. Fig, image (temps)] dans la flamme de propergol type Butalane 81 (1.5 s) 100 (3.25 s) 200 (11.58 s) 300 (20 s) 400 (28.25 s) 500 (36.58 s) 600 (45 s) 700 (53.25 s) 800 (61.58 s) 900 (70 s) 1000 (78.25 s), pp.1100-86

. Fig, 29 ? Niveaux de quantité de photonsémisphotonsémis [n ? d'image (temps)] dans la flamme de propergol type Butalite [1] Drysdale D. An Introduction to Fire Dynamics, 1998.

E. W. Price, The fire environment of a solid rocket propellant burning in air, pp.14-93

O. Orlandi, Modélisation et Simulation numérique de la combustion d'une goutte isolée d'aluminium, p.59, 2002.

G. Lengellé, J. Duterque, and J. F. Trubert, Physico-chemical mechanisms of solid propellant combustion In Solid propellant chemistry, combustion, and motor interior ballistics, pp.287-334, 2000.

M. W. Beckstead, R. L. Derr, and C. F. Price, A model of composite solid-propellant combustion based on multiple flames, AIAA Journal, vol.8, issue.12, pp.2200-2207, 1970.
DOI : 10.2514/3.6087

M. W. Beckstead, Solid propellant combustion mechanisms and flame structure, Pure and Applied Chemistry, vol.65, issue.2, pp.297-307, 1993.
DOI : 10.1351/pac199365020297

M. W. Beckstead, Overview of combustion mechanisms and flame structures for advanced solid propellants In Solid propellant chemistry, combustion, and motor interior ballistics, pp.267-285, 2000.

E. W. Price, Combustion of metalized propellants, Fundamentals of Solid Propellant Combustion, pp.478-513, 1984.

J. Dupays, Y. Fabignon, P. Villedieu, and G. Lavergne, Some aspects of two-phase flows in solid-propellant rocket motors. In Solid propellant chemistry, combustion, and motor interior ballistics, pp.859-883, 2000.

J. K. Sambamurthi, E. W. Price, and R. K. Sigman, Aluminum Agglomeration in Solid-Propellant Combustion, AIAA Journal, vol.22, issue.8, pp.1132-1138, 1984.
DOI : 10.2514/3.48552

P. Bucher, L. Ernst, F. L. Dryer, R. A. Yetter, T. P. Parr et al., Detailed studies on the flame structure of aluminum particle combustion, Solid propellant chemistry, combustion, and motor interior ballistics, pp.689-722, 2000.

J. C. Melcher, R. L. Burton, and H. Krier, Combustion of aluminum particles in solid rocket motor flows. In Solid propellant chemistry, combustion, and motor interior ballistics, pp.723-747, 2000.

S. Scippa, P. Pascal, and F. Zanier, Ariane 5-MPS - Chamber pressure oscillations full scale firing results: Analysis and further studies, 30th Joint Propulsion Conference and Exhibit, p.61, 1994.
DOI : 10.2514/6.1994-3068

V. N. Panfilov, A. I. Levykin, and K. K. Sabelfeld, Formation of charged aggregates of al 2 o 3 nanoparticles by combustion of aluminum droplets in air, Combustion and Flame, vol.138, issue.60, pp.40-54, 2004.

F. Millot, V. Sarou-kanian, and J. C. Rifflet, Ir radiative properties of solid and liquid alumina : Effects of temperature and gaseous environment, International Journal of Thermophysics, vol.26, issue.95, pp.1263-1275, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00429421

G. H. Markstein, Radiative properties of plastics fires, 17th Symposium (International ) on Combustion, pp.1053-1062, 1979.
DOI : 10.1016/S0082-0784(79)80101-0

J. C. Diaz, Thermal environment of a solid rocket propellant fire in ambient atmospheric conditions, pp.14-75

F. Giroud, B. Porterie, M. Larini, and J. C. Loraud, Solid propellant fire in an enclosure fitted with a ceiling safety vent, International Journal Heat Mass Transfer, vol.39, issue.3, pp.575-601, 1996.

M. Grattan and K. , Fire dynamics simulator (v4) technical reference guide, p.112, 2004.

B. J. Mccaffrey, Purely buoyant diffusion flames ; some experimental results, 1979.

N. Eisenreich and W. Eckl, Determiniation of the temperature in a solid propellant flame by analysis of emission spectra, Propellants, Explosives, Pyrotechnics, vol.17, pp.202-206, 1992.

C. Feng, R. B. Johnson, and J. Fehribach, On the validity and techniques of temperature measurement and emissivity measurements, SPIE, Thermosense X, vol.934, pp.202-206, 1988.

F. W. Williams, P. A. Tatem, D. A. White, and C. L. Beyler, Modeling missile propellant fires in shipboard compartments, Fire Safety Journal, vol.34, issue.4, pp.321-341, 2000.

C. Guirao and F. A. Williams, A model of ammonium perchlorate deflagration between 20 and 100 atm, AIAA Journal, vol.9, issue.7, pp.1345-1356, 1971.
DOI : 10.2514/3.6355

M. W. Beckstead, R. L. Derr, and C. F. Price, The combustion of solid monopropellants and composite propellants, 13th Symposium on Combustion, pp.1047-1056, 1971.
DOI : 10.1016/S0082-0784(71)80103-0

C. F. Price, R. L. Boggs, and . Derr, The steady state combustion behavior of ammonium perchlorate and hmx, p.20, 1979.

J. C. Godon, Model of ammonium perchlorate self-degradation, La recherche aérospatiale, issue.2, pp.43-50, 1982.

O. P. Korobeinichev, Flame structure of solid propellants In Solid propellant chemistry , combustion, and motor interior ballistics, pp.335-354, 1921.

T. Parr and D. Hanson-parr, Optical diagnostics of solid propellant In Solid propellant chemistry, combustion, and motor interior ballistics, pp.381-411, 2000.

N. S. Cohen, Review of Composite Propellant Burn Rate Modeling, AIAA Journal, vol.18, issue.3, pp.277-293, 1980.
DOI : 10.2514/3.50761

N. S. Cohen and L. D. Strand, An improved model for the combustion of ap composite propellants, p.25, 1981.

K. N. Ramohalli, Steady state burning of composite propellants. In Fundamentals of solid-propellant combustion, pp.409-417, 1984.

F. A. Williams, Quasi steady gas flame theory in unsteady burning of a homogeneous solid propellant, AIAA Journal, vol.11, issue.9, pp.1328-1330, 1973.

B. V. Novozhilov, Burning of a powder under harmonically varying pressure, Journal of Applied Mechanics and Technical Physics, vol.6, issue.6, pp.103-106, 1965.
DOI : 10.1007/BF00919330

M. R. Denison and E. Baum, A Simplified Model of Unstable Burning in Solid Propellants, ARS Journal, vol.31, issue.8, pp.311112-1122, 1961.
DOI : 10.2514/8.5727

M. J. Ward, S. F. Son, and M. Q. Brewster, Role of gas- and condensed-phase kinetics in burning rate control of energetic solids, Combustion Theory and Modelling, vol.653, issue.3, pp.293-312, 1998.
DOI : 10.2514/3.6915

P. S. Loner and M. Q. Brewster, On the oscillatory laser-augmented combustion of HMX, 27th International symposium on combustion, pp.2309-2318, 1998.
DOI : 10.1016/S0082-0784(98)80081-7

M. Q. Brewster, Solid propellant combustion response : quasi-steady (qshod) theory development and theory. In Solid propellant chemistry, combustion, and motor interior ballistics, pp.607-637, 2000.

T. L. Jackson, L. Massa, and M. Q. Brewster, Unsteady combustion modelling of energetic solids, revisited. Combustion Theory and Modelling, pp.513-532, 2004.

J. J. Murphy and H. Krier, Linear pressure coupled frequency response of heterogeneous solid propellants, 27th International symposium on combustion, pp.2343-2350, 1998.
DOI : 10.1016/S0082-0784(98)80085-4

B. Rasmussen, R. A. Frederick, . Jr, and G. Lengellé, Pressure-coupled frequency response models of solid propellants, 34th JANNAF Combustion Meeting, pp.2343-2350, 1997.

G. M. Knott and M. Q. Brewster, Modeling the combustion of propellant sandwiches, Combustion Science and Technology, vol.174, issue.4, p.38, 2002.
DOI : 10.1080/713713014

L. Massa, T. L. Jackson, J. Buckmaster, M. Campbell, A. Hegab et al., The three dimensional combustion of heterogeneous propellants Nonsteady burning of periodic sandwich propellants with complete coupling between the solid and gas phases, JANNAF Combustion Subcommittee Meeting, pp.625-636, 2001.

R. R. Panyam, E. W. Price, and S. R. Chakravarthy, Combustion at the interface of a laminate system of solid oxidizer and solid fuel, Combustion and Flame, vol.136, issue.1-2, pp.1-15, 2004.
DOI : 10.1016/j.combustflame.2003.08.002

R. P. Fitzgerald and M. Q. Brewster, Flame and burning surface structure of ap/htpb laminate propellants, JANNAF Combustion Subcommittee Meeting, pp.107-118, 2002.

T. L. Jackson and J. Buckmaster, Heterogeneous Propellant Combustion, AIAA Journal, vol.40, issue.6, pp.678-686, 2001.
DOI : 10.2514/2.1761

G. M. Knott, T. L. Jackson, and J. Buckmaster, Random Packing of Heterogeneous Propellants, AIAA Journal, vol.39, issue.4, pp.678-686, 2001.
DOI : 10.2514/2.1361

L. Massa, T. L. Jackson, and M. Short, Numerical simulation of three-dimensional heterogeneous solid propellants. Combustion Theory and Modelling, pp.579-602, 2003.

X. Wang, T. L. Jackson, and L. Massa, Numerical simulation of heterogeneous propellant combustion by a level set method. Combustion Theory and Modelling, pp.227-254, 2004.

X. Wang and T. L. Jackson, The numerical simulation of two-dimensional aluminized composite solid propellant combustion. Combustion Theory and Modelling, pp.171-197, 2005.

R. H. Waesche, Mechanisms and Methods of Suppression of Combustion Instability by Metallic Additives, Journal of Propulsion and Power, vol.15, issue.6, pp.919-922, 1999.
DOI : 10.2514/2.5517

R. L. Lou, Suppression of unstable burning in solid propellants, p.46, 1957.

E. W. Price, Review of experimental research on combustion instability of solid propellants in solid propellant rocket research, pp.558-559, 1960.

E. W. Price, Combustion of aluminum in solid propellant flames, Solid Rocket Motor Technology, pp.14-15, 1979.

J. L. Prentice, T. L. Boggs, E. W. Price, K. J. Kraeutle, and R. K. Sigman, Behavior of aluminum in solid propellant combustion, p.45, 1980.

N. Cesco, Ecoulement diphasiquè a l'intérieur des propulseursàpropulseursà poudre, p.45, 1997.

D. W. Netzer and D. Laredo, The dominant effect of alumina an nearfield plume radiation, Journal of Quantitative Spectroscopy Radiative Transfer, vol.50, issue.5, pp.511-530, 1993.

N. S. Cohen, A pocket model for aluminum agglomeration in composite propellants, AIAA Journal, vol.21, issue.5, pp.720-725, 1983.
DOI : 10.2514/3.8139

E. W. Price and R. K. Sigman, Combustion of aluminized solid propellants. In Solid propellant chemistry, combustion, and motor interior ballistics, pp.663-689, 2000.

J. Duterque, R. Hilbert, and G. Lengellé, Agglomération et combustion de l'aluminium dans les propergols solides, p.60, 1999.

T. P. Parr and D. M. Hanson-parr, Ap/htpb/al propellant flame structure at 1 atm, pp.61-171, 2006.

E. W. Price, R. K. Sigman, J. K. Sambamurthi, and C. J. Park, Behavior of aluminum in solid propellant combustion, p.52, 1982.

H. C. Christensen, R. H. Knipe, and A. S. Gordon, Survey of aluminum particle combustion, Pyrodynamics, vol.3, pp.91-119, 1965.

A. Macek, Fundamentals of combustion of single aluminum and beryllium particles, 11th Symposium (International) on Combustion, pp.203-214, 1967.

S. E. Olsen and M. W. Beckstead, Burn time measurements of single aluminum particles in steam and CO2 mixtures, Journal of Propulsion and Power, vol.12, issue.4, pp.662-671, 1952.
DOI : 10.2514/3.24087

J. L. Prentice, Combustion of single aluminum droplets in various oxidizing gases including co2 and water vapor, 10th JANNAF Combustion Meeting, pp.279-296, 1973.

E. L. Dreizin, Experimental study of stages in aluminium particle combustion in air, Combustion and Flame, vol.105, issue.4, pp.541-556, 1996.
DOI : 10.1016/0010-2180(95)00224-3

J. L. Prentice and L. S. Nelson, Differences between the Combustion of Aluminum Droplets in Air and in an Oxygen-Argon Mixture, Journal of The Electrochemical Society, vol.115, issue.8, pp.809-812, 1968.
DOI : 10.1149/1.2411436

P. Bucher, R. A. Yetter, F. L. Dryer, E. P. Vicenzi, T. P. Parr et al., Condensed-phase species distributions about Al particles reacting in various oxidizers, Combustion and Flame, vol.117, issue.1-2, pp.351-361, 1999.
DOI : 10.1016/S0010-2180(98)00074-1

M. Marion, L. Chauvreau, and I. Gökalp, Studies of the ignition and burning process of levitated aluminum particles, Combustion Science and Technology, vol.115, issue.52, pp.4-6, 1996.

M. K. King, Modeling of single particle aluminum combustion in CO2???N2 atmospheres, 27th Symposium (International) on Combustion, pp.1317-1328, 1998.
DOI : 10.1016/S0082-0784(79)80124-1

P. Bucher, R. A. Yetter, F. L. Dryer, T. P. Parr, and D. M. Hanson-parr, Plif species and radiometric temperature measurements of aluminum particle combustion in o2, co2 and n2o oxidizers, and comparison with model calculations, 27th Symposium (International) on Combustion, pp.2421-2430, 1998.

Y. Liang and M. W. Beckstead, Numerical simulation of unsteady, single aluminum particle combustion in air, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, p.59, 1998.
DOI : 10.2514/6.1998-3825

D. Meinköhn, Metal combustion modelling, ODAS 2000, ONERA/DLR Aerospace Symposium, p.53, 2000.

R. P. Wilson and W. F. , Experimental study of the combustion of single aluminum particles in O2/Ar, 13th Symposium (International) on Combustion, pp.833-845, 1971.
DOI : 10.1016/S0082-0784(71)80085-1

T. A. Brzustowski and I. Glassman, Vapor-phase diffusion flames in the combustion of magnesium and aluminum. i - analytical developments, Heterogeneous Combustion Conference, pp.75-115, 1964.
DOI : 10.2514/6.1963-489

J. Frayssac and S. Barrère, ContributionàContributionà l'´ etude de la combustion des particules métalliques, p.54, 1961.

D. K. Kuehl and M. Zwillenberg, Predictions of burning times of metal particles, 3rd Solid Propulsion Conference, p.54, 1968.
DOI : 10.2514/6.1968-494

R. W. Bartlett, . J. Ong-jr, . W. Jr, and C. A. Papp, Estimating aluminium particle combustion kinetics, Combustion and Flame, vol.7, pp.227-237, 1963.
DOI : 10.1016/0010-2180(63)90187-1

J. Brulard, ContributionàContributionà l'´ etude de la combustion des particules d'aluminium, La Recherche Aérospatiale, issue.118, pp.25-49, 1967.

L. S. Nelson, Combustion of metal droplets ignited by flash heating, 11th Symposium (International) on Combustion, pp.409-416, 1966.
DOI : 10.1016/S0082-0784(67)80165-6

A. G. Merzhanov and Y. M. Grigorjev-yu, Aluminium ignition, Combustion and Flame, vol.29, pp.1-14, 1977.
DOI : 10.1016/0010-2180(77)90088-8

A. F. Belyaev, . V. Frolov-yu, and A. I. Korotkov, Combustion and ignition of particles of finely dispersed aluminum. Fizika Gorenyia i Vzryva, pp.323-329, 1968.

R. W. Hermsen, Aluminum combustion efficiency in solid rocket motors, 19th Aerospace Sciences Meeting, p.58, 1981.
DOI : 10.2514/6.1981-38

J. Duterque and J. Hommel, Etude de l'agglomération et de la combustion des particules d'aluminium dans les propergols solides, La Recherche Aérospatiale, issue.4, pp.1-24, 1993.

J. Duterque, Cahier des charges du montage d'´ etude de la combustion de l'aluminium en ambiance gaz de propergol, p.56, 1998.

A. Davis, Solid propellants: The combustion of particles of metal ingredients, Combustion and Flame, vol.7, pp.359-367, 1963.
DOI : 10.1016/0010-2180(63)90212-8

J. C. Melcher, H. Krier, and R. L. Burton, Burning aluminum particles inside a laboratory-scale solid rocket motor, 37th AIAA/ASME/SAE/ASEE Joint Conference and Exhibit, p.57, 2001.
DOI : 10.2514/2.5977

J. Sabnis, F. De-jong, and H. Gibelin, A two-phase distributed combustion model for metalized solid propellants, 28th JANNAF Combustion Subcommittee, pp.243-255, 1991.

C. K. Law, A Simplified Theoretical Model for the Vapor-Phase Combustion of Metal Particles???, Combustion Science and Technology, vol.33, issue.1, pp.197-212, 1973.
DOI : 10.1080/00102207308952359

K. P. Brokks and M. W. Beckstead, Dynamics of aluminum combustion, 30th JANNAF Combustion Subcommittee, p.58, 1993.
DOI : 10.2514/3.23902

J. F. Widener and M. W. Beckstead, Aluminum combustion modeling in solid propellant combustion products, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, p.58, 1998.
DOI : 10.2514/6.1998-3824

J. F. Widener and M. W. Beckstead, Aluminum combustion modeling in solid propellant environments, 35th Joint Propulsion Conference and Exhibit, p.58, 1999.
DOI : 10.2514/6.1999-2629

S. Yuasa, Y. Zhu, and S. Sogo, Ignition and combustion of aluminum in oxygen/nitrogen mixture streams, Combustion and Flame, vol.108, issue.4, pp.387-396, 1997.
DOI : 10.1016/0010-2180(95)00104-2

X. Wang and T. L. Jackson, The numerical simulation of two-dimensional aluminized composite solid propellant combustion. Combustion Theory and Modelling, pp.171-197, 2005.

K. J. Kraeutle, H. B. Mathes, and R. L. Derr, The role of particulate damping in the control of combustion instability by aluminum combustion. Solid Rocket Motor Technology, pp.15-16, 1979.

M. Salita, Deficiencies and requirements in modeling of slag generation in solid rocket motors, Journal of Propulsion and Power, vol.11, issue.1, pp.10-23, 1995.
DOI : 10.2514/3.23835

J. Hylkema, Modélisation cinétique et simulation numérique des brouillards denses de gouttelettes -Application aux propulseursàpropulseursà poudre, p.60, 1999.

J. Smagorinsky, GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS, Monthly Weather Review, vol.91, issue.3, pp.99-164, 1963.
DOI : 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

W. Zhang, A. Hamer, M. Klassen, D. Carpenter, and R. Roby, Turbulence statistics in a fire room model by large eddy simulation, Fire Safety Journal, vol.37, issue.8, pp.721-752, 2002.
DOI : 10.1016/S0379-7112(02)00030-9

W. Grosshandler, A narrow band model for radiation calculations in an combustion environment, 1993.
DOI : 10.6028/NIST.TN.1402

G. Lengellé, Thermal degradation kinetics and surface pyrolysis of vinyl polymers, AIAA Journal, vol.8, issue.11, pp.1989-1998, 1970.
DOI : 10.2514/3.6036

G. Lengellé, A. Bizot, J. Duterque, and J. C. Amiot, Ignition of solid propellants, La Recherche Aérospatiale, vol.2, p.124, 1991.

B. Bourasseau, Présentation du code coppelia, p.125, 1989.

C. Huggett, Estimation of rate of heat release by means of oxygen consumption measurements, Fire and Materials, vol.14, issue.2, pp.61-65, 1980.
DOI : 10.1002/fam.810040202

L. Dombrovsky, Possibility of determining the dispersed composition of a two-phase flow from small-angle light scattering, pp.472-479, 1982.

L. Dombrovsky and . Ivenskih, Radiation from a homogeneous plane-parallel layer of spherical particles, Teplofiz.Vys.Temp, vol.4, pp.818-138

L. Bakhir, G. Levashenko, and V. Tamanovitch, Refinement of the imaginary part of the complex refractive index of liquid aluminum oxide, Journal of Applied Spectroscopy, vol.18, issue.3, pp.378-383, 1977.
DOI : 10.1007/BF00617449

D. Parry and M. Brewster, Optical constants of al2o3 smoke in properllant flames

D. Edwards and D. Babikian, Radiation from a nongray scattering, emitting, and absorbing solid rocket motor plume, Journal of Thermophysics and Heat Transfer, vol.4, issue.4, pp.446-453, 1990.
DOI : 10.2514/3.207

D. Edwards and R. Bobco, Effect of particle size distribution on the radiosity of solid propellant rocket motor plumes, 16th Thermophysics Conference, pp.169-188, 1982.
DOI : 10.2514/6.1981-1052

I. Malitson, Refraction and Dispersion of Synthetic Sapphire, Journal of the Optical Society of America, vol.52, issue.12, pp.1377-1379, 1962.
DOI : 10.1364/JOSA.52.001377

L. Sutton and O. Stavroudis, Fitting Refractive Index Data by Least Squares, Journal of the Optical Society of America, vol.51, issue.8
DOI : 10.1364/JOSA.51.000901

N. Anfimov, G. Karabadjak, B. Khmelinin, Y. Plastinin, and A. Rodionov, Analysis of mechanisms and the nature of radiation from aluminum oxide in different phase states in solid rocket exhaust plumes, 28th Thermophysics Conference, p.140, 1993.
DOI : 10.2514/6.1993-2818

C. Bohren and D. Huffmann, Absorption and scattering of light by small particles, p.142, 1983.
DOI : 10.1002/9783527618156

C. Tien and B. Drolen, Thermal radiation in particulate media with dependent and independent scattering, In Annual Review in Numerical Fluid Mechanics and Heat Transfer, vol.1, p.142, 1987.

C. Alkemade, . J. Th, P. J. Zeegers, and . Th, Chemiluminescence of oh radical and k atom by radical recombination in flames, Tenth Symposium (International) on Combustion, pp.33-40, 1965.