N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, p.1087, 1953.
DOI : 10.1063/1.1699114

J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, Computers in Physics, vol.7, issue.6, 1997.
DOI : 10.1063/1.4823234

D. C. Rapaport, The Art of Molecular Dynamics Simulation, 2004.

W. C. Swope, H. C. Andersen, H. C. Berens, and K. R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, The Journal of Chemical Physics, vol.76, issue.1, p.637, 1982.
DOI : 10.1063/1.442716

H. J. Berendsen and W. F. Van-gunsteren, In : Molecular dynamics simulation of statistical mechanical systems, Proceedings of the Enrico Fermi Summer School. Varenna, pp.43-65, 1985.

). P. Berens, D. H. Mackay, G. M. White, and K. R. Wilson, Thermodynamics and quantum corrections from molecular dynamics for liquid water, The Journal of Chemical Physics, vol.79, issue.5, p.2375, 1983.
DOI : 10.1063/1.446044

). H. Jobic, K. S. Smirnov, and D. Bougeard, Inelastic neutron scattering spectra of zeolite frameworks ??? experiment and modeling, Chemical Physics Letters, vol.344, issue.1-2, p.147, 2001.
DOI : 10.1016/S0009-2614(01)00686-8

URL : https://hal.archives-ouvertes.fr/hal-00279878

P. H. Berens and K. R. Wilson, Molecular dynamics and spectra. I. Diatomic rotation and vibration, The Journal of Chemical Physics, vol.74, issue.9, p.4872, 1981.
DOI : 10.1063/1.441739

P. H. Berens, S. R. White, and K. R. Wilson, Molecular dynamics and spectra. II. Diatomic Raman, The Journal of Chemical Physics, vol.75, issue.2, p.515, 1981.
DOI : 10.1063/1.442059

L. V. Woodcock, C. A. Angell, and P. Cheeseman, Molecular dynamics studies of the vitreous state: Simple ionic systems and silica, The Journal of Chemical Physics, vol.65, issue.4, p.1565, 1976.
DOI : 10.1063/1.433213

S. H. Garofalini, Molecular dynamics simulation of the frequency spectrum of amorphous silica, The Journal of Chemical Physics, vol.76, issue.6, p.3189, 1982.
DOI : 10.1063/1.443363

]. S. Tsuneyuki, M. Tsukada, H. Aoki, and Y. Matsui, First-Principles Interatomic Potential of Silica Applied to Molecular Dynamics, Physical Review Letters, vol.61, issue.7, p.869, 1998.
DOI : 10.1103/PhysRevLett.61.869

B. W. Van-beest, G. J. Kramer, and R. A. Van-santen, calculations, Physical Review Letters, vol.64, issue.16, p.1955, 1990.
DOI : 10.1103/PhysRevLett.64.1955

A. Pedone, G. Malavasi, M. C. Menziani, A. N. Cormack, and U. Segre, A New Self-Consistent Empirical Interatomic Potential Model for Oxides, Silicates, and Silica-Based Glasses, The Journal of Physical Chemistry B, vol.110, issue.24, p.11780, 2006.
DOI : 10.1021/jp0611018

M. Hemmati and C. A. Angell, IR absorption of silicate glasses studied by ion dynamics computer simulation. I. IR spectra of SiO2 glass in the rigid ion model approximation, Journal of Non-Crystalline Solids, vol.217, issue.2-3, p.236, 1997.
DOI : 10.1016/S0022-3093(97)00135-X

B. P. Feuston and S. H. Garofalini, Empirical three???body potential for vitreous silica, The Journal of Chemical Physics, vol.89, issue.9, p.5818, 1988.
DOI : 10.1063/1.455531

P. Vashishta, R. K. Kalia, J. P. Rino, and I. Ebbsjö, : A molecular-dynamics study of structural correlations, Physical Review B, vol.41, issue.17, p.12197, 1990.
DOI : 10.1103/PhysRevB.41.12197

V. A. Ermoshin, K. S. Smirnov, and D. Bougeard, Ab initio generalized valence force field for zeolite modelling. 1. Siliceous zeolites, Chemical Physics, vol.202, issue.1, p.53, 1996.
DOI : 10.1016/0301-0104(95)00313-4

V. A. Ermoshin, K. S. Smirnov, and D. Bougeard, Ab initio generalized valence force field for zeolite modelling 2. Aluminosilicates, Chemical Physics, vol.209, issue.1, p.41, 1996.
DOI : 10.1016/0301-0104(96)00124-3

R. L. Erikson and C. J. Hostetler, Application of empirical ionic models to SiO2 liquid: Potential model approximations and integration of SiO2 polymorph data, Geochimica et Cosmochimica Acta, vol.51, issue.5, p.1209, 1987.
DOI : 10.1016/0016-7037(87)90213-4

R. G. Valle and H. C. Andersen, Molecular dynamics simulation of silica liquid and glass, The Journal of Chemical Physics, vol.97, issue.4, p.2682, 1992.
DOI : 10.1063/1.463056

M. Z. Huang, L. Ouyang, and W. Y. Ching, glass, Physical Review B, vol.59, issue.5, p.3540, 1999.
DOI : 10.1103/PhysRevB.59.3540

URL : https://hal.archives-ouvertes.fr/hal-01258127

P. Tangney and S. Scandolo, parametrized interatomic force field for silica, The Journal of Chemical Physics, vol.117, issue.19, p.8898, 2002.
DOI : 10.1063/1.1513312

E. Demiralp, T. Cagin, W. A. Goddard, and I. , Morse Stretch Potential Charge Equilibrium Force Field for Ceramics: Application to the Quartz-Stishovite Phase Transition and to Silica Glass, Physical Review Letters, vol.82, issue.8, p.1708, 1999.
DOI : 10.1103/PhysRevLett.82.1708

D. Herzbach, K. Binder, and M. H. Müser, Comparison of model potentials for molecular-dynamics simulations of silica, The Journal of Chemical Physics, vol.123, issue.12, p.124711, 2005.
DOI : 10.1063/1.2038747

G. Malavasi, M. C. Menziani, A. Pedone, and U. Segre, Void size distribution in MD-modelled silica glass structures, Journal of Non-Crystalline Solids, vol.352, issue.3, p.285, 2006.
DOI : 10.1016/j.jnoncrysol.2005.11.022

G. J. Kramer, B. P. Farragher, B. W. Van-beest, and R. A. Van-santen, calculations, Physical Review B, vol.43, issue.6, p.5068, 1991.
DOI : 10.1103/PhysRevB.43.5068

URL : https://hal.archives-ouvertes.fr/in2p3-00410337

W. Smith, G. N. Greaves, and M. J. Gillan, Computer simulation of sodium disilicate glass, The Journal of Chemical Physics, vol.103, issue.8, p.3091, 1995.
DOI : 10.1063/1.470498

J. Etchepare, M. Merian, and L. Smetankine, . I. ?? and ?? quartz, The Journal of Chemical Physics, vol.60, issue.5, p.1873, 1974.
DOI : 10.1063/1.1681287

URL : https://hal.archives-ouvertes.fr/hal-01150449

J. Horbach, W. Kob, and K. Binder, Specific Heat of Amorphous Silica within the Harmonic Approximation, The Journal of Physical Chemistry B, vol.103, issue.20, p.4104, 1999.
DOI : 10.1021/jp983898b

P. Vashishta, R. K. Kalia, A. Nakano, W. Li, and I. Ebbsjö, Amorphous Insulators and Semiconductors, pp.151-213, 1997.

J. J. Pluth and J. V. Smith, Crystal structure of low cristobalite at 10, 293, and 473 K: Variation of framework geometry with temperature, Journal of Applied Physics, vol.57, issue.4, p.1045, 1985.
DOI : 10.1063/1.334545

A. N. Fitch, H. Jobic, and A. Renouprez, Localization of benzene in sodium-Y-zeolite by powder neutron diffraction, The Journal of Physical Chemistry, vol.90, issue.7, p.1311, 1986.
DOI : 10.1021/j100398a021

K. S. Smirnov, D. Bougeard, and P. Tandon, Electro-optical Parameters of Bond Polarizability Model for Aluminosilicates, The Journal of Physical Chemistry A, vol.110, issue.13, p.4516, 2006.
DOI : 10.1021/jp060151+

URL : https://hal.archives-ouvertes.fr/hal-00267608

S. Shoval, M. Boudeulle, S. Yariv, I. Lapides, and G. Panczer, Micro-Raman and FT-IR spectroscopy study of the thermal transformations of St. Claire dickite, Optical Materials, vol.16, issue.1-2, p.319, 2001.
DOI : 10.1016/S0925-3467(00)00092-6

J. F. Scott and S. P. Porto, Longitudinal and Transverse Optical Lattice Vibrations in Quartz, Physical Review, vol.161, issue.3, p.903, 1967.
DOI : 10.1103/PhysRev.161.903

J. B. Bates, Raman Spectra of ?? and ?? Cristobalite, The Journal of Chemical Physics, vol.57, issue.9, p.4042, 1972.
DOI : 10.1063/1.1678878

J. Etchepare, M. Merian, and P. Kaplan, . II. Cristobalite and tridymite, The Journal of Chemical Physics, vol.68, issue.4, p.1531, 1978.
DOI : 10.1063/1.435922

URL : https://hal.archives-ouvertes.fr/hal-01150436

M. Zhang and J. F. Scott, Raman studies of oxide minerals: a retrospective on cristobalite phases, Journal of Physics: Condensed Matter, vol.19, issue.27, p.275201, 2007.
DOI : 10.1088/0953-8984/19/27/275201

J. B. Bates and A. S. Quist, Polarized Raman Spectra of ?????Quartz, The Journal of Chemical Physics, vol.56, issue.4, p.1528, 1971.
DOI : 10.1063/1.1677402

J. Zarzycki, Les verres et l'´ etat vitreux, 1982.

A. Rahmani, M. Benoit, and C. Benoit, study, Physical Review B, vol.68, issue.18, p.184202, 2003.
DOI : 10.1103/PhysRevB.68.184202

URL : https://hal.archives-ouvertes.fr/in2p3-00005193

J. Horbach, W. Kob, K. Binder, and C. A. Angell, Finite size effects in simulations of glass dynamics, Physical Review E, vol.54, issue.6, p.5897, 1996.
DOI : 10.1103/PhysRevE.54.R5897

K. Kim and R. Yamamoto, Apparent finite-size effects in the dynamics of supercooled liquids, Physical Review E, vol.61, issue.1, p.41, 2000.
DOI : 10.1103/PhysRevE.61.R41

Y. Zhang, G. Guo, K. Refson, and Y. Zhao, Finite-size effect at both high and low temperatures in molecular dynamics calculations of the self-diffusion coefficient and viscosity of liquid silica, Journal of Physics: Condensed Matter, vol.16, issue.50, p.9127, 2004.
DOI : 10.1088/0953-8984/16/50/003

C. Campana and M. H. Müser, On finite-size effects in the simulation of high pressure, quartz-like structures, High Pressure Research, vol.29, issue.4, p.517, 2004.
DOI : 10.1103/PhysRevLett.80.2149

A. Nakano, L. Bi, R. K. Kalia, and P. Vashishta, First sharp diffraction peak and intermediate-range order in amorphous silica: finite-size effects in molecular dynamics simulations, Journal of Non-Crystalline Solids, vol.171, issue.2, p.157, 1994.
DOI : 10.1016/0022-3093(94)90351-4

P. Jund and R. Jullien, Molecular-dynamics calculation of the thermal conductivity of vitreous silica, Physical Review B, vol.59, issue.21, p.13707, 1999.
DOI : 10.1103/PhysRevB.59.13707

D. Frenkel and B. Smit, Understanding Molecular Simulation, Computers in Physics, vol.11, issue.4, pp.536-540
DOI : 10.1063/1.4822570

I. Saika-voivod, F. Sciortino, and P. H. Poole, Computer simulations of liquid silica: ???Equation of state and liquid???liquid phase transition, Physical Review E, vol.63, issue.1, p.11202, 2001.
DOI : 10.1103/PhysRevE.63.011202

V. A. Shneidman and D. R. Uhlman, The fast cooling/heating rate effects in devitrification of glasses. II. Crystallization kinetics, The Journal of Chemical Physics, vol.109, issue.1, p.186, 1998.
DOI : 10.1063/1.476548

R. Bruning and K. Samwer, Glass transition on long time scales, Physical Review B, vol.46, issue.18, p.11318, 1994.
DOI : 10.1103/PhysRevB.46.11318

K. Vollmayr, W. Kob, and K. Binder, Cooling-rate effects in amorphous silica: A computer-simulation study, Physical Review B, vol.54, issue.22, p.15808, 1996.
DOI : 10.1103/PhysRevB.54.15808

X. Yuan, V. Pulim, and L. W. Hobbs, Molecular dynamics refinement of topologically generated reconstructions of simulated irradiation cascades in silica networks, Journal of Nuclear Materials, vol.289, issue.1-2, p.71, 2001.
DOI : 10.1016/S0022-3115(00)00703-0

A. Wootton, B. Thomas, and P. Harrowell, Radiation-induced densification in amorphous silica: A computer simulation study, The Journal of Chemical Physics, vol.115, issue.7, p.3336, 2001.
DOI : 10.1063/1.1387039

B. M. Lee, H. K. Baik, B. S. Seong, S. Munetoh, and T. Motooka, Generation of glass SiO2 structures by various cooling rates: A molecular-dynamics study, Computational Materials Science, vol.37, issue.3, p.203, 2006.
DOI : 10.1016/j.commatsci.2006.01.003

J. Buchholz, W. Paul, F. Varnik, and K. Binder, Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study, The Journal of Chemical Physics, vol.117, issue.15, p.7364, 2002.
DOI : 10.1063/1.1508366

P. Jalali and M. Li, Atomic size effect on critical cooling rate and glass formation, Physical Review B, vol.71, issue.1, p.14206, 2005.
DOI : 10.1103/PhysRevB.71.014206

K. Yamahara, K. Okazaki, and K. Kawamura, Molecular dynamics study of the thermal behaviour of silica glass/melt and cristobalite, Journal of Non-Crystalline Solids, vol.291, issue.1-2, p.32, 2001.
DOI : 10.1016/S0022-3093(01)00795-5

S. Susman, K. J. Volin, D. L. Price, M. Grimsditch, J. P. Rino et al., : A neutron-diffraction and molecular-dynamics study, Physical Review B, vol.43, issue.1, p.1194, 1991.
DOI : 10.1103/PhysRevB.43.1194

G. Malavasi, M. C. Menziani, A. Pedone, and U. Segre, Void size distribution in MD-modelled silica glass structures, Journal of Non-Crystalline Solids, vol.352, issue.3, p.285, 2006.
DOI : 10.1016/j.jnoncrysol.2005.11.022

R. L. Mozzi and B. E. Warren, The structure of vitreous silica, Journal of Applied Crystallography, vol.2, issue.4, p.164, 1969.
DOI : 10.1107/S0021889869006868

H. F. Poulsen, J. Neuefeind, and H. B. Neumann, Amorphous silica studied by high energy X-ray diffraction, Journal of Non-Crystalline Solids, vol.188, issue.1-2, p.63, 1995.
DOI : 10.1016/0022-3093(95)00095-X

U. Buchenau, M. Prager, N. Nüker, A. J. Dianoux, N. Ahmad et al., Low-frequency modes in vitreous silica, Physical Review B, vol.34, issue.8, p.5665, 1986.
DOI : 10.1103/PhysRevB.34.5665

J. M. Carpenter and D. L. Price, Correlated Motions in Glasses Studied by Coherent Inelastic Neutron Scattering, Physical Review Letters, vol.54, issue.5, p.441, 1985.
DOI : 10.1103/PhysRevLett.54.441

O. Pilla, L. Angelani, A. Fontana, J. R. Gonçalves, and G. Ruocco, Structural and dynamical consequences of density variation in vitreous silica, Journal of Physics: Condensed Matter, vol.15, issue.11, p.995, 2003.
DOI : 10.1088/0953-8984/15/11/322

K. S. Smirnov, D. Bougeard, and P. Tandon, Electro-optical Parameters of Bond Polarizability Model for Aluminosilicates, The Journal of Physical Chemistry A, vol.110, issue.13, p.4516, 2006.
DOI : 10.1021/jp060151+

URL : https://hal.archives-ouvertes.fr/hal-00267608

P. N. Sen and M. F. Thorpe, glasses: From molecular to band-like modes, Physical Review B, vol.15, issue.8, p.4030, 1977.
DOI : 10.1103/PhysRevB.15.4030

R. G. Della-valle and E. Venuti, A molecular dynamics study of the vibrational properties of silica glass, Chemical Physics, vol.179, issue.3, p.411, 1994.
DOI : 10.1016/0301-0104(94)87017-9

B. T. Poe, C. Romano, and G. Henderson, Raman and XANES spectroscopy of permanently densified vitreous silica, Journal of Non-Crystalline Solids, vol.341, issue.1-3, p.162, 2004.
DOI : 10.1016/j.jnoncrysol.2004.04.014

]. P. Umari, X. Gonze, and A. Pasquarello, Concentration of Small Ring Structures in Vitreous Silica from a First-Principles Analysis of the Raman Spectrum, Physical Review Letters, vol.90, issue.2, p.27401, 2003.
DOI : 10.1103/PhysRevLett.90.027401

H. Awazu and . Kawazoe, Strained Si???O???Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses, Journal of Applied Physics, vol.94, issue.10, p.6243, 2003.
DOI : 10.1063/1.1618351

W. L. Warren, P. M. Lenahan, and C. J. Brinker, Experimental evidence for two fundamentally different E??? precursors in amorphous silicon dioxide, Journal of Non-Crystalline Solids, vol.136, issue.1-2, p.151, 1991.
DOI : 10.1016/0022-3093(91)90130-X

R. A. Barrio, F. L. Galeener, and E. Martinez, Vibrational Bethe Lattice with Random Dihedral Angles, Physical Review Letters, vol.52, issue.20, p.1786, 1984.
DOI : 10.1103/PhysRevLett.52.1786

]. F. Galeener, Planar rings in vitreous silica, Journal of Non-Crystalline Solids, vol.49, issue.1-3, p.53, 1982.
DOI : 10.1016/0022-3093(82)90108-9

T. Uchino, Y. Tokuda, and T. Yoko, Vibrational dynamics of defect modes in vitreous silica, Physical Review B, vol.58, issue.9, p.5322, 1998.
DOI : 10.1103/PhysRevB.58.5322

T. Nakayama, Boson peak and terahertz frequency dynamics of vitreous silica, Reports on Progress in Physics, vol.65, issue.8, p.1195, 2002.
DOI : 10.1088/0034-4885/65/8/203

K. Trachenko, M. T. Dove, K. D. Hammonds, M. J. Harris, and V. Heine, Low Energy Dynamics and Tunneling States in Silica Glass, Physical Review Letters, vol.81, issue.16, p.3431, 1998.
DOI : 10.1103/PhysRevLett.81.3431

J. Horback, W. Kob, and K. Binder, High frequency sound and the boson peak in amorphous silica, The European Physical Journal B, vol.19, issue.4, p.531, 2001.
DOI : 10.1007/s100510170299

M. A. Marcus and A. Polman, Local structure around Er in silica and sodium silicate glasses, Journal of Non-Crystalline Solids, vol.136, issue.3, pp.260-265, 1991.
DOI : 10.1016/0022-3093(91)90497-T

P. M. Peters and S. N. Houde-walter, Local structure of Er3+ in multicomponent glasses, Journal of Non-Crystalline Solids, vol.239, issue.1-3, p.162, 1998.
DOI : 10.1016/S0022-3093(98)00733-9

G. Cormier, J. A. Capobianco, and A. , Molecular dynamics simulation of the trivalent europium ion doped in silica and sodium disilicate glasses, Journal of Non-Crystalline Solids, vol.152, issue.2-3, p.225, 1993.
DOI : 10.1016/0022-3093(93)90256-W

G. Cormier, J. A. Capobianco, C. A. Morrison, and A. , Molecular-dynamics simulation of the trivalent europium ion doped in sodium disilicate glass: Electronic absorption and emission spectra, Physical Review B, vol.48, issue.22, p.16290, 1993.
DOI : 10.1103/PhysRevB.48.16290

A. Monteil, A. Bouajaj, G. Cormier, and J. A. Capobianco, Molecular dynamics simulation of porous silica glasses. Trivalent europium ion doping case, Journal of Physics: Condensed Matter, vol.6, issue.46, p.9881, 1994.
DOI : 10.1088/0953-8984/6/46/008

T. Peres, D. A. Litton, J. A. Capobianco, and S. H. Garofalini, Three-body potential modeling of undoped and Er3+-doped lead silicate glass, Journal of Non-Crystalline Solids, vol.221, issue.1, p.34, 1997.
DOI : 10.1016/S0022-3093(97)00312-8

B. Park, H. Li, and L. R. Corrales, Molecular dynamics simulation of La2O3???Na2O???SiO2 glasses. I. The structural role of La3+ cations, Journal of Non-Crystalline Solids, vol.297, issue.2-3, p.220, 2002.
DOI : 10.1016/S0022-3093(01)00935-8

L. R. Corrales and B. Park, Molecular dynamics simulation of La2O3???Na2O???SiO2 glasses. III. The driving forces of clustering, Journal of Non-Crystalline Solids, vol.311, issue.2, p.118, 2002.
DOI : 10.1016/S0022-3093(02)01414-X

J. Du and A. N. Cormack, Structure study of rare earth doped vitreous silica by molecular dynamics simulation, Radiation Effects and Defects in Solids, vol.3942, issue.6-12, p.789, 2002.
DOI : 10.1109/68.185065

J. Du and A. N. Cormack, The structure of erbium doped sodium silicate glasses, Journal of Non-Crystalline Solids, vol.351, issue.27-29, p.2263, 2005.
DOI : 10.1016/j.jnoncrysol.2005.05.018

A. Corradi, V. Cannillo, M. Montorsi, C. Siligardi, and A. N. Cormack, Structural characterization of neodymium containing glasses by molecular dynamics simulation, Journal of Non-Crystalline Solids, vol.351, issue.14-15, p.1185, 2005.
DOI : 10.1016/j.jnoncrysol.2005.03.002

A. Corradi, V. Cannillo, M. Montorsi, and C. Siligardi, Influence of Al2O3 addition on thermal and structural properties of erbium doped glasses, Journal of Materials Science, vol.22, issue.6, p.2811, 2006.
DOI : 10.1007/s10853-006-6119-5

S. Chaussedent, V. Teboul, and A. , Molecular dynamics simulations of rare-earth-doped glasses, Current Opinion in Solid State and Materials Science, vol.7, issue.2, p.111, 2003.
DOI : 10.1016/S1359-0286(03)00050-0

K. Soga, H. Inoue, and A. Makishima, Simulation of optical spectra of Eu3+ ion in fluorozirconate glasses by molecular dynamics simulation and point charge crystal field, Journal of Applied Physics, vol.89, issue.7, p.3730, 2001.
DOI : 10.1063/1.1351542

J. L. Wagener, P. F. Wysocki, M. J. Digonnet, H. J. Shaw, and D. J. Digiovanni, Effects of concentration and clusters in erbium-doped fiber lasers, Optics Letters, vol.18, issue.23, p.2014, 1993.
DOI : 10.1364/OL.18.002014

A. Laliotis, E. M. Yeatman, M. M. Ahmad, and W. Huang, Molecular homogeneity in erbium-doped sol-gel waveguide amplifiers, IEEE Journal of Quantum Electronics, vol.40, issue.6, p.805, 2004.
DOI : 10.1109/JQE.2004.828272

S. Sen, R. Rakhmatullin, R. Gubaydullin, and A. Silakov, A pulsed EPR study of clustering of Yb3+ ions incorporated in GeO2 glass, Journal of Non-Crystalline Solids, vol.333, issue.1, p.22, 2004.
DOI : 10.1016/j.jnoncrysol.2003.09.051

S. Sen, R. Rakhmatullin, R. Gubaydullin, and A. , Direct spectroscopic observation of the atomic-scale mechanisms of clustering and homogenization of rare-earth dopant ions in vitreous silica, Physical Review B, vol.74, issue.10, p.100201, 2006.
DOI : 10.1103/PhysRevB.74.100201

J. M. Nedelec, B. Capoen, S. Turrell, and M. Bouazaoui, Densification and crystallization processes of aluminosilicate planar waveguides doped with rare-earth ions, Thin Solid Films, vol.382, issue.1-2, p.81, 2001.
DOI : 10.1016/S0040-6090(00)01696-5

URL : https://hal.archives-ouvertes.fr/hal-00279871

O. Fonction-radiale-de-distribution-de-paires, a gauche) et fonctions de distribution des angles O-Si-O et Si-O-Si dans la structure du quartz ? calculée avec les quatre modèles de potentiels effectifs, p.41

S. Raman-polarisé-de-symétrie and E. , Les spectres calculés ontétéontété obtenusàobtenusà partir des ´ eléments A yz du tenseur de polarisabilité, p.50

S. Raman-de-la-faujasite and .. , Le spectre expérimental a ´ eté obtenu avec une poudre de la zéolithe Y désaluminée, p.57

O. Densité-du-verre-en-fonction-de-la-température-de-l-'´-echantillon and S. , 14 K/ps). . . . 69 distribution des angles

S. Raman-polarisés-réduits and V. , VH (` a droite) des verres S 2 ` a S 4 et données expérimentales, p.75

. Paramètres-de-potentiel-er-o, La forme du potentiel est donnée par l'´ equation (3.1), p.98