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Introduction

The Standard Model of elementary particles is the theory that describes three of the four
fundamental interactions (the strong, weak and electromagnetic ones) in a coherent frame-
work. This theory gives an excellent description of all the phenomena observed in the particle
physics domain up to energies explored by LEP, SLL and Tevatron.

Nonetheless the Standard Model is known to be incomplete, since it does not account
for some experimental evidences, such as the presence of dark matter, the fermion masses
hierarchy and the quantitative asymmetry between matter and antimatter of the universe.
In order to find effects that go beyond the Standard Model theory, needed to explain these
missing pieces, it is very important to constraint the Standard Model parameters as precisely
as possible.

In the 90’s, experiments started to study B physics and thus to test the Standard Model
in the fermion sector. With the B-factory experiments having collected data for almost ten
years, flavour physics is now in its mature age. A primary main goal of these experiments is to
access and test, in an indirect way, the presence of New Physics effects beyond the Standard
Model at scales that will be directly accessible only after the start of the Large Hadron
Collider experiments. The fermion sector of the Standard Model concerns the masses of the
quarks and charged leptons and the quark mixing matrix, named CKM (from the names of
N. Cabibbo, M. Kobayashi and T. Maskawa). In the Standard Model, the couplings of weak
interactions among quarks are described by this matrix, translating the fact that the quarks
that participate to the weak interactions are a linear combination of the mass eigenstates.
The CKM matrix contains four free parameters (A, A, p, 1), one of which (n) is complex and
alone accounts for all the CP violation phenomena in the Standard Model. The unitarity of
the CKM matrix can be visualized as a triangle (the Unitarity Triangle) in the (p-n) plane,
with height given by the value of . Many quantities depending on p and 1 can be measured
and, if the Standard Model is correct, they should give compatible results, within the errors,
for these two parameters. To do that, the sides and angles («, 3,7) of the Unitarity Triangle
have to be measured and the B-factories have played a central role in this physics program.
In the first part of the thesis (chapters 1, 2) these subjects are detailed and explained.

The main topics of this thesis are the studies of CP violation in the B mesons sector and
in particular the measurements of the angle v of the Unitarity Triangle using data collected
with the BABAR detector (described in chapter 3). Being the relative weak phase between V,
and V, elements of the CKM matrix, the angle v is accessible from the studies of interference
between b — u and b — ¢ transitions.

The efforts within the scientific community have lead to measurements of the angle ~,
from the combination of several different experimental techniques, up to a precision that



was not supposed to be accessible at the B-factories experiments. Despite this fact, this
parameter is one of the less precisely known. The reason for that is that the sensitivity to ~
is driven by the value of the ratios » between b — u and b — ¢ amplitudes for each particular
decay mode used for the measurement. The values of these parameters are small and have
to be determined on data. In particular, up to now, the angle v of the Unitarity Triangle
has been determined, using different methods, from the study of charged B decays into final
states with a neutral D™ meson and a charged K*) meson. The present knowledge on v
and the different methods used for its determination are described in chapter 2.

The experimental work presented in this thesis is composed of two measurements of ~
and the ratio r, using the decays of neutral B mesons into final states with a neutral D
meson and a neutral K* meson. These decays are less abundant than the charged ones, but
the value of the ratio r (called rg, in these channels) is expected to be larger and thus to
give a good sensitivity to . The analyses techniques are described in chapter 4.

The neutral B decay channels studied in this thesis are: B® — D°(D%)K** with K*° —
K*7~ and similarly B° — D°(D%)K* with K** — K~7F. The electric charge of the kaons
produced in neutral K* decays identifies unambiguously the flavor of the neutral B mesons
allowing for a measurement of v (chapter 2). In the first analysis presented in this thesis
(chapter 5), neutral D mesons are reconstructed into K¥7%, KTr*7r% and KF¥rfn*7¥ final
modes and studied with the ADS method, allowing for a determination of rg.

In the second analysis presented in this thesis (chapter 6), neutral D mesons are recon-
structed in three-body CP eigenstate mode K¢n™n~ and analysed with the Dalitz technique.
This analysis, combined with the ADS one, allows for a first determination of the angle ~
using neutral B decays.

In chapter 7, we conclude and we discuss the perspectives of the measurements of v and
rg from neutral B decays in higher luminosity scenarios.



Chapter 1

CP violation in the Standard Model
and the CKM matrix

Symmetries are very important in physics, since they establish relations within quantities in
principle uncorrelated. In a field theory described by a Lagrangian £, a transformation is a
symmetry of the theory if £ does not change under the transformation. On a generic state,
described by a four 4-vector (t, Z), one can define the following operations:

e parity P: P (t,%) = (t,—7) ;
e time inversion T7: T (t,7) = (—t,7) ;
e charge conjugation, that transforms a particle in its antiparticle.

Those are discrete symmetries that can be combined, for example the operation CP
changes a particle in its antiparticle and inverts its momentum and helicity. The transfor-
mation CPT must be a symmetry for every local field theory [1] and it is confirmed to be
conserved by all experimental searches up to now.

There is no experimental evidence that strong and electromagnetic interactions violate
C, P or T, while weak interactions violate C' and P separately, conserving, in first approxi-
mation, their product CP. The CP violation of the weak interactions has been observed for
the first time in 1964 [3] in the study of rare decays in the neutral kaon system and recently
observed also in B meson decays, thanks to the data collected by the B-factory experiments.

The Standard Model of elementary particles is the theory that describes in a common
framework the strong, electromagnetic and weak interactions. This theory successfully de-
scribes all CP violation related measurements up to now.

This chapter describes the Standard Model picture of the CP violation (1.1), which leads
to the Cabibbo-Kobayashi-Maskawa quark mixing matrix (1.2) and the Unitarity Triangle.

1.1 (P violation in the Standard Model

The Standard Model describes in a common framework the strong, electromagnetic and weak
interactions starting from the elementary particles, that are:



six leptons (and six antileptons), organized in three families;
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a gauge boson for the electromagnetic interaction, the photon ~;

three gauge bosons for the weak interaction: W+ , W~ and Z°;

eight gauge bosons for the strong interaction, the gluons;

the Higgs boson, H (not yet experimentally observed).

The Standard Model is built on the symmetry group SU(3)¢c ® SU(2); @ U(1)y , where
SU(3)¢ describes the color symmetry of strong interactions, SU(2); the weak isospin sym-
metry and U(1)y the symmetry under hypercharge transformations.

The Lagrangian for this theory will be the sum of the strong interactions term Lgcp and
the term that accounts for electroweak interactions Lgw (SU(2); @ U(1)y).

The quarks are organized in multiplets:

in Uint.
Lt. = ( Dj;;nt. ) - (372>+1/6

Ut = (3,1) 405 dip" = (3,1)_1/3

and a similar structure holds for the leptons:
in Vint.
ot = < ligzt. ) =(3,2)_1y2

lzlt' = (3, 1)_1 szt. = (3, 1)0

where, for example, (3,1)_; is a triplet in SU(3) (color) a singlet of weak isospin SU(2) and
has hypercharge Y = Q — Is = —1, ¢ /r(x) = (1 F 75)¢(x) are the left handed (1 — 75) and
right handed (1 + 75) helicity components of the field ¢.

The electroweak term of the Lagrangian is:

Low = { Q" (@)D" (2) + Tt ()3 D ufpt (2) + A (2), D ™ () +
—int. sint.

\IJL (x),y“])#\l;?t- (I> + v?t. (I>7;LDMV§$' (:L’) + lR (I)Vupﬂlzlt. (I> }
where the covariant derivative D* is defined by the expression:

DI = o1 + igfjwj“ +2igY B* (1.1)



g and ¢’ are the coupling constants associated to the gauge fields W; (j = 1,2,3) and B
(related to the isospin SU(2) and hypercharge U(1) symmetry groups) and 7; are the Pauli
matrices in the SU(2), space.

The W# bosons are related to the Wi, components of the W; gauge field, the photon
and the Z° to the W3 component and to the B field through the weak angle 0y, [4]). In more
detail, for the charged boson one defines the field:

Wi — Wy
V2

and its hermitian conjugate, related to W+ and W~ respectively. For the neutral bosons
one can write:

WH (z) =

Wi = cos Oy ZH — sin Oy A*
B* = —sin Oy, Z* + cos Oy A*

where sin? Oy = 0.2326+0.0008, Z* is the field associated to the Z° and A* with the photon.
The following relation holds for the weak angle:

/

9 _ g
sinfy  cos Oy

=€

with e the positron electric charge.

The Lagrangian can be split into a free theory and an interaction part: Lgw = Lo+ L.
The interaction Lagrangian is composed of a charged current term Lo and a neutral current
term Lyc.

The charged current term can be written in terms of the observable boson fields:

Leo = 27 (T @)W () + J, (2)W(x))

where:
J+ — fbint"yu(l _ )dmt + Emt'”)/u(l _ 75) int. 4 Eint.vu(l _ ")/5)bmt' +
mt 7#(1 _ ,.)/5) int. + th P)/,u(l _ ")/ )qunt + Vznt 7#(1 _ 75)7_mt.

and the neutral current one:

Lyc = eJ"(x)A¥(z) + Jo () 2% (x)

2 cos 9W

where
S = Ef: Qs fruf
= Xf: Fwulvr = agys) f
vp =1 —2Qssin* Oy ay=1f



and the index f runs over all the flavors.

Experimentally the W, W~ and Z° bosons have been observed to have non zero masses.
These masses are explained in the theory thanks to the presence of the Higgs field and the
spontaneous symmetry breaking mechanism.

The Higgs field is an isospin doublet of complex scalar fields:

The Lagrangian for the Higgs field is written as follows:
DHOID,d — 2 dTD — \(DTD)?

where the covariant derivative is defined in eq. 1.1:
The Higgs field potential (V(®) = —p2®T® — \(®T®)?) has a relative maximum at
®(z) = 0 and reaches an absolute minimum for all the points belonging to the circle

O(z) = \/’2:’;\2 This means that the state of minimum energy, the vacuum state, is not
unique but is degenerate. The choice of one of the infinite possible vacuum states implies
the spontaneous symmetry breaking, in which some symmetries of the Lagrangian are lost
and some of the massless particles acquire a non zero mass.

With the spontaneous breaking, the symmetry group SU(2);®U(1)y is reduced to U(1)g
(with @ the electric charge) and the three gauge bosons (W, W~ and Z°) acquire a mass
(the photon, related to the electric charge conservation, stays massless).

The choice of the minimum energy state is operated by assigning a non zero expectation
value for the Higgs field in the vacuum state. A usual choice is:
with v = \/E

ool = ()

The mass terms for the W= and Z° bosons arise from the kinetic term and the masses

_vg — _vg
have the values My = 4 and My = 5. 2%—.

Leptons and quarks masses arise from the Yukawa coupling terms of leptons and quarks
with the Higgs field:

—int.

int. At T ing.
Ly =Y5Q, ®dFr+Y;Q dug +
VEL) @I + he.
Writing explicitly the ® field, one obtains for the quarks:
d 1t gint. u —int.  int.
Ly = Mjdy, dﬁf + M uR].t + h.c.

where

ij

V2

w,d Y%d'v
A M



is the quark mass matrix.

It can be shown that the conservation of the symmetry CP is described by the matrix
M being real. Any complex term would on the other hand transform under CP into its
complex conjugate, hence producing CP violation. Generally speaking, the M matrix is not
diagonal in the weak interaction eigenstates basis (that we have used up to now), since the
weak interaction eigenstates are not also mass eigenstates. One can always pass to the mass
eigenstates basis simply by diagonalizing the M matrix; this can be done with a pair of
unitary matrices, V7, and Vg:

u,d __ y/%d y ru,dy u,d
M =V MYV,

with M7 diagonal (f = u, d). These unitary matrices change the interaction eigenstates
into mass eigenstates.

dy_ gint. . _ (ysdy. gint.
dr, = (Vp)iyd 3 dr, = (Vg)ijdg,
ur, = (Vi)uurl 5 ur, = (VR)ijug,
In the mass eigenstates basis, the Lagrangian mass term is diagonal and the electroweak
charged current term becomes:

.g_ U d a
LCC = ZiuLi’y“(VLikvL;)dLjTaWM.

V=V VLd;rj being a 3 X 3 matrix, it can always be parametrized with three Euler angles
(real parameters) and six phases (complex parameters). Five of these six phases disappear
under transformations that redefine the phase of the quark fields in the quark mass eigenstate
basis and leave the diagonal mass matrix unchanged. One of the six phases is irreducible.
The presence of this phase accounts for the CP violation in the Standard Model.

The choice of operating in the quark mass eigenstates basis has hence moved the CP
violation description from the mass sector to the electroweak Lagrangian sector, where it is
described by the quark mixing matrix V' =V VLd:j.

This matrix, that is the generalization of the Cabibbo mechanism to the three quark
generations case, is know as CKM matrix (from Cabibbo, Kobayashi and Maskawa) [2]:

d
Vorar = Vi, Vi,

1.2 The CKM matrix

The CKM matrix, the unitary matrix that relates the weak interaction eigenstates with the
mass eigenstates, can be written as:

Vud Vus Vub
Vekm = Vea Ves Vb
Via Vis Vi

where V4, is the coupling related to the transition ¢ — ¢;. Many parametrizations exist
in the literature, the most used are the standard parametrization [5], and a generalization of
the Wolfenstein parametrization [6] as presented in [7].



In the standard parametrization, also used by the Particle Data Group [8], the CKM
matrix is written as:

i

C12C13 S$12C13 S13€
_ i6 i5
Verm = —812C23 — C12523513€ C12C23 — 512523513€ 523C13
19 19
512823 — C12C23S813€" —893C12 — S12C23513€" C23C13

where ¢;; = cos8;; and s;; = sin 0;; with 0;; the mixing angles between the different families
and § is the CP violating phase. Because s13 and so3 are small and of the order of O(1073)
and O(107?) respectively, the standard choice for the four independent parameters is:

S12 = |Vus‘ , S13 7Y |Vub| , Sa3 |‘/cb‘ and ¢

Starting from the consideration that the mixing angles are small, the Wolfenstein parametriza-
tion [6] emphasizes a hierarchy in the magnitudes of the Vg, elements: the ones on the
diagonal are of order 1, and the others become smaller the more they are far from the diago-
nal. In the Wolfenstein parametrization, the matrix elements are the result of an expansion
in terms of a small parameter A\ = |V,,5| ~ 0.22. The four independent parameters are in this
case:

A, A, p and n.

where 7 is the CP violating phase and the matrix is written:

1-2 A ] AN (p —in)
Veku = —A -2 AN? + O\ (1.2)
AN (1 —p—in) —AN 1
If we define:
S12 = A , So93 = A)\2 s 813€i5 == A/\3(p - 277) (13)
to all orders in A, then
513 S13 .
= cosd , n= sin §
512523 512523

and the CKM matrix, as a function of (), 4, p,n), satisfies the unitarity condition exactly.
Substituting the expressions given in 1.3 into the standard parametrization one obtains the
CKM parameters as Taylor expansions with terms of order O(A?) and higher orders.

With respect to the Wolfenstein parametrization, given in 1.2, the corrections to diagonal
elements and to Vj, are of order O(A\?), corrections to V.4 and V;4 are of order O(\%), while
additional terms to V,, and V,; only appear at the orders O(A7) and O(\®) and the expression

for V,; stay unchanged. The main corrections to imaginary parts are AV.y = —iA%\°n and
AV, = —i AN,
Thanks to the use of the variables:
)\2 )\2
S=p(l—2)  m=nl-2"
p=pl=7), m=nl-7)

the orders O(A%) can be included in the expression of V4

Via = AN*(1 = p — if)



and the CKM matrix can be expressed as:

Rk} . AN (p — in)
Vern = | —A+42(1-2(p+ip)) 1—24 —M(1/8+ A42/2) A%4 + O(\%)
AN (1 — p—in) —AN + AN + AN (p+i) 11— A

1.3 The Unitarity Triangle

The unitarity of the Vog s matrix,
VermVigenr = Vg Vorn = 1,

implies several relations between its elements:

3 3
Z‘/ij Z;; = 5jk and Z ‘/ZJV]:] = 52k
i=1

j=1
The six independent vanishing relations are listed below:

VoiVus + VogVes + VigVis
VioVud + Vg Vea + VigVia =
VisVub + VeV + ViV =

ViaVoiy + Vas Vs + VeV, =
ViaVaa + VisVis + Vo Vi, =
Vcd t:l + %s‘/ti + Vcb tZ

three terms of the order, respectively, A\, A, \° ) ;
three terms of the order, respectively, A, A3, A3 ) ;

three terms of the order, respectively, A* A%, \?) .

three terms of the order, respectively, A3, A3 A3 ) ;

o O O o o o

(
(
(
(three terms of the order, respectively, A\, A, \° ) ;
(
(

three terms of the order, respectively, A* A2, \?) .

Each one of these relations can be represented as a triangle in the (p,7) plane, where the
ones obtained by product of neighboring rows or columns are nearly degenerate. The areas
of all these triangles are equal to half of the Jarlskog invariant .J, which is a phase convention
measurement of CP violation, defined by:

3
Im{VyVuViVist =J > €rmé€jim

m,n=1

where €4, is the antisymmetric tensor. The presence of a non-zero CKM phase, and hence
of CP violation, requires .J # 0.

Within the six relations, we choose the second one, V', Vg + ViVeq + Vi Vi = 0, whose
elements can be determined by B physics measurements. This triangle is particularly at-
tracting from the experimental point of view, since it has all the sides of order A\*. Dividing
all the terms of the relation by |V;V.4|, one obtains:
Vb Vaud n VipVia

cb ‘/Cd cb ‘/;d

=0

which is represented by the triangle in Fig. 1.1.



C=(0,0) B=(1,0)

Figure 1.1: Unitarity Triangle, represented in the (p,7) plane.

The imaginary coordinate of the apex is 7}, the CP violating phase and, as already stated,
the presence of CP violation, i.e. 17 # 0, is described by the area of the triangle being non-
vanishing. The sides of the triangle can be expressed in terms of p and 7:

—— Vo V| Sra—

AC = R, = v — /72 4 72
" ViVl P

-5 \VipVidl

AB = R, = -
LV Vel

(1 - ﬁ)Q + ﬁ27

and each angle is the relative phase between two adjacent sides:

ViV
i
-l
Vil

Vu*bvud

= g

In the Wolfenstein parametrization the only complex elements, up to terms of order
O(N°), are V,; and V;4 and the phases v and 3 can be directly related to them:

Via = [Vidle™™ | Vi = |Viple ™.

The angles of the Unitarity Triangle, or quantities strictly related to them, are accessible by
different experimental techniques.

1.4 Numerical Unitarity Triangle analysis

Various methods have been proposed for the data statistical treatment to obtain the com-
bined constraint on the p — 7 plane from the different results: we refer here to the Bayesian
method. In this method, the probability density functions (pdf) for the free parameters that



have to be determined are written in terms of quantities that are either experimentally mea-
sured or theoretically calculated. With a simulation procedure (called Toy Monte Carlo) a
large sample is extracted for the free parameters and to each extraction a weight is assigned.
The extractions are made in reasonable intervals and following homogeneous a-prior: distri-
butions. The weight for each extraction is given by e~ IT; i where f; are the experimental
pdf for the measured quantities; in other words the result of each extraction is considered
more or less likely, depending on the agreement of the corresponding measured quantities
with the actual experimental results.

In this way an a-posteriori pdf for each parameter is obtained, generally different from
the a-priori one, because of the weighting procedure. More details on the Bayesian approach
to Unitarity Triangle fits are given in [9].

Several measurements, resulting in different constraints on the p — 7 plane, are included
in the Unitarity Triangle analysis:

[ |Vub| and |‘/cb|
B mesons can decay through the b — ¢ and b — wu transitions. Semileptonic decays
offer a relatively large branching fraction (~ 10 %) and corresponding measurements
can be interpreted using a well established theoretical framework. The relative rate of
charmless over charmed b-hadron semileptonic decays is proportional to the square of

the ratio: Vol \
ub _ _
Vol 1o mVeTT -
e -7

and it allows to measure the length of the side AC of the Unitarity triangle.

(] Amd
In the Standard Model, B® — B° oscillations occur through a second-order process, a
box diagram, with a loop that contains W and up-type quarks. The box diagram with
the exchange of a top quark gives the dominant contribution. The time oscillation
frequency, which can be related to the mass difference between the light and heavy
mass eigenstates of the BY — BY system, is expressed, in the SM, as':

2

Amg = %m%{/ S (xy) A2XC [(1 — p)® + 7% mp, f%dBBd , (1.5)
where S(x;) is the Inami-Lim function [12] and x, = m?/ME,, m; is the top quark
mass and 7, is the perturbative QCD short-distance NLO correction. The scale for the
evaluation of those corrections entering into 7, and the running of the ¢ quark mass
have to be defined in a consistent way. The value of 1, = 0.5540.01 has been obtained
in [13] and, in order to be consistent, the measured value of the pole top quark mass,
obtained by CDF and DO collaborations, m; = (172.6 + 1.4) GeV/c? [14], has to be
corrected downwards by (7 + 1) GeV/c2.

The remaining factor, f%dé B,, encodes the information of non-perturbative QCD. The
constant fp, translates the size of the B meson wave function at the origin. The bag
factor Bp, is also introduced to take into account all possible deviation from vacuum

1

1Amy is usually expressed in ps~! unit. 1 ps™! corresponds to 6.58 107 eV.



saturation approximation. The values of the non-perturbative QCD parameters fp,,
Bp, are obtained from lattice QCD calculations. The measurement of Am, gives a
constraint on the length of the side AB of the Unitarity Triangle.

Amg/Amg

The B? — BY time oscillation frequency, which can be related to the mass difference
between the light and heavy mass eigenstates of the B — B9 system, is proportional
to the square of the |Vi,| element. Neglecting terms of order O(\*), | Vi, | is inde-
pendent of p and 7. The measurement of Amg, then give a strong constraint on the
non-perturbative QCD parameter f%s B .. The ratio between the values of the mass
difference between the mass eigenstates measured in the By and in the B, systems can
be used in the Unitarity Triangle analyses:

Amg deﬁgdBBd < A
1

2 A2
Amy mp, |, Bs,

T2

1—

2 2 | =2
) u Ag”) . (1.6)
(1 + 25 p> + A2
2
Amg
Ames
¢ = fs.\/Bg./fs,\/Bg, is better determined from lattice QCD than the individual
quantities entering into its expression. The measurement of the ratio Amg/Amy gives
a similar type of constraint as Amg, on the length of the side AB of the Unitarity
triangle.

Using the ratio , instead of Amgz and Am, separately, exploits the fact that

€K

Indirect CP violation in the K® — K0 system is usually expressed in terms of the e
parameter, which is the fraction of C'P-violating component in the mass eigenstates.
In the SM, the following equation is obtained

€K = Oa AQ)\6 n X (17)
A2 .
l—mS(zc) <1 — ?> + 1728(2) A2X* (1 — p) + n3S (2, 1) | Bk

G%ff{me%/V
6vV2m2Amy
tions [12] depending on xz, = m?/mj,, including the next-to-leading order QCD cor-
rections [13, 15, 10]. An important theoretical uncertainty comes from the non-
perturbative QCD bag parameter B K, that is evaluated from lattice QCD calculations.

The constraint brought by the measurement of €x corresponds to an hyperbola in the
(P, 1) plane.

where C. = S(x;) and S(z;,x;) are the appropriate Inami-Lim func-

CP violation measurements in the B sector

The advent of the B-factories has allowed the measurement of many observables related
to the Unitarity Triangle angles. The studied decays and constrained quantities are
briefly listed below.

— sin 203, the first C'P-violating quantity measured by the B-factories that is now
a precision measurement, can be determined from the mixing induced CP asym-
metry in b — cés decays. The golden observable is A;/gxo0 in B — J/WKg(K )
decays, which has a very small theoretical uncertainty.
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Figure 1.2: Selected regions for (7,7) from the Unitarity Triangle analysis during the years.

— the angle « is constrained by the study of B — 7w, B — pp and B — pm decays.
— the angle 7, the main topic of this thesis, is measured in several B — DK decays.

— the combination of Unitarity Triangle angles 23 + v, is constrained using B° —
Dr, B® — D*rr, B — Dp and B° — DK°r decays;

— cos2(3 or directly the angle 3, can be determined from B — J/¢K**(Kg7®) and
B® — D% decays. These measurements do not give a very precise measurement
of the phase 3, but are useful in removing the ambiguity between 3 and w/2 — /3
coming from the measurement of sin 2.

If these observables were determined with infinite precision, they would be represented
by a curve in the p — 7 plane. Assuming the validity of the Standard Model, all these curves
would intersect in one point, (p,7): the apex of the Unitarity Triangle. In real life, these
measured quantities are known with experimental and theoretical errors and each constraint
results, not in a curve, but in a region on the p — 7 plane. The Unitarity Triangle analyses
determines the region in which the apex of the Unitarity Triangle has to be with a given
probability.

The increasing precision of the measurements and of the theoretical calculations in the
last twenty years, significantly improved the knowledge on the allowed region for the apex
position (p,7) (Fig. 1.2).

The measurements of CP-violating quantities from the B-factories are nowadays so abun-
dant and precise that the CKM parameters can be constrained using only the determina-
tion of the Unitarity Triangle angles, as can be seen in Fig. 1.3, right plot. On the other
hand, an independent determination can be obtained using experimental information on CP-

conserving processes (||‘é‘:|‘ from semileptonic B decays, Amy and Am, from the By — B, and




B, — B, oscillations) and the direct CP violation measurements in the kaon sector, e (see
Fig. 1.3, left plot). This was indeed the strategy used to predict the value of sin 23 before
the precise BABAR and Belle measurements [16].

0.5_—

Figure 1.3: Allowed regions for 5 —7, as given by the measurement of |Vi|/| V|, Amg, Amy
and ey (left plot) and as given by the measurements of the angles «a, sin 23, v, 26+, 5 and
cos 23 (right plot). The closed contours show the 68% and 95% probability regions for the
triangle apex, while the colored zones are the 95% probability regions for each constraint.
The experimental values are updated using results presented at the 2008 winter conferences.



In Fig. 1.4, we show the allowed regions for p and 7, as given by all the available
measurements. Numerical results are summarized in Tab. 1.1.

= :'UT“‘
i fit y /\\

A
\Amd

Figure 1.4: Allowed regions for p — 7, as given by |Viu|/|Ve|, Amg, Amg, €k, a, sin2f, ~,
26+, B and cos 2(3. The closed contours show the 68% and 95% probability regions for the
triangle apex, while the colored zones are the 95% probability regions for each constraint.
The experimental values are updated using results presented at the 2008 winter conferences.

| Parameter || 68% probability | 95% probability |

D 0.146 £ 0.028 | [0.092,0.202]

7 0.342 £ 0.016 | [0.311,0.374]
af] 01.1 + 4.3 [82.9,99.8]
3] 218 + 0.9 20.0,23.7]
7] 66.8 £ 4.4 [58.1,75.2]

Table 1.1: 68% and 95% probability regions for the Unitarity Triangle parameters, obtained
with the experimental values updated to the 2008 winter conferences results.

Other Unitarity Triangle analyses use a frequentistic approach, based on a y? minimiza-
tion [17] or scanning methods [18].

1.5 Search for New Physics: looking for discrepancies

As a general fact, as it can be seen in Fig. 1.4, the Standard Model description of CP violation
through the CKM mechanism appears as a very successful framework, able to account for



all the measured observables up to the current precision. In this situation, any effect from
physics beyond the Standard Model should appear as a correction to the CKM picture.

The agreement of all the measured quantities is somehow quantified in the so called
compatibility plots [19], in which the comparison between indirect parameter determinations
and their direct experimental measurement can be used as a test for the Standard Model
description of flavour physics. The indirect determination of a particular quantity obtained
performing the Unitarity Triangle complete fit, including all the available constraints except
from the direct measurement of the parameter of interest, gives a prediction of the quantity
based on formulas which are valid in the Standard Model. The comparison between this pre-
diction and a direct measurement can thus quantify the agreement of the single measurement
with the overall fit and possibly reveal new physics phenomena.

In Unitarity Triangle fits based on a x? minimization, a conventional evaluation of com-
patibility stems automatically from the value of the x? at its minimum. The compatibility
between constraints in the Bayesian approach is simply done by comparing two different
p.d.f.’s.

Let us consider, for instance, two p.d.f.’s for a given quantity obtained from the Unitarity

Triangle fit, f(z1), and from a direct measurement, f(z5): their compatibility is evaluated
by constructing the p.d.f. of the difference variable, x5 — x;, and by estimating the distance
of the most probable value from zero in units of standard deviations. The latter is done by
integrating this p.d.f. between zero and the most probable value and converting it into the
equivalent number of standard deviations for a Gaussian distribution !. The advantage of
this approach is that no approximation is made on the shape of p.d.f.’s. In the following
analysis, f(x1) is the p.d.f. predicted by the Unitarity Triangle fit while the p.d.f of the mea-
sured quantity, f(z2), is taken Gaussian for simplicity. The number of standard deviations
between the measured value, T + o(x2), and the predicted value (distributed according to
f(z1)) is plotted as a function of Zy (x-axis) and o(xs) (y-axis). The compatibility between
x1 and x5 can be then directly estimated on the plot, for any central value and error of the
measurement of x,.
The compatbility plots for «, sin23, v and Am, are shown in Fig. 1.5. The direct values
obtained for v and Amy are in very good agreement, within 1o, with the indirect determi-
nation, although for the latter the effectiveness of the comparison is limited by the precision
on the theoretical inputs, inducing a big error (compared to the experimental one) on the
prediction from the rest of the fit.

The determination of 7 from direct measurement yields a value slightly higher, (80413)°,
than the indirect one from the overall fit, (65 £ 7)°; the two determinations are compatible
within 1o.

We also observe that the direct determination for sin 23 from the measurement of the CP
asymmetry in B — J/¢ K" is slightly shifted, with respect to the indirect determination,
still being compatible with it within 20. This effect is visually evident in Fig. 1.6, left, where
the 68% and 95% probability regions for p and 7, as given by |Vip|/|Ves|, Amg, Amg and ex
are compared with the 95% probability regions given by the measurements of angles.

'In the case of Gaussian distributions for both x; and xg, this quantity coincides with the pull, which is
defined as the difference between the central values of the two distributions divided by the sum in quadrature
of the r.m.s of the distributions themselves.



This slight tension in the Unitarity Triangle fit has been studied in the latest years [20]
and can be related to the fact that the present experimental measurement of sin 2 favours a
value of |V,,;| that is more compatible with the direct determination of |V,;| using exclusive
methods rather than the one obtained using the inclusive ones. In Fig. 1.6, right, we show
the compatibility separately for the exclusive and the inclusive direct determination of |V,,|.
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Figure 1.5: Compatibility plots for «;, sin 23, v and Am,. The color code indicates the com-
patibility between direct and indirect determinations, given in terms of standard deviations,
as a function of the measured value and its experimental uncertainty. The crosses indicate
the direct world average measurement values respectively for «, sin 23 from the measurement
of the CP asymmetry in B® — J/¢K° v and Am,.

In conclusion, it is interesting to monitor the compatibility of each single measurement
with the overall Unitarity Triangle fit, because any effect from new physics beyond the
Standard Model, would appear as a disagreement in such comparisons. Given the present
experimental measurements, no significant deviation from the CKM picture is observed.
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Figure 1.6: Left plot: allowed regions for p and 7 obtained by using the measurements of
Vil /| V|, Amg, Amg and ex. The coloured zones indicate the 68% and 95% probability
regions for the angles measurements, which are not included in the fit. Right plot: compat-
ibility plot for V,;. The color code indicates the compatibility between direct and indirect
determinations, given in terms of standard deviations, as a function of the measured value
and its experimental uncertainty. The cross and the star indicate the exclusive and inclusive

measurement values respectively



Chapter 2

Measurements of the angle v of the
Unitarity Triangle

In the Wolfenstein parametrization, v is the weak phase of the CKM element V5 =|V,|e?.

Several methods aim to access this phase exploiting the interference between b — u and
b — c transitions in B — DK decays. After a brief introduction (sec. 2.1) on B — DK
phenomenology, in section 2.2 the common characteristics of v measurements in B — DK
decays are presented. In sections 2.2.1, 2.2.2 and 2.2.3, the different experimental methods
are described. The present knowledge of v comes from the combination of several analyses
of charged B — DK channels using all these methods. These results are listed in section
2.3, where the current constraint on «, from their combination, is also shown.

The work presented in this thesis concerns measurements of v in neutral B — DK decays,
that are introduced in section 2.6.

Some analyses also try to measure v from charmless B decay, where b — u transitions
appear in penguin diagrams, making use of the SU(3) symmetry. In this thesis, these methods
will not be discussed.

2.1 Phenomenology of B — DK decays
The amplitudes for the B — DK decays of interest can be expressed as:

ABY > D'KY) =V, Vi(T +C) ;
(B = D'K%) =V, ViC :
(BT = D°K") =V, Vi (C + A) 5
(B" — D°K°) =V, V:C .

where T, C, C and A refer to the tree, color-suppressed and annihilation topologies respec-
tively. In Fig. 2.1 and 2.2, the possible diagrams for the Bt — D®OK®+ and BY —
DO K0 respectively are shown. In the amplitudes we have written for the charged
B — DK decays, the T parameter will account for the tree diagram (a), C' and C' for the
color-suppressed diagrams (b) and (c) respectively and A for the (d) annihilation diagram.
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For the neutral B — DK decays, both the diagrams for the b — ¢ and b — u transitions are
color-suppressed and their amplitudes are described by the C' and C parameters respectively.

Figure 2.1: Feynman diagrams for the decay B* — D®K®+ (a and b) and BT —
DEOK I+ (¢ and d).

Figure 2.2: Feynman diagrams for the decays B — D®)0K ) (a) and B — D®OK )0 (1),

This parametrization, with the different contributions arising from the diagrams shown in
fig 2.1 and 2.2, is often used but it is not exact. The correct treatment, exploits the fact that
the non leptonic two-body decays of the B mesons can be described in the Standard Model
using the Operator Product Ezpansion (OPE) and the renormalization group techniques
[10]. In this formalism, the B decays are described with an effective hamiltonian and the
amplitude for a B decaying into a final state f is expressed by:

A(B — f) = (flHep|B) =
Gr CKM
= —->» V C; ()| B
NG Z ; (1)(f1Qi(1)| B)
where @); are local operators that have the right quantum numbers to describe the particular
transition. Each operator contributes to the Hamiltonian with a weight given by the product



of the CKM factors V.CEM and Wilson coefficients C; (). G is the Fermi constant, expressed

by “& = = g4, and its value is Gp = 1.16639(9) - 107°GeV 2.

The scale 1 marks the separation between long distance contributions (the ones arising
from energies higher than the scale p), contained in the Wilson coefficients C;(u) and short
distance contributions (relative to energy scales lower than ), described by the hadronic
matrix elements (f|Q;(1)|B). The p scale is arbitrary, but its value is normally assumed to
be of the order of the b quark mass (u = 4.3GCBQV). The dependence of the Wilson coefficients
on this u scale and on the renormalization scheme has to compensate the hadronic matrix
elements one in such a way that the physical amplitudes do not show any dependence on
the choice of the scale. This cancellation of the dependence is limited by the order at which
the Wilson coefficients are calculated in perturbation theory.

Generally speaking, in order to describe the B — DK decays, eight operators are needed

and the effective hamiltonian can be written as:

Hepp = \f AV Ves - [Cr(p) Q7 (1) + Co(p) Q5™ ()] + (2.1)
+ Vcqus'[ () Q" () + Co(p) Q3" ()] +
+ Vi Vea - [C1() Q" (1) + Ca(p) Q5™ (1)) +
+ VaVua - [Cr() QT (1) + Co(1) Q5" ()]}

where the () and )5 operators are called current-current operators and are defined by:

Qi = (bur)v—a(;d;)v—a
544 — (bdy)y— a(tur)y—a.

The fact that, in the B — DK channels used to measure 7, there are no penguin
contributions can be seen from the expression of the current-current operators, where the
currents are never expressed by two quarks of the same flavor (¢g), since all the four quarks
on the final state have different flavor.

The Wilson coefficients can be calculated with perturbative techniques, while there is not
yet an agreement, within the theoretical community, on how to calculate the hadronic matrix
elements and different approaches have been proposed. In the approach called factorization,
the hadronic matrix elements are calculated as product of weak currents matrix elements,
expressed in terms of form factors and decay constants of the interested mesons.

As an example, the matrix element

(D™K*|(be)v—a(as)v-a| BY)
is expressed in factorization as
(DK *|(be)y—a(as)y-a|B%) = (D7|(bc)y—a| BY) - (K |(as)y—al0) (2.2)

where the process is split into two different subprocesses: the B meson decay into a D meson
(described by the form factor FE~P) and a kaon created from the vacuum (described by
the kaon decay constant fr).



An intuitive way of explaining the factorization hypothesis is provided by the color trans-
parency argument, proposed for the first time by Bjorken [22]. The emitted meson is defined
as the one that does not contain the B spectator quark. In the hypothesis that the emitted
meson is produced with large momentum, its two quarks (that have opposite colors) will
have a large momentum along the meson flight direction and a relatively low momentum in
the transverse direction. The exchange of soft gluons with other fermionic lines is hence sup-
pressed because the gluon cannot discriminate the two quarks inside the meson that appears
as a color singlet. In this assumption, the emitted meson creation can then be considered,
to first approximation, a standalone process with respect to the rest of the decay.

Since this argument relies on the emitted meson having a large momentum, it is more
plausible for light emitted mesons and cannot be valid in case the emitted meson is a D.
Nonetheless, even in the cases of light emitted mesons, factorization cannot account for all
the contributions to the amplitude and it is generally considered as insufficient. However it
can be considered very useful for first approximation evaluations [21, 24].

As already stated, the amplitude for a B decaying to a final state f = DK is given by
(f|Hers|B), where the effective Hamiltonian is expressed in eq. 2.1. Following the diagram-
matic approach, presented in [23], the amplitudes are written as sums of the contributions
from all the possible topologies resulting from the Wick contractions, between initial and
final state, of the different effective Hamiltonian operators (Q{'5** in expression 2.1). In
this framework, the amplitudes for the decays can be expressed in terms of renormalization
scheme and scale independent parameters, that are linear combinations of Wick contractions
for different operators, weighted with their Wilson coefficients. Fig. 2.3 shows the topolo-
gies that are relevant for the B — DK decays: Disconnected Emission (DE), Connected
Emission (CE), Disconnected Annihilation (DA) and Connected Annihilation (CA).

The following emission parameters can be defined as:

Ey = Ci{Q1)pe + Ca(Q2)cE ;
Ey = Ci{Qh)cr + Co(Q2)pE ;

and similarly for the annihilation:

A = Ci(Q1)pa + Co(Q2)ca -

where (Q;)pe.crpaca (i =1,2) indicates the insertion of the @Q); operator inside a topology
of the kind of DE, CE, DA, CA respectively. More explicitly:

El(Qla G2, q3, My, M2) = OlDE(QD G2, q3, My, M2) + CzcE(CIb q2,q3, My, M2) ;
EZ(q1aq2aq37M1a MQ) = ClcE(qlaq%q& Mla MZ) + CQDE(q17q2aq3a M17M2) ;
Ai(q1, 92, g3, My, My) = C1DA(qv, o, g3, M1, My) + CoC A(qu, go, g3, M, Ms)

In the case of the DE topology, a sum can be performed on the color of the ¢ and g3
quarks forming the emitted meson, on the contrary in the CE topology, the colors of the g
and ¢; quarks are determined by the colors of the ¢35 quark and of the B spectator quark
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Figure 2.3: Relevant topologies for the B — DK decays amplitudes.

respectively (see Fig. 2.3). For this reason, the CE contribution is expected to be suppressed
by a factor 1/N¢ (where N¢ is the number of colors) with respect to the contributions from
DE. The contributions of the annihilation topologies are also expected to be suppressed with
respect to DE.

The amplitudes for the B — DK decays of interest can be expressed as follows (with
[ =u,d):

Bt — DOK™) =V, Vi (E1 (s,1,¢, K, D) + Ey(c,l,s,D,K));
B® — DK =V, Vi(Fs (c,1,5,D, K)) ;

Bt — D°K*) =V, Vi (Ey(l,¢,s,D,K) + A (s,1,¢, K, D)) ;
B? — D°K°) =V, V5 Esy (I, ¢,5,D, K) .



Due to the values of the Wilson coefficients, the F; and E, parameters are dominated by
the DE and CE topologies respectively.

As already stressed, the values of those hadronic parameters cannot be calculated in a
model-independent way. Moreover, these parameters are complex quantities and their actual
contributions to the amplitudes depend on the relative strong phases that again cannot be
predicted.

2.2 Measurements of the angle v in B — DK decays

The idea of measuring a relative phase ¢ through the interference between two amplitudes
Ay and A€’ connecting the same initial and final states is based on the fact that the decay
rate between these two states is proportional to: |A; + Aye®|? = A2 + A2 4 2A, Ay cos ¢
and hence the interference term gives sensitivity to the relative phase ¢ (here A; and A, are

real).
v ~4 1)
\ A(
Figure 2.4: Interference scheme for B¥ — DK+ and B¥ — DK™ decays .

In Fig. 2.4 we show an interference scheme for BT mesons decays giving sensitivity to .
The B can decay either to D°K* through a b — ¢ transition or to DK™ through a b — u
transition. If both the D° and the D° decay to the same final state f, the study of the decay
Bt — [f]K™ gives sensitivity to the relative phase between the two decay amplitudes.

The amplitude for b — ¢ and b — wu transitions can be written as A(b — u) =
Vo€ Aye®® and A(b — ¢) = |Vip|Ace, where Ay and 8, are the absolute value
and the phase of the strong interaction contribution to the amplitude. If the neutral D
decay is also considered, a term Ape®P (or Apep) has to be included. In the following we
denote 6 = 0p — dp + 0, — 0.. In case of BT, the interference term in the decay rate will
be proportional to cos(d + 7). A similar diagram can be drawn for the CP conjugate decay
(B~ — [f]K ™), in this case the interference term will be proportional to cos(d — ), since
the strong interactions conserve CP.

The example shown in Fig. 2.4 refers to the BT — D°(D°)K*, but equivalent arguments
can be done for all the B* — D®(DMOY K+ and B~ — D®O(D®) K~ as well as for the
BY — D®O(DHOY K0 and BY — D®O(DHO) K0 decays.

There are several methods that aim at the measurement of v in B — DK decays, all
based on the strategy sketched in Fig. 2.4, that differ because of the neutral D final states
f they reconstruct and consequently because of different experimental analysis techniques
they use.



A fundamental quantity in all these measurements is the parameter rp = ‘Ii((llz:z))ll‘ Being

the absolute value of the ratio of the b — wu to the b — ¢ transition amplitudes, rg drives
the sensitivity to v in each channel. The big challenge of measuring ~ is related to the fact
that rp is small or, in other words, the b — u transitions are suppressed with respect to the
b — c ones.

Looking at the possible diagrams in Fig. 2.1 and 2.2, rg for charged B — DK channels
can be written as:

A(BT = D'KF)| Ve Vin| [C + A

CH _ 0 7+ |
=rg(D'K™) = = = 2.3
o = ) S A BT S DK T [Vaebal T+ O 23)
and, for neutral decays, as:
A(BY — D°K° VeVl |C
PNEUT = o (DOKOY = |A(B” — )| ub|u (2.4)

[A(B® — D'KO)| [V Vil IC

Rﬁ“/}‘b: only depends on absolute values of CKM
us¥eb

parameters and is known to be y/p? + 772 = 0.372 +0.012 [25], while the terms depending on
the hadronic parameters are not easily predictable, although one can make some argument
for their evaluation, typically based on the fact that the color-suppressed and annihilation
diagram contributions are suppressed with respect to the tree ones.

From simple arguments of this kind, one would expect r§ ~ 0.1 for the charged B —
DK channels and rN*UT ~ 0.4 for the neutral B — DK ones. This assumes that the
ratio between the two color-suppressed diagrams (C and C) is ~ 1 [23], |C|/|T| ~ 0.3 and
|A|/|T| =~ 0.5 [26]. A more quantitative evaluation is given in sec. 2.4.

In the expressions 2.3 and 2.4, the term

In conclusion, the measurements of v are difficult because b — u transitions are strongly
suppressed with respect to b — ¢ ones, as described by rz ratios !, and each analysis aiming
to determine v has to simultaneously measure the rp ratio (for the particular analyzed
channel) or either make some assumption on it. More explicitly, see Fig. 2.4, the unknowns
in any - analysis are - itself, the rg ratio and a strong phase d. These are usually called
polar coordinates. Some analyses make use of the “cartesian coordinates”, defined in terms
of the polar coordinates as:

xy =rpcos(d £7v); yr =rpsin(d +7) (2.5)

The present knowledge on v comes from the combination of measurements of several
channels with different methods, described in section 2.2.1, 2.2.2 and 2.2.3. As we will see,
some of the methods are more sensitive to v itself, while some others are particularly powerful
in measuring the rg ratios. For the sake of simplicity, in sections 2.2.1, 2.2.2 and 2.2.3 the
formulas and graphs will refer to the case of BY — D°(D°) K™, while the methods are of
course valid for all the BY — D®O(DWOYK+ and B~ — DMO(D®O) K~ decays as well as
for the B — D®O(DHO) K0 and BY — DHO(DH0) K0 decays.

Tt has to be stressed that the parameters rp are ratios between amplitudes, the ratio between number
of events from b — u and b — ¢ transitions will be proportional to rp 2.



2.2.1 The GLW method
In the GLW method [28, 29], 7 is measured from the study of B decays to DK final states,

where DY is a CP eigenstate with eigenvalues +1, defined as:

1

DY) = —=(ID%) £|D%)

S

2

From the definition of DY, it follows:

V2-AB* - DYKT) = A(B* — D°K*) + A(B* — D°K™)
V2-AB~ - DYK~)=A(B~ — D°K~)+ A(B~ — D°K").
The amplitudes can be written as follows:

A(BT — D'K™) = V3 |Ale™ = |[Viple™| Ale™;
A(B™ — D K ™) = Vy|Ale™ = |Viple | Ale™;

and the following relation, for the amplitudes of the b — u processes, holds:
A(BY — D'K*) = *"A(B~ — D°K ™).
The amplitudes for the b — ¢ processes are related by the following expressions:
ABY — D'K*) = A(B~ — D°K").

These relations can be represented in a complex plane as two triangles, as shown in Fig. 2.5,
and the presence of CP violation is described by |A(BT — D} K")| being different from
|A(B~ — DY K7)|. The following observables are measured:

ABY— D) fA(B_ — D<)

/

V2ABT— D)

A(B — D%")

ABT— D% = AB — D%")

Figure 2.5: Representation, in a complex plane, of the amplitudes used in the GLW method.

D(Bt — DOUK*) + (B~ — DLK") ,
Rep: = F(B* = DK+ (B = DOK*) =1+rg°+2rgcosycosdp
A — (Bt - DYK")-T(B~ —» DIK~) =+2rgsinysinig
T T(BT - DLK+)+I(B- — DLK~) Reps



where dp is the relative strong phase between the two B decay amplitudes, v the weak phase,
and rp is the ratio rg = |‘i((l;:z))||.

In the GLW method, four observables, Acp+ and Rcp+, are measured to constrain three
unknowns, v, 6 and rg. It is instructive to see that Aop+ and Rcp+ are invariant under the

following operations:

L Ssign Y= =Y and 5B A _53;
L4 exchange - 7 < 5B;

e S, :y—~vy+mand ég — dp + 7.

It follows that the GLW method suffers of an irreducible four-fold ambiguity on the deter-
mination of the phases. With the present available statistics, is very useful in measuring rp,
but has typically a low sensitivity to ~.

2.2.2 The ADS method

In the ADS method [30, 31], v is measured from the study of B — DK decays, where D
mesons decay into non CP eigenstate final states. In this method the suppression of b — u
transition with respect to the b — ¢ one is partly overcome by the study of decays of the B
meson in final states which can proceed in two ways: either through a favored b — ¢ B decay
followed by a suppressed D decay (D° — f, or D° — f), or through a suppressed b — u B
decay followed by a favored D decay (D° — f or D° — f), as sketched in Fig. 2.6. In this
way the two amplitudes are comparable and one can expect larger interference terms.

A typical final state f used in ADS analyses is f = K*n~ (hence f = K~n*). The D°
decay in this state is unfavoured with respect to the D° decay because of the CKM elements
in the amplitudes:

AD® = ) ViVl _
[ADY = NI [ViaVes|
with A = sin ¢ ~ 0.22. For this reason, the decays D® — f and D° — f are called Cabibbo-
allowed (CA) and doubly-Cabibbo-suppressed (DCS) respectively.
In the ADS method, one measures the observables:
(Bt — fKY)+ (B~ — fK")
Bt — fKt)+T(B- — fK-)
I'(B~ — fK°)-T'(Bt — fK™")
(B~ — fK-)+ (Bt — fK*)
In the following, we will assume that CP is conserved in D decays. We define:

A(BY - D'K") = A(B~ — D°K™) = Ap;

22 (2.6)

(2.7)

Raps =

Aaps = (2.8)

(
A(B™ — D°K™) = rpApe'®s™);
AD® — f) = A(D° — f) = Ap(CA) = Ap;
A(D® — f) = A(D° — f) = Ap(DCS) = rpApe™®.



OPPOSITE SIGN MODE

favored (b — c) suppressed (o< A?)
Bt - DKt =——» D' — f — Bt — [K— 7K+
same
suppressed (b — u) favored (o< 1) final state
Bt - D'kt — D' f BT — [K at]po KT

SAME SIGN MODE

favored (b — c) favored (o< 1)
Bt — D'K+ ——» D'—f ~— BT — [KTn ]po KT
same
suppressed (b — u) suppressed (o< A?) final state
Bt — DKt — DV— f B* — [K+r]po K+

Figure 2.6: Scheme for the ADS method: BT mesons decaying to the same final state,
through two different decay chains, for “opposite sign” events (top) and for “same sign”
events (bottom). The scheme is shown for the D final state f = K7~

Two new quantities have been introduced: dp, which is the relative strong phase between
Cabibbo-allowed and doubly-Cabibbo-suppressed D decay amplitudes, and rp, which is the
ratio between the absolute values of the amplitudes, as in eq. 2.6, rp = |Ap(DCS)|/|Ap(CA)| x
||chvu8|/|vjd‘/08| =\
The numerator of the ratio Rypg is the sum of the contribution from BT decays:
‘ABAD’I“BISZ‘(BB-PY) + ABADTDGMD‘Q =
AL AL [rE 4+ 13 + 2rprp cos(d + 7)),
where § = dg+0p is the sum of the strong phase differences in the B and in the D amplitudes,
and the contribution from B~ decays:

|ApAprpe®s=" 4 ApAprper|? =
AR AT % + 13 + 2rgrp cos(§ — )]
resulting in:
2A%L AL [rE + 12 4 rrp(cos(d + ) + cos(d — 7))] =
QAL AT r% + 13 + 2rprp cos vy cos 4]
The denominator of Rpg is the sum of the contribution from BT decays:

’ABAD + ABADTDTBei(aBJraDJF'Y)‘Q =

AL AL+ 157 + 2rprp cos(6 +7)] = AR AL 1+ 2, ] =~ AL AT



and the contribution from B~ decays:

‘ABAD + ABADTDTB@i(aBJr&D*'Y)‘Q _

ABALL +r5rs, 4+ 2rprpcos(6 — )] = AZAL[1 4+ x_] =~ AL A3
resulting in:

AZBAZD 2 + 27“%7“,23 + rprp(cos(d + ) + cos(d — v))] =
AZAT2 +xy + 1 ] =243 AT

where the terms x, and x_ are defined as:

Ty = 157h + 2rprp cos(d + 7);

x_ =157 + 2rprp cos(d — 7)].

The ratio R4pg can hence be written as following:

Ty — T

2 I

The terms x, and z_ are small with respect to the leading contribution (which is of the
order ~ 1), since they are proportional to rgrp (of the order of a few percent) and can be
neglected. Let’s see the meaning of neglecting these terms. The decay amplitude for each
channel contributing to the denominator of R4pg is the sum of two amplitudes: Ag(b —
c)Ap(CA) + Ap(b — u)Ap(DCS), where the first is the leading one. Neglecting the terms
x4 and x_ corresponds to neglect the term Ag(b — u)Ap(DCS) (i.e. the amplitude for the
b — u suppressed decay of the B, followed by a doubly Cabibbo suppressed decay of the D)
and approximating the denominator with its leading term Ag(b — ¢)Ap(CA).
In a similar way, for A,pgs we obtain the following expression:

Raps =~ (1} + rg” + 2rprp cosy cos(d))[1 —

x4
1 2

Aps = rprp[—cos(d + ) + cos(d — )] Rie

If we neglect the terms z, and z_ in Rapg, the observables Raps and Aaps can be
written as follows:

Raps = rh+rg>+2rgrpcosycos(dp + dp)
AADS = TBTD[—COS(5+’Y)+COS((5—’7)]/RADS
= QTBTDSiH")/Siné/RADS.

This method is very useful in measuring rg, but normally it has very low sensitivity to .
Even in the hypothesis of very high statistics, where both R4ps and A ps can be measured
with a good precision, the ADS method would suffer from having three unknowns (rp,y and
J, the rp ratios being known) and only two observables (Raps and Aspg). In this thesis,
as for other ADS analyses, the ratio Rspg is measured but not the asymmetry Aspg. The
observable Apg is the direct CP asymmetry built up using only the opposite sign events.
With the statistics available for the studies presented in this thesis (~ 400 fb™!), the error
on Aaps would be too large to allow to extract any useful information on rg, v and 9.



2.2.3 The GGSZ Dalitz method

In this method [32] 7 is measured from the B — DK decays with the D decaying to multi-
body CP eigenstate final states. Multi-body decays are usually described by the isobar
model, in which the decay amplitude is written as a sum of amplitudes with quasi two-body
intermediate states.

The amplitude for a three-body neutral D decay D — M, MyMs is written as a sum of
amplitudes for decays of the kind D° — M, Ms, where M, are resonances that decay to M,
M, final states. These decays are studied in the Dalitz plane (s19, s13) , where s;; = (p; +p;)?
is the invariant mass of the couple M;M; of the D decay products.

The isobar model parametrizes the amplitude A = Ae™*, at each point k of the D Dalitz
plane, as a sum of two-body decay matrix elements plus a non resonant part, according to
the following expression:

Ape® =" a;e’ BW{(m,T,s) + ap.e"® (2.9)

J

where BW,f (m, T, s) is the expression for the relativistic Breit-Wigner describing the decay
through an intermediate j resonance characterised by its spin s, its mass m and decay
width T'.

A typical Dalitz plane distribution can be seen in Fig. 2.7, where the Dalitz plot for a
large sample of D° — K ntn~ events is shown, and the zones of higher density represent
the contributions from different resonances.

Figure 2.7: Dalitz plane distribution for a DY decaying to a final state Kgr 7.

Analyses of large tagged neutral D data samples (typically from decays of D** — DO
and D*~ — D) allow for a good determination of amplitudes and relative strong phases



of the different resonances contributing to the D Dalitz distributions. As explained, those
samples are studied assuming an isobar model and writing the sum of amplitudes from
the different quasi-two-body intermediate states with resonances as a sum of Breit-Wigner
functions. Some components that are not easily explained with resonances are described by
effective parametrizations, such as the K-matrix approach [62, 63], which will be discussed
in more detail in chapter 6.

This information is used as input to the Dalitz analyses aiming to measure 7, where
the complete and rich structure of the multi-body D decay is exploited and detectable
interference terms are expected because of the presence of different strong phases. This
method is indeed very powerful and it is so far the one that gives the best error on the weak
phase 7.

Continuing on the example of the K n™ 7~ final state, we define

Ap(si2, S13) = 1412,1z),€i§12‘13 = A(D07—> Ks(p1)m (p2)7 " (p3)) =
= A(D° — Kg(p1)m ™ (p2)m (ps)) ;

where s;; = (p; + pj)2 and pi, p2, p3 are the 4—momenta of Ky, 7~ and 7" respectively,
A12713 >0 and 0 < 512713 < 2m.
We have, for the decay rates:

dD(B™ — [Kam ' |K™) o< (Afy 15 + 1B AT 10 +

+27"BR€ [AD(Slg, 813>AE(813, Sm))ei(éB_W) ] )d812d813 ; (210)
dF(B+ - [sz+77_]K+) X (A%3,12 + 7"12914%2,13 +
+QTBR€ [AD(Slg, Slg)A*D(Slg, 813))€i(63+7) ] )d812d813 . (211)

From the study of these decays we are hence sensitive to 75, v and 05 (the relative strong
phase between the B amplitudes).

2.3 State-of-the-art for measurements of v and rp

As already stated, the knowledge on the angle v comes from the combination of results
obtained from many channels with different methods (listed in sec. 2.2.1, 2.2.2 and 2.2.3).
So far these results are obtained using charged B — DK decays. The available experimental
results are:

e GLW analyses of B* — D2, , K* B* — D, K* and B* — D2, K**, performed
both by BABAR [64] and Belle collaborations [65].

e ADS analyses of B* — DY(D%)K* with the neutral D reconstructed in K*nF, per-
formed both by BABAR [66] and Belle collaborations [68].

e BABAR also performed an ADS measurement in the channels B* — D*°(D*0)K* and
B* — D°(D°)K**  with the neutral D reconstructed in K7 ¥, and a measurement in
the channel B* — D°(DY) K* with the neutral D reconstructed into K== ¥7% [66, 67).



e Dalitz measurement of the channels B* — D2, K* B* — D, K* and B* —
DY, K**  with the neutral D reconstructed in Ksm 7~ final state by the Belle col-
laboration [70], and both in K¢nt7n™ and in KsK ™K~ final states by the BABAR col-
laboration [69].

e BABAR also performed a Dalitz analysis of the channel B* — D%, K* with the
neutral D reconstructed in 77— 7" [71].

The pdf for v obtained from the combination of all these analyses (using all the available
measurements presented at the 2008 winter conferences) is shown in Fig. 2.8, where the dark
and light zones indicate the 68% and 95% probability regions. It results in v = (80 & 13)°.
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Figure 2.8: One-dimensional pdf for « from the combination of all the analyses in the charged
B — DK modes (left). The dark and light colored zones show the 68% and 95% probability
regions respectively. In the right plot pdfs are shown separately for v from GLW and ADS
and from Dalitz analyses separately. The combination is also shown, but is barely visible
since it is almost coinciding with the result from Dalitz analysis alone. These results are
obtained using experimental data available for the 2008 winter conferences.

The pdf obtained for the rp ratios, for the B* — D%, . K* B* — D, K* and
B* — D2, K** channels, are shown in Fig. 2.9, where the dark and light zones represent
the 68% and 95% probability regions respectively. The numerical results are:

rp(D°K™) = 0.10 £ 0.02;
rp(D*K™) = 0.09 £ 0.04;
rp(D°K*") = 0.13 £ 0.09. (2.12)

In Fig. 2.9 we also show the pdf for the rp ratios separately from GLW and ADS and from
Dalitz analyses.
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Figure 2.9: One-dimensional pdf of the rp ratios for B¥f — DY, K* B* — D, K* and
B* — DY, K** channels from the combination of all the analyses in the charged B — DK
modes. In the top row, the dark and light colored zones show the 68% and 95% probability
regions respectively. In the bottom row, the pdf for these ratios obtained separately from
GLW and ADS analyses and from Dalitz analyses separately and from their combination is
also shown. These results are obtained using experimental data available for the 2008 winter
conferences.

It is noteworthy that, while the Dalitz method gives the leading contribution in con-
straining v, the GLW and ADS analyses have an important weight in the determination of
the rp ratios.



2.4 (Great) expectations for rp in neutral B — DK

decays
As shown in [27], we can give an evaluation of the r§ZUT ratios for neutral B channels,
starting from the values of r§  exploiting the fact that the two ratios can be expressed in
terms of some common parameters (egs. 2.3 and 2.4). We first consider the case in which
annihilation can be neglected (we thus make the hypothesis that |A|=0). In this case, the
following relation holds:

TjVEUT N

where R, = % and j = DK, D*K or DK*. The values for I?; can be obtained from

the measurement of the following branching fractions: Breyp = Br(BT — D®OK®T) o
|C +T|?, and Bre = Br(B° — DXOK®0) o |C[2.

If annihilation process is not neglected, the previous relation becomes more complicated:

NEUT _ 1 FCH

J j\/1+x2+2xcos¢A@ J

r

where x = |A|/|C| and cos¢ 4 is the strong phase between the color-suppressed and the
annihilation amplitudes in b — u processes. The term |A| is constrained by the measurement
of the branching fraction Bry = Br(B* — DT K*?). So far, only upper limits exist.

Using a bayesian toy Monte Carlo procedure, we have evaluated the ratios rV*U7 using
the branching fractions shown in Tab.2.1 and the values for r“# obtained combining all the

available measurements presented at the winter conferences (see eq. 2.12).

System || Br(B* — DWOK®+) | Br(B® — DGOKHO) [ Br, = Br(B* — DM+ KX)0)
DK (4.02+£0.33) x 10~* (5240.7) x 107° | < 5.0 x 107° @ 90% probability
D*K | (4.16+0.33) x 10~* (324+1.2) x 10 [ < 9.0 x 107° @ 90% probability
DK* (5.3+0.4) x 1071 (4.24+0.6) x 107° -

Table 2.1: Branching fractions (Br) for the b — ¢ mediated processes used in the study, for
the B — DK, B— D*K and B — DK* channels [§].

The study has been performed both assuming the annihilations to be negligible and using
for them the experimental information, when available. In the latter case, cos ¢ 44 is assumed
to be flat within its full range. The results of the study are summarized in Tab. 2.2.

The evaluations we have shown make use of some SU(2) assumption and suffer from the
fact that we cannot determine the strong phases of the hadronic parameters, but are very
useful as first approximations. These results show that indeed the r3¥UT ratios are expected
to be larger that the r§ ratios. This feature overcomes the fact that these decays are less
abundant, since it gives higher sensitivity to ~.

Of course, the final knowledge on the rp ratios has to be extracted form data.



System R r&H SEVTA|=0 | r3FYT |A] < v/Bra

,
DK (2.84+0.4) | (0.10 £0.02) | (0.25 4 0.06) (0.23 £ 0.08)
D*K | (3.6+t1.4) | (0.0940.04) | (0.24+0.13) (0.23 £0.14)
DK* || (3.6£0.6) | (0.134+0.09) | (0.42+0.21) -

Table 2.2: The first column gives the results for R = B;TTZC. In the second column we recall

the values for 7% (2.12) as obtained from the combination of all the available measurements
presented at the 2008 winter conferences. In the third and fourth columns we give the result

for rNEUT in case |A|=0 and using for |A| the experimental measurements respectively.

2.5 Comparison between different methods

In this paragraph we perform a study to compare the expected relative errors obtained on
rp with the different analysis techniques, GLW, ADS and Dalitz. To do that, we use a toy
Monte Carlo bayesian procedure:

e a large number of experiments is generated, by extracting rg, v and ¢ within their
definition ranges.

e For each extraction i, the values of the observables (Rl piand ALpy for the GLW
method, RY ¢ for the ADS method, z. and g% for the Dalitz method) are calculated.

e To each extraction of (rp,y,0) is assigned a weight w’, depending on its agreement
with the measured values (for example, if R4pg is measured and found to be Gaussian
Rips = j £ o, then the weight is w = e_(RfADS_“P/"Q). All the measurements are
assumed to be Gaussian in this study.

e The distribution of the values of the variables (r5,7,0), reweighted with w’ for each
extraction, is normalized to unit area, resulting in the a-posteriori pdf for the given
variable.

e The error on rp is calculated from the interval obtained by integrating the pdf for rp,
starting from the most probable value, until we get the 68% of the total area.

For this study we assume fake central values for the observables, calculated assuming
rg = 0.1, v = 60° and dg = 40°. The errors are taken from the latest BABAR results for the
B* — D°(D°)K*. In these measurements, the neutral D is reconstructed in 77—, Kt K~
(CP-even) and Kym¥, Ksw (CP-odd) for the GLW method on 363 tb™!; K*7F and K*rFn°
for the ADS method with 210 fb~!; K¢ntn~ and K¢K T K~ for the Dalitz method on 363
fb~1. The statistical errors are then rescaled to 450 fb~! and 1 ab™! assuming that they
scale as 1/+v/Lumi, while the systematic errors stay unchanged.

It is interesting to note that the ADS method gives the best determination of rp at low
statistics (300-400 fb~!). However the evolution of the relative error on rz from ADS tends
to saturate at about 30%. We recall here the definition of R4ps:

Raps =15 + 713 4+ 2rprpcosycosd = ry + 15 + 2rgrpK (2.13)
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Figure 2.10: Expected relative errors on rg from different experimental measurement tech-
niques, assuming rg = 0.1.

where K = cos~ycosd € [—1, 1]. Solving the eq.2.13, the expression for rp (keeping only the
positive solution) is the following:

rg = —rpK + \/T,%KQ — 1% — Raps. (2.14)
It follows that the error on rp is:
2L K
2\/T2DK2 — 7‘2D — RADS

o(Raps)

Jo(K) &
2\/T2DK2 — T2D — RADS

(2.15)

J(TB) = (T'D+

which, neglecting the terms proportional to r% and assuming the average of K to be zero,
becomes:

o(Raps)
2\/RADS — 7"2D

with the hypothesis that rp is known. This relation shows that, for very small o(R4ps), the
error on rp tends to an irreducible contribution from the term o};,);¢ = 7po(K). Considering
that K is flat distributed between -1 and 1, we have:

o(rg) =rpo(K) @

(2.16)

D
Olimit = ﬁ ~ [0.02,0.04}, (2.17)



where the interval is due to different values of rp for the three D channels. It follows that,
for rg = 0.1, 0}53t /75 ~ 30%. The presence of this irreducible error is due to the fact
that we use only one observable, R4pg, to determine three unknowns (rg, v and §). This
problem is not present for GLW and Dalitz methods. It is noteworthy that for higher values
of rg (rg = 0.3), as expected for neutral B decays (see sec. 2.4), the contribution of this
irreducible error would be less important. The comparison of the relative errors on rg from
GLW, ADS and Dalitz methods with a statistics of 10 ab™! is summarized in Tab. 2.3, for
rg=0.1 and rg = 0.3.

GLW | ADS | Dalitz
rg=0.1| 0.17 | 0.26 | 0.07
rg =03 || 0.07 | 0.08 | 0.06

Table 2.3: Relative error on rg obtained with GLW, ADS and Dalitz method for fake mea-
surements using 10 ab™!, assuming rz = 0.1 and r5 = 0.3.

For the extrapolation to rg = 0.3 configuration, we make the hypothesis that we have
the same number of b — u events as in the case of rg = 0.1. Only statistical errors are taken
into account in this study.

It should be finally stressed that, for 10 ab™!, the Dalitz method would give an error of
4° on v with a two-fold ambiguity (v < v + 7). With the same statistics, the GLW method
would allow for a determination of v with 16° error and a four-fold ambiguity. The ADS
method, with R4pg as only observable, cannot determine the angle ~.

2.6 Measuring v using the B" — D°(D")K*" and B’ —
DYDY K*" decays

As we have seen, the neutral B — DK decays amplitudes proceed both through b — ¢ and
b — w transitions, and are sensitive to v through their interference.

However, in the case of BY decays, the phenomenon of B° — B° mixing has to be con-
sidered. If both B and B° can decay to the same final state f, then it has to be taken into
account that f can be reached from an initial B? state, by a b — ¢ or b — u (technically,
here we should write, b — ¢ and b — @, but we avoid doing that for simplicity and, by
b — u, we mean both b — u and b — @ transitions) transition, but also from an initial B°
state that mixed, followed by a b — ¢ or b — u transition of the B° meson.

CP violation studies of these decays will give sensitivity to v (the weak phase of V5,
V¥ = |Vip|e?) through the interference of the decay amplitudes and also to 3 (the weak
phase of Vig, Vig = |Vig|e?’) through the mixing process. These decays can be used to
measure the combination of weak phases 23+ v and, from the experimental point of view, a
tagging procedure of the neutral B meson flavor and a time-dependent analysis are necessary
to access this information.

The arising of a 3 phase and the need of a time-dependent analysis can be avoided if
the final states contain a particle which allows to unambiguously identify if a B® or B° has



decayed. This is the case of neutral B° mesons decaying into DOK*°[K+r~] final states
through the sign of the electric charge of the K.

The work presented in this thesis, performed in the spirit of continuing to investigate
several methods to constraint v, consists of studying the decay modes B® — D°(D%)K*
and BY — D°(D°)K*° where the K*° is reconstructed into K7~ and the K*° into K7+,
In this case, the presence of a K in the final state will tag the neutral B that decayed as a
B? while the presence of a K~ in the final state will tag the neutral B that decayed as a B°.

The two measurements here presented are:

e The Dalitz analysis, with neutral D reconstructed in the K 7~ final state.

e The ADS analysis, with neutral D reconstructed in the K*7F, K*7¥F7% and K*nFrFrt
final states.

Now that almost all the possible analyses have been performed with the charged B — DK
decays, the work presented here is a starting point for constraining v from neutral B — DK
decays. One thing that has to be kept in mind about neutral B — DK decays is that, despite
the fact that the branching fraction are smaller than the ones for charged B — DK decays
(by a factor of approximately %), the rp ratio is expected to be larger (of the order ~ 0.4
instead of =~ 0.1, see eq. 2.3 and 2.4). This rp ratio has never been measured for any neutral
B — DK channel and BABAR , with low statistics, sets a limit on rg(D°K*Y) < 0.4@90%
probability [73]. Depending on the value of rp, the measurement of v using neutral decays
can be as precise (or better) than the one obtained from charged B decays. A large value of
rp in these decay modes can also be of interest for future experiments, as LHCb, since these

channels involve only charged particles in the final state.

2.6.1 Introducing k, s and rg parameters

In contrast with BT — D(D°)K*, for B® — D°K*? decays, the natural width of the K*°
being not small (~50 MeV), the interference with other B® — D°(K7)% . processes may
not be negligible. This changes the relationships between the unitarity angle v and the
experimental observables. We follow here the formalism and the idea suggested in [33]. The

amplitudes of the B — (D°X?), and B® — (D°X?), processes, can be expressed as:

A(B® — (D°X?),) = A(p)e?®) (2.18)
A(EO — (EOXS)IJ) = Au(p)eié“(p)e_” (2.19)
A(D® — f) = Ages (2.20)
A(D® — f) = Apes, (2.21)

where A.(p), Au(p), Ay and Aj are real and positive, X is a state with strangeness and p
indicates a point in the phase space of the final state D°X? (A., A,, d. and ¢, vary as a
function of p). The subscript ¢ and u refer to the b — ¢ and b — u transitions, respectively.
The amplitudes A.(p)e®®) and A,,e»e~" include both the resonant B® — D°/D°K*°
processes and the non-resonant contributions.



The amplitude of the process B® — D[— f]X?, where D indicates either a D° or a D°
decaying to the final state f, can be written as

A(B" = (D[~ f1X0),) = A(B® — (D°X9),)A(D° — f) + A(B® — (D°X),)A(D° — f) =

s

Ac(p) Ape' T 1 A (p) AselOn@Hor=) (2.22)
and the rate of the process B® — D[— f]X? is
(B’ — D[— f]X%) = /dp A2 p)A} + AL(p) A% + 2A.(p) Ay Au(p) A Re(e O®IHo0~ ﬂ)) :
(2.23)
where 0(p) = 6,(p) — dc(p) and 6p = 67 — dy. The rate for the charge-conjugated mode is
the one in Eq. (2.23) with v — —~.

From the expression for the amplitudes in 2.18 and 2.19, the partial rates I'(BY — D°X?)
and I'(B° — D°X?) are

D(B"— D°X!) = [ dp |42(p)]. (2.24)

DB — D°X?) = [ dp |43(p)]. (2.25)

In case of a Dalitz analysis, the partial decay rate in eq. 2.11 becomes:

o, JdpAi(p) 1o | ) dpAc(p)Au(p)Re(eC®)Hon )

A2 4 2P D) g2 ApA; =
T Tapazp) 1T J dpA2(p) e
2 LAPAUD) 4o o | JAPAL(D) [ dpAc(p)Au(p) Re(e"CW 00 7)
JdpA2(p)~7 [ dpA%(p) \/ [ dpA2(p) [ dpAZ(p)

d0(B” — D[— fIX])

ApAy,

where p is the coordinate of the B Dalitz plane and the dependence of Ay and Af on the D
Dalitz plane point is not explicit (with respect to eq. 2.11, here Ay = Aj913 and A; = A3 19).
Following the same notation as in [33], we introduce the quantities rg, k and dg:

(B — D°X Jdp |A%(p))|

. 9
"= N B S XY T A0 (2:20)
keiﬁs — fdp A (p)A ( ) () (227)

VI dp [A2(p)] [ dp |A2(p)|

where 0 < k < 1 for the Schwartz inequality and dg € [0,27]. The parameters k and rg
allow to write the observables for B — DK™ channels in a functional form similar to the
two-body case, as it is shown below with two examples (the partial decay rate for a Dalitz
analysis and Raps).

Substituting the definitions in eq. 2.26 and eq. 2.27, the expression for the partial decay
rate is written:

dU'(B° — D[— f]Xg) o« A7 + rgAf + 2rskRe (AfAfei‘sDei‘SS”) : (2.28)



In case of an ADS analysis, starting from the expression in eq. 2.7, Raps will be written
as follows (neglecting the small term z, as discussed in sec. 2.2.2):

R (BT — fKY)+T(B~ — fK") B
APST DB - fKT)+T(B- — fK)
2 [dpA2(p) A3 + 2 [ dpA2(p) A%+ 4 [ dpA.(p)A.(p)Ree®P1+op) cosy A A
U f c f f2f

2 [ dpAZ(p) A3
f@%@%ﬁﬁ+2Jmﬂwﬁﬁf@&@MAm#&@WW%wa
[dpA%(p) A} JdpAZ(p) Ay \/ [dpA2(p) [ dpAZ(p)

which leads to:

RADS = T‘gv + T‘QD + 2]€TS’/‘D COS(55 + 6D> COS 7y
In the limit of a B —2-body decay, such as B® — DK, we have:
|A(B® — D°K0)|
A(F — DORD)|
A(B® — D'KO)
A(B® — DOKO)’
k1. (2.29)

r's > Trp =

ds — 0p = strong phase of

Although we show here only two examples (the partial decay rate for a Dalitz analysis
and Rapg), it is in general true that, in B — DK™ decays, the observables for the GLW,
ADS and Dalitz method can be written in a functional form similar to the one used for the
two-body B — DK decay, provided that the change of variables r% — r%, dp — d5 and
rg — rgk is performed. With respect to the two-body decay case, in presence of a K*°
the parameter k, that accounts for possible contributions from other (K7)% . processes,
is an additional unknown of the system and should in principle be determined on data. In
order to avoid this additional unknown, a study has been performed to evaluate the possible
variations of k, as detailed in sec. 2.6.2.

2.6.2 Evaluation of ¥ and rg in B — D°(D°)[K*#n~] and B’ —
DY(D")[K 7] decays

To evaluate the expected values for the parameters rg and k we have built a hadronic model
for the B® — D°K*n~ decay. In fact we have seen in the previous section that these
parameters are the result of an effective parametrization of the variation of rp and of the
strong phases over the B Dalitz plane and can be obtained by integrating over some portion
of the B Dalitz plot, corresponding in our case to the K** region.

Resonance contributions

We discuss now the hadronic model for the B® — DK+ 7~ decay. Following the processes
explained in the previous paragraph, the Dalitz plot can be modelled in terms of the following



resonances :

B — D°X X — Ktn~ X = (K*(892), K;(1430), K;(1430), K*(1680))(2.30)
B — K'Y Y — DO~ Y = (D}(2308)", D3(2460))
B—1Z 7 — DKt Z = (D,5(2573)%)

The model assumed for the decay parametrises the amplitude A at each point k of the
Dalitz plot as a sum of two-body decay matrix elements and a non-resonant term according
to the following expression :

Ack(uk)ei5Ck(“k) = ZajeiajBW,g (m, T, s) + €0 (2.31)
J

where ¢, (ug) indicates the Cabibbo allowed (suppressed) decay in each point & of the Dalitz
plot. Each term of the sum is parametrized with an amplitude (a; or a,,) and a phase
(6; or ¢n,). The factor BW} (m/,T7,s7) is the Lorentz invariant expression for the matrix
element of a resonance j as a function of the position k£ in the B Dalitz plot; the functional
dependence varies with the spin s7 of the resonance according to the isobar model [49]. The
total phase and amplitude are arbitrary. For building the decay model we used, whenever
available, experimental information. When this was missing, we made reasonable hypotheses,
as detailed in the following.
The branching fraction B® — DYK*? has been measured [8]:

Br(B° — D°K*®) x Br(K*® — K™7n7) = (2.3£0.3) x 107°. (2.32)

The contribution from higher K** resonances can be evaluated by using measurements per-
formed in the B° sector with a final states containing a D~ meson ([50, 51]) :
BY — D™ K*"(892)(Kgr™)
BY — D-Kgnt

= 0.66 =+ 0.08 (2.33)

The use of this information is rather clean, since the processes which are contributing to the
production of D~ K, final states are largely dominated by the two body intermediate states
containing K*° and higher K** resonances [52]. We make a SU(2) hypothesis, assuming that
this relative contribution is not affected when exchanging D~ — D° and K** — K*°.

A measurement is also available to partially define the D** part of the Dalitz plot [8]:

Br(B® — D%L,K") x Br(D%5, — Dn7) = (1.8 £ 0.4+ 0.3) x 107° (2.34)

The measurement on the D** production from the above branching fractions involves only
diagrams at the tree level (T). Nevertheless, only 2% final states have been measured so far.
We can make the hypothesis that the 0" states decaying into Dz modes are as abundant
as the 2% states. The measurements presented so far are relative to b — ¢ transitions, to
account for b — w transition some hypothesis has to be made. For the nominal model the
ratio between the b — u and the b — ¢ amplitudes in case of K*° and excited K mesons has
been taken to be equal to 0.4. The phases have been taken arbitrarily.

The results are summarized in Tab. 2.4 and a corresponding Dalitz plot (with all the
strong phases set to zero) is shown in Fig.2.11 for illustration.
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Figure 2.11: Dalitz plot for B — D°K* 7~ using the values of the amplitudes given in Tab.
2.4. All strong phases have been all set to zero.

Mass(GeV/c?) | Width(GeV/c®) | J7 | a(b— c) a(b — u)

D, »(2573)* 2.572 0.015 2+ - 0.02
D3(2460)* 2.459 0.029 2+ 1.0 -

5(2308)* 2.403 0.283 0t 1.0 -
Dy (2010)* 2.0100 0.000096 17 | not included -
K*(892)Y 0.89610 0.0507 1~ 1.0 0.4
K} (1430)° 1.412 0.294 0t 0.3 0.12
K3(1430)° 1.4324 0.109 2+ 0.15 0.06
K*(1680)° 1.717 0.322 1~ 0.2 0.08
Non resonant - - - | not included | not included

Table 2.4: List of mass, widths and quantum numbers of the resonances considered in our
model. The last two columns present the chosen values of the coefficients a; in Eq. 2.31 for
the b — c and b — u transitions respectively. Note that the phase §; are not indicated and
their choice is arbitrary, since no experimental information is available. Fig. 2.11 corresponds
to a Dalitz model obtained with the amplitudes given here and all the strong phases set to
Z€ro.
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Figure 2.12: Pollution of non-K** events in the K*° mass region (£50 MeV around its
nominal mass), as defined in eq. 2.35,. The distribution is obtained by randomly varying all
the strong phases and the amplitudes within + 30% the nominal values given in Tab. 2.4.

Numerical analysis

To give an idea of the overlap of the different resonances in Fig. 2.12 we show the pollution
of non-K*°(892) events in the mass region defined within +50 MeV/c? around its nominal
mass. The pollution has been defined as the ratio of the integrals, in the K*° mass region,
of the K** amplitudes (V,; and V) over the total.

[ dp |A,(K)[?
J dp | 4,(total)

pollution = (2.35)

The distribution shown in Fig. 2.12 has been obtained by randomly varying all the strong
phases (between [0-27]) and amplitudes (between [0.7-1.3] of their nominal value given in
Tab. 2.4). It can be noticed that the pollution of non-K* events in the K* mass region can
be quite important and up to 40%. Finally, in Fig. 2.13 we show the variation of rz along
the Dalitz plot.

We have seen in the previous section that following the the formalism and the ideas
suggested in [33] we can integrate over some portion of the B Dalitz plot and to use an
effective parametrization of the variation of rg and of the strong phases, resulting in the
introduction of three new variables rg, dg and k.

In the following we caracterize the B Dalitz plot in terms of the parameters k and r, of
the new parametrization.

We first consider a region within +£50 MeV/c? of the nominal mass of the K*°(892)
resonance. In Fig. 2.14 we show the distribution of rg, k£ and krg obtained by randomly
varying all the strong phases between 0 and 27 and the amplitudes between 0.7 and 1.3 of
their nominal value. The amplitudes for D, 5(2573)* are varied between 0 and twice their
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Figure 2.13: Variation of rg along the Dalitz plot (plots on the left side). If the value of rg
is found to be larger than unity it is not displayed in the same plot but in a separate one
(plots on the right side) as 1/rp. All the plots have been obtained with the amplitudes set
to the nominal values of Table 2.4. For the plots on the top row all strong phases have been
set to zero. For the plots on the bottom row a random set of strong phases has been taken.
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Figure 2.14: Distribution of rg, k and krg in a region within + 50 MeV the nominal mass
of the K*°(892) resonance (my;, in the range [0.7159, 0.8951] GeV?/c*). These distributions
have been obtained by randomly varying all the strong phases between 0 and 27, the am-
plitudes between 0.7 and 1.3 of their nominal value. The relative b — u contribution for K*
has been fixed to 0.4 and he b — u amplitude of the D, 5(2573)* has been varied between 0
and twice its nominal value. The nominal model is given in Tab. 2.4).

nominal value. The b — wu contribution of K** has been fixed to 0.4. From these plots
we can notice that, in K*Y(892) mass region, rg can vary between 0.3 and 0.45 depending
upon the values of the phases and of the amplitudes contributing in the K*° region. In the
absence of pollution we would have expected r¢ = rg = 0.4. The distribution of k is quite
narrow and the possible values are lower than unity (k < 1 by definition) by no more than
10%. We expect that, in the majority of the cases, the sensitivity (see the distribution of
krs) of the analysis is reduced due to the presence of other resonances in the K* region.
However it should be noted that the reduction of the sensitivity is not dramatic. Because
the distribution of k is rather peaked, the value of k can be assumed as a fixed value and
varied in the systematics. This is important since, for example for the Dalitz analysis, where
rg is fitted on data, it reduces the number of free parameters in the final fit.

For the sake of completeness (not used for the analyses presented in this thesis), we repeat
the same exercise in two different regions of the Dalitz plot. The corresponding distributions
of rg, k and krg are shown in Fig. 2.15. The distributions of rg and k are quite broad and
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Figure 2.15: Distributions of rs, k and krg in two different regions of the Dalitz plot. Left:
within £+ 80 MeV the nominal mass of the K(1430) resonance (m3. in the range [1.8290,
2.2873] GeV?/ct. Right: in the region of m%, in the range [2.3, 3.5] GeV?/c*, this region is
centered around the nominal K*(1680)° mass.

they translate in a broad distribution for kr, with a central value centered around 0.1. The
sensitivity to v is thus much reduced and it is strongly dependent upon the values of the
amplitudes and of the strong phases which compose the Dalitz plot.

From these studies we conclude that only the region around the K*U is interesting to
measure the angle v using a portion of the Dalitz space. To efficiently use the signal events
in the other regions a complete Dalitz analysis (fitting the amplitudes and the strong phases)
has to be performed.



Chapter 3

The BABAR Experiment

The BABAR experiment, located at the Stanford Linear Accelerator Center (SLAC) in Cali-
fornia, has been optimized for the systematic study of CP violation in the B meson system.
It involves a large international collaboration of more than 500 physicists. The experiment
consists of a detector [35] built around the interactionregion of the high luminosity e*e”
asymmetric collider PEP-II [36]. The geometry of the detector as well as the technical
requirements of the main components have been designed in order to obtain the cleanest
environment and the best efficiency to reconstruct the B meson decays.

In this chapter we describe the main features and performances of PEP-II and the
BABAR detector.

3.1 The PEP-II accelerator

The PEP-II B-Factory is an asymmetric-energy e®e™ collider designed to operate at a center
of mass energy of Ecy = 10.58 GeV, corresponding to the mass of the Y(45) vector meson
resonance. The T(4S5) has a mass slightly above the BB threshold, and thus it decays almost
exclusively into BB® or B B~ pairs.

If the T is produced at rest, then the B mesons would have an average residual momentum
of the order of \/(MT(4S)/2)2 — M3 ~ 325MeV/c . With this momentum, the average

distance covered by a B meson would be of the order of 2 3ycrp ~ 30um and it would be
experimentally very difficult to measure the separation between the decay points of the two
B mesons.

The PEP-II machine collides a 9.0 GeV electron beam head-on with a 3.1 GeV positron
beam, in this way the Lorentz boost of the T(4S5) is gy = E;JC% ~ 0.56, resulting in an
average separation between the two B meson of the order of 250 um, compatible with the
BABAR vertex resolution, as it will be shown in the following.

An overview of the accelerator is shown in Fig. 3.1.

Electrons and positrons are accelerated in the 3.2 km long SLAC linac and accumulated
into two 2.2 km long storage rings, called HER (high-energy ring, in which the electrons cir-

'We use My 45y =10.58 GeV/c? and Mp = 5.28 GeV/c?.
2The factor By arising from a momentum of the B of 325 MeV/c is 3y ~ 0.061 and the B meson lifetime
is 75 = (1.530 4 0.009) x 10~ 125([8].
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Figure 3.1: Overview of the PEP-II B-Factory.

culate) and LER (low-energy ring, in which the positrons, produced in the linac by collisions
of 30 GeV electrons on a target, circulate).

In proximity of the interaction region the beams are focused by a series of offset quadrupoles
(labelled Qx) and bent by means of a pair of dipole magnets, which allow the bunches to
collide head-on and then to separate. The tapered B1 dipoles, located at 4+ 21 ¢m on either
side of the interaction point (IP), and the Q1 quadrupoles operate inside the field of the
BABAR superconducting solenoid, while Q2, Q4, and Q5, are located outside or in the fringe
field of the solenoid (Fig. 3.3). The interaction region is enclosed in a water-cooled beam
pipe consisting of two thin layers of beryllium with a water channel in between. Its outer
radius is about 28 mm. The total thickness of the central beam pipe section at normal
incidence corresponds to 1.06 % of a radiation length.

The beam pipe, the permanent magnets and the Silicon Vertex Tracker (SVT) are as-
sembled, aligned and then enclosed in a 4.5 m long support tube. This rigid structure is
inserted into the BABAR detector, spanning the IP.

The BABAR data taking, started with the first collissions in PEP-II at the end of 1999
and ended in the first days of April 2008. BABAR has recorded an integrated luminosity of
about 531 fb~!, including about 54 fb™! just below the YT (4S) resonance, 433 fb~! recorded
at the Y(4S5) and 44 fb~! at other Y resonances. The BABAR recorded luminosity until the
end of data taking is shown in Fig. 3.2.

PEP-IT surpassed its design performances, both in terms of the instantaneous lumi-
nosity and the daily integrated luminosity (see Tab. 3.1), achieving the peak value of
1.2 x 103 em~2 s7! during Run 6. A significant improvement to the integrated luminosity
has been achieved between December 2003 and March 2004 with the implementation of a
novel mode of operation of PEP-II, called “trickle injection”. Until the end of 2003, PEP-II
typically operated in a series of 40-minute fills during which the colliding beams coasted:
at the end of each fill, it took about three to five minutes to replenish the beams for the
next fill, and during this period the BABAR data acquisition system had to be turned off for
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Figure 3.2: PEP-II delivered and BABAR recorded integrated luminosity in Run 1 to Run
7 (from October 1999 to April 2008).

Parameters Design 2007
Energy HER/LER (GeV) 0.0/31  9.0/3.1
Current HER/LER (A) 0.75/2.15 1.9/2.9
# of bunches 1658 1722
Bunch length (mm) 15 11-12
Luminosity (1033cm?/s) 3 12
Integrated luminosity (pb~!/day) 135 911

Table 3.1: PEP beam parameters. Values are given both for the design and for the records
achieved during 2007.

detector safety. With the new technique, the BABAR detector can keep taking data virtually
uninterrupted while the linac continuously injects electron and positron bunches (at a rate
up to 10 Hz in the HER and 20Hz in the LER) into the two PEP-II storage rings. This novel
mode of operation allows an increase of 20 to 30% of the integrated luminosity. Moreover,
the continuous injection makes the storage of particles more stable, so that PEP-II rings
are easier to operate and beam losses are far less frequent than with the previous opera-
tional mode. This result is very important since, after a loss of the stored beams, it takes
approximately 15 minutes to refill the two beams during which obviously no data taking is
allowed.



3.2 The BABAR detector

The design of the BABAR detector is optimized for CP violation studies, but it is also well
suited to do precision measurements in other B and non B physics. To achieve the goal of
performing accurate measurements there are many requirements:

e a large and uniform acceptance, in particular down to small polar angles relative to
the boost direction, to avoid particle losses. Although the boost originated by the
asymmetric beams is not a big one, optimizing the detector acceptance leads to an
asymmetric detector;

e a good vertex resolution;

e an excellent detection efficiency and an excellent precision on the momentum measure-
ment for charged particles with transverse momentum ranging between 60 MeV/c and
4 GeV/e;

e an excellent energy and angular resolution for photons and 7° s with energy down to
20 MeV and up to 5 GeV;

e a good discrimination between e, u, 7, K, p over a wide kinematic range;

e neutral hadrons identification capability.

Since the average momentum of charged particles produced in B meson decays is below
1 GeV/e, the errors on the measured track parameters are dominated by multiple Coulomb
scattering, rather than intrinsic spatial resolution of the detectors. Similarly, the detection
efficiency and energy resolution of low energy photons are severely impacted by material
in front of the calorimeter. Thus, special care has been given to keep the material in the
active volume of the detector to a minimum. A schematic view of the BABAR detector is
shown in Fig. 3.3. The BABAR superconducting solenoid, which produces a 1.5 T axial
magnetic field, contains a set of nested detectors, which are — going from inside to outside
— a five layers Silicon Vertex Tracker (SVT), a central Drift Chamber (DCH) for charged
particles detection and momentum measurement, a fused-silica Cherenkov radiation detector
(DIRC) for particle identification, and a CsI(Tl) crystal electromagnetic calorimeter for
detection of photons and electrons. The calorimeter has a barrel and an end-cap which
extends asymmetrically into the forward direction (e~ beam direction), where many of the
collision products emerge. All the detectors located inside the magnet have practically full
acceptance in azimuth (¢). The flux return outside the cryostat is composed of 18 layers of
steel, which increase in thickness outwards, and are instrumented (the IFR) with 19 layers of
planar resistive plate chambers (RPCs) or limited streamer tubes (LSTs) in the barrel and
18 in the end-caps. The IFR allows the muon identification, and also detects penetrating
neutral hadrons. The right-handed coordinate system is indicated in Fig. 3.3. The z axis
corresponds to the magnetic field axis and is offset relative to the beam axis by about 20
mrad in the horizontal plane. It is oriented in the direction of electrons. The positive y-axis
points upward and the positive z-axis points away from the center of the PEP-II storage
rings. A schematic view of the interaction region is shown in Fig. 3.4.

The next sections are dedicated to a description of each subsystem.
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Figure 3.3: BABAR detector front view (top) and side view (bottom).
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Figure 3.4: Transverse view of the interaction region.

3.2.1 The Silicon Vertex Tracker

The Silicon Vertex Tracker (SVT) provides a precise measurement of the decay vertices and
of the charged particle trajectories near the interaction region. The mean vertex resolution
along the z-axis for a fully reconstructed B decay must be better than 80 pm in order to
avoid a significant impact on the time-dependent CP asymmetry measurement precision;
a 100pum resolution in the x — y transverse plane is necessary in reconstructing decays of
bottom and charm mesons, as well as 7 leptons. The SVT also provides standalone tracking
for particles with transverse momentum too low to reach the drift chamber, like soft pions
from D* decays and many charged particles produced in multi-body B meson decays. Finally,
the SVT supplies particle identification (PID) information both for low and high momentum
tracks. For low momentum tracks the SVT dFE/dx measurement is the only PID information
available, for high momentum tracks the SVT provides the best measurement of the track
angles, required to achieve the design resolution on the Cherenkov angle measured by the
DIRC.

The design of the SVT is constrained by the components of the storage ring which have
been arranged so as to allow maximum SVT coverage in the forward direction: the SVT
extends down to 20° (30°) in polar angle from the beam line in the forward (backward)
direction. Furthermore, it must have a small amount of material, so to reduce the multiple
scattering which would affect the performance of the outer subdetectors. The solution which
was adopted is a five-layer device with 340 double-sided silicon wafers mounted on a carbon-
fiber frame (see Fig. 3.5). On the inner (outer) face of each wafer, strip sensors are located
running orthogonal (parallel) to the beam direction, measuring the z (¢) coordinate of the



tracks. The wafers are organized in modules split into forward and backward sections: they
are read out on their respective ends and the charge deposited by a particle is determined by
the time over threshold of the signal on each strip. In total, 150,000 read-out channels are
present. The inner three layers, containing six modules each, are placed close to the beam
pipe (at 3.3, 4 and 5.9 cm from it) and dominate the determination of tracks position and
angles. The outer two layers, containing 16 and 18 modules respectively, are arch-shaped,
thus minimizing the amount of silicon needed to cover the solid angle, and placed close to
the DCH (between 9.1 and 14.6 cm from the beam pipe) to help the track matching between
the two detectors.
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Figure 3.5: Schematic view of the SVT, transverse section (upper plot) and longitudinal
section (bottom plot).

The total active silicon area is 0.96 m? and the geometrical acceptance is 90% of the solid



angle in the center-of-mass frame. The material traversed by particles corresponds to ~ 4%
of a radiation length.

The SVT efficiency is calculated for each section of the modules by comparing the number
of associated hits to the number of tracks crossing the active area of the module and is found
to be 97%. The spatial resolution of SVT hits is determined by measuring the distance
between the track trajectory and the hit for high-momentum tracks in two-prong events: it is
generally better than 40um in all layers for all track angles, allowing a precise determination
of decay vertices to better than 70um (see Fig. 3.6).
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Figure 3.6: SVT resolution (layer 1) on the single hit, as a function of the track angle.

The SVT provides stand-alone tracking for low momentum particles that do not reach the
drift chamber, with an efficiency estimated to be 20% for particles with transverse momenta
of 50 MeV/¢, rapidly increasing to over 80% at 70 MeV/c. Limited particle ID information
for low momentum particles that do not reach the drift chamber and the Cherenkov detector
is provided by the SVT through the measurement of the specific ionization loss, dE'/dx, as
derived from the total charge deposited in each silicon layer (see sec. 4.3).

3.2.2 The Drift Chamber

The Drift Chamber (DCH) is the main tracking device for charged particles with transverse
momenta py above ~ 120 MeV/¢, providing the measurement of pr from the curvature of
the particle’s trajectory inside the 1.5 T solenoidal magnetic field. The DCH also allows
the reconstruction of secondary vertices located outside the silicon detector volume, such
as those from Ky — 77w~ decays. For this purpose, the chamber is able to measure not
only the transverse coordinate, but also the longitudinal (z) position of tracks with good
resolution (about 1 mm). Good z resolution also aids in matching DCH and SVT tracks,



and in projecting tracks to the DIRC and the calorimeter. For low momentum particles
the DCH provides particle identification by measurement of ionization loss (dE/dx), thus
allowing for K'/m separation up to ~ 600 MeV/c. This capability is complementary to that
of the DIRC in the barrel region, while it is the only mean to discriminate between different
particle hypotheses in the extreme backward and forward directions which fall outside of the
geometric acceptance of the DIRC. Finally, the DCH provides real-time information used
in the first level trigger system. The DCH is a 2.80 m long cylinder with an inner radius
of 23.6 cm and an outer radius of 80.9 cm (Fig. 3.7). Given the asymmetry of the beam
energies, the DCH center is displaced by about 37 cm with respect to the interaction point
in the forward direction. The active volume provides charged particle tracking over the polar
angle range —0.92 < cos < 0.96.
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Figure 3.7: Schematic view of the DCH (longitudinal section).

The drift system consists of 7104 hexagonal cells, approximately 1.8 ¢cm wide by 1.2 cm
high, arranged in 10 superlayers of 4 layers each, for a total of 40 concentric layers (Fig. 3.8).
Each cell consists of one sense wire surrounded by six field wires. The sense wires are 20 um
Rh-W gold-plated wires operating nominally in the range 1900-1960 V;

the field wires are 120 um Al wires operating at 340 V. Within a given superlayer, the
sense and field wires are organized with the same orientation. For measuring also the z
coordinate, the superlayers alternate in orientation: first an axial view, then a pair of small
angle stereo views (one with positive, one with negative angle), as indicated in Fig. 3.8.

The layers are housed between a 1 mm beryllium inner wall and a 9 mm carbonfiber outer
wall (corresponding to 0.28% and 1.5% radiation lengths, respectively) both to facilitate the
matching between the SVT and DCH tracks and to minimize the amount of material in front
of the DIRC and the calorimeter. The counting gas is a 80:20 mixture of helium: isobutane,
which again satisfies the requirement of keeping the multiple scattering at minimum. Overall,
the multiple scattering inside the DCH is limited by less than 0.2% radiation lengths of
material.

The drift chamber reconstruction efficiency has been measured on data in selected samples
of multi-track events by exploiting the fact that tracks can be reconstructed independently
in the SVT and the DCH. The absolute drift chamber tracking efficiency is determined as
the fraction of all tracks detected in the SVT which are also reconstructed by the DCH when
they fall within its acceptance. Its dependency on the transverse momentum and polar angle
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Figure 3.8: Schematic layout of the drift cells for the four innermost superlayers. The
numbers on the right side give the stereo angles (mrad) of sense wires in each layer.

is shown in Fig. 3.9 [35]. At the design voltage of 1960V the reconstruction efficiency of the
drift chamber averages 98 4+ 1% for tracks above 200 MeV/c and polar angle 6 > 500 mrad
(29°).

The pr resolution is measured as a function of py in cosmic ray studies:

I — (013 % 0.01)% - pr + (0.45 £ 0.03)%, (3.1)

pbr

where pr is expressed in GeV/c. The first contribution, dominating at high pr, comes from
the curvature error due to finite spatial measurement resolution; the second contribution,
dominating at low momenta, is due to multiple Coulomb scattering. The specific ionization
loss dF /dx for charged particles traversing the drift chamber is derived from the total charge
deposited in each drift cell. The resolution achieved to date is typically about 7.5% (as shown
in Fig. 3.10 for e* from Bhabha scattering). A 3¢ separation between kaons and pions can
be achieved up to momenta of about 700 MeV/c [44].
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Figure 3.9: Track reconstruction efficiency in the drift chamber at operating voltages of 1900
V and 1960 V, as a function of transverse momentum (a) and polar angle (b).
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3.2.3 The Cherenkov detector

The particle identification (PID) at low momenta exploits primarily the dE/dx measurements
in the DCH and SVT. However, above the threshold of 700 MeV/¢, the dE/dz information
does not allow to separate pions and kaons. The Detector of Internally Reflected Cherenkov
radiation (DIRC) is employed primarily for the separation of pions and kaons from about 500
MeV/e to the kinematic limit of 4 GeV/c reached in rare B decays like B — ntn~ /KTK ™.
The principle of the DIRC is based on the detection of Cherenkov light generated by a
charged particle in a medium of refractive index n, when its velocity v is greater than ¢/n.
The photons are emitted on a cone of half-angle 8. with respect to the particle direction,
where cosf. = 1/pn, = v/c. Knowing the particle momentum thanks to the SVT and the
DCH, the measurement of 6. allows the mass measurement, so the particle identification,
with the relation:

2 — %p (3.2)

Fig. 3.11 illustrates the principles of light production, transport, and imaging.
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Figure 3.11: Schematics of the DIRC fused silica radiator bar and imaging region.

The radiator material of the DIRC is synthetic fused silica (refraction index n = 1.473)
in the form of 144 long, thin bars with regular rectangular cross section. The bars, which are
17 mm thick, 35 mm wide and 4.9 m long, are arranged in a 12-sided polygonal barrel, each
side being composed of 12 adjacent bars placed into sealed containers called bar boxes. Dry
nitrogen gas flows through each bar box, and humidity levels are measured to monitor that
the bar box to water interface remains sealed. The solid angle subtended by the radiator
bars corresponds to 94% of the azimuth and 83% of the cosine of the polar angle in the
center-of-mass system. The bars serve both as radiators and as light pipes for the portion of
the light trapped in the radiator by total internal reflection. For particles with § ~ 1, some
photons will always lie within the total internal reflection limit, and will be transported to



either one or both ends of the bar, depending on the particle incident angle. To avoid having
to instrument both bar ends with photon detectors, a mirror is placed at the forward end,
perpendicular to the bar axis, to reflect incident photons to the backward (instrumented)
bar end.

Once photons arrive at the instrumented end, most of them emerge into an expansion
region filled with 6000 litres of purified water (n = 1.346), called the stand-off box (see Fig.
3.12). A fused silica wedge at the exit of the bar reflects photons at large angles and thereby
reduces the size of the required detection surface. The photons are detected by an array of
densely packed photo-multiplier tubes (PMTs), each surrounded by reflecting “light catcher”
cones to capture light which would otherwise miss the PMT active area. The PMTs, arranged
in 12 sectors of 896 phototubes each, have a diameter of 29 mm and are placed at a distance
of about 1.2 m from the bar end. The expected Cherenkov light pattern at this surface
is essentially a conic section, whose cone opening-angle is the Cherenkov production angle
modified by refraction at the exit from the fused silica window. By knowing the location
of the PMT that observes a Cherenkov photon and the charged particle direction from the
tracking system, the Cherenkov angle can be determined. In addition, the time taken for the
photon to travel from its point of origin to the PMT is used to effectively suppress hits from
beam-generated background and from other tracks in the same event, and also to resolve
some ambiguities in the association between the PMT hits and the track (for instance, the
forward-backward ambiguity between photons that have or haven’t been reflected by the
mirror at the forward end of the bars).
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Figure 3.12: Schematic view of the DIRC.

The relevant observable to distinguish between signal and background photons is the
difference between the measured and expected photon time, d0t,. It is calculated for each
photon using the track time-of-flight, the measured time of the candidate signal in the PMT
and the photon propagation time within the bar and the water filled standoff box. The
resolution on this quantity, as measured in dimuon events is 1.7 ns, close to the intrinsic 1.5



ns transit time spread of the photoelectrons in the PMTs. Applying the time information
substantially improves the correct matching of photons with tracks and reduces the number
of accelerator induced background hits by approximately a factor 40, as can be seen in
Fig. 3.13 [46]. The reconstruction routine provides a likelihood value for each of the five
stable particle types (e, u, m, K, p) if the track passes through the active volume of the
DIRC. These likelihoods are calculated in an iterative process by maximising the likelihood
value for the entire event while testing different hypotheses for each track. If enough photons
are found, a fit of 6. and the number of observed signal and background photons are calculated
for each track.

.
o
)

Figure 3.13: Display of one ete™ — utu~ event reconstructed in BABAR with two different
time cuts. On the left, all DIRC PMTs that were hit within the £300 ns trigger window are
shown. On the right, only those PMTs that were hit within 8 ns of the expected Cherenkov
photon arrival time are displayed.

The DIRC uses two independent approaches for a calibration of the unknown PMT time
response and the delays introduced by the electronic and the fast control system. The first
one is a conventional pulser calibration: 1 ns duration light pulses are emitted from 12 blue
LEDs (one per sector), with a rate of 2 kHz. A calibration run requires a few minutes and
is taken about three times a week. The second calibration system uses reconstructed tracks
from the collision data (“rolling calibration”). It performs a calibration of the global time
delay, and the time delay sector by sector.

Fig. 3.14 shows the number of photons detected as a function of the polar angle in di-
muons events. It increases from a minimum of about 20 at the center of the barrel (6 ~ 90°) to
well over 50 in the forward and backward directions, corresponding to the fact that the path-
length in the radiator is longer for tracks emitted at large dip angles (therefore the number of
Cherenkov photons produced in the bars is greater) and the fraction of photons trapped by
total internal reflection rises. This feature is very useful in the BABAR environment, where,
due to the boost of the center-of-mass, particles are emitted preferentially in the forward
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Figure 3.14: Number of detected photoelectrons versus track polar angle for reconstructed
di-muon events in data and simulation.

direction. The bump at cosf = 0 is a result of the fact that for tracks at small angles internal
reflection of the Cherenkov photons occurs in both the forward and backward direction. The
small decrease of the number of photons from the backward direction to the forward one
is a consequence of the photon absorption along the bar before reaching the stand-off box
in the backward end. The combination of the single photon Cherenkov angle resolution,
the distribution of the number of detected photons versus polar angle and the polar angle
distribution of charged tracks yields a typical track Cherenkov angle resolution which is
about 2.5 mrad in di-muon events.

The pion-kaon separation power is defined as the difference of the mean Cherenkov angles
for pions and kaons assuming a Gaussian-like distribution, divided by the measured track
Cherenkov angle resolution. As shown in Fig. 3.15, left, the separation between kaons and
pions at 3 GeV/cis about 4.3 0. The efficiency for correctly identifying a charged kaon hitting
a radiator bar and the probability of wrongly identifying a pion as a kaon are determined
using D decays kinematically selected from inclusive D* meson production (Fig. 3.15): the
kaon identification efficiency and pion mis-identification probability are about 96% and 2%,
respectively.

3.2.4 The Electromagnetic Calorimeter

The BABAR electromagnetic calorimeter (EMC) is designed to detect and measure electro-
magnetic showers with high efficiency and very good energy and angular resolution over a
wide energy range between 20 MeV and 9 GeV. This allows the reconstruction of 7% — ~y
and n — 7y decays where the photons can have very low energy, as well as the reconstruction
of Bhabha events and processes like ete™ — ~~, important for luminosity monitoring and
calibration, where the electron and photon energies can be as large as 9 GeV. The EMC also
provides the primary information for electron identification and electron-hadron separation.
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Figure 3.15: Left plot: average difference between the expected value of 8¢ for kaons and
pions, divided by the uncertainty, as a function of momentum. Right plot: efficiency and
misidentification probability for the selection of charged kaons as a function of track momen-
tum.

Energy deposit clusters in the EMC with lateral shape consistent with the expected pat-
tern from an electromagnetic shower are identified as photons when they are not associated
to any charged tracks extrapolated from the SVT and the drift chamber, and as electrons if
they are matched to a charged track and if the ratio between the energy E measured in the
EMC and the momentum p measured by the tracking system is £/p ~ 1.

The EMC contains 6580 CsI crystals doped with T1 (Fig. 3.16). CsI(Tl) has a high light
yield (50,000 photons/ MeV) and a small Moliere radius (3.8 cm), which provide the required
energy and angular resolution; its radiation length of 1.86 cm guarantees complete shower
containment at the BABAR energies.
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Figure 3.16: Longitudinal section of the top half of the EMC. Dimensions are in mm.

Each crystal is a truncated trapezoidal pyramid and ranges from 16 to 17.5 radiation
lengths in thickness. The front faces are typically about 5 cm in each dimension. The crystals
are arranged to form a barrel and a forward endcap giving a 90% solid-angle coverage in
the center-of-mass frame. The barrel has 48 rows of crystals in # and 120 in ¢; the forward



endcap contains 8 rings in 0. Overall the EMC extends from an inner radius of 91 cm to an
outer radius of 136 cm and is displaced asymmetrically with respect to the interaction point.

The crystals are read out by two independent 1 em? PIN photodiodes, glued to their
rear faces, which are connected to low-noise preamplifiers that shape the signal with a short
shaping time (400 ns) so to reduce soft beam-related photon backgrounds.

For the purpose of precise calibration and monitoring, use is made of a neutron activated
fluorocarbon fluid, which produces a radioactive source (*® N) originating a 6.1 MeV photon
peak in each crystal. A light pulser system injecting light into the rear of each crystal is
also used. In addition, signals from data, including 7° decays and ete™ — eTe™ /yy/utpu~
events, provide an energy calibration and resolution determination.

The efficiency of the EMC exceeds 96% for the detection of photons with energy above
20 MeV. The energy resolution is usually parameterized by

OR o

o 1
EEA(G) D7 (3:3)

where o1 = 2.32 +0.30% and oy = 1.85 £ 0.12%, as determined using the above mentioned
sources. The first term in Eq. 3.3 arises from fluctuations in photon statistics and is dominant
for energies below about 2.5 GeV, while the constant term takes into account several effects,
such as fluctuations in shower containment, non-uniformities, calibration uncertainties and
electronic noise.
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Figure 3.17: Energy (left) and angular (right) resolutions measured using a variety of data.
The solid curves represent a fit to the data using Equation 3.3 and 3.4 respectively.

The decays of 7° and 7 candidates in which the two photons have approximately equal
energy are used to infer angular resolution. It varies between about 12 mrad at low energies
and 3 mrad at high energy. The data fit the empirical parameterization:

([ (387+0.07) -
0oy = (—E(Gev> +(0.00i0.04)) d (3.4)



Fig. 3.17 [47] shows the energy and angular resolution measured as a function of the photon
energy.

3.2.5 The Instrumented Flux Return

The Instrumented Flux Return (IFR) is designed to identify muons and neutral hadrons
(primarily K and neutrons). Muons are important for tagging the flavor of neutral B
mesons via semi-leptonic decays, for the reconstruction of vector mesons, like the J/1, and
the study of semi-leptonic and rare decays involving leptons from B and D mesons and 7
leptons. K detection allows for the study of exclusive B decays, in particular CP eigenstates.
The principal requirements for IFR are large solid angle coverage, good efficiency and high
background rejection for muons down to momenta below 1 GeV/c. For neutral hadrons, high
efficiency and good angular resolution are most important. The IFR uses the steel flux return
of the magnet as muon filter and hadron absorber, limiting pion contamination in the muon
identification. Originally single gap resistive plate chambers (RPC) with two-coordinate
readout, operated in limited streamer mode constituted the active part of the detector [48],
with 19 layers in the barrel and 18 in each endcap. The RPC were installed in the gaps of
the finely segmented steel of the six barrel sectors and the two end-doors of the flux return,
as illustrated in Fig. 3.18. The steel segmentation has been optimized on the basis of Monte
Carlo studies of muon penetration and charged and neutral hadron interactions. In addition,
two layers of cylindrical RPCs were installed between the EMC and the magnet cryostat to
detect particles exiting the EMC. RPCs contain a 2 mm Bakelite gap with ~ 8 kV across
it. Ionizing particles which cross the gap create streamers of ions and electrons in the gas
mixture (Argon, freon and isobutane), which in turn creates signals via capacitive coupling
on the strips mounted on each side of the RPC. Soon after the installation (which took place

Barrel
342 RPC
Modules

432 RPC
Modules
End Doors

Figure 3.18: Overview of the IFR Barrel sectors and forward and backward end-doors; the
shape of the RPC modules and the way they are stratified is shown.



in Summer 1999), the efficiency of a significant fraction of the chambers (initially greater
then 90%) has started to deteriorate at a rate of 0.5-1%/month. In order to solve some of the
inefficiency problems, an extensive improvement program has been developed. The forward
endcap was retrofitted with new improved RPCs in 2002, their efficiency has not significatly
decreased since then. In the barrel, the RPCs have been replaced in 2004 and 2006 by 12
layers of limited streamer tube (LST) detectors and 6 layers of brass have been added to
improve hadron absorption. The tubes have performed well since their installation with an
efficiency of all layers at the geometrically expected level of 90%. The pion rejection versus
muon efficiency is shown in Fig. 3.19 for the LSTs and RPCs. The LSTs efficiency is better
than the efficiency that the RPCs had, even during the Runl.
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Figure 3.19: Pion rejection versus muon efficiency for two different momentum ranges (left:
2 <p <4 GeV/e, right 0.5 < p < 2 GeV/e). The LST efficiency (blue) is compared with
the RPC one for different Runs. We see the deterioration of the RPC performance between
2000 (red) and 2005 (green).

3.2.6 Trigger

The BABAR trigger is designed to select a large variety of physics processes (efficiency greater
than 99% for BB events) while keeping the output rate below 400 Hz to satisfy computing
limitations of the offline processing farms (beam induced background rates with at least one
track with p, > 120 MeV/c or at least one EMC cluster with £ > 100 MeV are typically 20
kHz). The trigger accepts also 95 % of continuum hadronic events and more than 90 % of
777 events. It is implemented as a two level hierarchy, the hardware Level 1 (L1) followed
by the software Level 3 (L3).

The L1 trigger has an output rate of the order of 1 kHz to 3 kHz, depending on the
luminosity and background conditions. It is based on charged tracks in the DCH above
a preset transverse momentum, showers in the EMC, and track detected in the IFR. L3



‘ L3 Trigger ‘ b ‘ €B—n0n0 ‘ €B—Tv ‘ €cc ‘ €uds ‘ Err ‘

Combined DCH filters 99.4 89.1 96.6 | 97.1 | 95.4 | 95.5
Combined EMC filters 93.5 95.7 62.3 | 87.4 | 85.6 | 46.3
Combined DCH+EMC filters | >99.9 99.3 98.1 | 99.0 | 97.6 | 97.3
Combined L1+L3 >99.9 99.1 97.8 | 98.9 | 95.8 | 92.0

Table 3.2: L3 trigger efficiency (%) for various physics processes, derived from Monte Carlo
simulation.

operates by refining and augmenting the selection methods used in L1. Based on both
the complete event and L1 trigger information, the L3 software algorithm selects events of
interest allowing them to be transferred to mass storage data for further analysis. It uses an
algorithm based on the drift chamber tracking, which rejects beam-induced charged particle
background produced in the material close to the IP, and a second algorithm based on the
calorimeter clustering. Then, based on the L3 tracks and clusters, a variety of filters perform
event classification and background reduction. Tab. 3.2 shows the L3 and L1+4L3 trigger
efficiency for some relevant physics processes, derived from simulated events.

3.3 Data acquisition and Online system

The BABAR online data acquisition collects the data from all the BABAR subdetectors and the
information of the Levell trigger and merges them into raw data, that are then the object
of reconstruction and production processes. The online data acquisition system also allows
for real-time data quality monitoring during data taking.

The BABAR Online Data Flow system communicates with the front-end electronics of the
detector components through read out modules, which are organized in crates, each including
a master read out module. Each master read out module builds part of the event collecting
data from the other modules of the crate and send them to the nodes of the Online Event
Processing farm (OEP). The Data Flow system also contains a Fast Control and Timing
module, which phases BABAR ans PEP-II timing.

The farm nodes in OEP apply the Level3 trigger algorithm and perform first data quality
monitoring functions; events that pass the Level3 trigger are then sent to a logging manager
process that writes them to disk. The data quality monitoring results, collected from all
OEP nodes, are merged and displayed to the BABAR operators, who check and compare the
data against references constantly during the data taking.

The online computing system includes other additional components, such as the Online
Detector Control, and the Online Run Control. The Detector Control provides environmental
monitoring and control (low and high voltages, temperatures, gas flow etc..together with
some parameter of the collider) and is responsible of the communication between BABAR and
PEP-II. The Run Control allows the BABAR operators to manage the data taking, and
interlocks data acquisition with safe detector conditions.



3.4 Babar and PEP-II backgrounds

The PEP-II high luminosity environment implies different background sources that have to
be monitored since they can affect BABAR data taking and damage the detector, limiting
its lifetime. For this reason, the backgrounds generated by PEP-II have been studied in
detail and the interaction region has been carefully designed. In addition, BABAR background
monitoring provides an important feedback to PEP-II operators allowing for an improvement
of the running conditions.

For these reasons, the background conditions are constantly monitored in BABAR , using
information from all the subdetectors and from a dedicated Radiation Monitoring and Pro-
tection System of the SVT detector, called SVTRAD, that will be briefly described in the
following.

The main sources of background are the following [39]:

e synchrotron radiation, generated by the bending dipoles B1 and final focusing quadrupoles
near the interaction point (see fig. 3.4). This background is not an issue in PEP-II due
to an attentive design of the interaction region.

e beam-gas background, arising from the interaction (bremsstrahlung or Compton scat-
tering) of incoming electrons and positrons with residual gas in the beam pipes. These
interactions reduce the particle energy. The separating dipoles Bl (see fig. 3.4) bend
some of these off-energy or off-angle electrons and positrons to hit the detector along
the horizontal plane. Primary source of radiation damage and particularly worrying
for the SVT, this background is monitored by the SVTRAD system, which, in case of
too high radiation dose, can abort the beams to prevent damages to the detector.

e luminosity background, generated from off-energy outgoing electrons and positrons
from radiative Bhabha reactions, ete™ — ete v, that are bent by the Bl dipole
magnets (see fig. 3.4) and strike against vacuum components within a few meters from
the interaction point. This background source is strictly linear with the luminosity.
For geometrical reasons, it is not seen by the SVT system, but affects the DCH and
DIRC.

e beam-beam background arising from instabilities created by the interactions between
the two beams. These effects are characterized thanks to data collected in single-beam
runs. The occupancies in the different subdetectors are studied in single-beam runs
(when either only positrons or only electrons are circulated in the rings) and during
running with both the beams filled, allowing for a disentanglement of the HER and
LER contribution. In these studies, the effect of the interaction between the two beams
is observed in all the subdetectors.

e trickle injection (see sec. 3.1) background, arising from bad quality or bad orbit of
the beam that has been injected. This background is monitored by the study of the
average radiation dose per injected bunch recorded by the SVTRAD system and by
the number of triggers generated in the DCH and EMC per injection pulse.



As already said, the risks of damage to the detector, and especially to its inner part,
the SVT, depend on the radiation dose near the interaction point, which is measured by
SVTRAD. The SVTRAD system consists of 12 PIN diodes grouped into four modules: two
of them in the forward region (on the east and west side of the beamline respectively ')
and the other two in the backward region (on the east and west side respectively). Each
module contains three diodes, one located in the bending plane of the magnet (and which,
for this reason, receive higher radiation doses) and the other two located respectively above
and below this plane. A schematic overview of the SVTRAD system is shown in figure 3.20.

Forward

Figure 3.20: Schematic overview of the SVTRAD system. The east and west sides correspond
to positive and negative x coordinates respectively

The temperature of each diode is measured by 2 surrounding thermistors. The output
current from a PIN diode, apart from a pedestal current that has to be subtracted, is pro-
portional to the instantaneous radiation dose. In 2002, two diamond detectors of roughly
the same size as the PIN diodes were installed in the backward end of the support tube. For
those diodes the pedestal currents are lower and are almost independent from the tempera-
ture. The reading of the radiation dose by means of sensors in different positions along the
beamline allows to correlate the background with one beam or the other (due to the design
of the interaction point, the east side of the detector is more sensitive to effects from the
positrons low energy ring and the west side is more sensitive to effects from the electrons
high energy ring). The radiation dose evolution over time can be correlated with the status
of the vacuum inside the PEP-II beam pipes, which is constantly monitored along the rings.
The SVTRAD is the only subsystem that can abort the beams. This can happen in two
different ways:

"Where the east and west sides correspond to positive and negative = coordinates respectively, in the
BABAR right-handed coordinate system, defined in sec. 3.2



e Soft aborts: an abort timer starts whenever the radiation rises above 100 mRad/s and
the BABAR shifters and PEP-II operators are notified. After 10 minutes continuously
over threshold, the SVTRAD causes a beam abort.

e Fast aborts: they occur when there are very high and rapid spikes of radiation. Fast
aborts can occur when the radiation dose exceeds 1.25 Rad/s and 5 Rad are integrated
or when the radiation dose exceeds 400 Rad/s (radiation occurrences of this kind can
happen on a time scale of the order of ms).

Other quantities used to monitor the background conditions in BABAR are the occupancies
in each subdetectors and the current in the Drift Chamber wires: when this current is too
high in one of them, the corresponding HV group is ramped off and the voltage of the
other groups is lowered, waiting for the conditions to improve. During this period, the data
acquisition is paused. For each one of the twelve sectors of the DIRC, one phototube is used
as a scaler, i.e. it simply counts the number of hits it receives. The average rate read by the
DIRC scalers is also monitored.

The presence of background can cause high deadtime and hence affect the BABAR data
taking efficiency. The total deadtime is the sum of three components: busy deadtime, full
deadtime and inhibit deadtime, defined as follows:

e The busy deadtime, proportional to the L1 trigger rate. BABAR data acquisition system
structure implies a 2.7 us irreducible deadtime each time there is an output of the L1
trigger (Llaccept). For example, for a L1 trigger rate of 3 kHz, the busy deadtime
would be 0.8%.

e The full deadtime, which occurs when the data acquisition system is unable to keep
up with the rate of L1 trigger output. This contribution to the deadtime is not linear
with the L1 trigger rate (it is negligible under a threshold and can increase rapidly
above it) and is for this reason critical for the data acquisition.

e The inhibit deadtime, due to the Llaccept that are inhibited because of the trickle
injection. The trickle injection procedure allows to refill single bunches inside one
beam. The injected bunches are noisy after the injection and for that reason the data
acquisition from collisions involving these particular bunches and their neighbours is
inhibited for a given interval of time right after injection. The hardware inhibited
Llaccept correspond to a deadtime of 0.055% for each kHz in the L1 trigger rate for
each beam. A further cut is applied at reconstruction level, corresponding, respectively
for the LER and the HER, to 0.19% and 0.28% for each kHz in the L1 trigger rate.

At the end of Run6 (August 2007), the average deadtime was around 1.5%-2%, with a relative
contribution of 50% from busy deadtime, 30% from full deadtime and 20% from inhibit
deadtime. In fig. 3.21, we show the Levell trigger rate as a function of the luminosity, for two
different periods of running, corresponding to a part of the Runb and the Run6 BABAR data
taking (from January until August 2006 and from March until June 2007 respectively).
For the same luminosity, a higher Levell trigger rate, that implies a higher deadtime, is a
symptom of degraded background conditions. The behaviour of the deadtime as a function
of the L1 trigger rate is linear for the Run5 and not for the Run6, sign of worst background
conditions.
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Figure 3.21: Level 1 trigger rate (in Hz) as a function of the luminosity, for two different
periods of data taking: January-August 2006 (during Runb data taking period) and March-
June 2007 (during Run6 data taking period)



Chapter 4

Event reconstruction and background
rejection

The events from B decays we are interested in are selected starting from the full data sample
produced in ete™ collisions at a center-of-mass energy corresponding to the T (4.5) resonance.
Only a fraction of the eTe™ collisions actually produces an T(4S) and hence a pair of B
mesons (ete”™ — Y(4S5) — BB). The other events are of the kind ete™ — u, dd, s5, c¢ (so
called continuum events) or ete™ — Il and e*e™ — 7. In Tab. 4.1 the cross sections for the
main processes are shown [37]. While the QED processes can be easily distinguished from
the ete™ — ¢g looking at the tracks multiplicity and at the visible energy in each event, the
ete”™ — c¢,uu, dd, s§ are more similar to ete™ — bb and normally represent a background to
analyses of B decays. In order to caracterize this kind of events, a fraction of the BABAR data
(tipically 10%) are collected from e*e™ collisions at a center-of-mass energy 40 MeV below
the Y(4S) resonance, where the production of BB meson pairs is kinematically forbidden.
This sample is called off-resonance data and is very useful for background studies.

| Cross section | Value [nb] |

o (bb) 1.05
o(cc) 1.30
o(uu, dd, ss) 2.09
o(tt17) 0.94
o(ptp) 1.16
o(ete™) 40

Table 4.1: Cross section for different processes for ete™ collisions at a center-of-mass energy
Vs = M(Y(4S)). The Bhabha cross section value takes into account the detector acceptance.
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4.1 From raw data to B meson reconstruction: a typi-
cal analysis structure

In this chapter we describe how the B-meson candidates are reconstructed starting from their
decay products, using the information measured by the BABAR experimental apparatus, that
allows to detect charged tracks and neutral energy deposits. For each event, photons and
charged tracks (sec. 4.3) are reconstructed and dedicated “selectors” are applied to determine
if the track is an electron, muon, charged pion or charged kaon. The charged particles, 7° and
K candidates (described in sec.4.4 and sec.4.5 respectively) are combined to reconstruct the
neutral D in the given decay channel (sec. 4.7), and finally the B candidates are reconstructed
(sec 4.8).

All the quantities are measured in the laboratory frame, but often studied in the T(45)
rest frame, also called the center-of-mass (CM) frame. The detector response, reconstruction
and selection procedures are test on Monte Carlo simulated events (MC), generated using
GEANT-based software.

In sec. 4.3, the charged particle reconstruction and identification are described. In sec. 4.4
we describe the 7° reconstruction. The variables and procedures described in these two
first sections are directly taken from BABAR reconstruction software and are used in many
BABAR analyses. The reconstructions of K, neutral D (in different decay modes) and finally
neutral B mesons, described in sec. 4.5 and following, are specific to the analyses presented
in this thesis.

The procedures described in this chapter result in a reconstructed sample of B candidates
(in some cases, more than one candidate per event). For each candidate, several variables
caracterizing the B meson and its decay products (the candidate particles used to reconstruct
the particular B candidate) are stored. In addition, some global information on the event
containing the candidate is also stored. In a typical event in BABAR , many tracks and
neutral clusters are present, and the reconstruction procedure can results in B candidates
from events in which no real B meson actually decayed in the reconstructed channel. These
candidates belong to the category of background events. The sources of background to the
analyses presented in this thesis are of two kinds:

e BB background
These are BB non-signal events that pass the selection. Most of them can be rejected
using selection criteria. Dedicated studies have to be devoted, within the BB back-
ground, to particular channels that could lead to the same final state as the signal.
For these events, also called peaking background events, some crucial variable has a
distribution similar to that of the signal.

e Continuum background
This is defined as ete™ —qq (¢ = u,d,s,c) events that pass the selection. It is a
common fact that in exclusive B decays analyses (like the analyses shown in this thesis)
the main source of background are continuum events. These events are abundant, but
can be discriminated from the signal using several global variables, which are described
in sec. 4.9.



A selection procedure, in which some of the stored variables are requested to fulfill specific
conditions, is applied to the reconstructed sample. Whenever, after the selection, more
than one B candidate is present in a given event, the best one is chosen, according to
some criteria. Finally, a maximum likelihood fit is performed on the selected sample, in
order to distinguish between signal and background events and to extract the quantities of
interest. These last steps, selection, best candidate choice and maximum likelihood fit, will
be described separately for the two analyses in chapters 5 and 6.

4.2 Decay vertex reconstruction and kinematic fits

Since the vertexing procedure is used in the reconstruction of all the particles described
below, it is introduced here once for all. The four-momentum of a charged particle or 7°
is calculated starting from the available information on its momentum or energy, making
an assumption on its mass. Depending on the studied channel, the tracks and clusters are
associated to a decay vertex and used to determine the position and the four-momentum of
the decaying particle. In the vertex determination procedure, also the four-momenta of the
decay products are readjusted, as briefly explained in the following

The decay point of a particle is determined by finding the best intersection of the tracks
using a x? minimization. Since the tracks trajectories are bent by the magnetic field, the
problem is not linear and we make use of an iterative search for local solutions until the x?
between one iteration and the next one is below 0.01. The maximum number of possible
iterations is six.

The x? is minimized by varying the position and four-momentum components of the
decay products. In addition, the energy and momentum conservation is applied by use of
the Lagrange multipliers and the mass of the decaying particle can be fixed to its nominal
mass.

4.3 Charged track identification

Charged tracks are identified using selectors that combine different information from all the
BABAR subdetectors. These selectors provide various working points, ranked in terms of
purity and efficiency.

Most of the tracks produced in an event are pions. The tracks are basically requested
to have at least five hits (either in the SVT or in the DCH), to have a maximum distance
of closest approach in the z — y plane of 1.5 ¢m and their 6 angle has to be in the interval
0.4 rad < 6 < 2.54 rad

In the channels we are interested in, we reconstruct, toghether with pions, also charged
kaons. In sec. 4.3.1 the kaons selection criteria are described. Electrons and muons, described
in sec. 4.3.2 and 4.3.3, are mainly used to reconstruct the second B in the event.

4.3.1 Charged kaon identification

Kaons and pions are produced in B decays in a ratio of about one to seven. The selectors
discriminating between charged kaons and pions make use of the loss of energy, dE/dz, as



measured by the SVT and DCH, and the Cerenkov angle, 6¢, as measured by the DIRC.
Coming from different detectors, these measurements can be considered as uncorrelated and
their combination improves the discriminating power.

As can be seen in Fig. 4.1, the dE/dx variable has a good discriminating power for track
momenta up to ~700 MeV/c for the DCH and up to ~600 MeV /c for the SVT. For momenta
higher than ~700 MeV /¢, the Cerenkov angle 6c information from the DIRC is necessary,
as shown in Fig. 4.2.
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Figure 4.1: Energy loss dE/dz (in arbitrary units), as a function of the track momentum,
in the DCH (left) and in the SVT (right) for different types of particles. The curves are the
theoretical behaviours following the Bethe-Bloch formula.

Both analyses presented here do not use directly the information on dE/dx and 6, but
make use of selection criteria developed in BABAR during the years. In order to identify a
track, a pdf for each particle hypothesis (e, u, 7, p, K) is constructed. These pdf are then
combined to construct a likelihood for the electron hypothesis, L., a likelihood for the kaon
hypothesis, Lk, and so on... The selectors are then defined by different cuts on the ratios
Lr/L,, Lx/L: and they differ in efficiency and purity. The following information is used:

e for track momenta p < 500 MeV /¢, dE/dx measurements from SVT and DCH are
combined;

e for track momenta 500 MeV/c < p < 600 MeV /¢, dE/dx measurement from DCH
only is used;

e for track momenta p > 600 MeV /¢, the 8 measurement from DIRC is used.

In both analyses presented in this thesis, the charged kaon from the K*° decay is requested
to pass the K LHTight selector criteria, which has a average efficiency on kaons of about
85% and an efficiency of reconstructing a pion as a kaon of about 1%. In the ADS analysis,
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Figure 4.2: Cerenkov angle ¢, as a function of the track momentum, for samples of identified
kaons (left) and pions (right). The curves describe the typical functional behaviours for
different charged particles.

for the charged kaons produced in the neutral D decays, we use the K LH Loose selector,
which has a average efficiency on kaons of about 90% and an efficiency of reconstructing a
pion as a kaon of about 2%. The efficiency of reconstructing electrons, muons or protons as
kaons are normally lower than the efficiency of reconstructing a pion as a kaon, for both the
selectors. In Fig. 4.3, we show the efficiency using the K LHTight and K LH Loose criteria
for kaons. In Fig. 4.4 we show the probability of reconstructing a pion as a kaon, for the
two selectors. The efficiency of the selectors obtained on data and on simulated events are
in good agreement.
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4.3.2 Electron identification

Electron identification is based on EMC information, since the electrons that reach the
calorimeter produce electromagnetic showers depositing their energy in the crystals.

Also hadrons that reach the EMC interact and start to produce a shower. However an
electromagnetic shower has a symmetric shape around the particle flight direction, while an
hadronic shower has an irregular distribution. In addition, the hadronic interaction length of
the EMC being much larger than the electromagnetic one, the hadrons deposit only part of
their energy in the EMC, while the electrons deposit all their energy. The electron candidates
are identified from energy deposits in a fiducial volume, defined by 0.36 rad < 6 < 2.372 rad.
More details on the electromagnetic showers are given in sec. 4.4, while describing the photon
reconstruction.

4.3.3 Muon identification

The detector dedicated to the muon identification in BABAR is the IFR. In order to associate
the DCH information to each energy deposit in the IFR, all the charged tracks reconstructed
in the DCH are extrapolated to the IFR, taking into account the bending due to the magnetic
field. Only tracks that intersect the layers close to a hit are associated with a charged cluster.

4.4 Reconstruction of 7° mesons

The 7° mesons, used in the ADS analysis (see chapter 5) to reconstruct the neutral D
decaying to K*nTr final state, are reconstructed from pairs of photons detected in the
EMC. Each photon produces an electromagnetic shower in the EMC, distinguishable from
an hadronic shower because of the different shape. In order to select photons the following
condition is required on the lateral energy distribution:

ZiJiS Eﬂ"? .
Eij\ig Ewﬂ"l2 + E1T(2) + EQT(Q)7

LAT < 0.8 where LAT =

where N is the number of crystals touched by the shower, F; the energy of the i-th crystal
(with E; > E;;1), r; the distance between the i-th crystal and the shower axis, as shown in
Fig. 4.5 and ¢ is the average distance between the two most energetic crystals (typically,
ro = 5 cm). The distribution of the LAT variable for reconstructed photons is shown in
Fig. 4.5.

To ensure that the electromagnetic shower was generated by a photon and not by an
electron, photon candidates for which the DCH has detected a charged track pointing to the
direction of the energy deposit in the EMC are rejected.

Any pair of two photons, each one with energy higher that 30 MeV and with a total energy
sum larger than 200 MeV makes a candidate 7%, provided that its invariant mass is in the
interval 110 MeV/c* < m., < 160 MeV (the 7° nominal mass being myo = 135 MeV/c?
8]). The 7° four-momentum is determined from a fit to the two photons, in which the 7°
reconstructed mass is constrained to be equal to the nominal 7 mass (see sec. 4.2).
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Figure 4.5: Graphical representation of the variables caracterizing an energy deposit in the
EMC (left) and LAT distribution for reconstructed photons (right).

4.5 Reconstruction of K¢ mesons

In the Dalitz analysis presented in chapter 6, we reconstruct Ky produced in neutral D
decays to K ™~ final states. The K candidates are reconstructed from pairs of oppositely
charged pions (BR(Kg — 7 7~ ) = (69.2 & 0.05)1072) originating from a common vertex.
The K¢ four-momentum is obtained from its decay products through a fit in which the Kj
reconstructed mass is constrained to be equal to the nominal K g mass (see sec. 4.2).

4.6 Reconstruction of the neutral K* mesons

In both analyses presented in this thesis, for the reasons explained in 2.6, the neutral K*
candidates are reconstructed in the final state K*77F. In the following, unless not specified
otherwise, K* refers to K*°(892).

The charged kaon is required to pass the K L HT'ight selection while no particular require-
ments are asked for the pion. The K* four-momentum is determined by a fit to its decay
products, and we require the fit to have converged (referred to as “P[x?(K*?),¢,, ndof] > 07
in the following, with ndof the number of degrees of freedom).

K*0 candidates are selected using the invariant mass of the K** and the cosine of the
helicity angle of the K*O decay products, cos .. The helicity angle 6z, is defined as the
angle in the K™ rest frame between the direction of flight of a K* decay product with respect
to the direction of flight of the K* in the B rest frame. The K™ has spin 1, therefore the
angular distribution is a function of the helicity angle, % o cos? 0. The distribution
for background events is expected to be flat. It has to be stressed here that the selection of
the K* candidates has an effect on the numerical evaluation of the factor k. The knowledge
of the parameter k is important, as explained in sec. 2.6 and 2.6.2, since it modifies the
relations between the observables we measure and the quantities we want to determine (v,
rs and dg). Thus, it is important that both the ADS and Dalitz analyses apply the same



cuts on the K*Y mass and helicity. To define the optimal selection criteria on the invariant
mass of the K** and on cos 0, we use the statistical significance S/+/S + B, where S and
B are the expected numbers of signal and background events respectively. For the evaluation
of the number of signal events S, we assume rg = 0.3 and Raps ~ r% = 0.09. In Fig. 4.6
we show the distribution of the invariant mass of the K** and on cos 0g-op; for signal and
the variation of the statistical significance as a function of the value of the cuts on the two
variables. The shown distributions has been obtained on one particular channel (the K
mode) studied in the ADS analysis (following a procedure that will be explained in more
detail in sec. 5.2.3), however tests have been made to see that the chosen cuts are suitable for
all the analyzed modes. We apply the following cuts: |mg« — mg-(nominal)| < 48 MeV/c?
and | cos @] > 0.3.
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Figure 4.6: Variation of the statistical significance S/+/S + B (where S and B are the
number of signal and background events respectively) for different values of the cuts on the
invariant mass of the K* and on the cosine of the helicity angle of the K* decay products.
The distribution has been obtained on simulated events and the bin marked with a (red)
box corresponds to the highest significance.

4.7 Reconstruction of the neutral D mesons

In the two analyses presented in this thesis, the neutral D mesons are reconstructed in:



o K77, K*nTr" and K*nTnTn*, for the ADS analysis

The charged kaon is requested to pass the K LH Loose selector (see sec. 4.3.1) in all
the three modes. The neutral D four-momentum is determined from a fit to its decay
products in which the D reconstructed mass is constrained to be equal to the nominal
D° mass. We require this fit to have converged (P[x*(D°)y,ndof] > 0) for the
K*7F and K*777% modes, while for the K*nT7T7* mode the requirement on the x?
probability of the fit is tighter (P[x*(D°)yte, ndof] > 0.001), because of the presence
of abundant combinatorial background.

e K 7~ final state, for the Dalitz analysis
The neutral D is reconstructed from K¢ candidates and a couple of oppositely charged
pions. The neutral D four-momentum is determined from a fit to its decay products
in which the D reconstructed mass is constrained to be equal to the nominal D° mass,
we require this fit to have converged (P[x*(D°)y, ndof] > 0).

The D candidate invariant mass distributions, for all the four decays analyzed in this
thesis, are shown in fig 4.7 and the corresponding resolutions are listed in Tab. 4.2. These
results are obtained on dedicated samples of simulated signal events.
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Figure 4.7: D° mass distribution for B® — D°K*® MC generated signal events with D°
decaying to K,ntm~ (up left), K*nT (up right), K*7F7% (down left), KE*nFTrFa* (down
right).



Kerrm | Km | Knrn® | Knnm
TM,0 [MeV/c?] 6.0 7.2 | 13.5 5.7

Table 4.2: Mpo distribution resolutions for the different decay modes analyzed in this thesis.

4.8 Reconstruction of the neutral B mesons

The neutral B meson is reconstructed from a (mass constrained) D and a K*. A kinematic
fit, in which the D and the K* are constrained to originate from the interaction point
(beamspot constraint), is applied to the B. In the beamspot constrained fit, the error on the
determination of the interaction point, which is about 10 um in y, 200 gum in z and 8 mm
in z, is taken into account.

4.8.1 The mgs and AFE variables

The B mesons are caracterized by two almost independent kinematic variables: the beam-
energy substituted mass

mes = \/(E/2+ 50 - b)*/ B — pi? (4.1)
and the energy difference
AE = Ef — Ej/2, (4.2)

where E and p are the energy and the momentum respectively, the subscripts B and 0 refer to
the candidate B and to the ete™ system respectively and the asterisk denotes the ete™ CM
frame. The two variables are not correlated, as can be seen in Fig. 4.8, where a distribution
of mgg as a function of AF is shown on signal MC events and on off-resonance data.
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Figure 4.8: Distribution of mgg as a function of AE on B® — D°K*Y MC generated signal
events (left) and on off-resonance events (right). The D® mesons are reconstructed in K7
final state.

A typical mgg distribution for MC signal events, as shown in Fig. 4.9, is described by a
Gaussian distribution centered at the B mass value. The width of the mgg distribution does



not depend on the reconstructed channel. Indeed, if we look at the simplified expression in
the center-of-mass frame (mpgs 2 = E3? — p}?), we can see that :

E* *
Ams o 1220 Py +1.22- gy
mgs mpgs
and the contribution coming from the B momentum resolution is suppressed by the factor
]%]2 ~ |22 |%. The mpg resolution only depends on the error on the energy of the beams,
which is known with a very high precision. The mpgg distribution is usually fitted with a

Gaussian with a typical resolution is 2.6 MeV/c?.
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Figure 4.9: Distribution of mgg on B® — DYK*? MC generated signal events. The D meson
is reconstructed into K*7¥ final state.

Continuum and BB background events have a different mpgg distribution. A typical
distribution for continuum events, obtained on off-resonance data, is shown in Fig. 4.10.
Similar distributions are obtained for BB background events.

This distribution is normally fitted using an Argus function A(x), defined as follows:

Alw) = 1= (o TS, (4.3)

where the xy parameter represents the maximum allowed value for the variable x described
by A(z) and ¢ accounts for the shape of the distribution.

On the other hand, the AFE distribution is centered at zero for signal events and its
resolution depends on the reconstructed channel through E%. The AE distributions, for all
the decays analyzed in this thesis, are shown in fig 4.11. These distributions are fitted with
a Gaussian and the corresponding resolutions are listed in Tab. 4.3.

A typical AFE distribution for continuum background, obtained on off-resonance events,
is shown in Fig. 4.12. AF distributions are usually fitted with a polynomial function. Similar
distributions are obtained for BB background events.
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Figure 4.10: Distribution of mpgg for off-resonance continuum events.
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4.8.2 Best candidate choice

If more than one B candidate is reconstructed in the same event (the fraction of events
in which this happens is of the order of 1%), we choose the one with smallest (Mpo —
Mpominaly /g(Mpo)? (where Mpg™m#! is the nominal D° mass). In case of two B candidates
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Table 4.3: AFE distribution resolutions for the different decay modes analyzed in this thesis.
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Figure 4.12: Distribution of AE for off-resonance continuum events.

reconstructed from the same D meson, we choose the one that has the largest absolute value
of the cosine of the K** helicity angle, in the Dalitz analysis, and the one with smallest
absolute value of AF for the ADS analysis.

4.9 Event shape variables

Since eTe™ collide at /s = M(Y(45)), the T(4S) resonance is produced almost at rest.
Given the mass of the Y(45), Myusy = 10.58 GeV/c?, and the mass of the B, Mp = 5.279
GeV/c?, the B mesons have a very low momentum (of the order of 330 MeV/c) in the
CM frame. On the other hand, g pairs are produced with large momenta because the
quark q is lighter than the quark b; the two quarks fly in opposite directions and hadronize
independently. For this reason, qq events have a jet-like spatial shape, different from the
spherically distributed shape of BB events.

This shape difference is reflected in several variables that can be used to distinguish
continuum events from BB ones. These variables contain global information on the event
shape and normally use all the tracks and energy clusters in the event, not only the ones used
to reconstruct the B candidates. The variables used in the analysis presented in this thesis
are (other variables have been tried, but are not used because they don’t give significant
gain in sensitivity):

o | cos(Oypnrust)|, the absolute value of the cosine of the angle between the B direction
and the rest of the event thrust axis (where the thrust axis is defined as the direction
that maximizes the sum of the longitudinal momenta of all the particles), in the eTe™~



center-of-mass frame. Since continuum events have a jet-like topology, the | cos(@ust)|
distribution is peaked at 1, while for BB events (that are spherically distributed in the
space) it is uniform.

e Legendre Moments, Ly and Lo, defined as follows:

roe
LlO = sza

roe

Ly, = sz (3cos?(0;) — 1),

where p; and 6; are the momentum and the polar angle of the particle 7, in the eTe™
center-of-mass frame. The index ¢ runs on all the charged tracks and neutrals coming
from the rest of the events (i.e. that do not belong to the reconstructed B).

e |At|, the absolute value of the proper time interval between the two B decays. This is
calculated from the measured separation, Az, between the decay points of the recon-
structed B (Byee) and the other B (Byy,) along the beam direction. The By decay
point is the common vertex of the two B decay products. The B, decay point is
obtained using tracks which do not belong to B, and imposing constraints from the
beam energy and the beam-spot location on the B,.. momentum and decay point. For
events in which the B has been correctly reconstructed, the |At| distribution is the
convolution of a decreasing exponential function (with B lifetime 75) with the resolu-
tion on Az from the detector reconstruction. The distribution is then wider than in
the case of continuum events, in which just the resolution effect is observed.

These variables can be either used separately or, as it is often done, can be combined in
a Fisher discriminant.

The Fisher discriminant [53] is a technique allowing to discriminate between two classes
of events. Starting from a set of discriminating variables, an iterative procedure (training)
computes the linear combination of these variables that maximizes the separation between
the two classes. We consider a sample of n,,, variables xj, their mean values T, their mean
values when considering only the signal or only the background samples Tg(p), and the
total covariance matrix C' of these variables. The covariance matrix can be decomposed into
the sum of a within-class matrix (I¥') and a between-class matrix (B). They respectively
describe the dispersion of events relative to the means of their own class, and relative to the
overall sample means:

Wi = E: (Tuk — Tur)(Tug — Tug)
U=5,B

1

Bkl:2

Z (Tuk — Tr) (Tug — T0)

U=S,B

The Fisher coefficients, F}, are then given by:

Fk N5+N ZWM xSl_-rBl)



where Ng ) are the number of signal (background) events in the sample. The Fisher dis-
criminant y () for event 7 is given by
k=1

where the offset Fy centers the sample mean 7 of all Ng + Np events at zero.



Chapter 5

ADS analysis of B — DVK* decay
channel

In this chapter we report on the study of B® — [D°/D°| K** decays through the ADS method,
performed on 433 fb~! (444x10% BB pairs) of data collected with the BABAR detector,
corresponding to the full data sample collected by BABAR at the Y(4S) center of mass
energy.

The reconstructed D final states (see Fig. 5.1) are f = K™n, f = K7 7% and f =
Kto—ntn—.

As already presented in sec. 2.2.2, the ADS method aims at bypassing the problem of
the magnitude difference between the amplitudes A(B° — D°K*?) and A(B° — D°K*%) by
considering decays of the neutral B meson to final states that can be reached in two ways:
either through a favoured B decay (B° — D°K*?) followed by a doubly Cabibbo suppressed
DO decay (D° — f), or through a suppressed B decay (B° — D°K*°) followed by a favoured
(not Cabibbo suppressed) D decay (D° — f).

As shown in Fig. 5.1, there are two classes of events, which can be distinguished experi-
mentally because of the sign of the electric charge of the two kaons in the final state. Either
the two kaons have opposite electric charge (these events will be denoted as “opposite sign”
in the following), or same electric charge (these events will be denoted as “same sign” in the
following).

The measured observables are R 4pg, which is the ratio between the opposite sign and
same sign events, and A 4pg, defined as follows:

['(B° — fK*) +T(B° — fK*°)

Baps = 10 = FK0) 1 (B0 = JR) (5:1)
P(B° — fK*) — F(BO — FK*)

Aaps = N3 = K 1 T(BY = [K0) (5.2)

In our analysis, as in other ADS studies, the A pg is not measured, as explained in
sec. 2.2.2.
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OPPOSITE SIGN MODE

favored (b — c) suppressed (o< A?)
B - D'K* ——» D' —f ~—__ BY — [K~ 7] po[ KT g0
same
suppressed (b — u) favored (o 1) final state
BY — DVK* —— DO f BY — [K= 7| po[ K7™ | g0

SAME SIGN MODE

favored (b — ¢) favored (o< 1)
B’ — D'K* ——> DO_>f \ BO_>[K+7T7]DO[K+7T7]K*O
same
suppressed (b — u) suppressed (oc A2) _ final state
B & DO —0m7— DO f B — [K+7T_]D0[K+’/T_]K*o

Figure 5.1: Scheme for the ADS method: B° mesons decaying to the same final state,
through two different decay chains, for “opposite sign” events and for “same sign” events.
The scheme is shown for the D final state f = Kt7~

5.1 Analysis overview: ADS method at work

5.1.1 Neutral D decays into two-body final states (D’ — K*7 ™)

For a DY decay to a two-body final state f (for example f = KT7~) we can write:
A(D® — f) = rp|A(D® — f)le” (5.3)

where 0p is the relative strong phase between D° — f and D — f decay amplitudes, and
rp is the ratio between the absolute values of the two amplitudes, defined as:

AP — f)
[A(D — f)]
The measured value of % for the D° — K*7~ mode, is r% = (3.76 = 0.09) x 1073 [8]. As

shown in sec. 2.2.2 and 2.6.1, the following relations can be obtained:

(B = [f]pK**) + T(B° — [f]pK*)
Raps = F(BOH[?]DK*O)_FF(BO_)[f]DK*O) (5.5)

= 1} + 718+ 2rgkrp cosycos(ds + dp)

_ T(B° = [f]pK*) = T(B° = [f]pK™)
Aaps = BB S ]k + T(BY = [JIoK™) (5:6)

= 2krgrpsinysin(ds + dp)/Raps

D (54)




The factor cos~ycos(ds + dp) can vary in the range [—1, 1], which implies that R4ps can
vary in the range [r% + r3 — 2krgrp,r% + 7% + 2krgrp]. Taking into account the error on
rp, the range of variation of RET ¢ as a function of rg is shown in Fig. 5.2.
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Figure 5.2: Ranges of variation of R for different values of 7.

Eventually, the strong phase 6p can be measured in quantum correlated DD decays by
CLEO-c.

5.1.2 Neutral D decays to multi-body final states (D’ — KTn 7,
DY — Ktr—ntr)

We now consider the multi-body final states f = K*7 7’ (f = K~at7%) and f = K*n 7 nt
(f = K—ntatr™). Since we are dealing with a three (or four) body D° decay, the decay
amplitude is a function of the point represented by the DY decay final state in the 3-body
(4-body) phase space. The amplitude for the D® — Knr® decay will be written as a func-
tion of m%, and m7 o and for the amplitude of D° — Kmnr the Cabibbo-Maksymowicz
variables [54] can be used: m3., m2_, O-,—, O+.+ and ¢. These variables are defined as
follows:

e m?, is the squared invariant mass of the couple of particles a and b.

e 0, is the angle between the momentum of the particle a in the rest frame of the ab
system and the momentum of the ab system in the D rest frame.

o for D' — Knnrm decays, ¢ is the angle between the K T T and the 77 decay planes.

More explicitly, if the considered D final state is f = KTn 7% or KTn~nt7~, then m%_ =
M3y —y Mo = Mies o, M2 = M2, _, Ogn = Oin+, Onn = 0—n— and ¢ is the angle
between the K 7" decay plane and the 7~ 7~ decay plane in the rest frame of the D meson.
On the other hand, if the D considered final state is f, then m%, = m2%__,, m% o = m%_ o,
m2_ =m2__,, Ogr =0k, Opr = O,+,+ and ¢ is the angle between the K~7~ decay plane
and the 77" decay plane in the rest frame of the D meson.

The following definitions are used, where m indicates the generic point in the Dalitz plane

(m = Mg, Mmgo for the D — Kan® decay and m = m3%,,m2_, O, Onr, @):



Bs = BR(B" — D°K*%) (5.7)

Bp = BR(D" — ) (5.8)

Ap(m)e®™ = A(D° — f) = A(D" — f) (5.9)

Ap(m)e®™ = A(D° — ) = A(D° — f) (5.10)
; . .A(BO N DOK*O)

raei(1H9s) — B = DK (5.11)
B [ | Ap|?dm

=\ T (5.12)

Equation 5.9 is a formulation of the C'P conservation in D decays and more specifically we
can write:

A(D" — K* (p1)r (pa)n(ps)) = A(D® — K~ (ph)7* (o) w°(9})) (5.13)
or, for the Kmmm mode,

A(D® — K*(p)r (p2)r (pa)a* (pa) = A(D® — K~ (h)n (0h)n (0w~ (pl)  (5.14)

where the primed 4-momenta have the spatial components with opposite sign and therefore
pi + p;|* = [P} + P
In the following, we calculate R ps and Aspg in case of multibody D decays. The

branching fractions have to be expressed as integrals over the Dalitz plane:

BR(B® — fK**) = Bg / Irge? 99 A (m) e ™) 4 AD(m)ei5(m)\2dm = (5.15)

= Bp /HTS.ZD‘? + | Ap|* + 2rs ApAp cos(y + b + 6 — §)]dm =
s
Bp
= BgpBp - [ri + 1%+ 2rsrp(C cosy — Ssiny)]

= BpBp:[rz+71h+ /.ADXD(COSACOS’)/ —sin Asiny)dm] =

where A = 6g + 6 — ¢ and

1 —

C= Boro /Ap(m)AD(m) cos Adm , (5.16)
1 — :

S = Boro /Ap(m)AD(m) sin Adm . (5.17)

The terms Bprp can be written as:

[ Ap(m)[*dm _

Borp :/|7\D(m)]2dm-$”7tD(m)|2dm — \// ]./Tlp(m)Pdm-/\AD(m)Pdm (5.18)




and C and S as:

O = f_AD(m)leD(m) cos Adm 519
\/f |AD(m)|idm - [ |Ap(m)|2dm
[ Ap(m)Ap(m)sin Adm 520

- \/f | Ap(m)[2dm - [ |Ap(m)|2dm ‘

The expression of the branching ratios for opposite sign events, that enter in the definition
of the numerator of Rspg, is the following:

BR(B® — fK*) = BgBp(rg+r7,

+ 2rgrp(Ccosy — Ssin%y)); (5.21)
BR(BY — fK*°) = BgBp(ri +r%

+ 2rgrp(Ccosy+ Ssinvy)). (5.22)

(5.23)

The expression of the branching ratios of same sign events, that enter in the definition of
the denominator of R4pg, making the same approximation as in sec. 2.2.2, is the following

BR(B® — fK*) = BgBp(1+rir3

+ 2rgrp(Ccosy — Ssinvy)) ~ BgBp (5.24)
BR(B — fK*0) = BgBp(l+rirs

+ 2rgrp(Ccosy + Ssinvy)) ~ BgBp (5.25)

(5.26)
where the quantities C' and S are the same for the B? and the B if no C'P violation is
assumed in D decays since the C'P transformation of the D decay amplitudes does not change
the Dalitz variables my, and mg o (see Eq. 5.14 and related comment). The expression for

Raps and Ayps are the following:

Raps = 1% +1h+2rsrpCcosy (5.27)
Aaps = 2rsrpSsiny/Raps. (5.28)

We now consider the expression for C' in eq. 5.19. The following inequality holds:
/ dmdm’[Ap(m)*Ap(m')’ — Ap(m)Ap(m)Ap(m’)Ap(m')] =
_ % [ dmdm(Ap(m) (') — Ap(m' Y Ap(m))? > 0. (5.29)
from which it follows that:

/yAD\de - / Ap|2dm — [/AD(m)A—D(m)dm]Z >0,



and since the following relations are valid:
—/ADZde < /AD./TlD cosAdm < /ADZde;
—/ADZde < /ADZD sin Adm < /ADZde; (5.30)

hence the following inequalities hold:

_\// ]ﬁp]Qdm-/MD!Qdm < /ADﬁD cos Adm < \// ]./TlDPdm-/]ADPdm;

_\// \ZD\Qdm~/\«4D’2dm < /,AD,,TlD sin Adm < \// ]./TlD\Qdm-/]ADPdm;

which imply

-1< C <1, (5.31)
1< § <1, (5.32)
and therefore:
re 41y — 2rsrpcosy < Raps < 1§ + 13, + 2rsrp cos . (5.33)
—QTSTD sin V/RADS S AADS S 27‘5’7“1) sin V/RADS‘ (534)

The experimental values for the ratios r%, integrated over the whole Dalitz plane, for the
Krr® and K7rm modes, are [8]:

rH(Kar®) = (2.18 4 0.10)1073, (5.35)
r5(Knrm) = (3.23 4+ 0.24)107°. (5.36)
(5.37)

Taking into account the variation of C' and S in their full range ([—1, 1]) and the experimental
error on rp, we give in Fig. 5.3 the variation for Rp% and REZT™ as a function of rg.

It can be seen that the C' and S parameters can be determined from a measurements of
the Dalitz structure of the allowed and suppressed multibody D decays. Singling out the B
decay strong phase, one can indeed write:

C = P.cosdg — P,sindg (5.38)
S = P.sindg + P,cosdg

where

P - fADZECOS(S(m) — 8(m))dm (5.30)
VI [ Ap|2dm - [|Ap[2dm
[ ApApsin(6(m) — §(m))dm

VI Ap|2dm - [ |Ap|2dm
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Figure 5.3: Ranges of variation of REFT and REpT for different values of 7.

which can be derived knowing the Dalitz structure.

An alternative formalism, formally identical to the one presented in [33] (that we use
for describing B — DK™ decays, see sec. 2.6.1), is obtained starting from the following
definition:

[ ApApei@m=m) g,
I Ap[2dm - [ | Ap|2dm

kqe™®s (5.40)

The quantities introduced in eq. 5.39 are simply related to the ones introduced in eq. 5.40
by:

P, = kpcos 0%;

P, = kpsin 6%;
and consequently:

C = kpcos(65 + ds);
S = ]CD sin((;g + 55)

The use of the definitions in eq. 5.40, that makes the expressions for multi-body decay
formally identical to the ones for two-body decays (except for the kp parameter), is adopted
by the CLEO-c collaboration, where these parameters can be measured exploiting the quan-
tum correlation in DD decays. The general expression for R4ps and A4pg in this formalism
are the following:

Raps = 12415+ 2rerpkkp cosycos(65 + ds); (5.41)
AADS = QTSTD/{J/{ZD sinvsin(ég + 55)/RADS§ (542)

where kp and 6% result from integrals over the D Dalitz plane and depend on the D decay
mode. The case of a two-body decay is obtained with kp — 1, 65 — dp.



5.1.3 Combination of the three channels

Recently, a measurement of the relative strong phase dp has been perfomed by the CLEO-c
collaboration [55] and preliminary results for the coherence factor kp and the strong phase
6L for the Knrm channel have been presented at the conference on ”Flavour physics and
CP violation” in Taipei, Taiwan (May 2008).

As a general fact, the knowledge of the strong phase for the K7 mode and of kp and
6L for Knr® and K7rm would reduce the unknowns of the system to v, rg and dg. Also
measuring only the ratios R4pg in the three channels would then allow to close the system,
since there would be three unknowns and three measured observables.

As a matter of fact, the preliminary results presented by CLEO-c on the K77mm mode
seem to prefer a value for k5™ significantly smaller than unity. This would reduce the
sensitivity to the phases, but improve the sensitivity to rg.

5.2 Selection and background caracterization

The selection criteria are chosen, separately for each channel, in order to maximize the
sensitivity to Raps. Assuming rg = 0.3 and rp < rg the ratios Raps are expected to
be roughly of the order of 0.1 (see Fig. 5.2 and 5.3). We then expect to have ten times
more “same sign” than “opposite sign” events and the error on the R 4pg ratios will mainly
depend on the error on the latter. Moreover, as it will be shown in the following, we expect
more background in the opposite sign sample than in the same sign. For these reasons,
the selection criteria have been optimized in order to minimize the error on the number of
“opposite sign” signal events, which leads the sensitivity to Rapgs.

The selection studies are based on MC generated events for the signal modes and for
the different backgrounds and, whenever possible, directly on data. The agreement of the
relevant variables distribution between data and MC has also been checked. To allow us to
properly reweight the events according to different Dalitz structures, the same and opposite
sign signal Monte Carlo samples are generated with the neutral D decaying isotropically
(phase space), without assuming any resonance model. The MC samples for the background
have been instead generated according to the measured Dalitz model for the favored D°
decay. The data and MC samples used for the ADS analysis are summarized in Tab. 5.1.

5.2.1 Preselection criteria

The first step of the analysis consists of some loose preselection cuts, described below. The
main reason for this step is to reduce the size of the initial sample without losing almost
any signal efficiency. The optimization of the final selection cuts is made on events that pass
these first loose cuts.

The described preselection criteria are summarized below:

e mps € [5.2,5.3] GeV/c?;
e |AFE| < 0.06GeV (~ 4.8¢ for Km and Knrw and ~ 4.40 for Knr°);
e 0.105 GeV/c? < Mo < 0.155 GeV /c?;



‘ Sample H # of events ‘ cross section - BR ‘ Leg ‘
On-resonance data - - 423fh 1
Off-resonance data - - 41.3f17 1
Same Sign signal (K) 60 k 1.68 fb 36ab~"
Opposite Sign signal (K7) 60 k 0.27 b 400ab~!
Same Sign signal (K7n°) 60 k 5.95 fb 10ab™"
Opposite Sign signal (K770) 60 k 0.95 fb 111ab~"
Same Sign signal (Kmmm) 60 k 3.40 tb 18ab ™!
Opposite Sign signal (Km7) 60 k 0.54 fb 200ab "
Generic BYB~ 685 M 0.55 nb 12451
Generic B'BY 686 M 0.55 nb 124771
Generic ce 1100 M 1.30 nb 837fb !
Generic uds 906 M 2.09 nb 433fb~ T

Table 5.1: Data and MC samples used in the analysis in terms of number of events and of
equivalent integrated luminosity (L.,). The cross section of each process is also shown. The
value of the branching fraction (BR) for the signal modes are estimated assuming rg = 0.3.

K(D") KLHLoose;

K(K*°) KLHVeryLoose;

| Mpo — Mpgminal| < 0.036(K ), 0.068(K7r), 0.029(Krrm) GeV/c? (50);

| Mo — M7ominal| < 0.065 GeV /c2;

5.2.2 Continuum background caracterization and Fisher discrim-
inant

As already discussed in sec. 4.9, in the center of mass frame, continuum events have a
jet-like spatial distribution, while BB events are spherically distributed. Several variables
account for this difference, allowing for a discrimination of the two kinds of events. In this
analysis, the variables | cos(@inrust)|, At, Lo and Lis, defined in sec. 4.9, are combined into a
linear combination, the Fisher discriminant (introduced in sec. 4.9), that is used in the final
maximum likelihood fit. The expression for the Fisher is:

Fisher = 0.9402 — 0.1706] cos(O4prust) + 0.3067L1o — 1.2224 L5 + 0.2730|At|.

The distributions of the four variables of interest, for simulated signal events, off-resonance
data and simulated BB background events, are shown in Fig. 5.5. In addition to the prese-
lection, the following cuts are also applied:

e mps > 5.27 GeV/c?.

e |AFE| < 0.025 GeV/c for K7 and |AE| < 0.02 GeV/c for Krr® and Knrr.



|Mpo — M7g™| < 20y, GeV/c® for each channel.

| Mo — Mpominat| < 0.048 GeV/c2.

| cos 0K | > 0.29.
e Prob(x%,) > 0.001, Prob(x%,) > 0.001, Prob(x%.,) > 0.001.
e 0.120GeV/c? < |Myo — 0.135| < 0.143 GeV/c?

These additional selection criteria have been applied in order to perform the continuum
rejection studies on a sample similar to the final selected sample of this analysis. It should
be stressed that the final cuts on the above listed variables are different and result from an
optimization procedure as will be explained in sec. 5.2.3. The Fisher discriminant is used
for the final cut optimization and for this reason we introduce it here.

Fig. 5.6 shows the agreement between off-resonance and simulated events for the different
variables used for building the Fisher discriminant. The agreement is satisfactory and for this
reason the simulated events have been used to train the Fisher discriminant (see sec. 4.9).
In Fig. 5.7, the top plots show the agreement between off-resonance and simulated events
for the Fisher distribution and the distributions for simulated signal and continuum events.
In Fig. 5.7 the bottom plot shows the efficiency on the signal as a function of the efficiency
on the background, for different cuts on the Fisher discriminant. The Fisher distributions
shown in Fig. 5.7 are obtained using the three D decay modes together. Tests performed
building the Fisher discriminant using the three D modes separately give compatible results.
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5.2.3 Selection cut optimization

An optimization procedure has been used to find the optimal cuts for the following variables:
AE., Mpo, probability of the x? of the vertex fit for B, D and K*, particle identification
of the kaons produced in the K* and D decays, M,o and the 7 momentum in the ete~
center of mass frame p%M (the latter two variables only refer to the K7n® decay mode). The
optimization procedure consists in finding the cuts that maximize the variable S/v/S + B,
where S and B are the numbers of selected events in simulated signal and background
samples respectively. The choice of the cuts on Mg-o and cos 05% is common to the two
analyses presented in this thesis and was described in sec. 4.6.

The optimization is made using only opposite sign events. This choice is motivated by
the fact that we want to suppress the background mainly in the opposite sign sample, which
drives the error on R4pg and hence the sensitivity to rs. We then apply the same cuts to all
the events because we are interested in having the same efficiency on same sign and opposite
sign samples.

Since the extraction of signal and background is performed through a maximum likelihood
fit to the variables mps and Fisher, the quantities S/v/S + B and S/v/B are evaluated for
events that satisfy the additional criteria mgg > 5.27 GeV/ c® and Fisher>0. The variation
of S/\/S+ B and S/v/B, for different choices of the cuts on Mpo, AE and Mo are shown
in Figs. 5.8-5.11.

The variation of S/v/S + B for different cuts on the kaon particle identification, on the
probability of the x? of the vertex fit for B, D and K** and on the momentum of the 7°
in the center of mass frame (for the K77" mode) are shown in Tabs. 5.2 and 5.3. From
these studies we decided to use the additional selection criteria: Prob x%,, > 0.001 and
IpSM| > 0.3 GeV/e.

The calculation of S/v/S + B depends on the assumed branching fraction for the signal, i.e.
what assumption is made on rg. This dependence is not present when the quantity S/ VB
is maximized instead. It has been checked that very similar results are obtained when using

S/v/S+ B or S/v/B (as shown in Fig. 5.8-5.10). In the following, S/v/S + B is used.
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Cut | S/V/§+ B(Kr) | S/V/§+ B(Krr®) | S/v/S+ B(Knrr) |

Default value 1.038 0.517 0.459

Prob x%,,. > 0.001 1.071 0.527 0.476
Prob x5y, > 0.001 1.037 0.516 0.467
Prob x%.y,, > 0.001 1.03 0.515 0.461

K from K*¥ PID KLHTight 1.020 0.510 0.455
K from D° PID KLHTight 1.017 0.516 0.458

Table 5.2: [selection cuts optimization]. Values of S/+/S + B for different cuts for the three
D decay modes, obtained using opposite sign events. The first row corresponds to the
optimized selection cuts for |AE|, Mpo, Mg+, cosf5:0 and Mo (for the K7m°® mode),
with the addition of mgg > 5.27 GeV/c? and Fisher> 0. The value of S/v/S + B in each
row is the consequence of the addition of the indicated cut. We decided to use a cut if its
application gives an improvement on S/v/S + B, with respect to the value quoted in the
first row.

| Cut | S/VS+B |
Default value 0.49
PG > 0.1 GeV/c 0.49
PG > 0.2 GeV/e 0.51
PS> 0.3 GeV/e 0.53
P > 0.4 GeVe 0.52
PS> 0.5 GeV/e 0.51

Table 5.3: [selection cuts optimization]. Values of S/+/S + B for different cuts on on p&M,
obtained using opposite sign K77® decay mode events. The first row corresponds to the
optimized selection cuts on |AE|, Mpo, Mo, cosf5%, and Mo, with the addition of mpg >
5.27 GeV/c? and Fisher> 0. The value of S/v/S + B in each row is the consequence of the
addition of the indicated cut. We decided to use a cut if its application gives an improvement

on S/v/S + B, with respect to the value quoted in the first row.



5.2.4 Studies of peaking background events

A special attention has been put, within the BB background, on possible sources of peaking
background. Peaking background consists of processes that lead to the same final state as
for the reconstructed signal. Indeed the mpgs and Fisher distributions of these events are
rather similar to the ones of the reconstructed signal.

The possible peaking background contributions have been identified from a study of BB
simulated events. The contributing modes are listed in Tab. 5.4, where it is also indicated
for which reconstructed D mode they are a background and if they are reconstructed as
same sign (SameS) or opposite sign (OppS). In order to reconstruct some of the modes
listed in Tab. 5.4 as signal, a misidentification of a 7% as a K= is necessary (marked “wrong
PID” in the table). To precisely evaluate the contribution of all these possible sources
of peaking background, dedicated simulated samples have been generated, the equivalent
luminosity of these samples is shown in Tab. 5.4. The most worrying backgrounds are those
contributing to the opposite sign category: the decay modes B® — D~ [K**K~|x" for the
K7 reconstructed channel, B® — D~ [K**K~|p" [rt7°] for the K77 reconstructed channel,
and B® — D7 [K**K~]af [xtnt7~] for the Knrm reconstructed channel.

‘ B decay mode H background for ‘ category ‘ gen. lumi [ab™!] ‘
B - D7 |[Ktn 7m |K™" K7 mode SameS 1.0
B — DT|[K*K™|r" K7 mode OppS 1.9
B — D|K* K |p*t[rta" Krr® mode OppS 0.8
BY — D7 [KK ]a] [xtn 7] Krnmm mode OppS 1.1
BY — D" (DY — Kmr) K7 mode (wrong PID) SameS 6.8
BY — D" (D° — Krr") Knr® mode (wrong PID) | SameS 1.9
BY — D" (D° — Krrm) Knrm mode (wrong PID) | SameS 3.4
B — D*~ D'z~ |+ (D" — K) K7 mode (wrong PID) SameS 8.0
BY — D*~ D7~ |+ (D" — KnrY) | Krm® mode (wrong PID) | SameS 2.3
B — D*7 D~ |x* (D — Krrm) | Korm mode (wrong PID) | SameS 4.0

Table 5.4: Equivalent luminosity of dedicated MC generated samples for peaking background
studies and equivalent luminosities (calculated assuming the nominal values for the different
branching fractions).

To suppress the B — D~ [K**K~|n*(or pT, or af) background that could simulate
opposite-sign signal events, we veto all the candidates for which the invariant mass of the
K*® and the K~ from the D is within +6 MeV from the nominal D~ mass (the efficiencies
of these vetoes on signal are ey, = (99.84 £+ 0.01)%, €xrro = (98.89 +0.03)% and €fprr =
(99.97 4+ 0.01)%). The distribution of the invariant mass for signal K7, Knr® and Knnr
events can be seen in Fig. 5.12.

The effect of the cut on the invariant mass of the K** and the K~ from the D° can be
observed in Tab. 5.5, where the number of expected events in the opposite sign mode, for
K7, Krm® and Knrm decay modes is shown. The cut on the invariant mass is very effective
and it has been added to the final selection.
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Figure 5.12: Invariant mass of the K** and the K~ from the D° for K7 (left) and Knr®
(center), Kmmm (right) simulated signal events.

All the possible peaking sources have been studied and a cut on the particle identification
(KLHTight) of the kaon from the K*° has been found useful to reject peaking background
from D°p" modes. A summary of these studies is shown in tb. 5.6.

With the addition, presented in sec. 5.2.3, to the optimized selection cuts, of the cuts on
the particle identification (KLHTight) of the kaon from the K*° and on the invariant mass
of the K** and the K~ from the D° all the possible sources of peaking background give a
negligible contribution, as listed in Tab. 5.7.



D [K'K Ja* | D KK |p* | D [K7K Ja}
Cut (K7 OS) (Knm® OS) (Kmmm OS)
- 3.1£09 3.0£04 0.39 = 0.30

Mo — Mp+| > 6 MeV/c? | <0.07 @ 95% | <0.05 @ 95% | <0.12 @ 95%

Table 5.5: Number of expected peaking background events, in 423 fb~! of on-resonance
data, for the indicated modes. The first row corresponds to the number of events selected

after the cuts on |AE|, | cos08,,], Mpo, Mg+o and |cos 055 |.

| |  D[Knlp” | DUKan%p” | D°[Krmn]p® |
Cut (K SS) (K7m® SS) (Kmrm SS)
- 0.24 +£0.14 0.85+0.61 1.1£0.4
K*Y KLHTight 0.16 &= 0.12 0.43 £0.43 0.6 =0.3
| Cut | (Km OS) | (Kan®0S) | (Kwnm OS) |
- (10 £06) 10 7| (34+£24) 10 ' | (44 £ 1.5) 10 °
K KLATight || (0.6 £ 0.5) 10 % | (L7 £ 1.7) 10" | (24 £ 1.1) 10~ *

Table 5.6: Number of expected peaking background events, in 423 fb~! on-resonance data,
for the indicated modes. The first row corresponds to the number of events selected after

the cuts on |AE|, |cos08,,|, Mpo, Mg+ and |cosf5, |.

| mode | Km SS | Kar’SS | KrrmSS |
B D [Knn]K | <012a9%% - -
BY = DO, < 0.00@95% | (0.6L0.6)10 7| (0.6 £0.6)10 "
BY — D*_[Doﬁ_]ﬂ"' < 0.05 @95% < 0.16 @95% < 0.09 @95%

| mode | Km OS | Kar0S | Kramr OS |
B0 = D00 (1.0 0.6)10 * [ (1.0£0.6)10 * [ (1.0 1.0)10
BY — D* [DO _]7T+ < 0.05 @95% < 0.16 @95% < 0.09 @95%
B" = D [KVK Ja* | <007 @95% - i
B = D [KOK |n+ : < 0.05 Q95% :
B = D KK |p* : - < 0.12 @95%

Table 5.7: Summary of the expected number of events from all the peaking background
categories, after all the selection criteria have been applied, with the addition of the cuts on
the particle identification (KLHTight) of the kaon from the K* and on the invariant mass
of the K*° and the K~ from the D° (see Tab. 5.5).



A further possible source of peaking background comes from charmless event (i.e. events
with no real neutral D) of the kind BY — K** K. For these events, the branching fractions
are not very well known and not all the decay modes are included in the simulated events.
Thus, the possible sources of background from charmless events have been evaluated on data
with a fit to the mpg variable using the Mpo sidebands (i.e. using only events for which
the reconstructed D mass is more than 50 away form the nominal D mass), after all the
selection cuts (with the exception of the cut on Mpo) and after a cut on Fisher > —1.
The resulting mgg distribution has two components, a Gaussian distribution, as for the
signal events (the peaking contribution) and an Argus distribution (defined in eq. 4.3). The
parameters of the Argus function have been left free in the fit on data. The results obtained
in the three samples (K7, Knn® and K7rm) are shown in Fig. 5.13 and summarized in
Tab. 5.8. The number of fitted events have to be rescaled according to the M po range in the
selected sample. The rescaled number of events are given in Tab. 5.8.

All these studies are consistent with the hypothesis of negligible peaking contributions
from charmless events, although in some cases the errors on the number of peaking events
is rather large, considering that we expect order of 10 events in each opposite sign sample.
Under the assumption that the charmless contributions are not sensibly different in the three
D decay mode channels, the number of rescaled events can be combined. In this case, the
contributions from charmless peaking events are found to be compatible with zero with a
precision of +0.5 and 41.2 events for the same sign and opposite sign samples respectively.
The peaking contributions will be assumed to be negligible in the final fit and these precisions
will be used for the evaluation of the systematic uncertainty arising from this assumption.

‘ Kn SS ‘ Kmrm® SS ‘ Knrrm SS ‘ Kr OS ‘ Krr® OS ‘ Knrm OS ‘
Npeak —35+46|054+£149| 3.2+£9.7 |2.7+65 | —31+22 | 0.8£13.8
Niopeak 300+ 17 | 2173+49 | 877+£31 | 3944+ 21 | 5150 £ 75 | 1929 + 46
Npear, Tescaled 0.8+1.2 01+£32 | 05+24 [{0.7+1.6 —6+5 0.1+20
Npeqr, combined 0.5£0.5 0.06 £ 1.21

Table 5.8: Results of a fit to mpgg on 423 fb~! of on resonance data in the Mpo sidebands
(|Mpo — Mpgminal] > 55) for the three modes, K, Knn® and K7, for same and opposite
sign events separately. The number of peaking and non peaking events is shown, together
with the number of peaking events rescaled according to the Mpo range in the selected
sample. Finally, we give the number of peaking events obtained when the results obtained
on the three samples are combined.

5.2.5 Final selection criteria

The final selection cuts are summarized in table 5.9, for the three D decay modes. Some
additional cuts (namely the cut on the particle identification of the charged kaon from the
K* and the cut on mi*%,) have been added to the final selection. Though they do not
improve the statistical significance, they are very effective in rejecting specific background
categories, as it was shown in sec. 5.2.4.
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Figure 5.13: Fit to the mpgg distribution of data events in the Mpo sidebands (|Mpo —
Mpominal] > 55 for same sign (left plot) and opposite sign (right plot) events for the three
modes, K7 (top plots), K7n® (middle plots) and K7 (bottom plots).

‘ Cut H Km ‘ Krn® ‘ Knnw ‘
mps|GeV/c?| 52 < —<5.29 5.2 < —<5.29 52 < —<5.29
[AE|[GeV] < 0.016 (1.30) <0.020 (1.50) < 0.019 (1.50)
| cos 08| < 0.9 < 0.9 < 0.9
K from K* PID KLHTight KLHTight KLHTight
Prob x4y, > 0.001 > 0.001 > 0.001
Prob X9y 1s — — > 0.001
|Mpo — 1.8641][GeV /c?] 0.014(2.00) 0.020(1.50) 0.009(1.60)
Mo — 0.135][GeV /7] - (2.80)0.120 < — < 0.143(1.50) —
IpSM|[GeV/e | — > 0.3 -
| Mo — 0.8961|[GeV /c?] < 0.048 < 0.048 < 0.048
| cos 050, > 0.29 > 0.29 > 0.29
Iminy - — 1.8694|[GeV /c?] > 0.006 > 0.006 -

Table 5.9: Summary of the selection criteria for the three D decay modes.



5.2.6 Selection efficiencies and background composition

The efficiencies on the signal and background events for the three neutral D decay modes
are listed in Tab. 5.10.

Same sign K7

‘ Cut ‘ BYBO ‘ BTB~ ‘ signal ‘ €s1G ‘ uds ‘ cé ‘
Selection 11 29 91 | (13.2+£0.1)% | 142 | 270
mis > 5.27GeV/c? 4 13| 91| (13240.1)% | 17| 46
Fisher > 0. 3 9 79 | (11.5+0.1)% 3 10
Opposite sign K7
| Cut | B°BY | BTB™ | signal | €sia | uds| ¢
Selection 21 271 10| (13.220.1)% | 273 | 1433
mps > 5.27GeV /c2 6 6| 10| (132+£0.1)% | 46| 254
Fisher > 0. 4 5 8| (115£0.)% | 5| 38
Same sign K7’
‘ Cut ‘ BYBO ‘ B*B~ ‘ signal ‘ €sia ‘ uds ‘ cc ‘
Selection 84 99 128 | (5.240.1)% | 1120 | 1540
mgg > 5.27GeV/C2 23 29 127 | (5.2+0.1)% 173 | 230
Fisher > 0. 18 22| 110 | (4.5+0.1)% 3| 10
Opposite sign Krr
| Cut | B°BY | BFB~ | signal | €s1G | uds| ¢
Selection 113 139] 11] (5.220.1)% | 2260 | 5878
mps > 5.27GeV/c? | 27 24| 11| (5.240.1)% | 368 | 942
Fisher > 0. 19 17 9| (45+0.1)% 59 | 194
Same sign Knrmw
‘ Cut ‘ BYBO ‘ B*B~ ‘ signal ‘ €sia ‘ uds ‘ cc ‘
Selection 82 104 90 | (6.5+0.1)% 638 | 1211
mpgs > 5.27G6V/C2 24 35 89 | (6.5+0.1)% 101 | 187
Fisher > 0. 19 29 74| (5.4+0.1)% 10 36
Opposite sign Knnmw
‘ Cut ‘ BB ‘ BTB~ ‘ signal ‘ €s1G ‘ uds ‘ cé ‘
Selection 113 110 8| (6.5+0.1)% | 1250 | 4644
mgg > 5.27GeV/C2 24 16 8| (6.5£0.1)% 231 | 761
Fisher > 0. 19 11 71 (4.5+0.1)% 39 | 143

Table 5.10: Number of expected signal and background events, same and opposite sign, for
the three D modes, K7, K7m® and Krrm. All the numbers of events are rescaled to a 423
fb~! luminosity. For the signal, we also show the efficiencies.



5.2.7 Cross-feed between same sign and opposite sign events

The efficiency of reconstructing a same sign event as an opposite sign one or vice versa (by
exchanging the charged kaon with a charged pion in the final state for the D decay) has been
checked on simulated events. The values are summarized in Tab. 5.11.

| | Cross-feed efficiency (%) |

& 0.035 £ 0.005
L o 0.046 £ 0.006
St 0.019 4 0.004

Table 5.11: Efficiency of reconstructing a same sign event as an opposite sign one or vice
versa for the three D channels, using the default selection.

These efficiencies are small, however we have considered the possibility of vetoing neutral
D candidates for which the invariant mass constructed from the D decay products, exchang-
ing the kaon with a charged pion, is within 18 MeV/c? of the nominal D° mass, as done in
other similar analyses [66, 67]. The cross-feed efficiencies for the three neutral D channels,
after the use of this criterium, as summarized in Tab. 5.12, do not decrease significantly. On
the other hand, the reconstruction efficiencies drop by 1% as a consequence of the veto. For
these reasons, the veto has not been applied. The effects of cross-feed are taken into account
in the systematic uncertainties evaluation.

| | Cross-feed efficiency (%) |

SF 0.014 £ 0.003
e 0.041 + 0.006
& 0.014 £ 0.003

Table 5.12: Efficiency of reconstructing a same sign event as an opposite sign one or vice
versa for the three D channels, after D° veto criterium is applied, as described in the text.

5.2.8 Opposite sign to same sign efficiency ratio for K77’ and
Krmrm mode

In the K77m® and Kmmm decay modes, the efficiencies in selecting the signal is evaluated
using events generated with a flat Dalitz distribution. However the same sign sample is
mainly constituted of b — ¢ transition events with the neutral D decaying through Cabibbo-
allowed mode, while the opposite sign sample is composed of b — ¢ transition events with the
neutral D decaying through doubly-Cabibbo-suppressed Cabibbo mode and b — wu transition
events with the neutral D decaying through Cabibbo-allowed mode (see Fig. 5.1). Due to
the fact that the Cabibbo-allowed and doubly-Cabibbo-suppressed neutral D decays are
kinematically different, and hence have different distributions over the Dalitz plane, the
selection efficiencies in same sign and opposite sign samples could be different.



e K’ decay mode

We reweight the simulated events according to the Dalitz distributions of Cabibbo-
allowed or the one of doubly-Cabibbo-suppressed events, obtained on data by BABAR [57].
We calculate the efficiencies of the selection criteria on Cabibbo-allowed or doubly-
Cabibbo-suppressed reweighted events (e pe,, and €po cs) and the efficiency evaluated
on the simulated events, generated with a flat Dalitz distribution (ED?D HSP). The
reweighted efficiencies for the two modes are found to be compatible with € DYy
We thus calculate eDoCA/eD%CS to be 1.002 £ 0.03. We can hence assume that the effi-
ciencies on Cabibbo-allowed and doubly-Cabibbo-suppressed event is the same within
a precision of 3%. An uncertainty of 3% on the ratio of the efficiency on same sign and
opposite sign events will be taken into account in the systematic evaluation.

o Knrm

For the Kmrm, the Cabibbo-allowed decay Dalitz distribution has been studied but we
do not have Dalitz distributions obtained for doubly-Cabibbo-suppressed events.

In order to evaluate how much the efficiency could change using different Dalitz mod-
els, we assume a resonance structure consistent with the measurements. We use
the nominal branching fractions for neutral D decaying to the different intermedi-
ate states, obtained on the Cabibbo-allowed mode [8], which are shown in Tab. 5.13
thus we generate D° — Krrm events in 10 different configurations by varying the

fractions of events in each resonance by +10%.  The ratio of the efficiency com-
‘ decay modes ‘ BR ‘
DY — K7t pY tot. (6.4+0.4)%
DO — K00 (1.00 4 0.22)%
D — K—af (3.6 £0.6)%
D’ — K*xtn= tot | (1.5+£0.4)%
D — K;n™t (0.29+0.3)%
D’ — K-rrnfn~ N.R. | (1.80 £ 0.25)%

Table 5.13: Branching ratios for D° decaying to the different intermediate states considered
in the study. The values are taken from [8].

puted using the Cabibbo-allowed Dalitz model (see Tab. 5.13) over the efficiency
obtained using the flat Dalitz distribution for the Cabibbo allowed decay is found to
be roa = EDOCA/ED(I)DHSP = 1.02 £ 0.04. The values of this ratio, when assuming the 10

different configurations for the D° Dalitz structure are distributed as can be seen in
Fig. 5.14.

The maximum deviation from unity is of 5% and the RMS of the distribution is 3%.
By varying the amplitudes in this way, we think we account for the possible differ-
ences between the Cabibbo-allowed and doubly-Cabibbo-suppressed K7nm mode. We
conclude that these eventual differences would have a small impact on the efficiency
of our selection. An uncertainty of 3% on the ratio of the efficiency on same sign and
opposite sign events will be taken into account in the systematic evaluation.
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Figure 5.14: Values of the ratio r =€ Do / €po, ., using 10 different Dalitz distributions for
the neutral D decay mode into K777 final states.

5.3 Comparison between data and simulated events

In Fig. 5.15-5.18, we show the distributions of mgg and Fisher in the mpgg sidebands
(mps < 5.27 GeV/c*) as obtained for data and simulated events. We notice we found
more simulated events with respect to data for the K37 mode and viceversa for the Knn®
mode. Nevertheless, it can be noted that the shapes of all the distributions are in good
agreement. The latter is important, because the number of signal and background events
(hence the overall normalization and the relative contributions) are left free in the fit on
data.
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Figure 5.15: [K'7 mode| Data-MC comparison of the mgg (left) and Fisher (right) distri-
butions, for mpg < 5.27GeV/c® The distributions are shown for K events (top plots),
K same sign events (middle plots) and K7 opposite sign events (bottom plots). All the
distributions are rescaled to the data luminosity (423 fb™1).
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Figure 5.16: [K77® mode] Data-MC comparison of the mpg (left) and Fisher (right) distri-
butions, for mgs < 5.27GeV/c?. The distributions are shown for Krr® events (top plots),
Krr® same sign events (middle plots) and Knw® opposite sign events (bottom plots). All
the distributions are rescaled to the data luminosity (423 fb™1).
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Figure 5.17: [K7nmm mode| Data-MC comparison of the mpgs (left) and Fisher (right) distri-
butions, for mpg < 5.27GeV/c?. The distributions are shown for K7rm events (top plot),
Krmm same sign events (middle plot) and Knmm opposite sign events (bottom plots). All
the distributions are rescaled to the data luminosity (423 fb™1).
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Figure 5.18: [All D modes| Data-MC comparison of the mpgg (left) and Fisher (right) dis-
tributions (for mpgs < 5.27 GeV/c?), for all the modes together. All the distributions are
rescaled to the data luminosity (423 fb™1).



5.4 Maximum likelihood fit

5.4.1 Structure of the fit model

To extract Raps we perform an extended maximum likelihood fit to the set of variables:
{mpgg, Fisher, sgn K }, where sgnK is a discrete variable equal to —1 for opposite sign events
and equal to +1 for same sign events. We write the extended likelihood L as:

eiN, /NN /

Ns fs(x]0) + >; Np, fp,(x]0)
N’ ’

with f(x|6,N') =

where fg(x|0) and fp,(x|0) are the probability density functions (pdfs) of the hypothesis that
the event is a signal or a background event (B; are the different background categories used
in the fit). The variables are indicated by the vector x and ¢ indicates a set of parameters.
The total pdf (f(x | 8, N')) is a linear combination of the pfds for the signal and background
categories, with coefficients equal to the number of signal and background events, normalized
by N’ (and not N = Ng+ >; Np,), where N’ is the expectation value for the total number
of events.

There are two signal categories in the fit: one for the opposite sign 59 }’Gps” and one for
the same sign “N$%7¢5” mode, so we can write:

I (RapsNpr+ ,0ppS,. | ,0ppS NDK*  .Sames/o|pSames
X 67N/ — Ao A pp 2] pp ST PRT ame gSame
f( ‘ ) N/ 1+RADS SIG ( ‘ SIG ) 1—|—R ADS SIG ( ’ SIG )
+ NOPPS OPPS( |‘90PPS) NSameS SameS(XwSameS)_'_

cont Jcont cont cont cont cont

+ NOPPS ngS(X| ‘90;0;05) NSameS SameS( |95ame$’)}

where Npg~ is the sum of the number of opposite sign and same sign signal events:
OppS SameS .
Npg+ = Ngig™ + Nsic™”;

RADS = SameS *

NSameS - NOPPS - NSameS gnd NGPPS are the number of same and opposite sign events for
continuum and BB background. Each pdf (for a given category) is a function of all the
variables. Since the correlations among the variables are negligible, we write the pdf as the

product of the one-dimensional pdfs for the single variables.

The variable sgnK is always parametrized with a two bin step function !: one bin for
the value sgnK = —1 and one for sgnK = +1. For the opposite sign mode fsgnr(sgnk =
—1) =1 and fspnr(sgnK = +1) = 0, while for the same sign mode fsy,x(sgnK = —1) =0

and fsgnr(sgnK = +1) = 1.

LA function that has a constant value in each one of the intervals in which its domain is divided.



5.4.2 Parametrizations of the distributions used in the fit: mpgg,

Fisher

In this section we show the parametrizations of the pdf for mgs and Fisher for signal and
background events. The parametrizations have been obtained on simulated events.

Signal

For both mgs and Fisher distributions, the same sign and opposite sign signal events have
been parametrized using the same probability density functions (pdf). The distribution of
mpg is parametrized with a Gaussian function, while the Fisher discriminant is parametrized
with a double Gaussian distribution. The parametrizations are shown in Fig. 5.19. Details
on the fitted parameters are given in appendix A.
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Figure 5.19: mgg (left) and Fisher (right) distributions for simulated signal events for K
(top plots), K7w® (middle plots) and K7nm (bottom plots) modes. The superimposed curve
is the result of a fit with a Gaussian function for mgg, and the result of a fit with a double

Gaussian function for the Fisher discriminant.



BB background

For the BB background, the variable mpg is parametrized with an Argus function and the
Fisher is parametrized using a double Gaussian distribution. For this category of background,
we observed that the mpgg distribution has a different shape for same sign (sgnK = 1) and
opposite sign (sgnK = —1) events, so the parameters of the pdfs are evaluated separately in
the two categories. The results of the parametrizations are shown in Fig. 5.20 for mgg and

in Fig. 5.21 for Fisher discriminant. Details on the fitted parameters are given in appendix
A.
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Figure 5.20: mpg distribution for BB simulated events for K7 (top plots), K77w? (middle
plots) and Kn7m (bottom plots) modes. The distributions for same and opposite sign events
are shown on the left and on the right respectively. The superimposed curves are the result
of a fit with an Argus function.
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Continuum background

For the continuum background, the variable mgg is parametrized with an Argus function and
the Fisher is parametrized using a Gaussian distribution. For this category of background,
we observed that the mpgg distribution has a different shape for same sign (sgnK = 1) and
opposite sign (sgnK = —1) events, so the parameters of the pdfs are evaluated separately for
the two categories. The results of the parametrizations are shown in Fig. 5.22 for mgg and
in Fig. 5.23 for Fisher discriminant. Details on the fitted parameters are given in appendix
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Figure 5.22: mpgg distribution for continuum simulated events for Km (top plots), Knr®
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the result of a fit with an Argus function.
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5.4.3 Fit validation using a Toy Monte Carlo procedure

The fit procedure has been validated by means of a toy Monte Carlo (toy MC) technique:
1000 samples for each one of the three decay channels are generated from the fit model,
according to the distributions of mggs and Fisher and using the parameters values listed
in Tab. A.1, A.2 and A.3 in appendix A. The number of generated events are chosen
following Poisson distributions with expected values equal to the expected number of events,
as estimated on simulated events and reported in the Tab. 5.10. The fit is then performed
on every generated sample.

In all the tests shown in the following the parameters left free to vary in the fit procedure
are:

e the sum of the number of opposite sign and same sign signal events, Npg+, and Rapgs;

NSameS OppS

e the number of same and opposite sign events for the backgrounds (N3%7¢>, N %7,

Vg and NGE)
e the mean value for the Gaussian describing mpgg for signal events;
e the parameters of the Argus function describing mpgg for continuum events.

We define the pull for a variable x as the difference between the fitted and the generated
value, divided by its error: Tpuy = (Tfit — Tgen)/Terr. We look at the distribution of the pull
variable for the quantities of interest (mainly Npg+ and R4pg) for all the generated toy-MC
samples. If the likelihood of the fitted variable x is well described by a Gaussian, we expect
the mean value of its pull distribution (x,,;) to be consistent with zero and its resolution to
be consistent with unity.

In Fig. 5.24, we show the pull of Npg-, for the three D° channels. In Figs. 5.25, 5.26
and 5.27, we show the distribution of R4pg, its error and its pull for the three D° channels.
More details on the toy Monte Carlo results are shown in appendix B.

We also show the negative and positive errors we get for R ps when we fit for it with
asymmetric errors and the corresponding pull distributions. When calculating the pull with
asymmetric errors the negative error is used for fitted values that are smaller than the gener-
ated one, while the positive error is used for fitted values that are higher than the generated
one. For all the three channels, the likelihood for R4pg from the toy-MC experiments is
not Gaussian and hence the pull for Rspg, calculated using Gaussian errors, does not have
a mean consistent with zero nor an RMS consistent with unity. On the other hand, the
asymmetric pull distributions show a good behaviour, which means that the result for Rspg
is well described by a bifurcated Gaussian. The final outcome of the analysis will be a
likelihood scan for the variables R4pg for the three channels, thus independent from any
Gaussian assumption.
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opposite- and same sign signal events) obtained from the toy MC described in the text for
the K (top), Kmn® and Krrm (bottom) channels.
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Figure 5.25: [toy Monte Carlo K7 mode|. Distributions of the fitted value for Rsps and
its (symmetric error) (top plots), its negative and positive errors (middle plots) and the
symmetric and asymmetric pulls (bottom plots) obtained from the toy MC described in the
text. The generated value is R4ps = 0.09.
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Figure 5.26: [toy Monte Carlo K77 mode|. Distributions of the fitted value for Raps and
its (symmetric error) (top plots), its negative and positive errors (middle plots) and the
symmetric and asymmetric pulls (bottom plots) obtained from the toy MC described in the
text. The generated value is R4ps = 0.09.
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Figure 5.27: [toy Monte Carlo K7wrm mode|. Distributions of the fitted value for R4pg and
its (symmetric error) (top plots), its negative and positive errors (middle plots) and the
symmetric and asymmetric pulls (bottom plots) obtained from the toy MC described in the
text. The generated value is R4ps = 0.09.



5.4.4 Fit validation on a fully simulated sample

As a further test of the fit procedure, the fit has been performed on three MC samples, one
for each neutral D decay mode. The samples are constructed merging fully simulated signal
and background events according to the expected number of events listed in Tab. 5.10. This
check is useful to see the impact on the fit of possible correlations between the variables
which have been assumed uncorrelated. On the other hand, the simulated events are enough
to construct just one completely statistically independent sample, while the toy MC allows
for more extensive tests and for this reason both validation procedures have been followed.
The results of the fit on the three samples, for the K7, K7n® and K7nm modes respectively,
are shown in the Tabs. 5.14, 5.15 and 5.16. The fit results are compatible with the generated
values, for all the three neutral D decay modes. The projections of the fit over the variables
mpgg and Fisher are shown in Fig. 5.28 to Fig. 5.30.

‘ Parameter ‘ value =+ error ‘ generated value ‘
Ngames 34413 40
NS 47 4+ 20 48
NZameS 415 + 22 412
NOPBS 1712+ 45 1706
Npg~ 95+ 12 101

| Raps | 0.040 + 0.050 0.09 |
SameS cont mpg cutoff [GeV/c?] | 5.28883 + 0.00034 5.2886
SameS cont mpgg shape —41.5+6.0 —39.5
OppS cont mpg cutoff [GeV/c?] | 5.28911 + 0.00006 5.2892
OppS cont mgg shape —454+2.7 —49.3
Sig mps p [GeV/c?] 5.27949 + 0.00032 5.2795

Table 5.14: [Simulated K7 sample|. Results of the fit performed on a simulated sample.



Parameter ‘ value =+ error ‘ generated value ‘
Ngames 170 + 42 183
NS 248 + 31 252
NFames 2591 + 56 2660
NS 8219 + 100 8138
Npg 148 + 18 139

| Raps | 0.134 £ 0.058 | 0.09 |
SameS cont mpg cutoff [GeV/c?] | 5.28911 + 0.00014 5.2891
SameS cont mpgg shape —26.31+2.3 —29.3
OppS cont mpg cutoff [GeV/c?] | 5.28892 + 0.00008 5.2890
OppS cont mgg shape —-33.5+1.3 —33.4
Sig mps p [GeV/c?] 5.27969 + 0.00031 5.2795

Table 5.15: [Simulated K77® sample|. Results of the fit performed on a simulated sample.

Parameter value + error ‘ generated value ‘
Ngames 258 + 33 186
NS 202 4 42 223
Names 1773 £ 50 1849
NOPS 5808 + 85 5894
Npx- 102 + 16 93

| Raps | 0.125 4 0.102 | 0.09 |
SameS cont mpg cutoff [GeV/c?] | 5.28920 + 0.00022 5.2887
SameS cont mpgg shape —-30.94+29 —34.0
OppS cont mpg cutoff [GeV/c?] | 5.28910 + 0.00012 5.2888
OppS cont mgg shape —35.0£1.5 —34.3
Sig mps p [GeV/c?] 5.28028 4+ 0.00041 5.2795

Table 5.16: [Simulated K7nm sample]. Results of the fit performed on a simulated sample.
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Figure 5.28: [Simulated K events|. Projections of the fit over the variables mgg and Fisher
for the same sign (top plots) and opposite sign (middle plots) K7 events. In the bottom plot,
the projection of the fit over the variables mpgg after a cut on Fisher> 0, in order to enhance
the signal, is shown for opposite sign K7 events. The point with error bars are simulated
events and the superimposed curves are the result of the fit procedure as described in sec. 5.4.
The dashed, dotted and dash-dotted lines represent the signal, continuum background and
BB background contributions respectively.
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Figure 5.29: [Simulated K77® events|. Projections of the fit over the variables mgg and
Fisher for the same sign (top plots) and opposite sign (middle plots) K7m® events. In the
bottom plot, the projection of the fit over the variables mgg after a cut on Fisher> 0, in
order to enhance the signal, is shown for opposite sign K77 events. The points with error
bars are simulated events and the superimposed curves are the result of the fit procedure
as described in sec. 5.4. The dashed, dotted and dash-dotted lines represent the signal,
continuum background and BB background contributions respectively.
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Figure 5.30: [Simulated K777 events|. Projections of the fit over the variables mpgg and
Fisher for the same sign (top plots) and opposite sign (middle plots) Knnm events. In the
bottom plot, the projection of the fit over the variables mgg after a cut on Fisher> 0, in
order to enhance the signal, is shown for opposite sign K7 events. The points with error
bars are simulated events and the superimposed curves are the result of the fit procedure
as described in sec. 5.4. The dashed, dotted and dash-dotted lines represent the signal,
continuum background and BB background contributions respectively.



5.5 Results on data

In this chapter we present the results of the ADS analysis of B® — D°(D%) K** decays,
with neutral D reconstructed into K7, K7n® and Knrr final states, obtained using a data
sample of 423 fb~!. In sec. 5.5.1 we show the results of the fit on data and the values for the
RAps ratios and in sec. 5.5.4, we discuss the systematic uncertainties.

5.5.1 Fit on real data

The fit has been performed on a data sample of 423 fb~! collected at the Y(4S5) peak. The
results of the fit are shown in the Tabs. 5.17, 5.18 and 5.19, for the K7, Knn® and Knrm
respectively. From toy-MC studies it has been proved that the likelihood for R4pg can be
described by asymmetric Gaussians and for this reason the fit on data is performed with
asymmetric errors. In the end, a likelihood scan for the R 4pg ratios will be performed. The
projections of the fit over the variables mpgg and Fisher are shown in Fig. 5.31 and 5.32 for
K7 same and opposite sign events, in Fig. .5.37 and 5.38 for K77n° same and opposite sign
events, and in Fig. 5.35 and 5.36 for K7nnm same and opposite sign events. Projections of
the fit over the variables mpgg after a cut on Fisher is applied, in order to visually enhance
the signal contribution, are shown in Fig. 5.38 for the opposite sign samples and in Fig. 5.37
for the same sign samples.

‘ Parameter ‘ value =+ error ‘
Nganes 75+ 16
NGP® 40 £ 17
NSames 387 & 22
NOPRS 1602 + 41
Npg+ 744+ 12
| Raps | 0.06275:059
SameS cont mpg cutoff [GeV/c?| | 5.28856 + 0.00040
SameS cont mpgg shape —541+64
OppS cont mpg cutoff [GeV/c?] | 5.28841 + 0.00020
OppS cont mgg shape —49.1+29
Sig mps pu [GeV/c?) 5.28030 4+ 0.00041

Table 5.17: [Data K7 mode| Results, for the K'm mode, of the fit on a data sample with an
integrated luminosity of 423 fb™1.



Parameter ‘ value &+ error ‘

Npgmes 265 + 33
Ngw> 215 + 41
NZames 2497 £+ 56
NS 7793 £ 96
Npg+ 146 + 17

| Raps | 0.0570:057 |
SameS cont mpgg cutoff [GeV/c? | 5.28860 + 0.00013
SameS cont mpgg shape -32.7+24
OppS cont mpg cutoff [GeV/c?] | 5.28848 + 0.00009
OppS cont mgg shape —-31.0£1.3
Sig mps p [GeV/c?] 5.27961 + 0.00032

Table 5.18: [Data K7wr® mode| Results, for the K77® mode, of the fit on a data sample with
an integrated luminosity of 423 fb~1.

Parameter ‘ value =+ error ‘
Ngames 345+ 35
Ngwo 327 + 48
NZames 2058 + 53
NOPPS 6372 + 91
Npg+ 101 +£ 17

| Raps | 0.136%5 00 |
SameS cont mpgg cutoff [GeV/c?] | 5.28891 + 0.00014
SameS cont mpgg shape —32.84+2.7
OppS cont mpg cutoff [GeV/c?] | 5.28907 + 0.00004
OppS cont mgg shape —334+14
Sig mps p [GeV /] 5.27999 + 0.00043

Table 5.19: [Data K7mm mode] Results, for the Kmmm mode, of the fit on a data sample
with an integrated luminosity of 423 fb~!.
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Figure 5.31: [Data Km mode - same sign] Projections of the fit over the variables mpgg and
Fisher for same sign K7 events. The points with error bars are data, and the superimposed
curves are the result of the fit procedure as described in sec. 5.4. The dashed, dotted and
dash-dotted lines represent the signal, continuum background and BB background contri-
butions respectively.
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Figure 5.32: [Data K7 mode - opposite sign| Projections of the fit over the variables mgg
and Fisher for opposite sign K7 events. The points with error bars are data, and the super-
imposed curves are the result of the fit procedure as described in sec. 5.4. The dashed, dotted
and dash-dotted lines represent the signal, continuum background and BB background con-
tributions respectively.
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Figure 5.33: [Data K77® mode - same sign] Projections of the fit over the variables mpgg and
Fisher for same sign K77® events. The points with error bars are data, and the superim-
posed curves are the result of the fit procedure as described in sec. 5.4. The dashed, dotted
and dash-dotted lines represent the signal, continuum background and BB background con-
tributions respectively.
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Figure 5.34: [Data K7n® mode - opposite sign] Projections of the fit over the variables
mgs and Fisher for opposite sign K7r" events. The points with error bars are data, and
the superimposed curves are the result of the fit procedure as described in sec. 5.4. The
dashed, dotted and dash-dotted lines represent the signal, continuum background and BB
background contributions respectively.
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Figure 5.35: [Data K7wm mode - same sign] Projections of the fit over the variables m g and
Fisher for same sign K7 events. The points with error bars are data, and the superim-
posed curves are the result of the fit procedure as described in sec. 5.4. The dashed, dotted
and dash-dotted lines represent the signal, continuum background and BB background con-
tributions respectively.
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mpgs and Fisher for opposite sign Knrwm events. The points with error bars are data, and
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background contributions respectively.
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Figure 5.37: [Data - same sign] Projections of the fit over the variables mpgg after a cut on
Fisher is applied (Fisher> 0.5 for K7, Fisher> 0.7 for K7n® and Fisher> 1. for Krrr), to
visually enhance the signal, for K7 (top), Knn® (middle) and K777 (bottom) same sign
events. The points with error bars are data, and the superimposed curves are the result of
the fit procedure as described in sec. 5.4. The dashed, dotted and dash-dotted lines represent
the signal, continuum background and BB background contributions respectively.
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Figure 5.38: [Data - opposite sign] Projections of the fit over the variables mgg after a cut on
Fisher is applied (Fisher> 0.5 for K7, Fisher> 0.7 for K7n® and Fisher> 1. for Krrr), to
visually enhance the signal, for K7 (top), K7n® (middle) and K77m (bottom) opposite sign
events. The points with error bars are data, and the superimposed curves are the result of
the fit procedure as described in sec. 5.4. The dashed, dotted and dash-dotted lines represent
the signal, continuum background and BB background contributions respectively.



5.5.2 Likelihood scan for R pg

In order not to depend on any Gaussian assumption, a likelihood scan with respect to the
variable R4pg has been performed: R,pg is fixed to different values in a reasonable interval
and for each value the fit is repeated letting all the other floating parameters free to vary.
Each time the fit returns the likelihood value. Fig. 5.39 shows the scan of the —AlnL (where
the difference is calculated with respect to the value obtained when R4pgs is left floating)
and of the likelihood itself, for the three channels.
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Figure 5.39: [Data - likelihood scan] Scan of —AinL (left plots) and of the likelihood £
(right plots) for K7 (up), K77® (middle) and K77m (bottom).

The second minimum for the likelihood of Rsps(K7r’) has been investigated and found
to be due to a fluctuation in the number of opposite-sign events for negative values. Since



it is well above the principal one, it is not particularly worrying.

5.5.3 Comparison with the expected sensitivity

The errors we would expect on Raps from toy Monte Carlo studies (see sec. 5.4.3), for the
central values we find on data are summarized in Tab. 5.20. All the values obtained on data
are within less than 1.5 standard deviation from toy Monte Carlo expectations.

‘ Parameter ‘ expected range ‘ value on data ‘
RAT ¢ negative error | 0.044 £ 0.010 0.059
RAT o positive error | 0.055 & 0.011 0.067
nggo negative error | 0.048 £ 0.010 0.037
RE=T positive error | 0.056 + 0.010 0.046
RATTT negative error | 0.139 £ 0.030 0.098
RETTT positive error | 0.160 £ 0.038 0.107

Table 5.20: Expected negative and positive errors on Rapg ratios from toy Monte Carlo
studies are compared with the errors found in the fit on data.

5.5.4 Systematic uncertainties on the R ,pg ratios

The systematic uncertainties on the fitted values for R ps can arise from the following
sources:

e mgg and Fisher.
All the parameters fixed in the fit are varied by +1o and the fit is repeated. The
corresponding variation on the central value of R 4pg is taken as systematic uncertainty.

e Peaking background assumptions.
The number of peaking background events is evaluated on simulated events and on
Mpo sidebands data trough a fit to the mgg distribution. The different sources of
peaking backgrounds are found to be compatible with zero within the errors and fixed
to zero in the fit. The fit is performed letting the number of peaking events vary
within its error and the corresponding variation of the central value of Rspg is taken
as systematic uncertainty.

e Crossfeed between same sign and opposite sign events.
In sec. 5.2.7, the efficiency of the cross-feed between opposite sign and same sign
events, €“F" has been evaluated for the three D channels. The associated systematic
uncertainty on Rapg is calculated according to the following expression:

NOppS + NSameSGCF NOppS
SameS OppS CF ~ SameS
N + N € N

CF
RADS = +e s

where the approximation results from neglecting the effect of opposite sign events
wrongly reconstructed as same sign events.



e Efficiency ratio for same sign and opposite sign events.
As explained in section 5.2.8, it has been verified that the efficiencies for same sign
and opposite sign events are the same within a precision of 3% for Knn® We hence
assign as systematic error on REZT the variation of REAT when we fit assuming the
efficiencies ratio to be 1.03 and 0.97. For Knnm we evaluated on MC studies that the
average variation of the efficiency ratio due to an eventual different Dalitz distribution
for CA and DCS decays is around 3%. We assign as systematic error on RETT™ the

variation of REFT™ when we fit assuming the efficiencies ratio to be 1.03 and 0.97.

The systematic uncertainties on R, pg are summarized in tabs. 5.21, 5.22 and 5.23. The
different contributions are considered to be Gaussian and uncorrelated and for this reason
we sum them in quadrature.

‘ Source ‘ systematics on R pg x1072 ‘
Sig. PDF parameters 0.19
Cont. PDF parameters 0.32
BB PDF parameters 0.57
Peaking bkg 1.70
SS-OS cross-feed 0.04

| TOTAL | 1.80 |

Table 5.21: [Data K7 mode] Summary of systematic uncertainties, evaluated on 423 fb~!
K7 events.

‘ Source systematics on R pg x1072

Sig. PDF parameters 0.11
Cont. PDF parameters 0.02
BB PDF parameters 0.16
GCA/GDCS 0.17
Peaking bkg 0.87
SS-O8S cross-feed 0.05

| TOTAL | 0.91 |

Table 5.22: [Data K77® mode] Summary of systematic uncertainties, evaluated on 423 fb~!
Krr events.

The systematics on R,pg from the variations of the PDF parameters are also shown in
Fig. 5.40.

The likelihood obtained for R4pg, for each channel, is convoluted with a Gaussian of
width equivalent to the total systematic uncertainty. Since the measurements for the Rapg
ratios are not statistically significant, 95% probability limits are calculated by integrating the
likelihoods, starting from Rapg = 0, obtaining Raps(K7) < 0.244, Raps(K7m") < 0.181



| Source systematics on R pg x1072

Sig. PDF parameters 0.82
Cont. PDF parameters 0.29
BB PDF parameters 1.48
€ca/€pcs 0.39
Peaking bkg 1.40
SS-OS cross-feed 0.02

| TOTAL | 2.20 |

Table 5.23: [Data K7mm mode] Summary of systematic uncertainties, evaluated on 423 fb~!
Knnm events.

and Raps(Kmrm) < 0.391 at 95% probability. The 68% probability regions are also calcu-
lated, limited by the two values of R4pg for which £ = £,,;, and 68% = Je(Raps)>c L(Raps)dRaps,
obtaining:

min

RET o = 0.06715-971. (5.43)
RERT = 0.06070.05;

Krnm +0.114

The likelihood distributions, and the 68% and 95% probability regions, are shown in
Fig. 5.41.

The results for RER, nggg” and REZTT are summarized in Fig. 5.42. The total number
of opposite sign signal events in the three channels, as obtained from the fit, is N, 351” S =
24.4713% . Although strictly speaking making an average of the three R4pg has no meaning,
since they are different observables, it is useful to have an idea of the probability with which
we exclude zero from the combination of the three measurements. Making this average
corresponds to neglect differences in the rp parameters and in the strong phases between
the three channels. The statistical average of the three R4pg measurements, including the

systematic errors, is 0.0789-0st, indicating a signal with a 2.2 ¢ significance.
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5.6 Extraction of rg parameter

In this chapter the procedure for the extraction of rg from the measurements of the Rapg
ratios is presented. This procedure is first validated on results obtained from toy Monte
Carlo (shown in sec. 5.6.1) and finally applied to the results obtained on data (sec. 5.6.2).

The outcome of the analysis are the likelihood distributions for the variables RER.,
Rﬁ{gg‘) and REFT™. To convert the results on the R4pg ratios into probability regions for rg,
a bayesian approach is used. The ratios Rapg for the three channels can be expressed as
(see equation 5.33):

RATs =18 + hpq + 2krsrprer c08(8s + Opicr) cos 7

nggo = 7‘?9 + T%}Kmo + 2kr sk p K rrOT DK 7m0 cos(égK”O + dg) cos;
ng@ = 7"% + 7‘,23K37r + 2krskprs=TDK3x c:os((SgK37r + 0g) cos . (5.44)

The three observables depend on quantities that are channel-dependent, but they all de-
pend on rg, v and g and k. Hence, a constraint on rg from the combination of the three
measurements can be derived.

The a-posteriori pdf of rg from an R4ps measurement is defined as

Lirg) = I p(rs, 7,05, k, E)L(Raps(rs, v, 0s, k, €))dyddsdkde

_ » > d (5.45)
fp(r57 s 65'7 ka §>£(RADS(TSJ s 65'7 k? 5))d’}/d(55’dkd§d7’5

(5.46)

With € = {rp,dp} for the two-body case and & = {rp,d2, kp} for the multi-body cases.
Here p(rg, 7, ds, k,g) is the a-priori probability for the quantities rg, 7, ds, k,g, which are
considered uncorrelated. The ratio rg is extracted from a flat distribution in [0, 1] and kp is
extracted from a flat distribution in [0, 1] for K77% The a-priori distribution for 257 is a
Gaussian following the measurement presented in [55]. The parameters §55™™ and kpgrrr
are extracted following the measurement presented in [56]. All the remaining phases are
sampled form a flat distribution in [0,27] range. All the remaining phases are extracted
form a flat distribution in [0, 27] range. The a-priori probabilities for the rp ratios are
Gaussian distributions with mean and standard deviation taken from the measurements and
the a-priori distribution for & is Gaussian with mean and standard deviation equal to 0.95
and 0.03 respectively (see sec. 2.6.2). Technically, the histogram of £ as a function of rg is
filled using a toy MC procedure:

e large number of experiments is generated by extracting rg, v, ds, k, 5 within their ranges.
e in each experiment the value of R4pg is computed according to eqs. 5.44.

e for each experiment a weight L(Raps) is computed, where L(R4pg) is calculated from
the experimental likelihood obtained for Rpg, after convolution with the systemtic
errors. An entry is added, to the content of the appropriate bin for the extracted value

—

of rs, with Welght p<TS7 e 537 ka g)E(RADS)

e the histogram is normalized to unit area.



The 68% probability region is limited by the two values of rg for which £ = I,,;, where
68% = / L(rs)drs (5.47)
L>min

The interval is symmetrized (which means that the quoted central value is not the maximum
of the likelihood).

5.6.1 Validation of rg extraction procedure using toy Monte Carlo

The extraction procedure has been tested on toy MC results, assuming the likelihood for
the three Raps to be described by bifurcated Gaussians, for simplicity. The procedure to
extract rg, as presented in 5.6 has been followed, starting from the measurements:

Kn __ +0.079
RADS - 0'090—0.065

Krr® _ +0.088
RADS - 0'090—0.076

K3m __ +0.110
RADS - 0‘09070.090

where the central values for the three ratios are calculated assuming r¢ = 0.3 and rp = 0
and the negative and positive errors are taken from the toy MC studies (see Fig. 5.25, 5.26
and 5.27). With these values, the extraction procedure for rg leads to the result shown in
Fig. 5.43, and corresponding to the 68% probability region rg = 0.29708%,, which is consistent

with the generated value. The distribution obtained for rg is not Gaussian, in particular the

0.004f
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0.003f
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Figure 5.43: [Toy Monte Carlo] Constraint on rg from fake RE% ¢, REFT and RE3T mea-

surements. The parameter rg is assumed to be 0.3 and the (asymmetric) errors for the ratios
Raps are taken from toy MC studies. The 68% and 95 % probability regions are shown in
light and dark colors respectively.

tail observed for low rg results from the functional dependence R4pgs ~ r% and accounts for
the fact that we cannot exclude zero with a higher probability for rg than for the combined
result for Raps.



5.6.2 Extraction of rg on real data

The 68% probability intervals obtained, on a sample of 423 fb~! data and after having
included systematics effects, for the R4pg ratios are:

RET . = 0.0679:011. (5.48)
RERT = 0.060+003;

Krnm __ +0.114

Following the procedure explained in sec.5.6, the information on rg from the three Rapg
measurement has been extracted. The results for rg, separately from the three channels, are
the following;:

r§™ = 0.250%014s, rs € [0.0,0.451] at 95%probability.

rE™ = 0.2385010%, rs € [0.0,0.394] at 95%probability.

rETTT = 0.36370159) rg €[0.0,0.579] at 95%probability.
(5.49)

and from the combination of all the three channels:

rs = 0.26T00%% (5.50)
rs € [0.05,0.396] at 95%probability.
The probability density functions for rg from the single measurements and from their com-

bination are shown in Fig. 5.44. The results for rg from the three channels separately and
from their combination, are shown in Fig. 5.45.
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Figure 5.44: [Data] Results for rg from the measurement of R4pg in the three modes (upper
plots) and from their combination (lower plot).
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Chapter 6

Dalitz analysis of B! — DVK*V decay
channel

In this chapter we present the analysis of B — D°(D°)K** with K** — K~7* (and
B — D°(D®)K* with K** — K*7~), where the neutral D is reconstructed in the Krm~
CP eigenstate. The decay chain is analyzed with the Dalitz technique, allowing for the
extraction of rg, dg and v parameters. We use a data set of 353 fb=! (371 106 BB pairs)
collected with the BABAR detector at the Y (45) center of mass energy.

The Dalitz method [32], presented in sec. 2.2.3, aims to measure vy from the B — DK
decays with the D decaying to multi-body CP eigenstate final states. As shown in sec. 2.3
and 2.5, the Dalitz method is the one with highest sensitivity to the angle ~.

The interest of this measurement, as explained in sec. 2.6, is the fact that the ratio
between the b — u and b — ¢ amplitudes of the neutral B decays is expected to be higher
than the one for charged B. The results shown in chapter 5 confirm this expectation.

6.1 Analysis overview: Dalitz method at work

For the case of B® — D°K*? decays, as discussed in sec. 2.6.1, the natural width of the K*°
being not small (~50 MeV), the interference with other B® — D°(K )Y processes may

non—K*
not be negligible. For this reason, following the formalism suggested in [33], the effective
quantities rg, k and dg are introduced. Following this formalism, it has been shown in
sec. 2.6.1 that the expression for the partial decay rate is (see eq. 2.28):
dU'(B° — D[— f]Xg) < A7 + rgA% + 2rskRe (AfAfei‘sDei‘SS”) ;

where 0p = 07 — ;. In the case of D decaying into Kgm7 final states,

A = f(m?,m?);

Agel® = f(m?,m?);
where m_ and m. are the invariant masses of the systems (K, 77) and (K, ™) respectively.
The amplitude for the process BY(B?) — D[— K3m 77| X2(X2) can be written as follows:

A(BY(B%) — D[ Kgn~n"]X§(X§)) = Ac(p)e™® f(m3, m3) + Au(p)e™ PF7 f(md, m3),

(6.1)
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where A., A,, d. and ¢, vary as a function of the point p over the BY — DYK*? Dalitz plane
as explained in sec. 2.6.1. The rate is expressed by:

['(BY(B°) — D[— Kgr 77 X3(X3)) o (6.2)

(5l 51 ? + 2hrs {cos(ds F ) Rel ff2] + sin(0s F ) Imlfy f2]} =

21" + 5l fel® + 2krs| | fel cos(ds + dp(mZ, mi) F ),
where 5D(m$ mi) = d7(m%,mi) — dp(m2,m2) is the strong phase difference between
f(mi,m2) and f(mZ,m%) and rg, k and dg are defined as following (see eqs. ?? and 2.27):
2 _ L(B" = D"X5) [ dp |AL(p)]
STT(B = DOXY)  [dp [A2(p)]’
poivs ___ddp Ac(p) Au(p)eV)

VI dp [A2(p)] [ dp |A2(p)]

In the following we use the simplified notation fi = f(m3,m2) and f+ = f(mZ, m3).

The amplitude for the neutral D decays into Kqmtm~ final states is used as an input in
this analysis, and the results obtained from the Dalitz BABAR analysis of charged B decays
[59] have been used. In sec. 6.1.1, the technique for extracting this amplitude used in BABAR is
briefly described, in the study presented in this thesis no original work on the subject has
been done.

6.1.1 The Dalitz model for neutral D decays into K r 7~ final
state

The D° — Ky rm decay amplitude is determined in BABAR from a Dalitz plot analysis of D°
mesons from D*T — Drt decays produced in eTe™ — c¢ events. The charge of the low
momentum 7+ from the D** decay identifies the flavor of the D°. The signal purity for this
analysis (£20 cutoff on Mp, where o stands for the Mp resolution) is of 97.7%, with about
500000 selected candidates.

The P- and D-waves of the D° — K mm decay amplitude are described using a total of 6
resonances leading to 8 two-body decay amplitudes: the Cabibbo allowed (CA) K*(892)~,
K*(1680)~, K;(1430), the doubly-Cabibbo suppressed (DCS) K*(892)", K;(1430)*", and
the CP eigenstates p(770)%, w(782), and f»(1270). The contributions from these resonances
are parametrized using the isobar model, as described in sec. 2.2.3. The dynamics for the
7 S-wave in D° — Kgmm decays [60] is caracterized by the overlap of several broad scalar
resonances. While these contributions were parametrized with the isobar model (see for
example the old BABAR Dalitz analysis publication [61]) it has been found that they are
better described through the use of a K-matrix formalism [62] with the P-vector approxi-
mation [63]. Thus the Dalitz plot amplitude f(m) (where m indicates the Dalitz plane point
m = (mZ,m%)) can be written as follows:

fm)=F(s)+ Y ae?A(m)+ ange™ ™", (6.3)
r#(mT) L=0



where F(s) is the contribution of 77 S-wave states written in terms of the K-matrix for-
malism,

Fy(s) =Y I — ik (s)p(s)],; Pi(s). (6.4)

J

The parameter s = m2 is the squared invariant mass of the 77~ system, I is the identity
matrix, K is the matrix describing the S-wave scattering process, p is the phase-space matrix,
and P is the initial production vector (P-vector). The parametrization and parameter values
for the K-matrix used in the BABAR analysis are taken from [72], where they have been
obtained from a global analysis of the available w7 scattering data from threshold up to
1900 MeV/c? [72].

6.2 Selection and background caracterization

6.2.1 Selection criteria and background composition

The selection studies are based on simulated events for the signal modes and for the differ-
ent backgrounds and, whenever possible, directly on data. The agreement of the relevant
variables distribution between data and simulation has also been checked. The data and
simulated samples used in this analysis are summarized in Tab. 6.1.

‘ Sample ‘ Events ‘ L, (b1 ‘

BB 385M 733
BTB~ 394M 751
cc 267M 206
u,dd,ss 324M 155

Signal 185k 304-103

DYp° MC 100k 16 - 103

D°K*(D° — 4m) MC 10k 48 - 10°
Data (On-peak) 353
Data (Off-peak) 37

Table 6.1: Data and MC samples used in the analysis in terms of number of events and of
equivalent integrated luminosity (L.,). The integrated luminosity for data is also given.

The assumptions for the branching fractions and cross sections used to get the values of
Tab. 6.1 are summarized in Tab. 6.2. These values have been used to rescale the signal and
the different background components to the integrated luminosity of data.

We reconstruct B® — DO(D®)K*° events with K** — K*7n~, D® — Kyrtn~ and Kg —
ntm~. For this analysis, apart from the K** (and K*°) selection, which has been optimized
and presented in sec. 4.6, we have applied standard selection criteria, also used in similar
BABAR analyses. The K from the D is reconstructed from pairs of oppositely charged pions
and their invariant mass is required to be within + 7 MeV/c? of the nominal K mass [8].



‘ Quantity ‘ Value ‘
Br(B° = D'K) | (5.3+£08).10 ° [50]
Br(B" = D% | (2.3%£0.9)- 10 * [50]
Br(D' — K%~ 7™T) 0.0597 4+ 0.0035 [50]
Br(D' — a - ntr nt) | 7.3+0.5-1072 [50]
Br(K° — Kj) 1/2
Br(Ks = ntn ) | 0.6895 < 0.0014 [50]

Table 6.2: Branching ratios and cross sections used to get the values of Tab. 6.1. These
values have been used to normalize the signal and the different background components.

The K candidates are also requested to satisfy the condition cosag,(D°) > 0.997 where
ags(DP) is the angle between the K line of flight (line between the D vertex and the
K vertex) and its momentum (reconstructed with the two pions momentum). This cut is
particularly helpful in removing the D° — 47 background, as explained in sec. 6.2.5.

The D° is selected by combining K candidates with two oppositely charged pions and
requiring its invariant mass to be within + 11 MeV/c? of the nominal mass. Charged
kaon identification, based on Cerenkov angle and dE/dx measurements, is required for the
charged kaon produced in K*° and K*° decays. The D° and K*° vertex fits are requested to
have converged (“P[x?(D)y,ndof] > 07 and “P[x*(K*"),, ndof] > 07 in the following).
In order to suppress combinatorial background, the probability of the B vertex x?2,.(B) per
number of degree of freedom (ndof) is required to be greater than 0.001, P[x?(B) ., ndof] >
0.001. The absolute value of AFE is required to be smaller than 25 MeV and the absolute
value of the cosine of the B polar angle in the center of mass frame, cosfp, to be less than
0.9.

In summary, the applied selection criteria are:

o |my, — myg(nominal)| <7 MeV/c?

o |mpo — mpo(nominal)| < 11 MeV/c?

P(x* D% >0, P(x*K*)>0

P(x2, B) > 0.001

cos agg > 0.997

o |my+ — mp+(nominal)| < 48 MeV/c?

| cosOper| > 0.3

K* from K*°/K*: KLHTight

| cos 03] < 0.9

IAE| < 25 MeV



® mgg > 5.2 MeV/02
o |At| <20 ps
o |Ater| < 2.5 ps

The selection efficiency for signal, evaluated on simulated events, is egjo = (10.8 £ 0.5)%.

In Tab. 6.3 we list the number of expected events, on 353fb™", for signal and different
background components. The significance of the signal in the final signal region mpgs >

5.27GeV/c? is S/v/S+ B =1.7.

‘ Sample ‘ Signal ‘ BB ‘ BtB~ ‘ cc ‘ ui, dd, S5
Final Selection 35 46 80 1589 671
+mps > 5.27 GeV/c? 35 11 19 264 90

Table 6.3: Number of expected signal and background events, evaluated on simulated events,
rescaled to an integrated luminosity of 353 fb~.

6.2.2 [Efficiency variations over the Dalitz plot for signal events

The Dalitz model presented in sec. 6.1.1 has to be convoluted with the theoretical phase
space distribution, namely F(m) = f(m) @ PS¢, To account for possible variations of
the efficiency across the Dalitz plot, the Dalitz distribution F'(m) we use in the final fit to
extract v, 0 and rg is:

P Safter cuts

F(m) = [(m) ® PS"

(6.5)
As said before, the simulated signal events have been generated using a phase space model
for the D° — K¢ntn~ decay. Thus the distribution of PSS U can be obtained using
signal simulated events, and performing an unbinned fit over the Dalitz plane. The function
used in this fit is a third order polynomial in two dimensions (where the variables = and y
in this case are the squared invariant masses © = m? and y = m?), expressed by:

P(z,y) = pgaftercuts — 1 4 (x+y) +ay (22 +y* +ay) +as (2 + > + 2%y + 2y?) .(6.6)

The parameterization has been symmetrized for z = m2 and y = m?. Fig. 6.1 shows the

m? and m? projections for signal simulated events. The resulting coefficients from the fit

are given in Tab. 6.4.

6.2.3 Background containing real neutral D mesons

The background events have been divided in two classes. The events for which the recon-
structed neutral D is a real D that decays to Ksm™n~ (denoted “true D°” in the following)
and the rest, namely events not containing a “true D°”. The two classes of events have
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Figure 6.1: Dalitz distribution of signal simulated events (phase space). The curve is the
projection on m3 4 (left) and on m3_— (right) of the result of an unbinned likelihood fit
using a third order polynomial (symmetric under mﬁ(sﬁ — mﬁ(sr, see eq. 6.6).

Parameters ay Qo as
Signal 1.30 £ 0.63 | —0.34 £0.20 | 0.04 4+ 0.03

Table 6.4: The values and the errors of the parameters of the third-order polynomial function,
eq. (6.6), obtained from the unbinned likelihood fit to the Dalitz distribution of simulated
signal events.

to be treated separately because of their different distribution on the D Dalitz plane. The
fractions of true DY have been evaluated on simulated events (separately for BB and con-
tinuum background) and also on data, considering the mpgg sidebands. The fraction can be
extracted from a fit to the D° invariant mass using as pdf, a Gaussian for the D signal and
a constant for the background. In these fits the mean of the Gaussian has been fixed to the
nominal DY mass, ppo = 1864.1 MeV/c?. The fractions of events with a true D° for BB and
continuum backgrounds are found compatible within the errors and also compatible with
the value found on data. In order to not depend on simulated events, we assume both the
values to be equal to the one found on data. The difference will be taken into account in the
systematics. The values are reported in Tab. 6.5.

Background events with final states containing D°h*t7n~ or D°h~ 7+, where h* is a can-
didate K*, can mimic b — wu signal events (we recall here that the sign of the K* from
the neutral K* identifies the flavour of the neutral B). The fraction of these b — wu-like

N +Nro, . .
DY events, defined as R"*® = et is evaluated on simulated
DO rt TN 50— ot TNpOp+ 7=+ 5044 -

events and reported in Tab. 6.5.

The Dalitz distribution for true D° events is the same as the one used for signal events,
described in sec. 6.1.1. The Dalitz distribution for background events with no true D° has
been studied and parametrized using simulated events, where all the events with true D°
have been excluded. Both for continuum and BB background a third order polynomial has
been used (eq. 6.6) to parametrize the distributions. In this case both for continuum and
BB background we observe the presence of a K*(892) resonance in the mass projections. In



Parameters Fitted values
Rcont (true DY fraction in continuum) | 0.268 4 0.037
Rgg (true DY fraction in BB) 0.309 £ 0.072
Rpara (true DY fraction in data) 0.289 4+ 0.028
ngnt (D° K in continuum) 0.88 £ 0.02
R (D’ K* in BB) 0.45 +0.12

Table 6.5: Fraction of background events with a “true D°”, estimated from data and simu-
lated events.

order to describe the presence of the K*, a Breit-Wigner function is added to the polynomial
one in the fit to the Dalitz shape and its fraction is fitted. The fraction of resonant events
fK+ is also extracted from the fit.

The distributions and fit results are shown in Fig. 6.2, for continuum and BB simulated
events respectively. The values of the parameters, polynomial terms and fraction of K*°
events, are given in Tab. 6.6.
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MK gnt — Migr—) and a Breit-Wigner, to account for the presence of the K *0 resonance.



Samples ay as as frc
continuum | —0.701 £ 0.010 | 0.224 £ 0.007 | —0.019 £ 0.016 | 0.029 + 0.021
BB —0.538 £ 0.017 | 0.064 +0.005 | 0.017+£0.002 | 0.062 &+ 0.049

Table 6.6: Values and the errors of the parameters of the third-order polynomial function,
eq. (6.6), obtained from the unbinned likelihood fit to the Dalitz distribution of background
events with no true D° (BB and continuum separately). The fraction of K** events, fitted
using a Breit-Wigner function is also given in the last column.

6.2.4 Continuum background caracterization and Fisher discrim-
inant

As already discussed, several variables account for the fact that, in the center of mass frame,
continuum events have a jet-like spatial distribution, while BB events are spherically dis-
tributed (see sec. 4.9). In this analysis, the variables |cos(0inrust)|, L1io and Lis, defined in
sec. 4.9, are combined into a Fisher discriminant, that is used in the final maximum like-
lihood fit. The discriminant has been trained (see sec. 4.9) using simulated signal events
and off-resonance data. The distributions for these three variables are shown in Fig. 6.3, for
signal MC, off-resonance data and BB background simulated events. The distribution of
the Fisher discriminant, for signal simulated events and for off-resonance data, is shown in
Fig. 6.4 (left). The efficiency of a cut on the Fisher on off-resonance events as a function of
the efficiency on simulated signal events is also shown in Fig. 6.4 (right). The expression for
the Fisher is:

Fisher = 2.484 — 0.7811|cos(Oprust)| + 0.1884 L1 — 1.2567 L1o.

To further discriminate between signal and continuum background events, the variable
At, introduced in sec. 4.9, is used in the likelihood fit.
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6.2.5 Studies of peaking background events

A special attention has been put, within the BB background, on possible sources of peaking
background events. Peaking background consists of processes that lead to the same final
state as for the reconstructed signal. The final state we are considering is:

D'K* = [(zta )gemt ] po  [KT7 g0,
From simulated events studies we identified three possible sources of peaking BB background:
e B — DIK*0 events with K** — K+t7~ and DY — ntn—ntn—,
o BY — DIp0 events with p° — 777~ and D — Kgntn,
e charmless events of the kind B® — K**K¢Kjg.

As far as the first two categories are concerned, dedicated simulation studies give a selection
efficiency of (0.036+0.019)% for the D°p° channel and a selection efficiency of (0.18 +£0.04)%
for the D°K** with D® — 7ta~ 7 7. In the latter case, the cut on ag, is very important,
while for the D°0° the cuts on AE and the PID of the K* are the most effective ones.
With these efficiencies, we expect about 0.9 D°p° events and 0.1 D[z T~ 7 7~ | K*® events
(assuming the branching fraction in Tab. 6.2) on 353 fb~! . The results are summarized in
Tab. 6.7.

DOPO
Selection cuts except the cuts on AFE and KLHTight | 76.0 4 4.6
|AE] < 0.025 GeV/c? 9.7+1.6
KLHTight 0.9+0.6
DY — 4x
Selection cuts except the cut on agy 0.8£0.5
agg > 0.997 0.1£0.2

Table 6.7: Number of expected D%p° and D°[r* 7~ 77~ | K*® peaking background events.

The number of peaking charmless events is evaluated from a fit to the mpgg variable,
using data in the Mpo sidebands (i.e. events that satisfy the condition |Mpo — Mpgminal| >
0.025GeV/c?). In Fig. 6.5 we show the distribution of the neutral D mass, after we have
applied all the cuts but the cut on Mpo. The projection of the fit over the variable mgg is
shown in Fig. 6.5. The number of peaking events, rescaled to the selected region (|Mpo —
Mpominall < 0.011 GeV/c?) is Npear, = —5 £ 7.

The total number of peaking events in the BB background is then assumed to be negli-
gible and fixed to zero in the fit. The effect of this assumption is taken into account in the
evaluation of the systematic uncertainties.
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Figure 6.5: Left: D° mass distribution in data after all selection cuts are applied (except
the cut on Mpo). Right: mpgg distribution in data of events in the Mpo sidebands (|Mpo —
Mpominall > (.025 GeV/c?), after all selection criteria are applied. No evidence of peaking
events is found.

6.3 Comparison between data and simulated events

The agreement between data and simulated distributions of the relevant variables used in this
analysis has been checked after all cuts are applied but the one on the showed variable (see
Figs. 6.6 and 6.7). The colored histograms represent the different Monte Carlo components
and the points with error bars are the data. Each component is rescaled to 353 fb~!, the
luminosity of the on-resonance data. In each case the agreement is satisfactory.
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6.4 Maximum likelihood fit

6.4.1 Structure of the fit model

The extraction of the number of signal and background events and CP parameters is per-
formed maximizing an extended unbinned likelihood function

efn,r]N N
Lea:t - H,P(XZ), (67)
Mo

where P(7) is the total probability density function (pdf) given by eq. (6.8) for event 7 and
x indicates the set of variables used in the likelihood fit x = {mpg, Fisher, At,m%,m?*}.
Here N is the total number of observed events and 7 its expected value according to Poisson
statistics.

Based on the background caracterization, we consider three different components in the
probability density function: signal (sig), continuum (Cont) and BB (BB) events. Both the
continuum and BB background component are subdivided into two categories, which differ
only in the term depending on {m3,m?}:

e combinatorial (not true) D° (Comb);

o true D° (D). Inside this category, we distinguish between real D mesons with a right
sign (RS) random K* (i.e. D°K~ or D°K™) or a wrong sign (WS) random K* (i.e.
DK™ or DK ™). This splitting is needed in order to account for the misinterpretation
of D decays as D° (and vice versa), relevant to parametrize correctly the Dalitz
structure. This background component does not contain CP-violating effects.

The total pdf P can then be written as:
P = f sigpsig +

C b e} o
fCont {(1 - RCont)PCgrrR + RCont [R]EgntPCont + (1 - R}égnt)PCont}} -

foe { (1 = og)PEO™ + Rog [RESPgs + (1 — RE)PE,) | (63
where
® Fsig = sig(mES)stg(FiShm")Psig(At)P(mia m?) Withp(mi,m%) = |[-PHrglfo P+

2krg {cos(és — ) Re[f- fi] +sin(dg — ’y)Im[f,fj;]} in the case of B® and P(m2,m?) =

\fo >+ 72 f-)? + 2krs {008(55 + ) Re[f+ f*] + sin(dg + 'y)Im[erfi]} in the case of BY
and f is given by eq. (6.3),

e o = D’ in the case of B° and D° in the case of B°, and @ denotes the CP conjugate
state of a;

e f, is the fraction for component k& = sig, Cont, BB over the expected value of total
events;



® Rcont (Rgg) is the fraction of real D°/D° in Cont (BB) background component;

o Rggnt (RBRBS) is the fraction of right sign D°/D" in Cont (BB) background component;
e P is the pdf for component & and real D° (o = D°) or D° (o = D”), while P,gomb is
the pdf for the component k and fake DP.

Py (and similarly kaomb) is parametrized as follows:

Py = P(mps)Py(Fisher)Pr(A)Pr(m2,m2) , (6.9)

The pdf is the product of a “yield” pdf Pf(mps)Pf(F)P§(At) (written as a product
of one-dimensional pdfs since mpg, F and At are not correlated) and of the Dalitz plot
dependent part: Pf‘(mi,m%), multiplied by the phase space distribution after selection
criteria, P(m2,m?) = PSaftereuts - pe(m2 m?) = f(m) is given by eq. (6.3) for true-D°
events and is parametrized by a third order polynomial for non true-D° events (see sec. 6.2.3).
In the following, with “yield fit”, we refer to the fit using only the “yield” pdf, that will allow
for the extraction of the number of signal and background events. Similarly, the term “CP
fit” refers the fit using the Dalitz plot dependent pdf (and hence giving sensitivity to 7).
The yield fit is first performed and validated (see sec. 6.5.1, 6.5.2 and 6.5.3), the number of
events and the CP parameters (rg, dg, 7v) are then determined in the CP fit. The validation
of the CP fit are shown in sec. 6.5.4.

6.4.2 Parametrizations of the distributions of the variables used
in the fit: mgg, Fisher and At

The variable mgg is parametrized as a Gaussian for the signal and as an Argus both for
continuum and BB background events. The Fisher discriminant is parametrized using a
bifurcate Gaussian for the signal and BB background and using the sum of two Gaussians
for the continuum background. For the signal, At is parametrized (see equation 6.10) with a
resolution function convoluted with an exponential in which 7 = 750. For the backgrounds,
to parametrize the fraction of events in which a B is misreconstructed, we convolve the
resolution function with an exponential with effective lifetime 7y and, for events in which there
is no real neutral B (fracgyy¢), we convolve the resolution function with an exponential in
which 7 = 0. The resolution function R(At, ;) is a sum of a core Gaussian (whose sigma
depends on the error on At event per event), a tail Gaussian and an outlier Gaussian:

R(At, UAt) - (1 - Qstail - d)out)G(Ata Heores ScoreUAt) + ¢tailG(At7 Htail s Utail) +
+¢outG(At> ,uouta Uout)

The parametrizations have been obtained on simulated events for signal and B5 back-
ground and, for continuum background, using off-resonance data. Fig. 6.8, 6.9 and 6.10
show the distributions so obtained for mpg Fisher and At for signal, BB and continuum
background events respectively.

Tab. C.1 (in appendix C) shows the values of the parameters determined in the parametriza-
tion fits and used in the final fit on data.
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Figure 6.10: mpg (top), Fisher (middle) and At (bottom) distributions of simulated BB
events.



The correlation between mpgg, F and At have been found to be negligible for all the
background components (of the order of a few percent). For signal the correlations are at
the level of —1.5%, —0.1% and 1.0% respectively for mgg as a function of Fisher, mgg as
a function of At and At as a function of Fisher. This allows to write the total pdf in the
likelihood fit as a product of one-dimensional pdfs for the single variables.

6.5 Results on real data

6.5.1 Fit on data: results for the yields

A first fit has been performed on data (fit of the “yields”) to extract the number of signal
and background events. The parameters left free to vary in the fit procedure on data are:

e the number of signal events, Ng;q;

e the number of continuum and BB events, Neonr and Ngp respectively;

e the mean value for the Gaussian describing mgg for signal events;

e the parameters of the Argus function describing mgg for BB background events.

The fit projections for mgg, F and At are shown in Fig. 6.11. The corresponding results of
the fit are given in Tab. 6.8: we find 39 £+ 9 signal events with a purity of % ~ 0.48.

SIG
In Fig. 6.12 we show the projection of the “yield” fit over the variable mgg, after a cut on

Fisher> 0.4 has been applied, in order to visually enhance the signal.

4

Parameter Fitted value
Nsia 39+9
Ncont 1772 £48
Nggp 231 £ 28
Sig mps p [GeV/c? | 5.2798 £ 0.0001 GeV/c?
BB mpgg shape —64.97 £ 14.69

Table 6.8: [Data - yield fit] Results for the yield fit on 353 fb~! on-resonance data.
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Figure 6.11: [Data - yield fit] Projections of the “yield” fit over the variables mgg, Fisher and
At. The fit has been performed on 353 f b~! on-resonance data. The different fit components
are shown: sig (red), BB (blue) and Cont (green).
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cut on Fisher> 0.4 in order to visually enhance the signal. The fit has been performed on
353fb~" on-resonance data. The different fit components are shown: signal (red dashed),
BB (blue dotted) and continuum (green dash-dotted).



6.5.2 Validation for the yields fit using a Toy-Monte Carlo proce-
dure

The “yield” fit has been validated with a toy Monte Carlo procedure. We generate 1000
experiments from the fit model, using the values in Tab. C.1 (in appendix C) for the param-
eters describing the different pdfs (mpgg, Fisher, At). The number of events are generated
according to Poisson distributions with expected values equal to the values found on data
(see Tab. 6.8). These samples are then fitted using the same fit model used for their gener-
ation. In Fig. 6.13 we show the distribution of Ngjq, its error and pull, obtained from this
study. The pull for the number of signal events is well behaved, its mean value is consistent
with zero and its resolution with unity. The fit procedure tends to overestimate the number
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Figure 6.13: [Validation - toy Monte Carlo]. Distributions of the fitted value (top left),
the error (top right) and the pull (bottom) for Ngse obtained from 1000 toy Monte Carlo
experiments.

of BB events (and consequently underestimate the number of continuum events). The pull
distribution for the number of BB events has a bias of about 15%. The only impact of
that is on the total fraction of b — wu-like real D events, which will be fixed in the final fit.
In continuum background events, the number of b — w-like real DY events is almost twice
that in BB events (see Tab. 6.5). This effect is taken into account in the systematic error
evaluation.



6.5.3 Crosschecks for the yield fit using the sPlot technique

A qualitative agreement of the presence of real signal events in the data can be obtained
using the sPlot technique [58]. In this technique, each event is reweighted using a weight
W, defined as following:
M/:ig = Z] sig,] J( iES i )7 (610)
2 Nj Pij(mips, At?)

where N; is the number of events of each component j (signal, continuum, BB) and P;; is
the product of probability density functions of mig and At* for the event i, V,,; is the
signal row of the covariance matrix of the component yields. The covariance matrix V., ; is
obtained from a yield fit in which all the parameters (but the yields) are fixed to the values
obtained in the nominal fit.

The sPlots of the variables At and mpg are shown (for signal, BB and continuum back-
ground) in Fig. 6.14 and Fig. 6.15 respectively. The curves are illustration of the expected
shapes for the different components. For the signal, the error bars are quite large (reflect-
ing the small signal yield) but the data distributions weighted by W, are in reasonable
agreement with the simulated events shapes for signal, BB and continuum components.
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Figure 6.14: [Data - sPlot]. sPlot distributions of At in data for signal, continuum and
BB background. Shapes obtained from signal MC, BB MC and off-resonance data are
superimposed for comparison.
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Figure 6.15: [Data - sPlot]. sPlot distributions of mps in data for signal, continuum and
BB background. Shapes obtained from signal MC, BB MC and off-resonance data are
superimposed for comparison.



6.5.4 Validation of the CP Dalitz fit: testing the polar coordinates

In order to validate the CP fit, we made many toy-MC tests both in polar and cartesian
coordinates (defined in chapter 2.2). All the tests are made using the number of signal and
background events obtained on data and summarized in Tab. 6.8.

Toy-MC tests have been first performed in polar coordinates, rg, v and ds: these three
parameters are all floated in the fit in addition to the number of signal and background
events, to the mean value for the Gaussian describing mpgg for the signal and the shape
parameter of the Argus pdf describing mpg for the BB background. The parameter k is
fixed in the fit to £ = 0.95 (see 2.6.2).

Due to the dependence of the likelihood on rg, we tend to get from the fit a value of
rg larger than the generated one and consequently, since rg leads the sensitivity to v, to
underestimate the error on +, this feature is known as the “linearity problem”.

In Fig. 6.16 (left plot), we summarize the results of many toy Monte Carlo tests made
generating different values for rg. The number of signal and background events are generated
according to the yields found in 353 fb™! of data. The plots show the fitted value rgit as a

function of the generated one r§&V.

| rg: fitted value VS generated one | | rg: fitted value VS generated one |
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Figure 6.16: Distribution of 71T vs r§EN from toy MC for different generated values. The

toy-MC samples have been generated assuming for the yields the results obtained with 353
fb! of on-resonance data (Nsrg = 37, Noons = 1810 and Npp = 258) (left) and for ten
times the statistics (right).

In Fig. 6.16 (left) it can be seen that, also for high values of rG®V, the results for rL" as
a function of r§¥N do not converge to the curve rgit = r§PN (the black curve in the plots).
We name this feature “low statistics problem”, since it disappears in the results of toy Monte
Carlo with ten times the statistics (Fig. 6.16, right).

In conclusion, with the available statistics for this analysis, the fit in polar coordinates
is not feasible (with rg, 7 and dg floating) because of the two effects: the “linearity” and



the “low statistics” problems, and that, for rg of order rg &~ 0.3, it is the second one that
dominates.

Tests have also been performed in polar coordinates for rg fixed in the fit. For different
values of r§EY we fit fixing rg each time to the generated value. In this configuration, also

for the available statistics, the fit shows a good behaviour for v and dg.

6.5.5 Validation for the CP Dalitz fit: testing the cartesian coor-
dinates

Toy-Monte Carlo studies have been performed also using in the fit the cartesian coordinates
(already defined in eq. 2.5 in chapter 2.2):

xy =rpgcos(d £7); yr =rpsin(d 7). (6.11)

The use of these coordinates has become usual for the Dalitz analyses of charged B mesons,
since it solves the “linearity problem” [61].

In Tab. 6.9, we summarize the results of toy Monte Carlo corresponding to 353 fb~! of
on-resonance data (left column) and with ten times larger statistics (right column). From
the simulation, with the present statistics, the four variables (., y+) show a non-Gaussian
behaviour and appear to be biased; the mean values of their pull distributions are not con-
sistent with zero and the resolutions are not compatibles with unity. This effect disappears
at high statistics (right column). We conclude that, with the available statistics, we cannot
perform the measurement in cartesian coordinates either.

| - | 383! | 35ab! |
pEUE =052 £0.05 | —0.04 £0.05
oPULL 1 0.82+0.03 | 0.97+0.04
pPUEL T —0.07 4 0.05 | —0.02 £0.05
oPULL T 078 £0.04 | 0.99 4 0.04
pl U =018 £0.05 | —0.05 £ 0.06
oPULL T 079 +0.04 | 1.014+0.04
plULL 0,40 £0.05 | —0.03 £0.05
oPULL T 079 +0.04 | 1.034+0.04

Table 6.9: Pull distributions for cartesian coordinates obtained from 500 toy-MC in a con-
figuration similar to the one we find on data (left column) and for ten times the statistics
(right column).

6.5.6 Adopted strategy for the CP fit

As shown in section 6.5.4, given the available statistics, an unbiased fit cannot be performed
neither in polar coordinates, with ~, 6 and rg floating, neither in cartesian coordinates. The
performed simulation studies show that the problem for the CP fit is mostly due to the lack
of signal statistics.



To avoid this problem, we extract from the fit a three-dimensional likelihood for the
variables v, ¢ and rg and we combine it with an additional rg measurement, as the one
obtained from the ADS analysis. The combination is obtained from the product of the
two pdf: the three-dimensional pdf (100 x 360 x 360 bins in rg, v and ) and the one-
dimensional Gaussian pdf for rg from the ADS analysis. The height of each bin (rg;, 7v;, dk)
is multiplied by the corresponding height of the ADS pdf for rg; and the three-dimensional
distribution obtained in this way is the pdf for the combined measurements. Whenever the
pdf is projected on any of the three variables (or on a set of them), an integral is performed
on the other variables.

This procedure has been tested on ten different samples, generated with a toy-Monte
Carlo procedure, using for the yields the values found on data and assuming rg = 0.3.
For each sample, the three-dimensional likelihood has been extracted and combined with
an hypothetical Gaussian measurement of r¢ = 0.30 4+ 0.15, where the central value is
consistent with the one generated for the ten samples. The results of these tests show that
v, 6 and rg can be extracted with no bias, provided that it is combined with an additional rg
measurement, even with an error of 50%. The precision we get from the ADS measurement
is better than that, being rg = 0.2717005%.

In conclusion, the output of the Dalitz measurement presented here, for the reasons
explained above, is a three dimensional likelihood scan in rg, v and 6. Simulation studies
show that results on the single variables can be safely obtained by projecting the three-

dimensional likelihood, provided that it has been combined with an external information on
rs, as the one from the B® — D°(D°)K** ADS analysis.

6.5.7 Fit on real data: results for the CP parameters: v, rg, dg

A three-dimensional likelihood scan for vy, § and rg is extracted from the fit to 353 fb=! of
on-resonance data. The three-dimensional likelihood is an histogram with 100 x 360 x 360
bins in (rg, 7, 9).

In Fig. 6.17 we show the 68% probability regions obtained for +, at different rg values (we
divide the interval [0, 1] for rg in 20 bins, rg = 0; 0.05; 0.1....0.95). As expected, moving the
value of the (fixed) rg does not affect the central value of 7, but only its error. For example,
for rg fixed at 0.35, we obtain v = (162 4+ 45)°. On toy-MC for the same fit configuration,
the average error is 39° with a RMS of 12°. All the distributions shown in the following are
obtained after the combination of the three-dimensional likelihood with the experimental
likelihood for rg from ADS analysis (see eq. 5.50). The projection of the three-dimensional
likelihood on the two-dimensional plane rg vs 7 is shown in Fig. 6.18. The projection of the
three-dimensional likelihood on the three variables, rg, v and 9, are shown in Fig. 6.19. The
dark and light colored zones are the 68% and 95% probability regions.

The corresponding values we obtain are:

v = (162 % 56)°0r(342 4 56)°;
§s = (62 4 56)°0r; (242 4 56)°
rs = 0.27375:05% , 75 € [0.12,0.38]@95%.
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Figure 6.17: 68% probability regions obtained for ~, at different values of rg. A 68% proba-
bility region cannot be obtained at values of rg lower than 0.2. The results are obtained on
353 fb~! on-resonance data.
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Figure 6.18: Projections, on the two-dimensional plane v vs rg, of the three-dimensional
likelihood, combined with the measurement of rg. The dark and light colored zones are the
68% and 95% probability regions.

6.5.8 Systematic uncertainties

In this section we discuss the sources of systematic uncertainties. These effects are assumed to
be Gaussian and uncorrelated between the three variables rg, v and dg. The total systematic
error is calculated for each variable separately. After that a 3-dimensional Gaussian is
built having as width, for each variable, the value of its systematic uncertainty. The three-
dimensional likelihood from the fit is then convoluted with this three-dimensional Gaussian
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Figure 6.19: Projections of the three-dimensional likelihood, combined with the rg measure-
ment from the ADS analysis, on rg (top plot), v (bottom left) and dg (bottom right). The
dark and light colored zones are the 68% and 95% probability regions.

to obtain the final three-dimensional pdf.

In order not to be sensitive to problems due to the low statistics of the sample in the
evaluation of the systematics, we evaluate the uncertainties on high statistics toy-MC. For
~v and §, we study the systematics using a toy-MC for a fixed value of rg. As a matter of
fact, the systematics do not depend on the rg value: the only difference between different rg
values is the number of b — u events and so the number of events that we should generate
in order to be in a “high statistic” condition.

e mgps and Fisher shapes and parameters in yields fit.
The systematics from pdfs shapes are evaluated by varying all the fixed parameters
by +1o. In addition, for continuum background, the fit is also performed using the



parameters obtained on simulated events (instead of off-resonance data).

e Peaking background assumptions
The number of peaking background events, evaluated on simulated events and on M po
sidebands data trough a fit to the mpgg distribution, is found consistent with zero and
fixed to zero in the fit. The systematic due to this assumption are evaluated by varying
the number of peaking background events within their statistical errors.

e True-D' fractions in background
The background true-D° fraction is evaluated on data through a D° mass fit in the
mpg sidebands region. The uncertainty due to this assumption is evaluated by varying
the value within its statistical error.

e b — c-like events fractions in background

The b — c-like (and complementary the b — u-like) events fractions for combinatorial
background are evaluated on simulated events. This value is bigger for the case of
continuum background than for the case of BB background (it is almost the double,
see Tab. 6.5). Toy-Monte Carlo studies show that the yield fit tends to overestimate
the number of BB background events and so to underestimate the number of b — u-
like events in combinatorial background (see sec. 6.2.3). The systematic uncertainty
due to this effect is evaluated by fixing the number of BB to the MC one and repeating
the CP-fit.

e Signal efficiency over the Dalitz plot
The variations of the efficiency over the Dalitz have been considered by using a phase
space distribution corrected after having applied the selection criteria. For the eval-
uation of the systematic effect the fit has been repeated using only the phase space
distribution PS™ (see eq. 6.5).

e Dalitz shape for fake-D° background
The Dalitz shape for combinatorial background are evaluated on simulated events (see
sec. 6.2.3). To evaluate the systematic effect due to this assumption, we repeat the fit
assuming a flat Dalitz distribution (without the presence of a K* contribution).

e Systematics from the assumptions on the k£ parameter
The k parameter is fixed in the fit to 0.95. We evaluate the systematics effect of this
assumption by varying the value to which we fix k in the interval [0.88, 1.] as determined
in 2.6.2.

e D' — K n"n~ Dalitz model parametrization The systematic uncertainty coming
from the parametrization of the D Dalitz model is evaluated by performing the fit on
data assuming different Dalitz models, including or not the K-matrix formalism or
parametrizing the 7m S-wave component using the scalar resonances o; and 0.

The systematic uncertainties are summarized in Tab. 6.10, and a detail of the different
contributions can be found in Tab. D.1 in appendix D.



Systematics source Av[°] | Ads[°] | Ars(1072)
pdf shapes 1.5 2.5 5.2
Peaking background 0.14 | 0.12 0.04
True D in the background || 0.05 | 0.03 1.0
Ry ., 0.01 1.1 1.9
Dalitz not true D° 0.31 0.62 0.61
Dalitz background param. || 0.03 0.27 0.2
k parameter 0.07 1.2 7.1
Dalitz model for signal 6.5 15.8 6.0
Total 6.7 16.1 11

Table 6.10: [Data - systematics| Systematic uncertainties on 7 , dg , and rg.

The results for v, rg and dg, taking into account the systematic effects and after the
combination with the rg measurement from the ADS analysis presented in chapter 5 are:

v = (1624 56)° or (342 £ 56)°; (6.12)
§s = (624 57)° or (242 £ 57)°;
re = 0.2737008 . < 10.120,0.381] at 95% probability.



6.5.9 Tests on B” and B" samples separately

In Dalitz analyses the phases v and § are constrained by the simultaneous use of B® and B°
samples, which are sensitive to d +v and § — =y respectively (see egs.2.11 and 2.11). Fig. 6.20
shows the pdf of v as a function of § as obtained on data, after having integrated on rg. It
is evident that for this measurement the sensitivity is higher on the combination § 4+ v than
on the combination § — . To better understand this feature, some tests have been made on
data considering separately the B° and B samples. In Fig. 6.21 we show the yield fit results
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Figure 6.20: Projections, on the two-dimensional plane v vs rg of the three-dimensional pdf,
combined with the rg measurement from the ADS measurement.

on the B and B° samples respectively. The results of this fit are summarized in Tab. 6.11.

parameter | BY sample | B sample
Nsia 16 £6 18 +6
NceonT 897 £+ 35 898 £+ 34
N,z | 111£21 | 106£20

Table 6.11: Results of the yield fit, separately for B® and B°, on 353fb~! on-resonance data.

Fig. 6.22 shows the likelihood scan ! for v as a function of §, for rg fixed to 0.35, for
the B® and for the B? sample respectively. The tests show that, despite the fact that the
number of signal events is comparable in the two samples, the B sample is less sensitive
to v and dg than the B® one. That is probably due to the different position, for the two

!The plots show the —AlnL, hence the preferred value is the minimum and the —AInL=0.5 determines
the 1o region
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Figure 6.21: mpg (top), Fisher (middle) and At (bottom) distributions extracted from the
fit on 353 fb~' of on-resonance data for B only (left) and B° only (right). The different
components are also shown: signal (red), BB (blue) and continuum (green).

samples, of the signal and background events in the Dalitz plot plane and is an effect that
is expected to disappear when more data are used.
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Figure 6.22: —AlnL as a function of y and ds for rg fixed in the fit, for B only (top) and
for B® only (bottom). The distribution is obtained on 353 b~ B on-resonance data.



6.5.10 Comparison with expected sensitivity

Despite the large value of rg (around 0.3), the obtained error on -~ is large. A partial
explanation of this effect is given in the previous paragraph ( 6.5.9). To further clarify this
situation, we have generated 1000 toy Monte Carlo experiments with the same generation
and fit configuration as the one used for the data. The number of signal and background
events and all the parameters that are free to vary in the fit are generated according to the
values we find on data and rg is generated, according to the result of the ADS analysis,
rg = 0.26 and fixed in the fit. In Fig. 6.23 we show the distribution of the error on 7. The
error on 7 obtained on data (displayed as a red dotted line in Fig. 6.23) is o, = 56°, while
the mean value of the distribution for the 1000 toy Monte Carlo experiments is < 0., >=41°.
The test has been repeated assuming values at plus and minus one standard deviation from
rg = 0.26: r¢ = 0.17 and rg = 0.34. The mean values and rms of the distributions of the
error on 7, assuming rg = 0.17 and rg = 0.34, are (51 + 13)° and (38 £ 10)° respectively.
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Figure 6.23: Distribution of the error on ~ obtained on 1000 different toy Monte Carlo
experiments for the Dalitz analysis in which rg has been generated at the value rg = 0.26
and fixed in the fit. The error obtained in the fit on data is also shown with the dotted line
at 0., = 56°.



Chapter 7

Conclusions and perspectives

7.1 Summary of the results

In this thesis the first measurement of rg and of the angle + from neutral B® — D°(D%) K*0
decays has been presented. As a first result (see chapter 5), the ratios Rapg for the B® —
DYDY K*0 with D° — K*#¥, K*rF70 and K*nF7F7% have been measured with the ADS
technique using 423 fb! of data, resulting in the following 68% probability intervals:

RiT s = 0.0677000; (7.1)
RERT = 0.060*0052;

Knrom __ +0.114

Since the single measurements for the R 4pg ratios are not statistically significant, 95% prob-
ability limits are calculated by integrating the likelihoods, starting from R4pg = 0, obtaining
Raps(Km) < 0.244, Raps(K7m®) < 0.181 and Raps(Knrm) < 0.391 at 95% probability.
The statistical average of the three R4pg measurements, including the systematic effects
and ignoring differences in the rp parameters and in the strong phases between the three
channels, is 0.07870 sz, thus indicating a signal with a 2.2 o significance.

From these results we infer the ratio rg to be !:

— +0.077

rs € [0.05,0.396] at 95% probability.

This result is consistent with the expectations for a larger value of this parameter in
case of neutral B decays, with respect to charged B decays and clearly states the interest of
studies of B® — D°(D®)K*° decays to measure 7.

A first step in this direction, the Dalitz analysis of B® — D°(D%) K** with neutral D
decaying into Kqmt7~ final states based on 353 fb~! data, is presented in chapter 6 of the
thesis. The information on the rg parameter is very helpful for extracting v from this Dalitz

'Which is consistent with the only experimental information on rg, the upper bound (rg < 0.4) put on
this parameter from a low statistics BABAR analysis [73].
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analysis. Indeed, the analysis suffers from low statistics effects and simulation studies have
proved that, only when combining the three-dimensional likelihood obtained from the Dalitz
measurement with the external information on rg, the weak phase v can be safely extracted.
The values obtained for rg, v and dg from the combination of the ADS and Dalitz analyses
are:

v = (162 +56)° or (342 + 56)°; (7.2)
§s = (62+57)° or (242 + 57)°;
rg¢ = 0.25970973 . < 10.08,0.397] at 95% probability.

As commented in sec. 6.5.10, the error (of 56°) on ~ is rather large (see Fig. 6.23), being
expected in average to be around 41° from data driven simulation studies. In Fig. 7.1,
the value obtained for rg is compared with the equivalent ratios for charged B channels. In
Fig. 7.2, we show the comparison of the measured value with the expectation for rg evaluated
as explained in sec. 2.4.
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Figure 7.1: Values for the rp (rg) ratios for different charged channels, D°K*, D**K* and
DYK** ([25]) and for our analysis DK™,

7.2 Perspectives

In the following we show some extrapolations to higher luminosity scenarios for the mea-
surements presented in this thesis.

In Fig. 7.3 (left plot), the evolution of the error on rg from an ADS analysis using
separately the three channels studied in this thesis (K7, Krn" and Krrr) is shown. The
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Figure 7.2: The measured value for rg, represented by the point with error bars, is compared
with the 68% probability region expected for rg for D°K*? decays from the evaluation
presented in sec. 2.4 (left plot). In the right plot, the 68% probability regions expected for
rg for D°K° and D**K° decays are also shown.

error on rg is analytically calculated (up to a scenario of 10 ab™!) according to the expression
obtained in 2.16. In this test, rg is assumed to be rg = 0.26, the relative errors on the Rapg
ratios are taken from the measurement presented in chapter 5 and they are assumed to scale
with the luminosity (o< 1/v/N). The “limit” error on Rapg, rp/ \/23), is also shown in the
plot. This term being proportional to rp, it is lower for K7n® than for the other two D
decay modes. Fig. 7.3 (right plot) shows the variation, up to a scenario of 10 ab™!, of the
error on rg from the combination of the three D channels.

In Fig. 7.4 (left plot), the variation of the error on 7 from the Dalitz analysis of B® —
DO(D%)K*° decays is shown. The values are obtained (for a statistics of 353 fb~1, 450 fb~?
and 1 ab™!) from toy Monte Carlo studies, for three different values of rg, corresponding to
the central value found on data and values at plus and minus one standard deviation from it
(rs = 0.17, rg = 0.26 and rg = 0.34). In the toy Monte Carlo procedure rg is fixed in the fit,
while 7, 65 and the yield parameters are left free to vary. With a statistics of 1 ab™!, and for
rs = 0.26, an error of ~25° can be obtained on 7 from this analysis. In Fig. 7.4 (right plot),
the variation of the error on 7 from the Dalitz analysis of B® — D°(D°)K** decays (for
rs = 0.26, corresponding to the central value found on data), for a statistics of 353 fb™!, 450
fb~! and 1 ab™!, is compared with the variation of the error on 7 from the Dalitz analysis
of D'K**, D°K* and D**K*, with D — Kyntn~. The values for the errors on v from
the D°K**, DYK* and D**K " measurements separately are evaluated from the results of
the Dalitz BABAR analysis [59] for the number of events, the ratios rg, 75 and rg and 7. It
can be noted that the use of neutral B meson decays, B® — D°(D°)K*° proposed in this
thesis, has the second best single-channel sensitivity for measuring ~.
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Figure 7.3: Left plot: evolution of the error on rg from the ADS analysis using separately the
three D modes studied in this thesis (K7, K7w? and K77m). The error on rg is analytically
calculated (up to a scenario of 10 ab™!). The “limit” error on Raps coming from the term
containing the phases is also shown. Right plot: variation of the error on rg from an ADS
analysis combining the three channels studied in this thesis (K7, Kn7® and Krnr). The
error on rg is analytically calculated (up to a scenario of 10 ab™1).
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Figure 7.4: Left plot: variation of the error on 7 from the Dalitz analysis of B® — D°(D°) K*
decays, for a statistics of 353 fb™!, 450 fb=! and 1 ab™!, for three different values of rg
(r¢ = 0.17, rs = 0.26 and rg = 0.34). Right plot: variation of the error on ~ from the Dalitz
analysis of B — DY(D°)K** decays (for rg = 0.26), for a statistics of 353 fb~*, 450 fb~! and
1 ab™!, is compared with the variation of the error on 7 from the Dalitz analysis of DY K**,
DK+ and D*K™*, with D° — Kontn—.



Appendix A

Values of the pdf parameters for mgg
and Fisher used in the ADS analysis

In Tabs. A.1, A.2 and A.3 we show the values of the pdf parameters, as obtained on MC,
for the K7, Knm® and K7rm modes respectively. The choice of the fitting functions are
described in sec. 5.4.2, where the plots for the distributions of mgg and Fisher are also shown
(Figs. 5.19-5.23). The values shown for the fixed parameters are used for the fit validation
with a toy Monte Carlo procedure as explained in sec. 5.4.3 and on a fully simulated sample
(sec. 5.4.4). The fitted values (marked as “floated” in the tables, left free to vary in the fit)
can be compared with those obtained in the fits to fully simulated samples (see tabs. 5.14—
5.16).
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Parameter value In final fit
Sig mps u[GeV/c?] 5.27950 + 0.00002 floated
Sig mps o[GeV/cY 0.002480 = 0.000014 |  fixed
Sig Fisher s, 1.135 & 0.022 fixed
Sig Fisher po 1.708 4 0.020 fixed
Sig Fisher o, 0.571 £+ 0.024 fixed
Sig Fisher o9 1.024 £ 0.014 fixed
Sig Fisher frac 0.356 £+ 0.034 fixed
Same Sign Cont mgg cutoff [GeV/c?] 5.2886 £ 0.0004 floated
Same Sign Cont mgg shape -39.5 £ 5.5 floated
Opposite Sign Cont mpg cutoff [GeV/c?] 5.2892 £+ 0.0001 floated
Opposite Sign Cont mpgg shape -49.3 + 2.7 floated
Cont Fisher p -0.88 4+ 0.02 fixed
Cont Fisher o 0.964 £+ 0.015 fixed
Same Sign BB mpg cutoff [GeV/c?] 5.2876 + 0.0006 fixed
Same Sign BB mpg shape -136.5 + 13.2 fixed
Opposite Sign BB mpg cutoff [GeV/c?| 5.2889 4+ 0.0009 fixed
Opposite Sign BB mpgg shape -50.5 + 9.8 fixed
BB Fisher i, 0.93 & 0.15 fixed
BB Fisher ps 0.65 £ 0.08 fixed
BB Fisher o, 0.33 £ 0.12 fixed
BB Fisher oy 1.01 & 0.06 fixed
BB Fisher frac 0.13 £ 0.08 fixed

Table A.1: [ADS analysis - K7 mode] Fitted and fixed parameters for the pdf of mgg and
Fisher, for K'm mode, obtained on simulated events.



Parameter value In final fit
Sig mps p|GeV/c?] 5.2795 4 0.00002 floated
Sig mps o[GeV/cY 0.002540 = 0.000023 |  fixed
Sig Fisher pu 0.787 £ 0.029 fixed
Sig Fisher po 1.131 £ 0.041 fixed
Sig Fisher o, 1.015 + 0.024 fixed
Sig Fisher o9 0.564 + 0.051 fixed
Sig Fisher frac 0.685 4+ 0.066 fixed
Same Sign Cont mgg cutoff [GeV/c?] 5.28910 £ 0.00015 floated
Same Sign Cont mpgg shape -29.3 £ 2.1 floated
Opposite Sign Cont mpg cutoff [GeV/c?] || 5.28900 + 0.00004 floated
Opposite Sign Cont mpgg shape -33.4 + 1.2 floated
Cont Fisher p -0.852 £ 0.009 fixed
Cont Fisher o 0.948 £+ 0.006 fixed
Same Sign BB mpg cutoff [GeV/c?] 5.2893 + 0.0004 fixed
Same Sign BB mpg shape -63.5 + 5.0 fixed
Opposite Sign BB mpg cutoff [GeV/c?| 5.2891 4+ 0.0003 fixed
Opposite Sign BB mpg shape -35.3 £ 4.1 fixed
BB Fisher i, 0.73 & 0.08 fixed
BB Fisher s 0.26 & 0.20 fixed
BB Fisher o, 0.74 £+ 0.08 fixed
BB Fisher oy 1.2 £0.1 fixed
BB Fisher frac 0.72 &+ 0.19 fixed

Table A.2: [ADS analysis - K7n® mode] Fitted and fixed parameters for the pdf of mgg and
Fisher, for the K77® mode, obtained on simulated events.




Parameter value In final fit
Sig mps u[GeV/c?] 5.2795 + 0.00003 floated
Sig mps o[GeV/cY 0.002462 = 0.000020 |  fixed
Sig Fisher pu, 0.75 4+ 0.03 fixed
Sig Fisher po 1.05 £ 0.03 fixed
Sig Fisher o, 1.03 £ 0.02 fixed
Sig Fisher o9 0.56 £ 0.04 fixed
Sig Fisher frac 0.64 £+ 0.05 fixed
Same Sign Cont mgg cutoff [GeV/c?] 5.2887 £+ 0.0002 floated
Same Sign Cont mpgg shape -34.0 £ 2.6 floated
Opposite Sign Cont mpg cutoff [GeV/c?] 5.2891 4+ 0.0001 floated
Opposite Sign Cont mpgg shape -35.6 £ 1.5 floated
Cont Fisher p -0.86 4+ 0.01 fixed
Cont Fisher o 0.930 = 0.007 fixed
Same Sign BB mpg cutoff [GeV/c?] 5.2887 + 0.0004 fixed
Same Sign BB mpg shape -80.0 £+ 5.2 fixed
Opposite Sign BB mpg cutoff [GeV/c?| 5.2888 4+ 0.0006 fixed
Opposite SignBB mpg shape -34.3 + 4.6 fixed
BB Fisher i, 0.59 & 0.05 fixed
BB Fisher ps 0.24 £+ 0.14 fixed
BB Fisher o, 0.72 & 0.07 fixed
BB Fisher oy 1.2 + 0.1 fixed
BB Fisher frac 0.71 £ 0.15 fixed

Table A.3: [ADS analysis - Knmm mode] Fitted and fixed parameters for the pdf of mpgg
and Fisher, for K37 mode, obtained on simulated events.



Appendix B

More details on toy Monte Carlo
results for the ADS analysis

The fit validation using a toy Monte Carlo procedure is presented in sec. 5.4.3. More details
are given in the following. In Fig. B.1, B.2 and B.3, we show the distribution of Npg-«
and of its error for the three D° channels. For the three D modes, we also show the pull
distributions for continuum and BB background events are shown in Fig. B.4, B.5 and B.6.

Ndikappa Ndikappa_err Ndikappa_err [Ndikappa_pull ] Ndikappa_pull |

Enries 999 Eniies 999 Eniries 999

r T T T T F T T| Mean -0.0191

100~ Mean 9033 Mean 1312 E ean oo

E RMs 1337 RMS 06677 160F— Underfiow 0

r Underfiow 0 Underfiow 0 E overilow o

80— Overflow 0 Overflow 0 1401~ Integral 999

r Integral 999 Integral 999 E 05815

r = | = 120 Constant 154.5+6.0

N 7 E Mean -0.01263 + 0.03267

o ] 100 Sigma 023
L ] 80—
40~ 4 E
F e 60—
r 1 a0~
20~ 4 E
L ] 50E- 20
C | | | | | 1 o | | | | L

20 20 60 80 100 120 140 5 10 15 20 25 ' 3 2 1 0 T 2 3

Figure B.1: [K7 mode| Distributions of the fitted value (left), the error (middle) and the
pull (right) for Npg+ obtained with the toy MC described in the text for the K7 channel.
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Figure B.2: [K77® mode] Distributions of the fitted value (left), the error (middle) and the
pull (right) for Npg+ obtained with the toy MC described in the text for the K7m® channel.
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Figure B.3: [K7nmm mode] Distributions of the fitted value (top left), the error (top right)
and the pull (bottom) for Npg+ obtained with the toy MC described in the text for the K3n
channel.
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Figure B.4: [K'm mode] Pull distributions for continuum same sign (top left), continuum
opposite sign (top right), BB same sign background (bottom left) and BB opposite sign
background (bottom right) for the K7 channel.
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Figure B.5: [K77® mode] Pull distributions for continuum same sign (top left), continuum
opposite sign (top right), BB same sign background (bottom left) and BB opposite sign
background (bottom right) for the K77® channel.
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Figure B.6: [K7wm mode] Pull distributions for continuum same sign (top left), continuum
opposite sign (top right), BB same sign background (bottom left) and BB opposite sign
background (bottom right) for the K3x channel.






Appendix C

Values of the pdf parameters for mpgg,
Fisher and At used in the Dalitz
analysis

Tab. C.1 summarizes the values of the pdf parameters used in the “yield” fit for the Dalitz
analysis. The table also shows which of these parameters are floated in the final fit on data
(in addition to the number of events for sig, Cont and BB).

The choice of the fitting functions are described in sec. 6.4.2, where the plots for the dis-
tributions of mpgg, Fisher and At are also shown (Figs. 6.8, 6.9 and 6.10). The values shown
for the fixed parameters are used for the fit validation with a toy Monte Carlo procedure
as explained in sec.6.5.2. The shapes of the distributions have been checked with an sPlot
technique (sec. 6.5.3). The fitted values (marked as “floated” in the tables, left free to vary
in the fit) can be compared with those obtained in the fit on real data (see tab. 6.8).
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Table C.1: PDF parameters as extracted from the mgg F and At fit on MC and offresonance

data.

Shape parameter ‘ value status in final fit on data ‘
mgs
Sig pmEs 5.27957 £ 0.00002 GeV/c? floated
Sig omps 2.48 +£0.01 MeV/c? fixed
Cont cutof fps 5.29 GeV/c? fixed
Cont slope,,gs —32.5£82 fixed
BB cutof furs 5.29 GeV/c? fixed
BB slopengs —56.0 + 6.7 floated
f
Sig prish 1.69 £ 0.02 fixed
Sig o1, Fish 1.41 +£0.01 fixed
Slg OR Fish 0.52£0.01 fixed
Cont frisn 0.08 £0.03 fixed
Cont i1 Fish 1.0+ 0.6 fixed
Cont o pish —9.68 £0.07 fixed
Cont 01 Fish 0.63 £0.12 fixed
Cont 092 Fish 0.92 £ 0.55 fixed
BB jipish 1.194+0.19 fixed
BB oy, pish 1.46 +0.13 fixed
BB o pish 0.63+0.11 fixed
At

Sig At pcore (—0.3087 £ 0.102) - 10~ %5 fixed
Sig At scale, core 1.269 £ 0.166 fixed
Sig At fira (—7.21 £ 0.85) - 1025 fixed
Sig At opai (1.36 £ 1.7) - 10~ 125 fixed
Sig At p1ou 0.-107 "% fixed
Sig At 0out 8.-107 "% fixed
Sig At frai 0.0079 4+ 0.0060 fixed
Sig At four 0.0053 & 0.0100 fixed
TB+B- 1.53- 107 %5 fixed
Cont Al pieore | (—0.0717 £ 0.365) - 107125 fixed
Cont At scale, core 0.146 £ 0.22 fixed
Cont At fsnort 0.897 £ 0.112 fixed
BB At icore (0.074 4 0.365) - 107125 fixed
BB At scaley core 1.773 +0.222 fixed
BB At pray (—0.73 £ 0.56) - 10725 fixed
BB At 074 (1.52 £0.35) - 1072 fixed
BB At fra 0.36 +0.19 fixed
BB At fou 0.72+0.13 fixed




Appendix D

Details on Dalitz analysis systematic
uncertainties

The systematic uncertainties for the Dalitz analysis are presented in sec. 6.5.8 and summa-
rized in Tab. 6.10. In Tab. D.1 we give more details on the single contributions.

Parameter val £+ err A~[°] AJ[°) Arg
Sig mpg pdf TOT sys 471071 ] 941071 5.3 1073
Sig Fisher pdf TOT sys 371072 1.107! 8.910°%
Sig At pdf TOT sys 251071 [ 251071 1.6 1073
Cont mpg pdf TOT sys -325+£82 [ 181071 | 1.11071 851073
Cont Fisher pdf TOT sys 8.8 1071 1.15 51072
Cont At pdf TOT sys 1.0 1.5 7.31073
BB mgg pdf TOT sys —48.34+10.0 | 211072 | 451072 1.5 1073
BB Fisher pdf TOT sys 3.510°! 1.1 1.21072
BB A t pdf TOT sys 391071 [ 591071 1.81073
TOT sys from pdf 1.5 2.5 5.2 1072
Peaking bkg assumptions 141071 | 1.21071 3.510°4
fracDOcontand BB 0.289+£0.028 | 521072 | 3.21072 1.0 1072
k parameter 0.95 7.21072 1.2 7.11072
Dalitz model (K-matrix) 2.9 5.5 31073
Dalitz model (no o; and o) 6.4 15.8 6 1072
Sig eff. over the Dalitz plot 311071 [ 621071 6.0 1073
Dalitz shape for fake-D° bkg 3.01072 ] 271071 2.01073
BB V-like evt fraction 1.01072 | 1.010° 1! 471073
Cont V_p-like evt fraction 501073 | 3.510°2 1.9 1072
TOT syst (3.2) 6.6 | (6.2) 16.1 | (8.9) 1.0 10~ ¢

Table D.1: Systematics contributions to the determination of v,  and rg.
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Abstract

In this thesis we present CP violation studies in the B mesons system, and in particular
measurements of the angle v of the Unitarity Triangle, using data collected by the BABAR ex-
periment. The angle ~ is the relative weak phase between the V,;, and V,, elements of the
CKM matrix. A crucial parameter, which drives the sensitivity to «, is the ratio r between
b — u and b — c transition amplitudes.

In the first part of the thesis, general issues on v studies and the status of the present
measurements are introduced.

The experimental work is then detailed. It is composed of two different analyses of
BY — DY(D°)K*°. In the first analysis, these decays are studied through the ADS method,
where the neutral D mesons are reconstructed into K77, K*nF7r? and K*nTr*xT final
states. This analysis allows to determine, for the first time, the ratio r for B® — D°(D°)K*?,
which is found to be r = 0.260705%7. The large value for the parameter r makes the use of
this channel interesting for present and future facilities, for the determination of ~.

In the second analysis, tha channel B® — D°(D°)K*? is studied with a Dalitz method
and the neutral D mesons are reconstructed into K¢n ™7~ final states. The determination
of v from this analysis is 7 = (162 &+ 56)°, with a 180° ambiguity. The result for r from
the combination of the two analyses is: r = 0.259735%. These results represent the first
contraints on v and r obtained from neutral B decays.

Finally, data driven simulation studies are discussed, which show that the study of the
BY — DY(D®)K*° is competitive, for the determination of v, with the other analysis aiming
to extract v from charged B decays.

Key words: CP violation, CKM, BABAR experiment, UTfit, weak phase v, b — u amplitude,
ADS method, Dalitz method
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Résumé

Cette these porte sur I’ étude de la violation de CP dans le secteur des mésons B et en par-
ticulier les mesures de ’angle v du Triangle d’Unitarité, en utilisant les données enregistrées
par le détecteur BABAR . L’angle v est la phase relative entre les éléments V,;, et V,, de la
matrice CKM. Un parametre tres important dans les mesures de v est le rapport r entre
les amplitudes des désintégrations qui comportent une transition des quarks b — wu et les
désintégrations qui comportent une transition b — c. La sensibilité a v est proportionelle a
la valeur de ce parametre.

Dans la premiere partie de cette these, les problematiques liées a I’étude de ’angle ~ ainsi
que I'état actuel des mesures sont presentés.

Le travail experimental est ensuite présenté, il comporte deux analyses en utilisant les
désintégrations B® — D°(D®)K*°. Dans la premiere analyse, le canal B — D°(D%)K** est
étudié en utilisant une méthode ADS et les mésons D neutres sont reconstruits dans les états
finals K*7F, K*¥nFr0 et K*nTa*tnT. Cette analyse permet de mesurer, pour la premiere
fois, le rapport 7 pour le canal B — DYK*°. On obtient: r = 0.260700%. La grande valeur
obtenue pour r rend l'utilisation de ce canal tres intéressante pour les expériences présentes
et futures, pour la détermination de ’angle ~.

Dans la deuxieme analyse, le canal B® — D°(D%) K*" est étudié avec une méthode Dalitz
et les mésons D neutres sont reconstruits dans 1’état final Kgntn~. Cette analyse permet
une mesure de I'angle 7. On obtient v = (162 + 56)° avec une ambiguité de 180°. La
détermination du parametre 7 par les deux analyses combinées est: r = 0.259700%. Ces
analyses donnent les premiers resultats sur v et r obtenus a partir des études des mésons B
neutres.

Finalement, des études de simulation, basés sur les données, sont presentés. Ces études
montrent que 'utilisation des canaux B° — D°(D°)K** peut donner une sensitivité a
comparable avec celle des autres analyses, qui utilisent les mésons B chargés.

Key words: violation de CP, CKM, experience BABAR , UTfit, phase faible v, amplitude
b — u, méthode ADS, méthode Dalitz
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