
HAL Id: tel-00293206
https://theses.hal.science/tel-00293206v2

Submitted on 7 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Querying RDF(S) with Regular Expressions
Faisal Alkhateeb

To cite this version:
Faisal Alkhateeb. Querying RDF(S) with Regular Expressions. Computer Science [cs]. Université
Joseph-Fourier - Grenoble I, 2008. English. �NNT : �. �tel-00293206v2�

https://theses.hal.science/tel-00293206v2
https://hal.archives-ouvertes.fr

THÈSE

présentée à
l’Université Joseph Fourier - Grenoble 1

pour obtenir le grade de
DOCTEUR

spécialité
Informatique

intitulée

Querying RDF(S) with Regular
Expressions

présentée et soutenue publiquement le 30 juin 2008 par
Faisal Alkhateeb

devant le jury composé de:
Jean-François Baget Co-encadrant
Vassilis Christophides Rapporteur
Jérôme Euzenat Directeur de thèse
Ollivier Haemmerlé Rapporteur
Amedeo Napoli Examinateur
Marie-Christine Rousset Présidente

Dedicated to my father and my wife Ebtesam Abushareah

i

ii

Abstract

RDF is a knowledge representation language dedicated to the annotation of re-
sources within the Semantic Web. Though RDF itself can be used as a query lan-
guage for an RDF knowledge base (using RDF semantic consequence), the need
for added expressivity in queries has led to define the SPARQL query language.
SPARQL queries are defined on top of graph patterns that are basically RDF graphs
with variables. SPARQL queries remain limited as they do not allow queries with
unbounded sequences of relations (e.g. "does there exist a trip from town A to
town B using only trains or buses?"). We show that it is possible to extend the
RDF syntax and semantics defining the PRDF language (for Path RDF) such that
SPARQL can overcome this limitation by simply replacing the basic graph pat-
terns with PRDF graphs, effectively mixing RDF reasoning with database-inspired
regular paths. We further extend PRDF to CPRDF (for Constrained Path RDF) to
allow expressing constraints on the nodes of traversed paths (e.g. "Moreover, one
of the correspondences must provide a wireless connection."). We have provided
sound and complete algorithms for answering queries (the query is a PRDF or a
CPRDF graph, the knowledge base is an RDF graph) based upon a kind of graph
homomorphism, along with a detailed complexity analysis. Finally, we use PRDF
or CPRDF graphs to generalize SPARQL graph patterns, defining the PSPARQL
and CPSPARQL extensions, and provide experimental tests using a complete im-
plementation of these two query languages.

Keywords: Knowledge Representation Languages, RDF(S), Querying Seman-
tic Web, SPARQL, Graph Homomorphism, Regular Languages, Regular Expres-
sions, SPARQL Extensions, PRDF, PSPARQL, CPRDF, CPSPARQL.

iii

iv

Résumé

RDF est un langage de représentation des connaissances dédié à l’annotation des
ressources dans le Web Sémantique. Bien que RDF peut être lui-même utilisé
comme un langage de requêtes pour interroger une base de connaissances RDF
(utilisant la conséquence RDF), la nécessité d’ajouter plus d’expressivité dans les
requêtes a conduit à définir le langage de requêtes SPARQL. Les requêtes SPARQL
sont définies à partir des patrons de graphes qui sont fondamentalement des graphes
RDF avec des variables. Les requêtes SPARQL restent limitées car elles ne per-
mettent pas d’exprimer des requêtes avec une séquence non-bornée de relations
(par exemple, "Existe-t-il un itinéraire d’une ville A à une ville B qui n’utilise
que les trains ou les bus?"). Nous montrons qu’il est possible d’étendre la syntaxe
et la sémantique de RDF, définissant le langage PRDF (pour Path RDF) afin que
SPARQL puisse surmonter cette limitation en remplaçant simplement les patrons
de graphes basiques par des graphes PRDF. Nous étendons aussi PRDF à CPRDF
(pour Constrained Path RDF) permettant d’exprimer des contraintes sur les som-
mets des chemins traversés (par exemple, "En outre, l’une des correspondances
doit fournir une connexion sans fil."). Nous avons fourni des algorithmes corrects
et complets pour répondre aux requêtes (la requête est un graphe PRDF ou CPRDF,
la base de connaissances est un graphe RDF) basés sur un homomorphisme parti-
culier, ainsi qu’une analyse détaillée de la complexité. Enfin, nous utilisons les
graphes PRDF ou CPRDF pour généraliser les requêtes SPARQL, définissant les
extensions PSPARQL et CPSPARQL, et fournissons des tests expérimentaux en
utilisant une implémentation complète de ces deux langages.

Mots-Clés: Langage de Représentation des Connaissances, RDF(S), Web Sé-
mantique, Langages de Requêtes, SPARQL, Homomorphisme de Graphes, Lan-
gages Réguliers, Expressions de Chemins, Expressions Régulières, Extensions de
SPARQL , PRDF, PSPARQL, CPRDF, CPSPARQL.

v

vi

Acknowledgments

IWould like to thank first my thesis supervisor Jérôme Euzenat for accepting

me as a member in his team. I am greatly indebted to him for his guidance

and all kinds of supports throughout my research period. His perception and avail-

ability allowed me to get easily feedback and directions which were the necessary

elements for success at different crucial points. To my co-advisor Jean-François

Baget, I say thank you for your directions in the first stages of my research for-

mation. I would like also to thank Professor Vassilis Christophides for his invalu-

able comments and questions during the reporting period that undoubtably helped

improving the quality of the presentation in some parts; Professor Ollivier Haem-

merlé, which is of my pleasure, to be a reporter of my thesis; Amedeo Napoli and

Professor Marie-Christine Rousset for accepting to be members in the jury. I would

like to thank my friends in the EXMO team and in other teams: Antoine Zimmer-

mann, Sébastien Laborie, Arun Sharma, Seungkeun Lee, Jason Jung, Jérôme Pier-

son, Jérôme David, Chan Leduc, Nizar Ghoula and Julien Burlet. I would like to

give a special thank to Gilles Kuntz that helped us to have necessary documents for

my daughter Ayah to enter the France.

Special thanks to my family for supporting me during the study period: Ebte-

sam Abushareah, Deema Alkhateeb, Ayah Alkhateeb, Hebah Alkhateeb and my

father that encouraged me for having the success. Finally, I would like to thank

Yarmouk University for giving me the opportunity and the scholarship to continue

my graduate studies.

vii

viii

Table of Contents

1 Introduction 1
1.1 Motivations and Objectives . 1

1.2 Main Contributions . 4

1.3 Thesis outline . 6

I Background 9

2 The RDF Language 11
2.1 RDF Syntax . 12

2.2 Simple RDF Semantics . 15

2.3 Inference Mechanism . 18

2.4 RDF Entailment: Definition and Complexity 20

2.5 RDF vs. graph database models 20

2.6 Conclusion . 22

3 Querying RDF Graphs 23
3.1 (Semi)-Structured Query Languages 24

3.2 RDF Query Languages . 26

3.3 The SPARQL Query Language 27

3.4 Extensions to SPARQL . 33

3.5 Work on SPARQL . 35

3.6 Comparison with other Query Languages 36

3.7 Conclusion . 37

II Research Work 39

4 A General Graph Framework with Paths 41

ix

4.1 PRDF Syntax . 42

4.2 PRDF Semantics . 47

4.3 Querying RDF with PRDF Graphs 51

4.4 Containment of PRDF Queries 58

4.5 Conclusion . 64

5 The PSPARQL Query Language 65
5.1 PSPARQL Syntax . 66

5.2 Formal Semantics of PSPARQL 67

5.3 Translation from PSPARQL to SPARQL 70

5.4 Algorithms for PSPARQL Query Evaluation 72

5.5 Complexity of Evaluating PSPARQL Graph Patterns 82

5.6 Conclusion . 83

6 Constrained Paths in SPARQL 85
6.1 CPSPARQL by examples . 86

6.2 CPRDF: Constrained Paths in RDF 89

6.3 The CPSPARQL Query Language 100

6.4 Summary . 103

7 Other Possible Extensions 105
7.1 Path Variables . 105

7.2 Similarity-Based Path Matching 110

7.3 Nested Queries . 113

7.4 Extending Constraints in CPSPARQL 114

7.5 Conclusion . 115

8 Querying RDFS Graphs 117
8.1 RDF(S) . 119

8.2 RDF(S) Closure and Query Answering 121

8.3 RDF(S) Entailment and Query Rewriting 123

8.4 Conclusion . 129

9 Implementation and Experiments 131
9.1 Implementation . 131

9.2 Experiments . 134

9.3 Conclusion . 148

x

10 Conclusion 149
10.1 Summary . 149

10.2 Future Directions . 150

III Appendices 165

A CPSPARQL Grammar 167

B Résumé étendu 173
B.1 Motivations et objectifs . 174

B.2 Résumé des contributions . 176

B.3 Organisation de la thèse . 178

B.4 Conclusions . 180

xi

xii

Introduction 1
Contents

1.1 Motivations and Objectives 1

1.2 Main Contributions . 4

1.3 Thesis outline . 6

The world wide web (or simply the web) has become the first source of knowl-

edge for all life domains. It can be seen as an extensive information system that

allows changing the resources as well as documents. The semantic web is an evolv-

ing extension of the Web aiming at giving well defined form and semantics to the

web resources (e.g. content of an HTML web page) [Berners-Lee et al., 2001]. In

particular, query answering is an essential functionality of any information system,

and so of the semantic web. This thesis studies the current query mechanisms for

the semantic web and studies the problem of supporting path expressions and path

retrievals in the semantic web knowledge bases. The motivation of this study arises

from limitations in the current query languages for supporting and extracting paths

from knowledge bases.

1.1 Motivations and Objectives

RDF (Resource Description Framework [Miller et al., 2004]) is a knowledge rep-

resentation language dedicated to the annotation of documents and more generally

of resources within the semantic web. In its abstract syntax, an RDF document is

a set of triples (subject, predicate, object), that can be represented by a directed

labeled graph (hence the name, RDF graph). The language is provided with a

2 CHAPTER 1. INTRODUCTION

ex:Switzerland ex:Genève ex:CanaryIslands

ex:Zürich ex:SantaCruz

ex:Italy ex:Roma ex:Madrid ex:Spain

ex:cityIn
ex:cityIn ex:train ex:plane

ex:plane

ex:plane
ex:capitalOf

ex:cityIn

ex:capitalOf

ex:cityInex:plane

ex:cityIn

Figure 1.1: An RDF graph.

model-theoretic semantics [Hayes, 2004], that defines the notion of consequence

between two RDF graphs, i.e., does an RDF graphG entails an RDF graphH (RDF

ENTAILMENT).

Example 1.1.1 The RDF graph of Figure 1.1, for example, consists of a set of arcs

relating cities with transportation means such that each arc or triple of the form

〈C1, t, C2〉 indicates that there exists a transportation mean from C1 to C2 (C2 is

directly reachable from C1 by t).

Nowadays, more resources are annotated via RDF due to its simple data model,

formal semantics, and a sound and complete inference mechanism. A query lan-

guage that provides a range of querying paradigms is therefore needed. Though

RDF was initially designed as a knowledge representation language, it can be used

for querying RDF graphs (the knowledge base and the query are two RDF graphs).

Answers to an RDF query over an RDF knowledge base are determined by conse-

quence, and can be computed using a particular map (a mapping from terms of the

query to terms of the knowledge base that preserves constants and graph structure),

a graph homomorphism [Gutierrez et al., 2004; Baget, 2005], which is known as

projection in conceptual graphs [Mugnier and Chein, 1992]. More precisely, the

answer to a query Q relies on calculating the set of possible homomorphisms from

Q into the RDF graph representing the knowledge base.

The need for added expressivity to RDF query has led to define SPARQL
[Prud’hommeaux and Seaborne, 2008], a W3C recommendation developed in or-

der to query an RDF knowledge base (cf. [Haase et al., 2004] for a comparison

of query languages for RDF). The heart of a SPARQL query, the graph pattern, is

an RDF graph (and more precisely a Generalized RDF graph allowing variables as

predicates, as done in [Horst, 2004]). The maps that are used to compute answers

to a graph pattern query in an RDF knowledge base are exploited by [Perez et al.,

1.1. MOTIVATIONS AND OBJECTIVES 3

ex:Roma ?City ?Country
?Mean ex:cityIn

Figure 1.2: A SPARQL graph pattern.

2006] to define answers to the more complex, more expressive SPARQL queries

(using, for example, disjunctions or functional constraints).

Example 1.1.2 SPARQL graph patterns allows to match a query graph against

an actual RDF graph. Figure 1.2 presents such a graph pattern. It can be used

for finding the names of cities and countries connected to Roma. If this pattern is

used in a SPARQL query against the graphG of Figure 1.1, it will return "Madrid"

with country "Spain" and transportation mean "plane", and "Zürich" with country

"Switzerland" and transportation mean "plane".

Unfortunately, most of the query languages that are based upon RDF seman-

tics, like SPARQL, lack the ability of expressing and retrieving paths, which is

necessary for many applications. For example, if one wants to check if there exists

a trip (not necessary direct) from one city to another (see Example 1.1.3).

Another approach, that has been successfully used in databases [Consens and

Mendelzon, 1990; Cruz et al., 1988; Mendelzon and Wood, 1995; Tarjan, 1981;

Yannakakis, 1990] but little in the context of the semantic web, uses path queries,

i.e., regular expressions, for finding regular paths in a database graph. The answer

to a path query R over a database graph G, is the set of all pairs of nodes in G

satisfying the language denoted by R, i.e., all pairs connected by a directed path

such that the concatenation of the labels of the arcs along the path forms a word

that belongs to the language denoted by R (see Example 1.1.3).

Example 1.1.3 Assuming an RDF graph representing transportation network, like

the graph G of Figure 1.1, the regular expression (ex:train|ex:plane)+, when

used as a query, searches all pairs of nodes connected by paths with a sequence

of train and plane relations, i.e., the reachable cities. Applied to node ex:Roma of

G, it should match the paths leading to ex:Madrid, ex:SantaCruz, ex:Zürich

and ex:Genève. This query, as it represents paths of unknown length, cannot be

expressed in SPARQL. On the other hand, the graph of Figure 1.2, which repre-

sents a basic graph pattern of a SPARQL query, cannot be expressed by a regular

expression.

4 CHAPTER 1. INTRODUCTION

ex:Roma ?City ?Country
(ex:train|ex:plane)+ ex:cityIn

Figure 1.3: A graph pattern with regular expressions.

Both approaches are orthogonal, i.e., some queries that can be expressed in

one approach cannot be expressed in the other. As shown in Figure 1.2, a query

whose homomorphic image in the database is not a path cannot be expressed by a

regular expression, while RDF semantics does not allow expressing paths of unde-

termined length. Furthermore, regular expressions provide a simple way to capture

additional information along paths that may not be provided by SPARQL graph

patterns, but they are not powerful enough as a query language.

To overcome this limitation, an approach that combines the advantages of both

SPARQL and path queries is herein investigated. This combined approach, in

which the arcs of the graph patterns may be labeled with regular expression, sup-

ports path queries (see Figure 1.3).

1.2 Main Contributions

In order to formally define that language, we first introduce Path RDF (PRDF) as an

extension of RDF in which arcs of the graphs can be labeled by regular expression

patterns [Alkhateeb et al., 2005; Alkhateeb et al., 2007]. Because we want to

ground the definition of our language on the semantics of RDF, and we want to

leave the door open to further extensions, we define the semantics of PRDF on top

of RDF semantics and we provide a sound and complete algorithm for checking if

a PRDF graph is entailed by some RDF graph.

Example 1.2.1 The PRDF graph of Figure 1.3 when used as a query finds the

name of each city and its country such that the city is reachable from Roma by a

sequence of trains and planes.

PRDF graphs are then used to define a basic extension to SPARQL, called

PSPARQL, that replaces RDF graph patterns used in SPARQL by PRDF graph

patterns, i.e., graph patterns with regular expression patterns. We present the syn-

tax and the semantics of PSPARQL. We provide algorithms, which are sound and

complete for evaluating PSPARQL graph patterns over RDF graphs.

Example 1.2.2 The following PSPARQL query:

1.2. MAIN CONTRIBUTIONS 5

SELECT ?City

WHERE {

ex:Paris (ex:train|ex:plane)+ ?City .

?City ex:capitalOf ?Country .

}

ORDER BY Asc(?City)

returns, in an increasing order, the set of capital cities reachable from Paris by a

sequence of trains or planes.

For added expressivity to PSPARQL to allow specifying properties on the

nodes that belong to a path defined by a regular expression, "for example all stops

must be capital cities.", we have extended PRDF. More precisely, we have defined

the CPRDF (for Constrained Path RDF) language that extends the syntax and the

semantics of PRDF to handle constraints on paths.

Example 1.2.3 The graph represented in figure 1.4, where const =]ALL ?Stop] :
{{?Stop ex:capitalOf ?Country .} UNION {?Stop ex:population ?Pop .

FILTER (?Pop > 200000)}}, is a CPRDF graph.

We have also characterized answers to a query reduced to a CPRDF graph by

a kind of graph homomorphism (a particular map). This property was sufficient to

extend the PSPARQL query language to CPSPARQL, combining the expressive-

ness of both SPARQL and CPRDF.

Example 1.2.4 The following CPSPARQL query:

SELECT ?City

WHERE {

CONSTRAINT const]ALL ?Stop]: {{ ?Stop ex:capitalOf ?Country. }

UNION

{ ?Stop ex:population ?Pop .

FILTER (?Pop > 200000)

}

}

ex:Paris (ex:train|ex:plane)+%const% ?City .

?City ex:capitalOf ?Country .

}

whose graph pattern is the CPRDF graph of Example 1.2.3, could be used for

finding the names of cities and countries such that each city is reachable from

Roma by a path (a sequence of trains or planes) whose nodes are capital cities or

have population size greater than 200000.

6 CHAPTER 1. INTRODUCTION

ex:Roma ?City ?Country
(ex:train| ex:plane)+%const% ex:cityIn

Figure 1.4: A graph pattern with constrained regular expressions.

We have implemented an evaluator for answering PSPARQL or CPSPARQL

queries. The evaluator is provided with two main parsers:

– a parser for RDF graphs written in Turtle language, and

– a parser for queries written according to the CPSPARQL syntax, which is

compatible with SPARQL syntax (see http://psparql.inrialpes.

fr).

1.3 Thesis outline

To provide the necessary background, we begin in Chapter 2 with an introduc-

tion to the RDF language. We first recall the RDF graphs over which all types of

queries in this dissertation are to be evaluated, presents its semantics which will be

used for defining the semantics of our extensions, and provide an inference mech-

anism based on graph homomorphism that can be used for checking the RDF con-

sequences and RDF querying answering. The second chapter of the background,

Chapter 3, discusses the current query languages for the semantic web in general

and for RDF in particular, and highlights the main differences between them and

our proposal.

In the research part, we provide our contribution which is presented in sev-

eral chapters. Chapter 4 presents a general graph framework that supports path

expressions in RDF knowledge bases. Its syntax is a natural extension of RDF

syntax, and its semantics is defined based on RDF semantics. A path-based graph

homomorphism is provided to be used for querying RDF graphs. We instan-

tiate this model to regular expressions in Chapter 5 providing an extension to

SPARQL, called PSPARQL, that covers the limitation of SPARQL in expressing

paths. PSPARQL also serves as the basis for defining in Chapter 6 a new gen-

eration, called CPSPARQL, that further extends (P)SPARQL by allowing, for ex-

ample, complex constraints on nodes and edges of traversed paths. Chapter 7
presents possible extensions of CPSPARQL such as using path variables, express-

http://psparql.inrialpes.fr
http://psparql.inrialpes.fr

1.3. THESIS OUTLINE 7

ing constraints on path variables, expressing similarity path-based matching, al-

lowing nested construct queries and extending constraints used in CPSPARQL. In

Chapter 8, we give an overview to several methods for querying RDFS graphs

with SPARQL and provide a method for querying RDFS based upon rewriting

SPARQL queries into PSPARQL queries.

Chapter 9 presents a concrete implementation of our extensions based on the

ideas presented in Chapters 4–6, as well as several exprimental tests of the proto-

type.

A summary of the results of the thesis is presented in Chapter 10, in which we

conclude with several directions for the future work.

8 CHAPTER 1. INTRODUCTION

Part I

Background

9

The RDF Language 2
Contents

2.1 RDF Syntax . 12
2.1.1 RDF terminology . 13
2.1.2 RDF graphs as triples 13
2.1.3 Graph representation of RDF triples 14

2.2 Simple RDF Semantics . 15
2.2.1 Interpretations . 15
2.2.2 Models . 16
2.2.3 Satisfiability, validity, and consequence 17

2.3 Inference Mechanism . 18
2.4 RDF Entailment: Definition and Complexity 20
2.5 RDF vs. graph database models 20

2.5.1 Relational data models 20
2.5.2 Object data models 21
2.5.3 Semi-structured data models 21
2.5.4 Other graph data models 22

2.6 Conclusion . 22

Introduction

The Resource description Framework (RDF) is a W3C standard language dedicated

to the annotation of resources within the Semantic Web [Manola and Miller, 2004].

The atomic constructs of RDF are statements, which are triples (subject, predicate,

object) consisting of the resource (the subject) being described, a property (the

predicate), and a property value (the object).

12 CHAPTER 2. THE RDF LANGUAGE

For example, the assertion of the following RDF triples {〈book1 rdf:type

publication〉, 〈book1 title "Ontology Matching"〉, 〈book1 author "J-
érôme Euzenat"〉, 〈book1 publisher "Springer"〉} means that "Jérôme

Euzenat" is an author of a book titled "Ontology Matching" whose publisher

is "Springer".

A collection of RDF statements (RDF triples) can be intuitively understood as

a directed labeled graph: resources are nodes and statements are arcs (from the

subject node to the object node) connecting the nodes. The language is provided

with a model-theoretic semantics [Hayes, 2004], that defines the notion of con-

sequence (or entailment) between two RDF graphs, i.e., when an RDF graph is

entailed by another one. Answers to an RDF query (the knowledge base and the

query are RDF graphs) are determined by the consequence, and can be computed

using a particular map (a mapping from terms of the query to terms of the knowl-

edge base preserving constants), a graph homomorphism [Gutierrez et al., 2004;

Baget, 2005].

RDFS (RDF Schema) [Brickley and Guha, 2004] is an extension of RDF de-

signed to describe relationships between resources and/or resources using a set of

reserves words called the RDFS vocabulary. In the above example, the reserved

word rdf:type can be used to relate instances to classes, e.g., book1 is of type

publication.

This chapter is devoted to the presentation of Simple RDF without RDF/RDFS

vocabulary [Brickley and Guha, 2004]. We first recall (Section 2.1) its abstract

syntax [Carroll and Klyne, 2004], its semantics (Section 2.2, using the notions

of simple interpretations, models, simple entailment of [Hayes, 2004]), then Sec-

tion 2.3 uses homomorphisms to characterize simple RDF entailment (as done in
[Baget, 2005] for a graph-theoretic encoding of RDF, and in [Gutierrez et al., 2004]

for a database encoding), instead of the equivalent interpolation lemma of [Hayes,

2004]. Section 2.4 introduces the RDF entailment problem and its complexity. In

Section 2.5, we compare RDF data model with database models, and concentrate

in those that are based upon the graph structure.

2.1 RDF Syntax

RDF can be expressed in a variety of formats including RDF/XML [Beckett, 2004],

Turtle [Beckett, 2006], etc. We use here its abstract syntax (triple format), which

is sufficient for illustrating our proposal. To define the syntax of RDF, we need to

2.1. RDF SYNTAX 13

introduce the terminology over which RDF graphs are constructed.

2.1.1 RDF terminology

The RDF terminology T is the union of three pairwise disjoint infinite sets of terms
[Hayes, 2004]: the set U of urirefs1, the set L of literals (itself partitioned into two

sets, the set Lp of plain literals and the set Lt of typed literals), and the set B of

variables. The set V = U ∪ L of names is called the vocabulary. From now on,

we use different notations for the elements of these sets: a variable will be prefixed

by ? (like ?b1), a literal will be between quotation marks (like "27"), and the

rest will be urirefs (like foaf:Person — foaf:2 is a name space prefix used for

representing personal information — ex:friend or simply friend).

2.1.2 RDF graphs as triples

RDF graphs are usually constructed over the set of urirefs, blanks, and literals [Car-

roll and Klyne, 2004]. “Blanks” is a vocabulary specific to RDF. Because we want

to stress the compatibility of the RDF structure with classical logic, we will use the

term variable instead. The specificity of a blank with regard to variables is their

quantification. Indeed, a blank in RDF is an existentially quantified variable. We

prefer to retain this classical interpretation which is useful when an RDF graph is

put in a different context. In the SPARQL query language, variables and blanks

have different behaviors in complex cases. For example, a blank shared in differ-

ent simple patterns of a group query pattern has a local scope which is easier to

describe as changing the quantification scope of a variable than changing a blank

into a variable. So, for the purpose of this thesis and without loss of generality, we

have chosen to follow [Perez et al., 2006] to not distinguish between variables and

blanks, and speak of variables instead.

Definition 2.1.1 (RDF graph) An RDF triple is an element of (U ∪ B)× U × T .

An RDF graph is a finite set of RDF triples.

Excluding variables as predicates and literals as subject was an unnecessary

restriction in the RDF design, that has been relaxed in many RDF extensions. These

constraints simplifies the syntax specification, and relaxing them neither changes

1An uri (uniform resource identifier) generalizes url (uniform resource locater) for identifying
not only web pages but any resource (human, book, an author property). An uriref is a uri with a
fragment (e.g. http://www.example.org/homepage.html#section1).

2http://xmlns.com/foaf/spec/

http://www.example.org/homepage.html#section1
http://xmlns.com/foaf/spec/

14 CHAPTER 2. THE RDF LANGUAGE

RDF semantics nor the computational properties of reasoning. In consequence, we

adopt such an extension introduced in [Horst, 2005] and called generalized RDF

graphs, or simply GRDF graphs.

Definition 2.1.2 (GRDF graph) A GRDF triple is an element of T ×(U ∪B)×T .

A GRDF graph is a finite set of GRDF triples.

Example 2.1.3 The following set of triples represents a GRDF graph:

{
〈 ?b1 foaf:name "Faisal" 〉,
〈 ?b1 ex:daughter ?b2 〉,
〈 ?b2 ?b4 ?b3 〉,
〈 ?b3 foaf:knows ?b1 〉,
〈 ?b3 foaf:name ?name 〉

}

Intuitively, this graph means that there exists an entity named (foaf:name)

"Faisal" that has a daughter (ex:daughter) that has some relation with an-

other entity whose name is non determined, and that knows (foaf:knows) the

entity named "Faisal".

Notations If 〈s, p, o〉 is a GRDF triple, s is called its subject, p its predicate,

and o its object. We denote by subj(G) the set {s | 〈s, p, o〉 ∈ G} the set of

elements appearing as a subject in a triple of a GRDF graph G. pred(G) and

obj(G) are defined in the same way for predicates and objects. We call nodes(G)
the nodes of G, the set of elements appearing either as subject or object in a triple

ofG, i.e., subj(G)∪obj(G). A term ofG is an element of term(G) = subj(G)∪
pred(G) ∪ obj(G). If Y ⊆ T is a set of terms, we denote Y ∩ term(G) by Y(G).

For instance, V(G) is the set of names appearing in G.

A ground GRDF graph G is a GRDF graph with no variables, i.e., term(G) ⊆
V .

2.1.3 Graph representation of RDF triples

A simple GRDF graph can be represented graphically as a directed labeled graph3

(N,E, γ, λ) where the set of nodes N is the set of terms appearing as a subject

3In fact as a directed labeled multigraph since multiple arcs with different labels may exists
between two given nodes.

2.2. SIMPLE RDF SEMANTICS 15

?b3 ?b2

?name ?b1"Faisal"

Pfoaf:name
foaf:knows

?b4

ex:daughter

foaf:name

Figure 2.1: A GRDF graph.

or object in at least one triple of G, the set of arcs E is the set of triples of G,

γ associates to each arc a pair of nodes (its extremities) γ(e) = 〈γ1(e), γ2(e)〉
where γ1(e) is the source of the arc e and γ2(e) its target; finally, λ labels the

nodes and the arcs of the graph: if s is a node of N , i.e., a term, then λ(s) = s,

and if e is an arc of E, i.e., a triple (s, p, o), then λ(e) = p. When drawing such

graphs, the nodes resulting from literals are represented by rectangles while the

others are represented by rectangles with rounded corners. In what follows, we

do not distinguish between the two views of the RDF syntax (as sets of triples or

directed labeled graphs). We will then speak interchangeably about their nodes,

their arcs, or the triples which make them up.

For example, the GRDF triples given in Example 2.1.3 can be represented

graphically as shown in Figure 2.1.

2.2 Simple RDF Semantics

[Hayes, 2004] introduces several semantics for RDF graphs. In this section, we

present only the simple semantics without RDF/RDFS vocabulary [Brickley and

Guha, 2004]. The definitions of interpretations, models, satisfiability, and entail-

ment correspond to the simple interpretations, simple models, simple satisfiability,

and simple entailments of [Hayes, 2004]. It should be noted that RDF and RDFS

consequences (or entailments) can be polynomially reduced to simple entailment

via RDF or RDFS rules [Baget, 2003; Horst, 2005] (see Section 8.2).

2.2.1 Interpretations

An interpretation describes possible way(s) the world might be in order to deter-

mine the truth-value of any ground RDF graph. It does this by specifying for each

uriref, what is its denotation? In addition, if it is used to indicate a property, what

values that property has for each thing in the universe?

16 CHAPTER 2. THE RDF LANGUAGE

Interpretations that assign particular meanings to some names in a given vo-

cabulary will be named from that vocabulary, e.g. RDFS interpretations (see Sec-

tion 8.1). An interpretation with no particular extra conditions on a vocabulary

(including the RDF vocabulary itself) will be simply called an interpretation.

Definition 2.2.1 (Interpretation of a vocabulary) Let V ⊆ V = U ∪ L be a vo-

cabulary. An interpretation of V is a tuple I = 〈IR, IP , IEXT , ι〉 where:

– IR is a set of resources that contains V ∩ L;

– IP ⊆ IR is a set of properties;

– IEXT : IP → 2IR×IR associates to each property a set of pairs of resources

called the extension of the property;

– the interpretation function ι : V → IR associates to each name in V a

resource of IR, if v ∈ L, then ι(v) = v.

2.2.2 Models

By providing RDF with formal semantics, [Hayes, 2004] expresses the conditions

under which an RDF graph truly describes a particular world (i.e., an interpretation

is a model for the graph). The usual notions of validity, satisfiability and conse-

quence are entirely determined by these conditions.

Intuitively, a ground triple 〈s, p, o〉 in a GRDF graph will be true under the

interpretation I if p is interpreted as a property (for example, rp), s and o are inter-

preted as resources (for example, rs and ro, respectively), and the pair of resources

〈rs, ro〉 belongs to the extension of the property rp. A triple 〈s, p, ?b〉 with the vari-

able ?b ∈ B would be true under I if there exists a resource rb such that the pair

〈rs, rb〉 belongs to the extension rp. When interpreting a variable node, an arbitrary

resource can be chosen. To ensure that a variable always is interpreted by the same

resource, extensions of the interpretation function is defined as follow.

Definition 2.2.2 (Extension to variables) Let I = (IR, IP , IEXT , ι) be an inter-

pretation of a vocabulary V ⊆ V , and B ⊆ B a set of variables. An extension of ι

to B is a mapping ι′ : V ∪B → IR such that ∀x ∈ V , ι′(x) = ι(x).

An interpretation I is a model of GRDF graph G if all triples are true under I .

Definition 2.2.3 (Model of a GRDF graph) Let V ⊆ V be a vocabulary, and G

be a GRDF graph such that every name appearing in G is also in V (V(G) ⊆ V).

2.2. SIMPLE RDF SEMANTICS 17

An interpretation I = 〈IR, IP , IEXT , ι〉 of V is a model of G iff there exists an

extension ι′ that extends ι toB(G) such that for each triple 〈s, p, o〉 ofG, ι′(p) ∈ IP
and 〈ι′(s), ι′(o)〉 ∈ IEXT (ι′(p)). The mapping ι′ is called a proof of G in I .

2.2.3 Satisfiability, validity, and consequence

The following definition is the standard model-theoretic definition of satisfiability

validity and consequence.

Definition 2.2.4 (Satisfiability, validity, consequence) A graphG is satisfiable iff

it admits a model. G is valid iff for every interpretation I of a vocabulary V ⊇
V(G), I is a model of G. A graph G′ is a consequence of a graph G, denoted

G |=GRDF G
′, iff every model of G is also a model of G′.

Proposition 2.2.5 (Satisfiability, validity) Every GRDF graph is satisfiable. The

only valid GRDF graph is the empty graph.

Proof. (Satisfiability) [Baget, 2003; Horst, 2004; Baget, 2005] builds the iso-

morphic model of a GRDF graph G, denoted by Iiso(G). The construction of

Iiso(G) = (IR, IP , IEXT , ι) can be made as follows:

(i) the set of resources in Iiso(G) is the set of terms of G, i.e., IR = term(G);

(ii) the set of properties in Iiso(G) is the set of predicates of G, i.e., IP =
pred(G);

(iii) the identity ∀x ∈ V(G), ι(x) = x;

(iv) ∀p ∈ IP , IEXT (p) = {〈s, o〉 ∈ IR × IR | 〈s, p, o〉 ∈ G}.

Let us prove that Iiso(G) is a model of G. Consider the extension ι′ of ι to B(G)
defined by ∀x ∈ term(G), ι′(x) = ι(x) = x. The condition of Definition 2.2.3

immediately follows from the construction of Iiso(G). Note that ι is a bijection

between term(G) and IR.

(Validity) a non empty GRDF graph has no proof in an interpretation in which

all properties are interpreted by IEXT as an empty set.

18 CHAPTER 2. THE RDF LANGUAGE

2.3 Inference Mechanism

SIMPLE RDF ENTAILMENT [Hayes, 2004] can be characterized as a kind of graph

homomorphism. A graph homomorphism from an RDF graph H into an RDF

graph G, as defined in [Baget, 2005; Gutierrez et al., 2004], is a mapping π from

the nodes of H into the nodes of G preserving the arc structure, i.e., for each

node x ∈ H , if λ(x) ∈ U ∪ L then λ(π(x)) = λ(x); and each arc x
p−→ y

is mapped to π(x)
π(p)−→ π(y). This definition is similar to the projection used to

characterize entailment of conceptual graphs (CGs) [Mugnier and Chein, 1992]

(cf. [Corby et al., 2000] for precise relationship between RDF and CGs). We

modify this definition to the one that maps term(H) into term(G). Maps are used

to ensure that a variable always mapped to the same term, as done for extensions

to interpretations.

Definition 2.3.1 (Map) Let V1 ⊆ T , and V2 ⊆ T be two sets of terms. A map

from V1 to V2 is a mapping µ : V1 → V2 such that ∀x ∈ (V1 ∩ V), µ(x) = x.

The map defined in [Gutierrez et al., 2004; Perez et al., 2006] is a particular

case of Definition 2.3.1. An RDF homomorphism is a map preserving the arc

structure.

Definition 2.3.2 (GRDF homomorphism) Let G and H be two GRDF graphs. A

GRDF homomorphism from H into G is a map π from term(H) to term(G) such

that ∀〈s, p, o〉 ∈ H , 〈π(s), π(p), π(o)〉 ∈ G.

The definition of GRDF homomorphisms (Definition 2.3.2) is similar to the

map defined in [Gutierrez et al., 2004] for RDF graphs. [Gutierrez et al., 2004]

provides without proof an equivalence theorem (Theorem 3) between RDF entail-

ment and maps. A proof is provided in [Baget, 2005] also for RDF graphs, but the

homomorphism involved is a mapping from nodes to nodes, and not from terms

to terms. In RDF, the two definitions are equivalent. However, the terms-to-terms

version is necessary to extend the theorem of RDF (Theorem 2.3.4) to the PRDF

graphs studied in Chapter 4. The proof of Theorem 2.3.4 will be a particular case

of the proof of Theorem 4.3.5 for PRDF graphs.

Example 2.3.3 (GRDF homomorphism) Figure 2.2 shows two GRDF graphs Q

and G (note that the graph Q is the graph P of Figure 2.1, to which the following

triple is added 〈?b3, foaf:mbox, ?mbox〉. The map π1 defined by {("Faisal",

"Faisal"), (?b1, ?c1), (?name, "Natasha"), (?b2, ?c2) , (?b4, ex:friend),

2.3. INFERENCE MECHANISM 19

(?mbox, "natasha@yahoo.com"), (?b3, ex:Person1)} is a GRDF homomor-

phism from Q into G. And the map π2 defined by {("Faisal", "Faisal"), (?b1,

?c1), (?name, "Deema"), (?b3, ex:Person2), (?b4, ex:friend), (?b2, ?c2)}
is a GRDF homomorphism from P into G. Note that π2 cannot be extended to a

GRDF homomorphism from Q into G since there is no mailbox for "Deema" in G.

?c3 ex:Person3

ex:Person1 ?c2 ex:Person2

?c1

?mbox ?b3 ?b2

?name ?b1

"natasha@yahoo.com"

"Natasha"

"Faisal" "Deema"

"Faisal"

Gex:friend
foaf:

mbox
ex:son

foaf:knows

foaf:name ex:friend ex:friend
foaf:knows

ex:daughter

foaf:knows
foaf:name

foaf:name

Q
foaf:mbox ?b4

foaf:name foaf:knows ex:daughter

foaf:name

π1 π1 π1 π1 π1 π1

Figure 2.2: A GRDF homomorphism from Q into G.

Theorem 2.3.4 Let G and H be two GRDF graphs, then G |=GRDF H if and only

if there is a GRDF homomorphism from H into G.

The proof of this theorem is an immediate consequence of the proof of The-

orem 4.3.5, since each GRDF graph is a PRDF graph. Moreover, any PRDF ho-

momorphism between GRDF graphs is a GRDF homomorphism and, by Propo-

sition 4.2.3, PRDF entailment applied to GRDF graphs is equivalent to GRDF

entailment.

This equivalence between the semantic notion of entailment and the syntactic

notion of homomorphism is the ground by which a correct and complete query an-

swering procedure can be designed. More precisely, the set of answers to a GRDF

graph queryQ over an RDF knowledge baseG are the set of RDF homomorphisms

from Q into G which, by Theorem 2.3.4, correspond to RDF consequence. For a

more complex query, which is basically built on top of GRDF graphs, then the an-

swers are constructed from the set of RDF homomorphisms from its GRDF graphs

into the RDF knowledge base(s) (see Section 3.3.2).

20 CHAPTER 2. THE RDF LANGUAGE

2.4 RDF Entailment: Definition and Complexity

The decision problem associated to simple RDF semantics is called SIMPLE RDF

ENTAILMENT, and is defined as follows:

SIMPLE (G)RDF ENTAILMENT

Instance: two GRDF graphs G and H .

Question: Does G |=GRDF H?

SIMPLE (G)RDF ENTAILMENT is an NP-complete problem for RDF graphs
[Gutierrez et al., 2004]. For GRDF graphs, its complexity remains unchanged
[Perez et al., 2006]. Polynomial subclasses of the problem have been exhibited

based upon the structure or labeling of the query:

– when the query is ground [Horst, 2004], or more generally if it has a bounded

number of variables,

– when the query is a tree or admits a bounded decompositions into a tree,

according to the methods in [Gottlob et al., 1999] as shown in [Baget, 2005].

2.5 RDF vs. graph database models

In order to compare RDF query languages with those of database, we first need to

identify the differences in the underlying data models. In this section, we provide

a brief presentation of the RDF data model with some of the database models, and

stress on those that are based on a graph model. See [Angles and Gutierrez, 2008]

for a survey of database models and [Kerschberg et al., 1976] for a taxonomy of

data models.

2.5.1 Relational data models

The relational data model is introduced in [Codd, 1983] to highlight the concept

level of abstraction by separating the physical and logical levels. It is a simple

model based on the notions of sets and relations with a defined algebra and logic.

SQL is its standard query and manipulation language.

The main differences of the relational model with RDF are that the data have a

predefined structure with simple record-type, and the schema is fixed and difficult

to extend. The same differences between RDF and the object data models also

apply to the relational data model (see the following subsection).

2.5. RDF VS. GRAPH DATABASE MODELS 21

2.5.2 Object data models

These models are based on the object-oriented programing paradigms [Kim, 1990],

representing data as a collection of objects interacting among them by methods.

Among object oriented data models are: O2 [Lécluse et al., 1988] based on a

graph structure; and Good [Gyssens et al., 1990] that has a transparent graph-based

manipulation and representation of data.

The main differences between object oriented data models and RDF are: RDF

resources can occur as edge labels or node labels; no strong typing in RDF (i.e.,

classes do not define object types); properties may be refined respecting only the

domain and range constraints; RDF resources can be typed of different classes,

which are not necessarily pairwise related by specialization, i.e., the instances of a

class may have associated quite different properties such that there is no other class

on which the union of these properties is defined.

2.5.3 Semi-structured data models

These models are oriented to model semi-structured data [Buneman, 1997; Abite-

boul, 1997]. They deal with data whose structure is irregular, implicit, and partial,

and with schema contained in the data.

One of these models is OEM (Object Exchange Model) [Papakonstantinou et

al., 1995]. It aims to express data in a standard way to solve the information

exchange problem. This model is based on objects that have unique identifiers, and

property value that can be simple types or references to objects. However, labels

in the OEM model cannot occur in both nodes (objects) and edges (properties),

and OEM is schemaless while RDF may be coupled with RDFS. RDF. Moreover,

nodes in RDF can be also blanks.

Another data model is the XML data model [Bray et al., 2006]. However, RDF

has substantial differences with the XML data model [Bray et al., 2006]. XML has

an ordered-tree like structure against the graph structure of RDF. Also, information

about data in XML is part of the data while RDF expresses explicitly information

about data using relation between entities. In addition, we can not distinguish in

RDF between entity (or node) labels and relation labels, and RDF resources may

have irregular structures due to multiple classification.

22 CHAPTER 2. THE RDF LANGUAGE

2.5.4 Other graph data models

The Functional Data Model [Shipman, 1981] is one of the models that consid-

ers an implicit structure of graphs for the data, aiming to provide a "conceptually

natural" database interface. A different approach is the Logical Data Model pro-

posed in [Kuper and Vardi, 1993], where an explicit graph model is considered

for representing data. In this model, there are three types of nodes (namely basic,

composition and collection nodes), all of which can be modeled in RDF. Among

the models that have explicit graph data model are: G-Base [Kunii, 1987] repre-

senting complex structures of knowledge; Gram [Amann and Scholl, 1992] repre-

senting hypertext data; GraphDB [Gting, 1994] modeling graphs in object oriented

databases; and Gras [Kiesel et al., 1996]. They have no direct applicability of a

graph model to RDF since RDF resources can occur as edge or node labels. Solv-

ing this problem requires an intermediate model to be defined, e.g. bipartite graphs
[Hayes and Gutierrez, 1996].

2.6 Conclusion

Nowadays, more resources are annotated via RDF due to its simple data model,

formal semantics, and a sound and complete inference mechanism. RDF itself

can be used as a query language for an RDF knowledge base using RDF conse-

quence. Nonetheless, the use of consequence is still limited for answering queries.

In particular, answering those that contain complex relations requires complex con-

structs. It is impossible, for example, to answer the query "find the names and ad-

dresses, if they exist, of persons who either work on query languages or ontology

matching" using a simple consequence test.

Therefore the need for added expressivity in queries has led to define several

query languages on top of graph patterns that are basically RDF and more pre-

cisely GRDF graphs. The focus of the next chapter is then to give an overview of

some languages that have been designed or can be used for querying RDF graphs,

and discusses the main differences between them in terms of expressiveness and

limitations.

Querying RDF Graphs 3
Contents

3.1 (Semi)-Structured Query Languages 24

3.2 RDF Query Languages . 26

3.3 The SPARQL Query Language 27

3.3.1 SPARQL syntax . 27

3.3.2 Formal semantics: answers to SPARQL queries 31

3.4 Extensions to SPARQL . 33

3.5 Work on SPARQL . 35

3.6 Comparison with other Query Languages 36

3.7 Conclusion . 37

Introduction

A query language can be understood as an inference mechanism for manipulating

and inferencing data from valid instances of the data model.

This chapter surveys the languages that can be used for querying RDF graphs.

In particular, Section 3.1 reviews some of the well-know graph query languages

used for querying structured or semi-structured data bases. Section 3.2 presents

some of RDF query languages. Section 3.3 details the SPARQL query languages

as well as a semantic query framework, which will be the basis for our proposal.

In Section 3.4, we present some extensions of SPARQL and stress in the strongly

related ones. In Section 3.6, we compare (C)PSPARQL to some of the existing

query languages. Finally, we discuss some work on SPARQL in Section 3.5.

24 CHAPTER 3. QUERYING RDF GRAPHS

3.1 (Semi)-Structured Query Languages

Query languages for structured graph data base models can be used for querying

RDF viewing RDF data as a graph that may contain transitive or repetitive patterns

of relations. Among them, G [Cruz et al., 1987] and its extension G+ [Cruz et al.,

1988] are two languages for querying structured databases. A simple G+ query

has two elements, a query graph that specifies the pattern to be matched and a

summary graph that defines graphically how the answers are to be structured and

then presented to the user

Example 3.1.1 Given a graph that represents relations between people, the G+

query of Figure 3.1 finds pairs of people who share a common ancestor.

?person1

?person2

?ancestor ?person1 ?person2

(mother | father)+

(mother | father)+

Figure 3.1: A G+ query to find common ancestor.

The left hand side of the bold arrow is the pattern to be matched in the knowledge

base while the right hand side is the summary graph.

Graphlog — a visual query language which has been proven equivalent to lin-

ear Datalog [Consens and Mendelzon, 1990] — extends G+ by combining it with

the Datalog notation. It has been designed for querying hypertext. A Graphlog

query is only a graph pattern containing a distinguished edge or arc (i.e., it is a

restructuring edge, which corresponds to the summary graph in G+).

Example 3.1.2 Figure 3.2 shows a Graphlog query: dashed lines represent edge

labels with the positive closure, a crossed dashed line represents a negated label

(e.g. !descendant+ between ?person2 and ?person3), person is a unary

predicate, and finally a bold line represents a distinguished edge that must be la-

beled with a positive label. The effects of this query is to find all instances of the

pattern that occur in the database, i.e., finding descendant of ?person1 which are

not descendant of ?person2. Then, for each one of them, define a virtual link

represented by the distinguished edge.

These query languages (namely G, G+ and Graphlog) support only graphical

queries similar to PRDF queries. In contrast to PRDF, they are limited to finding

3.1. (SEMI)-STRUCTURED QUERY LANGUAGES 25

?person1

?person2

?person3

descendant+

descendant+

person

not-desc-of(?person2)

Figure 3.2: A Graphlog query.

simple paths (cycle-free paths). The main problem with finding only simple paths,

is that there are situations in which answers to such queries are all non simple, e.g.

if the only paths matching a regular expression pattern have cycles (see the exam-

ple of non-simple paths in [Anyanwu et al., 2007]). In addition, the complexity

of finding simple paths problem is NP-complete even without variables in regular

expressions [Wood, 1988]. Moreover, they do not provide complex functionalities,

for example, for filtering, ordering, projection, union of graph patterns, optional

graph patterns and other useful features (see SPARQL features and examples be-

low).

Lorel [Abiteboul et al., 1997] is an OEM-based language for querying semi-

structured documents. It uses regular expression patterns for traversing object hi-

erarchy paths, restricted to simple path semantics (or acyclic paths). UnQL [Bune-

man et al., 1996] is a language closely related to Lorel for querying semi-structured

data. It is based on a data model similar to OEM [Buneman et al., 1995]. A par-

ticular aspect of the language is that it allows some form of restructuring even for

cyclic structures. A traverse construct allows one to transform a database graph

while traversing it, e.g. by replacing all labels A by the label A0. This power-

ful operation combines tree rewriting techniques with some control obtained by

a guided traversal of the graph. For instance, one could specify that the replace-

ment occurs only if a particular edge, say B, is encountered on the way from the

root. STRUQL [Fernandez et al., 1997], a query language for a web-site man-

agement system, incorporates regular expressions and has precisely the same ex-

pressive power as stratified linear Datalog. It became clear that query languages

for semi-structured data or that are based on object oriented models are not well

suited for RDF as discussed in Section 2.5, and also as stated in [Karvounarakis et

al., 2002]. WebSQL [Mendelzon et al., 1997], incorporates regular expressions for

26 CHAPTER 3. QUERYING RDF GRAPHS

querying distributed collection of documents connected by hypertext links. It has a

cost based query evaluation mechanism, i.e., it evaluates how much of the network

must be visited to answer a particular query. To our knowledge, none of the above

query languages allow expressing constraints on internal nodes, which is allowed

by CPRDF.

A Logic that incorporates a kind of constrained regular expressions has been

proposed for XPath [Genevès et al., 2007]. However, XPath operates on trees (not

on graphs), and only defines monadic queries [Clark and DeRose, 1999]. Sev-

eral works attempt to adapt PDL-like or µ-calculus based on monadic queries for

querying graphs, for example [Alechina et al., 2003].

3.2 RDF Query Languages

Several query languages have been proposed for RDF [Haase et al., 2004]. Most

of them use a query model based on relational algebra [Codd, 1970], where RDF

graphs are viewed as a collection of triples and the queries are triple-based formulas

expressed over a single relation. In spite of the benefits gained from the existing

relational database systems such as indexing mechanisms, underlying storage of

triples as relations [Harris and Shadbolt, 2005], query optimization techniques,

and others; relational queries cannot express recursive relations and even the most

simple form, the transitive closure of a relation [Aho and Ullman, 1979], directly

inherited from the graph nature of RDF triples.

There are many real-world applications, inside and outside the domain of the

semantic web, requiring data representation that are inherently recursive. For that

reason, there are several attempts to extend relational algebra to express complex

query modeling. Outside the domain of the semantic web, we mention [Agrawal,

1988] that extends the relational algebra to represent transitive closure and [Ja-

gadish, 1989] to represent query hierarchies. In the domain of RDF, some query

languages such as RQL [Karvounarakis et al., 2002] attempts to combine the rela-

tional algebra with some special class hierarchies. It supports a form of transitive

expressions over RDFS transitive properties (i.e., subPropertyOf and subClassOf)

for navigating through class and property hierarchies. Versa [Olson and Ogbuji,

2002], RxPath [Souzis, 2004], PRDF [Alkhateeb et al., 2005; Alkhateeb, 2007]

and [Matono et al., 2005] are all path-based query languages for RDF that are well

suited for graph traversal but do not support SQL-like functionalities. WILBUR
[Lassila, 2002] is a toolkit that incorporates path expressions for navigation in RDF

3.3. THE SPARQL QUERY LANGUAGE 27

graphs. [Zhang and Yoshikawa, 2008] discusses the usage of a Concise Bounded

Description (CBD) of an RDF graph, which is defined as a subgraph consisting of

those statements which together constitute a focused body of knowledge about a

given resource (or node) in a given RDF graph. It also defines a Dynamic version

(DCBD) of CBD as well as proposes a query language for RDF called DCBD-

Query, which mainly addresses the problem of finding meaningful (shortest) paths

with respect to DCBD.

SQL-like query languages for RDF include SeRQL [Broekstra, 2003], RDQL
[Seaborne, 2004] and its current successor – a W3C recommendation – SPARQL
[Prud’hommeaux and Seaborne, 2008]. Since it is defined by the W3C’s Data

Access Working Group (DAWG) and becomes the most popular query language

for RDF, we chose to build our work on SPARQL and avoid reinventing another

query language for RDF. So, SPARQL will be presented below in more details than

the other languages.

3.3 The SPARQL Query Language

There has been early proposals for specific RDF query languages, such as RDQL
[Seaborne, 2004], RQL [Karvounarakis et al., 2002] or SeRQL [Broekstra, 2003].

In 2004, the W3C launched the Data Access Working Group for designing an RDF

query language, called SPARQL, from these early attempts [Prud’hommeaux and

Seaborne, 2008]. SPARQL query answering is characterized by defining maps

from GRDF graphs used as query patterns of the query to the RDF knowledge

base [Perez et al., 2006].

3.3.1 SPARQL syntax

SPARQL graph patterns

The heart of SPARQL queries is graph patterns. Informally, a graph pattern can be

one of the following (cf. [Prud’hommeaux and Seaborne, 2008] for more details):

– a triple pattern: a triple pattern corresponds in RDF to a GRDF triple;

– a basic graph pattern: a set of triple patterns (or a GRDF graph) is called a

basic graph patterns;

– a union of graph patterns: we use the keyword UNION in SPARQL to rep-

resent alternatives;

28 CHAPTER 3. QUERYING RDF GRAPHS

– an optional graph pattern: SPARQL allows optional results to be returned

determined by the keyword OPT;

– a constraint: constraints in SPARQL are boolean-valued expressions that

limit the number of answers to be returned. They can be defined using the

keyword FILTER. As atomic FILTER expressions, SPARQL allows unary

predicates like BOUND; binary (in)equality predicates (= and ! =); compar-

ison operators like <; data type conversion and string functions which will

be omitted here. Complex FILTER expressions can be built using !, || and

&&;

– a group graph pattern: is a graph pattern grouped inside { and }, and de-

termines the scope of SPARQL constructs like FILTER and variable nodes;

Definition 3.3.1 (SPARQL graph pattern) A SPARQL graph pattern is defined

inductively in the following way:

– every GRDF graph is a basic SPARQL graph pattern;

– if P1, P2 are SPARQL graph patterns and C is a SPARQL constraint, then

{P1}, (P1 AND P2), (P1 UNION P2), (P1 OPT P2), and (P1 FILTER C) are

SPARQL graph patterns.

Example 3.3.2 The following graph pattern:

{ ?person foaf:knows "Faisal" . }

is a basic graph pattern that can be used in a query for finding persons who know

Faisal.

{

{ ?person ex:liveIn ex:France . }

UNION

{ ?person ex:hasNationality ex:French . }

}

is a union of two basic graph patterns that searches the persons who either live in

France or have a French nationality.

The following graph pattern

{ ?person foaf:knows "Faisal" .

OPT

{ ?person foaf:mbox ?mbox . }

}

3.3. THE SPARQL QUERY LANGUAGE 29

contains an optional basic graph pattern searching the mail boxes, if they exist, of

persons who know Faisal.

{

?person ex:liveIn ex:France .

?person ex:hasAge ?age .

FILTER (?age < 40) .

}

the constraint in this graph pattern limits the answers to the persons who live in

France whose ages are less than 40.

{ { ?person foaf:knows "Faisal" . }

{

?person ex:liveIn ex:France .

?person ex:hasAge ?age .

FILTER (?age < 40) .

}

}

is a graph pattern of two group graph patterns. The scope of the constraint in

this graph pattern is the second group graph pattern. So, it is applied only to the

persons who live in France.

SPARQL query

A SELECT SPARQL query is expressed using a form resembling the SQL SELECT

query:

SELECT ~B FROM u WHERE P

where u is the URL of an RDF graph G, P is a SPARQL graph pattern and ~B is a

tuple of variables appearing in P . Intuitively, an answer to a SPARQL query is an

instantiation π of the variables of ~B by the terms of the RDF graph G such that π

is a restriction of a proof that P is a consequence of G.

SPARQL provides several result forms other than SELECT that can be used

for formating the query results. For example, CONSTRUCT that can be used for

building an RDF graph from the set of answers, ASK that returns TRUE if there

is a answer to a given query and FALSE otherwise, and DESCRIBE that can be

used for describing a resource RDF graph. The following example queries give an

insight of these query forms.

Example 3.3.3 The following ASK query:

30 CHAPTER 3. QUERYING RDF GRAPHS

ASK

WHERE { ?person foaf:names "Faisal" .

?person ex:hasChild ?child .

}

returns TRUE if a person named Faisal has at least one child, FALSE otherwise.

The following CONSTRUCT query:

CONSTRUCT { ?son1 ex:brother ?son2 .}

WHERE { ?person foaf:names "Faisal" .

?son1 ex:sonOf ?person .

?son2 ex:sonOf ?person .

FILTER (?son1 != ?son2) .

}

constructs the RDF graph (containing the brotherhood relation) by substituting for

each located answer the values of the variables ?son1 and ?son2.

The following query:

DESCRIBE <example.org/person1>

returns a description of the resource identified by the given uriref, i.e., returns the

set of triples involving this uriref.

SPARQL uses post-filtering clauses which allow, for example, to order (OR-

DER BY clause), or to limit (LIMIT and/or OFFSET clauses) the answers of a

query. The reader is referred to the SPARQL specification [Prud’hommeaux and

Seaborne, 2008] for more details or to [Perez et al., 2006] for formal semantics of

SPARQL queries.

Example 3.3.4 The following SPARQL query:

SELECT ?name

WHERE {

?person ex:liveIn ex:France .

?person foaf:name ?name .

}

ORDER BY ?name

LIMIT 10

OFFSET 5

returns the names of persons who live in France limited to maximum 10 persons,

ordered by their names, and starting from the 5th answer.

Since the graph patterns in the SPARQL query language are shared by all

SPARQL query forms and that our proposal is based upon extending these graph

patterns, we illustrate our extension using the SELECT . . . FROM . . . WHERE

. . . queries. Our extension can then be applied to other query forms.

3.3. THE SPARQL QUERY LANGUAGE 31

3.3.2 Formal semantics: answers to SPARQL queries

[Perez et al., 2006] gives an alternate characterization of query answering, which

relies upon the correspondence between maps from GRDF graph of the query

graph patterns to the RDF knowledge base and GRDF entailment. Then, SPARQL

query constructs are defined through algebraic operations on maps. In the follow-

ing, we recall this characterization.

If µ is a map, then the domain of µ, denoted by dom(µ), is the subset of T
where µ is defined. If P is a graph pattern, then µ(P) is the graph pattern obtained

by the substitution of µ(b) to each variable b ∈ B(P). Two maps µ1 and µ2 are

compatible when ∀x ∈ dom(µ1)∩dom(µ2), µ1(x) = µ2(x). If µ1 and µ2 are two

compatible maps, then we denote by µ = µ1 ⊕ µ2 : T1 ∪ T2 → T the map defined

by: ∀x ∈ T1, µ(x) = µ1(x) and ∀x ∈ T2, µ(x) = µ2(x). Analogously to [Perez

et al., 2006], we define the join of two sets of maps Ω1 and Ω2 as follows:

– (join)1 Ω1 on Ω2 = {µ1 ⊕ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible };

– (difference) Ω1\Ω2 = {µ1 ∈ Ω1 | ∀µ2 ∈ Ω2, µ1 and µ2 are not compatible}.

Definition 3.3.5 (Answer to a SPARQL graph pattern) LetG be an RDF graph

and P be a SPARQL graph pattern. The set S(P,G) of answers of P in G is

defined inductively in the following way:

1. if P is a GRDF graph, S(P,G) = {µ | µ is an RDF homomorphism from P

into G};
2. if P = (P1 AND P2), S(P,G) = S(P1, G) on S(P2, G);

3. if P = (P1 UNION P2), S(P,G) = S(P1, G) ∪ S(P2, G);

4. if P = (P1 OPT P2), S(P,G) = (S(P1, G) on S(P2, G)) ∪ (S(P1, G) \
S(P2, G));

5. if P = (P1 FILTER C), S(P,G) = {µ ∈ S(P1, G) | µ(C) = >}.

The semantics of SPARQL FILTER expressions is defined as follows: given a

map µ and a SPARQL constraint C, we say that µ satisfies C (denoted by µ(C) =
>), if:

– C = BOUND(x) with x ∈ dom(µ);

– C = (x = c) with x ∈ dom(µ) and µ(x) = c;

– C = (x = y) with x, y ∈ dom(µ) and µ(x) = µ(y);

1[Polleres, 2007] defines join maps of unbound variables.

32 CHAPTER 3. QUERYING RDF GRAPHS

– C = (x!= c) with x ∈ dom(µ) and µ(x)!= c;

– C = (x!= y) with x, y ∈ dom(µ) and µ(x)!= µ(y);

– C = (x < c) with x ∈ dom(µ) and µ(x) < c;

– C = (x < y) with x, y ∈ dom(µ) and µ(x) < µ(y);

– C =!C1 with µ(C1) = ⊥ (µ does not satisfy C1);

– C = (C1||C2) with µ(C1) = > or µ(C2) = >;

– C = (C1&&C2) with µ(C1) = > and µ(C2) = >;

Let Q =SELECT ~B FROM u WHERE P be a SPARQL query, G be the RDF

graph identified by the URL u, and Ω is the set of maps of P in G. Then the

answers of the query Q are the instantiation of elements of Ω to ~B. That is, for

each map π of Ω, the answer of Q associated to π is {(x, y) | x ∈ ~B and y = π(x)
if π(x) is defined, null otherwise}.

Proposition 3.3.6 Let Q =SELECT ~B FROM u WHERE P be a SPARQL query, P

be a GRDF graph and G be the (G)RDF graph identified by the URI u, then the

answers to Q are the images of variables in ~B by an RDF homomorphism π from

P into G such that G |=RDF π(P).

This property is a straightforward consequence of Definition 3.3.5. It is based

on the fact that the answers to Q are the restrictions to ~B of the set of RDF

homomorphisms from P into G which, by Theorem 2.3.4, corresponds to RDF-

entailment.

Example 3.3.7 Consider the following SPARQL query Q:

SELECT ?name ?mbox

FROM <http://example.org/index1.ttl>

WHERE {

?b1 foaf:name "Faisal" .

?b1 ex:daughter ?b2 .

?b2 ?b4 ?b3 .

?b3 foaf:knows ?b1 .

?b3 foaf:name ?name .

OPT {

?b2 foaf:mbox ?mbox .

}

}

such that the RDF graph identified by the uriref of the FROM clause is the graph

G of Figure 2.2. This query contains two basic graph patterns: the optional GRDF

3.4. EXTENSIONS TO SPARQL 33

pattern with only one triple represented by the optional clause and the other part

is the GRDF graph P of Figure 2.1. We construct the answer to the query by

taking the join of homomorphisms from P intoG and the homomorphisms from the

optional triple intoG; i.e., the homomorphisms fromQ (see Figure 2.2) intoG (e.g.

the homomorphism π1 of Example 2.3.3), and the homomorphisms from P into G

that cannot be extended to include the optional triple, e.g. the homomorphism π2

of Example 2.3.3. There are therefore two answers to the query:

?name ?mbox

"Deema" null
"Natasha" "natasha@yahoo.com"

To end this section, we note that simple (C)PSPARQL queries (i.e., without re-

cursive operators and path variables) can be expressed into SPARQL (see examples

in Section 5.2.2).

3.4 Extensions to SPARQL

Corese [Corby et al., 2004] is a semantic web search engine based on conceptual

graphs that offers functionalities for querying RDF graphs. At the time of writ-

ing, it supports only fixed path length queries and no other path expressions such

as variable-length paths or constraints on internal nodes, though this seems to be

planned.

Two extensions of SPARQL, which are closely similar to PSPARQL [Alkha-

teeb, 2007], have been recently defined based on our initial proposal [Alkhateeb et

al., 2005]: SPARQLeR and SPARQ2L.

SPARQLeR [Kochut and Janik, 2007] extends SPARQL by allowing query

graph patterns involving path variables. Each path variable is used to capture

simple (i.e., acyclic) paths in RDF graphs, and is matched against any arbitrary

composition of RDF triples between given two nodes. This extension offers good

functionalities like testing the length of paths and testing if a given node is in the

found paths. Since SPARQLeR is not defined with a formal semantics, its use of

path variables in the subject position is unclear, in particular, when they are not

bound. Even when this is the case, multiple uses of same path variable several

times is not fully defined: it is not specified which path is to be returned or if is it

enforced to be the same. The effects of paths variables in the DISTINCT clause are

not treated either. Finally, several problems are raised in the evaluation of graph

34 CHAPTER 3. QUERYING RDF GRAPHS

patterns of such extension. In particular, the strategy of obtaining paths and then

filtering them is inefficient since it can generate a large number of paths.

Example 3.4.1 The following SPARQLeR query:

SELECT %path

WHERE {

<r> %path <s> .

FILTER (length(%path) < 10).

}

matches any path of length less than 10 between the resources <r> and <s>. The

path variable %path is bound to the matched path.

SPARQ2L [Anyanwu et al., 2007] also allows using path variables in graph

patterns and offers good features like constraints in nodes and edges, i.e., testing

the presence or absence of nodes and/or edges; constraints in paths, e.g. simple

or non-simple paths, presence of a pattern in a path. This extension is also not

described semantically. One can only try to guess what is the intuitive semantics

of the constructs. It seems that the algorithms are not complete with regard to

their intuitive semantics, since the set of answers can be infinite in absence of

constraints for using shortest or acyclic paths. Moreover, this extension suffers

from generality, i.e., it does not allow using more than one triple pattern having a

path variable. Relaxing this restriction requires adapting radically the evaluation

algorithm which otherwise is inoperative. This occurs due to the compatibility

function that does not take into account the use of the same path variable in multiple

triple patterns. As for SPARQLeR, the order of evaluation is very complex when

using the PATHFILTER construct for filtering paths, and the result of the graph

pattern depends upon constructing all paths (which may not be exhaustive due to

the infinite number of paths that can be constructed for cycle RDF graphs) and then

selecting those ones that match a regular pattern.

Example 3.4.2 The following SPARQ2L query:

SELECT ??path

WHERE {

?x ??path ?x .

?z compound:name "Methionine" .

PATHFILTER (containsAny(??path,?z)).

}

finds any feedback loop (i.e., non-simple path) that involves the compound Methio-

nine.

3.5. WORK ON SPARQL 35

In both cases, the proposal seems to add expressivity to PSPARQL, in particular

due to the use of path variables. However, the lack of a clearly defined semantics

raises questions about what should be the returned answers and this does not allow

to assess the correctness and completeness of the proposed procedures. Moreover,

the constraints in these two languages are simple, i.e., restricted to testing the length

of paths and testing if a given node is in the resulting path (to be elaborated on in

the sequel).

A recent extension of SPARQL, called nSPARQL, to a restricted fragment of

RDFS is proposed in [Arenas et al., 2008]. This extension allows using nested reg-

ular expressions, i.e., regular expressions extended with branching axis borrowed

form XPath. The authors presented a formal syntax and semantics of their pro-

posal. As shown in Chapter 8, regular expressions in SPARQL (as in the case

of (C)PSPARQL) have the ability of capturing the semantics of the used RDFS

fragment. In particular, (C)PSPARQL can express all the examples provided in
[Arenas et al., 2008] for demonstrating the expressivity of the proposed language.

On the one hand, nSPARQL has axis for navigating on nodes and edges. On the

other hand, CPSPARQL has constraints on traversed edges and nodes. It may be

useful to put the two extensions together.

Other extensions to SPARQL include: SPARQL-DL [Sirin and Parsia, 2007]

that extends SPARQL to support Description Logic semantic queries, SPARQL++
[Polleres et al., 2007] extending SPARQL with external functions and aggregates

which serves as a basis for declaratively describing ontology mappings, and iS-

PARQL [Kiefer et al., 2007] extending SPARQL to allow for similarity joins which

employ several different similarity measures.

3.5 Work on SPARQL

[Cyganiak, 2005] presents a relational model of SPARQL, in which relational al-

gebra operators (join, left outer join, projection, selection, etc.) are used to model

SPARQL SELECT clauses. The authors propose a translation system between

SPARQL and SQL to make a correspondence between SPARQL queries and rela-

tional algebra queries over a single relation. [Harris and Shadbolt, 2005] presents

an implementation of SPARQL queries in a relational database engine, in which

relational algebra operators similar to [Cyganiak, 2005] are used. [de Bruijn et

al., 2005] addresses the definition of mapping for SPARQL from a logical point

of view. [Franconi and Tessaris, 2005], in which we can find a preliminary for-

36 CHAPTER 3. QUERYING RDF GRAPHS

malization of the semantics of SPARQL, defines an answer set to a basic graph

pattern query using partial functions. The authors use high level operators (Join,

Optional, etc.) from sets of mappings to sets of mappings, but currently they do not

have formal definitions for them, stating only their types. [Polleres, 2007] provides

translations from SPARQL to Datalog with negation as failure, some useful exten-

sions of SPARQL, like set difference and nested queries, are proposed. Finally,
[Perez et al., 2006] presents the semantics of SPARQL using traditional algebra,

and gives complexity bounds for evaluating SPARQL queries. The authors use the

graph pattern facility to capture the core semantics and complexities of the lan-

guage, and discussed their benefits. We followed their framework to define the

answer set to (C)PSPARQL queries.
[Corby and Faron-Zucker, 2007a] presents an implementations of the SPARQL

query language in Corese search engine [Corby et al., 2004]. In particular, it de-

scribes a graph homomorphism based algorithm for answers SPARQL queries that

integrates SPARQL constraints during the search process (i.e., while matching the

query against RDF graphs). [Corby and Faron-Zucker, 2007b] presents a design

pattern to handle contextual metadata hierarchically organized and modeled within

RDF. The authors of [Corby and Faron-Zucker, 2007b] propose a syntactic exten-

sion to SPARQL to facilitate querying context hierarchies together with rewriting

rules to return to standard SPARQL.

3.6 Comparison with other Query Languages

We have compared PSPARQL and CPSPARQL to other query languages based

on [Haase et al., 2004; Angles and Gutiérrez, 1995]. [Haase et al., 2004] com-

pares several RDF query languages using 14 distinct tests (or features). Among

them were Path expression, Optional path and Recursion tests. The interpretation

of these three tests is given respectively as follows: using graph patterns, optional

graph patterns, and recursive expressions. To remove ambiguity with the interpre-

tation of path or regular expressions given in this thesis, we rename the three tests to

be: Graph pattern, Optional pattern, and Recursion (or Regular expression). From
[Angles and Gutiérrez, 1995], we include the following features: Adjacent nodes,

Adjacent edges, Fixed-length path, Degree of a node, Distance between nodes,

and Diameter. We also add the following features: Regular expression variable,

Constraints, Path variable, Constrained regular expression, Inverse path, and Non-

simple path. We mean by "Regular expression variable" that the use of variables

3.7. CONCLUSION 37

in the predicates or regular expressions of graph patterns. The query languages are

restricted to this feature when they allow the use of variables only in the atomic

predicates. A simple path is a path whose nodes are all distinct. There were 8

query languages in the original comparison ([Haase et al., 2004]) from which we

choose RQL, RDQL, SeRQL, and Versa which seem to represent the most expres-

sive languages for supporting the two types of querying paradigms (i.e., path-based

and relational-based models); we include G+, GraphLog, STRUQL, LOREL from
[Angles and Gutiérrez, 1995]; and we add SPARQL, Corese, SPARQ2L, SPAR-

QLeR and (C)PSPARQL.

In Table 3.1, columns represent query languages and rows represent features or

queries. Moreover, we use - to denote that the feature has no support in the query

language, ◦ to denote that there exists a partial (restricted) support, and finally • to

denote the full support of the feature.

Table 3.1 summarizes the main differences between the current SPARQL ex-

tensions, CPSPARQL and other query languages. Most of features allowed in

SPARQL extensions are also supported in CPSPARQL. Note that SPARQLeR (re-

spectively, SPARQ2L) allows using SPARQL constraints (respectively, using path

constraints like ContainsANY and ContainsALL) for a posteriori filtering paths.

For example, checking the existence of regular pattern in a given path, and check-

ing the existence of a node in the path. We conjuncture that we can emulate these

constraints using constrained regular expressions of CPSPARQL. CPSPARQL and

SPARQ2L are the only languages that supports non-simple paths. However, the al-

gorithms in SPARQ2L are not complete for non-simple paths, and it has no support

of inverse paths (inverse regular expressions).

As we can see in Table 3.1, there are a lot of features in SPARQL and its

extensions that cannot be expressed in the current languages like G+, GraphLog,

and others.

3.7 Conclusion

As shown in this chapter through the use of examples, SPARQL allows to ask

more sophisticated queries than the consequence test. But many types of queries

remains inexpressible. The development of the SPARQL recommendation has not

prevented many extensions to be proposed. We have even proposed our own ex-

tension, which is not reducible to any of the above proposals (see examples in

Chapters 5 and 6). It will be detailed further on in the subsequent chapters.

38 CHAPTER 3. QUERYING RDF GRAPHS

SP
A

R
Q

L

C
or

es
e

SP
A

R
Q

2L

SP
A

R
Q

L
eR

(P
/C

P)
SP

A
R

Q
L

G
+

G
ra

ph
L

og

ST
R

U
Q

L

R
D

Q
L

Se
R

Q
L

V
er

sa

R
Q

L

L
O

R
E

L

Graph pattern • • • • •/• • • • • • • • •
Optional pattern • • • • •/• - - - - • • ◦ -
Union • • • • •/• - - - - • • • •
Constraints • • • • •/• - - - • • • • •
Difference • • • • •/• - - - - • ◦ • -
Quantification - - - - -/- - - - - • - • •
Aggregation - ◦ - - ◦/◦ - - - - - • • •
Reification • • • • •/• - - - ◦ • ◦ ◦ -
Collections and ◦ ◦ ◦ ◦ ◦/◦ - - - ◦ ◦ ◦ • -
Containers
Namespace • • • • •/• - - - ◦ • - • -
Language • • • • •/• - - - - • - - -
Lexical space • • • • •/• - - - • • • • -
Value space • • • • •/• ◦ ◦ ◦ ◦ • - • •
Entailment - • - ◦ •/• - - - ◦ • - • -
Recursion (Reg- - - • • •/• • • • - - • ◦ •
ular expression)
Regular express- - - - - •/• • • • - - ◦ ◦ •
ion variable
Constrained reg- - - ◦ ◦ -/• - - - - - - - -
ular expression
Fixed-length - • ◦ ◦ •/• • • • ◦ ◦ - • •
path
Path variable - • • • •/• - - - - - - - •
Inverse Path - - - • -/• • • - - - - - -
Non-simple path - - • - •/• - - - - - - - -
Adjacent nodes • • • • •/• • • • ◦ ◦ ◦ ◦ •
Adjacent edges • • • • •/• • • • ◦ - ◦ ◦ ◦
Degree of a node - - - - -/- • • • - - - ◦ -
Distance bet- - - - - -/- • • • - - - - -
ween nodes
Diameter - - - - -/- • • • - - - - -

Table 3.1: Comparison of query languages for graphs: white circle for partial (re-
stricted) support, a dash for no support, and full circle for full support.

Part II

Research Work

39

A General Graph Framework
with Paths 4
Contents

4.1 PRDF Syntax . 42
4.1.1 Regular languages 43

4.1.2 PRDF graphs . 46

4.2 PRDF Semantics . 47
4.2.1 Interpretations and models 47

4.2.2 Satisfiability and canonical models 49

4.2.3 PRDF-GRDF entailment 51

4.3 Querying RDF with PRDF Graphs 51
4.3.1 Inference mechanism: path-based homomorphisms . . 52

4.3.2 Complexity of PRDF homomorphism 56

4.4 Containment of PRDF Queries 58
4.4.1 Query containment–definition 58

4.4.2 Containment and canonical models 59

4.4.3 Query containment for restricted PRDF queries 61

4.5 Conclusion . 64

Introduction

Some query languages, such as SPARQL, are based upon RDF semantics, and use

the RDF consequence to define answers over RDF graphs. Such query languages,

as they are edge-based, lacks the ability of expressing variable length paths. The

following are examples of applications requiring recursive queries: finding the an-

cestors of a person having a French nationality; finding pairs of capital cities con-

42 CHAPTER 4. A GENERAL GRAPH FRAMEWORK WITH PATHS

nected by a sequence of flights; finding pairs of persons knowing each other (i.e.,

having a sequence of knows relations).

To overcome this limitation, we present in this chapter an extension of RDF

with regular path expressions, called PRDF (short of Path RDF). This extension

will be made in general, parametrized using language generators without ground-

ing it to a specified language. Regular expressions will be used as a running ex-

ample to illustrate the extension. The primary advantage of this generality is that

the soundness and completeness (Theorem 4.3.5) does not depend upon the regular

language used for expressing paths. It also permits language designers to decide

which fragments, or more precisely operators, to be used for expressing paths.

For this extension of RDF, we present its abstract syntax in Section 4.1 and its

semantics that extends RDF model-theoretic semantics in Section 4.2. It should be

noted that this extension of RDF (PRDF) is made to be used mainly for defining

the PSPARQL query language (our extension of SPARQL) and not for expressing

knowledge (though it can be used for that purpose). Hence, for those readers who

do not want to see the semantic justification of this extension and prefer reading

it in a purely syntactic way, they can skip Section 4.2 (PRDF semantics) and trust

Theorem 4.3.5 for grounding semantically our proposal.

An inference mechanism for answering PRDF graphs over RDF graphs will be

presented in Section 4.3. Finally, we introduce the containment problem for PRDF

graphs Section 4.4.

4.1 PRDF Syntax

In GRDF, arcs can be labeled by urirefs or variables. The PRDF language extends

GRDF naturally to allow using path expressions as labels for arcs, i.e., as predicate,

in PRDF graphs. Each path expression encodes a set of words, called a regular

language. The path expression (ex:train | ex:plane | ex:bus)+, for example,

encodes sequences of trains, planes and buses.

So, to define the syntax of PRDF, we first need to introduce regular languages,

then we use an abstract notion, a generator, to express such languages. A particular

case for this set is the set of regular expressions, which will be used as a running

example. The instantiation of PRDF to the set of regular expressions will be used

in Chapter 5 to extend the SPARQL query language.

4.1. PRDF SYNTAX 43

4.1.1 Regular languages

Words and languages

Let Σ be an alphabet. A language over Σ is a subset of Σ∗: its elements are

sequences of elements of Σ called words. A (non empty) word 〈a1, . . . , ak〉 is

denoted by a1 · . . . · ak. If A = a1 · . . . · ak et B = b1 · . . . · bq are two words

over Σ, then A · B is the word over Σ defined by A · B = a1 · . . . · ak · b1 ·
. . . · bq. For example, if Σ = {ex:daughter, ex:son}, then L = (ex:daughter
∪ ex:son)∗ = {ex:daughter, ex:son, ex:daughter·ex:son, . . .} is the regular

language constructed over Σ.

One possible way to define regular languages is through the use of regular ex-

pressions as they are simple and compact for generating such languages. But, for

doing the same task, one might use other means such as automaton or regular gram-

mars. To not restrict our framework to a specific mean, we use the term generator

to express a regular language.

Generators

We call a generator over Σ any object that can be used to specify a regular language

over Σ. If R is such a generator, we note L∗(R) the language specified by R

(named language generated by R).

Since arcs of GRDF graphs can be only urirefs and variables, regular languages

will be defined over the set of urirefs and variables, i.e., Σ ⊆ U ∪B. The existence

of a variable in the generator means that there exists something, and hence it can

be replaced or mapped by any element of the alphabet, and one can define the

language generated by a generator that contains variables using maps as given in

the following definition. In which, the mapped value of a repeated occurrence of

the same variable is ensured to be the same via maps.

Definition 4.1.1 Let Σ be an alphabet, X be a set of variables, R be a generator

over Σ∪X , and µ be a map from Σ∪X to Σ∪X . Ifm = a1 · . . . ·ak ∈ (Σ∪X)∗,
we note µ(m) = µ(a1)·. . .·µ(ak), and µ(R) is the generator such thatL∗(µ(R))=

{µ(m) |m ∈ L∗(R)}.

For example, if Σ ∪X = {ex:daughter,?X}, R be a generator over Σ ∪X ,

and µ = {?X←ex:friend}, then L∗(µ(R)) = (ex:daughter, ex:friend)∗ is

the language generated by µ(R).

44 CHAPTER 4. A GENERAL GRAPH FRAMEWORK WITH PATHS

In what follows, we use R(Σ) to denote an abstract infinite set of generators

constructed over Σ.

Example: regular expression patterns

Regular expressions are the usual way for expressing path queries [Cruz et al.,

1987; Cruz et al., 1988; Buneman et al., 1996; Abiteboul et al., 1997; de Moor and

David, 2003; Liu et al., 2004]. They can be used for defining regular languages

over Σ.

Definition 4.1.2 (Regular expression) Let Σ be an alphabet, the setR(Σ) of reg-

ular expressions is inductively defined by:

– ∀a ∈ Σ, a ∈ R(Σ) and !a ∈ R(Σ);

– Σ ∈ R(Σ);

– ε ∈ R(Σ);

– If A ∈ R(Σ) and B ∈ R(Σ) then A|B, A ·B, A∗, A+ ∈ R(Σ).

such that !a is the complement of a over Σ, A|B denotes the disjunction of A and

B,A ·B the concatenation ofA andB,A∗ the Kleene closure, andA+ the positive

closure.

We have restricted regular expressions to atomic negation in order to have a

reasonable time complexity in the query language that we are building, and to

avoid its application to variables which have no meaning. However, the semantics,

soundness and completeness results as well as the algorithms defined throughout

this thesis still work with non-atomic regular expressions [Alkhateeb et al., 2007].

More general forms of regular expressions are the ones that include variables,

we call them regular expression patterns. Their combined power and simplicity

contribute to their wide use in different fields. For example, in [de Moor and David,

2003], in which they are called universal regular expressions, they are used for

compiler optimizations. In [Liu et al., 2004], they are called parametric regular

expressions, and are used for program analysis and model checking. The use of

variables in regular expression patterns is different from the use of variables in

Unix (“regular expressions with back referencing” in [Aho, 1980]). A variable

appearing in a regular expression pattern matches any symbol of the alphabet or

any variable, while a variable in regular expressions with back referencing can

match strings. Matching strings with regular expressions with back referencing

has been shown to be NP-complete [Aho, 1980].

4.1. PRDF SYNTAX 45

The use of such patterns is necessary to generalize SPARQL that allows the use

of variables in the predicate position of basic graph patterns.

Definition 4.1.3 (Regular expression pattern) Let Σ be an alphabet, X be a set

of variables, the setRE(Σ, X) of regular expression patterns is inductively defined

by:

– ∀a ∈ Σ, then a ∈ RE(Σ, X) and !a ∈ R(Σ, X);

– ∀x ∈ X , x ∈ RE(Σ, X);

– # ∈ RE(Σ, X);

– Σ ∈ RE(Σ, X);

– ε ∈ RE(Σ, X);

– If A ∈ RE(Σ, X) and B ∈ RE(Σ, X) then A|B, A · B, A∗, A+ ∈
RE(Σ, X).

With the absence of maps, the language generated by a regular expression pat-

tern R, denoted by L∗(R), is given in the following definition.

Definition 4.1.4 (Language defined by a regular expression pattern) Let Σ be

an alphabet,X be a set of variables, andR,R′ ∈ RE(Σ, X) be regular expression

patterns. L∗(R) is the set of words of (Σ ∪X)∗ defined by:

L∗(ε) = {ε};

L∗(a) = {a};

L∗(!a) = Σ \ {a};

L∗(x) = Σ ∪X;

L∗(#) = Σ ∪X;

L∗(Σ) = Σ;

L∗(!R) = Σ∗ \ L∗(R1);

L∗(R | R′) = {w | w ∈ L∗(R) ∪ L∗(R′)};

L∗(R ·R′) = {w · w′ | w ∈ L∗(R) and w′ ∈ L∗(R′)};

L∗(R+) = {w1 · . . . · wk |∀i ∈ [1 . . . k], wi ∈ L∗(R)};

L∗(R∗) = {ε} ∪ L∗(R+).

With regard to a more traditional definition of the language generated by a reg-

ular expression, our definition ranges over Σ ∪X . This is necessary because vari-

ables may match variables in GRDF graphs. In the context of PRDF this also pre-

46 CHAPTER 4. A GENERAL GRAPH FRAMEWORK WITH PATHS

serves the opportunity to define an order between PRDF[R] graphs, i.e., query con-

tainment. Note that the difference between # and a variable is that each occurrence

of #1 can be mapped to a different term while all occurrences of the same variable

is mapped to the same term. For example, L∗(?x) = {u, u · . . . · u | u ∈ (Σ∪X)}
while L∗(#) = {u1, u1 · . . . · un | ui ∈ (Σ ∪X)}.

4.1.2 PRDF graphs

Since arcs in GRDF graphs are labeled by the elements of U ∪B, path queries will

be defined by generators over Σ = U ∪ B.

Definition 4.1.5 (PRDF graph) A PRDF[R] triple is an element of T × R(U ,B)
× T . A PRDF[R] graph is a set of PRDF[R] triples.

Note that all PRDF[R] graphs with atomic predicates are not necessarily RDF

graphs. They can be a generalization of RDF graphs with blanks as predicates, as

called generalized RDF graphs [Horst, 2005]. A PRDF[R] graph can be repre-

sented graphically as a directed labeled graph whose arcs are labeled by elements

ofR(U ,B).

The set of terms in a PRDF[R] graph is the set of all elements appearing as

subjects and objects including all atomic elements in each language generator.

Notations

Let R be a generator, u ∈ U(R) if u ∈ U and U is the smallest set such that

R ∈ R(U,B) (i.e., U(R) is the set of urirefs appearing in R). In the same way,

b ∈ B(R) if b ∈ B and B is the smallest set such that R ∈ R(U , B) (i.e., B(R) is

the set of blanks appearing inR). LetG be a PRDF[R] graph, pred(G) is the set of

generators appearing as a predicate in a triple of G. Let UB(R) = U(R) ∪ B(R),

∀R ∈ pred(G). Then term(G) = subj(G) ∪ UB(R) ∪ obj(G).

Example 4.1.6 For example, the following PRDF[RE] graph represented graphi-

cally by the graph P of Figure 4.2:

1# can be replaced by a more elegant rdfs property, rdfs:anyRelation. This new property
can be interpreted by IEXT (ι(rdfs:anyrelation)) = IR X IR

4.2. PRDF SEMANTICS 47

{
〈 ?b1 foaf:name "Faisal" 〉,
〈 ?b1 (ex:daughter|ex:son)+·?b5 ?person 〉,
〈 ?person foaf:knows ?b1 〉,
〈 ?person foaf:name ?name 〉,
〈 ?person foaf:mbox ?mbox 〉

}

when used as a query searches among the relatives of Faisal’s descendants, the

names and email addresses of people who know Faisal. Recall that RE is the set

of regular expression patterns.

4.2 PRDF Semantics

The PRDF semantics extends the RDF semantics to allow expressing paths of ar-

bitrary length.

4.2.1 Interpretations and models

Since the terminology of RDF is the one used for PRDF, RDF interpretations re-

main unchanged in the case of PRDF. However, an RDF interpretation must satisfy

specific conditions to be a model for a PRDF[R] graph. These conditions are the

transposition of the classical path semantics within RDF semantics.

Definition 4.2.1 (Support of a generator) Let I = 〈IR, IP , IEXT , ι〉 be an inter-

pretation of a vocabulary V = U ∪ L, ι′ be an extension of ι to B ⊆ B, and

R ∈ R(U,B). Let w = a1 · . . . · ak be a word of L∗(R). A sequence (r0, . . . , rk)
of resources of IR is called a proof of w in I according to ι′ iff one of the following

conditions holds:

(i) w is the empty word and ri = rj (0 ≤ i, j ≤ k); or

(ii) 〈ri−1, ri〉 ∈ IEXT (ι′(ai)) (∀1 ≤ i ≤ k), otherwise.

Instead of considering paths in RDF graphs, Definition 4.2.1 considers paths

in the interpretations of PRDF[R] graphs, i.e., paths are now relating resources.

This definition is the semantic substitute for the satisfaction of a regular expression

pattern by two nodes (Definition 4.3.1). It has the same function: ensuring that

48 CHAPTER 4. A GENERAL GRAPH FRAMEWORK WITH PATHS

variables have only one image. This is achieved by the “extension to variables” (ι′)

which plays the same role as µ in Definition 4.3.1.

It is used in the following definition of PRDF models in which it replaces the

direct correspondence that exists in RDF between a relation and its interpretation

(see Definition 2.2.3), by a correspondence between a generator (for example, a

regular expression pattern) and a sequence of relation interpretations. This allows

to match variable length paths (for regular expression patterns, e.g. r+).

Definition 4.2.2 (Model of a PRDF graph) LetG be a PRDF[R] graph, and I =
〈IR, IP , IEXT , ι〉 be an interpretation of a vocabulary V ⊇ V(G). I is a PRDF

model ofG if and only if there exists an extension ι′ of ι to B(G) such that for every

triple 〈s,R, o〉 ∈ G, there exists a sequence T = (ι′(s) = r0, . . . , rk = ι′(o)) of

resources of IR and a word w ∈ L∗(R) such that T is a proof of w in I according

to ι′. (We also say that 〈ι′(s), ι′(o)〉 supports R in ι′).

This definition extends the definition of RDF models (Definition 2.2.3), and

they are equivalent when all generators R are reduced to atomic terms, i.e., urirefs

or variables. Moreover, GRDF graphs are PRDF graphs with predicates restricted

to atomic terms.

Proposition 4.2.3 If G is a PRDF[R] graph with pred(G) ⊆ U ∪ B, i.e., G is a

GRDF graph, and I be an interpretation of a vocabulary V ⊇ V(G), then I is an

RDF model of G (Definition 2.2.3) iff I is a PRDF model of G (Definition 4.2.2).

Proof. We prove both directions of the proposition.

(⇒) Suppose that I = 〈IR, IP , IEXT , ι〉 is an RDF model of G, then there exists

an extension ι′ of ι to B(G) such that ∀〈s, p, o〉 ∈ G, 〈ι′(s), ι′(o)〉 ∈ IEXT (ι′(p))
(Definition 2.2.3). Since pred(G) ⊆ U ∪ B, 〈ι′(s), ι′(o)〉 supports p in ι′ (Defini-

tion 4.2.1) (with a word w = p), i.e., I is also a PRDF model (Definition 4.2.2).

(⇐) Suppose that I = 〈IR, IP , IEXT , ι〉 is a PRDF model of G, then there exists

an extension ι′ of ι to B(G) such that ∀〈s, p, o〉 ∈ G, 〈ι′(s), ι′(o)〉 supports p in

ι′ (Definition 4.2.2). Since pred(G) ⊆ U ∪ B, ε /∈ L∗(p). So there there exists

a word of length n = 1 where w ∈ L∗(p), w = p, and a sequence of resources

of IR ι′(s) = r0, ι′(o) = r1 such that 〈r0, r1〉 ∈ IEXT (ι′(w)) (Definition 4.2.1).

So ∀〈s, p, o〉 ∈ G, 〈ι′(s), ι′(o)〉 ∈ IEXT (ι′(p)) (by replacing r0 with ι′(s), r1 with

ι′(o), and w with p). So I is also an RDF model (Definition 2.2.3).

4.2. PRDF SEMANTICS 49

Due to the use of the disjunction and negation operators in regular expressions,

we may have a model of a given PRDF[RE] graph that does interpret all its terms.

As an example, consider the interpretation I = 〈IR, IP , IEXT , ι〉 defined by:

- IR = {Paris, Lyon, train};
- IP = {train};
- ι(ex:Paris) = Paris, ι(ex:Lyon) = Lyon, ι(ex:train) = train, and

IEXT (train) = {〈Paris, Lyon〉}.
There is no interpretation of ex:plane in I , but it is a model of the graph

defined by {〈ex:Paris (ex:train|ex:plane) ex:Lyon〉}.

Definition 4.2.4 (Satisfiability and consequence) A PRDF[R] graph G is satisfi-

able iff it admits a model. A PRDF[R] graph G′ is a consequence of a PRDF[R]
graph G, noted G |=PRDF G

′, iff every model of G is also a model of G′.

4.2.2 Satisfiability and canonical models

In this subsection, we give conditions under which a model is considered as a

canonical model. Then, we prove that each PRDF graph is satisfiable by building

such a model.

Definition 4.2.5 (Canonical Model of a PRDF graph) LetG be a PRDF[R] gra-

ph, I = 〈IR, IP , IEXT , ι〉 be an interpretation of a vocabulary V ⊇ V(G), and ι′

be an extension of ι to B(G). I is called an ι′-canonical model if:

– I contains one proof for each 〈s,R, o〉 ∈ G of a word w ∈ L∗(R) in I ac-

cording to ι′, i.e., there exists T = (ι′(s) = r0, . . . , rk = ι′(o)) of resources

of IR and a word w ∈ L∗(R) such that T is a proof of w in I according to

ι′.

– Each resource ri ∈ IR occurs exactly once as a first element in an exten-

sion of a property and exactly once as a second element of another property

unless ri = ι′(n) for some node n ∈ nodes(G).

Example 4.2.6 The interpretation I = 〈IR, IP , IEXT , ι〉 defined by:

– IR = {Paris, Lyon, train, plane}
– IP = {train, plane}
– ι(ex:Paris) = Paris, ι(ex:Lyon) = Lyon, ι(ex:train) = train, ι(ex:-

plane) = plane, IEXT (plane) = {〈Paris, Lyon〉, 〈Lyon,Grenoble〉}
and IEXT (train) = {〈Paris, Lyon〉}

50 CHAPTER 4. A GENERAL GRAPH FRAMEWORK WITH PATHS

Paris Lyon

train

!train

Figure 4.1: A PRDF graph with negation.

is not a canonical model of the PRDF graph {〈ex:Paris (ex:train|ex:plane)+

ex:Grenoble〉} since the intermediate resource Lyon belongs to the extensions of

plane and train, which violates the definition of canonical models. Nonetheless,

if we remove the pair 〈Paris, Lyon〉 from the extension of plane, then we have a

canonical model of the given graph.

Proposition 4.2.7 (Satisfiability) Each PRDF[R] graph G is satisfiable

Proof. Let G be a PRDF[R] graph. To prove that G is satisfiable, we build a

canonical model as follows:

1. Build a graph G′ by replacing each triple 〈s,R, p〉 in G by a set of triples

{〈s, p1, v1〉, . . . , 〈vn−1, pn, o〉} such that p1 · . . . · pn is an arbitrary word in

the language generated by R, and vi′s are all new distinct variables.

2. G′ is satisfiable since it admits a model (constructing the isomorphic model

of G′ see Proposition 2.2.5). Hence, every PRDF[R] graph G is satisfiable.

As in the case of (G)RDF, every PRDF[R] graph is satisfiable (if we consider

only simple semantics). This can hurt the intuition since the graph G of Figure 4.1

admits a model due to the interpretation of path negation which differs from its

interpretation in first-order logic. The triple 〈ex:Paris !ex:train ex:Lyon〉 is

read as "Paris and Lyon are in a relation other than train" and not as "Paris and

Lyon are not related by train". If we consider the second interpretation and replace

Lyon with a variable, then we can never find a city which is related and not related

by train at the same time.

Definition 4.2.8 Let I = 〈IR, IP , IEXT , ι〉 be an interpretation of a vocabulary

V , G and H be two PRDF[R] graphs such that V(G) ⊆ V and V(H) ⊆ V , and ι′

be a canonical model of G. An extension ι′′ of ι to B(H) is called an ι′-model of

H if:

4.3. QUERYING RDF WITH PRDF GRAPHS 51

– ι′′ is a model of H;

– ∀n1 ∈ nodes(H), ∃n2 ∈ nodes(G) with ι′′(n1) = ι′(n2); and

– ∀b ∈ (B(H) ∩ B(G)), ι′′(b) = ι′(b).

The second item is necessary when the two graphs G and H have different

variable names, and this item can be omitted by variable renaming.

The canonical consequence (entailment) between PRDF graphs is defined as in

the usual way, and we use |=c
PRDF to denote such consequence.

Definition 4.2.9 (Canonical consequence) LetG andH be two PRDF[R] graphs

of a vocabulary V , then G canonically entails H , denoted by |=c
PRDF, iff every ι′-

canonical model of G is also ι′-model of H .

4.2.3 PRDF-GRDF entailment

For the purpose of defining a query language, we need to deal with the PRDF-GRDF

ENTAILMENT problem:

R-PRDF-GRDF ENTAILMENT

Instance: a GRDF graph G and a PRDF[R] graph H .

Question: Does G |=PRDF H?

This problem is at least NP-hard, since it contains SIMPLE RDF ENTAILMENT,

an NP-complete problem. However, when the entailed graph, i.e., the query, is

ground, this problem can be decided in NLOGSPACE.

Theorem 4.2.10 Let G be a GRDF graph and H be a ground PRDF[R] graph,

thenRE-PRDF-GRDF ENTAILMENT is in NLOGSPACE.

The following section shows the complexity of the latter problem through the

equivalence between R-PRDF-GRDF ENTAILMENT and R-PRDF-GRDF HOMO-

MORPHISM.

4.3 Querying RDF with PRDF Graphs

This section presents a particular homomorphism for checking if a PRDF graph is

a consequence of an RDF graph. It will be then used for answering PRDF graphs

over RDF graphs.

52 CHAPTER 4. A GENERAL GRAPH FRAMEWORK WITH PATHS

4.3.1 Inference mechanism: path-based homomorphisms

PRDF can be used as a stand alone language for querying (G)RDF knowledge

bases. An answer to a PRDF query Q over a (G)RDF knowledge base will be a

particular map from Q into G, we called it a PRDF homomorphism.

PRDF homomorphisms extend RDF homomorphisms to deal with nodes con-

nected with regular language generators (for example, regular expression patterns),

that can be mapped to nodes connected by paths.

Definition 4.3.1 (Path word) Let G be a GRDF graph of a vocabulary V = U ∪
B, and R ∈ R(U ,B) be a generator such that U(R) ⊆ V . Let µ : B(R) → V be

a map from the variables of R to V , and w = a1 · . . . · ak be a word of L∗(R). A

sequence (x0, . . . , xk) of nodes of G is called a path of w in G according to µ iff

∀1 ≤ i, j ≤ k one of the following conditions holds:

– w is the empty word and xi = xj; or

– 〈xi−1, µ(ai), xi〉 ∈ G, otherwise.

We also say that 〈x0, xk〉 satisfies w in G according to µ.

A path of nodes (x0, . . . , xk) is said to be simple if all nodes are distinct (i.e.,

each xi occurs once in the path).

Language generators (e.g. regular expression patterns) can be used alone as

queries. An answer to a generator R in an RDF graph G will be a triple 〈x0, xk, µ〉
such that µ : U(R)→ V(G) is a map from the variables of R into terms of G and

〈x0, xk〉 is a pair of nodes of G that satisfies a word w ∈ L∗(R) in G according to

µ.

Example 4.3.2 Consider the RDF graph G of Figure 2.2, and the regular expres-

sion pattern R = (ex:son|ex:daughter)+ ·?b5. Intuitively, this regular expres-

sion pattern encodes the paths from the entity x to the entity y such that y has a

relation, by any predicate, of a descendant of x. The answers to R are:

〈 ex:c1 ex:c3 {(?b5,ex:son)}〉,
〈 ex:c1 ex:person1 {(?b5,ex:friend)}〉,
〈 ex:c1 ex:person2 {(?b5,ex:friend)}〉,
〈 ex:c1 ex:person3 {(?b5,ex:friend)}〉,

Definition 4.3.3 (PRDF homomorphism) Let G be a (G)RDF graph and H be a

PRDF[R] graph. A PRDF homomorphism from H into G is a map π : T (H) →

4.3. QUERYING RDF WITH PRDF GRAPHS 53

T (G) that preserves the paths, i.e., ∀〈s,R, o〉 ∈ H , there exists a sequence T =
(π(s), . . . , π(o)) of nodes of G and a word w ∈ L∗(R) such that T is a path of w

in G according to π.

Example 4.3.4 Figure 4.2 shows a PRDF homomorphism from the PRDF graph

P into the RDF graph G. Note that the path satisfying the regular expression

pattern of P is one of those given in Example 4.3.2.

ex:c3

ex:Person2 ex:c2 ex:Person3

ex:Person1 ex:c1

?person?mbox

?name ?b1

"Deema"

"Sara"

"Faisal"

"sara@yahoo.com"

"Natasha" "natasha@yahoo.com"

"Faisal"

foaf:name ex:son
ex:fri

end foaf:mbox

ex:friend
foaf:namefoaf:knows

ex:friend

ex:daughter foaf:knows

foaf:knows foaf:name

foaf:name foaf:mbox

G

P

foaf:knows

foaf:mbox

foaf:name (ex:son | ex:daughter)
+ ·?b5

foaf:name

Figure 4.2: A PRDF homomorphism from a PRDF graph to a GRDF graph repre-
sented in dashed lines.

The existence of a PRDF homomorphism is exactly what is needed for deciding

entailment between GRDF and PRDF[R] graphs.

Theorem 4.3.5 Let G be a GRDF graph, and H be a PRDF[R] graph, then there

is a PRDF homomorphism from H into G iff G |=PRDF H .

We have proven Theorem 4.3.5 via a transformation to hypergraphs following

the proof framework in [Baget, 2005]. Since this requires a long introduction to

hypergraphs, we prefer here to give a simple direct proof to Theorem 4.3.5.

Proof. We prove both directions of the theorem.

(⇒) For the if-part, we suppose that there exists a PRDF homomorphism from H

into G, π : term(H)→ term(G). We want to prove that G |=PRDF H , i.e., that

54 CHAPTER 4. A GENERAL GRAPH FRAMEWORK WITH PATHS

every model of G is a model of H . Consider the interpretation I of a vocabulary

V = U ∪ L.

If I is a model of G, then there exists an extension I ′ of I to B(G) such that

∀〈s, p, o〉 ∈ G, 〈I ′(s), I ′(o)〉 ∈ IEXT (I ′(p)) (Definition 2.2.3). We want to prove

that I is also a model of H , i.e., that there exists an extension I ′′ of I to B(H) such

that ∀〈s,R, o〉 ∈ H , 〈I ′′(s), I ′′(o)〉 supports R in I ′′.

Let us define the map I ′′ = (I ′ ◦ π), and show that I ′′ verifies the following

properties:

1. I is an interpretation of V(H).

2. I ′′ is an extension to variables of H , i.e., ∀x ∈ V(H), I ′′(x) = I(x) (Defi-

nition 2.2.2).

3. I ′′ satisfies the conditions of PRDF models (Definition 4.2.2), i.e., , for every

triple 〈s,R, o〉 ∈ H , the pair of resources 〈I ′′(s), I ′′(o)〉 supports R in I ′′.

Now, we prove the satisfaction of these properties:

1. Since each term x ∈ V(H) is mapped by π to a term x ∈ V(G) and I

interprets all x ∈ V(G), I interprets all x ∈ V(H).

2. ∀x ∈ V(H), I ′′(x) = (I ′ ◦ π)(x) (definition of I ′′). I ′′(x) = I ′(x) (since

π(x) = x by Definition 4.3.3). Hence, I ′′(x) = I(x) (Definition 2.2.2).

3. It remains to prove that for every triple 〈s,R, o〉 ∈ H , the pair of resources

〈I ′′(π(s)), I ′′(π(o))〉 supports R in I ′′ (by Definition 4.2.1):

(i) If the empty word ε ∈ L∗(R) and π(s) = π(o) = y (y ∈ term(G),

Definition 4.3.3), then I ′′(s) = (I ′ ◦ π)(s) = I ′(y), and I ′′(o) = (I ′ ◦
π)(o) = I ′(y). So I ′′(s) = I ′′(o) = I ′(y). Hence, 〈I ′′(s), I ′′(o)〉
supports R in I ′′ (Definition 4.2.2).

(ii) If ∃〈n0, p1, n1〉, . . . , 〈nk−1, pk, nk〉 in G such that n0 = π(s), nk =
π(o), and p1 · . . . · pk ∈ L∗(π(R)) (cf. Definition 4.3.3). It follows

that 〈I ′(π(s)), I ′(n1)〉 ∈ IEXT (I ′(p1)), . . ., 〈I ′(nk−1), I ′(π(o))〉 ∈
IEXT (I ′ (pk)) (Definition 2.2.3). So the two resources 〈I ′(π(s)),
I ′(π(o))〉 supports π(R) in I ′. 〈I ′(π(s)), I ′(π(o))〉 supports π(R) in

I ′′ (since I ′′ = (I ′◦π), we have ∀x ∈ term(H), I ′′(x) = I ′(π(x)) and

π(x) ∈ term(G). Moreover, we can choose every variable b appearing

4.3. QUERYING RDF WITH PRDF GRAPHS 55

in H to be interpreted by the resource of π(b)). Hence, 〈I ′′(s), I ′′(o)〉
supports R in I ′′ (since for every word w ∈ π(R), w ∈ R).

(⇐) Suppose that G |=PRDF H . We want prove that there is a PRDF homomor-

phism from H into G. Every model of G is also a model of H . In particular, the

isomorphic model Iiso = 〈IR,IP ,IEXT , ι〉 of G, where there exists a bijection ι

between term(G) and IR (cf. Proposition 2.2.5). ι is an extension of Iiso to B(G)
such that ∀〈s, p, o〉 ∈ G, 〈ι(s), ι(o)〉 ∈ IEXT (ι(p)) (Definition 2.2.3). Since Iiso
is a model of H , there exists an extension I ′ of ISO to B(H) such that ∀〈s,R, o〉,
〈I ′(s), I ′(o)〉 supports R in I ′ (Definition 4.2.2). Let us consider the function π =
(ι−1 ◦ I ′). To prove that π is a PRDF homomorphism from H into G, we must

prove that:

1. π is a map from term(H) into term(G);

2. ∀x ∈ V(H), π(x) = x;

3. ∀〈s,R, o〉 ∈ H , either

(i) the empty word ε ∈ L∗(R) and π(s) = π(o); or

(ii) ∃〈n0, p1, n1〉, . . . , 〈nk−1, pk, nk〉 in G such that n0 = π(s), nk =
π(o), and p1 · . . . · pk ∈ L∗(π(R)).

1. Since I ′ is a map from term(H) into IR and ι−1 is a map from IR into

term(G), π = (ι−1 ◦ I ′) is clearly a map from term(H) into term(G)

(term(H) I′−→ IR
ι−1

−→ term(G)).

2. ∀x ∈ V(H), I ′(x) = ι(x) (Definition 2.2.2 and Proposition 2.2.5). ∀x ∈
V(H), (ι−1 ◦ I ′)(x) = (ι−1 ◦ ι)(x) = x.

(3i) If ε ∈ L∗(R) and I ′(s) = I ′(o) = r ∈ IR (Definition 4.2.1), then π(s) =
(ι−1 ◦I ′)(s) = ι−1(r), and π(o) = (ι−1 ◦I ′)(o) = ι−1(r). So π(s) =π(o)=
ι−1(r).

(3ii) If there exists a word of length n ≥ 1 such that w = a1 · . . . · an where

w ∈ L∗(R) and ai ∈ U ∪ B(G) (1 ≤ i ≤ k), and there exists a se-

quence of resources of IR I ′(s) = r0, . . . , rk = I ′(o) such that 〈ri−1, ri〉 ∈
IEXT (I ′(ai)), 1 ≤ i ≤ k (Definition 4.2.1). It follows that 〈ni−1, pi, ni〉 ∈
G with ni = ι−1(ri), and pi = (ι−1 ◦ I ′)(ai) (construction of Iiso(G) of

Proposition 2.2.5). So (ι−1 ◦I ′)(s) = ι−1(r0) = n0, (ι−1 ◦I ′)(o) = ι−1(rk)
= nk, and p1 · . . . · pk ∈ L∗((ι−1 ◦ I ′)(R)).

56 CHAPTER 4. A GENERAL GRAPH FRAMEWORK WITH PATHS

4.3.2 Complexity of PRDF homomorphism

The definition of PRDF homomorphism is parameterized by the language genera-

torR and subject to its satisfaction checking. To study the complexity of checking

the existence of a PRDF homomorphism, we need first to associate to the path

checking the decision problem called R-PATH SATISFIABILITY, and defined as

follows:

R-PATH SATISFIABILITY

Instance: A GRDF graphG, two nodes x0, xk ofG, and a generatorR ∈ R(U,B),

where U ⊇ V(G).

Question: Is there a map µ from U ∪B to term(G), a sequence T = (x0, . . . , xk)
of nodes of G and a word w ∈ L∗(R) such that T is a path of w in G according to

π (i.e., the pair 〈x0, xk〉 satisfies L∗(µ(R)))?

R-PRDF-GRDF HOMOMORPHISM

Instance: A PRDF[R] graph H and a GRDF graph G.

Question: Is there a PRDF homomorphism from H into G?

The problem is at least NP-hard, since it contains SIMPLE RDF ENTAILMENT

which is an NP-complete problem. Moreover, any solution can be checked by

checking as many times as there is edges in the query an instance of the R-PATH

SATISFIABILITY problem. Hence, if R-PATH SATISFIABILITY is in NP then R-

PRDF-GRDF HOMOMORPHISM is NP-complete.

Proposition 4.3.6 RE-PATH SATISFIABILITY in which B = ∅ (R ∈ RE(U,B) is

a regular expression that does not contain variables) is in NLOGSPACE in G and

R.

Proof. The labels of paths between x0 and xk form a regular language Px0,xk

[Yannakakis, 1990]. So, construct a non-deterministic finite automaton AG ac-

cepting the regular language Px0,xk with initial state x0 and final state xk (G can

be transformed to an equivalent NDFA in NLOGSPACE). Constructing a NDFA

M accepting L∗(R), the language generated by R, can be done in NLOGSPACE.

Constructing the product automaton P , that is, the intersection of AG and M ,

can be done in NLOGSPACE in |AG| + |M |. Checking if the pairs 〈x0, xk〉 sat-

isfies L∗(R) is equivalent to checking whether L∗(P) is not empty, and each of

these operations can be done in NLOGSPACE in |P| [Mendelzon and Wood, 1995;

4.3. QUERYING RDF WITH PRDF GRAPHS 57

Alechina et al., 2003] (with the fact that the class of LOGSPACE transformations is

closed under compositions [Balcazar et al., 1988]). An automaton for the intersec-

tion of L∗(R) withM is constructed by taking the product of the automaton for the

two languages. That is, the states of the product automaton are of the form 〈s, u〉
such that s is a state of M and u is a node of G; and there exists a transition on

letter a (respectively, letter b) from a state 〈s, u〉 to another state 〈t, v〉 if M has a

transition on a (respectively, on letter !a2) from s to t and 〈u, a, v〉 ∈ G (respec-

tively, 〈u, b, v〉 ∈ G and b 6= a). The construction is similar to the one presented in
[Yannakakis, 1990] without atomic negation.

When regular expressions do not contain variables, there is no need to guess

a map and the problem is reduced to the following decision problem [Mendelzon

and Wood, 1995; Alechina et al., 2003]:

R-REGULAR PATH [Mendelzon and Wood, 1995]

Instance: A directed labeled graph G, two nodes x0, xk of G, and a regular ex-

pression pattern R ∈ RE(U).

Question: Does the pair 〈x, y〉 satisfies L∗(R)?

Proposition 4.3.7 RE-PATH SATISFIABILITY is in NP.

Proof. RE-PATH SATISFIABILITY is in NP, since each variable in the regular ex-

pression pattern R can be mapped (assigned) to p terms, where p denotes the num-

ber of terms appearing as predicates in G. If the number of variables in R is v,

then there are (pv) possible assignments (mappings) in all. Once an assignment of

terms to variables is fixed, the problem is reduced to RE-PATH SATISFIABILITY,

where Σ ⊆ U , which is in NLOGSPACE.

It follows that a non-deterministic algorithm needs to guess a map µ and check

in NLOGSPACE if the pair 〈x0, xk〉 satisfies L∗(µ(R)).

Theorem 4.3.8 Let G be a GRDF graph and H be a ground PRDF[RE] graph,

thenRE-PRDF-GRDF HOMOMORPHSIM is in NLOGSPACE.

Proof. If H is ground, for each node x in H , π(x) is determined in G. Then it re-

mains to verify independently, for each triple 〈s,R, o〉 in H , if 〈π(s), π(o)〉=〈s, o〉
2!a is an atomic negation, i.e., a negated uriref.

58 CHAPTER 4. A GENERAL GRAPH FRAMEWORK WITH PATHS

satisfies π(R) = R. Since each of these operations corresponds to the case of PATH

SATISFIABILITY, in which Σ ⊆ U and X = ∅, the complexity of each of them is

NLOGSPACE (see Proposition 4.3.6) (Since H is ground, R does not contain vari-

ables). So, the total time is also NLOGSPACE. Given the equivalence between

PRDG-GRDF ENTAILMENT and checking the existence of PRDF homomorphism

(Theorem 4.3.5), PRDF-GRDF ENTAILMENT is thus in NLOGSPACE.

From this result and the equivalence of RE-PRDF-GRDF ENTAILMENT and

RE-PRDF-GRDF HOMOMORPHISM (Theorem 4.3.5), we conclude that the RE-

PRDF-GRDF ENTAILMENT problem is in NLOGSPACE.

4.4 Containment of PRDF Queries

A fundamental form of reasoning on queries is checking containment, i.e., check-

ing whether the answer to one query is a subset of answers of another one. It

is useful in several contexts such as query optimizations, information integration,

knowledge base verification, etc.

We introduce in this section the notion of query containment. Then we char-

acterize the containment problem of PRDF graphs, and show the decidability of

the problem. Finally, we provide a particular case in which the problem is NP-

complete.

4.4.1 Query containment–definition

Informally, the problem of query containment is the problem of testing whether if

answers to one query are all answers to another one. Let us use S(Q,G) to denote

the set of answers of the query Q over the knowledge base G. This problem can be

defined as follows:

Definition 4.4.1 (Query Containment) Let Q and Q′ be two queries. We say that

Q is contained in Q′, denoted by Q v Q′, if and only if for all RDF knowledge

base G then S(Q,G) ⊆ S(Q′, G). Q and Q′ are equivalent, denoted by Q ≡ Q′,

if Q v Q′ and Q′ v Q.

We are interested sometimes in returning the values of a subset of the set of

variables appearing in the query, and the following simple form could be used:

4.4. CONTAINMENT OF PRDF QUERIES 59

Strasbourg Stuttgart

Nancy Mannheim

Metz Francfort

taxi

train

taxi

plane

train

bus

bus

Figure 4.3: An RDF graph.

Q(~X) : −P

where P is a graph pattern to be matched against the knowledge base (for example,

a PRDF graph), and ~X is a vector of variables, which is a subset of that appearing

in P .

Example 4.4.2 Consider the following two PRDF queries:

Q1(?X,?Z) :- { (?X train+ ?Z) }

Q2(?X,?Z) :- { (?Y ?T+ ?Z), (?X (train+ | train.bus*) ?Z),

(?Y train ?Z) }

For example, on the RDF graph G of Figure 4.3, the set of answers to the two

queries are as follows:

S(Q1,G) = { 〈Metz,Strasbourg〉,〈Francfort,Mannheim〉 }

S(Q2,G) = { 〈Metz,Strasbourg〉,〈Francfort,Strasbourg〉
〈Francfort,Mannheim〉 }

4.4.2 Containment and canonical models

We show first that the entailment between two PRDF queries is not sufficient to

guarantee the containment between them. More precisely, given two PRDF queries

Q1 and Q2 such that Q1 |=PRDF Q2, then Q1 v Q2 does not necessarily hold.

Consider the following two PRDF queries:

Q1 :- { (?X bus ?Y) }

Q2 :- { (?X bus+ ?Y)}

60 CHAPTER 4. A GENERAL GRAPH FRAMEWORK WITH PATHS

Q1 searches the set of pairs of cities connected by a direct bus while Q2

searches all pairs of cities connected by a sequence of buses. In terms of mod-

els, these queries are equivalent. In other words, all models of Q1 are also models

of Q2, i.e., Q1 |=PRDF Q2 and Q2 |=PRDF Q1 hold since the PRDF[RE] graphs

{〈?X bus ?Y〉} and {〈?X bus+ ?Y〉} have the same models. However, in terms

of answers, we have Q1 v Q2, but Q2 6v Q1 since (Mannheim, Strasbourg)

is an answer of Q2 in the RDF graph of Figure 4.3 but is not an answer of Q1.

This example shows that there must exist extra semantic conditions to guarantee

the containment.

Theorem 4.4.3 (Containment and Entailment) LetQ andQ′ be two PRDF que-

ries such thatQ v Q′. Then it may exist a PRDF queryQ′′ such thatQ′′ |=PRDF Q,

Q |=PRDF Q
′′, and Q′′ 6v Q′.

It is enough to give such a counter example as a proof of this theorem. Consider

the Q1 and Q2 of the previous example, and the following PRDF query:

Q3 :- { (?X (bus | (bus.bus)) ?Y) }

searching the set of pairs of cities connected by exactly one or two trains. It is clear

that Q1 v Q3, Q1 and Q2 are semantically equivalent (i.e., Q1 |=PRDF Q2 and

Q2 |=PRDF Q1), but Q2 6v Q3. Nonetheless, if we consider only canonical models,

then we have Q1 |=c
PRDF Q2, but not the vice-versa.

Theorem 4.4.4 (Containment and Canonical Models) LetQ andQ′ be two queries.

Then Q 6v Q′, if and only if there exists an interpretation I = 〈IR, IP, IEXT , ι〉
and an extension ι′ of ι to B(Q) such that (i) I is an ι′-canonical model of Q, (ii)

does not exist an extension ι′′ of ι to B(Q′) such that ι′′ is an ι′-model of Q′.

Proof. For the if-part, it is sufficient to give a counterexample (see below). For

the only-if-part, we have for each ι′-canonical model of Q, there exists always

an extension ι′′ such that ι′′ is an ι′-model of Q′. This means that any canonical

knowledge base G obtained by constructing a given ι′-canonical model of Q, there

exists a map (i.e., a PRDF homomorphism) from Q′ into G. There exists therefore

an answer to Q′ in G. Hence, any answer of Q is also an answer of Q′. If this is

not the case, we consider it as a counterexample and Q 6v Q′.

4.4. CONTAINMENT OF PRDF QUERIES 61

Example 4.4.5 Consider for example the interpretation I = (IR, IP , IEXT , ι) de-

fined by:

- IR = {Paris, Lyon,Grenoble, bus};
- IP = {bus};
- ι(bus) = bus, IEXT (bus) = {(Grenoble, Lyon), (Lyon, Paris)}.

The existence of an extension ι′ of ι defined by (ι′(?X) = Grenoble and

ι′(?Y) = Paris) such that I is an ι′-canonical model of Q2, and there is no such

an extension ι′′ of ι with ι′′ is an ι′-model ofQ1 shows thatQ2 6|=c
PRDF Q1 and thus

Q2 6v Q1.

Since we can associate to every canonical model a canonical GRDF knowl-

edge base using Proposition 2.2.5, we can use the framework of [Florescu et al.,

1998] (see also [Calvanese et al., 2000a]) for testing the containment of PRDF[RE]
graphs with simple semantics. In this framework, we find an EXPSPACE-complete

algorithm based on canonical graphs (for us, canonical GRDF graphs) for testing

the containment of conjunctive regular path queries (respectively, conjunctive reg-

ular path queries with inverse).

If we consider the RDF(S) vocabulary (see Chapter 8), then canonical models

and canonical graphs must satisfy the RDF(S) conditions. In the same way, we

can define the canonical entailment and containment using, for example, RDF(S)

canonical models and RDF(S) canonical graphs.

Example 4.4.6 Given the following two PRDF [RE] queries:

Q1 :- { (train subPropertyOf Transport),

(Paris train+ ?Y)

}

Q2 :- { (Paris transport+ ?Y)}

with simple semantics, we have Q1 6v Q2. However, if we consider RDF(S) se-

mantics, then we have Q1 v Q2.

4.4.3 Query containment for restricted PRDF queries

We study in this section a particular case of PRDF queries, i.e., queries with re-

stricted PRDF[R] graphs, where a PRDF[R] graph is restricted if each of its pred-

icates represents a finite word. Then we show that the query containment in this

case is NP-complete by reducing the problem to the containment of GRDF graphs.

Let us first define formally restricted PRDF[R] graphs.

62 CHAPTER 4. A GENERAL GRAPH FRAMEWORK WITH PATHS

Definition 4.4.7 (Restricted PRDF graph) Let G be a PRDF[R] graph. We say

that G is restricted if for each 〈s,R, o〉 ∈ G, R ∈ (U ∪ B)k, where k ∈ N\{0}.

Example 4.4.8 The following PRDF query is restricted since its body is a re-
stricted PRDF [RE] graph, i.e., each predicate represents a word of length 2:

Q1 :- { (Paris train.plane ?Y),

(?Y plane.train Paris)

}

Each restricted PRDF[R] graph can be normalized, and the result of the process

will be a semantically equivalent GRDF graph.

Definition 4.4.9 (Normal graph) LetG be a restricted PRDF[R] graph. Then the

normal graph ofG, denoted by normal(G), is the graph obtained by replacing each

triple 〈s,R, o〉 ∈ G, by 〈s, a1, x1〉, . . . , 〈xn−1, ak, o〉 where R = a1 · . . . · ak, and

xi′s are all new distinct variables.

Example 4.4.10 The PRDF [RE] query of Example 4.4.8 can be normalized to the

following one:

Q1 :- { (Paris train ?newVar1),

(?newVar1 plane ?Y),

(?Y plane ?newVar2),

(?newVar2 train Paris)

}

Theorem 4.4.11 Let G and H be two restricted PRDF[R] queries. G v H iff

normal(G) v normal(H).

Proof. To prove this theorem, we show that for every restricted PRDF[R] graph

G and normal(G) are canonically equivalent (i.e., all canonical models of G are

also canonical models of normal(G)). Let us consider a canonical model I =
〈IR, IP , IEXT , ι〉 of G, and show that I is also a canonical model of normal(G).

Since I is a canonical model ofG, there exists an extension ι′ of ι to B(G) such that

for every triple 〈s,R = ai·. . .·ak, o〉, 〈ι′(s), ι′(o)〉 supports ai·. . .·ak in I according

to ι′. That is, there exists a sequence (r0 = ι′(s), . . . , rk = ι′(o)) of resources of

IR such that 〈ri−1, ri〉 ∈ IEXT (ι′(ai)), ∀1 ≤ i, j ≤ k. normal(G) contains,

for every triple 〈s,R, o〉 ∈ G, the following triples 〈s, a1, x1〉, . . . , 〈xn−1, ak, o〉,

4.4. CONTAINMENT OF PRDF QUERIES 63

where xi′s are all new distinct variables. Choose xi′s to be interpreted by ri in ι′,

∀1 ≤ i ≤ k. See that ι′ is also a canonical model of normal(G).

On the other way, normal(G) contains, for every triple 〈s,R, o) ∈ G, the fol-

lowing triples 〈x0 = s, a1, x1〉, . . . , 〈xn−1, ak, xk = o〉, where xi′s are all new

distinct variables, ∀1 ≤ i ≤ k. If I is a canonical model of normal(G), then there

exists an extension ι′ of ι to the variables normal(G) such that for every triple

〈xi−1, ai, xi〉, 〈ι′(s), ι′(o)〉 ∈ IEXT (ι′(ai)). See that the sequence of resources

(ι′(x0) = ι′(s), ι′(x1, . . . , ι
′(xk−1), ι′(xk) = ι′(o)) is a proof of R = ai · . . . · ak

in I according to ι′. Hence, I is also a canonical model of G.

This result is not only applied to simple semantics but also to other seman-

tics such that RDF(S) and OWL semantics. More precisely, using the process of

normalizing restricted path queries, we can use the deductive algorithm for test-

ing the containment of RDF(S) graph patterns of [Serfiotis et al., 2005] including

restricted path queries with RDFS semantics.

Example 4.4.12 Given the following restricted PRDF [RE] queries with RDFS

vocabulary:

Q1 :- { (Paris transport.transport ?City) }

Q2 :- { (Paris train.plane ?City),

(train subPropertyOf transport),

(plane subPropertyOf transport),

}

by applying the normalization process, we have:

Q1 :- { (Paris transport ?NewVar),

(?NewVar transport ?City)

}

Q2 :- { (Paris train ?NewVar),

(?NewVar plane ?City),

(train subPropertyOf transport),

(plane subPropertyOf transport),

}

by applying the deductive algorithm of [Serfiotis et al., 2005] to Q2, we have:

64 CHAPTER 4. A GENERAL GRAPH FRAMEWORK WITH PATHS

Q2 :- { (Paris train NewVar),

(?NewVar plane ?City),

(Paris transport NewVar),

(?NewVar transport ?City),

(train subPropertyOf transport),

(plane subPropertyOf transport),

...

}

Since there exists a containment mapping from Q1 into Q2 (according to [Ser-

fiotis et al., 2005]), we have Q2 v Q1.

4.5 Conclusion

We have proposed in this chapter an extension of RDF, called PRDF[R]. The lan-

guage generators R in PRDF[R] graphs are used to generate regular languages

(i.e., a set of words), and thus allow encoding variable length paths in graphs since

each path labels form a word. The set of regular expressions has been used as a

demonstration example to instantiate this extension, i.e., PRDF[RE]. The origi-

nality of our proposal lies in our adaptation of RDF model-theoretic semantics to

take into account regular expression patterns, and the extension of the semantics to

non-simple paths. This provides polynomial classes of the satisfiability problem of

regular expressions, e.g. when they do not contain variables, and thus we solved

the problem of simple paths proposed in (Example 4.1, [Mendelzon and Wood,

1995]).

In the following chapter, we will use PRDF[RE] to generalize the SPARQL

query language to have the PSPARQL extension. The inference mechanism, PRDF

homomorphism, defined in this chapter will be exploited to construct answers to

PSPARQL queries.

The PSPARQL Query Language 5
Contents

5.1 PSPARQL Syntax . 66
5.1.1 PSPARQL graph patterns 66
5.1.2 PSPARQL query . 67

5.2 Formal Semantics of PSPARQL 67
5.2.1 Answers to PSPARQL graph patterns 68
5.2.2 Answers to PSPARQL queries 69

5.3 Translation from PSPARQL to SPARQL 70
5.4 Algorithms for PSPARQL Query Evaluation 72

5.4.1 Triple-by-triple evaluation 72
5.4.2 A backtrack algorithm for calculating PRDF homo-

morphisms . 77
5.5 Complexity of Evaluating PSPARQL Graph Patterns . . . 82
5.6 Conclusion . 83

Introduction

As we mentioned before, SPARQL as an edge-based query language suffers from

the ability of expressing paths. PSPARQL (stands for Path SPARQL) basically ex-

tends SPARQL with regular expression patterns (i.e., using PRDF graphs as basic

graph patterns) to overcome this limitation providing a wider range of querying

paradigms [Alkhateeb et al., 2008b].

We think that query languages for querying semantically defined languages like

RDF should be defined semantically. This ensures the correct interpretation of the

knowledge base to be queried, e.g. guaranteeing that querying two semantically

66 CHAPTER 5. THE PSPARQL QUERY LANGUAGE

equivalent graphs will yield the same result. It also preserves the opportunity to

extend this language beyond what can be defined through mappings, e.g. query-

ing modulo an OWL ontology. Hence, we ground the definition of answers to

a PSPARQL query by consequences (i.e., PRDF-GRDF entailments). More pre-

cisely, we have proven in Chapter 4 that a GRDF graph G contains an answer to a

PRDF graph H (G entails H) if and only if there exists a PRDF homomorphism

(which is a particular map) from H into G. Then, PSPARQL query constructs are

defined through algebraic operations on PRDF homomorphisms.

This chapter is dedicated to the presentation of PSPARQL. Section 5.1 presents

its syntax, which is built on top of PRDF in the same way that SPARQL is built on

top of RDF. Section 5.2 defines the answers to a given PSPARQL query following

the framework of [Perez et al., 2006] followed by the algorithms for calculating

these answers in Section 5.4. Finally, Section 5.5 presents the complexity study of

evaluating PSPARQL graph patterns.

5.1 PSPARQL Syntax

The only difference between the syntax of SPARQL and that of PSPARQL, is

basic graph patterns. In SPARQL, they are GRDF graphs while in PSPARQL

they are PRDF graphs instantiated to regular expression patterns. This means that

PSPARQL keeps the compatibility with SPARQL queries since PRDF graph pat-

terns reduced to atomic terms are GRDF graph patterns.

5.1.1 PSPARQL graph patterns

PSPARQL graph patterns are built on basic graph patterns which are PRDF[RE]
graphs, where RE denotes the set of regular expression patterns constructed over

the set of urirefs and the set of variables (U ∪ B).

Definition 5.1.1 (PSPARQL graph patterns) A PSPARQL graph pattern is de-

fined inductively in the following way:

– every PRDF[RE] graph is a PSPARQL graph pattern;

– if P1, P2 are PSPARQL graph patterns and C is a SPARQL constraint,

then (P1 AND P2), (P1 UNION P2), (P1 OPT P2), and (P1 FILTER C) are

PSPARQL graph patterns.

Example 5.1.2 The following PSPARQL graph pattern P

5.2. FORMAL SEMANTICS OF PSPARQL 67

{ { ex:Paris (ex:train|ex:plane)+ ?City . }

{

{ ?City ex:capitalOf ?Country . }

UNION

{ ?City ex:populationSize ?Population .

FILTER (?Population > 200000)

}

}

}

consists of the following basic graph patterns (i.e., PRDF graphs) and constraint:

P = (P1 AND (P2 UNION (P3 FILTER C))), where

P1 = { ex:Paris (ex:train|ex:plane)+ ?City . } that finds cities reach-

able from Paris by a sequence of trains or planes;

P2 = { ?City ex:capitalOf ?Country . } that finds capital cities together

with their countries;

P3 = { ?City ex:populationSize ?Population . } that finds cities and their

population size;

C = Filter (?Population > 20000) is a constraint that restricts the values

of the variable ?Population to be greater than 200000.

As PSPARQL introduces PRDF[RE] graphs, we give in Table 5.1 the necessary

modifications to the SPARQL grammar [Prud’hommeaux and Seaborne, 2008] in

the extended Backus-Naur form, where the production rule [21’] replaces [21] in

SPARQL, and all other rules are added to SPARQL grammar to have a complete

grammar for PSPARQL Appendix A (see also psparql.inrialpes.fr).

5.1.2 PSPARQL query

A PSPARQL query is of the form SELECT ~B FROM u WHERE P . The only difference

with a SPARQL query is that, this time, P is a PSPARQL graph pattern, i.e., a

PRDF[RE] graph. The use of variables in PRDF regular expression patterns is a

generalization of the use of variables as predicates in the basic graph patterns of

SPARQL.

5.2 Formal Semantics of PSPARQL

Answers to SPARQL queries are defined based on maps from GRDF graph patterns

of the query into the RDF knowledge base following the framework outlined in

psparql.inrialpes.fr

68 CHAPTER 5. THE PSPARQL QUERY LANGUAGE

[21’] 〈TriplesBlock〉 ::= 〈PathTriples1〉
| (‘.’ 〈PathTriples1〉?)*

[30.1] 〈PathTriples1〉 ::= 〈V arOrTerm〉 〈PathPropLNE〉
| 〈PathTripleNode〉 〈PathPropL〉

[31.1] 〈PathPropL〉 ::= 〈PathPropLNE〉?
[32.1] 〈PathPropLNE〉 ::= 〈PathV erb〉 〈PathObL〉 (‘;’ 〈PathPropL〉)?
[33.1] 〈PathObL〉 ::= 〈PathGraphNode〉 (‘,’ 〈PathObL〉)?
[34.1] 〈PathV erb〉 ::= 〈RegularExp〉
[35.1] 〈PathTripleNode〉 ::= 〈PathCollection〉

| 〈PathBNodePropL〉
[36.1] 〈PathBNodePropL〉 ::= ‘[’ 〈PathPropLNE〉 ‘]’
[37.1] 〈PathCollection〉 ::= ‘(’ 〈PathGraphNode〉+ ‘)’
[38.1] 〈PathGraphNode〉 ::= 〈V arOrTerm〉

| 〈PathTripleNode〉
[39.1] 〈RegularExp〉 ::= 〈Rexp〉 ((‘|’ | ‘·’) 〈Rexp〉)*
[39.2] 〈Rexp〉 ::= (‘+’ | ‘*’)? 〈Atom〉
[39.3] 〈Atom〉 ::= ‘!’ 〈IRIref〉

| 〈V arOrIRIref〉
| ‘(’ 〈RegularExp〉 ‘)’

Table 5.1: PSPARQL graph pattern grammar.

[Perez et al., 2006]. Since answers to PSPARQL queries are given using maps, the

same framework can be used to define semantics of PSPARQL queries.

5.2.1 Answers to PSPARQL graph patterns

As in the case of SPARQL reduced to GRDF graphs, the answer to a query reduced

to a PRDF[RE] graph is also given by a map. The definition of an answer to a

PSPARQL query will thus be identical to that given for SPARQL [Perez et al.,

2006], but it will use PRDF homomorphisms.

Definition 5.2.1 (Answer to PSPARQL graph patterns) Let P be a PSPARQL

graph pattern and G be an RDF graph. The set S(P,G) of answers of P in G is

defined inductively in the following way:

– if P is a PRDF[RE] graph, S(P,G) = {µ | µ is a PRDF homomorphism

from P into G};

– if P = (P1 AND P2), S(P,G) = S(P1, G) on S(P2, G);

– if P = (P1 UNION P2), S(P,G) = S(P1, G) ∪ S(P2, G);

– if P = (P1 OPT P2), S(P,G) = (S(P1, G) on S(P2, G)) ∪ (S(P1, G) \
S(P2, G));

5.2. FORMAL SEMANTICS OF PSPARQL 69

– if P = (P1 FILTER C), S(P,G) = {µ ∈ S(P1, G) | µ(C) = >}.

Example 5.2.2 According to Definition 5.2.1, the set of answers of the PSPARQL

graph pattern P of Example 5.1.2 in a given RDF graph G is defined as:

P = (S(P1, G) on (S(P2, G) ∪ ({µ ∈ S(P3, G) | µ(C) = >})))
In words, the set of maps (i.e., PRDF homomorphisms) from P1 into G joined

with the union of that from P2 into G and those from P3 into G that satisfy the

constraint C.

5.2.2 Answers to PSPARQL queries

If Q =SELECT ~B FROM u WHERE P is a PSPARQL query, G is the GRDF graph

identified by the URI u, and Ω is the set of answers of P in G, then the answers to

Q are the projections of elements of Ω to ~B, i.e., for each map π of Ω, the answer

to Q associated to π is {(x, y) | x ∈ ~B and y = π(x) if π(x) is defined, null

otherwise} otherwise.

Proposition 5.2.3 Let Q =SELECT ~B FROM u WHERE P be a PSPARQL query,

P be a PRDF[RE] graph and G be a GRDF graph identified by URI u, then the

answers to Q are the images of variables in ~B by a PRDF homomorphism π from

P into G such that G |=PRDF π(P).

This property is a straightforward consequence of Definition 5.2.1 and The-

orem 4.3.5. It is based on the fact that the answers to Q are the restrictions to
~B of the set of PRDF homomorphisms from P into G which, by Theorem 4.3.5,

corresponds to PRDF-GRDF ENTAILMENT.

Example 5.2.4 The following PSPARQL query that uses the graph pattern P of

Example 5.1.2:

SELECT ?City

WHERE { P }

ORDER BY Asc(?City)

returns in an ascending order the set of cities reachable from Paris by a sequence of

trains and planes, which are either capital cities or have a population size greater

than 200000.

70 CHAPTER 5. THE PSPARQL QUERY LANGUAGE

5.3 Translation from PSPARQL to SPARQL

Simple PSPARQL queries (i.e., with absence of the recursion operators + and * in

regular expressions), could be expressed by equivalent SPARQL queries.

Example 5.3.1 The following PSPARQL query:

SELECT ?City

WHERE { ex:Paris (ex:train | ex:plane).ex:bus ?City .}

that searches cities connected to Paris by plane or train relations followed by a bus

relation, is equivalent to the following SPARQL query:

SELECT ?City

WHERE {

{ {ex:Paris ex:train ?MidCity .}

UNION

{ex:Paris ex:plane ?MidCity .}

}

?MidCity ex:bus ?City .

}

Nonetheless, as shown in this example, regular expressions provide a more

compact syntax. Moreover, the complexity is growing very rapidly with the size

of queries while regular expressions suggest a natural and more efficient evalua-

tion. In addition, we should pay attention when we translate from PSPARQL to

SPARQL queries, in particular, for queries involving negation in regular expres-

sions. Let us illustrate this point given the following RDF graph.

{ (ex:Person1 foaf:name "Faisal Alkhateeb"),

(ex:Person1 foaf:knows "Jérôme Euzenat"),

(ex:Person1 foaf:knows "Jean François Baget")

}

Suppose we want to find persons who do not know "Jérôme Euzenat". Then

the following SPARQL query:

SELECT ?Name

WHERE {

?Person1 foaf:name ?Name .

?Person1 foaf:knows ?Person2 .

FILTER (?Person2 != "Jerome Euzenat") .

}

as it returns also the person named "Faisal Alkahteeb" who knows "Jean François

Baget", fails to achieve the desired answers.

5.3. TRANSLATION FROM PSPARQL TO SPARQL 71

One solution to do that is using a trick reproducing negation as failure from

Logic programming [Clark, 1978]. That is, by testing if a graph pattern is not

expressed by specifying an OPTIONAL graph pattern that introduces a variable

and testing to see that the variable is not bound.

SELECT ?Name

WHERE {

?Person1 foaf:name ?Name .

OPTIONAL { ?Person1 foaf:knows ?Person2 .

FILTER (?Person2 = "Jerome Euzenat") .

}

FILTER (!BOUND (?Perosn2)) .

}

The same problem occurs when using variables in the predicate position. This

way, the following SPARQL query:

SELECT ?City2

WHERE {

?City1 foaf:name "Paris" .

?City1 ?Mean ?City2 .

FILTER (?Mean != ex:plane)

}

fails to find cities that are not connected to Paris by a plane. Also, according

to the semantics of regular expressions (Chapter 4), the following two equivalent

PSPARQL queries:

SELECT ?City1

WHERE {

?City1 foaf:name "Paris" .

?City1 (!ex:plane)+ ?City2 .

}

and

SELECT ?City1

WHERE {

?City1 foaf:name "Paris" .

?City1 ?Mean+ ?City2 .

FILTER (?Mean != ex:plane)

}

search cities connected by a transportation mean other than plane, which is the

usual semantics of regular expressions. However, the following query:

72 CHAPTER 5. THE PSPARQL QUERY LANGUAGE

SELECT ?City2

WHERE { ?City1 foaf:name "Paris" .

OPTIONAL { ?City1 ?Mean+ ?City2 .

FILTER (?Mean = ex:plane) . }

FILTER (!BOUND(?Mean)) . }

finds cities that are not connected to Paris by a sequence of planes.

As a consequence, the negation operator in SPARQL does not always guarantee

the correct interpretation of the negation operator in regular expressions. Hence,

PSPARQL is more expressive than SPARQL because the use of recursion operators

and that even if we can translate the rest easily, this translation does not interact

well with the negation operator.

5.4 Algorithms for PSPARQL Query Evaluation

To answer a PSPARQL query Q involving PRDF[RE] graphs as basic graph pat-

terns, mandates to enumerate all PRDF[RE] homomorphisms from the graph pat-

tern(s) of Q into the data RDF graph of Q. So, we are interested in an algorithm

that, given a PRDF[RE] graph H and an RDF graph G, solves the following

problems:

1. Is there a PRDF[RE] homomorphism from H into G?

2. Exhibit, if it exists, a PRDF[RE] homomorphism from H into G.

3. Enumerate all PRDF[RE] homomorphisms from H into G.

Two possible methods can be used for solving these problems: a method based

on evaluating the PRDF graph triple-by-triple is presented in Section 5.4.1; and a

backtracking method based on the standard backtrack techniques is presented in

Section 5.4.2.

5.4.1 Triple-by-triple evaluation

Given a PRDF[RE] graph H and an RDF graph G, we can enumerate all PRDF

homomorphisms from H into G by evaluating the graph H triple-by-triple and

take the join of the intermediate results. This method is similar to the edge-by-

edge evaluation method presented in [Cruz et al., 1988].

5.4. ALGORITHMS FOR PSPARQL QUERY EVALUATION 73

Evaluation algorithms

[Liu et al., 2004; de Moor and David, 2003] present the algorithmReach(G,R, v0)
(Algorithm 1), whereG is a graph (for us, an RDF graph),R is a regular expression

pattern and v0 is a node ofG. This algorithm calculates the set of triples 〈v0, vk, µ〉,
where vk is a node of G and µ is a map from terms of R into terms of G such that

there exists a sequence T = (v0, . . . , vk) of nodes of G and a word w ∈ L∗(R)
with T is a path of w in G according to µ.

The Reach algorithm uses a non deterministic finite automaton (NDFA) that

recognizes a language equivalent to a given regular expression pattern. It can be

constructed in the usual way (cf. [Aho et al., 1974]). It also reuses the definition

of matching two regular expression patterns found in [Liu et al., 2004].

Matching regular expression patterns. LetR1 andR2 be two regular expres-

sion patterns, then we say that R2 matches R1 under the mapping µ, denoted by

match(R2, R1, µ), if one of the following conditions holds:

1. R1 = µ(R2);

2. R2 ∈ B and R2 /∈ dom(µ);

3. R1, R2 ∈ B and (µ(R2) = R1 or R2 /∈ dom(µ));

4. R2 = #;

5. R2 =!R3, and recursively, R1 does not match R3;

6. R1 = 〈e1, . . . , ek〉, R2 = 〈a1, . . . , ak〉, and recursively ei matches ai, ∀1 ≤
i ≤ k, where ei, ai are the atomic elements of R1, R2.

For example, the regular expression pattern (?z · ?y) matches the regular

expression pattern (ex:train · ex:plane) and the result will be the mapping

{〈?z, ex:train〉, 〈?y, ex:plane〉}.
TheReach algorithm is used by the algorithmEvaluate (Algorithm 2), which,

given an RDF graph G and a PRDF[RE] triple 〈x,R, y〉, calculates the set of maps

µ such that 〈µ(x), µ(y)〉 satisfies R in G with the map µ (it is said that µ satisfies

〈x,R, y〉 in G).

The results of the Evaluate algorithm are used to calculate the PRDF homo-

morphisms of a PRDF[RE] graph P into an RDF graph G by successive joins in

the algorithm Eval (Algorithm 3), whose initial call will be Eval(P,G, {µ∅}),

where µ∅ is the map with the empty domain.

The Eval algorithm is given for evaluating PRDF[RE] graphs, and can be

extended to evaluate PSPARQL graph patterns following the Eval algorithm for

evaluating SPARQL graph patterns [Perez et al., 2006].

74 CHAPTER 5. THE PSPARQL QUERY LANGUAGE

Algorithm 1: Reach(G,R, v0)
Data: An RDF graph G, a regular expression R and a start node v0 in G.
Result: {〈v0, vk, µ〉 | there exists a sequence T = (v0, . . . , vk) of nodes of

G, a map µ from terms of R into term(G) and a word w ∈ L∗(R)
with T is a path of w in G according to µ.

begin
Let A = 〈S, s0, δ, F 〉 be the NDFA of R;
R← {};
W ← {};
S(G)← {};
for 〈s0, tl, s〉 ∈ A do

for 〈v0, el, v〉 ∈ G do
if match(tl, el, µ∅) then

µ← {〈tl, el〉};
µ′ = (µ⊕ µi);
W ←W ∪ {〈v, s, µ′〉};

while (exists 〈v, s, µ〉 ∈W) do
R← R ∪ {〈v, s, µ〉}; W ←W − {〈v, s, µ〉};
for 〈s, tl, s1〉 ∈ A do

for 〈v, el, v1〉 ∈ G do
if match(tl, el, µ) then

µ1 ← {〈tl, el〉}; µ2 ← (µ⊕ µ1);
if (〈v1, s1, µ2〉 /∈ R) then

W ←W ∪ {〈v1, s1, µ2〉};

if s ∈ F then
S(G)← S(G) ∪ {〈v0, v, µ〉};

return S(G);
end

5.4. ALGORITHMS FOR PSPARQL QUERY EVALUATION 75

Algorithm 2: Evaluate(t, G).
Data: An RDF graph G, a PRDF[RE] triple t = (x,R, y).
Result: The set of maps µ satisfying t in G.
begin

if x ∈ U then
SG(t)← Reach(G,R, x);

else
SG(t)←

⋃
s∈G{Reach(G,µp(R), s,) | µp ← {〈x, s〉}};

if y ∈ V then
SG(t)← {(s, y, µ) ∈ SG(t)}

else
SG(t)← {(s, o, µ′) | (s, o, µ) ∈ SG(t), (µ, (y ← o)) are
compatible, and µ′ ← µ⊕ {(y ← o)}}

return {µ | (s, o, µ) ∈ SG(t)};
end

Algorithm 3: Eval(P,G,Ω).
Data: An RDF graph G, a set of maps, a PRDF graph P .
Result: The set {µ | µ is a PRDF homomorphism from P into G}.
begin

if P = {t} then
return Ω on Evaluate(t, G);

else
if P = (t ∪ P ′) then

return Eval({t}, G,Eval(P ′, G,Ω));

end

76 CHAPTER 5. THE PSPARQL QUERY LANGUAGE

Algorithmic time complexity.

The Reach algorithm has worst-case time complexity O(|G| × |Ri| × maps ×
(predicateSize + vars(Ri))) (the notations used in Table 5.2 are reformulated

from [Liu et al., 2004] and adapted to our problem). Now, for each triple 〈x,Ri, y〉
in P , the Reach algorithm is called by the Evaluate algorithm once if x is a

constant, i.e., a uriref or a literal if it is allowed in the subject position; other-

wise it is called for each node in G multiplied by the number of variables in

P in the subject position. So, the Evaluate algorithm has overall worst-case

time complexity O((varss(P) × subj(G) + consts(P)) × |G| × |Ri| × maps

×(predicateSize+ vars(Ri))), where varss(P) (respectively, consts(P)) is the

number of variables (respectively, constants) appearing in the subject position in a

triple of P .

Name Meaning
vars the number of variables.
predicateSize the maximum predicate size appearing in G or in R.
maps the number of possible maps from variables of R into

terms of G that match some path in G with some path
in R; the worst case is pred(G)vars(R).

Table 5.2: Notations for complexity analysis

This result shows an exponential complexity with respect to the number of

variables in the regular expression patterns of the PRDF graph representing the

query (O(pred(G)vars(R))). However, the size of the query, and in particular, the

number of variables is usually considered very small with regards to the knowledge

base. Hence, the number of variables in each regular expression pattern can be

assumed a constant. With this assumption, the data complexity, which is defined

as the complexity of query evaluation for a fixed query [Vardi, 1982], is O(|G|2),

i.e., not much worse than the one of SPARQL [Perez et al., 2006].

Though the above method is correct and complete, it is not efficient, in par-

ticular, for testing the existence of a PRDF homomorphism which is sufficient for

checking if a PRDF[RE] graph is a consequence of an RDF graph. Using this

method, we need to perform the join operation for all PRDF triples to have the set

of maps, i.e., the set of PRDF homomorphism, while we need to test the existence

of one PRDF homomorphism. Consider the PRDF graph P and the RDF graph

of Figure 5.1. To test if there exists a PRDF homomorphism from P into G, we

need to solve PATH SATISFIABILITY N2 times for the regular expression pattern

5.4. ALGORITHMS FOR PSPARQL QUERY EVALUATION 77

R in P , where N is the number of nodes of G. However, we need to solve PATH

SATISFIABILITY only once as it appears in Figure 5.1. More precisely, since the

extremities of the regular expression R are variables (namely, ?b6 and ?b7), we

need to check for each pair of nodes 〈x, y〉 ofG if they satisfyR inG while, in this

example, ?b6 and ?b7 can be only mapped to ex:c1 and ex:c2, respectively. In

such a case, it is sufficient to determine whether the pair 〈ex:c1, ex:c2〉 satisfies

R in G.

ex:Grenoble ex:c1
. . .

. . .

. . .

ex:c2 ex:Amman

ex:Grenoble ?b6 ?b7 ex:Amman P

G
ex:train ex:bus

ex:train R ex:bus

Figure 5.1: A case in which the path closure method is not efficient.

The next section presents a backtracking algorithm for calculating the set of

PRDF homomorphisms of a PRDF graph into an RDF graph. This algorithm has

the same worst-case time as the triple-by-triple method, but it is more efficient in

practice since in some cases there is no need to traverse all the backtrack tree to

find the first PRDF homomorphism.

5.4.2 A backtrack algorithm for calculating PRDF homomorphisms

An alternative method for evaluating PSPARQL graph patterns, i.e., enumerating

all PRDF homomorphisms from the PRDF graph of a given PSPARQL query into

the data graph, is based on a backtracking technique that generates each possible

map from the current one by traversing the parse tree in a depth-first manner and

using the intermediate results to avoid unnecessary computations.

Algorithm 4 is a simple recursive version of the basic Backtrack algorithm
[Golomb and Baumert, 1965]. The inputs to this algorithm are: a PRDF graph, an

RDF graph, and a partial map, denoted by partialProj. partialProj includes a

set of pairs {〈xi, yi〉} such that xi is a term of H (i.e., xi ∈ term(H)), and yi is

the image of xi in G (i.e., yi ∈ term(G)).

The other parts of the algorithm perform as follows:

chooseTerm(nodes(H)) chooses a term x ∈ nodes(H).

78 CHAPTER 5. THE PSPARQL QUERY LANGUAGE

Algorithm 4: Extendhomomorphism(H,G, partialProj, n).
Data: A PRDF graph H , an RDF graph G, and a partial map partialProj

from term(H) to term(G).
Result: Extends the partial map to PRDF homomorphisms.
if n==nodes(H) then

return solution-Found(partialProj);
x← chooseTerm(nodes(H));
for each 〈y, θ〉 ∈ candidates(partialProj, x,G,H) do

Extendhomomorphism(H,G, partialProj ⊕ {〈x, y〉} ⊕ θ, n+ 1);

candidates(partialProj, x,G,H) calculates all possible candidate images in G

for the current term x satisfying the partial map partialProj. It returns

all sets of pairs 〈y, θ〉 such that y is a possible image of x, and θ is the

possible map from the terms of each regular expression pattern Ri appear-

ing in a triple with x and one of the terms in nodes(H) already mapped in

partialProj. That is, if there is no term of nodes(H) having a triple with

x, then the possible candidate images of x are all y in nodes(G) such that x

can be mapped to y (cf. the definition of mapping Definition 2.3.1). Other-

wise, there exists a set of terms z1, . . . , zk ∈ nodes(H) having a triple with

x, which are already mapped in partialProj. In this case, image(zi) and

y satisfies θ(Ri), where Ri is the regular expression pattern appearing in the

predicate position of the triple between zi and x. The order in which the two

nodes image(zi) and y satisfies θ(Ri) depends on the order in which x and

zi appear in the triple, that is, if the triple is 〈zi, Ri, x〉 then 〈image(zi), y〉
satisfies θ(Ri) in G, otherwise 〈y, image(zi)〉 satisfies θ(Ri) in G. θ maps

the terms appearing in the regular expression patterns of H into the terms

appearing along the paths in G with respect to partialProj, that is, θ is a

possible map such that θ and partialProj are compatible.

Then the algorithm takes each candidate y of the current term x ∈ nodes(H)
and the possible map θ, put y in the image(x), and tries to generate the possi-

ble candidates of y with the current map partialProj ⊕ {〈x, y〉} ⊕ θ (note that

partialProj, {〈x, y〉} and θ are compatible, since the set 〈y, θ〉 is calculated with

respect to partialProj). This is done recursively in a depth-first manner in the call

ofExtendhomomorphism(H,G, partialProj⊕{〈x, y〉}⊕θ). At the end of the

algorithm, we have a tree that contains one level with a term from H , i.e., a node

from H , and one level with the possible images of that term in G. The input to

5.4. ALGORITHMS FOR PSPARQL QUERY EVALUATION 79

Algorithm 5: Candidates(µp, x,G,H).
Data: A map µp, an RDF graph G and a node x from a PRDF graph H .
Result: The set 〈y, µ〉 such that y is a possible image of x in G, and µ

extends µp to the node x.
begin

preVs ← {〈x,Ri, zi〉 | 〈x,Ri, zi〉 ∈ H and zi ∈ dom(µp)};
preVo ← {〈zi, Ri, x〉 | 〈zi, Ri, x〉 ∈ H and zi ∈ dom(µp)};
if preVs == ∅ and preVo == ∅ then

if x is variable then
if x /∈ dom(µp) then

candidates = {〈y, µp〉 | y ∈ nodes(G)};
else

if µp(x) ∈ nodes(G) then
candidates = 〈µp(x), µp〉;

else
candidates = ∅;

else
if x ∈ nodes(G) then

candidates = 〈x, µp〉;
else

candidates = ∅;

else
if preVs 6= ∅ then

tempCands = {〈s, µ〉 | 〈x,Ri, zi〉 ∈ preVs and
〈s, o, µ〉 ∈ sat(µp, x,Ri, µp(zi), G)};
preVs = preVs − {〈x,Ri, zi〉};

else
tempCands = {〈o, µ〉 | 〈zi, Ri, x〉 ∈ preVo and
〈s, o, µ〉 ∈ sat(µp, µp(zi), Ri, x,G)};
preVo = preVo − {〈zi, Ri, x〉};

for each 〈x,Ri, zi〉 ∈ preVs do
candidates = {〈s, µ′〉 | 〈s, µ1〉 ∈ tempCands,
〈s, o, µ2〉 ∈ sat(µp, x,Ri, µp(zi), G), µ1, µ2 are compatible,
and µ′ ← merge(µ1, µ2)};
tempCand = candidates;

for each 〈zi, Ri, x〉 ∈ preVo do
candidates = {〈o, µ′〉 | 〈o, µ1〉 ∈ tempCands,
〈s, o, µ2〉 ∈ sat(µp, µp(zi), Ri, x,G), µ1, µ2 are compatible,
and µ′ ← merge(µ1, µ2)};
tempCand = candidates;

return candidates;
end

80 CHAPTER 5. THE PSPARQL QUERY LANGUAGE

Algorithm 6: sat(µp, x,R, y,G).
Data: An RDF graph G, a PRDF[RE] triple (x,R, y), and a partial map µp.
Result: The set of triples 〈s, o, µ〉 such that the map µ satisfies

(x, µp(R), y) in G.
begin

S ← {};
if (x ∈ U) or (x ∈ dom(µp)) then

if x ∈ dom(µp) then
n← µp(x);

else
n← x;

S ← S ∪Reach(G,µp(R), n);
else

S ←
⋃
s∈G{Reach(G,µ′p(R), s) | µ′p ← {〈x, s〉} ⊕ µp)};

if y ∈ U then
S ← {(s, y, µ) ∈ S}

else
S ← {(s, o, µ′) | (s, o, µ) ∈ S, (µ, (y ← o)) are compatible, and
µ′ ← µ⊕ {(y ← o)}}

return S;
end

each node of each level is the current map. Each possible path in the tree from the

root to a leaf labeled by a term of G represents a possible PRDF homomorphism.

If we call Extendhomomorphism(H,G, partialProj∅, n = 0) with the

empty map partialProj∅, then at the end of the algorithm we have all PRDF

homomorphisms from the PRDF graph H into the RDF graph G.

Example 5.4.1 Let the PRDF graph H and the RDF graph G of Figure 5.2 repre-

sent a graph pattern of a PSPARQL query a data graph, respectively (we use
p←→

to represent an incoming and outcoming arcs labeled with p). To enumerate the

set of PRDF homomorphisms from H into G, the algorithm chooses an arbitrary

term from H (assume it is ex:Lyon). Then it searches the RDF graph G to find all

possible candidate images for ex:Lyon, which will be, if it presents in G, the term

ex:Lyon. It found such a term, so the only candidates for ex:Lyon is ex:Lyon.

Now, it chooses another term of H (suppose it is ?W). Then, the algorithm calls

candidates({〈ex:Lyon,ex:Lyon〉}, ?W, G). Since there exists only one triple inH

containing ?W and one of the terms already mapped by partialProj, i.e., ex:Lyon,

the possible candidate images for ?W are all 〈y, θ〉 such that the pair 〈ex:Lyon,y〉
satisfies the regular expression θ(?X+), which will be:

5.4. ALGORITHMS FOR PSPARQL QUERY EVALUATION 81

ex:France

ex:Jordan ex:Paris ex:Lyon

ex:Amman ex:Grenoble

?C ?W

ex:Grenoble

ex:Lyon

"Ch.D.G."

"Q.A."

ex:iap ex:capital

ex:train

ex:plane

ex:train

ex:plane
ex:capital

ex:plane

ex:iap

ex:train

?Y

?X·?Y

?X+

Figure 5.2: A PRDF graph H and an RDF graph G.

�
 �	ex:Grenoble
�
 �	ex:Lyon

�
 �	ex:Paris
�
 �	ex:Lyon

�
 �	ex:Amman
�
 �	ex:Paris

�
 �	ex:Grenoble G

�
 �	?C
�
 �	?C

�
 �	?C
�
 �	?C

@
@@R

�
��	

@
@@R

�
��	 ?

@
@@R

�
��	

H

�
 �	ex:Grenoble
�
 �	ex:Grenoble

�
 �	ex:Grenoble
�
 �	ex:Grenoble

? ? ? ?

G

�
 �	ex:Grenoble
�
 �	ex:Grenoble

�
 �	ex:Grenoble
�
 �	ex:Grenoble

�
 �	ex:Grenoble

?
?Y=ex:train

?
?Y=ex:train

?
?Y=ex:train

?
?Y=ex:train

H

�
 �	ex:Paris
�
 �	ex:Amman

�
 �	ex:Grenoble
�
 �	ex:Paris

�
 �	ex:Lyon

? ? ? ? ?

G

�
 �	?W

??X=ex:train

��
����

?X=ex:plane
��������)

?X=ex:train
PPPPPPPq

?X=ex:plane

XXXXXXXXXXXXXz
?X=ex:train

H

�
 �	ex:Lyon

?

G

�
 �	ex:Lyon

?

H

Figure 5.3: The backtracking result of Example 5.4.1.

82 CHAPTER 5. THE PSPARQL QUERY LANGUAGE

{ 〈 ex:Paris, θ = {(?X,ex:train)} 〉,
〈 ex:Paris, θ = {(?X,ex:plane)} 〉,
〈 ex:Amman, θ = {(?X,ex:plane)} 〉,
〈 ex:Grenoble, θ = {(?X,ex:train)} 〉,
〈 ex:Lyon, θ = {(?X,ex:train)} 〉

}

Then the algorithm takes the possible candidates of ?W one by one, and try to extend

partialProj. For the first candidate of ?W, it calls Extendhomomorphism(H,
G, {〈ex:Lyon, ex:Lyon〉, 〈?W, ex:Paris〉, 〈?X, ex:train〉}). Then, it chooses

another term from nodes(H) not yet being mapped to a term of G, and repeats the

same steps for this term. The backtrack tree of this example is given in Figure 5.3.

One interesting feature of the backtrack algorithm is that we can stop the search

process after a determined number of solutions. In the case of answering boolean

queries (e.g. SPAQRL ASK queries) or checking the consequences, we need only

to verify if there exists at least one solution.

5.5 Complexity of Evaluating PSPARQL Graph Patterns

We define the PSPARQL QUERY EVALUATION decision problems for PSPARQL in

the same way as for SPARQL. This problem depends on calculating PRDF homo-

morphisms, and hence it is parametrized by the PRDF HOMOMORPHISM problem.

PSPARQL QUERY EVALUATION

Instance: An RDF graph G, a PSPARQL graph pattern P and a mapping µ.

Question: Does µ ∈ S(P,G)?

We have studied the PSPARQL QUERY EVALUATION problem for basic graph

patterns. We have first considered ground graph patterns, which is reduced to

checking if a given map is a PRDF homomorphism. So there is no need to seek

such a map, and the REGULAR PATH problem is considered in this case (see Ap-

pendix). Theorem 5.5.1 shows that PSPARQL QUERY EVALUATION for ground ba-

sic graph patterns is no more difficult than REGULAR PATH (defined in Appendix).

Theorem 5.5.1 PSPARQL QUERY EVALUATION is in NLOGSPACE for ground ba-

sic graph patterns and NP-complete for basic graph patterns.

Proof. The first assertion (NLOGSPACE for ground PRDF graphs) follows directly

from Theorem 4.2.10. For the second assertion (NP-complete), when reduced to

5.6. CONCLUSION 83

PRDF graphs, PSPARQL QUERY EVALUATION is equivalent to PRDF-GRDF HO-

MOMORPHISM (Definition 3.3.5). Indeed, PRDF-GRDF HOMOMORPHISM problem

can be reduced to PSPARQL QUERY EVALUATION with the empty map µ. In such

a case, PSPARQL QUERY EVALUATION is true when there exist a PRDF homo-

morphism between P and G. On the other way, PSPARQL QUERY EVALUATION

is reduced to PRDF-GRDF HOMOMORPHISM between G and µ(P). Since PRDF-

GRDF HOMOMORPHISM is NP-complete, then PSPARQL QUERY EVALUATION is

NP-complete for PRDF graphs.

The complexity of PSPARQL QUERY EVALUATION for basic graph patterns is

thus the same as SPARQL QUERY EVALUATION for basic graph patterns [Gutierrez

et al., 2004]. Since PSPARQL queries are the same as SPARQL queries with the

difference of the kind of basic graph patterns and since PSPARQL QUERY EVAL-

UATION for PRDF[RE] graphs is in NP, our extension does not increase the com-

plexity of SPARQL for general graph patterns, i.e., PSPACE-complete [Perez et al.,

2006].

5.6 Conclusion

The goal of this chapter was to extend the SPARQL query language that lacks the

ability of expressing variable length paths. In order to achieve this goal, we have

used PRDF graphs, in which predicates are replaced by regular expression patterns,

to define a novel extension to SPARQL, called PSPARQL. Then, we have pro-

vided a sound and complete inference mechanism for answering PSPARQL queries

over RDF graphs as well as algorithms for calculating these answers. Finally, we

proved that the problem of answering PSPARQL queries over RDF graphs remains

PSPACE-complete.

The obtained language offers new and useful capabilities with respect to the

SPARQL language. However, one could require more facilities in the query lan-

guage. Some of these are part of our next extension: CPSPARQL.

84 CHAPTER 5. THE PSPARQL QUERY LANGUAGE

Constrained Paths in SPARQL 6
Contents

6.1 CPSPARQL by examples 86
6.2 CPRDF: Constrained Paths in RDF 89

6.2.1 CPRDF syntax . 89

6.2.2 CPRDF semantics 91

6.2.3 Inference mechanism 94

6.3 The CPSPARQL Query Language 100
6.3.1 CPSPARQL syntax 100

6.3.2 Answers to CPSPARQL queries 101

6.3.3 Formal semantics: answers to CPSPARQL queries . . 102

6.3.4 Complexity of evaluating CPSPARQL graph patterns . 103

6.4 Summary . 103

Introduction

The PRDF language extends RDF with path expressions to be able to characterize

paths of arbitrary length in a query. However, these queries do not allow expressing

constraints on the internal nodes (e.g. "Does there exist a trip from town A to

town B using only trains and buses such that one of the stops provides a wireless

connection.").

We propose in this chapter an extension of PSPARQL, called CPSPARQL. Our

definition to CPSPARQL relies on two main issues. The first one comes from the

need to extend PSPARQL and thus SPARQL to allow expressing constraints on

nodes of traversed paths. The second one comes form the need to enhance the

86 CHAPTER 6. CONSTRAINED PATHS IN SPARQL

search process for finding paths that satisfy graph patterns involving path expres-

sions. To this end, we define constraints inside path expressions allowing to reduce

the search space by selecting while matching those paths matching path expres-

sions and those nodes satisfying constraints.

In order to achieve these goals, we first define an extension to PRDF, called

CPRDF (for Constrained Paths RDF). Syntactically, we define a kind of path ex-

pressions, called constrained regular expressions that extends the usual ones with

constraints and the inverse operator that changes the orientation of paths. Each

constrained regular expression is then used in the predicate position of CPRDF

graphs to encode a set of paths such that the internal nodes in these paths satisfy its

constraints. Semantically, as done for PRDF, we extend the RDF model-theoretic

semantics to allow interpreting this kind of path expressions and to define the en-

tailment between CPRDF and RDF graphs. This is necessary to define answers to

CPRDF queries: there exists a solution S to a CPRDF graph P in an RDF graph

G if G entails S(P) with respect to this kind of entailment. This leads us to define

a kind of graph homomorphism for finding answers to CPRDF graphs (as graph

patterns) over RDF graphs. Then, we use CPRDF graphs to generalize SPARQL

graph patterns, defining the CPSPARQL extension [Alkhateeb et al., 2008a].

This chapter is divided into three parts: We start in Section 6.1 with some mo-

tivating examples which cannot be expressed by (P)SPARQL and require to con-

strain paths. Sections 6.2 and 6.3 present the CPRDF and CPSPARQL languages,

respectively.

6.1 CPSPARQL by examples

The following example queries attempt to give an insight of CPSPARQL.

Example 6.1.1 Consider the RDF graphG of Figure 6.1, that represents the trans-

portation means between cities, the type of the transportation mean, and the price

of tickets. For example, the existence of two triples like 〈flight, ex:from, C1〉
and 〈flight, ex:to, C2〉 means that C2 is directly reachable from C1 using

flight.

Suppose someone wants to go from Roma to a city in one of the Canary Islands.

The following SPARQL query finds the name of such city with only direct trips:

SELECT ?City

WHERE { ?Trip ex:from ex:Roma . ?Trip ex:to ?City .

?City ex:cityIn ex:CanaryIslands .

6.1. CPSPARQL BY EXAMPLES 87

ex:Train1000 ex:Train ex:CanaryIslands

ex:Switzerland ex:Genève ex:SantaCruz

ex:Zürich ex:Planeex:SwissAL70 ex:Iberia612

ex:Alitalia200 ex:Iberia311

ex:Italy ex:Roma ex:Madrid ex:Spain

"160"

"350"

"600" "500"

ex:price

ex:from
ex:to

rdf:type

ex:cityIn

ex:cityIn

ex:capital ex:cityIn

rdf:type

ex:from
ex:price

ex:to

rdf:type

ex:to

ex:price
ex:from

ex:price

ex:to

ex:from

rdf:type

ex:from

rdf:type

ex:to

ex:price

ex:capital

ex:cityIn

ex:capital

ex:cityIn

G

Figure 6.1: An RDF graph.

}

Nonetheless, SPARQL cannot express indirect trips with variable length paths.

We can express that using regular expressions with the following PSPARQL query:

SELECT ?City

WHERE { ex:Roma (ex:from-.ex:to)+ ?City .

?City ex:cityIn ex:CanaryIslands .

}

Where "-" is the inverse operator. For example, given the RDF triple (ex:Roma,

ex:from, ex:flight), we can deduce (ex:flight, ex:from-, ex:Roma).

Suppose that he/she wants to use only planes. This constraint cannot be emu-

lated in SPARQL or PSPARQL. We can do that in CPSPARQL in the following way.

We first define a constraint that consists of a name, interval delimiters to include

or exclude path node extremities, a quantifier, and a variable to be substituted by

nodes, and a graph to be matched. For example, the name of the constraint in the

following query is const1, it is open from left and universal which ensures that

all trips are of type plane. Then we use the constraint in the regular expression to

require that the internal nodes in the path satisfying the regular expression must

also satisfy the constraint.

SELECT ?City

WHERE { CONSTRAINT const1]ALL ?Trip]: { ?Trip rdf:type ex:Plane .

88 CHAPTER 6. CONSTRAINED PATHS IN SPARQL

}

ex:Roma (ex:from-%const1%.ex:to)+ ?City .

?City ex:cityIn ex:CanaryIslands .

}

Moreover, if the user cannot go out the European union, e.g. for visa problem,

then we will require all intermediate stops to be cities in Europe.

SELECT ?City

WHERE { CONSTRAINT const1]ALL ?Trip]: { ?Trip rdf:type ex:Plane . }

CONSTRAINT const2]ALL ?Stop]: { ?Stop ex:cityIn ?Country .

?Country ex:partOf ex:Europe .

}

ex:Roma (ex:from-%const1%.ex:to%const2%)+ ?City .

?City ex:cityIn ex:CanaryIslands .

}

The price of each direct trip is no more than 500:

SELECT ?City

WHERE { CONSTRAINT const1]ALL ?Trip]: { ?Trip rdf:type ex:Plane .

?Trip ex:price ?Price .

FILTER (?Price < 500)

}

CONSTRAINT const2]ALL ?Stop]: { ?Stop ex:cityIn ?Country .

?Country ex:partOf ex:Europe .

}

ex:Roma (ex:from-%const1%.ex:to%const2%)+ ?City .

?City ex:cityIn ex:CanaryIslands .

}

Suppose we want that the price of the whole trip is no more than 1000, then we

can use the SUM function in the following query:

SELECT ?City

WHERE { CONSTRAINT const1 SUM(?Sum1,?Price)]ALL ?Trip]:

{ ?Trip rdf:type ex:Plane .

?Trip ex:price ?Price .

FILTER (SUM(?Sum1,?Price) < 1000)

}

CONSTRAINT const2]ALL ?Stop]: { ?Stop ex:cityIn ?Country .

?Country ex:partOf ex:Europe .

}

ex:Roma (ex:from-%const1%.ex:to%const2%)+ ?City .

?City ex:cityIn ex:CanaryIslands .

}

As we can see, CPSPARQL is definitely a more expressive language than

(P)SPARQL. We will now present it in details.

6.2. CPRDF: CONSTRAINED PATHS IN RDF 89

6.2 CPRDF: Constrained Paths in RDF

In the same way PRDF extends RDF, CPRDF extends RDF and PRDF in order

to express properties on nodes that belong to a regular path. For this extension,

we provide an abstract syntax (by adding constraints to regular expressions) and

an extension of RDF semantics. We characterize query answering (the query is a

CPRDF graph, the knowledge base is an RDF graph) as a particular case of CPRDF

entailment that can be computed using a kind of graph homomorphism.

6.2.1 CPRDF syntax

For the sake of simplicity and without loss of generality, we restrict the constraints

in this section to be GRDF graphs. Then parametrize the CPRDF language in the

way that allows us to naturally extend it to include more general constraints as done

in Section 7.4.

Constraints

Definition 6.2.1 (GRDF constraint) A GRDF constraint is written †1Qx†2 : C
where C is a GRDF graph, †1 and †2 are one of the interval delimiters [and], Q
is a quantifier either ALL, EXISTS or EDGE, and x is a variable that occurs in a

triple of C.

A constraint consists of interval delimiters which are used to include or exclude

the extremities of a path; a quantifier either ALL, EXISTS or EDGE; a variable; and

a GRDF graph that must be satisfied by the internal nodes. The keyword EDGE

can be used to indicate that the constraint will be applied to edges (or arcs) while

ALL and EXISTS to indicate that the constraints will be applied to nodes. For ex-

ample, the constraint defined by]ALL ?Stop]: {(?Stop, ex:cityIn, ?Country),

(?Country, ex:partOf, ex:Europe)} when applied to a regular expressionR en-

sures that all nodes except the source extremity in a path satisfying R are cities in

Europe.

In what follows, we use ΦGRDF to denote the set of GRDF constraints. We

divide ΦGRDF into two sets, a set ΦE
GRDF of edge constraints and a set ΦN

GRDF of

node constraints. When this restriction is not necessary, we use Φ = ΦE ∪ ΦN to

denote a constraint language.

90 CHAPTER 6. CONSTRAINED PATHS IN SPARQL

Constrained regular expressions

A constrained regular expression over (U ,B,Φ) can be used to define the language

over (U ∪ B).

Definition 6.2.2 (Constrained regular expression) A constrained regular expres-

sion over (U ,B,Φ) (denoted by R ∈ RE(U ,B,Φ)) is defined inductively by:

– if u ∈ U and ψ ∈ ΦE , then u, u%ψ%, (!u), !u%ψ%, u− and u−%ψ% ∈
RE(U ,B,Φ);

– if b ∈ B and ψ ∈ ΦE , then b, b%ψ% ∈ RE(U ,B,Φ);

– if ψ ∈ ΦE , #, #%ψ% ∈ RE(U ,B,Φ);

– if R ∈ RE(U ,B,Φ), then (R+) ∈ RE(U ,B,Φ);

– if R1, R2 ∈ RE(U ,B,Φ), then (R1 · R2), and (R1|R2) are elements of

RE(U ,B,Φ).

– if R ∈ RE(U ,B,Φ), ψ ∈ ΦN is a constraint, then R%ψ% ∈ RE(U ,B,Φ).

The inverse operator − handles only atomic expressions. It specifies the ori-

entation of arcs in the paths retrieved (i.e., it inverses the matching of arcs). Edge

constraints are applied to atomic regular expressions while node constraints are

applied to any regular expression. Moreover, the constraints are not necessarily

grouped together and we can have a constrained regular expression of the form

R%ψ1% . . .%ψk%. This allows us to specify at each grouped block different con-

straint with or without different variable(s), which is more flexible and general than

grouping all constraints in one block.

CPRDF graphs

Informally, a CPRDF[Φ] graph is a graph whose arcs are labeled with constrained

regular expressions whose constraints are elements of Φ.

Definition 6.2.3 (CPRDF graph) A CPRDF[Φ] triple is an element of (T ×RE(
U ,B,Φ)× T). A CPRDF[Φ] graph is a set of CPRDF[Φ] triples.

Example 6.2.4 The following CPRDF[ΦGRDF] graph H:

{(?City1 ex:cityIn ex:Italy), (?City2 ex:cityIn ex:CanaryIslands),

(?City1 (ex:from-.ex:to%]ALL ?Stop]:

{ ?Stop ex:cityIn ?Country .

?Country ex:partOf ex:Europe }%)+ ?City2)

}

6.2. CPRDF: CONSTRAINED PATHS IN RDF 91

when used as a query, finds pairs of cities (?City1,?City2), one in Italy and

the other in the Canary Islands, such that ?City2 is reachable from ?City1 by

passing through only cities in Europe.

6.2.2 CPRDF semantics

To be able to express the semantics of CPRDF graphs, we have first to define the

language generated by a regular expression. The derivation trees used here are just

a visual representation of the more usual inductive definition of derivation. The

internal nodes of these trees will be used to define the semantics of constraints.

Generated language

Constraints of a given constrained regular expression has no effect on the generated

regular language.

aA =

(a)

vA =

(b)

+A =

. . .

A1 Ak

(c)

−A =

u

(d)

·A =

A1 A2

(e)

|A =

A′

(f)

φA =

A′

(g)

Figure 6.2: Constructing a derivation tree of a constrained regular expression.

Definition 6.2.5 (Derivation tree) Let R ∈ RE(U ,B,Φ) be a constrained regu-

lar expression. A rooted labeled tree with ordered subtrees A is called a derivation

tree of R (denoted A ∈ DT (R)) iff A can be constructed inductively in the follow-

ing way:

1. if R = a ∈ (B ∪ U), then A is the tree of Figure 6.2a;

2. if R = (R′+) and A1, . . . , Ak (k ≥ 1) are a set of derivation trees of

DT (R′), then A is the tree of Figure 6.2c;

92 CHAPTER 6. CONSTRAINED PATHS IN SPARQL

3. if R = (u−), then A is the tree of Figure 6.2d;

4. if R = (R1 ·R2), A1 ∈ DT (R1) and A2 ∈ DT (R2), then A is the tree of

Figure 6.2e;

5. if R = (R1|R2) and A′ ∈ DT (R1) ∪ DT (R2), then A is the tree of Fig-

ure 6.2f;

6. if R = (R′%ψ%) and A′ ∈ DT (R′), then A is the tree of Figure 6.2g.

The elements of a derivation tree are quantified using path labels in a given

graph, and will be illustrated later through an example.

Definition 6.2.6 (Word) To a derivation treeA we associate a unique wordw(A),

obtained by concatenating the labels of the leaves of A, totally ordered by the

depth-first exploration of A determined by the order of its subtrees. We use ρ(A, i)
to denote the ith leaf of A, according to that order.

The word associated to a derivation tree A of a regular expression R belongs

to the language generated by R, as usually defined by L∗(R) = {w ∈ (U ∪
B)+ | ∃A ∈ DT (R), w = w(A)}.

Again, our definition ranges over (U∪B) to match predicate variables in GRDF

graphs.

Interpretations and models in CPRDF

A CPRDF interpretation of a vocabulary V ⊆ V , is an RDF interpretation of V .

However, an RDF interpretation must meet specific conditions to be a model for a

CPRDF[Φ] graph (Definition 6.2.9). These conditions are the transposition of the

classical path semantics within the RDF semantics (Definition 6.2.7); and the satis-

faction of the constraints by the resources of RDF interpretations (Definition 6.2.8).

Definition 6.2.7 (Proof of a constrained regular expression) Let I = 〈IR, IP ,
IEXT , ι〉 be an interpretation of a vocabulary V , and R ∈ RE(U ,B,Φ) be a

constrained regular expression such that U(R) ⊆ V . Let ι′ be an extension of ι

to B(R), and w(A) = a1 · . . . · ak be a word of L∗(R). A tuple (r0, . . . , rk) of

resources of IR is called a proof of w in I according to ι′ iff ∀1 ≤ i ≤ k:

– 〈ri, ri−1〉 ∈ IEXT (ι′(ai)) if ρ(A, i) has an ancestor labeled by −;

– 〈ri−1, ri〉 ∈ IEXT (ι′(ai)), otherwise.

6.2. CPRDF: CONSTRAINED PATHS IN RDF 93

The first item of this definition handles the inverse operator (−): if the ancestor

of ai is labeled by − (i.e., it is equivalent to a−i), then we inverse the two resources

that belong to the extension of the property of ι′(ai). This definition is used for

defining CPRDF models in which it replaces the direct correspondence that exists

in RDF between a relation and its interpretation (see first item of Definition 6.2.9),

by a correspondence between a constrained regular expression and a sequence of

relation interpretations. This allows to match constrained regular expressions with

variable length paths as done in Definition 4.2.1 for regular expressions.

Definition 6.2.8 (Constraint satisfaction in an interpretation) Let I = 〈IR, IP ,
IEXT , ι〉 be an interpretation of a vocabulary V , and ψ = †1Qx†2 : C be a

constraint of ΦGRDF. A resource r of IR satisfies ψ iff there exists a proof ι′ : T →
IR of C such that ι′(x) = r.

In what follows, we use z[ψ](A) to denote the subtree A with root node z

labeled by constraint ψ. Now we are ready to define when an interpretation is a

model of a CPRDF[ΦGRDF] graph.

Definition 6.2.9 (Model of a CPRDF graph) Let I = 〈IR, IP , IEXT , ι〉 be an

interpretation of a vocabulary V , and G be a CPRDF[ΦGRDF] graph such that

U(G) ⊆ V . We say that I is a model of G iff there exists an extension ι′ of ι such

that for each triple 〈s,R, o〉 of G, there exists a sequence T = (r0, . . . , rk) of re-

sources of IR (ι′(s) = r0 and ι′(o) = rk) and a word w(A) = a1 · . . . ·ak ∈ L∗(R)
such that:

– T is a proof of w in I according to ι′;

– for each subtree z[ψ = †1Qx†2 :C](A′) in A with ap · . . . · ap+q = w(A′):

1. if Q is EDGE, q = 0 and ι′(ap) satisfies ψ;

2. Q r ∈ †1rp−1, . . . , rp+q†2, r satisfies ψ; otherwise.

It is shown in the second item of this definition that adding constraints to a

CPRDF[Φ] graph reduces the number of models by selecting those ones whose

resources satisfy constraints. In addition, since edge constraints are applied to only

atomic regular expressions, they constrain only the preceding edge (or arc) label.

This is why q = 0 in the first sub-item.

Proposition 6.2.10 (Satisfiability) A CPRDF[ΦGRDF] graph G is satisfiable iff

∀(s,R, o) ∈ G, L∗(R) 6= ∅.

94 CHAPTER 6. CONSTRAINED PATHS IN SPARQL

Proof. Let G be a CPRDF[ΦGRDF] graph. To prove that G is satisfiable, we build a

canonical model as follows:

1. Build a graph G′ by replacing each triple 〈s,R, p〉 in G (if |R| > 1) by a set

of triples 〈s, p1, v1〉 . . . 〈vn−1, pn, o〉 such that p1 · . . . ·pn is an arbitrary word

in the language generated byR, and vi′s are all new distinct variables; and for

each constraint ψ = †1Qx†2 :C in R (Q is EXISTS or ALL since |R| > 1),

add toG′ the graph Cxn for each node n inG, where Cxn is the graph obtained

by substituting each occurrence of x by n. If R = p%ψ = †1Qx†2 : C%,

add to G′ the graph Cxp .

2. The obtained graph G′ is a GRDF graph, and it is shown that each GRDF

graph is satisfiable by building its isomorphic model (see Proposition 2.2.5).

6.2.3 Inference mechanism

Two conditions must be satisfied for the notion of homomorphism to cover the

answers of a CPRDF[Φ] query in an RDF knowledge base (Definition 6.2.14): in-

stead of proving an arc (a triple) of the query by an arc in the knowledge base,

we prove it by a path in the knowledge base (Definition 6.2.11); and the satisfac-

tion of the node(s) in the path of the knowledge base to the constraint(s) (Defini-

tion 6.2.13).

Definition 6.2.11 (Path word) LetG be an RDF graph of vocabulary V ⊆ V , and

R ∈ RE(U ,B,Φ) be a constrained regular expression such that U(R) ⊆ V . Let

µ : B(R)→ V be a map from the variables of R to V , and w(A) = a1 · . . . · ak be

a word of L∗(R). A sequence (n0, . . . , nk) of nodes of G is called a path of w in

G according to µ iff ∀1 ≤ i ≤ k:

– 〈ni, µ(ai), ni−1〉 ∈ G if ρ(A, i) has an ancestor labeled by −;

– 〈ni−1, µ(ai), ni〉 ∈ G, otherwise.

As done for the interpretation (Definition 6.2.7), the first item handles the in-

verse operator: if the ancestor of ai is labeled by −, then we inverse the orientation

of the arc. This definition is equivalent to Definition 4.3.1 used to define path words

for language generators, in which we do not handle the inverse operator.

6.2. CPRDF: CONSTRAINED PATHS IN RDF 95

ex:Roma ex:Iberia311 ex:Madrid ex:Iberia612 ex:SantaCruz

ex:from ex:to ex:from ex:to

− ψ − ψ

· ·

+

Figure 6.3: Constructing a derivation tree of a constrained regular expression.

Example 6.2.12 Figure 6.3 shows a possible derivation tree of the constrained

regular expressionR =(ex:from-·ex:to%ψ%)+ of the graphH in Example 6.2.4

with ψ =]ALL ?Stop]:{(?Stop ex:cityIn ?Country), (?Country ex:partOf

ex:Europe)}. The nodes in white color, which correspond to the path of nodes in

the RDF graph G of Figure 6.1, together with the path labels are used to quantify

the elements of the tree. The sequence T=(ex:Roma, ex:Iberia311, ex:Madrid,

ex:Iberia612, ex:SantaCruz) of nodes in the RDF graph G of Figure 6.1 is a

path of the word w=(ex:from-· ex:to·ex:from- ·ex:to) ∈ L∗(R) according to

the empty map.

The following definition gives the condition(s) when a constraint of ΦGRDF is

satisfied, and can be extended based on the constraints (see Section 7.4).

Definition 6.2.13 (Constraint satisfaction in a GRDF graph) LetG be a GRDF

graph, ψ = †1Qx†2 : C be a constraint of ΦGRDF, and s a term of G. Then s

satisfies ψ in G if there exists a GRDF homomorphism π from C into G such that

π(x) = s.

Intuitively, in CPRDF[Φ] homomorphisms, each internal node labeled by a

constraint ψ of a derivation tree determines the subtree (not necessary the whole

tree, since a constraint ψ may be applied to a partial part of a constrained regular

expression, Definition 6.2.2) whose corresponding nodes in the knowledge base

graph must satisfy ψ (see the second item of the following definition). Constraints

act as filters for paths that must be traversed and select those whose nodes satisfy

encountered constraints.

Definition 6.2.14 (CPRDF homomorphism) Let H be a CPRDF[Φ] graph and

G be a GRDF graph. A CPRDF[Φ] homomorphism from P into G is a map

96 CHAPTER 6. CONSTRAINED PATHS IN SPARQL

π : T (H) → T (G) such that ∀(s,R, o) ∈ H , there exists a sequence T =
(n0, . . . , nk) of nodes of G (π(s) = n0 and π(o) = nk) and a word w(A) =
a1 · . . . · ak ∈ L∗(R) such that:

– T is a path of w in G according to π;

– for each subtree z[ψ = †1Qx†2 :C](A′) in A with ap · . . . · ap+q = w(A′),

1. if Q is EDGE, q = 0 and π(ap)1 satisfies ψ;

2. Q n ∈ †1np−1, . . . , np+q†2, n satisfies ψ; otherwise.

The existence of a CPRDF[Φ] homomorphism is exactly what is needed for

deciding entailment between RDF and CPRDF[Φ] graphs.

Theorem 6.2.15 (CPRDF-GRDF entailment) Let G be a GRDF graph, and H

be a CPRDF[ΦGRDF] graph. ThenG |=CPRDF H iff there exists a CPRDF[ΦGRDF]

homomorphism from H into G.

Proof. Let G be a GRDF graph, H be a CPRDF[φGRDF] graph and I = 〈IR, IP ,
IEXT , ι〉 be an interpretation of a vocabulary V = U ∪L such that V(G) ⊆ V and

V(H) ⊆ V . We prove both directions of the theorem as follows. We first add to

G, for each triple 〈s, p, o〉 in G, the triple 〈s, p−, o〉. This way we can ignore the

first item of Definition 6.2.14 and Definition 6.2.9.

(⇒) Suppose that there exists a CPRDF[ΦGRDF] homomorphism from H into G,

i.e., π : term(H) → term(G). We want to prove that G |=CPRDF H , i.e., that

every model of G is a model of H .

If I is a model of G, then there exists an extension ι′ of ι to B(G) such that

∀〈s, p, o〉 ∈ G, 〈ι′(s), ι′(o)〉 ∈ IEXT (ι′(p)) (Definition 2.2.3). We want to prove

that I is also a model of H , i.e., there exists an extension ι′′ of ι to B(H) such that

∀〈s,R, o〉 ∈ H , 〈ι′′(s), ι′′(o)〉 supports R in I according to ι′′.

Let ι′′ be the map defined by:

∀x ∈ T , ι′′(x) =

{
(ι′ ◦ π)(x) if π is defined;
ι′(x) otherwise.

.

We show that ι′′ verifies the following properties:

1. I is an interpretation of V(H) ∩ nodes(H).2

1When using the wild card #, π(#) is the traversed or the matched edge label.
2An interpretation I can be a model of a given CPRDF[Φ] graph H even it does not interpret all

terms ofH . This is due to the disjunction operator that occurs inside constrained regular expressions.

6.2. CPRDF: CONSTRAINED PATHS IN RDF 97

2. ι′′ is an extension to variables of H , i.e., ∀x ∈ V(H) ∩ V(G), ι′′(x) = ι(x).

3. ι′′ satisfies the conditions of CPRDF[ΦGRDF] models (Definition 6.2.9), i.e.,

for every triple 〈s,R, o〉 ∈ H , the pair of resources 〈ι′′(s), ι′′(o)〉 supports R

in I according to ι′′.

Now, we prove the satisfaction of these properties:

1. Since each term x ∈ V(H)∩nodes(H) is mapped by π to a term x ∈ V(G)
and I interprets all x ∈ V(G), I interprets all x ∈ V(H) ∩ nodes(H).

2. Since π is a map (Definition 6.2.14), we have ∀x ∈ V(H) ∩ V(G), if π is

defined, π(x) = x (Definition 2.3.1). Hence, we have ι′′(x) = (ι′ ◦ π)(x) =
ι′(x) = ι(x), ∀x ∈ V(H) ∩ V(G).

3. It remains to prove that for every triple 〈s,R, o〉 ∈ H , the pair of resources

〈ι′′(π(s)), ι′′(π(o))〉 supports R in ι′′ (Definition 6.2.9). By the definition of

CPRDF[ΦGRDF] homomorphisms (Definition 6.2.14), we have:

(i) ∀〈s,R, o〉 ∈ H , there exists a sequence T = (n0, . . . , nk) of nodes of

G (with π(s) = n0 and π(o) = nk) and a word w(A) = a1 · . . . · ak ∈
L∗(R) such that T is a path of w in G according to π. From the defini-

tion of path (Definition 6.2.11), 〈ni−1, π(ai), ni〉 ∈ G such that n0 =
π(s), nk = π(o). It follows that 〈ι′(π(s)), ι′(n1)〉 ∈ IEXT (ι′(π(a1))),

. . ., (ι′(nk−1), ι′(π(o))) ∈ IEXT (ι′(π(ak))) (Definition 2.2.3, GRDF

models). So, by Definition 6.2.7, the sequence of resources Tr de-

fined by Tr = (ι′′(π(s)) = ι′(n0) = r0, r1, . . . , rk−1, rk = ι′(nk) =
ι′′(π(o))) (with ri = ni, 1 ≤ i ≤ k − 1) is a proof of w in I according

to (ι′ ◦ π). Since ι′′ = (ι′ ◦ π), we have Tr is also a proof of w in I

according to ι′′.

(ii) For each subtree z[ψ = †1Qx†2 : C](A′) in A with ap · . . . · ap+q =
w(A′) and Q is EXISTS or ALL, then Q n ∈ †1np−1, . . . , np+q†2, n

satisfies ψ (the same steps are applied when Q is EDGE but this time

we take the edge label in G matched to ap, i.e., π(ap)). By Defini-

tion 6.2.13, n satisfies ψ in G if there exists a GRDF homomorphism

π1 from C into G such that π1(x) = n. Using Theorem 2.3.4 and

Definition 2.2.3, there exists a proof ιG : T → IR of C such that

ιG(x) = ι′(n). So, Q r ∈ †1rp−1, . . . , rp+q−1†2, r satisfies ψ (with

ri = ι′(ni)).

98 CHAPTER 6. CONSTRAINED PATHS IN SPARQL

The conditions of CPRDF[ΦGRDF] models are satisfied. Hence, every model

of G is a model of H .

(⇐) Suppose thatG |=CPRDF H . We want prove that there is a CPRDF[ΦGRDF]

homomorphism from H into G.

Every model of G is also a model of H . In particular, Iiso = 〈IR, IP , IEXT , ι〉
the isomorphic model of G, where there exists a bijection ι′ between term(G) and

IR (see Proposition 2.2.5). ι′ is an extension of ι to B(G) such that ∀〈s, p, o〉 ∈ G,

〈ι′(s), ι′(o)〉 ∈ IEXT (ι′(p)) (Definition 2.2.3). Since Iiso is a model of H , there

exists an extension ι′′ of Iiso to B(H) such that ∀〈s,R, o〉, 〈ι′′(s), ι′′(o)〉 supports

R in ι′′ (Definition 6.2.9). Let us consider the function π = (ι′−1 ◦ ι′′). To prove

that π is a CPRDF[ΦGRDF] homomorphism from H into G, we must prove that:

1. π is a map from term(H) into term(G);

2. ∀x ∈ V(H), π(x) = x;

3. ∀〈s,R, o〉 ∈ H , the pair of nodes (π(s), π(o)) satisfies R in G according to

π.

Let us prove these properties.

1. Since ι′′ is a map from term(H) into IR and ι′−1 is a map from IR into

term(G), π = (ι′−1 ◦ ι′′) is clearly a map from term(H) into term(G)

(term(H) ι′′−→ IR
ι′−1

−→ term(G)).

2. From the definition of an extension: ∀x ∈ V(H), ι′′(x) = ι(x). Since ι′ is a

bijection, ∀x ∈ V(H), (ι′−1 ◦ ι′′)(x) = (ι′−1 ◦ ι)(x) = x.

3. Since ι′′ is a proof of H , by definition of CPRDF[ΦGRDF] models (Defini-

tion 6.2.9), we have:

(i) For each triple 〈s,R, o〉 ofH , there exists a sequence T = (r0, . . . , rn)
of resources of IR (with ι′′(s) = r0 and ι′′(o) = rn) and a word

w(A) = a1 · . . . · ak ∈ L∗(R) such that T is a proof of w in I ac-

cording to ι′′. By Definition 6.2.7, 〈ri−1, ri〉 ∈ IEXT (ι′′(ai)) with

ι′′(s) = r0 and ι′′(o) = rn, 1 ≤ i ≤ k. It follows that 〈ni−1, pi, ni〉
∈ G with ni = ι′−1(ri), and pi = (ι′−1 ◦ ι′′)(ai) (construction of

Iiso(G), see Proposition 2.2.5). We have, (ι′−1 ◦ ι′′)(s) = ι′−1(r0)
= n0, (ι′−1 ◦ ι′′)(o) = ι′−1(rk) = nk, and the word w defined by

6.2. CPRDF: CONSTRAINED PATHS IN RDF 99

w = p1 · . . . · pk ∈ L∗((ι′−1 ◦ ι′′)(R)). So the sequence of nodes Tn
defined by Tn = ((ι′−1 ◦ ι′′)(s) = ι′(r0) = n0, n1, . . . , nk−1, nk =
(ι′−1 ◦ ι′′)(o)) is a path of w in G according to (ι′−1 ◦ ι′′) = π.

(ii) For each subtree z[ψ = †1Qx†2 : C](A′) in A with ap · . . . · ap+q =
w(A′), thenQ r ∈ †1rp−1, . . . , rp+q†2, r satisfies ψ(the same steps are

applied when Q is EDGE but this time we take the resource associated

to ap, i.e., ι′′(ap)). By Definition 6.2.8, r satisfies ψ iff there exists

a proof ιG : T → IR of G such that ιG(x) = r. Using the equiv-

alence between GRDF homomorphism and RDF entailment (Theo-

rem 2.3.4), there exists a GRDF homomorphism π1 from C into G

such that π1(x) = ι′−1(r) = n.

Hence, π is a CPRDF[ΦGRDF] homomorphism from H into G.

We associate to the CPRDF-GRDF entailment the following decision problem:

Φ-CPRDF-GRDF ENTAILMENT

Instance: a GRDF graph G and a CPRDF[Φ] graph H .

Question: Does G |=CPRDF H?

Proposition 6.2.16 ΦGRDF-CPRDF-GRDF ENTAILMENT is NP-complete.

Proof. Checking if G |=CPRDF G′ is equivalent to checking the existence of a

CPRDF[ΦGRDF] homomorphism from G′ into G (Theorem 6.2.15). So, it is suf-

ficient to show that checking the existence of a CPRDF[ΦGRDF] homomorphism

from G′ into G is NP-complete.

When G′ does not contain constraints, i.e., G′ is a PRDF graph, then the prob-

lem is NP-complete (see Chapter 4). We describe an algorithm showing that adding

constraints does not change this complexity as follows:

– We first add to G, for each triple 〈s, p, o〉 in G, the triple 〈s, p−, o〉 (which

can be done in polynomial time in size of G).

– Calculate all necessary homomorphisms from the graphs of constraints ofG′

into G a priori only one time (the problem of evaluating a union of GRDF

graphs is a NP-complete [Perez et al., 2006]). Suppose that Γ = {ψi | ψi is

a constraint in G′}, and Ωi is the set of homomorphisms from the graph of

the constraint ψi into G.

100 CHAPTER 6. CONSTRAINED PATHS IN SPARQL

– Now, testing whether each node (or edge) n satisfies a given constraint ψi in

the knowledge base is equivalent to testing if the there exists an homomor-

phism from the graph of ψi into the knowledge base, π ∈ Ωi with π(x) = n,

where x is the variable in ψi. The latter can be done in linear time in the

size of Ωi (if we assume that checking if π(x) = n can be done in O(1),

otherwise it can be in polynomial time).

Example 6.2.17 Let us consider the CPRDF[ΦGRDF] graph H of Example 6.2.4,

the RDF graph G of Figure 6.1, and the map π defined by {(?City1,ex:Roma),

(?City2,ex:SantaCruz), (ex:from,ex:from), (ex:to,ex:to), (ex:Italy,ex:-

Italy), (ex:cityIn,ex:cityIn), (?Country,ex:CanaryIslands)}. Accord-

ing to Definition 6.2.14, the sequence of nodes of Example 6.2.12 (such that the

first node ex:Roma and the last node ex:SantaCruz are the images of ?City1 and

?City2, respectively) is a path of a word of the regular expression of H according

to π in G, and the stops along the path are all cities in Europe (see Figure 6.3). So,

π is a CPRDF[ΦGRDF] homomorphism from H into G.

6.3 The CPSPARQL Query Language

The CPSPARQL language extends SPARQL and PSPARQL by using CPRDF

graphs instead of GRDF and PRDF to define its graph patterns. Analogously to

SPARQL and PSPARQL, the set of answers to a CPSPARQL query is defined in-

ductively using the set of maps (i.e., CPRDF homomorphisms) from the CPRDF

graphs of the query into the RDF knowledge base.

6.3.1 CPSPARQL syntax

CPSPARQL[Φ] graph patterns are built on top of CPRDF[Φ] in the same way that

SPARQL is built on top of RDF.

Definition 6.3.1 (CPSPARQL graph patterns) A CPSPARQL[Φ] graph pattern

is defined inductively by:

– every CPRDF[Φ] graph is a CPSPARQL[Φ] graph pattern;

– if P1 and P2 are two CPSPARQL[Φ] graph patterns andC is a SPARQL con-

straint, then (P1 AND P2), (P1 UNION P2), (P1 OPT P2), and (P1 FILTER

C) are CPSPARQL[Φ] graph patterns.

6.3. THE CPSPARQL QUERY LANGUAGE 101

CPSPARQL query. A CPSPARQL[Φ] query is of the form SELECT ~B FROM u

WHERE P such that P is a CPSPARQL[Φ] graph pattern.

In CPSPARQL, we can define a constraint and give it a name using the CON-

STRAINT clause (see rule [27.1] of Appendix A) such as:

CONSTRAINT const1]ALL ?Trip]: { ?Trip rdf:type ex:Plane . }

This allows to simplify the syntax and to reuse constraints several times.

6.3.2 Answers to CPSPARQL queries

As in the case of RDF/GRDF and RDF/PRDF, the answer to a query reduced

to a CPRDF[Φ] graph is also given by a map. The definition of an answer to a

CPSPARQL graph pattern will be thus identical to the one given for PSPARQL

(Section 5.2) and SPARQL [Perez et al., 2006], but it will use CPRDF[Φ] homo-

morphisms.

Definition 6.3.2 (Answers to a CPSPARQL graph pattern) LetG be a (G)RDF

graph and P be a CPSPARQL[Φ] graph pattern, then the set S(P,G) of answers

to P in G is defined inductively by:

– if P is a CPRDF[Φ] graph, S(P,G) = {µ | µ is a CPRDF[Φ] homomor-

phism from P into G};

– if P = (P1 AND P2), S(P,G) = S(P1, G) on S(P2, G);

– if P = (P1 UNION P2), S(P,G) = S(P1, G) ∪ S(P2, G);

– if P = (P1 OPT P2), S(P,G) = (S(P1, G) on S(P2, G)) ∪ (S(P1, G) \
S(P2, G));

– if P = (P1 FILTER C), S(P,G) = {µ ∈ S(P1, G) | µ(C) = >}.

The CONSTRAINT clause has no effect on the answer to a CPSPARQL graph

pattern unless the defined constraints are used in the constrained regular expres-

sions. In this case, they affect the CPRDF[Φ] homomorphisms as given in the first

item of the definition.

Example 6.3.3 In the following query:

SELECT ?City

WHERE { CONSTRAINT const1]ALL ?Trip]: { ?Trip rdf:type ex:Plane .

}

ex:Roma (ex:from-.ex:to)+ ?City .

?City ex:cityIn ex:CanaryIslands .

}

102 CHAPTER 6. CONSTRAINED PATHS IN SPARQL

we have defined a constraint which has not been used, so it has no effects in the

answer to the rest of the query. However, in the following query:

SELECT ?City

WHERE { CONSTRAINT const1]ALL ?Trip]: { ?Trip rdf:type ex:Plane .

}

ex:Roma (ex:from-%const1%.ex:to)+ ?City .

?City ex:cityIn ex:CanaryIslands .

}

the defined constraint is used in the regular expression, which is equivalent to re-

placing the constraint by itself.

6.3.3 Formal semantics: answers to CPSPARQL queries

The definition of an answer to a CPSPARQL query is the instantiation of maps (as

calculated in Definition 6.3.2) to the variables that we want to return.

Definition 6.3.4 (Answer to a CPSPARQL query) Let Q =SELECT ~B FROM u

WHERE P be a CPSPARQL[Φ] query. Let G be the RDF graph identified by the

URL u, and Ω the set of answers of P in G. Then the answers to the query Q

are the projections of elements of Ω to ~B, i.e., for each map π of Ω, the answer of

Q associated to π is {(x, y) | x ∈ ~B and y = π(x) if π(x) is defined, otherwise

null}.

Proposition 6.3.5 Let G be an RDF graph, P be a CPRDF[ΦGRDF] graph and
~B be a tuple of variables appearing in P , an answer to the CPSPARQL[ΦGRDF]

query Q =SELECT ~B FROM u WHERE P is a CPRDF[ΦGRDF] homomorphism µ

such that G |=CPRDF µ(P).

This proposition is a straightforward consequence of Definition 6.3.2. It is

based on the fact that the answers to Q are the restrictions to ~B of the set of

CPRDF[ΦGRDF] homomorphisms from P into G which, by Theorem 6.2.15, cor-

responds to CPRDF-RDF entailment.

In CPSPARQL there are several functions that can be used for capturing the

values along the paths like SUM for summation of values along paths, AVG for the

average, COUNT for counting nodes satisfying constraints. We have already intro-

duced the SUM function in Section 6.1, and we introduce the COUNT function in the

following example.

Example 6.3.6 The following CPSPARQL query:

6.4. SUMMARY 103

SELECT ?City

WHERE { CONSTRAINT const1 COUNT(?count1) [EXISTS ?Stop]:

{ ?Stop ex:cityIn ?Country .

?Country ex:partOf ex:Europe .

FILTER (COUNT(?count1) >= 2)

}

ex:Roma (ex:from-.ex:to)+%const1% ?City .

?City ex:cityIn ex:CanaryIslands .

}

could be used to find cities (in one of the Canary Islands) reachable from Roma by

a path (a sequence of trains or planes) such that at least there are two european

cities along the traversed path.

The AVG function is the sum divided by the number of nodes that satisfy the

given constraint, i.e., AVG=SUM/COUNT.

6.3.4 Complexity of evaluating CPSPARQL graph patterns

Since CPSPARQL queries are the same as SPARQL queries with the difference of

the kind of basic graph patterns (i.e., GRDF vs CPRDF[ΦGRDF]) and CPSPARQL

QUERY EVALUATION for CPRDF[ΦGRDF] graphs is in NP, our extension does not

increase the worst case complexity of SPARQL, i.e., PSPACE-complete [Perez et

al., 2006].

6.4 Summary

Our initial proposal, the PSPARQL language, extends SPARQL with PRDF graphs

to allow expressing variable length paths. Since PSPARQL and SPARQL do not

allow specifying characteristics of the nodes traversed by a regular path, we have

extended the PSPARQL language syntax and semantics to handle constraints, and

have characterized answers to a CPRDF query in an RDF knowledge base as

maps. This property was sufficient to extend the SPARQL query language to

CPSPARQL, combining the expressiveness of both SPARQL and CPRDF. We have

provided a sound and complete inference mechanism that can be used for answer-

ing CPSPARQL queries over RDF graphs as well as algorithms for calculating

these answers.

The proposed language, CPSPARQL has several advantages. First of all, it

allows expressing variable length paths which can be qualified through the use of

104 CHAPTER 6. CONSTRAINED PATHS IN SPARQL

constraints. It may enhance efficiency, since the task of evaluating path expres-

sions is heavyweight and exhaustive, and the use of predefined constraints inside

regular expressions prunes irrelevant paths during the evaluation process and not a

posteriori. The constraints in CPSPARQL are extensible (i.e., it can be extended to

include constraints that can be more general, as shown in Section 6.3), and partial

(i.e., can be applied to a part of a regular expression, see examples in Section 6.1).

The use of regular expressions supports a meaningful and natural use of inverse

paths through the use of inverse operator. As done for SPARQL, CPRDF graphs

can be adapted and integrated in other graph-based query languages.

As it is shown along the paper, we go far beyond the trivial constraints, i.e.,

testing simple paths and the existence of a node along the path. Extending RDF

to RDFS (RDF Schema) does not change the computational properties of the lan-

guage: finding consequences in RDFS is reduced polynomially to finding conse-

quences in RDF [Hayes, 2004]. So, our work extends naturally to RDFS thanks to

this reduction. Finally, we have implemented a CPSPARQL query engine that is

available for both download and online test.

Other Possible Extensions 7
Contents

7.1 Path Variables . 105
7.1.1 Syntax of path variables 106

7.1.2 Semantics of path variables 106

7.1.3 Distinct answers . 109

7.1.4 Constraints on path variables 109

7.2 Similarity-Based Path Matching 110
7.3 Nested Queries . 113
7.4 Extending Constraints in CPSPARQL 114
7.5 Conclusion . 115

Introduction

The embedding of regular expressions in SPARQL opens the door to several fea-

tures to be engaged. This chapter discusses some useful extensions to CPSPARQL.

7.1 Path Variables

Path variables are variables that can be used to capture paths. For example, in

SPARQLeR [Kochut and Janik, 2007] and SPARQ2L [Anyanwu et al., 2007], they

are used instead of regular expressions to capture paths between nodes in RDF

graphs. However, in [Kochut and Janik, 2007] and [Anyanwu et al., 2007], they

are mapped against paths of triples of arbitrary lengths and then run a post-filtering

mechanism for selecting appropriate paths that match a given regular pattern. This

106 CHAPTER 7. OTHER POSSIBLE EXTENSIONS

strategy of obtaining paths and then filtering them is inefficient since it can generate

a large number of paths.

7.1.1 Syntax of path variables

In contrast to SPARQ2L and SPARQLeR, we use path variables interchangeably

with regular expression patterns to express paths. Moreover, we perform a pre-

filtering mechanism to paths, that is, appropriate paths that match a given regular

expression are selected during the evaluation process and being mapped to a path

variable. This is achieved by adding a simple syntax-surface level through the use

of the optional DEFINED BY clause. Analogously to SPARQ2L, path variables in

(C)PSPARQL will be prefixed by ?? (e.g. ??pv1). In what follows, we use XP to

denote an infinite set of path variables.

Definition 7.1.1 (Extended (C)PRDF graphs) An extended (C)PRDF[RE] triple,

denoted by (C)PRDFe[RE], is a triple of T × R(U ,B) ∪ Xp × T . An extended

(C)PRDFe[RE] graph is a set of (C)PRDFe[RE] triples.

Extended (C)PSPARQLe graph patterns (respectively, (C)PSPARQLe queries)

are defined inductively using (C)PRDFe[RE] graphs (respectively, (C)PSPARQLe
graph patterns) as done in (C)PSPARQL.

7.1.2 Semantics of path variables

Informally, a triple pattern involving a path variable matches any path between

the image of the subject node and the image of the object node. The use of path

variables is equivalent to the use of the regular expression (#)+, with the difference

that a path variable is used to match and retrieve paths. Intuitively, when we define

path variables using DEFINED BY, then words formed along the matched paths

must belong to the defined regular expression.

Definition 7.1.2 (Extended (C)PRDF homomorphsims) Let He be an extended

(C)PRDFe[RE] graph and G be a GRDF graph. Let (R1, . . . , Rn) (n ≥ 0) be the

set of regular expressions defined to the set of path variables (??p1, . . . , ??pn), re-

spectively. An extended (C)PRDFe homomorphism from He into G is an extended

map (i.e., a map µe : T ∪Xp → T ∪P preserving constants, where P denotes an

infinite set of paths or sequences of GRDF triples) such that:

– π : H → G is a (C)PRDF homomorphism from H into G, where H is the

graph obtained by substituting each Ri to ??pi;

7.1. PATH VARIABLES 107

– πe(??pi) = p ∈ P(G) and w(p) ∈ L∗(π(R)), where w(p) is the word along

the path p.

In this definition, each Ri in (R1, . . . , Rn) corresponds to the regular expres-

sion defined by the DEFINED BY clause of the path variable ??pi,Ri is (#)+ when

the path variable is used and not defined.

The domain of an extended map µe is the subset of (Xp ∪ T) in which µe is

defined. An extended map µe is compatible with a map µ1 if ∀x ∈ dom(µe) ∩
dom(µ1), µe(x) = µ1(x). The operations on extended maps (like join) are defined

in the usual way. The answers to (C)PSPARQLe graph patterns are constructed

inductively from the extended homomorphisms of (C)PRDFe graphs.

Example 7.1.3 Consider the following (C)PSPARQL query:

DEFINED BY ??pv1 ex:Paris (ex:train | ex:plane)+ ?City2

SELECT ??pv1 ?City2

WHERE { ex:Paris ??pv1 ?City2 .

?City2 ex:cityIn ex:USA .

}

This query searches all USA cities that are reachable from Paris by a sequence

of planes and trains, and a possible path will be captured by the path variable

??pv1 and returned together with that city. Paths must match, while the evalu-

ation process, the regular expression (ex:train|ex:plane)+ as defined by the

DEFINED BY clause.

As a path variable can be mapped to an arbitrary-length path, then one might

chose either to restrict the language to simple (cycle-free) semantics to have com-

plete algorithms (e.g. SPARQLeR), or to design algorithms to select shortest paths

(e.g. SPARQ2L). In our case, we do not need to enumerate all paths but instead we

search the existence of paths satisfying (C)PRDF homomorphisms.

Example 7.1.4 Consider the following (C)PSPARQL query:

DEFINED BY ??pv1 ex:Paris (?Trip)+ ex:Paris

SELECT ??pv1

WHERE { ex:Paris ??pv1 ex:Paris . }

and the RDF graph of Figure 7.1. As it is shown in this graph, there are sev-

eral cycles (going through Amman and Genève) that can generate infinite number

of paths. For example, considering non-simple paths, we can generate:

108 CHAPTER 7. OTHER POSSIBLE EXTENSIONS

ex:Grenoble ex:Genève

ex:Lyon ex:Paris ex:Amman

ex:train
ex:train ex:train

ex:train

ex:train

ex:plane

ex:plane

Figure 7.1: An RDF graph with cycles.

{〈ex:Paris, ex:plane, ex:Amman, ex:plane, ex:Paris〉}
{〈ex:Paris, ex:plane, ex:Amman, ex:plane, ex:Paris, ex:plane,

ex:Amman, ex:plane, ex:Paris〉}
etc.

To overcome this problem (i.e., to cut cycles), our evaluation algorithm cal-

culates all possible maps (or homomorphisms in the case of (C)PRDF graphs),

which are finite, and those paths satisfying the calculated maps (i.e., visited paths)

are mapped to the path variable.

To this end, we can go from Paris to Amman with a map {(?Trip,ex:plane)},
then we can return to Paris since the map and/or the state are different from the

first visit to Paris. A possible answer therefore is:

??pv1→ {〈ex:Paris,ex:plane,ex:Amman,ex:plane,ex:Paris〉}
A second answer is to go from Paris to Genève through Grenoble, and then

Paris with a map {(?Trip,ex:train)} (we can take Paris since the map is dif-

ferent from the first answer):

??pv1→ {〈ex:Paris,ex:train,ex:Genève,ex:train,ex:Grenoble,
ex:train,ex:Paris〉}

Now, we can also go from Paris to Genève, through Grenoble, Lyon and then

Paris. However, we cannot take this path since Paris is already visited with the

same map and state (second answer). The same thing, when we arrive at Genève

or Amman for the second time, we cut the cycles since they are already visited with

the same map and/or state.

Consider also the following (C)PSPARQL query that we use for illustrating

non-simple paths:

DEFINED BY ??pv1 ex:Paris (ex:train.ex:plane)+ ?City

SELECT *
WHERE { ex:Paris ??pv1 ?City . }

In simple paths, nodes must not be visited more than once. If we consider

simple paths in this example, then we cannot retrieve Amman since we cannot go

7.1. PATH VARIABLES 109

through the path Paris, Genève, Grenoble, Paris, and then Amman (Paris has been

visited twice).

As SPARQL allows the use of DISTINCT key word to ensure disjoint solu-

tions (i.e., no duplicate solutions), one might need to define disjointness solutions

involving path variables.

7.1.3 Distinct answers

Informally, two paths are considered the same if they have the same set of triples

except the subject of the first triple and the object of the last one can be different. In

the same way, two maps (answers) are considered the same if for each variable in

one map then the same variable in the second map is binded to the same RDF term,

and for each path variable in one map then the same path variable in the second

one is binded to the same path. Note that the two solutions are assumed to have the

same length.

Definition 7.1.5 (Distinct answers with path variables) Two maps (answers) µ1

and µ2 are considered to be distinct if for each variable x ∈ dom(µ1)∩ dom(µ2),

µ1(x) 6= µ2(x) and for each path variable ??pv ∈ dom(µ1)∩dom(µ2), µ1(??pv)
= µ2(??pv). Where µ1(??pv) = µ2(??pv) if the two path variables are assigned

to the same path of triples except the subject of the first triple and the object of the

last triple in the path.

7.1.4 Constraints on path variables

Some forms of constraints on path variables have been introduced in SPARQ2L

and SPARQLeR such as testing whether the path assigned to the path variables

contains a node or even a set of nodes, restricting the length of the path, if the path

labels match a given regular expression, and others. However, there are missing

constraints that can be applied to path variables including but not limited to the

following ones.

– containsOrdered: XP × 2U → boolean;

– matches: XP ×XP → boolean;

– contains: XP ×XP → boolean;

– isInverse: XP ×XP → boolean.

110 CHAPTER 7. OTHER POSSIBLE EXTENSIONS

Informally, containsOrdered(??P1, {u1, u2, u3, . . . , um}) returns true if the

set of nodes are appearing in the path assigned to the path variable ??P1 with

the same given order, false otherwise. matches(??P1, ??P2) returns true if the

two path variables ??P1 and ??P2 are assigned to the same path, false otherwise.

contains(??P1, ??P2) returns true if the path assigned to ??P1 contains the path

assigned to ??P2. isInverse(??P1, ??P2) returns true if the path assigned to ??P1

is the inverse of the path assigned to ??P2. Note that containsOrdered is a vari-

ation of containsALL of SPARQ2L which does not restrict the nodes to be in the

given order.

Definition 7.1.6 Let µ be a map and C be a built-in constraint, then we define the

satisfaction relation of µ to C, denoted µ(C) = >, as follows:

– Let C = containsOrdered(??P1, {u1, u2, . . . , um}), then µ(C) = > if

µ(??P1) = 〈s, p1, n1〉 . . . 〈nk, pk, o〉 such that:

– {u1, . . . , um} ⊆ {n1, . . . , nk}; and

– for all ui = nj and up = nr either (i < p and j < r) or (i > p and

j > r).

– Let C = matches(??P1, ??P2), then µ(C) = > if µ(??P1) = µ(??P2),

i.e., µ(??P1) = 〈s, p1, n1〉 . . . 〈nk, pk, o〉 and µ(??P2) = 〈x, p1, n1〉 . . .
〈nk, pk, y〉.

– Let C = contains(??P1, ??P2), then µ(C) = > if µ(??P2) ⊆ µ(??P1).

– Let C = isInverse(??P1, ??P2), then µ(C) = > if µ(??P1) = 〈s, p1, n1〉
. . . 〈nk, pk, o〉 and µ(??P2) = 〈x, pk, nk〉 . . . 〈n1, p1, y〉.

Example 7.1.7 The following query:
ASK

WHERE {

ex:Roma ??P1 ex:Paris .

ex:Paris ??P2 ex:Roma .

FILTER (isInverse(??P1,??P2) && (length(??P1)<5)) .

}

returns true if there exists a path from Roma to Paris with length less than 5, which

is the inverse of the path from Paris to Roma.

7.2 Similarity-Based Path Matching

Basically, similarity-based query answering is the process of finding similar or im-

precise answers that match the query. Usually, finding similar answers is achieved

7.2. SIMILARITY-BASED PATH MATCHING 111

through query mediation (or sometimes called query rewriting or transformation)
[Papakonstantinou and Vassalos, 1999; Calvanese et al., 2000b]. We present here

a new approach for finding similar answers, in particular, for finding similar paths.

Before proceeding, let us give a scenario example illustrating the idea behind this

approach.

For example, suppose one wants to find USA cities that are reachable from

Paris by a path whose predicates are similar to Vehicle (or Transport). We can

express this request by the following query.

SELECT ?City1

WHERE {

ex:Paris (# % SIMILAR(?Pred, ex:Vehicle, 0.7) %)+ ?City2 .

?City2 ex:cityIn ex:USA .

}

The constraint SIMILAR(?Pred, ex:Vehicle, 0.7) indicates that each predi-

cate in the path to be traversed must be similar to Vehicle. More precisely, we

assign each traversed predicate p to the variable ?Pred. Then, the constraint is sat-

isfied if the value returned from the similarity measure SIMILAR(p, ex:Vehicle,
0.7) (until now, we use cosynonym as a default similarity measure and we plan to

use other similarity measures in the SIMILAR qualifier) is greater than the thresh-

olding value 0.7 (default value is 0.5 if it is not specified). The same query also

could be alternatively expressed using the constraints on edge as given in the fol-

lowing query.

SELECT ?City1

WHERE {

CONSTRAINT const1 [EDGE ?P]:

{ ?S ?P ?O .

SIMILAR(?P, ex:Vehicle, 0.7)

}

ex:Paris (# % const1 %)+ ?City2 .

?City2 ex:cityIn ex:USA .

}

This approach is different from the one in [Kiefer et al., 2007] wherein a new

extension to SPARQL, called iSPARQL, is proposed by allowing for similarity

joins measures. The novelty of our approach relies upon allowing similarity-based

path matching, and applying it to CPSPARQL.

112 CHAPTER 7. OTHER POSSIBLE EXTENSIONS

There are many ways to assess the similarity between entities (or terms) [Eu-

zenat and Shvaiko, 2007]. The most common way amounts to defining a measure

of this similarity.

Definition 7.2.1 A similarity α : o× o→ R is a function from a pair of entities to

a real number expressing the similarity between them such that:
∀x, y ∈ o, α(x, y) ≥ 0 (positiveness)

∀x, y, z ∈ o, α(x, x) ≥ α(y, z) (maximality)

∀x, y ∈ o, α(x, y) = α(y, x) (symmetry)

Several techniques (or methods) could be used for assessing the similarity mea-

sure or relation between entities [Euzenat and Shvaiko, 2007]. We rely upon those

that are based on using external resources like WordNet1. WordNet is a large lex-

ical database of English. Nouns, verbs, adjectives and adverbs are grouped into

sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets

are interlinked by means of conceptual-semantic and lexical relations. WordNet

also provides relations such as an hypernym (superconcept/subconcept) structure,

meronym (part of) relation, etc.

Definition 7.2.2 (Partially ordered synonym resource) A partially ordered syn-

onym resource P over a set of words W , is a triple 〈E,≤, β〉, such that E ⊆ 2W

is a set of synsets, ≤ is the hypernym relation between synsets and β is a function

from synsets to their definition (a text that is considered here as a bag of words i

W). For a term t, P(t) denoted the set of synsets associated with t.

Simple measures can be defined based on synonymous relation of WordNet.

We consider the cosynonym similarity measure since it is simple and not a strict

measure, i.e., it allows calculating similarity with respect to non synonymous ob-

jects. Of course, more elaborated measures could be used [Euzenat and Shvaiko,

2007] such as Resnik semantic similarity [Resnik, 1995].

Definition 7.2.3 (Cosynonym similarity) Given two terms s and t and a synonym

resource P , the cosynonym is a similarity α : S× S→ [0 1] such that:

α(s, t) =
|P(s) ∩ P(t)|
|P(s) ∪ P(t)|

Note that we ignore the uriref namespaces when calculating the similarity even

if they are different. For example, if ex1:car and ex2:bus are two terms, only

car and bus are considered.
1wordnet.princeton.edu/

wordnet.princeton.edu/

7.3. NESTED QUERIES 113

Similarity-based path matching feature may enhance the search process by se-

lecting similar paths and ignoring meaningless and useless ones. In particular, a

path variable without a pre-defined regular expression can match any path regard-

less to its arc labels (i.e., the word obtained by concatenating path labels), and this

may yield a large number of answers to be returned for a query involving path vari-

ables. Using the similarity path matching feature with, for example, path variables

selects only paths whose labels are similar to the given property.

7.3 Nested Queries

The idea of allowing nested queries in SPARQL is not new. For instance, [Polleres,

2007] suggests a simple form of nested queries, i.e., boolean queries (ASK queries)

with an empty result form, that can be used within FILTER expressions. We present

another simple but useful form of nested queries: CONSTRUCT queries that are

allowed to be used within the FORM clause. This extension is useful in complex

modeling, for example, when one wants to query the result of another query with

some modification made to the RDF knowledge base if for example some criterion

satisfied. The following example illustrates the usefulness of this extension.

Example 7.3.1 Consider the RDF graph of Figure 7.2. Suppose we want to find

all cities reachable from Amman with a sequence (or a path) of flights such that

the arrival time of each flight is always before the departure time of the next one

in the path. This request cannot be expressed by a query in CPSPARQL. However,

we can express it using a nested query in the following way:

SELECT ?City2

FROM CONSTRUCT { ?Flight3 ex:reachable ?Flight4 }

FROM u1

WHERE {

?Flight3 ex:arrival ?Arrival .

?Flight3 ex:to ?City .

?Flight4 ex:departure ?Departure .

?Flight4 ex:from ?City .

FILTER (?Arrival < ?Departure)

}

FROM u1

WHERE {

?Flight1 (ex:reachable)+ ?Flight2 .

?Flight1 ex:from ex:Amman .

?Flight2 ex:to ?City2 .

}

114 CHAPTER 7. OTHER POSSIBLE EXTENSIONS

?flight1 ex:Lyon ex:Madrid

ex:Paris

?flight2

?flight3

?flight4 ?flight5

ex:Amman

ex:Rabat

12:30

16:30

18:0013:30

22:00

10:00

15:006:00 19:00

21:00

ex:departure

ex:to

ex:from

ex:arrival

ex:from ex:to

ex:arrivalex:departure
ex:from

ex:to

ex:arrival

ex:departure ex:from

ex:to

ex:arrivalex:from

ex:to

ex:arrival ex:departure

ex:departure

Figure 7.2: An RDF graph representing flights time table.

In which, we first calculate a new graph containing the reachable information be-

tween source and destination nodes whenever there are two flights such that the

destination of the first flight is the source of the second one, and the arrival time of

the first one is before the departure time of the second one. Then, we can query the

constructed graph together with the initial one using the reachable information to

find the reachable cities from Amman.

7.4 Extending Constraints in CPSPARQL

The parametrization of CPSPARQL[Φ] by Φ allows us to extend naturally its graph

patterns to more general constraints. For example, if ΦPSPARQL denotes the set of

all possible PSPARQL graph patterns, then a CPRDF[ΦPSPARQL] graph could be a

CPSPARQL[ΦPSPARQL] graph pattern.

If CPSPARQL graph patterns are constructed over CPRDF[ΦPSPARQL] graphs,

then we need only to extend Definition 6.2.13 in the following way: let G be a

graph, P be a PSPARQL graph pattern, ψ = †1Qx†2 : P be a constraint, and s a

term of G. We say that s satisfies ψ in G if there exists a map µ ∈ S(P,G) such

that µ(x) = s. The definition of CPRDF[Φ] homomorphism (Definition 6.2.14)

and first item of Definition 6.3.2 remain unchanged.

Example 7.4.1 The following CPSPARQL[ΦPSPARQL] query:

SELECT ?City

7.5. CONCLUSION 115

WHERE { CONSTRAINT const1]ALL ?Stop]:

{ ?Stop ex:population ?Pop .

FILTER (?Pop > 10000) .

}

ex:Paris (ex:train | ex:plane)+ %const1% ?City .

}

returns cities connected to Paris by a sequence of trains or planes such that all in-

termediate cities along the traversed paths have population size more than 10000.

The following CPSPARQL[ΦPSPARQL] query:

SELECT ?City

WHERE { CONSTRAINT const1]ALL ?Stop]:

{{ ?Stop ex:population ?Pop .

FILTER (?Pop > 10000) .

}

UNION

{ ?stop ex:capitalOf ?Country .}

}

ex:Paris (ex:train | ex:plane)+ %const1% ?City .

}

returns cities connected to Paris by a sequence of trains or planes such that all

intermediate cities along the traversed paths either are capital cities or have pop-

ulation size more than 10000.

7.5 Conclusion

This chapter has presented several extensions which we found useful for real ap-

plications of both SPARQL and CPSPARQL. Some of them are original (simi-

larity path-based matching, nested construct queries and extending constraints in

CPSPARQL); some of them have already been proposed in the literature (path vari-

ables and constraints on path variables), but we have provided other ways to use

them or extended their functionalities. More precisely, we have used path variables

differently from the existing query languages in a way that permits to match paths

to a given regular expression while doing the search process and provided new

forms of post-filtering constraints on these path variables.

116 CHAPTER 7. OTHER POSSIBLE EXTENSIONS

Querying RDFS Graphs 8
Contents

8.1 RDF(S) . 119
8.1.1 RDF(S) vocabulary 119

8.1.2 RDF(S) semantics 119

8.2 RDF(S) Closure and Query Answering 121
8.3 RDF(S) Entailment and Query Rewriting 123

8.3.1 FROM SPARQL/RDFS to PSPARQL/RDF 123

8.3.2 FROM PSPARQL/RDFS to CPSPARQL/RDF 125

8.3.3 Example: putting all together 128

8.4 Conclusion . 129

Introduction

RDF [Manola and Miller, 2004] and its extension RDFS (RDF Schema) [Brickley

and Guha, 2004] together with OWL [McGuinness and van Harmelen, 2004] form

the three formal logics recommended by W3C for representing data in semantic

web. The focus in this chapter however will be only in RDF and RDFS languages

that extend the simple RDF language presented in Chapter 2. The two extensions

are defined in the same way:

– they consider a particular set of urirefs of the vocabulary prefixed by rdf:

and rdfs:, respectively.

– They add additional constraints to the resources associated to these terms in

the interpretation.

118 CHAPTER 8. QUERYING RDFS GRAPHS

In adding new constraints to RDF(S) interpretations, RDF(S) documents may

have less models, and thus more consequences. It is possible for example, in RDF,

to deduce 〈ex:author rdf:type rdf:Property〉 from 〈ex:person1 ex:author
"Alkhateeb"〉; in RDFS, to deduce 〈ex:document1 rdf:type ex:Biography〉
from {〈ex:document1 rdf:type rdf:Autobiography〉, 〈ex:Autobiography
rdfs:subClassOf ex:Biography〉}.

One possible approach for querying an RDF(S) graph G in a sound and com-

plete way is by computing the so-called closure graph of G, then evaluating the

query over the closure graph.

Another possible approach [Muñoz et al., 2007], consists of searching paths

between RDF(S) vocabularies. This approach gives a more efficient algorithm

(O(nlogn) time complexity) for checking only the entailment between ground

RDF(S) (or more precisely, restricted RDF(S)) graphs than using the closure op-

eration. This algorithmic result also directly follows from our polynomial result

of path satisfiability checking and the PRDF homomorphism [Alkhateeb et al.,

2007] of ground graphs. Despite its usefulness in many applications (e.g. boolean

queries), the proposed algorithm cannot be used for the query evaluation problem

or even — the simpler problem — checking the entailment between RDF(S) graphs

involving variables.

To overcome the limitation of both approaches, we provide a new approach

for answering queries over RDF(S) graphs. Our approach consists of rewriting

the query using a set of rules, and then evaluating the transformed query over the

graph to be queried. The query rewriting approach that we will present is similar

in spirit to the query rewriting methods using a set of views [Papakonstantinou and

Vassalos, 1999; Calvanese et al., 2000b; Grahne and Thomo, 2003]. In contrast to

these methods, our approach uses the data contained in the graph (i.e., the rules are

inferred from RDF(S) entailment rules).

Before proceeding, let us first introduce the RDF(S) language (its vocabulary

and semantics), recall the closure method for checking RDF(S) consequence and

its drawbacks. Then, we present our approach for querying RDF(S) graphs.

Section 8.1 of this chapter is dedicated to the presentation of RDF(S) lan-

guages, Section 8.2 and Section 8.3 present the closure approach and the rewriting

approach for querying RDF(S) knowledge bases, respectively.

8.1. RDF(S) 119

rdfs:domain[dom] rdfs:Container[cont] rdfs:Resource[res]
rdfs:range[range] rdfs:isDefinedBy[isDefined] rdf:subject[subj]
rdfs:Class[class] rdfs:Literal[literal] rdf:first[first]
rdf:value[value] rdfs:subClassOf[sc] rdf:Property[prop]
rdfs:label[label] rdfs:subPropertyOf[sp] rdf:rest[rest]
rdf:nil[nil] rdfs:comment[comment] rdf: 1[1]
rdf:type[type] rdf:predicate[pred] rdf: 2[2]
rdf:object[obj] rdf:Statement[stat] . . .
rdf:List[list] rdfs:member[member] rdf: i[i]
rdf:Alt[alt] rdfs:Datatype[datatype] . . .
rdf:Bag[bag] rdf:XMLLiteral[xmlLit]
rdf:Seq[seq] rdfs:seeAlso[seeAlso]

rdfs:ContainerMember-
ship Property[contMP]

Table 8.1: The RDF(S) Vocabulary.

8.1 RDF(S)

8.1.1 RDF(S) vocabulary

In RDF, there exists a set of reserved words, the RDF(S) vocabulary (RDF Schema
[Brickley and Guha, 2004]), designed to describe relationships between resources

like classes (e.g. classA subClassOf classB) and relationships between prop-

erties (e.g. propA subPropertyOf propB). The RDF(S) vocabulary is given in

Table 8.1 as it appears in [Hayes, 2004]. The shortcuts that we will use for each of

them are given in brackets.

From now on, we use rdfsV to denote the RDF(S) vocabulary.

8.1.2 RDF(S) semantics

In addition to the usual interpretation mapping, special mapping is used in RDFS

interpretations to allow interpreting the set of classes which is a subset of IR.

Definition 8.1.1 An RDFS interpretation of a vocabulary V is a tuple I = 〈IR,
IP , Class, IEXT , ICEXT , Lit, ι〉 such that:

– Class ⊆ IR is a distinguished subset of IR identifying if a resource denotes

a class of resources;

– ICEXT : Class→ 2IR is a mapping that assigns a set of resources to every

resource denoting a class;

120 CHAPTER 8. QUERYING RDFS GRAPHS

– Lit ⊆ IR is the set of literal values, Lit contains all plain literals in L ∩ V .

The remainder are defined as in the simple interpretations.

Additional conditions are added to the resources associated to terms of RDF(S)

vocabularies in an RDF(S) interpretation to be an RDF(S) model of an RDF(S)

graph. These conditions include the satisfaction of the RDF(S) axiomatic triples as

appeared in the normative semantics of RDF [Hayes, 2004].

Definition 8.1.2 (RDF(S) Model) Let G be an RDF(S) graph, and I = 〈IR, IP ,
Class, IEXT , ICEXT , Lit, ι〉 be an RDFS interpretation of a vocabulary V ⊆
rdfsV ∪ V such that V(G) ⊆ V . Then I is an RDF(S) model of G if and only if I

satisfies the following conditions:

1. Simple semantics:

a) there exists an extension ι′ of ι to B(G) such that for each triple 〈s, p, o〉
of G, ι′(p) ∈ IP and 〈ι′(s), ι′(o)〉 ∈ IEXT (ι′(p)).

2. RDF semantics:

a) x ∈ IP ⇔ 〈x, ι′(prop)〉 ∈ IEXT (ι′(type)).

b) If ` ∈ term(G) is a typed XML literal with lexical form w, then ι′(`)
is the XML literal value of w, ι′(`) ∈ Lit, and 〈ι′(`), ι′(xmlLit)〉 ∈
IEXT (ι′(type)).

3. RDFS Classes:

a) x ∈ IR, x ∈ ICEXT (ι′(res)).

b) x ∈ Class, x ∈ ICEXT (ι′(class)).

c) x ∈ Lit, x ∈ ICEXT (ι′(literal)).

4. RDFS Subproperty:

a) IEXT (ι′(sp)) is transitive and reflexive over IP .

b) if 〈x, y〉 ∈ IEXT (ι′(sp)) then x, y ∈ IP and IEXT (x) ⊆ IEXT (y).

5. RDFS Subclass:

a) IEXT (ι′(sc)) is transitive and reflexive over Class.

b) 〈x, y〉 ∈ IEXT (ι′(sc)), then x, y ∈ Class and ICEXT (x) ⊆ ICEXT (y).

6. RDFS Typing:

a) x ∈ ICEXT (y), (x, y) ∈ IEXT (ι′(type)).

8.2. RDF(S) CLOSURE AND QUERY ANSWERING 121

b) if 〈x, y〉 ∈ IEXT (ι′(dom)) and 〈u, v〉 ∈ IEXT (x) then u ∈ ICEXT (y).

c) if 〈x, y〉 ∈ IEXT (ι′(range)) and 〈u, v〉 ∈ IEXT (x) then v ∈ ICEXT (y).

[a)]

7. RDFS Additionals:

a) if x ∈ Class then 〈x, ι′(res)〉 ∈ IEXT (ι′(sc)).

b) if x ∈ ICEXT (ι′(datatype)) then 〈x, ι′(literal)〉 ∈ IEXT (ι′(sc)).

c) if x ∈ ICEXT (ι′(contMP)) then 〈x, ι′(member)〉 ∈ IEXT (ι′(sp)).

Definition 8.1.3 (RDFS consequence) LetG andH be two RDFS graphs, thenG

RDFS entails H , denoted by G |=RDFS H , iff every RDFS model of G is also an

RDFS model of H .

8.2 RDF(S) Closure and Query Answering

One possible approach for querying an RDF(S) graph G in a sound and complete

way is by computing the closure graph of G, i.e., the graph obtained by saturating

G with all informations that can be deduced using a set of predefined rules called

RDF(S) rules, then evaluating the query over the closure graph.

Let G be an RDF(S) graph of an RDF(S) vocabulary V . The RDF(S) closure

of G, where Ĝ denotes the closure of the RDF(S) graph G, is obtained in the

following way:
[RDF1] add all RDF axiomatic triples to Ĝ;

[RDF2] if 〈s, p, o〉 in Ĝ, then 〈p, type, prop〉 is a triple of Ĝ;

[RDF3] if 〈s, p, `〉 is a triple of Ĝ, where ` is an xmlLit typed

literal and the lexical representation s is a well-formed

XML literal, then 〈s, p, xml(s)〉 and 〈xml(s), type,
xmlLit〉 are two triples of Ĝ;

[RDFS 1] add all RDFS axiomatic triples to Ĝ;

[RDFS 6] if 〈a, dom, x〉 and 〈u, a, y〉 are two triples of Ĝ, then 〈u,
type, x〉 is a triple of Ĝ;

[RDFS 7] if 〈a, range, x〉 and 〈u, a, v〉 are triples of Ĝ, then 〈v,
type, x〉 is a triple of Ĝ;

[RDFS 8A] if 〈x, type, prop〉 in Ĝ, then 〈x, sp, x〉 is a triple of Ĝ;

[RDFS 8B] if 〈x, sp, y〉 and 〈y, sp, z〉 are two triples of Ĝ, then 〈x,
sp, z〉 is a triple of Ĝ;

122 CHAPTER 8. QUERYING RDFS GRAPHS

[RDFS 9] if 〈a, sp, b〉 and 〈x, a, y〉 are two triples of Ĝ, then 〈x,
b, y〉 is a triple of Ĝ;

[RDFS 10] if 〈x, type, class〉 in Ĝ, then 〈x, sc, res〉 is a triple

of Ĝ;

[RDFS 11] if 〈u, sc, x〉 and 〈y, type, u〉 are triples of Ĝ, then 〈y,
type, x〉 is a triple of Ĝ;

[RDFS 12A] if 〈x, type, class〉 is a triple of Ĝ, then 〈x, sc, x〉 is a

triple of Ĝ;

[RDFS 12B] if 〈x, sc, y〉 and 〈y, sc, z〉 are two triples of Ĝ, then 〈x,
sc, z〉 is a triple of Ĝ;

[RDFS 13] if 〈x, type, contMP〉 is a triple of Ĝ, then 〈x, prop,
member〉 is a triple of Ĝ;

[RDFS 14] 〈x, type, datatype〉 is a triple of Ĝ, then 〈x, sc,
literal〉 is a triple of Ĝ.

A closure operation that can be applied to an RDF(S) graph permits to reduce

the RDF(S) entailment to simple RDF entailment. A finite and polynomial closure,

called partial closure, is proposed independently in [Baget, 2003; Horst, 2005]. Let

G and H be two RDFS graphs on an RDFS vocabulary V . The partial closure of

G given H , denoted Ĝ\H , is obtained in the following way:

1. let k be the maximum of i’s such that rdf:_i is a term of G or of H;

2. replace the rule [RDF 1] by the rule [RDF 1P] add all RDF axiomatic triples

except those that use rdf:_i with i > k. In the same way, replace the rule

[RDFS 1] by the rule [RDFS 1P] add all RDFS axiomatic triples except those

that use rdf:_i with i > k;

3. apply the modified rules.

Theorem 8.2.1 ([Hayes, 2004]) Let G and H be satisfiable RDFS graphs, then

G |=RDFS H if and only if (Ĝ\H) |= H .

From this results and the equivalence between the entailment and homomor-

phisms (Theorem 2.3.4 and Theorem 4.3.5), it is thus possible to use homomor-

phisms for checking the RDF(S) consequences.

Corollary 8.2.2 (Homomorphisms and RDF(S) entailment) Let G be a satisfi-

able RDFS graph and H be a graph, then G |=RDFS H iff there exists an homo-

morphism from H into (Ĝ\H).

8.3. RDF(S) ENTAILMENT AND QUERY REWRITING 123

In this result, the homomorphism used corresponds to the kind of the graph

H which can be an RDFS, a PRDF or a CPRDF graph. For the query evaluation

problem, it is sufficient to enumerate the set of homomorphisms from the query

graph pattern(s) into the closure graph.

As we mentioned before, this approach has several drawbacks which limited its

use. It takes time proportional to |H|×|G|2 in the worst case [Muñoz et al., 2007].

Moreover, it is not applicable, for example, in the case when we do not have access

to the graph to be queried. In this case, we cannot calculate the closure graph. If

it is not the case, then we need to download the RDF(S) graph to calculate locally

its closure. Finally, the finite closure needs to be recalculated at each time we ask

a query.

8.3 RDF(S) Entailment and Query Rewriting

In this section, we present a rewriting method for evaluating SPARQL or (C)PSPA-

RQL queries over RDF(S) graphs. This method captures RDF(S) semantics, in

particular, the core fragment introduced in [Muñoz et al., 2007].

8.3.1 FROM SPARQL/RDFS to PSPARQL/RDF

We give in this subsection a rewriting system for evaluating SPARQL queries over

RDF(S) graphs. In particular, we show that every SPARQL query Q that will be

evaluated over an RDF(S) graph G can be transformed to a PSPARQL query Q′

such that evaluating Q over Ĝ, the closure graph of G, is equivalent to evaluating

Q′ over G. The system consists of a set of rewriting rules of the form τ : g → g′,

where g is a basic graph and g′ is a PSPARQL graph pattern. g′ is obtained from

g by applying the possible rule(s) to each triple in g, i.e., g′ = τ(g) = {τ(t) | t is

a triple in g}. In every rule, s and o are elements from the RDF terminology, i.e.,

literals, urirefs, or variables.

Note that the input of the system is a basic graph and not a SPARQL graph

pattern. This is because the evaluation of a SPARQL graph pattern is composed

from the evaluation of the basic graphs that make the query (see Definition 3.3.5).

To illustrate the approach, let us consider ρdf [Muñoz et al., 2007], the subset of

RDF(S) that contains the following vocabulary:

ρdf = {sp, sc, type, dom, range}

124 CHAPTER 8. QUERYING RDFS GRAPHS

This subset forms the core fragment of RDF(S) for the RDF language develop-

ers use as indicated in [Muñoz et al., 2007].

SubClass rule:

τ(〈s, sc, o〉) = 〈s, sc+, o〉

This rule handles the transitive semantics of the subclass relation. Finding the

subclasses of a given class can be achieved by navigating all its direct subclasses.

Subproperty rule:

τ(〈s, sp, o〉) = 〈s, sp+, o〉

This rule handles the transitive semantics of the subproperty relation. Finding

the subproperties of a given property can be achieved by navigating all its direct

subproperties.

τ(〈s, p, o〉) = {〈s, ?x, o〉, 〈?x, sp∗, p〉}

This rule shows that the subject-object pairs occurred in the subporperties of a

given property are inherited to it, where p is an urirefs.

Typing rule:

τ(s, type, o) = {〈s, type · sc∗, o〉}
UNION {〈s, ?p1, ?y〉, 〈?p1, sp

∗, ?p2〉, 〈?p2, dom · sc∗, o〉}
UNION {〈?y, ?p1, s〉, 〈?p1, sp

∗, ?p2〉, 〈?p2, range · sc∗, o〉}

This rule shows that the instance mapped to s is of type the class mapped

to o (we use the word "mapped" since s and/or o can be variables) if one of the

following conditions holds:

1. the instance mapped to s is a type of one of the subclasses of the class

mapped to o by following the subclass relationship zero or several times.

The zero time is used since s can be directly of type o;

2. if there exists a property such that the instances appearing as a subject are all

of type of one of the subclasses mapped to o;

3. if there exists a property such that the instances appearing as an object are

all of type of one of the subclasses mapped to o.

8.3. RDF(S) ENTAILMENT AND QUERY REWRITING 125

From the reflexivity semantics of sp and sc, we can deduce that any class

(respectively, property) is a subclass (respectively, subproperty) of itself. We can

deduce, for example, from 〈p1 sp p2〉 that 〈p1 sp p1〉 and 〈p2 sp p2〉. We assume

that sp and sc are reflexive relaxed relations as done in [Muñoz et al., 2007]. With

this assumption, we have the following property.

Proposition 8.3.1 Let G and P be two ρdf graphs, then Eval(P, Ĝ,Ω) is equiva-

lent to Eval(τ(P), G,Ω).

8.3.2 FROM PSPARQL/RDFS to CPSPARQL/RDF

The same ideas could be used when evaluating (C)PSPARQL queries. More pre-

cisely, to evaluate a (C)PSPARQL query Q over an RDF(S) graph G, either we

calculate first the closure graph of G (i.e., Ĝ) and then we evaluate Q over Ĝ or we

rewrite Q into a semantically equivalent one Q′ and then evaluate Q′ over G.
For example, given the following PSPARQL query Q:

SELECT ?City

WHERE { ex:Grenoble ex:transport+ ?City .}

and the following RDF(S) graph G:

{
〈 ex:train sp ex:transport 〉,
〈 ex:plane sp ex:transport 〉,
〈 ex:Grenoble ex:train ex:Lyon 〉,
〈 ex:Lyon ex:train ex:Paris 〉,
〈 ex:Lyon ex:plane ex:Amman 〉,

}

To evaluate Q over G, we can calculate the closure of G to have:

{
〈 ex:train sp ex:transport 〉,
〈 ex:plane sp ex:transport 〉,
〈 ex:Grenoble ex:train ex:Lyon 〉,
〈 ex:Lyon ex:train ex:Paris 〉,
〈 ex:Lyon ex:plane ex:Amman 〉,
〈 ex:Grenoble ex:transport ex:Lyon 〉,
〈 ex:Lyon ex:transport ex:Paris 〉,
〈 ex:Lyon ex:transport ex:Amman 〉

}

and then evaluate Q over the closure graph. In this case, we have the following

answers:

126 CHAPTER 8. QUERYING RDFS GRAPHS

?City

ex:Paris

ex:Amman

Another method consists of rewriting Q using the rules introduced in the pre-
vious subsection. In this respect, the transformed query Q′ of Q is:

SELECT ?City

WHERE {

?p sp* ex:transport .

ex:Grenoble (?p)+ ?City .

}

This way, we can match only paths of the same repeated edge labels. In the

graph G, we can find ex:Paris but not ex:Amman.

A third approach, which we have adopted in the (C)PSPARQL query evalu-

ator prototype, is to rewrite (C)PSPARQL queries into a semantically equivalent

CPSPARQL query by introducing constraints in the traversed edges.

For example, the query Q can be transformed to:

SELECT ?City

WHERE {

CONSTRAINT const1 [EDGE ?P]: { ?P sp* ex:transport . }

ex:Grenoble (# % const1 %)+ ?City .

}

where # is the symbol that can be used in regular expressions to match any term

(anonymous or blank variable). It is followed by a constraint, which means that the

matched symbol (predicate label) must be a subPropertyOf transport.

In the same way, the transformation can be applied to every property p /∈ {sp,
sc, type, dom, range} occurring inside a given (constrained) regular expression

in a (C)PSPARQL query.

For negated properties, the transformation depends on the semantics of the

negation operator over RDFS semantics. Indeed, there are two possible directions

that can be exhibited. Let us illustrate them using the following RDFS graph:

{
〈 ex:trainTGV sp ex:train 〉,
〈 ex:plane sp ex:transport 〉,
〈 ex:train sp ex:transport 〉,
〈 ex:Paris ex:plane ex:Lyon 〉,
〈 ex:Lyon ex:trainTGV ex:Grenoble 〉,
〈 ex:Lyon ex:plane ex:Amman 〉

}

and the following query:

8.3. RDF(S) ENTAILMENT AND QUERY REWRITING 127

SELECT ?City

WHERE { ex:Paris (!ex:train)+ ?City .}

If we interpret !ex:train by the existence of a property other than ex:train

or even any of its sub-properties, then the query can be transformed to:

SELECT ?City

WHERE {

CONSTRAINT const1 [EDGE ?P]: { ?P (!sp)* ex:train . }

ex:Paris (# % const1 %)+ ?City .

}

In this case, ex:Grenoble is not an answer to the query. However, if we

interpret (!ex:train) by the existence of a property only other than ex:train

(this time a sub-property like ex:trainTGV can satisfy the expression), then the

query can be simply transformed to:

SELECT ?City

WHERE {

ex:Paris (?Mean)+ ?City .

FILTER (?Mean != ex:train) .

}

ex:Grenoble this time is an answer to the query.

This way, the following examples of expressive patterns given in [Arenas et al.,

2008]:

(next::[(next::sp)*./self::transport])+

and

(next::[(next::sp)*./self::transport])+/

self::[(next::[(next::sp)*./self::bus])*./self::London] /

(next::[(next::sp)*./self::transport])+

can be expressed in CPSPARQL by:

SELECT ?City1 ?City2

WHERE {

CONSTRAINT const1 [EDGE ?P]: { ?P sp* transport . }

?City1 (# % const1 %)+ ?City2 .

}

and

128 CHAPTER 8. QUERYING RDFS GRAPHS

SELECT ?City1 ?City2

WHERE {

CONSTRAINT const1 [EDGE ?P]: { ?P sp* transport . }

CONSTRAINT const2 [EDGE ?P2]: { ?P2 sp* bus . }

?City1 (# % const1 %)+ ?StopCity .

?StopCity (# % const2 %)* Lonon .

?StopCity (# % const1 %)+ ?City2 .

}

8.3.3 Example: putting all together

Consider an RDF(S) graph that contains information about researchers like the

following one:

{
〈 ex:Person1 foaf:name "Faisal Alkhateeb" 〉,
〈 ex:Person1 ex:topic "Query Languages" 〉,
〈 ex:Person1 rdf:type ex:PhdResearcher 〉,
〈 ex:Person1 ex:worksWith ex:Person2 〉,
〈 ex:Person2 rdf:type ex:Researcher 〉,
〈 ex:Person2 foaf:name "Jérôme Euzenat" 〉,
〈 ex:works sp foaf:knows 〉,
. . .

}

Then the following CPSPARQL query:

SELECT ?Person1

WHERE {

CONSTRAINT const1 [EDGE ?P:] { ?P sp+ ex:knows . }

{ ?Person1 rdf:type.sc* ex:Researcher . }

UNION

{ ?Person1 ?P1 ?Y .

?P1 sp* ?P2 .

?P2 dom.sc* ex:Researcher .

}

UNION

{ ?Y ?P1 ?Person1 .

?P1 sp* ?P2 .

?P2 range.sc* ex:Researcher .

}

?Person1 (# % const1 %)+ ?Person2 .

?Person2 foaf:name "Jérôme Euzenat" .

}

could be used to find researchers knowing "Jérôme Euzenat".

8.4. CONCLUSION 129

8.4 Conclusion

We have presented in this chapter several approaches that can be used for querying

RDF(S) graphs with SPARQL queries. Each of them has its advantages and disad-

vantages which may limit their usage. We have also presented our own approach

which essentially relies on rewriting a given SPARQL query into a PSPARQL

query.

130 CHAPTER 8. QUERYING RDFS GRAPHS

Implementation and
Experiments 9
Contents

9.1 Implementation . 131
9.1.1 Graph representation of RDF data model 132
9.1.2 Input and output data 133
9.1.3 Query evaluation algorithm 133

9.2 Experiments . 134
9.2.1 Conformance test . 134
9.2.2 Run time test . 134
9.2.3 RDFS test . 139
9.2.4 Hardness test . 142
9.2.5 Preliminary SwetoDBLP test 147

9.3 Conclusion . 148

Introduction

This chapter consists of two sections: Section 9.1 describes a concrete implemen-

tation of the (C)PSPARQL query language, and Section 9.2 provides the experi-

mental results of this implementation.

9.1 Implementation

A CPSPARQL prototype has been implemented in Java1. We choose Java since

it is an expressive programming language suitable for expressing data as object-

oriented and platform-independent programming paradigms. The prototype is a
1http://psparql.inrialpes.fr/

http://psparql.inrialpes.fr/

132 CHAPTER 9. IMPLEMENTATION AND EXPERIMENTS

Figure 9.1: The CPSPARQL query evaluator interface.

query engine that mainly parses a text query; loads the RDF graph(s) to be queried,

which are identified in the query using urirefs; and then evaluates the query provid-

ing the answers of the query. We answer the following questions in the subsequent

subsections: how do we represent the RDF data model? What are the input and the

output data and their types? And what are the evaluation algorithm(s)?

9.1.1 Graph representation of RDF data model

The prototype represents the RDF data model as a directed labeled graph by pro-

viding the following abstract interfaces and their implementations:

1. Nodes of the RDF data model represented by a class. Each node is an in-

stance of that class, indexed by an identifier (a number), has a string name

used for representing the URI (Uniform Resource Identifier) or the literal

associated to it in the graph, an out-vector pointing to the set of output edges

from this node in the graph, and possibly an in-vector pointing to the set of

input edges to this node in the graph.

2. Edges are represented by a class. Each edge is an instance of that class,

has an identifier (a number), has a label for storing the predicate label of an

9.1. IMPLEMENTATION 133

RDF triple, and a vector containing tow elements pointing to the subject and

object nodes of an RDF triple, respectively.

3. An RDF graph is represented as a directed labeled graph that contains a vec-

tor of nodes and a vector of edges. The vector of nodes contains all elements

appearing as subjects and objects in the RDF data model such that each ele-

ment is represented by a node whose name is the label of that element. Each

triple is represented by an edge whose label is the predicate of the triple and

the end-points of the edge are the two nodes associated to the subject and the

object of the triple, and the out-vector of the subject node (respectively, the

in-vector of the object node) points to the edge associated to that triple.

9.1.2 Input and output data

The prototype contains a class that can be used for evaluating CPSPARQL queries.

The input to this class is a text query. This query will be then passed to the query

parser that extracts the locations of the RDF data model, local files or web sources

using URIs; passes these locations to the RDF data model parser that loads RDF

documents which must be written in the Turtle language [Beckett, 2006], and then

parses these documents to extracts from them the RDF triples. These RDF triples

will be sent to another class to construct the RDF dataset that contains a default

graph and a set of named graphs. The RDF dataset will be then returned to the

query parser that continue parsing the text query to evaluate its graph patterns over

the designated graph (i.e., the active graph as it is called in [Prud’hommeaux and

Seaborne, 2008]). The output of the parser is a text string which forms the result

of the query evaluation.

9.1.3 Query evaluation algorithm

The query evaluation algorithm of the prototype is based upon the semantics of the

language described in Section 5.2 following the evaluation semantic of SPARQL
[Prud’hommeaux and Seaborne, 2008]. It has two main algorithms: one concerns

evaluating (C)PRDF graphs (i.e., computing (C)PRDF-GRDF entailment), which

follows the backtrack algorithm presented in Section 5.4.2, and the other one is a

rewriting algorithm that implements the rules described in Section 8.3.

134 CHAPTER 9. IMPLEMENTATION AND EXPERIMENTS

9.2 Experiments

9.2.1 Conformance test

The prototype passes all test cases designed by DAWG (Data Access Working

Group) for the SPARQL query language2 except the ones that concern the DE-

SCRIBE query format. The prototype is currently under experiment for the re-

cently proposed test suite3.

9.2.2 Run time test

We have tested the performance of the CPSPARQL prototype on a Dell machine

with Bi-processor Xeon 5050 3GHz and 4GB of RAM. Java 1.5.0_07 has been

used, and assigned 976 MB of RAM. We have run the test using several queries

against different RDF graph sizes from {5, 10, 20, 50, 100, 200, 500, 1000, 2000,

5000, 10000, 20000, 50000, 100000} triples. We have repeated the tests 50 times

for each graph size, and the average time is taken.

RDF graphs. The RDF graphs are constructed randomly with different sizes

using a random graph generator. To have a connected graph and to test queries con-

taining path expressions, nodes of the graphs are selected from 800 distinct nodes

representing cities around the world and edges are selected from 4 distinct edge

labels namely {train, plane, bus, taxi}. The average in and out degrees

(in−d and out−d) are calculated in function of the graph size, in−d = out−d = 2
√
n,

where n is the required number of edges. These settings increase the opportunity

of having paths between cities with the same label, and also cycles.

Test 1. The first test is executed on a query without path expressions, and the

time is taken between the beginning and return of the query answers. We observed

that the time after a particular graph size has a stable state as shown in Figure 9.2.

This observation may be justified by the time required to initial settings.

Test 2. In this test, the time is taken between the beginning and return of the

first query answer as given in Figure 9.3. If we compare the time required for

answering the given query and that required for providing the first solution, we can

see that there exists a large difference between them.

Test 3. We have executed in this test a query containing a path expression with

the positive closure SELECT * WHERE {s p+ ?o }, where s is a node selected

randomly and p is selected from the edge labels. The positive closure is chosen
2http://www.w3.org/2001/sw/DataAccess/tests/
3http://www.w3.org/2001/sw/DataAccess/tests/r2

http://www.w3.org/2001/sw/DataAccess/tests/
http://www.w3.org/2001/sw/DataAccess/tests/r2

9.2. EXPERIMENTS 135

Figure 9.2: Time for answering query: SELECT * WHERE {?s ?p ?o }.

since it takes the longest time. Though the execution time as shown in Figure 9.4

followed an exponential growth, it does not exceed 7 seconds for the largest graph

size.

Test 4. The goal of this test is to observe the effects of constraints on per-

formances. For that, we have constructed randomly an RDF graph similar to one

in Figure 6.1, i.e., a graph containing only the following three kinds of triples

〈?newVar, ex:from, C1〉, 〈?newVar, rdf:type, transport〉, and 〈?newVar,

ex:to, C2〉, where transport is one of the following transportation means {train,

plane, bus, taxi}. We have executed in this test the following two CPSPARQL

queries, Q1 containing a constrained regular expression and Q2 with a regular ex-

pression (without a constraint):

SELECT *
WHERE {

CONSTRAINT const1]ALL ?Trip]:

{ ?Trip rdf:type ex:Plane . }

?s (ex:from-%const1%.ex:to)+ ?o

}

136 CHAPTER 9. IMPLEMENTATION AND EXPERIMENTS

Figure 9.3: Time for finding the first solution for query: SELECT * WHERE {?s

?p ?o }.

9.2. EXPERIMENTS 137

Figure 9.4: Time for answering query: SELECT * WHERE {s p+ ?o }.

n = 5 10 20 50 100 200 500 1000 2000
Q1 0 1 1 6 9 13 44 134 402
Q2 2 4 9 15 36 90 293 2120 5018

Table 9.1: Average number of answers for Q1 and Q2.

and

SELECT *
WHERE {

?s (ex:from- . ex:to)+ ?o .

}

As shown in Figure 9.5, the time for the query with constrained regular expres-

sion is better than that of the query without it. This shows that our query evaluator

takes advantage of the constraints for cutting the search space during evaluation as

it does not explore paths that cannot lead to a solution. Table 9.1 shows some of

the average number of answers of each query (i.e., Q1 and Q2) for selected graph

sizes. There exists a large difference between the two expected answers (or paths).

138 CHAPTER 9. IMPLEMENTATION AND EXPERIMENTS

Figure 9.5: Time for answering a CPSPARQL query with and without constrained
regular expressions.

9.2. EXPERIMENTS 139

9.2.3 RDFS test

This test, like all the remaining ones, is performed on a Sony machine with Intel

Core TM 2 Duo Processor T7100 1.80GHz and 2GB of RAM. Java 1.5.0_07 has

been used, and assigned 900 MB of RAM. Its goal is to observe the behavior of

the prototype for querying RDFS graphs. More precisely, we want to compare,

given a query Q, the time required to evaluate Q and its transformed query Q′ (see

Section 8.3). However, this test uses a specified RDF schema (the Univ-Bench

ontology), instead of having a model of what are the difficult RDF schemas in this

context or which RDF schema are realistic [Theoharis et al., 2008].

RDFS graphs. We have used the Lehigh University Benchmark4 [Guo et

al., 2005] for generating the RDF graphs. This tool generates RDF, OWL or

DAML+OIL data over the Univ-Bench ontology. We have divided this schema

into different sizes5 {100, 200, 300} triples. We have then used these schemas to

generate different RDFS graph sizes6 {200, 500, 1000, 2000, 5000, 10000} triples.

We have run the tests using several queries (involving RDFS vocabularies) against

the generated graphs together with the RDF schemas.

Test 1. This test is executed on a query Q1 that searches all superclasses to

which a randomly selected class s belongs. Figures 9.6 and 9.7 shows the times

required for evaluating the query and its transformed one, respectively.

Test 2. In this test, we have executed a query Q2 that searches all object re-

sources connected by a repeated property (i.e., a randomly selected property not

in the RDFS vocabulary) to a subject resource (randomly selected). Note that ac-

cording to the transformation system presented in Chapter 8, the transformed query

of:

SELECT *
WHERE {s p+ ?o }

is the following one:

SELECT *
WHERE {

CONSTRAINT const1 [EDGE ?prop]: { ?prop sp+ p . }

s (# % const1 %)+ ?o .

}

4http://swat.cse.lehigh.edu/projects/lubm/
5http://www.inrialpes.fr/exmo/people/alkhateeb/RDFgraphs/

rdfsSchemas/
6http://www.inrialpes.fr/exmo/people/alkhateeb/RDFgraphs/

rdfsTestbeds/

http://swat.cse.lehigh.edu/projects/lubm/
http://www.inrialpes.fr/exmo/people/alkhateeb/RDFgraphs/rdfsSchemas/
http://www.inrialpes.fr/exmo/people/alkhateeb/RDFgraphs/rdfsSchemas/
http://www.inrialpes.fr/exmo/people/alkhateeb/RDFgraphs/rdfsTestbeds/
http://www.inrialpes.fr/exmo/people/alkhateeb/RDFgraphs/rdfsTestbeds/

140 CHAPTER 9. IMPLEMENTATION AND EXPERIMENTS

Figure 9.6: Time for answering query: SELECT * WHERE {s sc ?o }

Figure 9.7: Time for answering query: SELECT * WHERE {s sc+ ?o }

9.2. EXPERIMENTS 141

Figure 9.8: Time for answering query: SELECT * WHERE {s p+ ?o }

Figure 9.9: Time for answering query: SELECT * WHERE {s τ(p+) ?o }

142 CHAPTER 9. IMPLEMENTATION AND EXPERIMENTS

Figures 9.8 and 9.9 shows the times required for answering the above two

queries, respectively.

Test 3. We have executed in this test a query Q3 containing the type relation.

As shown in Figures 9.10 and 9.11, there rather exist a gap between the time re-

served for answering this query and the previous ones. This is expected since the

patterns in the transformed query is much larger in size and number than the orig-

inal one. In addition, we have used a naive transformation, i.e., the transformed

query is:

SELECT *
WHERE {

{ s type.sc* ?o . }

UNION

{ s ?p1 ?y . ?p1 sp* ?p2 . ?p2 domain.sc* ?o . }

UNION

{ ?y ?p1 s . ?p1 sp* ?p2 . ?p2 range.sc* ?o . }

}

However, if we look at the transformed query, we see that there exists repeated

patterns (e.g. ?p1 sp* ?p2 and .sc* ?o). We think that the evaluation of this

query can be optimized in two ways: either by calculating the answers to these

patterns only once or using the typing system used in RQL [Karvounarakis et al.,

2002].

Figure 9.12 shows the time required for evaluating only the first sub-pattern of

the above query.

The following table presents the average number of answers for the above

queries and their transformed queries.

query average number of answers
Q1 1
Q′

1 3
Q2 4
Q′

2 6
Q3 2
Q′

3 4
Q′′

3 5

9.2.4 Hardness test

In this test, we have varied the average in- and out-degrees of the graph to be tested,

where in-out degree of 25 means that the average number of in-coming and out-

coming edges to nodes in the graph is 25. RDF graphs have been constructed using

9.2. EXPERIMENTS 143

Figure 9.10: Time for answering query: SELECT * WHERE {s type ?o }

Figure 9.11: Time for answering query: SELECT * WHERE { s τ(type) ?o

}

144 CHAPTER 9. IMPLEMENTATION AND EXPERIMENTS

Figure 9.12: Time for answering query: SELECT * WHERE {s type.sc* ?o

}

a random graph generator7 with in-degrees equal to out-degrees. We have executed

the following two queries (Q1 and Q2, respectively) 50 times and measured the

average time and the average number of answers for each one. Each time, s and p

are selected randomly from the node and the edge labels, respectively.

SELECT *
WHERE {

s p ?o .

}

Q1 that searches all nodes connected to a selected resource node.

SELECT *
WHERE {

s p+ ?o .

}

Q2 that searches all nodes connected by a path of a repeated property to a resource

node.
7http://www.inrialpes.fr/exmo/people/alkhateeb/RDFgraphs/

randomGraphGenerator/

http://www.inrialpes.fr/exmo/people/alkhateeb/RDFgraphs/randomGraphGenerator/
http://www.inrialpes.fr/exmo/people/alkhateeb/RDFgraphs/randomGraphGenerator/

9.2. EXPERIMENTS 145

Test 1. In this test, we have constructed RDF graphs with fixed number of

nodes. In this case, the total number of edges is determined by the in- and out-

degrees, i.e., #edges = #nodes ∗ in−d (where in−d = out−d). Moreover, edge

labels are selected randomly from {train, plane, bus, taxi}.

Figure 9.13 shows the average time required for answering Q1 and Q2 over an

RDF graph with 1000 nodes and different in-out degrees.

Figure 9.13: Time for answeringQ1 andQ2 with different in-out degrees and fixed
number of nodes.

Table 9.2 provides the average number of answers for Q1 and Q2 over an RDF

graph with number of nodes equal to 1000, where columns represent the in-degree

values. As expected, the higher the in-out degree, the more number of answers the

two queries have.

in-out degree 2 4 8 16 32 64 128
Q1 0 1 2 5 8 16 32
Q2 1 30 645 980 998 1000 1000

Table 9.2: Average number of answers for Q1 and Q2.

146 CHAPTER 9. IMPLEMENTATION AND EXPERIMENTS

Test 2. In this test, we have constructed RDF graphs with fixed sizes, i.e., the

number of edges is fixed. The number of nodes depends on the in- and out-degrees,

i.e., #nodes = graphSize/in−d (where in−d = out−d, and graphSize denotes

the number of required edges). Moreover, edge labels are selected randomly from

{train, plane, bus, taxi}.

Figure 9.13 shows the average time required for answering Q1 and Q2 over an

RDF graph with 10000 edges and different in-out degrees.

Figure 9.14: Time for answering Q1 and Q2 over an RDF graph with different
in-out degrees and fixed number of edges.

Table 9.3 provides the average number of answers for Q1 and Q2 over an RDF

graph with size 10000.

in-out degree 2 4 8 16 32 64 128
Q1 0 1 1 2 4 6 12
Q2 1 37 945 612 312 156 78

Table 9.3: Average number of answers for Q1 and Q2.

Although the number of answers of Q2 for the in-out degree 128 is less than

the other degrees, the required time is greater than the others. This is because the

9.2. EXPERIMENTS 147

search space became larger (respectively, the number of nodes smaller) than for the

previous degrees.

9.2.5 Preliminary SwetoDBLP test

In this test, we have used a randomly selected part (swetodblp_april_2008_part_1)

of the SwetoDBLP8. We have further divided this part into several sub-parts 9.

Number of edges Number of nodes
sub-parts 1 and 2 167831 107919
sub-parts 3 and 4 130821 85251

We have executed two kinds of queries that mainly search paths from a ran-

domly selected resource node. The first kind Q1 contains only a path variable

connecting a resource and a variable destination nodes, which is similar to the fol-

lowing one:

SELECT *
WHERE {

<http://dblp.uni-trier.de/.../MatskinH95> ??pathVar ?o .

}

The second kind of queriesQ2 consists of searching paths from a selected node

with a predefined regular expression such as:

PREFIX opus: <http://lsdis.cs.uga.edu/projects/semdis/opus#>

SELECT *
WHERE {

DEFINED BY ??pathVar <http://dblp.uni-trier.de/.../MatskinH95>

(opus:cites $|$ opus: isIncludedIn)+ ?o

<http://dblp.uni-trier.de/.../MatskinH95> ??pathVar ?o .

}

We have repeated the tests 50 times for each kind of queries and measured

the average running time excluding the load time. Resource nodes are selected

randomly at each time for the two query kinds.

Table 9.4 summarizes the average time for the queries over sub-parts 1 and 2,

and sub-parts 3 and 4. As shown in the table, the time does not exceed 12 seconds

in the worst case. Moreover, for the queries with predefined regular expressions,

it is always less than that for those with only path variable. As shown Table 9.5,

the average number of answers for the first query is greater than that for the second

kind.

148 CHAPTER 9. IMPLEMENTATION AND EXPERIMENTS

Q1 Q2

sub-parts 1 and 2 11 seconds 8 seconds
sub-parts 3 and 4 12 seconds 9 seconds

Table 9.4: Average time for queries over different sub-parts of part-1 of swetoD-
BLP.

Q1 Q2

sub-parts 1 and 2 96 66
sub-parts 1 and 2 120 70

Table 9.5: The average number of answers for the two kinds of queries queries.

It should be noted that the number of answers (or matched paths) does not de-

note the number of investigated paths. Moreover, we do not need to investigate

each individual path to find answers, but instead each possible map (see for exam-

ple the definition of homomorphisms in Chapter 4).

We have identified the following resource node with a large number of answers:

<http://dblp.uni-trier.de/rec/bibtex/books/cs/UllmanH89>.

Q1 Q2

Number of answers 576 538

9.3 Conclusion

We have presented a first implementation of a (C)PSPARQL query evaluator which

does not use any optimization technique.This prototype has demonstrated its abil-

ity to evaluate (C)PSPARQL queries as well as regular SPARQL queries through

the compliance tests provided by W3C. This naive implementation has experimen-

tally exhibited a reasonable behavior at this preliminary stage.We showed some

advantages of using CPSPARQL, in particular in involving constraints during the

path search (and not a posteriori), since this clearly avoid exploring a too large part

of the search space. Finally, we have tested various extensions to (C)PSPARQL,

in particular for dealing with restricted RDFS ontologies. Our prototype is freely

available in source code, as well as all the test generators so that others can use

them to test it further.
8http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
9http://www.inrialpes.fr/exmo/people/alkhateeb/RDFgraphs/

swetoPart1-subparts/

http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
http://www.inrialpes.fr/exmo/people/alkhateeb/RDFgraphs/swetoPart1-subparts/
http://www.inrialpes.fr/exmo/people/alkhateeb/RDFgraphs/swetoPart1-subparts/

Conclusion 10
Contents

10.1 Summary . 149
10.2 Future Directions . 150

10.2.1 Using query languages for XML document generation 151

10.2.2 Processing alignment with query languages 151

10.2.3 Query Answering in distributed environments 152

10.2.4 Optimization, indexing and storage mechanisms . . . 152

10.1 Summary

This thesis addresses the problem of supporting path expressions and path extrac-

tions in semantic web knowledge bases. As we mentioned in Chapter 1, the current

query languages for the semantic web either rely on the relational algebra which

lack the possibility of expressing recursive queries or are purely path-based lan-

guages which support limited forms of path traversals mechanisms and have no

support for conjunctive queries and SQL-like functionalities.

Our study is therefore motivated by the need of developing a compromised

language that supports both querying paradigms. Though the study can be made

to other formalisms, it is applied in the context of the RDF(S) and its data model

as a directed labeled graphs presented in Chapter 2. Chapter 3 discussed the cur-

rent querying paradigms and highlighted the differences between them and our

proposal.

Our contributions consist of three main parts:

150 CHAPTER 10. CONCLUSION

– We have presented in Chapter 4 a general graph model, called PRDF, sup-

porting path expressions in RDF knowledge bases. The originality of this

model is its generality which is argued by the fact that the demonstration

framework (including semantics, algorithms as well as the completeness re-

sults) still works with any mean used to generate regular languages to be

instantiated to this model. However, as it is outlined in the thesis, the com-

plexity will depend on the path expressions used to instantiate the model.

– Since SPARQL is expected to gain popularity as the official query language

for RDF, we have made our choice to avoid reinventing a query language and

benefit from the existing standards. So, we have instantiated the PRDF graph

model to regular expressions providing a novel extension to SPARQL, called

PSPARQL in Chapter 5. We have provided its syntax, its semantics as well

as algorithms for evaluating PSPARQL queries over simple RDF graphs.

The originality of our algorithms is their soundness and completeness with

respect to RDF semantics, and the hidden reasoning algorithm (i.e., based on

a rewriting method) for querying RDF(S) graphs (including this time RDF

and RDFS vocabularies) which is a missing piece of SPARQL.

– PSPARQL was the basis for developing a new extension, called CPSPARQL,

that further allows other constructs in SPARQL such as constraints on inter-

nal nodes and edges on traversed paths. As discussed in Chapter 6, this

extension provided several advantages, among them, it adds expressivity to

(P)SPARQL and enhances the efficiency using predefined constraints that

prune on-the-fly irrelevant paths.

The implementation of our extensions together with the empirical study includ-

ing several tests given in Chapter 9 (such as the compatibility tests using SPARQL

test cases provided by the Data Access Working Group of SPARQL, practical tests

and others) shows the expressive power and the efficiency of our prototype with

respect to other languages.

10.2 Future Directions

Our future work will regard several directions discussed in the following subse-

quent sections.

10.2. FUTURE DIRECTIONS 151

10.2.1 Using query languages for XML document generation

In this direction, we aim to bridge the gap between XML and Semantic Web tech-

nologies in the context of document generation. In particular, we use SPARQL

query language for generating XML documents from queried RDF data [Alkha-

teeb and Laborie, 2008]. Additionally, SPARQL queries can be embedded in a

form of XML templates to allow constructing missed information from the query

answers. A future work in this direction consists in controlling the number of gen-

erated documents by permitting, for example, the user to interact with the system.

This way she/he can select desired answers of a query to be composed with other

query answers. Another issue concerns semantic preservation of imported tem-

plates (e.g. preserving the urirefs) as well as studying the possibility to add some

control on the importation of a template.

10.2.2 Processing alignment with query languages

Problems raised by heterogeneous ontologies can be solved by establishing corre-

spondences between entities of these ontologies and processing the resulting align-

ment for data transformation. The use of query languages as suggested in [Euzenat

et al., 2008] for data transformation would be a natural choice since they allow

data extraction and transformation. SPARQL is a good candidate for that pur-

pose, in particular, when ontologies are described in RDF(S) and OWL. However,

there are missing pieces of SPARQL like aggregate functions, value-generating

and paths. The integration of the two proposed languages, namely SPARQL++

and CPSPARQL, provides queries which are sufficient for covering expressive

alignment languages (e.g. [Euzenat et al., 2007]). For example, the following

CPSPARQL query:

CONSTRUCT { ?x o2:potentialCollaborator ?y . }

WHERE { ?x foaf:knows+ ?y.

?x o1:topic ?t.

?y o1:topic ?t.

?x rdf:type o1:researcher .

?y rdf:type o1:researcher .

}

could be used to create an ontology that contains the potentialCollaborator

relation between two researchers expressed by the fact that one researcher is po-

tentially collaborator to another one if they work on the same topic and know each

other.

152 CHAPTER 10. CONCLUSION

10.2.3 Query Answering in distributed environments

In this direction, we would like to benefit from the strong relation between con-

junctive queries and SPARQL, and from our initial work on answering conjunctive

queries in distributed environments [Alkhateeb and Zimmermann, 2007] for de-

signing a distributed query evaluation infrastructure for supporting path queries

in distributed environments. In this article, we have considered query answering

over a distributed knowledge bases system and defined the distributed answers of

a given query expressed in terms of one knowledge base or ontology (called the

target ontology) in the system. Since answers to a SPARQL query are defined by

constructing maps from GRDF graphs of the query into the knowledge base and

consider a GRDF graph as a particular case of a conjunctive query, we can use the

distributed answer definition to define answers to SPARQL queries.

10.2.4 Optimization, indexing and storage mechanisms

Firstly, we think that the task of evaluating queries involving path expressions is

heavyweight and, despite the good timing results, our prototype needs to be op-

timized for practical use to be scaled over large RDF knowledge bases. For this

direction, we will investigate several optimization techniques that can be applied

to query and/or RDF knowledge bases including but not limited to the approach of
[Diwan et al., 1996] for clustering graphs to minimize external path length.

Secondly, our current implementation to the evaluation algorithms is based on

the main memory, and we will investigate the possibility of developing an indexing

mechanism for queries involving path expressions that can be used for efficient

disk-based query evaluation.

Finally, we would also benefit from the current DBMSs to provide, for exam-

ple, an underlying storage infrastructure for our implementation.

Bibliography

[Abiteboul et al., 1997] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer

Widom, and Janet L.Wiener. The lorel query language for semistructured data.

Journal on Digital Libraries, 1(1):68–88, 1997.

[Abiteboul, 1997] Serge Abiteboul. Querying semi-structured data. In Proceeding

of the 6th International Conference on Database Theory (ICDT). Volume 1186

of LNCS., Springer-Verlag, pages 1–18, 1997.

[Agrawal, 1988] Rakesh Agrawal. Alpha: An extension of relational algebra to

express a class of recursive queries. IEEE Transactions on Software Engineer-

ing, 14(7):879–885, 1988.

[Aho and Ullman, 1979] Alfred V. Aho and Jeffrey D. Ullman. Universality of

data retrieval languages. In Proceedings of the 6th ACM SIGACT-SIGPLAN

symposium on Principles of programming languages (POPL 1979), pages 110–

119, New York, NY, USA, 1979. ACM.

[Aho et al., 1974] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The

Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (MA

US), 1974.

[Aho, 1980] Alfred V. Aho. Pattern matching in strings. In R. V. Book, editor,

Formal Language Theory: Perspectives and Open Problems, pages 325–347.

Academic Press, New York (NY US), 1980.

[Alechina et al., 2003] Natasha Alechina, Stéphane Demri, and Maarten de Rijke.

A modal perspective on path constraints. Journal of Logic and Computation,

13:1–18, 2003.

[Alkhateeb and Laborie, 2008] Faisal Alkhateeb and Sébastien Laborie. Towards

Extending and Using SPARQL for Modular Document Generation. In Proceed-

153

154 BIBLIOGRAPHY

ings of The Eight ACM Symposium on Document Engineering (DocEng2008),

16-19 Sepember, São Polo (Brésil), 2008.

[Alkhateeb and Zimmermann, 2007] Faisal Alkhateeb and Antoine Zimmermann.

Query Answering in Distributed Description Logics. In Houda Labiod and Mo-

hamad Badra, editors, New Technologies, Mobility and Security - Proceedings

of NTMS’2007 Conference, pages 523–534. Springer, may 2007.

[Alkhateeb et al., 2005] Faisal Alkhateeb, Jean-François Baget, and Jérôme Eu-

zenat. Complex path queries for RDF graphs. In Poster proceedings of the 4th

International Semantic Web Conference (ISWC’05), Galway (IE), 2005.

[Alkhateeb et al., 2007] Faisal Alkhateeb, Jean-François Baget, and Jérôme Eu-

zenat. RDF with regular expressions. Research report 6191, INRIA, Montbon-

not (FR), 2007.

[Alkhateeb et al., 2008a] Faisal Alkhateeb, Jean-François Baget, and Jérôme Eu-

zenat. Constrained regular expressions in SPARQL. In Proceedings of the 2008

International Conference on Semantic Web and Web Services (SWWS’08), to

appear, 2008.

[Alkhateeb et al., 2008b] Faisal Alkhateeb, Jean-François Baget, and Jérôme Eu-

zenat. Extending SPARQL with Regular Expression Patterns (for Querying

RDF). to appear in Journal of Web Semantics, 2008. Submitted in Novem-

ber 23, 2006.

[Alkhateeb, 2007] Faisal Alkhateeb. Une extension de RDF avec des expressions

régulières. In actes de 8e Rencontres Nationales des Jeunes Chercheurs en

Inteligence Artificielle (RJCIA), pages 1–14, July 2007.

[Amann and Scholl, 1992] Bernd Amann and Michel Scholl. Gram: A graph data

model and query language. In Proceedings of European Conference on Hyper-

text (ECHT), pages 201–211, 1992.

[Angles and Gutierrez, 2008] Renzo Angles and Claudio Gutierrez. Survey of

graph database models. ACM Computing Surveys, 40(1):1–39, 2008.

[Angles and Gutiérrez, 1995] Renzo Angles and Claudio Gutiérrez. Querying

RDF data from a graph database perspective. In Proceedings of the European

Semantic Web Conference (ESWC), pages 346–360, 1995.

BIBLIOGRAPHY 155

[Anyanwu et al., 2007] Kemafor Anyanwu, Angela Maduko, and Amit P. Sheth.

SPARQ2L: towards support for subgraph extraction queries in RDF databases.

In Proceedings of the 16th international conference on World Wide Web

(WWW’07), pages 797–806, 2007.

[Arenas et al., 2008] Marcelo Arenas, Claudio Gutierrez, and Jorge Pérez. An

extension of sparql for rdfs. In Post Proceedings of Joint SWDB and ODBIS

workshop on Semantic Web, Ontologies, Databases SWDB-ODBIS’07. LNCS,

vol. 5005, pages 1–2, Vienna, Austria, September 2008.

[Baget, 2003] Jean-François Baget. Homomorphismes d’hypergraphes pour la

subsomption en RDF. In Proceedings of the 3e journées nationales sur les

modèles de raisonnement (JNMR), Paris (France), pages 1–24, 2003.

[Baget, 2005] Jean-François Baget. RDF entailment as a graph homomorphism.

In Proceedings of the 4th International Semantic Web Conference (ISWC’05),

Galway (IE), pages 82–96, 2005.

[Balcazar et al., 1988] Jose Luis Balcazar, Josep Diaz, and Joaquim Gabarro.

Structural complexity 1. Springer-Verlag, New York (NY, USA), 1988.

[Beckett, 2004] Dave Beckett. RDF/XML syntax specification (revised). W3C

Recommendation, February 2004.

[Beckett, 2006] Dave Beckett. Turtle - terse RDF triple language. Technical re-

port, Hewlett-Packard, Bristol (UK), 2006.

[Berners-Lee et al., 2001] Tim Berners-Lee, James Hendler, and Ora Lassila.

The semantic web, 2001. http://www.sciam.com/article.cfm?

articleID=00048144-10D2-1C70-84A9809EC588EF21.

[Bray et al., 2006] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,

and François Yergeau. Extensible Markup Language (XML) 1.0. Recommen-

dation, W3C, August 2006. http://www.w3.org/TR/REC-xml/.

[Brickley and Guha, 2004] Dan Brickley and Ramanathan V. Guha. RDF vocab-

ulary description language 1.0: RDF schema. W3C recommendation, 2004.

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[Broekstra, 2003] Jeen Broekstra. SeRQL: Sesame RDF query language. In SWAP

Delivrable 3.2 Method Design, 2003.

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

156 BIBLIOGRAPHY

[Buneman et al., 1995] Peter Buneman, Susan B. Davidson, and Dan Suciu. Pro-

gramming constructs for unstructured data. In Proceedings of the 1995 Interna-

tional Workshop on Database Programming Languages, page 12, 1995.

[Buneman et al., 1996] Peter Buneman, Susan Davidson, Gerd Hillebrand, and

Dan Suciu. A query language and optimization techniques for unstructured

data. In Proceedings of the ACM SIGMOD International Conference on the

Management of Data, pages 505–516, 1996.

[Buneman, 1997] Peter Buneman. Semistructured data. In Tutorial in Proceedings

of the 16th ACM Symposium on Principles of Database Systems, pages 117–121,

1997.

[Calvanese et al., 2000a] Diego Calvanese, Giuseppe De Giacomo, Maurizio Len-

zerini, and Moshe Y. Vardi. Containment of conjunctive regular path queries

with inverse. In Proceedings of the Seventh International Conference on Prin-

ciples of Knowledge Representation and Reasoning (KR’00), pages 176–185,

2000.

[Calvanese et al., 2000b] Diego Calvanese, Giuseppe De Giacomo, Maurizio Len-

zerini, and Moshe Y. Vardi. View-based query processing for regular path

queries with inverse. In Proceedings of the Nineteenth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems (PODS 2000), pages

58–66, ACM Press, New York, 2000.

[Carroll and Klyne, 2004] Jeremy J. Carroll and Graham Klyne. RDF concepts

and abstract syntax. W3C recommendation, W3C, February 2004.

[Clark and DeRose, 1999] James Clark and Steve DeRose. XML Path Lan-

guage (XPath). W3C Recommendation, 1999. http://www.w3.org/TR/

xpath.

[Clark, 1978] Keith L. Clark. Negation as failure. In Logic and Data Bases (actes

symposium on logic and databases, Toulouse (FR), 1977, Hervé Galaire, Jack

Minker (éds.)), pages 293–322, Plenum Press, New York, 1978.

[Codd, 1970] Edgar F. Codd. A relational model of data for large shared data

banks. Communications of the ACM, 13(6):377–387, 1970.

[Codd, 1983] Edgar F. Codd. A relational model of data for large shared data

banks. 26(1):64–69, 1983.

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

BIBLIOGRAPHY 157

[Consens and Mendelzon, 1990] Mariano P. Consens and Alberto O. Mendelzon.

Graphlog: a visual formalism for real life recursion. In Proceedings of the 9th

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems, pages 404–416, 1990.

[Corby and Faron-Zucker, 2007a] Olivier Corby and Catherine Faron-Zucker. Im-

plementation of SPARQL Query Language Based on Graph Homomorphism.

In Proceedings of the 15th International Conference on Conceptual Structure

(ICCS’07), pages 472–475, Sheffield, UK, 2007.

[Corby and Faron-Zucker, 2007b] Olivier Corby and Catherine Faron-Zucker.

RDF/SPARQL design pattern for contextual metadata. In Proceedings of the

IEEE/WIC/ACM International Conference on Web Intelligence (WI’07), pages

470–473, Washington, DC, USA, 2007.

[Corby et al., 2000] Olivier Corby, Rose Dieng, and Cédric Hébert. A conceptual

graph model for W3C resource description framework. In Proceedings of the

International Conference on Conceptual Structures, pages 468–482, 2000.

[Corby et al., 2004] Olivier Corby, Rose Dieng-Kuntz, and Catherine Faron-

Zucker. Querying the Semantic web with Corese Search Engine. In Proceed-

ings of the 16th European Conference on Artificial Intelligence (ECAI’2004),

sub-conference (PAIS’2004), Valencia (Spain), pages 705–709, 2004.

[Cruz et al., 1987] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A

graphical query language supporting recursion. In Proceedings of the 1987 ACM

SIGMOD International Conference on Management of Data, pages 323–330,

New York, NY, USA, 1987.

[Cruz et al., 1988] Isabel. F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. G+:

Recursive queries without recursion. In Proceedings of Second International

Conference on Expert Database Systems, pages 355–368, 1988.

[Cyganiak, 2005] Richard Cyganiak. A relational algebra for SPARQL. Techni-

cal Report HPL-2005-170, HP Labs, 2005. http://www.hpl.hp.com/

techreports/2005/HPL-2005-170.html.

[de Bruijn et al., 2005] Jos de Bruijn, Enrico Franconi, and Sergio Tessaris. Log-

ical reconstruction of normative RDF. In International Workshop on OWL:

Experiences and Directions (OWLED 2005), Galway, Ireland, 2005.

http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html
http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html

158 BIBLIOGRAPHY

[de Moor and David, 2003] O. de Moor and E. David. Universal regular path

queries. Higher-Order and Symbolic Computation, 16(1-2):15–35, 2003.

[Diwan et al., 1996] Ajit A. Diwan, Sanjeeva Rane, Sridhar Seshadri, and S. Su-

darshan. Clustering techniques for minimizing external path length. In Pro-

ceedings of the 22th International Conference on Very Large Databases VLDB,

pages 342–353, 1996.

[Euzenat and Shvaiko, 2007] Jérôme Euzenat and Pavel Shvaiko. Ontology

matching. Springer-Verlag, Heidelberg (DE), 2007.

[Euzenat et al., 2007] Jérôme Euzenat, François Scharffe, and Antoine Zimmer-

mann. Expressive alignment language and implementation. Knowledge Web

Network of Excellence. project Deliverable d2.2.10, 2007.

[Euzenat et al., 2008] Jérôme Euzenat, Axel Polleres, and François Scharffe. Pro-

cessing ontology alignments with SPARQL. In Proceedings of the International

Workshop on Ontology Alignment and Visualization OnAV’08, 2008. To appear.

[Fernandez et al., 1997] Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, and

Dan Suciu. A Query Language for a Web-Site Management System. ACM

SIGMOD Record, 26(3):4–11, 1997.

[Florescu et al., 1998] Daniela Florescu, Alon Levy, and Dan Suciu. Query con-

tainment for conjunctive queries with regular expressions. In Proceedings of

the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of

database systems (PODS ’98), pages 139–148, New York, NY, USA, 1998.

[Franconi and Tessaris, 2005] Enrico Franconi and Sergio Tessaris. The seman-

tics of SPARQL. W3C working draft, November 2005. http://www.inf.

unibz.it/krdb/w3c/sparql/.

[Genevès et al., 2007] Pierre Genevès, Nabil Layaïda, and Alan Schmitt. Efficient

static analysis of XML paths and types. In Proceedings of PLDI’07, pages 342–

351, 2007.

[Golomb and Baumert, 1965] Solomon W. Golomb and Leonard D. Baumert.

Backtrack programming. Journal of the ACM, 12(5):516–524, 1965.

[Gottlob et al., 1999] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A

comparison of structural CSP decomposition methods. In Proceedings of the

http://www.inf.unibz.it/krdb/w3c/sparql/
http://www.inf.unibz.it/krdb/w3c/sparql/

BIBLIOGRAPHY 159

Sixteenth International Joint Conference on Artificial Intelligence (IJCAI’99),

pages 394–399, 1999.

[Grahne and Thomo, 2003] Gösta Grahne and Alex Thomo. Query containment

and rewriting using views for regular path queries under constraints. In Pro-

ceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems (PODS 2003), pages 111–122, New York, NY,

USA, 2003. ACM.

[Gting, 1994] Ralf Hartmut Gting. GraphDB: Modeling and querying graphs in

databases. In Proceedings of 20th International Conference on Very Large

Databases, pages 297–308, 1994.

[Guo et al., 2005] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A

benchmark for OWL knowledge base systems. Journal of Web Semantics,

3(2):158–182, 2005.

[Gutierrez et al., 2004] Claudio Gutierrez, Carlos Hurtado, and Alberto O. Men-

delzon. Foundations of semantic web databases. In ACM Symposium on Prin-

ciples of Database Systems (PODS), pages 95–106, 2004.

[Gyssens et al., 1990] Marc Gyssens, Jan Paredaens, and Dirk Van Gucht. A

graph-oriented object model for database end-user interfaces. SIGMOD Record,

19(2):24–33, 1990.

[Haase et al., 2004] Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael

Volz. A comparison of RDF query languages. In Proceedings 3rd International

Semantic Web Conference, pages 502–517, Hiroshima (JP), 2004.

[Harris and Shadbolt, 2005] Stephen Harris and Nigel Shadbolt. SPARQL query

processing with conventional relational database systems. In Web Information

Systems Engineering (WISE’05 Workshops), pages 235–244, 2005.

[Hayes and Gutierrez, 1996] Jonathan Hayes and Claudio Gutierrez. Bipartite

graphs as intermediate model for RDF. In Proceedings of the 3th International

Semantic Web Conference (ISWC), pages 47Ű–61, 1996.

[Hayes, 2004] Patrick Hayes. RDF semantics. W3C Recommendation, February

2004.

160 BIBLIOGRAPHY

[Horst, 2004] Herman J. ter Horst. Extending the RDFS entailment lemma. In

Proceedings of the Third International Semantic web Conference (ISWC2004),

pages 77–91, 2004.

[Horst, 2005] Herman J. ter Horst. Completeness, decidability and complexity

of entailment for RDF schema and a semantic extension involving the OWL

vocabulary. Journal of Web Semantics, 3(2):79–115, 2005.

[Jagadish, 1989] H. V. Jagadish. Incorporating hierarchy in a relational model of

data. In Proceedings of the 1989 ACM SIGMOD International Conference on

Management of Data, Portland, Oregon, May 31 - June 2, 1989, pages 78–87.

ACM Press, 1989.

[Karvounarakis et al., 2002] Gregory Karvounarakis, Sofia Alexaki, Vassilis Chri-

stophides, Dimitris Plexousakis, and Michel Scholl. RQL: A declarative query

language for RDF. In Proceedings of the 11th International Conference on the

World Wide Web (WWW2002), 2002.

[Kerschberg et al., 1976] Larry Kerschberg, Anthony C. Klug, and Dennis

Tsichritzis. A taxonomy of data models. In Proceedings of Systems for Large

Data Bases, pages 43–64. North Holland & IFIP, 1976.

[Kiefer et al., 2007] Christoph Kiefer, Abraham Bernstein, Hong Joo Lee, Mark

Klein, and Markus Stocker. Semantic process retrieval with iSPARQL. In Pro-

ceedings of the 4th European Semantic Web Conference (ESWC ’07). Springer,

2007.

[Kiesel et al., 1996] Norbert Kiesel, Andy Schurr, and Bernhard Westfechtel.

GRAS: A graph-oriented software engineering database system. In IPSEN

Book, pages 397–425, 1996.

[Kim, 1990] Won Kim. Object-oriented databases: Definition and research direc-

tions. IEEE Transactions on Knowledge and Data Engineering, 02(3):327–341,

1990.

[Kochut and Janik, 2007] Krys Kochut and Maciej Janik. SPARQLeR: Extended

SPARQL for semantic association discovery. In Proceedings of 4th European

Semantic Web Conferenc (ESWC’07), pages 145–159, 2007.

BIBLIOGRAPHY 161

[Kunii, 1987] H. S. Kunii. DBMS with graph data model for knowledge handling.

In Proceedings of the 1987 Fall Joint Computer Conference on Exploring tech-

nology: today and tomorrow, pages 138–142, Los Alamitos, CA, USA, 1987.

IEEE Computer Society Press.

[Kuper and Vardi, 1993] Gabriel M. Kuper and Moshe Y. Vardi. The logical data

model. ACM Transactions on Database Systems, 18(3):379–413, 1993.

[Lassila, 2002] Ora Lassila. Taking the RDF model theory out for a spin. In Pro-

ceedings of the First International Semantic Web Conference on The Semantic

Web (ISWC 2002), pages 307–317, London, UK, 2002. Springer-Verlag.

[Lécluse et al., 1988] Christophe Lécluse, Philippe Richard, and Fernando Vélez.

O2, an object-oriented data model. ACM SIGMOD Recor, 17(3):424–433, 1988.

[Liu et al., 2004] Yanhong A. Liu, Tom Rothamel, Fuxiang Yu, Scott Stoller, and

Nanjun Hu. Parametric regular path queries. In Proceedings of the ACM SIG-

PLAN 2004 Conference on Programming Language Design and Implementa-

tion, pages 219–230, 2004.

[Manola and Miller, 2004] Frank Manola and Eric Miller. RDF primer. W3C

recommendation, 2004. http://www.w3.org/TR/REC-rdf-syntax/.

[Matono et al., 2005] Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi Yosh-

ikawa, and Shunsuke Uemura. A path-based relational rdf database. In Proceed-

ings of the 16th Australasian database conference (ADC’05), pages 95–103,

Darlinghurst, Australia, Australia, 2005. Australian Computer Society, Inc.

[McGuinness and van Harmelen, 2004] Deborah L. McGuinness and Frank van

Harmelen. OWL Web Ontology Language Overview. W3C recommendation,

2004. http://www.w3.org/TR/owl-features/.

[Mendelzon and Wood, 1995] Alberto O. Mendelzon and Peter T. Wood. Find-

ing regular simple paths in graph databases. SIAM Journal on Computing,

24(6):1235–1258, 1995.

[Mendelzon et al., 1997] Alberto O. Mendelzon, George A. Mihaila, and Tova

Milo. Querying the world wide web. Int. J. on Digital Libraries, 1(1):54–67,

1997. citeseer.ist.psu.edu/mendelzon97querying.html.

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/owl-features/
citeseer.ist.psu.edu/mendelzon97querying.html

162 BIBLIOGRAPHY

[Miller et al., 2004] Eric Miller, Ralph Swick, and Dan Brickley. Resource de-

scription framework RDF. Recommendation, W3C, 2004.

[Mugnier and Chein, 1992] Marie-Laure Mugnier and Michel Chein. Conceptual

graphs: Fundamental notions. Revue d’intelligence artificielle, 6(4):365–406,

1992.

[Muñoz et al., 2007] Sergio Muñoz, Jorge Pérez, and Claudio Gutierrez. Min-

imal deductive systems for rdf. In Proceedings of the 4th European Se-

mantic Web Conference(ESWC 2007), pages 53–67, 2007. http://www.

springerlink.com/content/g8w64n1264874118/.

[Olson and Ogbuji, 2002] Mike Olson and Uche Ogbuji. Versa: Path-based RDF

query language, 2002. http://copia.ogbuji.net/files/Versa.

html.

[Papakonstantinou and Vassalos, 1999] Yannis Papakonstantinou and Vasilis Vas-

salos. Query rewriting for semistructured data. In Proceedings of the 1999 ACM

SIGMOD international conference on Management of data (SIGMOD 1999),

pages 455–466, ACM Press, New York, NY, USA, 1999. citeseer.ist.

psu.edu/article/papakonstantinou99query.html.

[Papakonstantinou et al., 1995] Yannis Papakonstantinou, Hector Garcia-Molina,

and Jennifer Widom. Object exchange across heterogeneous information

sources. In P. S. Yu and A. L. P. Chen, editors, Proceedings of 11th Conference

on Data Engineering, pages 251–260, Taipei, Taiwan, 1995. IEEE Computer

Society.

[Perez et al., 2006] Jorge Perez, Marcelo Arenas, and Claudio Gutierrez. Seman-

tics and complexity of SPARQL. In Proceedings of the 5th International Se-

mantic Web Conference, pages 30–43, Athens (GA US), 2006.

[Polleres et al., 2007] Axel Polleres, François Scharffe, and Roman Schindlauer.

SPARQL++ for mapping between RDF vocabularies. In Proceedings of OTM

Conferences, pages 878–896, 2007.

[Polleres, 2007] Axel Polleres. From SPARQL to rules (and back). In Proceedings

of the 16th World Wide Web Conference (WWW), pages 787–796, 2007.

[Prud’hommeaux and Seaborne, 2008] Eric Prud’hommeaux and Andy Seaborne.

SPARQL query language for RDF. W3C Recommendation, January 2008.

http://www.springerlink.com/content/g8w64n1264874118/
http://www.springerlink.com/content/g8w64n1264874118/
http://copia.ogbuji.net/files/Versa.html
http://copia.ogbuji.net/files/Versa.html
citeseer.ist.psu.edu/article/papakonstantinou99query.html
citeseer.ist.psu.edu/article/papakonstantinou99query.html

BIBLIOGRAPHY 163

[Resnik, 1995] Philipp Resnik. Using information content to evaluate semantic

similarity in a taxonomy. In Proceedings of 14th International Joint Conference

on Artificial Intelligence (IJCAI), pages 448–453, Montréal (CA), 1995.

[Seaborne, 2004] Andy Seaborne. RDQL - a query language for RDF. Member

submission, W3C, 2004.

[Serfiotis et al., 2005] Giorgos Serfiotis, Ioanna Koffina1, Vassilis Christophides,

and Val Tannen. Containment and Minimization of RDF/S Query Patterns. In

Proceedings of the 4th International Semantic Web Conference. Lecture Notes

in Computer Science, Springer (2005), pages 607–623, 2005.

[Shipman, 1981] David W. Shipman. The functional data model and the data lan-

guages DAPLEX. ACM Transactions on Database Systems (TODS), 6(1):140–

173, 1981.

[Sirin and Parsia, 2007] Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL

query for OWL-DL. In Proceedings of the 3rd OWL Experiences and Directions

Workshop (OWLED 2007), 2007.

[Souzis, 2004] Adam Souzis. RxPath specification proposal, 2004. http://

rx4rdf.liminalzone.org/RxPathSpec.

[Tarjan, 1981] Robert Endre Tarjan. Fast algorithms for solving path problems.

Journal of (ACM), 28(3):594–614, 1981.

[Theoharis et al., 2008] Yannis Theoharis, Yannis Tzitzikas, Dimitris Kotzinos,

and Vassilis Christophides. On graph features of semantic web schemas. IEEE

Transactions on Knowledge and Data Engineering, 20(5):692–702, 2008.

[Vardi, 1982] Moshe Y. Vardi. The complexity of relational query languages (ex-

tended abstract). In Proceedings of the fourteenth annual ACM symposium on

Theory of computing STOC’82, pages 137–146, 1982.

[Wood, 1988] Peter T. Wood. Queries on Graphs. PhD thesis, Department of

Computer Science, University of Toronto, 1988.

[Yannakakis, 1990] Mihalis Yannakakis. Graph-theoretic methods in database

theory. In Proceedings of the 9th ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, pages 230–242, 1990.

http://rx4rdf.liminalzone.org/RxPathSpec
http://rx4rdf.liminalzone.org/RxPathSpec

164 BIBLIOGRAPHY

[Zhang and Yoshikawa, 2008] Xinpeng Zhang and Masatoshi Yoshikawa. DCB-

DQueryŰQuery Language for RDF using Dynamic Concise Bounded Descrip-

tion. In Proceedings of the Data Engineering Workshop (DEWS2008), to ap-

pear, 2008.

Part III

Appendices

165

CPSPARQL Grammar

A
The grammar of CPSPARQL, which is an extension to SPARQL grammar, is given

in EBNF specification in the following table.

[1] Query ::= Prolog (SelectQuery

| ConstructQuery

| DescribeQuery

| AskQuery)

[2] Prolog ::= BaseDecl? PrefixDecl*
[3] BaseDecl ::= ’BASE’ Q_IRI_REF

[4] PrefixDecl ::= ’PREFIX’ QNAME_NS Q_IRI_REF

[5] SelectQuery ::= ’SELECT’ ’DISTINCT’? (Var+

| ’*’) DatasetClause*
WhereClause SolutionModifier

[6] ConstructQuery ::= ’CONSTRUCT’ ConstructTemplate

DatasetClause* WhereClause

SolutionModifier

[7] DescribeQuery ::= ’DESCRIBE’ (VarOrIRIref+

| ’*’) DatasetClause*
WhereClause? SolutionModifier

[8] AskQuery ::= ’ASK’ DatasetClause* WhereClause

[9] DatasetClause ::= ’FROM’ (DefaultGraphClause

| NamedGraphClause)

[10] DefaultGraphClause ::= SourceSelector

[11] NamedGraphClause ::= ’NAMED’ SourceSelector

[12] SourceSelector ::= IRIref

[13] WhereClause ::= ’WHERE’? GroupGraphPattern

[14] SolutionModifier ::= OrderClause? LimitClause?

OffsetClause?

[15] OrderClause ::= ’ORDER’ ’BY’ OrderCondition+

[16] OrderCondition ::= ((’ASC’ | ’DESC’)

BrackettedExpression)

| (FunctionCall | Var

168 APPENDIX A. CPSPARQL GRAMMAR

| BrackettedExpression)

[17] LimitClause ::= ’LIMIT’ INTEGER

[18] OffsetClause ::= ’OFFSET’ INTEGER

[19] GroupGraphPattern ::= ’{’ GraphPattern ’}’

[20] GraphPattern ::= FilteredBasicGraphPattern

(GraphPatternNotTriples ’.’?

GraphPattern)?

[21’] FilteredBasicGraphPattern ::= PathConstraint? BlockOfTriples?

(Constraint ’.’?

FilteredBasicGraphPattern)?

[22] BlockOfTriples ::= PathTriplesSameSubject (’.’

PathTriplesSameSubject?)*
[23’] GraphPatternNotTriples ::= OptionalGraphPattern

| GroupOrUnionGraphPattern

| GraphGraphPattern

| DefinedPathVar

[24] OptionalGraphPattern ::= ’OPTIONAL’ GroupGraphPattern

[25] GraphGraphPattern ::= ’GRAPH’ VarOrBlankNodeOrIRIref

GroupGraphPattern

[26] GroupOrUnionGraphPattern ::= GroupGraphPattern (’UNION’

GroupGraphPattern)*
[26.1] DefinedPathVar ::= ’DEFINED’ ’BY’ PathVar

VarOrTerm PathVerb VarOrTerm

[26.2] PathVar ::= VAR3

[27] Constraint ::= ’FILTER’ (BrackettedExpression

| BuiltInCall | FunctionCall)

[27.1] PathConstraint ::= ’CONSTRAINT’ ConstraintName

RegularExpressionConstraint

[27.2] ConstraintName ::= NCNAME | NCNAME_PREFIX

[28] FunctionCall ::= IRIref ArgList

[29] ArgList ::= (NIL | ’(’ Expression (’,’

Expression)* ’)’)

[30] ConstructTemplate ::= ’{’ ConstructTriples ’}’

[31] ConstructTriples ::= (TriplesSameSubject (’.’

ConstructTriples)?)?

[32] TriplesSameSubject ::= VarOrTerm PropertyListNotEmpty

| TriplesNode PropertyList

[32.1] PathTriplesSameSubject ::= VarOrTerm

PathPropertyListNotEmpty

| PathTriplesNode

PathPropertyList

[33] PropertyList ::= PropertyListNotEmpty?

[33.1] PathPropertyList ::= PathPropertyListNotEmpty?

[34] PropertyListNotEmpty ::= Verb ObjectList (’;’

PropertyList)?

[34.1] PathPropertyListNotEmpty ::= PathVerb PathObjectList (’;’

PathPropertyList)?

[35] ObjectList ::= GraphNode (’,’ ObjectList)?

[35.1] PathObjectList ::= PathGraphNode (’,’

PathObjectList)?

169

[36] Verb ::= VarOrIRIref | ’a’

[36.1] PathVerb ::= RegularExpression |

ConstrainedRegularExpression

| PathVar

[37] TriplesNode ::= Collection |

BlankNodePropertyList

[37.1] PathTriplesNode ::= PathCollection |

PathBlankNodePropertyList

[38] BlankNodePropertyList ::= ’[’ PropertyListNotEmpty ’]’

[38.1] PathBlankNodePropertyList ::= ’[’ PathPropertyListNotEmpty ’]’

[39] Collection ::= ’(’ GraphNode+ ’)’

[39.1] PathCollection ::= ’(’ PathGraphNode+ ’)’

[40] GraphNode ::= VarOrTerm | TriplesNode

[40.1] PathGraphNode ::= VarOrTerm | PathTriplesNode

[41] VarOrTerm ::= Var | GraphTerm

[42] VarOrIRIref ::= Var | IRIref

[41.1] RegularExpression ::= Rexp ((’|’ | ’.’) Rexp)*
[41.2] ConstrainedRegularExpression ::= ’{’ Rexp ((’|’ | ’.’) Rexp)*

’}’ ’%’ ((’SUM’ | ’AVG’ |

’COUNT’) ’(’ Var (’,’

NumericLiteral)? ’)’)?

ConstraintName |

RegularExpressionConstraint |

’DISTINCT’ | ’LENGTH’

NumericLiteral ’%’ Rexp

[41.3] RegularExpressionConstraint ::= (’[’ | ’]’) (’ALL’ | ’EXISTS’

’EDGE’ | ’INTEGER’| ’ODD’ |

’EVEN’) Var (’[’ | ’]’) ’:’

GraphPattern

[41.4] Rexp ::= (’+’ | ’*’)? Atom

[41.5] Atom ::= ’!’IRIref | ’#’ | ’a’ |

’#’ EdgeConstraint | VarOrIRIref

| ’(’ RegularExpression |

ConstrainedRegularExpression

’)’

[41.6] EdgeConstraint ::= ’[’ ’EDGE’ Var ’]’ ’:’

GraphPattern

[43] VarOrBlankNodeOrIRIref ::= Var | BlankNode | IRIref

[44] Var ::= VAR1 | VAR2

[45] GraphTerm ::= IRIref | RDFLiteral | (’-’ |

’+’)? NumericLiteral |

BooleanLiteral | BlankNode |

NIL

[46] Expression ::= ConditionalOrExpression

[47] ConditionalOrExpression ::= ConditionalAndExpression (’||’

ConditionalAndExpression)*
[48] ConditionalAndExpression ::= ValueLogical (’&&’

ValueLogical)*
[49] ValueLogical ::= RelationalExpression

[50] RelationalExpression ::= NumericExpression

170 APPENDIX A. CPSPARQL GRAMMAR

(’=’ NumericExpression

| ’!=’ NumericExpression

| ’<’ NumericExpression

| ’>’ NumericExpression

| ’<=’ NumericExpression

| ’>=’ NumericExpression)?

[51] NumericExpression ::= AdditiveExpression

[52] AdditiveExpression ::= MultiplicativeExpression (’+’

MultiplicativeExpression | ’-’

MultiplicativeExpression)*
[53] MultiplicativeExpression ::= UnaryExpression

(’*’ UnaryExpression

| ’/’ UnaryExpression)*
[54] UnaryExpression ::= ’!’ PrimaryExpression

| ’+’ PrimaryExpression

| ’-’ PrimaryExpression

| PrimaryExpression

[55] PrimaryExpression ::= BrackettedExpression

| BuiltInCall

| IRIrefOrFunction | RDFLiteral

| NumericLiteral

| BooleanLiteral | BlankNode

| Var

[56] BrackettedExpression ::= ’(’ Expression ’)’

[57’] BuiltInCall ::= ’STR’ ’(’ Expression ’)’

| ’LANG’ ’(’ Expression ’)’

| ’LANGMATCHES’ ’(’ Expression

’,’ Expression ’)’

| ’DATATYPE’ ’(’ Expression ’)’

| ’BOUND’ ’(’ Var ’)’

| ’isIRI’ ’(’ Expression ’)’

| ’isURI’ ’(’ Expression ’)’

| ’isBLANK’ ’(’ Expression ’)’

| ’isLITERAL’ ’(’ Expression

’)’

| ’SUM’ ’(’ Var ’)’ | ’AVG’ ’(’

Var ’)’ | ’COUNT’ ’(’ Var ’)’

| RegexExpression

[58] RegexExpression ::= ’REGEX’ ’(’ Expression ’,’

Expression (’,’ Expression)?

’)’

[59] IRIrefOrFunction ::= IRIref ArgList?

[60] RDFLiteral ::= String (LANGTAG | (’^^’

IRIref))?

[61] NumericLiteral ::= INTEGER | DECIMAL | DOUBLE

[62] BooleanLiteral ::= ’true’ | ’false’

[63] String ::= STRING_LITERAL1

| STRING_LITERAL2

| STRING_LITERAL_LONG1

| STRING_LITERAL_LONG2

171

[64] IRIref ::= Q_IRI_REF | QName

[65] QName ::= QNAME | QNAME_NS

[66] BlankNode ::= BLANK_NODE_LABEL | ANON

[67] Q_IRI_REF ::= ’<’ ([^<>’{}|^‘]-[#x00-#x20])*
’>’

[68] QNAME_NS ::= NCNAME_PREFIX? ’:’

[69] QNAME ::= NCNAME_PREFIX? ’:’ NCNAME?

[70] BLANK_NODE_LABEL ::= ’_:’ NCNAME

[71] VAR1 ::= ’?’ VARNAME

[71.1] VAR3 ::= ’??’ VARNAME

[72] VAR2 ::= ’$’ VARNAME

[73] LANGTAG ::= ’@’ [a-zA-Z]+ (’-’ [a-zA-Z0-9]+

)*
[74] INTEGER ::= [0-9]+

[75] DECIMAL ::= [0-9]+ ’.’ [0-9]* | ’.’ [0-9]+

[76] DOUBLE ::= [0-9]+ ’.’ [0-9]* EXPONENT | ’.’

([0-9])+ EXPONENT | ([0-9])+

EXPONENT

[77] EXPONENT ::= [eE] [+-]? [0-9]+

[78] STRING_LITERAL1 ::= "’" (([^#x27#x5C#xA#xD])

| ECHAR | UCHAR)* "’"

[79] STRING_LITERAL2 ::= ’"’ (([^#x22#x5C#xA#xD])

| ECHAR | UCHAR)* ’"’

[80] STRING_LITERAL_LONG1 ::= "’’’" (("’" | "’’")? ([^’\]

| ECHAR | UCHAR))* "’’’"

[81] STRING_LITERAL_LONG2 ::= ’"""’ ((’"’ | ’""’)? ([^"\]

| ECHAR | UCHAR))* ’"""’

[82] ECHAR ::= ’\’ [tbnrf\"’]

[83] UCHAR ::= ’\’ (’u’ HEX HEX HEX HEX |

’U’ HEX HEX HEX HEX HEX HEX HEX

HEX)

[84] HEX ::= [0-9] | [A-F] | [a-f]

[85] NIL ::= ’(’ WS* ’)’

[86] WS ::= #x20 | #x9 | #xD | #xA

[87] ANON ::= ’[’ WS* ’]’

[88] NCCHAR1p ::= [A-Z]

| [a-z]

| [#x00C0-#x00D6]

| [#x00D8-#x00F6]

| [#x00F8-#x02FF]

| [#x0370-#x037D]

| [#x037F-#x1FFF]

| [#x200C-#x200D]

| [#x2070-#x218F]

| [#x2C00-#x2FEF]

| [#x3001-#xD7FF]

| [#xF900-#xFDCF]

| [#xFDF0-#xFFFD]

| [#x10000-#xEFFFF]

| UCHAR

172 APPENDIX A. CPSPARQL GRAMMAR

[89] NCCHAR1 ::= NCCHAR1p | ’_’

[90] VARNAME ::= (NCCHAR1 | [0-9]) (NCCHAR1

| [0-9] | #x00B7

| [#x0300-#x036F]

| [#x203F-#x2040])*
[91] NCCHAR ::= NCCHAR1 | ’-’ | [0-9]

| #x00B7 | [#x0300-#x036F]

| [#x203F-#x2040]

[92] NCNAME_PREFIX ::= NCCHAR1p ((NCCHAR |’.’)*
NCCHAR)?

[93] NCNAME ::= NCCHAR1 ((NCCHAR |’.’)*
NCCHAR)?

Résumé étendu

B
Contents

B.1 Motivations et objectifs . 174

B.2 Résumé des contributions 176

B.3 Organisation de la thèse . 178

B.4 Conclusions . 180

B.4.1 Contributions . 180

B.4.2 Comparaison avec les autres langages 181

B.4.3 Perspectives . 183

Le world wide web (ou tout simplement le web) est devenu la première source

de connaissances pour tous les domaines de la vie. On peut le considérer comme

un vaste système d’information qui permet d’échanger des ressources tels que des

documents. Le web sémantique est une extension de l’évolution du web visant à

donner une forme bien définie et une sémantique aux ressources du web (par ex-

emple, le contenu d’une page web HTML) [Berners-Lee et al., 2001]. Répondre

aux requêtes est une fonctionnalité essentielle d’un système d’information, et ainsi

du Web Sémantique. Cette thèse étudie les mécanismes actuels de requêtes pour le

Web sémantique et le problème de support des chemins dans les bases de connais-

sances. La motivation de ce travail provient de limitations des langages de requêtes

actuels pour supporter et extraire les chemins dans les requêtes.

174 APPENDIX B. RÉSUMÉ ÉTENDU

ex:Switzerland ex:Genève ex:CanaryIslands

ex:Zürich ex:SantaCruz

ex:Italy ex:Roma ex:Madrid ex:Spain

ex:cityIn
ex:cityIn ex:train ex:plane

ex:plane

ex:plane
ex:capitalOf

ex:cityIn

ex:capitalOf

ex:cityInex:plane

ex:cityIn

Figure B.1: Un graphe RDF.

B.1 Motivations et objectifs

RDF (Resource Description Framework) est un langage de représentation de con-

naissances dédié à l’annotation de documents et plus généralement de ressources

dans le cadre du Web Sémantique [Miller et al., 2004]. Syntaxiquement, un docu-

ment RDF peut être représenté indifféremment par un ensemble de triplets (sujet,

prédicat, objet), par un document XML, ou par un graphe étiqueté (d’où son nom

de graphe RDF). Un graphe RDF est doté d’une sémantique en théorie des modèles
[Hayes, 2004], ce qui permet de définir formellement la notion de conséquence sé-

mantique entre graphes RDF, c’est-à-dire, qu’un graphe RDF est une conséquence

sémantique d’un autre.

Exemple B.1.1 Le graphe RDF de la figure B.1, par exemple, se compose d’un

ensemble d’arcs reliant des villes avec des moyens de transport tels que chaque

arc ou triplet de la forme (C1, t, C2) indique qu’il existe un moyen de transport de

la ville C1 à la ville C2 (ou C2 est directement accessible à partir de C1 par t).

Aujourd’hui, beaucoup de ressources sont annotées par RDF dû à la simplic-

ité de son modèle de données, la sémantique formelle, et l’existence d’un mé-

canisme d’inférence correct et complet. Bien que RDF ait été initialement conçu

comme un langage de représentation des connaissances, il peut être utilisé pour

les requêtes RDF. Ainsi, la syntaxe de RDF sert uniformément à représenter des

connaissances et à exprimer des requêtes: "Q est une conséquence sémantique

de G" peut s’exprimer par "G contient une réponse à la requête Q". Un homo-

morphisme de graphe permet de calculer cette conséquence de façon correcte et

complète [Gutierrez et al., 2004; Baget, 2005]. Plus précisément, la réponse à une

requête Q est basée sur le calcul de l’ensemble des homomorphismes possibles de

Q dans le graphe RDF représentant la base de connaissances.

B.1. MOTIVATIONS ET OBJECTIFS 175

ex:Roma ?City ?Country
?Mean ex:cityIn

Figure B.2: Un patron de graphe de SPARQL.

La nécessité d’ajouter plus l’expressivité dans les requêtes a conduit à définir

SPARQL [Prud’hommeaux and Seaborne, 2008], une recommandation du W3C

développée pour interroger une base de connaissances RDF (cf. [Haase et al.,

2004] pour une comparaison des langages de requête pour RDF). Les requêtes

SPARQL sont définies à partir des patron des graphes (graph patterns) qui sont

fondamentalement des graphes RDF (ou plus précisément, des graphes RDF avec

des variables tels que définis dans [Horst, 2004]). Les affectations (maps) qui sont

utilisées pour calculer les réponses à une requête dans une base de connaissances

RDF sont exploitées par [Perez et al., 2006] pour définir des réponses aux requêtes

SPARQL plus complexes et plus expressives en utilisant, par exemple, les disjonc-

tions ou des contraintes fonctionnelles entre les littéraux de la réponse.

Exemple B.1.2 Un patron de graphe de SPARQL permet de faire une correspon-

dre entre une requête et un graphe RDF. La figure B.2 présente un tel patron. Il

peut être utilisé pour trouver les noms des villes et des pays connectés à Roma. Si

ce patron est utilisé dans une requête SPARQL contre le graphe G de la figure B.1,

il retournera "Madrid" avec son pays "Espagne" et le moyen de transport "plane",

et "Zürich" avec son pays "Suisse" et le moyen de transport "plane".

Néanmoins, la plupart des langages de requêtes qui sont basées sur la séman-

tique de RDF, comme SPARQL, n’ont pas la capacité d’exprimer et d’extraire des

chemins, ce qui est nécessaire pour de nombreuses applications. Par exemple, si

l’on veut vérifier s’il existe un itinéraire d’une ville à l’autre (voir Exemple B.1.3).

Une autre approche, employée avec succès dans les bases de données [Cruz et

al., 1987; Cruz et al., 1988; de Moor and David, 2003; Liu et al., 2004; Abiteboul

et al., 1997; Buneman et al., 1996], mais peu dans le domaine du Web Sémantique,

utilise également la structure du graphe RDF, mais ne repose pas sur la sémantique

du langage. Dans cette approche, les requêtes sont des expressions régulières, et

une réponse est une paire de sommets reliés par au moins un chemin du graphe dont

la concaténation des étiquettes des arcs forme un mot qui appartient au langage

engendré par l’expression régulière.

176 APPENDIX B. RÉSUMÉ ÉTENDU

ex:Roma ?City ?Country
(ex:train|ex:plane)+ ex:cityIn

Figure B.3: Un patron de graphe avec des expressions régulières.

Exemple B.1.3 Considérons un graphe RDF représentant un réseaux de moyens

de transport, comme par exemple le graphe G de la figure B.1. L’expression

régulière (ex:train | ex:plane)+, quand elle sera utilisée comme une requête,

cherche les paires de sommets connectés par une séquence de trains et d’avions. Si

elle est appliquée au sommet ex:Roma deG, elle engendre les chemins menant aux

sommets ex:Madrid, ex:SantaCruz, ex:Zürich et ex:Genève. Cette requête,

car elle représente des chemins de longueur inconnue, ne peut être exprimée en

SPARQL. D’autre part, le graphe de la figure B.2, qui représente un patron de

graphe d’une requête SPARQL, ne peut être exprimé par une simple expression

régulière.

Ces deux approches sont orthogonales, certaines requêtes qui peuvent être ex-

primées dans une approche ne peut pas être exprimées dans l’autre. La figure B.2

montre une requête dont l’image homomorphique dans la base de données n’est

pas un chemin et ne peut donc pas être exprimée par une expression régulière,

alors que la sémantique RDF ne permet pas d’exprimer des chemins de longueur

indéterminée.

Afin de surmonter cette limitation, nous avons développé une approche qui

combine les avantages des deux approches. Cette approche combinée, dans laque-

lle les arcs du graphe peuvent être étiquetés par d’expressions régulières, peut être

utilisée pour supporter les chemins (voir la figure B.3).

B.2 Résumé des contributions

Afin de définir formellement ce langage, nous avons d’abord introduit PRDF (pour

Path RDF) comme une extension de RDF dans laquelle les arcs peuvent être éti-

quetés par des expressions régulières [Alkhateeb et al., 2005; Alkhateeb et al.,

2007]. Parce que nous voulons fonder la définition de notre langage sur la séman-

tique de RDF en laissant la porte ouverte à d’autres extensions, nous définissons

la sémantique de PRDF au-dessus de la sémantique RDF, et nous fournissons un

algorithme pour vérifier si un graphe PRDF est une conséquence sémantique d’un

graphe RDF.

B.2. RÉSUMÉ DES CONTRIBUTIONS 177

Les graphes PRDF servent ensuite à définir une extension de SPARQL, le

langage de base PSPARQL, remplaçant les patrons de graphes RDF utilisés dans

SPARQL par des graphes PRDF, c’est-à-dire des patrons de graphes avec des ex-

pressions régulières.

Exemple B.2.1 La requête PSPARQL suivante:

SELECT ?City

WHERE {

ex:Paris (ex:train|ex:plane)+ ?City .

?City ex:capitalOf ?Country .

}

ORDER BY Asc(?City)

retourne dans un ordre croissant, l’ensemble des villes accessible de Paris par une

séquence de trains et d’avions, qui sont des villes capitales.

Pour ajouter plus d’expressivité à PSPARQL permettant à spécifier des infor-

mations sur les sommets qui appartiennent à un chemin défini par une expression

régulière "par exemple, tous les arrêts doivent être soit des capitales soit des villes

de plus de 200000 habitants.", nous avons étendu PRDF. Plus précisément, nous

avons définit CPRDF (Pour Constrained Path RDF) qui étend la syntaxe et la sé-

mantique de PRDF pour gérer les contraintes sur les sommets dans les chemins

traversés.

Exemple B.2.2 Le graphe présenté dans la figure B.4, où const =]ALL ?Stop] :
{{?Stop ex:capitalOf ?Country .} UNION {?Stop ex:population ?Pop .

FILTER (?Pop > 200000)}}, est un graphe CPRDF.

Nous avons aussi caractérisé les réponses à une requête réduite à un graphe

CPRDF par des homomorphismes (des affectations particulières) et avons fournit

des algorithmes corrects et complets pour calculer ces réponses. Cette propriété

est suffisante pour étendre le langage d’interrogation PSPARQL à CPSPARQL en

utilisant cette fois les graphes CPRDF dans les patrons de graphes de SPARQL

Exemple B.2.3 La requête CPSPARQL:

SELECT ?City

WHERE {

CONSTRAINT const]ALL ?Stop]: {{ ?Stop ex:capitalOf ?Country. }

UNION

{ ?Stop ex:population ?Pop .

FILTER (?Pop > 200000)

178 APPENDIX B. RÉSUMÉ ÉTENDU

ex:Roma ?City ?Country
(ex:train| ex:plane)+%const% ex:cityIn

Figure B.4: Un patron de graphe avec des expressions régulières contraintes.

}

}

ex:Paris (ex:train|ex:plane)+%const% ?City .

?City ex:capitalOf ?Country .

}

dont le patron de graphe est le graphe CPRDF de l’exemple B.2.2, peut être utilisée

pour trouver les noms des villes et des pays tels que chaque ville est connectée à

Roma par un chemin (une séquence de trains et d’avions) dont tous les sommets

sont soit des villes capitales soit des villes de plus de 200000 habitants.

Nous avons implémenté un évaluateur pour répondre aux requêtes PSPARQL

ou CPSPARQL. L’entrée à ce évaluateur est une requête sous une forme de texte où

chaque RDF graphe identifié par une URL dans la requête doit être rédigée dans le

langage Turtle [Beckett, 2006] ou XHTML+RDFa1 dans un document (X)HTML.

L’évaluateur est fourni avec deux parseurs:

– un pour parser des graphes RDF écrites en Turtle, et

– l’autre pour parser des requêtes écrites selon la syntaxe de CPSPARQL,

qui est compatible avec la syntaxe de SPARQL (voir http://psparql.

inrialpes.fr).

La sortie de l’évaluateur est le résultat de la requête sous la forme de texte.

B.3 Organisation de la thèse

Chapitre 2: The RDF Language

Dans ce chapitre, nous présentons le langage RDF simple et sa généralisation

GRDF sans introduire les vocabulaires RDF et RDFS: la syntaxe, la sémantique

et un mécanisme d’inférence pour interroger les graphes RDF ou GRDF (la re-

quête et la base de connaissance sont deux graphes RDF ou GRDF). Ce langage

sera utilisé pour représenter les bases de connaissances sur lesquelles les requêtes

seront évaluées.
1http://www.w3.org/TR/xhtml-rdfa-primer/

http://psparql.inrialpes.fr
http://psparql.inrialpes.fr
http://www.w3.org/TR/xhtml-rdfa-primer/

B.3. ORGANISATION DE LA THÈSE 179

Chapitre 3: Querying RDF Graphs

Nous discutons dans ce chapitre les langages de requêtes pour le Web Séman-

tique en général et en particulier pour RDF, et mettons en évidence les différences

principales entre eux et notre proposition. Parmi eux, nous citons les langages

de requêtes utilisés dans les bases de données comme G, G+, Graphlog, Lorel,

UnQL, RDQL, STRUQL, XPath, et SPARQL et ses extensions comme SPARQ2L

et SPARQLeR.

Chapitre 4: A General Graph Framework with Paths

Dans ce chapitre, nous présentons une extension de RDF, appelée PRDF (pour Path

RDF). Syntaxiquement, les graphes PRDF sont des graphes RDF étendus dont les

arcs sont étiquetés par des générateurs de langages réguliers. Comme exemple,

nous utilisons les expressions régulières pour engendrer des langages réguliers pos-

siblement infinis. Ainsi, les langages réguliers (ou expressions régulières) peuvent

être utilisés pour engendrer les chemins dans un graphe RDF tel que le mot obtenu

par la concaténation des labels des arcs doit appartenir au langage engendré par

l’expression régulière. Sémantiquement, nous définissons une sémantique éten-

dant la sémantique formelle de RDF d’une façon à pouvoir interpréter les chemins

engendrés par les expressions régulières. Puis, nous fournissons un mécanisme

d’inférence correct et complet basé sur des homomorphismes de graphes pour in-

terroger les graphes RDF en utilisant les graphes PRDF comme des requêtes.

Chapitre 5: The PSPARQL Query Language

Les graphes PRDF obtenus dans le chapitre précédent seront utilisés pour définir

les patrons de graphes PSPARQL, l’extension de SPARQL que nous proposons. La

syntaxe de PSPARQL est définie en remplaçant les patrons de graphes de SPARQL

par des graphes PRDF. Puis, nous donnons une sémantique opérationnelle qui

étend celle de SPARQL en utilisant les PRDF homomorphismes pour définir les

réponses à une requête PSPARQL dans un graphe RDF ainsi des algorithmes pour

calculer ces réponses.

Chapitre 6: Constrained Paths in SPARQL

PSPARQL sert aussi à définir dans ce chapitre une nouvelle extension, appelée

CPSPARQL. Le langage CPSPARQL étend PSPARQL en permettant d’exprimer

180 APPENDIX B. RÉSUMÉ ÉTENDU

des contraintes sur les sommets dans les chemins traversés. De la même façon

que pour PSPARQL, nous définissons la syntaxe et la sémantique de CPSPARQL

en étendant les graphes PRDF aux graphes CPRDF (pour Constrained Path RDF)

dont les étiquettes des arcs sont des expressions régulières contraintes.

Chapitre 7: Other Possible Extensions

Ce chapitre discute des extensions naturelles de CPSPARQL. Chaque extension

est présentée avec un exemple qui montre son utilité. En particulier, utiliser des

variables de chemins dans les requêtes de CPSPARQL qui servent à extraire les

chemins, exprimer des contraintes sur ces variables, extraire des chemins dont les

prédicats sont similaires à un prédicat donné, définir une forme de requêtes im-

briquées, et étendre les contraintes utilisées pour définir des expressions régulières

contraintes.

Chapitre 8: Querying RDFS Graphs

Dans ce chapitre, nous présentons les langages RDF et RDFS qui sont deux ex-

tensions de RDF simple avec des vocabulaires particuliers. Nous présentons aussi

plusieurs méthodes pour interroger les graphes RDFS et fournissons une approche

possible basée sur la réécriture de requêtes SPARQL en requêtes PSPARQL.

Chapitre 9: Implementation and Experiments

Ce chapitre présente une implémentation concrète de nos extensions basées sur les

idées présentées dans les Chapitres 4–6, ainsi que plusieurs tests expérimentaux de

ce prototype.

B.4 Conclusions

B.4.1 Contributions

Nous avons traité dans cette thèse le problème du support et de l’extraction des

chemins dans les bases de connaissances du web sémantique. Les langages de

requêtes actuels pour interroger le web sémantique sont soit basés sur l’algèbre

relationnelle qui n’ont pas la possibilité d’exprimer des requêtes récursives ou soit

des langages qui supportent une forme limitée de chemin et qui ne supportent pas

des requêtes SQL ou des requêtes conjonctives.

B.4. CONCLUSIONS 181

Notre travail est donc motivé par la nécessité de mettre au point un compromis

qui supporte les deux formes de langages de requêtes. Bien qu’il peut être adapté à

d’autres formalismes, il est appliqué dans le contexte de RDF(S) et de son modèle

de données.

Nous avons introduit le langage PRDF qui étend la syntaxe et la sémantique du

langage RDF de façon à pouvoir étiqueter les arcs d’un graphe par des expressions

régulières. Nous avons fournit des algorithmes étendant le calcul d’homomorphis-

mes entre graphes pour calculer les réponses à une requête PRDF dans un graphe

RDF et nous avons montré qu’ils sont corrects et complets vis-à-via de la séman-

tique étendue. Les graphes PRDF obtenus sont utilisés pour définir les patrons de

graphes PSPARQL, l’extension de SPARQL que nous proposons.

PSPARQL est la base du développement d’une nouvelle extension, appelée

CPSPARQL, qui permet en outre d’exprimer d’autres constructions dans les re-

quêtes SPARQL telles que des contraintes sur les sommets des chemins traversés.

Cette extension a plusieurs avantages, parmi eux, elle ajoute plus d’expressivité à

PSPARQL et améliore l’efficacité en utilisant des contraintes prédéfinies qui ser-

vent à couper les chemins inutiles. Nous avons développé un évaluateur de requêtes

PSPARQL et CPSPARQL2. Cet évaluateur a passé avec succès tous les tests pro-

posés par le W3C pour le langage de requêtes SPARQL3.

B.4.2 Comparaison avec les autres langages

Nous avons comparé PSPARQL et CPSPARQL aux autre langages de requêtes

en appuyant sur [Haase et al., 2004; Angles and Gutiérrez, 1995]. [Haase et al.,

2004] fait une comparaison entre plusieurs langages de requête basée sur 14 traits

distincts. Les tests comprennent Path expression, Optional path and Recursion.

L’interprétation de ces trois tests est en fait l’utilisation des patrons de graphes,

les patrons de graphes optionnels, et des expressions récursives. Pour supprimer

l’ambiguïté, nous renommons les trois tests en: Graph pattern, Optional Pattern,

et Recursion (ou Regular expression). De [Angles and Gutiérrez, 1995], nous in-

cluons les traits suivants: Adjacent nodes, Adjacent edges, Fixed-length path, De-

gree of a node, Distance between nodes, and Diameter. Nous ajoutons également

les traits suivants: Regular expression variable, Constraints, Path variable, Con-

strained regular expression, Inverse path, et Non-simple path. Il y avait 8 langages

de requêtes dans la comparaison initiale ([Haase et al., 2004]) de laquelle nous

2<http://psparql.inrialpes.fr/>
3<http://www.w3.org/2001/sw/DataAccess/tests/>

182 APPENDIX B. RÉSUMÉ ÉTENDU

SP
A

R
Q

L

C
or

es
e

SP
A

R
Q

2L

SP
A

R
Q

L
eR

(P
/C

P)
SP

A
R

Q
L

G
+

G
ra

ph
L

og

ST
R

U
Q

L

R
D

Q
L

Se
R

Q
L

V
er

sa

R
Q

L

L
O

R
E

L

Graph pattern • • • • •/• • • • • • • • •
Optional pattern • • • • •/• - - - - • • ◦ -
Union • • • • •/• - - - - • • • •
Constraints • • • • •/• - - - • • • • •
Difference • • • • •/• - - - - • ◦ • -
Quantification - - - - -/- - - - - • - • •
Aggregation - ◦ - - ◦/◦ - - - - - • • •
Reification • • • • •/• - - - ◦ • ◦ ◦ -
Collections and ◦ ◦ ◦ ◦ ◦/◦ - - - ◦ ◦ ◦ • -
Containers
Namespace • • • • •/• - - - ◦ • - • -
Language • • • • •/• - - - - • - - -
Lexical space • • • • •/• - - - • • • • -
Value space • • • • •/• ◦ ◦ ◦ ◦ • - • •
Entailment - • - ◦ •/• - - - ◦ • - • -
Recursion (Reg- - - • • •/• • • • - - • ◦ •
ular expression)
Regular express- - - - - •/• • • • - - ◦ ◦ •
ion variable
Constrained reg- - - ◦ ◦ -/• - - - - - - - -
ular expression
Fixed-length - • ◦ ◦ •/• • • • ◦ ◦ - • •
path
Path variable - • • • •/• - - - - - - - •
Inverse Path - - - • -/• • • - - - - - -
Non-simple path - - • - •/• - - - - - - - -
Adjacent nodes • • • • •/• • • • ◦ ◦ ◦ ◦ •
Adjacent edges • • • • •/• • • • ◦ - ◦ ◦ ◦
Degree of a node - - - - -/- • • • - - - ◦ -
Distance bet- - - - - -/- • • • - - - - -
ween nodes
Diameter - - - - -/- • • • - - - - -

Table B.1: Une comparaison entre des langages de requêtes.

B.4. CONCLUSIONS 183

choisissons RQL RDQL, SeRQL et Versa, qui semblent représenter les langages

les plus expressifs pour supporter les deux types d’interrogation (c’est-à-dire mod-

èles à base de chemin et modèles de la base relationnelle); nous choisissons G+,

GraphLog, STRUQL, LOREL de [Angles and Gutiérrez, 1995]; et nous ajoutons

SPARQL, Corese, SPARQ2L, SPARQLeR et (C)PSPARQL.

Dans la table B.1, les Colonnes représentent langages de requêtes et les lignes

représentent les caractéristiques ou des types requêtes. En outre, nous utilisons -

pour indiquer que la fonctionnalité (ou le type de requête) n’a pas un support dans

le langage de requêtes, ◦ pour indiquer qu’il existe un support partiel (limitée), et

enfin • pour un support complet.

La table B.1 résume les différences principales entre les extensions actuelles

de SPARQL, (C)PSPARQL et d’autres langages de requêtes. La plupart des élé-

ments autorisés dans ces extensions sont également supportés dans CPSPARQL.

Notez que SPARQLeR (respectivement, SPARQ2L) utilise le FILTER de SPARQL

(respectivement, utilise ContainANY et ContainALL) pour faire le filtrage des

chemins. Par exemple, vérifier si un chemin correspond à un mot dans une ex-

pression régulière et vérifier l’existence d’un sommet dans le chemin. Nous con-

jecturons que nous pouvons exprimer ces contraintes en utilisant les expressions

régulières contraintes de CPSPARQL. CPSPARQL et SPARQ2L sont les seules

langages qui supportent les chemins avec des cycles. Cependant, les algorithmes

en SPARQ2L ne sont pas complètes pour ce genre de chemins, et il n’a pas un

support des chemins inverses.

Comme on peut le voir dans la table, il existe un grand nombre de fonction-

nalités dans SPARQL et ses extensions qui ne peuvent pas être exprimées dans les

langages anticipant SPARQL comme G+, GraphLog, et d’autres.

B.4.3 Perspectives

Traitement de l’alignement avec les langages de requêtes

Les problèmes soulevés par les ontologies hétérogènes peuvent être résolus en

établissant les correspondances entre les entités de ces ontologies et en traitant

l’alignement pour la transformation de données. L’utilisation des langages de re-

quête comme suggéré dans [Euzenat et al., 2008] pour la transformation des don-

nées serait un choix naturel, car ils permettent l’extraction et la transformation de

données. SPARQL est donc un bon candidat, en particulier, lorsque les ontolo-

gies sont décrites en RDF(S) et OWL. Cependant, il y a des pièces manquantes

184 APPENDIX B. RÉSUMÉ ÉTENDU

de SPARQL comme par exemple le support des chemins, agrégat de fonctions,

la génération de valeur. L’intégration de deux langages, comme SPARQL++ et

CPSPARQL, fournit des requêtes qui sont suffisantes pour couvrir les langages

d’alignement les plus expressifs (comme par exemple [Euzenat et al., 2007]). Par

exemple, la requête CPSPARQL suivante:

CONSTRUCT { ?x o2:potentialCollaborator ?y . }

WHERE { ?x foaf:knows+ ?y.

?x o1:topic ?t.

?y o1:topic ?t.

?x rdf:type o1:researcher .

?y rdf:type o1:researcher .

}

pourrait être utilisée pour créer une ontologie qui contient la relation potential-

Collaborator entre deux chercheurs exprimé par le fait qu’un chercheur est po-

tentiellement collaborateur à l’autre si ils travaillent sur le même sujet et connaître

les uns les autres.

Répondre à une requête dans un système distribué

Dans cette direction, nous voudrions profiter de la relation entre les requêtes con-

jonctives et les requêtes SPARQL, et de notre initial travail sur répondre aux re-

quêtes conjonctives dans les environnements distribués [Alkhateeb and Zimmer-

mann, 2007] pour la conception d’une infrastructure de l’évaluation de requêtes

aux chemins dans les environnements distribués. Dans cet article, nous avons

étudié le problème de répondre à une requête sur un système distribué de bases de

connaissances et défini les réponses distribuées d’une requête exprimée en termes

d’une base de connaissances ou d’un ontologie (appelé l’ontologie cible) dans le

système. Comme les réponses à une requête SPARQL sont définies par la construc-

tion des affectations (c’est-à-dire, les affectations de graphes GRDF de la requête

SPARQL dans la base de connaissances) et un GRDF graphe est un cas particulier

d’une requête conjonctive, nous pouvons utiliser la définition de réponse distribuée

pour définir des réponses aux requêtes SPARQL.

Résumé: RDF est un langage de représentation des connaissances dédié à l’annotation
des ressources dans le Web Sémantique. Bien que RDF peut être lui-même utilisé comme
un langage de requêtes pour interroger une base de connaissances RDF (utilisant la con-
séquence RDF), la nécessité d’ajouter plus d’expressivité dans les requêtes a conduit à
définir le langage de requêtes SPARQL. Les requêtes SPARQL sont définies à partir des
patrons de graphes qui sont fondamentalement des graphes RDF avec des variables. Les
requêtes SPARQL restent limitées car elles ne permettent pas d’exprimer des requêtes avec
une séquence non-bornée de relations (par exemple, "Existe-t-il un itinéraire d’une ville A
à une ville B qui n’utilise que les trains ou les bus?"). Nous montrons qu’il est possible
d’étendre la syntaxe et la sémantique de RDF, définissant le langage PRDF (pour Path
RDF) afin que SPARQL puisse surmonter cette limitation en remplaçant simplement les
patrons de graphes basiques par des graphes PRDF. Nous étendons aussi PRDF à CPRDF
(pour Constrained Path RDF) permettant d’exprimer des contraintes sur les sommets des
chemins traversés (par exemple, "En outre, l’une des correspondances doit fournir une con-
nexion sans fil."). Nous avons fourni des algorithmes corrects et complets pour répondre
aux requêtes (la requête est un graphe PRDF ou CPRDF, la base de connaissances est un
graphe RDF) basés sur un homomorphisme particulier, ainsi qu’une analyse détaillée de
la complexité. Enfin, nous utilisons les graphes PRDF ou CPRDF pour généraliser les re-
quêtes SPARQL, définissant les extensions PSPARQL et CPSPARQL, et fournissons des
tests expérimentaux en utilisant une implémentation complète de ces deux langages.

Mots-Clés: Langage de Représentation des Connaissances, RDF(S), Web Sémantique,
Langages de Requêtes, SPARQL, Homomorphisme de Graphes, Langages Réguliers, Ex-
pressions Régulières, Extensions de SPARQL , PRDF, PSPARQL, CPRDF, CPSPARQL.

Abstract: RDF is a knowledge representation language dedicated to the annotation of
resources within the Semantic Web. Though RDF itself can be used as a query language
for an RDF knowledge base (using RDF semantic consequence), the need for added ex-
pressivity in queries has led to define the SPARQL query language. SPARQL queries are
defined on top of graph patterns that are basically RDF graphs with variables. SPARQL
queries remain limited as they do not allow queries with unbounded sequences of relations
(e.g. "does there exist a trip from town A to town B using only trains or buses?"). We show
that it is possible to extend the RDF syntax and semantics defining the PRDF language
(for Path RDF) such that SPARQL can overcome this limitation by simply replacing the
basic graph patterns with PRDF graphs, effectively mixing RDF reasoning with database-
inspired regular paths. We further extend PRDF to CPRDF (for Constrained Path RDF)
to allow expressing constraints on the nodes of traversed paths (e.g. "Moreover, one of
the correspondences must provide a wireless connection."). We have provided sound and
complete algorithms for answering queries (the query is a PRDF or a CPRDF graph, the
knowledge base is an RDF graph) based upon a kind of graph homomorphism, along with
a detailed complexity analysis. Finally, we use PRDF or CPRDF graphs to generalize
SPARQL graph patterns, defining the PSPARQL and CPSPARQL extensions, and provide
experimental tests using a complete implementation of these two query languages.

Keywords: Knowledge Representation Languages, RDF(S), Querying Semantic Web,
SPARQL, Graph Homomorphism, Regular Languages, Regular Expressions, SPARQL Ex-
tensions, PRDF, PSPARQL, CPRDF, CPSPARQL.

	Introduction
	Motivations and Objectives
	Main Contributions
	Thesis outline

	I Background
	The RDF Language
	RDF Syntax
	Simple RDF Semantics
	Inference Mechanism
	RDF Entailment: Definition and Complexity
	RDF vs. graph database models
	Conclusion

	Querying RDF Graphs
	(Semi)-Structured Query Languages
	RDF Query Languages
	The SPARQL Query Language
	Extensions to SPARQL
	Work on SPARQL
	Comparison with other Query Languages
	Conclusion

	II Research Work
	A General Graph Framework with Paths
	PRDF Syntax
	PRDF Semantics
	Querying RDF with PRDF Graphs
	Containment of PRDF Queries
	Conclusion

	The PSPARQL Query Language
	PSPARQL Syntax
	Formal Semantics of PSPARQL
	Translation from PSPARQL to SPARQL
	Algorithms for PSPARQL Query Evaluation
	Complexity of Evaluating PSPARQL Graph Patterns
	Conclusion

	Constrained Paths in SPARQL
	CPSPARQL by examples
	CPRDF: Constrained Paths in RDF
	The CPSPARQL Query Language
	Summary

	Other Possible Extensions
	Path Variables
	Similarity-Based Path Matching
	Nested Queries
	Extending Constraints in CPSPARQL
	Conclusion

	Querying RDFS Graphs
	RDF(S)
	RDF(S) Closure and Query Answering
	RDF(S) Entailment and Query Rewriting
	Conclusion

	Implementation and Experiments
	Implementation
	Experiments
	Conclusion

	Conclusion
	Summary
	Future Directions

	III Appendices
	CPSPARQL Grammar
	Résumé étendu
	Motivations et objectifs
	Résumé des contributions
	Organisation de la thèse
	Conclusions

