F. A. Houle, C. R. Jones, T. H. Baum, C. Pico, and C. A. Kovac, Laser chemical vapor deposition of copper, Applied Physics Letters, vol.46, issue.2, p.204, 1985.
DOI : 10.1063/1.95685

C. R. Moylan, T. H. Baum, and C. R. Jones, LCVD of copper: Deposition rates and deposit shapes, Applied Physics A Solids and Surfaces, vol.31, issue.1, p.1, 1986.
DOI : 10.1007/BF00616584

C. R. Jones, F. A. Houle, C. A. Kovac, and T. H. Baum, Photochemical generation and deposition of copper from a gas phase precursor, Applied Physics Letters, vol.46, issue.1, p.97, 1985.
DOI : 10.1063/1.95811

E. E. Marinero and C. R. Jones, Time???resolved detection of Cu atoms during photochemical laser metal vapor deposition, The Journal of Chemical Physics, vol.82, issue.3, p.1608, 1985.
DOI : 10.1063/1.448437

F. A. Houle, C. R. Jones, T. H. Baum, C. Pico, and C. A. Kovac, Laser chemical vapor deposition of copper, Applied Physics Letters, vol.46, issue.2, p.204, 1985.
DOI : 10.1063/1.95685

B. Markwalder, M. Widmer, D. Braichotte, and H. Van-de-bergh, High???speed laser chemical vapor deposition of copper: A search for optimum conditions, Journal of Applied Physics, vol.65, issue.6, p.2470, 1989.
DOI : 10.1063/1.342817

H. Uchida, N. Saitou, M. Satou, M. Tebakari, and K. Ogi, Properties of A New Liquid Organo Gold Compound for MOCVD, MRS Proceedings, vol.204, p.293, 1994.
DOI : 10.1143/JJAP.31.4403

J. L. Davidson, P. John, D. K. Milne, P. G. Roberts, M. G. Jabber et al., The pyrolytic LCVD of high-purity gold tracks from alkyl (trialkylphosphine) gold(I) complexes, Advanced Materials for Optics and Electronics, vol.59, issue.1-2, p.3, 1993.
DOI : 10.1002/amo.860020103

T. H. Baum and P. B. Comita, Laser-induced chemical vapor deposition of metals for microelectronics technology, Thin Solid Films, vol.218, issue.1-2, p.80, 1992.
DOI : 10.1016/0040-6090(92)90907-S

L. Dong, F. Arai, and T. Fukuda, Electron-beam-induced deposition with carbon nanotube emitters, Applied Physics Letters, vol.81, issue.10, p.1919, 2002.
DOI : 10.1063/1.1504486

K. Ueda and M. Yosimura, Thin Solid Films, pp.464-465, 2004.

F. Cicoira, K. Leifer, P. Hofmann, I. Utke, B. Dwir et al., Electron beam induced deposition of rhodium from the precursor [RhCl(PF3)2]2: morphology, structure and chemical composition, Journal of Crystal Growth, vol.265, issue.3-4, p.619, 2004.
DOI : 10.1016/j.jcrysgro.2004.02.006

P. Hoffmann, I. Utke, F. Cicoira, B. Dwir, K. Leifer et al., Focused Electron Beam Induced Deposition of Gold and Rhodium, MRS Proceedings, vol.44, p.171, 2000.
DOI : 10.1063/1.113909

S. Matsui and T. Ichashi, observation on electron???beam???induced chemical vapor deposition by transmission electron microscopy, Applied Physics Letters, vol.53, issue.10, p.842, 1988.
DOI : 10.1063/1.100089

C. Schoessler, J. Urban, and H. W. Koops, Conductive supertips for scanning probe applications, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.4, p.1535, 1997.
DOI : 10.1116/1.589394

A. Folch, J. Tejada, C. H. Pters, and M. S. Wrington, Electron beam deposition of gold nanostructures in a reactive environment, Applied Physics Letters, vol.66, issue.16, p.2080, 1995.
DOI : 10.1063/1.113909

S. Smith, W. M. Li, K. E. Elers, and K. Pfeifer, Physical and electrical characterization of ALCVD??? TiN and WNxCy used as a copper diffusion barrier in dual damascene backend structures (08.2), Microelectronic Engineering, vol.64, issue.1-4, p.247, 2002.
DOI : 10.1016/S0167-9317(02)00796-7

H. Kim, The application of atomic layer deposition for metallization of 65 nm and beyond, Surface and Coatings Technology, vol.200, issue.10, p.3104, 2006.
DOI : 10.1016/j.surfcoat.2005.07.006

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskela, Atomic Layer Deposition of Iridium Thin Films, Journal of The Electrochemical Society, vol.151, issue.8, p.489, 2004.
DOI : 10.1149/1.1761011

E. Farm, M. Kemell, M. Ritala, and M. Leskela, Self-Assembled Octadecyltrimethoxysilane Monolayers Enabling Selective-Area Atomic Layer Deposition of Iridium, Chemical Vapor Deposition, vol.19, issue.7, p.415, 2006.
DOI : 10.1002/cvde.200604219

R. J. Silvennoinen, O. J. Jylha, M. Lindlad, J. P. Sainio, R. L. Puurunen et al., Atomic layer deposition of iridium(III) acetylacetonate on alumina, silica???alumina, and silica supports, Applied Surface Science, vol.253, issue.9, p.4103, 2007.
DOI : 10.1016/j.apsusc.2006.09.010

T. Torndahl, J. Lu, M. Ottosson, and J. O. Carlsson, Epitaxy of copper on ??-Al2O3(001) by atomic layer deposition, Journal of Crystal Growth, vol.276, issue.1-2, p.102, 2005.
DOI : 10.1016/j.jcrysgro.2004.10.153

T. Torndahl, M. Ottosson, and J. O. Carlsson, Growth of copper metal by atomic layer deposition using copper(I) chloride, water and hydrogen as precursors, Thin Solid Films, vol.458, issue.1-2, p.129, 2004.
DOI : 10.1016/j.tsf.2003.12.063

A. U. Mane and S. A. Shivashankar, Growth of (111)-textured copper thin films by atomic layer deposition, Journal of Crystal Growth, vol.275, issue.1-2, p.1253, 2005.
DOI : 10.1016/j.jcrysgro.2004.11.143

T. T. Kodas and M. Hampden-smith, The Chemistry of Metal CVD, pp.30-31, 1994.
DOI : 10.1002/9783527615858

M. L. Hitchman and K. F. Jensen, Chemical vapor deposition: Principles and Application, pp.31-32, 1993.

M. Ohring, Material Science of Thin Films, 1991.

T. T. Kodas, T. H. Baum, and P. B. Comita, Kinetics of laser???induced chemical vapor deposition of gold, Journal of Applied Physics, vol.62, issue.1, p.281, 1987.
DOI : 10.1063/1.339141

P. F. Seidler, S. P. Kowalczyk, M. M. Banaszak-holl, J. J. Yurkas, M. H. Norcott et al., Low Temperature Selective Area Chemical Vapor Deposition of Gold Films: Growth and Characterization, MRS Proceedings, vol.282, p.359, 1993.
DOI : 10.1063/1.346567

A. Jain, K. M. Chi, M. J. Hampden-smith, T. T. Kodas, M. F. Paffett et al., Chemical vapor deposition of copper from (hexafluoroacetylacetonato)(alkyne)copper(I) complexes via disproportionation, Chemistry of Materials, vol.3, issue.6, p.995, 1991.
DOI : 10.1021/cm00018a005

A. Jain, K. M. Chi, M. J. Hampden-smith, T. T. Kodas, M. F. Paffett et al., Chemical vapor deposition of copper via disproportionation of hexafluoroacetylacetonato(1,5 -cyclooctadiene)copper(I), (hfac)Cu(1,5-COD), Journal of Materials Research, vol.3, issue.02, p.261, 1992.
DOI : 10.1063/1.342817

A. Jain, K. M. Chi, M. J. Hampden-smith, T. T. Kodas, M. F. Paffett et al., Chemical Vapor Deposition of Copper from Hexafluoroacetylacetonato Copper(I) Vinyltrimethylsilane, Journal of The Electrochemical Society, vol.140, issue.5, p.1434, 1993.
DOI : 10.1149/1.2221574

T. T. Kodas, T. H. Baum, and P. B. , Gold crystal growth by photothermal laser-induced chemical vapor deposition, Journal of Crystal Growth, vol.87, issue.2-3, p.378, 1988.
DOI : 10.1016/0022-0248(88)90192-3

T. Ward, T. T. Kodas, and R. L. Jackson, Kinetics of laser???photochemical deposition by gas???phase dissociation, Journal of Applied Physics, vol.69, issue.2, p.1000, 1991.
DOI : 10.1063/1.347414

D. H. Kim, R. H. Wentorf, and W. N. Gill, Metallization and Processing for Semiconductor Devices and Circuits-II, p.107, 1992.

G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy, p.398, 1989.

S. S. Yoon, J. S. Min, and J. S. Chun, Effects of the deposition temperature on the resistivity of copper films produced by low-pressure metal-organic chemical vapour deposition on a TiN barrier layer, Journal of Materials Science, vol.126, issue.37, p.2029, 1995.
DOI : 10.1007/BF00353029

K. M. Byun and W. J. Lee, Films, Japanese Journal of Applied Physics, vol.43, issue.5A, p.2655, 2004.
DOI : 10.1143/JJAP.43.2655

C. A. Chang, Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures, Journal of Applied Physics, vol.67, issue.1, p.566, 1990.
DOI : 10.1063/1.345194

A. Cros, M. O. Aboelfotoh, and K. N. Tu, Formation, oxidation, electronic, and electrical properties of copper silicides, Journal of Applied Physics, vol.67, issue.7, p.3328, 1990.
DOI : 10.1063/1.345369

J. D. Mcbrayer, R. M. Swanson, and T. W. Sigmon, Diffusion of Metals in Silicon Dioxide, Journal of The Electrochemical Society, vol.133, issue.6, p.1242, 1986.
DOI : 10.1149/1.2108827

S. H. Corn, J. L. Falconer, and A. W. Czanderna, The copper???silicon interface: Composition and interdiffusion, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.6, issue.3, p.1012, 1998.
DOI : 10.1116/1.575620

M. A. Nicolet, Diffusion barriers in thin films, Thin Solid Films, vol.52, issue.3, p.415, 1978.
DOI : 10.1016/0040-6090(78)90184-0

M. T. Wang, Y. C. Lin, and M. C. Chen, Barrier Properties of Very Thin Ta and TaN Layers Against Copper Diffusion, Journal of The Electrochemical Society, vol.145, issue.7, p.2538, 1998.
DOI : 10.1149/1.1838675

S. M. Rossnagel and J. , Characteristics of ultrathin Ta and TaN films, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.6, p.2328, 2002.
DOI : 10.1116/1.1520556

S. M. Rossnagel and H. Kim, Diffusion barrier properties of very thin TaN with high nitrogen concentration, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.6, p.2550, 2003.
DOI : 10.1116/1.1625953

O. Adciello, S. Chevacaroenkul, M. S. Ameen, and J. Duarte, Controlled ion beam sputter deposition of W/Cu/W layered films for microelectronic applications, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.9, issue.3, p.625, 1991.
DOI : 10.1116/1.577377

D. H. Zhang, S. W. Loh, C. Y. Li, R. Liu, A. T. Wee et al., TECHNOLOGY, Surface Review and Letters, vol.08, issue.05, p.533, 2001.
DOI : 10.1142/S0218625X01001269

URL : https://hal.archives-ouvertes.fr/hal-01361004

Y. L. Chin, B. S. Chiou, and W. F. Wu, Effect of the Tantalum Barrier Layer on the Electromigration and Stress Migration Resistance of Physical-Vapor-Deposited Copper Interconnect, Japanese Journal of Applied Physics, vol.41, issue.Part 1, No. 5A, p.3057, 2002.
DOI : 10.1143/JJAP.41.3057

C. C. Chang, J. S. Chen, and W. S. Hsu, Failure Mechanism of Amorphous and Crystalline Ta-N Films in the Cu/Ta-N/Ta/SiO[sub 2] Structure, Journal of The Electrochemical Society, vol.151, issue.11, p.746, 2004.
DOI : 10.1149/1.1803836

A. A. Istratov and E. R. Weber, Physics of Copper in Silicon, Journal of The Electrochemical Society, vol.149, issue.1, p.21, 2002.
DOI : 10.1149/1.1421348

C. Y. Li, L. He, J. J. We, Y. Qian, L. T. Koh et al., METALLIZATION, Surface Review and Letters, vol.08, issue.05, p.459, 2001.
DOI : 10.1142/S0218625X01001221

URL : https://hal.archives-ouvertes.fr/hal-00922467

Q. Xie, X. P. Qu, J. J. Tan, Y. L. Jiang, M. Zhou et al., Superior thermal stability of Ta/TaN bi-layer structure for copper metallization, Applied Surface Science, vol.253, issue.3, p.1666, 2006.
DOI : 10.1016/j.apsusc.2006.03.002

M. Traving, I. Zienert, E. Zschech, G. Schindler, W. Steinhogl et al., Phase analysis of TaN/Ta barrier layers in sub-micrometer trench structures for Cu interconnects, Applied Surface Science, vol.252, issue.1, p.11, 2005.
DOI : 10.1016/j.apsusc.2005.01.104

S. M. Rossnagel and J. , Characteristics of ultrathin Ta and TaN films, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.6, p.2328, 2002.
DOI : 10.1116/1.1520556

K. M. Yin, L. Chang, F. R. Chen, J. J. Kai, C. C. Chang et al., Oxidation of Ta diffusion barrier layer for Cu metallization in thermal annealing, Thin Solid Films, vol.388, issue.1-2, p.27, 2001.
DOI : 10.1016/S0040-6090(01)00782-9

P. Motte, M. Proust, J. Torres, Y. Gobil, Y. Morand et al., TiN-CVD process optimization for integration with Cu-CVD, Microelectronic Engineering, vol.50, issue.1-4, p.369, 2000.
DOI : 10.1016/S0167-9317(99)00304-4

P. Doppelt and W. Patent, Fluorine-free metallic complexes for gas-phase chemical metal deposition, 2004.

H. Lang, M. Leschke, M. Melter, B. Walfort, K. Kohler et al., Ein- und zweikernige Kupfer(I)- und Silber(I)-Phosphan-Komplexe mit??-Diketonato-Teilstrukturen, Zeitschrift f??r anorganische und allgemeine Chemie, vol.629, issue.1213, p.2371, 2003.
DOI : 10.1002/zaac.200300253

N. Roth, A. Jakob, T. Waechtler, S. E. Schulz, T. Gessner et al., Phosphane copper(I) complexes as CVD precursors, Surface and Coatings Technology, vol.201, issue.22-23, p.9089, 2007.
DOI : 10.1016/j.surfcoat.2007.05.004

C. G. Dupuy, D. B. Beach, J. E. Hurst, and J. M. Jasinski, Laser induced deposition of copper from (triethylphosphine)cyclopentadienylcopper(I), Chemistry of Materials, vol.1, issue.1, p.16, 1989.
DOI : 10.1021/cm00001a008

D. B. Beach, F. K. Legoues, and C. K. Hu, Low-temperature chemical vapor deposition of high purity copper from an organometallic source, Chemistry of Materials, vol.2, issue.3, p.216, 1990.
DOI : 10.1021/cm00009a002

M. J. Hampden-smith, T. T. Kodas, M. Paffett, J. D. Farr, and H. K. Shin, Chemical vapor deposition of copper from copper(I) trimethylphosphine compounds, Chemistry of Materials, vol.2, issue.6, p.636, 1990.
DOI : 10.1021/cm00012a007

D. Blessmann, A. Graefe, R. Heine, F. Jansen, T. Kruck et al., Organometallic compounds: the chemist's contribution to new electronic materials, Materials Science and Engineering: B, vol.17, issue.1-3, p.104, 1993.
DOI : 10.1016/0921-5107(93)90089-6

F. A. Cotton and J. Takats, Structure of triphenylphosphine-(pentahaptocyclopentadienyl)copper (I), Journal of the American Chemical Society, vol.92, issue.8, p.2353, 1970.
DOI : 10.1021/ja00711a026

F. A. Coton and G. Wilkinson, Advanced Inorgnic Chemistry, 1988.

T. H. Lemmen, G. V. Goeder, J. C. Huffman, R. L. Gerts, and K. G. Caulton, Alcohol elimination chemistry of tetrakis(tert-butoxocopper), Inorganic Chemistry, vol.29, issue.19, p.3680, 1990.
DOI : 10.1021/ic00344a012

D. X. Ye, B. Carrow, S. Pimanpang, H. Bakhru, G. A. Ten-eyck et al., Evaluation of a Novel Cu(I) Precursor for Chemical Vapor Deposition, Electrochemical and Solid-State Letters, vol.8, issue.7, p.85, 2005.
DOI : 10.1149/1.1922868

B. Lim, A. Rahtu, J. S. Park, and R. G. Gordon, Synthesis and Characterization of Volatile, Thermally Stable, Reactive Transition Metal Amidinates, Inorganic Chemistry, vol.42, issue.24, p.7951, 2003.
DOI : 10.1021/ic0345424

Z. Li, S. T. Barry, and R. G. Gordon, Synthesis and Characterization of Copper(I) Amidinates as Precursors for Atomic Layer Deposition (ALD) of Copper Metal, Inorganic Chemistry, vol.44, issue.6, p.1728, 2005.
DOI : 10.1021/ic048492u

H. Choi and S. Hwang, -Butyl 3-Oxobutanoate Complexes as Precursors for Chemical Vapor Deposition of Copper, Chemistry of Materials, vol.10, issue.9, p.2326, 1998.
DOI : 10.1021/cm980343k

URL : https://hal.archives-ouvertes.fr/hal-00857436

T. H. Baum and C. E. Larson, A novel copper complex and CVD precursor: (.eta.2-butyne)copper(I) hexafluoroacetylacetonate, Chemistry of Materials, vol.4, issue.2, p.365, 1992.
DOI : 10.1021/cm00020a025

T. H. Baum, C. E. Larson, and J. , Chemical Vapor Deposited Copper from Alkyne Stabilized Copper (I) Hexafluoroacetylacetonate Complexes, Journal of The Electrochemical Society, vol.140, issue.1, p.154, 1993.
DOI : 10.1149/1.2056078

F. R. Hartley, Metal-Olefin and -Acetylene Bonding in Complexes, Angewandte Chemie International Edition in English, vol.1, issue.7, p.596, 1972.
DOI : 10.1002/anie.197205961

U. Rosenthal, G. Oehme, V. V. Burlakov, P. V. Petrovski, V. B. Suhr et al., 13C1H NMR studies of selected transition metal alkyne complexes, Journal of Organometallic Chemistry, vol.391, issue.1, p.119, 1990.
DOI : 10.1016/0022-328X(90)80160-2

B. W. Davies and N. C. Payne, Studies on metal-acetylene complexes, Journal of Organometallic Chemistry, vol.99, issue.2, p.315, 1975.
DOI : 10.1016/S0022-328X(00)88462-4

P. Doppelt and T. H. Baum, Alkyne complexes of copper(I) (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato): syntheses and characterization of ??2-bis(trimethylsilyl)acetylene) copper(I) (hfac), (??-??2-bis(trimethylsily)acetylene) bis(copper(I) (hfac) and a series of (??2-alkyne) Cu(hfac) complexes, Journal of Organometallic Chemistry, vol.517, issue.1-2, p.53, 1996.
DOI : 10.1016/0022-328X(96)06113-X

M. Karplus and J. A. Pople, Theory of Carbon NMR Chemical Shifts in Conjugated Molecules, The Journal of Chemical Physics, vol.38, issue.12, p.2803, 1963.
DOI : 10.1063/1.1733605

J. A. Pople, The theory of carbon chemical shifts in N.M.R., Molecular Physics, vol.7, issue.4, p.301, 1963.
DOI : 10.1103/PhysRev.80.563

J. S. Thompson, A. Z. Bradley, K. H. Park, K. D. Dobbs, and W. Marshall, Copper(I) Complexes with Bis(trimethylsilyl)acetylene:?? Role of Ancillary Ligands in Determining ?? Back-Bonding Interactions, Organometallics, vol.25, issue.11, p.2712, 2006.
DOI : 10.1021/om060162p

K. H. Park and W. J. Marshall, -Unsymmetrically Substituted 1,3-Diketimines as Precursors for Cu Metal Deposition via CVD or ALD, Journal of the American Chemical Society, vol.127, issue.26, p.9330, 2005.
DOI : 10.1021/ja051158s

URL : https://hal.archives-ouvertes.fr/hal-00458708

G. A. Peterson, J. E. Parmeter, C. A. Apblett, M. F. Gonzales, P. M. Smith et al., Enhanced Chemical Vapor Deposition of Copper from (hfac)Cu(TMVS) Using Liquid Coinjection of TMVS, Journal of The Electrochemical Society, vol.142, issue.3, p.939, 1995.
DOI : 10.1149/1.2048562

T. Y. Chen, J. Vaissermann, E. Ruiz, J. P. Sénateur, and P. Doppelt, 2-Methyl-1-hexen-3-yne Lewis Base Stabilized ??-Diketonate Copper(I) Complexes:?? X-ray Structures, Theoretical Study, and Low-Temperature Chemical Vapor Deposition of Copper Metal, Chemistry of Materials, vol.13, issue.11, p.3993, 2001.
DOI : 10.1021/cm0012318

C. Jun, Y. T. Kim, J. Baek, H. J. Yoon, and D. Kim, Growth behavior of copper metalorganic chemical vapor deposition using the (hfac)Cu(VTMOS) precursor on titanium nitride substrates, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.14, issue.6, p.3214, 1996.
DOI : 10.1116/1.580215

J. Son, M. Park, and S. Rhee, Growth rate and microstructure of copper thin films deposited with metal-organic chemical vapor deposition from hexafluoroacetylacetonate copper(I) allyltrimethylsilane, Thin Solid Films, vol.335, issue.1-2, p.229, 1998.
DOI : 10.1016/S0040-6090(98)00868-2

S. M. Sze, VLSI Technology, p.411, 1988.

R. Kroger, M. Eizenberg, D. Cong, N. Yoshida, L. Y. Chen et al., Properties of Copper Films Prepared by Chemical Vapor Deposition for Advanced Metallization of Microelectronic Devices, Journal of The Electrochemical Society, vol.146, issue.9, p.3248, 1999.
DOI : 10.1149/1.1392462

S. Vidal, Subjet : 'La technique MOCVD pour métalliser des surfaces polymères thermosensible à partir de complexes de cuivre (I), p.77, 1999.

D. W. Allen and J. Haigh, The structure of very thin gold layers produced by metalorganic chemical vapour deposition, Applied Organometallic Chemistry, vol.62, issue.1, p.83, 1995.
DOI : 10.1002/aoc.590090112

M. M. Banaszak-holl, P. F. Seidler, S. P. Kowalczyl, and F. R. Mcfeely, Surface reactivity of alkylgold(I) complexes: substrate-selective chemical vapor deposition of gold from RAuP(CH3)3 (R = CH2CH3, CH3) at remarkably low temperatures, Inorganic Chemistry, vol.33, issue.3, p.510, 1994.
DOI : 10.1021/ic00081a019

M. M. Banaszak, P. F. Seidler, S. P. Kowalczyl, and F. R. Mcfeely, Low???temperature selective???area deposition of metals: Chemical vapor deposition of gold from ethyl(trimethylphosphine)gold(I), Applied Physics Letters, vol.62, issue.13, p.1475, 1993.
DOI : 10.1063/1.108663

J. L. Davidson, P. John, P. G. Roberts, M. G. Jubber, and J. I. Wilson, Laser Photochemical Deposition of Gold from Trialkylphosphine Alkylgold(I) Complexes, Chemistry of Materials, vol.6, issue.10, p.1712, 1994.
DOI : 10.1021/cm00046a025

J. L. Davidson, P. John, D. K. Milne, P. G. Roberts, M. G. Jubber et al., The pyrolytic LCVD of high-purity gold tracks from alkyl (trialkylphosphine) gold(I) complexes, Advanced Materials for Optics and Electronics, vol.59, issue.1-2, p.3, 1993.
DOI : 10.1002/amo.860020103

D. Blessmann, A. Grafe, R. Heinen, F. Jansen, T. Kruck et al., Organometallic compounds: the chemist's contribution to new electronic materials, Materials Science and Engineering: B, vol.17, issue.1-3, p.104, 1993.
DOI : 10.1016/0921-5107(93)90089-6

F. Jansen and T. Kruck, Promising new precursors for the CVD of gold, Advanced Materials, vol.2, issue.3, p.297, 1995.
DOI : 10.1002/adma.19950070312

R. J. Puddephatt and I. Treurnicht, Volatile organogold compounds [AuR(CNR1)]: Their potential for chemical vapour deposition of gold, Journal of Organometallic Chemistry, vol.319, issue.1, p.129, 1987.
DOI : 10.1016/0022-328X(87)80355-8

N. H. Dryden, J. G. Shapter, L. L. Coatsworth, P. R. Norton, and R. J. Puddenphatt, [CF3Au(C.tplbond.NMe)] as a precursor for CVD of gold, Chemistry of Materials, vol.4, issue.5, p.979, 1992.
DOI : 10.1021/cm00023a009

S. Komiya and J. K. Kochi, Reversible linkage isomerisms of .beta.-diketonato ligands. Oxygen-bonded and carbon-bonded structures in gold(III) acetylacetonate complexes induced by phosphines, Journal of the American Chemical Society, vol.99, issue.11, p.3695, 1977.
DOI : 10.1021/ja00453a030

C. E. Larson, T. H. Baum, and R. L. Jackson, Chemical Vapor Deposition of Gold, Journal of The Electrochemical Society, vol.134, issue.1, p.266, 1987.
DOI : 10.1149/1.2100427

K. Holloway, S. P. Zuhoski, S. Reynols, and C. Matuszewski, Morphology and Deposition Conditions of CVD Au Films, MRS Proceedings, vol.35, p.409, 1991.
DOI : 10.1116/1.583481

M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, and M. Haruta, Deposition of gold nanoparticles on silica by CVD of gold acethylacetonate, Studies in Surface Science and Catalysis, vol.118, p.277, 1998.
DOI : 10.1016/S0167-2991(98)80192-4

T. H. Baum and C. R. Jones, Laser chemical vapor deposition of gold: Part II, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.4, issue.5, p.1187, 1986.
DOI : 10.1116/1.583481

E. Feurer and H. Suhr, Preparation of gold films by plasma-CVD, Applied Physics A Solids and Surfaces, vol.31, issue.II, p.171, 1987.
DOI : 10.1007/BF00626420

R. E. Sievers, B. W. Ponder, M. L. Morris, and R. W. Moshier, Gas Phase Chromatography of Metal Chelates of Acetylacetone, Trifluoroacetylacetone, and Hexafluoroacetylacetone, Inorganic Chemistry, vol.2, issue.4, p.693, 1963.
DOI : 10.1021/ic50008a006

X. Xu, T. H. Baum, and A. L. Rheingold, New Precursors for Chemical Vapor Deposition of Iridium, Chemistry of Materials, vol.10, issue.9, p.2329, 1998.
DOI : 10.1021/cm980346x

H. Uchida, N. Saitou, M. Satou, M. Tebakari, and K. Ogi, Properties of A New Liquid Organo Gold Compound for MOCVD, MRS Proceedings, vol.204, p.293, 1994.
DOI : 10.1143/JJAP.31.4403

A. A. Bessonov, N. B. Morozova, N. V. Gelfond, P. P. Semyannikov, S. V. Trubin et al., Dimethylgold(III) carboxylates as new precursors for gold CVD, Surface and Coatings Technology, vol.201, issue.22-23, p.9099, 2007.
DOI : 10.1016/j.surfcoat.2007.04.030

A. Tamaki and J. K. Kochi, Formation and decomposition of alkyl-gold(I) complexes, Journal of Organometallic Chemistry, vol.61, p.441, 1973.
DOI : 10.1016/S0022-328X(00)86574-2

A. Grafe and T. Kruck, ??bergangsmetall-trifluormethyl-komplexe: Erste trifluormethyl-komplexe von gold mit fluorphosphan-liganden, Journal of Organometallic Chemistry, vol.506, issue.1-2, p.31, 1996.
DOI : 10.1016/0022-328X(95)05637-5

F. Schodel, M. Bolte, M. Wagner, and H. W. Lerner, Chlor(trifluorphosphan)gold(I): [Au(PF3)Cl], Zeitschrift f??r anorganische und allgemeine Chemie, vol.58, issue.4, p.652, 2006.
DOI : 10.1002/zaac.200500453

F. H. Allen, The Cambridge Structural Database: a quarter of a million crystal structures and rising, Acta Crystallographica Section B Structural Science, vol.58, issue.3, p.380, 2002.
DOI : 10.1107/S0108768102003890

P. G. Jones and E. Bembenek, Low-temperature redetermination of the structures of three gold compounds, Journal of Crystallographic and Spectroscopic Research, vol.23, issue.4, p.397, 1992.
DOI : 10.1007/BF01195399

I. Utke, B. Dwir, K. Leifer, F. Cicoira, P. Doppelt et al., Electron beam induced deposition of metallic tips and wires for microelectronics applications, Microelectronic Engineering, vol.53, issue.1-4, p.261, 2000.
DOI : 10.1016/S0167-9317(00)00311-7

C. Schoessler, J. Urban, and H. W. Koops, Conductive supertips for scanning probe applications, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.4, p.1535, 1997.
DOI : 10.1116/1.589394

A. Folch, J. Tejada, C. H. Peters, and M. S. Wrighton, Electron beam deposition of gold nanostructures in a reactive environment, Applied Physics Letters, vol.66, issue.16, p.2080, 1995.
DOI : 10.1063/1.113909

P. Hoffmann, I. Utke, F. Cicoira, B. Dwir, K. Leifer et al., Focused Electron Beam Induced Deposition of Gold and Rhodium, MRS Proceedings, vol.44, p.171, 2000.
DOI : 10.1063/1.113909

H. Kunkely and A. Vogler, Photochemistry of chlorocarbonyl gold(I), Journal of Organometallic Chemistry, vol.541, issue.1-2, p.177, 1997.
DOI : 10.1016/S0022-328X(97)00049-1

M. Okada, M. Nakamura, K. Moritani, and T. Kasai, Dissociative adsorption of hydrogen on thin Au films grown on Ir{}, Surface Science, vol.523, issue.3, p.218, 2003.
DOI : 10.1016/S0039-6028(02)02408-1

T. T. Kodas and M. J. Hampden-smith, The Chemistry of Metals CVD, p.117, 1994.
DOI : 10.1002/9783527615858

M. A. Bennett and D. J. Patmore, tétrakis (trifluorophosphine) diiridium (I)) a été synthétisé pour la première fois par Ce complexe de couleur bleu foncé est volatil et très sensible à l'air. L'analyse de la structure moléculaire du complexe a montré qu'il est dimèrique avec des ponts chlorure (figure 4.1) [32] . Les deux plans IrCl 2 font un angle dièdre de 107° dont résulte une interaction intramoléculaire Ir?Ir importante (la distance Ir-Ir est de 2.941 Å) La minimisation des contacts F?Cl intramoléculaires force l'ion Ir à sortir de son plan de coordination de 0.20 Å. De plus, les atomes d'iridium sont positionnés en zig-zag et la distance Ir-Ir intermoléculaire est de 3, 3.1 Introduction [IrCl(PF 3 ) 2 ] 2) Å. La structure dinucléaire est similaire à celle observée pour deux produits à base de rhodium : [RhCl(PF 3 ) 2 ] 2 [33] et [RhCl(CO) 2 ] 2 [34] . Toutefois, les interactions Rh?Rh intra-et intermoléculaires, dans ces produits

. Dans-le-cas-de, PF 3 ) 2 ] 2 par exemple, les distances Rh-Rh intra-et intermoléculaire sont respectivement de 2.9709(5)Å et 3.37Å. La plus faible interaction intermoléculaire explique l'apparence physique très différente du complexe par rapport au voisin d'iridium : le complexe de rhodium est en couleur rouge tandis que, RhClIrCl

I. Utke, B. Dwir, K. Leifer, F. Cicoira, P. Doppelt et al., Electron beam induced deposition of metallic tips and wires for microelectronics applications, Microelectronic Engineering, vol.53, issue.1-4, p.261, 2000.
DOI : 10.1016/S0167-9317(00)00311-7

F. Cicoira, K. Leifer, P. Hoffmann, I. Utke, B. Dwir et al., Electron beam induced deposition of rhodium from the precursor [RhCl(PF3)2]2: morphology, structure and chemical composition, Journal of Crystal Growth, vol.265, issue.3-4, p.619, 2004.
DOI : 10.1016/j.jcrysgro.2004.02.006

P. Hoffmann, I. Utke, F. Cicoira, B. Dwir, K. Leifer et al., Focused Electron Beam Induced Deposition of Gold and Rhodium, MRS Proceedings, vol.44, p.171, 2000.
DOI : 10.1063/1.113909

V. E. Ivanov, E. P. Nechiporenko, V. M. Krivoruchko, and V. V. Sagalovich, Crystallization of Refractory Metals From Gas Phase, p.264, 1974.

N. V. Gelfond, I. K. Igumenov, A. I. Boronin, V. I. Bukhtiyarov, M. Y. Smirnov et al., An XPS study of the composition of iridium films obtained by MO CVD, Surface Science, vol.275, issue.3, p.323, 1992.
DOI : 10.1016/0039-6028(92)90804-F

Y. M. Sun, J. P. Endle, K. Smith, R. Whaley, J. G. Mahaffy et al., Iridium film growth with indium tris-acetylacetonate: oxygen and substrate effects, Thin Solid Films, vol.346, issue.1-2, p.100, 1999.
DOI : 10.1016/S0040-6090(98)01458-8

R. Vergas, T. Gato, W. Zhang, and T. Hirai, Epitaxial growth of iridium and platinum films on sapphire by metalorganic chemical vapor deposition, Applied Physics Letters, vol.65, issue.9, p.1094, 1994.
DOI : 10.1063/1.112108

Y. Hua, L. Zhang, L. Cheng, and W. Yang, Structural and morphological characterization of iridium coatings grown by MOCVD, Materials Science and Engineering: B, vol.121, issue.1-2, p.156, 2005.
DOI : 10.1016/j.mseb.2005.03.020

H. D. Kaesz, R. S. Williams, R. F. Hicks, Y. J. Chen, Z. Xue et al., Low-Temperature Organometallic Chemical Vapor Deposition of Transition Metals, MRS Proceedings, vol.759, p.395, 1989.
DOI : 10.1016/S0022-328X(00)88643-X

D. C. Smith, S. G. Pattillo, N. E. Elliott, T. G. Zocco, C. J. Burns et al., Low-temperature Chemical Vapor Deposition of Rhodium and Iridium thin Films, MRS Proceedings, vol.101, p.369, 1990.
DOI : 10.1007/BF00618901

P. Chini and S. Martinengo, Tri(.pi.-allyl)iridium(III), Inorganic Chemistry, vol.6, issue.4, p.837, 1967.
DOI : 10.1021/ic50050a040

J. B. Hoke, E. W. Stern, and H. H. Murray, Low-temperature vapour deposition of high-purity iridium coatings from cyclooctadiene complexes of iridium. Synthesis of a novel liquid iridium chemical vapour deposition precursor, Journal of Materials Chemistry, vol.1, issue.4, p.551, 1991.
DOI : 10.1039/jm9910100551

J. P. Endle, Y. M. Sun, N. Nguyen, S. Madhukar, R. L. Hance et al., Iridium precursor pyrolysis and oxidation reactions and direct liquid injection chemical vapor deposition of iridium films, Thin Solid Films, vol.388, issue.1-2, p.126, 2001.
DOI : 10.1016/S0040-6090(01)00808-2

Y. M. Sun, X. M. Yan, N. Mettlach, J. P. Endle, P. D. Kirsch et al., Precursor chemistry and film growth with (methylcyclopentadienyl) (1,5-cyclooctadiene)iridium, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.18, issue.1, p.10, 2000.
DOI : 10.1116/1.582151

H. Fujisawa, S. Watari, N. Iwamoto, M. Shimizu, T. Furukawa et al., Fabrication of Ir-Based Electrodes by Metal Organic Chemical Vapor Deposition Using Liquid Ir Precursors, Japanese Journal of Applied Physics, vol.45, issue.9B, p.7354, 2006.
DOI : 10.1143/JJAP.45.7354

C. Xu, T. H. Baum, and A. L. Rheingold, New Precursors for Chemical Vapor Deposition of Iridium, Chemistry of Materials, vol.10, issue.9, p.2329, 1998.
DOI : 10.1021/cm980346x

Y. L. Chen, C. S. Liu, Y. Chi, A. J. Carty, S. M. Peng et al., Deposition of Iridium Thin Films Using New IrI CVD Precursors, Chemical Vapor Deposition, vol.8, issue.1, p.17, 2002.
DOI : 10.1002/1521-3862(20020116)8:1<17::AID-CVDE17>3.0.CO;2-3

P. Serp, R. Feurer, P. Kalck, H. Gomes, J. L. Faria et al., A New OMCVD Iridium Precursor for Thin Film Deposition, Chemical Vapor Deposition, vol.7, issue.2, p.59, 2001.
DOI : 10.1002/1521-3862(200103)7:2<59::AID-CVDE59>3.0.CO;2-S

M. A. Bennett and D. J. Patmore, Four- and five-coordinate complexes of rhodium and iridium containing trifluorophosphine, Inorganic Chemistry, vol.10, issue.11, p.2387, 1971.
DOI : 10.1021/ic50105a004

P. Doppelt, L. Ricard, and V. , Crystal structure and study of the volatility of di-.mu.-chloro-tetrakis(trifluorophosphine)dirhodium(I), Inorganic Chemistry, vol.32, issue.6, p.1039, 1993.
DOI : 10.1021/ic00058a048

L. F. Dahl, C. Martell, and D. L. Wampler, Cl, Journal of the American Chemical Society, vol.83, issue.7, p.1761, 1961.
DOI : 10.1021/ja01468a049

P. Doppelt, V. Weigel, and P. Guinot, Mineral precursor for chemical vapor deposition of Rh metallic films, Materials Science and Engineering: B, vol.17, issue.1-3, p.143, 1993.
DOI : 10.1016/0921-5107(93)90096-6

R. H. Horng, D. S. Wuu, L. H. Wu, and M. K. Lee, Formation process and material properties of reactive sputtered IrO2 thin films, Thin Solid Films, vol.373, issue.1-2, p.231, 2000.
DOI : 10.1016/S0040-6090(00)01141-X

P. Suret, F. Cicoira, T. Ohta, P. Doppelt, P. Hoffmann et al., An experimental and theoretical study of [RhCl(PF3)2]2 fragmentation, Physical Chemistry Chemical Physics, vol.5, issue.2, p.268, 2003.
DOI : 10.1039/b206731e

J. L. Taylor, D. E. Ibbotson, and W. H. Weinberg, The chemisorption of oxygen on the (110) surface of iridium???, Surface Science, vol.79, issue.2, p.349, 1979.
DOI : 10.1016/0039-6028(79)90295-4

1. Pr, s, 1H acid, RMN, vol.1, issue.360, pp.1-1

F. Kbr, 1588 (f,? C=O (a)), 1511 (f, ? CO (s), C?C ), pp.2962-2929, 1926.

F. Kbr, 1924 (f, ? C?C ), 1581 (f, ? C=O (a)), 1510 (f,? CO (s), pp.2960-2901

T. Sur, 31 (CH 2 sur hepd), 97.30 (CH sur hepd), 108.4 et 85

L. Microscope-electronique-À-balayage, Du fait que l'épaisseur de films déposés est de ?100-200 nm et les tailles de grains sont inférieures à 100 nm, les observations de l'échantillon doivent être faites à un grossissement > 50000 fois. L'utilisation d'un microscope optique n

F. M. Smith, Measurement of sheet resistivities with the four point probe, The Bell System Technical Journal, p.711, 1958.

H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, Semiconducting Transparent Thin Films, Bristol and Philadelphia, 1995.