. Le-but-Étant-d-'évaluer-d, on trace log N (k) en fonction de log k puis on détermine un intervalle sur lequel ce tracé semble affine. d est la pente de la droite obtenue. Précisons que le même type de calcul peut aussi caractériser l'image en niveau de gris (i. e. en 3D), mais que les résultats n'ont pas été concluants dans l'aplication présentée ici

. Soit, image, où I(x, y) est le niveau de gris du pixel (x, y). I est lissée par convolution avec, par exemple, un noyau gaussien K ? de variance ?. Notons I ? l'image régularisée I ? = K ? * I. Supposons que I est si irrégulière que la surface (x, y, I(x, y)) de R 3 a une aire infinie

S. Ont-une-aire-finie, Quand ? tend vers 0, I ? tend vers I et S ? tend vers l'infini. La dimension de régularisation dim R mesure la vitesse de convergence de S ? vers l'infini. Formellement : dim R = 2 + lim ??0 log(S?) ? log ?

L. Lacunarité, Lév90] est un paramètre fractal du second ordre qui décrit la texture d'une image. De même que la dimension de régularisation, nous l'avons appliquée sur l'image en niveaux de gris

. [. Bibliographie, A. Jaffard, E. Arneodo, J. F. Bacry, and . Muzy, Singularity spectrum of multifractal functions involving oscillating singularities, J. Fourier Analysis App, vol.4, pp.159-174, 1998.

J. [. Antoniadis, T. Bigot, and . Sapatinas, Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study, Journal of Statistical Software, vol.6, issue.6, pp.1-83, 2001.
DOI : 10.18637/jss.v006.i06

URL : https://hal.archives-ouvertes.fr/hal-00823485

. Aka-]-uma-ranjan-akash, Classification of objects in sar images using scaling features

M. Arbeiter and N. Patzschke, Random Self-Similar Multifractals, Mathematische Nachrichten, vol.80, issue.1, pp.5-42, 1996.
DOI : 10.1002/mana.3211810102

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.6393

I. [. Abramowitz and . Stegun, Handbook of Mathematical Functions, American Journal of Physics, vol.34, issue.2, 1970.
DOI : 10.1119/1.1972842

J. Barral and J. L. Véhel, Multifractal Analysis of a Class of Additive Processes with Correlated Non-Stationary Increments, Electronic Journal of Probability, vol.9, issue.0, pp.508-543, 2004.
DOI : 10.1214/EJP.v9-208

URL : https://hal.archives-ouvertes.fr/inria-00576461

G. Brown, G. Michon, and J. Peyrière, On the multifractal analysis of measures, Journal of Statistical Physics, vol.59, issue.2, pp.3-4775, 1992.
DOI : 10.1007/BF01055700

]. J. Bon83 and . Bony, Propagation et interaction des singularités pour les solutions des équations aux dérivées partielles non-linéaires, Proceedings of the International Congress of Mathematicians, pp.1133-1147, 1983.

[. Bony, Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Taniguchi Int. Symp., Katata and Kyoto/Jap, pp.11-49, 1984.

D. [. Coifman and . Donoho, Translation-Invariant De-Noising, pp.125-150, 1995.
DOI : 10.1007/978-1-4612-2544-7_9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.125.3682

R. [. Chhabra and . Jensen, On the multifractal analysis of measures, J. Statist. Phys, vol.66, pp.3-4775, 1992.

J. [. Collet, A. Lebowitz, and . Porzio, The dimension spectrum of some dynamical systems, Journal of Statistical Physics, vol.298, issue.5-6, pp.609-644, 1987.
DOI : 10.1007/BF01206149

R. R. Coifman and A. Sowa, Combining the Calculus of Variations and Wavelets for Image Enhancement, Applied and Computational Harmonic Analysis, vol.9, issue.1, pp.1-18, 2000.
DOI : 10.1006/acha.2000.0299

D. [. Devore, M. Donoho, I. Vetterli, and . Daubechies, Nonlinear approximation, Acta Numerica, vol.41, issue.2, pp.51-150, 1998.
DOI : 10.1007/BF02274662

. Devore, Data compression and harmonic analysis, IEEE Transactions on Information Theory Numerica, vol.44, pp.2435-2467, 1998.

]. R. Dev98b and . Devore, Nonlinear approximation, Acta Numerica, pp.1-99, 1998.

J. [. Durand and . Froment, Reconstruction of Wavelet Coefficients Using Total Variation Minimization, SIAM Journal on Scientific Computing, vol.24, issue.5, pp.1754-1767, 2003.
DOI : 10.1137/S1064827501397792

URL : https://hal.archives-ouvertes.fr/hal-00712152

B. [. Devore and . Lucier, Fast wavelet techniques for near-optimal image processing, MILCOM 92 Conference Record, pp.2-12, 1992.
DOI : 10.1109/MILCOM.1992.244110

J. [. Daoudi, Y. Véhel, and . Meyer, Construction of Continuous Functions with Prescribed Local Regularity, Constructive Approximation, vol.14, issue.3, pp.349-385, 1998.
DOI : 10.1007/s003659900078

URL : https://hal.archives-ouvertes.fr/inria-00593268

]. D. Don94 and . Donoho, De-noising by soft-thresholding, IEEE Trans. Inf. Theory, vol.41, pp.613-627, 1994.

L. David and . Donoho, De-noising by soft-thresholding, IEEE Transactions on Information Theory, vol.41, issue.3, pp.613-627, 1995.

I. Devaux, J. L. Taralova, E. Véhel, J. F. Bonnin, F. Thibault et al., Contribution of image analysis to the description of enzymatic degradation kinetics for particulate food material, Journal of Food Engineering, vol.77, issue.4, pp.77-1096, 2006.
DOI : 10.1016/j.jfoodeng.2005.08.046

URL : https://hal.archives-ouvertes.fr/hal-00539282

B. [. Evertsz and . Mandelbrot, Multifractal measures, Chaos and Fractals : New Frontiers in Science, pp.921-953

[. Falconer, Fractal Geometry: Mathematical Foundations and Applications., Biometrics, vol.46, issue.3, 2003.
DOI : 10.2307/2532125

]. A. Fan97 and . Fan, Multifractal analysis of infinite products, J. Stat. Phys, vol.86, issue.56, pp.1313-1336, 1997.

G. [. Frisch and . Parisi, Fully developped turbulence and intermittency, Proc. International Summer school Phys., Enrico Fermi, pp.84-88, 1985.
DOI : 10.1111/j.1749-6632.1980.tb29703.x

B. Guiheneuf and J. L. Véhel, 2-microlocal analysis and application in signal processing, International Wavelets Conference (Tangier). Inria, 1998.
URL : https://hal.archives-ouvertes.fr/inria-00598752

G. Parisi, F. Uhar16, ]. G. Hardy-halsey, M. H. Jensen, L. P. Kadanoff et al., Applications de l'analyse harmonique Weierstrass's non-differentiable function Fractal measures and their singularities : The characterization of strange sets Exposants de hölder en des points donnés et coefficients d'ondelettes. Comptes rendus de l'Académie des Sciences -Série I, Turbulence and predictability in geophysical fluid dynamicsJaf91] S. Jaffard. Pointwise smoothness, 2-microlocalization and wavelet coefficientsJaf97a] S. Jaffard. Multifractal formalism for functions, parts i and ii. SIAM J. Math, pp.84-87301, 1916.

S. Jaffard, Multifractal Formalism for Functions Part II: Self-Similar Functions, SIAM Journal on Mathematical Analysis, vol.28, issue.4, pp.971-998, 1997.
DOI : 10.1137/S0036141095283005

S. Jaffard, [. Kolwankar, J. L. Véhel, [. Kahane, J. [. Peyrière et al., Wavelet techniques in multifractal analysis A time domain characterization of the fine local regularity of functions Sur certaines martingales de Benoît Mandelbrot Local regularity-based image denoising, Wavelet and multifractal analysis IEEE International Conference on Image Processing Leadbetter, Georg Lindgren, and Holger Rootzén. Extremes and Related Properties of Random Sequences and ProcessesLR97] Jacques Lévy Véhel and R. Riedi. Fractional brownian motion and data traffic modelling : the other end of the spectrum. In Lévy Véhel, J. Lutton, and C. Tricot Fractals in Engineering, pp.319-334131, 1976.

J. , L. Véhel, and S. Seuret, The 2-microlocal formalism. Fractal Geometry and Applications : A Jubilee of Benoit Mandelbrot, Proc. Sympos. Pure Math, 2004.

]. J. Ltar, C. Véhel, and . Tricot, On various multifractal spectra, Fractals and Stochasis III

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, On the self-similar nature of Ethernet traffic (extended version), IEEE/ACM Transactions on Networking, vol.2, issue.1, pp.1-15, 1994.
DOI : 10.1109/90.282603

]. J. Lév90 and . Véhel, About lacunarity, some links between fractal and integral geometry and an application to texture segmentation, ICCV, vol.90, pp.380-384, 1990.

[. Véhel, Numerical computation of the large deviation spectrum, CFIC, 1996.

[. Véhel, Introduction to the multifractal analysis of images, 1997.

J. Lévy, V. , and R. Vojak, Multifractal analysis of choquet capacities : preliminary results, Advances in Applied Math, vol.20, issue.1, pp.1-43, 1998.

[. Véhel and C. Tricot, On Various Multifractal Spectra, Fractal Geometry and Stochastics III, Progress in Probability, pp.23-42, 2004.
DOI : 10.1007/978-3-0348-7891-3_2

[. Véhel and R. Vojak, Multifractal Analysis of Choquet Capacities, Advances in Applied Mathematics, vol.20, issue.1, pp.1-43, 1998.
DOI : 10.1006/aama.1996.0517

]. S. Mal98 and . Mallat, A wavelet tour of signal processing, 1998.

[. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, Journal of Fluid Mechanics, vol.15, issue.02, pp.331-358, 1974.
DOI : 10.1063/1.1693226

]. B. Man74b and . Mandelbrot, Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier, J. Fluid Mech, vol.62, pp.331-358, 1974.

Y. Meyer, Ondelettes et opérateurs, I : Ondelettes, II : Opérateurs de Calderòn-Zygmund, III : Opérateurs multilinéaires. Hermann, 1990.

I. [. Mannersalo and . Norros, Multifractal analysis of real atm traffic : a first look, 1997.

A. Marangoni and S. Narine, Identifying key structural indicators of mechanical strength in networks fat cristals, Food Research International, 2002.

O. [. Meyer, B. Stiedl, and . Kerman, Discrimination by multifractal spectrum estimation of human heartbeat interval dynamics. Fractals- Complex Geometry Patterns and Scaling in Nature and Society, pp.195-204, 2003.

]. O. Nie98 and . Nielsen, Wavelets in scientific computing, 1998.

]. I. Nor97 and . Norros, Four approaches to the fractional brownian storage, Fractals in Engineering, pp.154-169, 1997.

]. L. Ols95 and . Olsen, A multifractal formalism, Adv. Math, vol.116, pp.92-195, 1995.

]. V. Pet95 and . Petrov, Limit Theorems of Probability Theory, 1995.

[. Véhel, P. Legrand, and M. Do, Fractal properties and characterization of road profiles, FRACTAL04, Complexity and Fractals in Nature, 8th International Multidisciplinary Conference, 2004.

[. Pesquet-popescu and J. L. Véhel, Stochastic fractal models for image processing, IEEE Signal Processing Magazine, vol.19, issue.5, pp.48-62, 2002.
DOI : 10.1109/MSP.2002.1028352

URL : https://hal.archives-ouvertes.fr/inria-00581030

K. [. Picard and . Tribouley, Adaptative confidence interval for pointwise curve estimation, Annals of Statistics, vol.28, issue.1, pp.298-335, 2000.

J. [. Roueff and . Véhel, A regularization aproach to fractional dimension estimation, Fractals, vol.98, 1998.

]. S. Seu03 and . Seuret, Analyse de régularité locale, quelques applications à l'analyse multifractale, 2003.

J. [. Seuret and . Véhel, A Time Domain Characterization of 2-Microlocal Spaces, Journal of Fourier Analysis and Applications, vol.9, issue.5, pp.263-276, 2003.
DOI : 10.1007/s00041-003-0023-z

URL : https://hal.archives-ouvertes.fr/inria-00072043

T. [. Strang and . Nguyen, Wavelets and filter banks, 1996.

. D. Ssk-+-90-]-w, W. Y. Shih, S. I. Shih, . Kim, J. Liu et al., Scaling behovior of the elastic properties of collloidal gels, Physical Review A, issue.8, pp.424772-4779, 1990.

A. Turiel and N. Parga, The Multifractal Structure of Contrast Changes in Natural Images: From Sharp Edges to Textures, Neural Computation, vol.12, issue.4, pp.763-793, 2000.
DOI : 10.1098/rspb.1998.0303

H. Wu and M. Morbidelli, A Model Relating Structure of Colloidal Gels to Their Elastic Properties, Langmuir, vol.17, issue.4, pp.1030-1036, 2001.
DOI : 10.1021/la001121f

P. Woloszyn, Fractal scattering indicators for urban sound difusion Thinking in patterns : fractals and related phenomena in nature, pp.221-232, 2004.