones están en tener que resolver un sistema de ecuaciones no-lineales en cada iteración. Además el proceso de multiresolución para esquemas semi-implícitos se complica bastante.

- Extender los resultados de los puntos anteriores al caso de sistemas y ecuaciones multidimensionales.

- Los códigos pueden ser fácilmente traducidos a un lenguaje más robusto como FORTRAN, C, o C++, dado que las funciones y subrutinas en la implementación no abusan de las funciones implícitas de MATLAB (excepto en la estructura SPARSE de los datos).
Apéndice A

Cálculo de los coeficientes de interpolación en la multiresolución

A.1. Multiresolución de valores puntuales

En la sección correspondiente se ha mencionado que

\[
I(x_{2j-1}^{k-1}, u^k) = \sum_{l=1}^{s} \beta_l(u_{j+l-1}^k + u_{j-1}^k)
\] \hspace{1cm} (A.1)

es el polinomio de grado \(r - 1 \) que interpola los puntos \((u_{j-s}^k, \ldots, u_{j+s-1}^k)\). Para ver esto, y encontrar los valores de los coeficientes \(\beta_l \), se utiliza el polinomio interpolador de Lagrange

\[
P(x) = \sum_{l=j-s}^{j+s-1} u(x_l^k) \prod_{l=j-s}^{j+s-1} \frac{x - x_l^k}{x_l^k - x_i^k}, \quad i \neq l
\]

en el punto \(x_{2j-1}^{k-1} \)

\[
I(x_{2j-1}^{k-1}, u^k) = \sum_{l=j-s}^{j+s-1} u_l^k \prod_{l=j-s}^{j+s-1} \frac{x_{2j-1}^{k-1} - x_i^k}{x_l^k - x_i^k}, \quad i \neq l,
\]
donde \(x_{2j-1}^{k-1} = (2j - 1) \cdot h_{k-1} = (j - 1/2) \cdot h_k \). Luego

\[
I(x_{2j-1}^{k-1}, u^k) = \sum_{l=j-s}^{j+s-1} u_l^k \prod_{l=j-s}^{j+s-1} \frac{j - \frac{1}{2} - i}{l - i}, \quad i \neq l.
\]
Si se toma en cuenta que los pares de valores puntuales \((u_{j-1}, u_j), (u_{j-2}u_{j+1}), \ldots\) están multiplicados por el mismo factor, se tiene (A.1), con

\[\beta_i = \frac{2^i \cdot 3^{i-1} \cdot (2l - 3)^2 \cdot (2l - 1) \cdot (2l + 1)^2 \cdots (2s - 1)^2}{2^{2s-1} \cdot (s + l - 1)! \cdot (s - l)!} \cdot (-1)^{l+1}. \]

Por lo tanto se tienen los siguientes coeficientes para cada \(r = 2s\) mencionado:

- \(r = 2, s = 1\), \(\beta_1 = \frac{1}{2!} \cdot (-1)^2 = \frac{1}{2}\).
- \(r = 4, s = 2\), \(\beta_1 = \frac{1 \cdot 3^2}{2! \cdot 2!} \cdot (-1)^2 = \frac{9}{16}, \beta_2 = \frac{1^2 \cdot 3^3}{2! \cdot 3!} \cdot (-1)^3 = -\frac{1}{16}\).

A.2. Multiresolución de medias en celda

De manera análoga al caso anterior, en la sección correspondiente se ha mencionado que

\[d_j^k = \bar{u}_{2j-1}^k - \bar{u}_{2j+1}^k = \bar{u}_{2j-1}^k - \frac{I(x_{2j-1}^k, U^k) - U^k_{j-1}}{h_{k-1}} \tag{A.2} \]

Se aplica el caso anterior (para valores puntuales) al esténriel \((U^k_{j-8}, \ldots, U^k_{j+s-1})\), por tanto

\[I(x_{2j-1}^k; U^k) = \sum_{l=1}^{s} \beta_l(U^k_{j+l-1} + U^k_{j-l}) \]

con los mismos \(\beta_l\) calculados en el apéndice A.1, por tanto

\[\bar{u}_{2j-1}^k = \frac{\sum_{l=1}^{s} \beta_l(U^k_{j+l-1} + U^k_{j-l}) - U^k_{j-1}}{h_{k-1}} \]

y utilizando \(h_k = 2h_{k-1}\), se tiene

\[\bar{u}_{2j-1}^k = \frac{\sum_{l=1}^{s} \beta_l(U^k_{j+l-1} + U^k_{j-l}) - U^k_{j-1}}{2^{-1}h_k} \]

\[= \frac{\sum_{l=1}^{s} 2\beta_l(U^k_{j+l-1} + U^k_{j-l}) - 2U^k_{j-1}}{h_k} \]

\[= \frac{2\beta_1(U^k_j + U^k_{j-1}) + 2\beta_2(U^k_{j+1} + U^k_{j-2}) + \cdots + 2\beta_s(U^k_{j+s-1} + U^k_{j-s}) - 2U^k_{j-1}}{h_k} \]

o equivalentemente,

\[h_k \cdot \bar{u}_{2j-1}^k = \cdots + (2\beta_1 - 1 + 2\beta_2) \cdot (U^k_{j-2} - U^k_{j-3}) + (2\beta_1 - 1) \cdot (U^k_{j-1} - U^k_{j-2}) + \]

\[1 \cdot (U^k_j - U^k_{j-1}) + (1 - 2\beta_1) \cdot (U^k_{j+1} - U^k_j) + \]

\[(1 - 2\beta_1 - 2\beta_2) \cdot (U^k_{j+2} - U^k_{j+1}) + \cdots \]
Además, si se toma en cuenta la relación

\[\bar{u}_j^k = \frac{U_j^k - U_{j+1}^k}{h_k}, \]

y que las medias en celda \(\bar{u}_j^k \) y \(\bar{u}_{j+l}^k \), \(l = 1, \ldots, s-1 \), están multiplicados por el mismo factor (sólo cambia de signo), se llega a la expresión

\[\bar{u}_j^k = \sum_{l=1}^{s-1} \gamma_l (\bar{u}_{j+l}^k - \bar{u}_{j-l}^k) + \bar{u}_j^k \quad (A.3) \]

con

\[\gamma_l = -(2 \cdot \beta_l - \gamma_{l-1}), \quad \gamma_0 = 1. \]

Por lo tanto se obtiene para cada \(\bar{r} = 2s - 1 \) mencionado:

- \(\bar{r} = 3, \ s = 2, \)
 \[\gamma_1 = -(2 \cdot \beta_1 - \gamma_0) = -(2 \cdot \frac{9}{16} - 1) = -\frac{1}{8}. \]

- \(\bar{r} = 5, \ s = 3, \)
 \[\gamma_1 = -(2 \cdot \beta_1 - \gamma_0) = -(2 \cdot \frac{150}{256} - 1) = -\frac{22}{128}, \]
 \[\gamma_2 = -(2 \cdot \beta_2 - \gamma_1) = -(2 \cdot \frac{25}{256} + \frac{22}{128}) = \frac{3}{128}. \]
Apéndice B

Análisis de estabilidad para el caso parabólico no lineal

A continuación se analizará la estabilidad en el sentido de la variación total del esquema numérico presentado en la sección 4.1.7. Este análisis puede aplicarse al caso de flujos lineales o no lineales. Se quiere encontrar una condición CFL que pueda utilizarse para el esquema ENO-TVD de segundo orden.

Un esquema se dice TV-estable si la variación total

\[TV(v^n) := \sum_{j=0}^{N-1} |v^n_{j+1} - v^n_j| \]

de una sucesión de aproximaciones numéricas \(v_h(x, t) \) está acotada uniformemente en \(h = \Delta x \) y \(t = n\Delta t \), con \(h \to 0 \) y \(0 \leq t \leq T \). Aún más, el esquema es TVD si

\[TV(v^{n+1}) \leq TV(v^n). \]

Claramente, un esquema TVD es TV-estable.

Con estas definiciones básicas, Harten [27] probó el siguiente

Lema 1. Si un esquema escrito en la forma

\[v^{n+1}_j = v^n_j + C^+_j \Delta_+ v^n_j - C^-_{j-1} \Delta_- v^n_j, \quad (B.1) \]

satisface, para todo \(j \),

\[C^+_j \geq 0, \quad (B.2) \]
\[C^-_j \geq 0, \quad (B.3) \]
\[C^+_j + C^-_j \leq 1, \quad (B.4) \]
entonces el esquema es TVD.

Él introduce el siguiente esquema explícito, de primer orden,

\[
v_{j}^{n+1} = v_{j}^{n} \hat{C}_{j}^{\pm} \Delta_{x} v_{j}^{n} - \hat{C}_{j-1}^{\pm} \Delta_{x} v_{j}^{n}, \tag{B.5}
\]

\[
\hat{C}_{j}^{\pm} = \frac{1}{2} |\omega + \xi| \mp (\omega + \xi), \tag{B.6}
\]

\[
\omega_{j} = \lambda \frac{\Delta_{x} f_{j}}{\Delta_{x} v_{j}}, \tag{B.7}
\]

\[
\xi_{j} = \frac{\Delta_{x} g_{j}}{\Delta_{x} v_{j}}, \tag{B.8}
\]

donde \(f_{j} = f(u_{j}) \), y \(g_{j} = g(u_{j}) \) es elegida tal que

\[
|\xi_{j}| \leq \rho(\omega_{j}) \tag{B.9}
\]

donde \(\rho \) es el clásico limitador de flujo de Harten

\[
\rho(a) = \begin{cases}
0, & \text{para primer orden en espacio} \\
\frac{1}{2}(|a| - a^{2}), & \text{para segundo orden en espacio.}
\end{cases}
\]

Con estas definiciones, Harten prueba que para esquemas de primer y segundo orden, una condición suficiente para que el esquema sea TVD es la condición tipo CFL

\[
\max_{i} |\omega_{j}| \leq 1, \tag{B.10}
\]

pues \(\omega_{j} \) es el coeficiente CFL medio local.

Se quiere modificar la demostración hecha por Harten [27] para el caso de esquemas de segundo orden, con el fin de aplicarla al caso viscoso, para ello, Bihari [4] probó el siguiente

Teorema 3. Un esquema escrito en la forma (B.1), con \(C_{j}^{\pm} \) definido por

\[
C_{j}^{\pm} = \hat{C}_{j}^{\pm} + \lambda \frac{\nu}{\Delta x}, \tag{B.11}
\]

es TVD si

\[
\sigma \leq \frac{Re}{Re + 4} \tag{B.12}
\]

con

\[
\sigma = \max_{j} |\omega_{j}|, \quad Re = \max_{j} |\omega_{j}| \frac{\Delta x}{\nu}. \tag{B.13}
\]
Notar que el esquema (B.1), (B.11) es de segundo orden en espacio al aproximar la solución del problema, puesto que se ha incluido un término viscoso con una discretización central al esquema original TVD de segundo orden.

Notar además que la definición dada para σ y Re difieren de las definiciones dadas en (4.24) y (4.25) para el caso lineal. Sin embargo el significado cualitativo de estas cantidades es el mismo. Es decir, (B.13) es la definición equivalente para σ y Re en el caso no lineal.

Dem: (Del teorema) Se mostrará que se satisfacen las condiciones del Lema 1. Con la definición dada de \hat{C}_j^\pm (B.6), es claro que se satisfacen las condiciones (B.2) y (B.3). Falta entonces mostrar que

$$\hat{C}_j^+ + \hat{C}_j^- + 2\lambda \frac{\nu}{\Delta x} \leq 1. \quad (B.14)$$

De las definiciones dadas y de la propiedad (B.9) se sigue que (B.14) se satisfará si

$$\frac{3}{2} \sigma - \frac{1}{2} \sigma^2 + 2\sigma \frac{1}{Re} \leq 1. \quad (B.15)$$

Ahora, dado que $\sigma \leq 1$ (necesario para que se satisfaga (B.9)), se tiene que $\sigma \frac{4}{Re} (\sigma - 1) \leq 0$. Luego, es posible obtener una versión levemente más restrictiva que (B.15):

$$(\sigma - 2) \left[\sigma \left(1 + \frac{4}{Re} \right) - 1 \right] \geq 0,$$

la cual se satisface si se satisface

$$\sigma \leq \frac{Re}{Re + 4}.$$

\[\square\]
Apéndice C

Código y documentación

Tanto los códigos en MATLAB para cada experimento, la documentación respectiva, como una versión electrónica de este informe pueden ser obtenidos en forma gratuita, desde el sitio http://www.udec.cl/~riruiz/tesis.html.
Índice de figuras

2.1. Diferentes escalas de valores puntuales ... 9

2.2. Diferentes escalas de medias en celda .. 11

2.3. Secuencia de operaciones para obtener la representación puntual esparsa de una función. DWT: transformada del dato inicial, tr_x: operador de truncamiento, E: inclusión de safety points, IWT: transformada de ondelette inversa y R: reconstrucción de malla uniforme. .. 18

2.4. Ejemplo de almacenamiento de datos sólo para posiciones significativas de la representación truncada (MORSE o SPARSE). .. 18

3.1. Componentes de la separación del flujo numérico en la frontera. h_j es el interpolador ENO para la celda $[x_{j-1/2}, x_{j+1/2}]$ y h_{j+1} es el interpolador ENO para la celda $[x_{j+1/2}, x_{j+1+1/2}]$. .. 20

3.2. Solución numérica de multiresolución en el tiempo $t = 0,16$ para la ec. de Burgers en 1D, $N_0 = 257$.. 27

3.3. Solución numérica de multiresolución en el tiempo $t = 0,47$ para la ec. de Burgers en 1D, $N_0 = 257$.. 27

3.4. Solución numérica de multiresolución en el tiempo $t = 0,62$ para la ec. de Burgers en 1D, $N_0 = 257$.. 28

3.5. Solución numérica de multiresolución en el tiempo $t = 0,78$ para la ec. de Burgers en 1D, $N_0 = 257$.. 28

3.6. Solución numérica de multiresolución en el tiempo $t = 0,16$ para la ec. de Burgers en 1D, $N_0 = 1025$.. 29

3.7. Solución numérica de multiresolución en el tiempo $t = 0,47$ para la ec. de Burgers en 1D, $N_0 = 1025$.. 29

89
ÍNDICE DE FIGURAS

3.8. Solución numérica de multiresolución en el tiempo \(t = 0.62 \) para la ec. de Burgers en 1D, \(N_0 = 1025 \) ... 30

3.9. Solución numérica de multiresolución en el tiempo \(t = 0.78 \) para la ec. de Burgers en 1D, \(N_0 = 1025 \) ... 30

4.1. Estructura de datos tipo árbol graduado dinámico unidimensional. 38

4.2. Flujo saliente y entrante para dos niveles diferentes. 40

4.3. Solución numérica de multiresolución en el tiempo \(t = 0.31 \) para la ec. de convección-difusión en 1D ... 43

4.4. Solución numérica de multiresolución en el tiempo \(t = 0.50 \) para la ec. de convección-difusión en 1D ... 44

4.5. Izquierda: Solución inicial (rayas), solución analítica (línea), y solución numérica de multiresolución (círculos) en el tiempo \(t = 0.70 \) para la ec. de convección-difusión en 1D asociada a la condición inicial (4.36), con \(Pe = 10000, L = 7, \varepsilon = 10^{-3} \). Derecha: Estructura de coeficientes de ondelette significativos correspondientes. .. 44

4.6. Izquierda: Solución (rayas) y solución numérica de multiresolución (asteriscos) en el paso temporal \(n = 1000 \) para la ec. de Burgers viscosa, con \(Re = 0.001, L = 7, N_0 = 257 \). Derecha: Estructura de coeficientes de ondelette significativos correspondientes. 48

4.7. Izquierda: Solución (rayas) y solución numérica de multiresolución (asteriscos) en el paso temporal \(n = 600 \) para la ec. de Burgers viscosa, con \(Re = 1, L = 7, N_0 = 257 \). Derecha: Estructura de coeficientes de ondelette significativos correspondientes. 48

4.8. Izquierda: Solución (rayas) y solución numérica de multiresolución (asteriscos) en el paso temporal \(n = 200 \) para la ec. de Burgers viscosa, con \(Re = 10, L = 7, N_0 = 257 \). Derecha: Estructura de coeficientes de ondelette significativos correspondientes. 49

4.9. Izquierda: Condición inicial (rayas), solución analítica (línea), y solución con multiresolución (asteriscos) en el tiempo \(t = 0.5 \), ec. de Burgers viscosa, \(Re = 1000, L = 7, \varepsilon = 10^{-3} \). Derecha: Estructura de coeficientes de ondelette significativos. 50

4.10. Izquierda: Solución analítica (línea), y solución numérica sin multiresolución (círculos) en el tiempo \(t = 0.5 \) para la ec. de Burgers viscosa, con \(Re = 1000, L = 7, \varepsilon = 10^{-3} \). Derecha: Errores entre las soluciones analítica y de volúmenes finitos con y sin multiresolución. 51

4.11. Tasa de compresión para distintos niveles máximos de multiresolución, a distintos tiempos hasta \(t = 0.5 \). ... 51
4.12. Izquierda: Condición inicial (rayas) y $S(u)$ inicial (puntos), solución numérica sin multiresolución (línea), solución numérica con multiresolución (asteriscos) y $S(u)$ (puntos-rayas), en el tiempo $t = 10$ para la ec. de reacción-difusión, con $\alpha = 0,8$, $\beta = 10$, $CFL = 0,1$, $L = 7$, $N_0 = 513$ y $\varepsilon = 10^{-3}$. Derecha: Estructura de coeficientes de ondelette significativos, $t = 0.5$. 55

5.1. Izquierda: Columna de sedimentación Batch. Derecha: ICT (Ideal Continuous Thickener) [9]. ... 57

5.2. Función modelo para el problema de sedimentación batch de suspensión ideal. 62

5.3. Izquierda: Condición inicial (rayas) y perfil de concentración a $t = 60[s]$ para el problema de sedimentación batch de suspensión ideal (Asteriscos). Derecha: Coeficientes de ondelette significativos correspondientes. .. 63

5.4. Izquierda: Condición inicial (rayas) y perfil de concentración a $t = 300[s]$ para el problema de sedimentación batch de suspensión ideal (Asteriscos). Derecha: Coeficientes de ondelette significativos correspondientes. .. 63

5.5. Izquierda: Condición inicial (rayas) y perfil de concentración a $t = 3600[s]$ para el problema de sedimentación batch de suspensión ideal (Asteriscos). Derecha: Coeficientes de ondelette significativos correspondientes. .. 64

5.6. Funciones modelo para el problema de sedimentación-consolidación. 66

5.7. Izquierda: Condición inicial (rayas) y perfil de concentración a $t = 1[h]$ para el problema de sedimentación-consolidación (cuadros). Derecha: Coeficientes de ondelette significativos correspondientes. .. 67

5.8. Perfil de concentración. Sedimentación-consolidación, primer ejemplo $t = 7200$. ... 68

5.9. Funciones modelo para el problema de sedimentación-consolidación. 70

5.10. Perfil de concentración. Sedimentación-consolidación, $t = 3600$. 71

5.11. Perfil de concentración. Sedimentación-consolidación, $t = 7200$. 72

5.13. Funciones modelo para la simulación de sedimentación continua. 74

5.15. Perfil de concentración. Sedimentación continua, $t = 36000$. 77

5.16. Perfil de concentración. Sedimentación continua, $t = 43200$. 78
Índice de cuadros

3.1. Solución numérica de la Ecuación de Burgers, condición inicial (3.6). Tolerancia prescrita \(\varepsilon = 10^{-5} \), \(N_0 = 257 \) puntos en la malla fina y \(L = 7 \) niveles de multiresolución. .. 26

3.2. Solución numérica de la Ecuación de Burgers, condición inicial (3.6). Tolerancia prescrita \(\varepsilon = 10^{-3} \), \(N_0 = 1025 \) puntos en la malla fina y \(L = 10 \) niveles de multiresolución. .. 26

4.1. Solución numérica de la Ecuación de Convección-difusión en 1D, con condición inicial (4.36). Se adjuntaron figuras para los casos marcados con (*). . 45

4.2. Solución numérica de la Ecuación de Burgers viscosa en 1D, condición inicial (4.39). Se adjuntan figuras para los casos marcados con (*). 47

4.3. Tasa de compresión para distintos niveles de multiresolución, hasta \(t = 0,5 \) para la ecuación de Burgers viscosa en 1D, condición inicial (4.40). . . . 52

4.4. Proporción \(V \) entre el tiempo de CPU total de la solución numérica ENO2 en malla fina y el tiempo de la solución de multiresolución. \(N_0 = 257, L = 7 \). 53

4.5. Proporción \(V \) entre el tiempo de CPU total de la solución numérica ENO2 en malla fina y el tiempo de la solución de multiresolución. \(N_0 = 513, L = 9 \). 53

4.6. Velocidad de la llama y tasa de compresión para la solución numérica de (4.43) sin multiresolución (VF), y a dos niveles distintos de tolerancia prescrita para el caso multiresolutivo. (*) representado en la figura 4.12. . . . 55

5.1. Sedimentación de suspension ideal. \(\varepsilon = 1,0 \times 10^{-4} \), \(N_0 = 257, L = 5 \). 64

5.2. Suspensiones flocculadas, primer ejemplo. \(\varepsilon = 5 \times 10^{-5} \), \(L = 5 \). (*) figuras 5.7-5.8. . 66
5.3. Caso batch de suspensiones floculadas, segundo ejemplo. Tolerancia prescrita $\varepsilon = 10^{-3}$, $N_0 = 257$ puntos en la malla fina y $L = 5$ niveles de multiresolución. ... 70

5.4. Simulación de sedimentación continua. Tolerancia prescrita $\varepsilon = 5 \times 10^{-3}$, $N_0 = 257$ puntos en la malla fina y $L = 5$ niveles de multiresolución. 75
Bibliografía

