Skip to Main content Skip to Navigation
Theses

Méthodes de décomposition de domaine et méthodes d'accélération pour les problèmes multichamps en mécanique non-linéaire

Abstract : We develop herein parallel algorithms for the solution to large nonlinear problems. Applications deal with the simulation of hyperelastic incompressible material underlying large deformations and with the study of porous media. The chosen modelizations requiere both displacement and pressure unknown fields.

We use a finite element strategy associated with a Newton-Raphson solver and a non-overlapping domain decomposition associated with a Krylov iterative solver.

We propose improvements to adapt these approaches to our problems. For more complex cases we define a novel domain decomposition approach, called hybrid approach, which enables to be more respectful with the physics of the phenomena and which unifies the classical approaches. We also propose acceleration strategies for the nonlinear resolution. Eventually an object-oriented framework for the implementation of all the proposed methods is exposed.
Complete list of metadata

Cited literature [97 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00277771
Contributor : Pierre Gosselet <>
Submitted on : Wednesday, May 7, 2008 - 10:15:20 AM
Last modification on : Monday, February 15, 2021 - 10:47:06 AM
Long-term archiving on: : Friday, May 28, 2010 - 6:42:35 PM

Identifiers

  • HAL Id : tel-00277771, version 1

Citation

Pierre Gosselet. Méthodes de décomposition de domaine et méthodes d'accélération pour les problèmes multichamps en mécanique non-linéaire. Mécanique [physics.med-ph]. Université Pierre et Marie Curie - Paris VI, 2003. Français. ⟨tel-00277771⟩

Share

Metrics

Record views

661

Files downloads

1557