A. Thompson, X-Ray data booklet, Lawrance Berckley National Laboratory, 2001.

G. F. Knoll, Radiation Detection and Measurement, 2000.

G. Zanella, The detective quantum efficiency of an imaging detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.359, issue.3, pp.474-477, 1995.
DOI : 10.1016/0168-9002(95)00015-1

G. Zanella, The role of the quantum efficiency on the DQE of an imaging detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.381, issue.1, pp.157-160, 1996.
DOI : 10.1016/0168-9002(96)00712-7

S. M. Gruner, Charge-coupled device area x-ray detectors, Review of Scientific Instruments, vol.73, issue.8, pp.2815-2842, 2002.
DOI : 10.1063/1.1488674

C. Ponchut, Characterization of X-ray area detectors for synchrotron beamlines, Journal of Synchrotron Radiation, vol.13, issue.2, pp.195-203, 2006.
DOI : 10.1107/S0909049505034278

C. Ponchut, Experimental comparison of pixel detector arrays and ccd-based systems for xray area detection on synchrotron beamlines, IEEE Trans. Nucl. Sci, vol.525, pp.1760-1765, 2005.

W. Hillen, Imaging performances of a digital phosphor system, Med.Phys, vol.145, pp.744-751, 1987.

J. P. Moy, Signal-to-noise ratio and spatial resolution in x-ray electronic imagers: Is the MTF a relevant parameter?, Medical Physics, vol.58, issue.8, pp.86-93, 2000.
DOI : 10.1118/1.598859

R. H. Menk, Novel detector systems for time resolved SAXS experiments, Journal of Applied Crystallography, vol.33, issue.3, pp.778-781, 2000.
DOI : 10.1107/S0021889800001448

G. C. Smith, Gas-based detectors for synchrotron radiation, Journal of Synchrotron Radiation, vol.13, issue.2, pp.172-179, 2006.
DOI : 10.1107/S0909049505033923

M. Kocsis, The status of gas-filled detector developments at a third generation synchrotron source (ESRF), Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.471, issue.1-2, pp.103-108, 2001.
DOI : 10.1016/S0168-9002(01)00964-0

G. F. Knoll, Radiation Detection and Measurement, 2000.

G. Charpak, The use of multiwire proportional counters to select and localize charged particles, Nuclear Instruments and Methods, vol.62, issue.3, p.262, 1968.
DOI : 10.1016/0029-554X(68)90371-6

V. Zhukov, A curved Micro-Strip Gas Counter for synchrotron radiation time resolved SAXS/WAXS experiments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.392, issue.1-3, pp.83-88, 1997.
DOI : 10.1016/S0168-9002(97)00205-2

J. E. Bateman, A gas microstrip wide angle X-ray detector for application in synchrotron radiation experiments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.477, issue.1-3, pp.340-346, 2002.
DOI : 10.1016/S0168-9002(01)01862-9

J. E. Bateman, Improving the performance of the MWPC X-ray imaging detector by means of the multi-step avalanche technique, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.239, issue.2, pp.251-259, 1985.
DOI : 10.1016/0168-9002(85)90723-5

G. Charpak, The spherical drift chamber for x-ray imaging applications, Nuclear Instruments and Methods, vol.122, pp.307-312, 1974.
DOI : 10.1016/0029-554X(74)90493-5

R. Kahn, An area-detector diffractometer for the collection of high resolution and multiwavelength anomalous diffraction data in macromolecular crystallography, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.246, issue.1-3, pp.596-603, 1986.
DOI : 10.1016/0168-9002(86)90158-0

P. Rehak, Mipa: A new micro-pattern detector, IEEE. Trans. on Nucl. Sci, pp.44-651, 1997.

A. Oed, Position-sensitive detector with microstrip anode for electron multiplication with gases, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.263, issue.2-3, pp.351-359, 1988.
DOI : 10.1016/0168-9002(88)90970-9

R. Bellazzini, The MicroGap Chamber: a new detector for the next generation of high energy, high rate experiments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.368, issue.1, pp.259-264, 1995.
DOI : 10.1016/0168-9002(95)01273-7

F. Bartol, The C.A.T. Pixel Proportional Gas Counter Detector, Journal de Physique III, vol.6, issue.3, pp.337-347, 1996.
DOI : 10.1051/jp3:1996127

URL : https://hal.archives-ouvertes.fr/jpa-00249460

F. Sauli, GEM: A new concept for electron amplification in gas detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.386, issue.2-3, pp.531-534, 1996.
DOI : 10.1016/S0168-9002(96)01172-2

Y. Giomataris, MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.376, issue.1, pp.29-35, 1996.
DOI : 10.1016/0168-9002(96)00175-1

B. Surrow, Development of tracking detectors with industrially produced GEM foils, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.572, issue.1, pp.201-202, 2007.
DOI : 10.1016/j.nima.2006.10.357

R. A. Lewis, The ???RAPID??? high rate large area X-ray detector system, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.392, issue.1-3, pp.32-41, 1997.
DOI : 10.1016/S0168-9002(97)00211-8

W. E. Spicer, Photoemissive, Photoconductive, and Optical Absorption Studies of Alkali-Antimony Compounds, Physical Review, vol.112, issue.1, pp.114-122, 1958.
DOI : 10.1103/PhysRev.112.114

B. L. Henke, Soft-x-ray-induced secondary-electron emission from semiconductors and insulators: Models and measurements, Physical Review B, vol.19, issue.6, pp.3004-3021, 1979.
DOI : 10.1103/PhysRevB.19.3004

B. L. Henke, 0.1???10???keV x???ray???induced electron emissions from solids???Models and secondary electron measurements, Journal of Applied Physics, vol.48, issue.5, pp.1852-1866, 1977.
DOI : 10.1063/1.323938

L. Malter, Thin Film Field Emission, Physical Review, vol.50, issue.1, pp.48-58, 1936.
DOI : 10.1103/PhysRev.50.48

A. Akkerman, Monte Carlo simulations of secondary electron emission from CsI, induced by 1???10 keV x rays and electrons, Journal of Applied Physics, vol.72, issue.11, pp.5429-5436, 1992.
DOI : 10.1063/1.351984

A. Gibrekhterman, Characteristics of secondary electron emission from CsI induced by x rays with energies up to 100 keV, Journal of Applied Physics, vol.74, issue.12, pp.7506-7509, 1993.
DOI : 10.1063/1.354975

A. Gibrekhterman, Spatial characteristics of electron??? and photon???induced secondary electron cascades in CsI, Journal of Applied Physics, vol.76, issue.3, pp.1676-1680, 1994.
DOI : 10.1063/1.357708

P. Miné, Photoemissive materials and their application to gaseous detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.343, issue.1, pp.99-108, 1994.
DOI : 10.1016/0168-9002(94)90538-X

J. Teichert, Report on photocathodes, 2004.

W. C. Walker, Photoelectric Yields in the Vacuum Ultraviolet, Journal of Applied Physics, vol.26, issue.11, pp.1366-1371, 1955.
DOI : 10.1063/1.1721909

W. F. Krolikowski, Photoemission Studies of the Noble Metals. II. Gold, Physical Review B, vol.1, issue.2, pp.478-487, 1970.
DOI : 10.1103/PhysRevB.1.478

R. H. Day, Photoelectric quantum efficiencies and filter window absorption coefficients from 20 eV to 10 KeV, Journal of Applied Physics, vol.52, issue.11, pp.6965-6973, 1981.
DOI : 10.1063/1.328653

B. L. Henke, The characterization of x???ray photocathodes in the 0.1???10???keV photon energy region, Journal of Applied Physics, vol.52, issue.3, pp.1509-1520, 1981.
DOI : 10.1063/1.329789

G. W. Fraser, The characterization of gold x-ray photocathodes, Nucl. Inst. and Meth. A, vol.321, pp.376-380, 1992.

H. Henneken, Absolute total electron yield of Au(111) and Cu(111) surfaces, Journal of Electron Spectroscopy and Related Phenomena, vol.101, issue.103, pp.1019-1024, 1999.
DOI : 10.1016/S0368-2048(98)00384-3

M. Hirata, X-ray detection characteristics of gold photocathodes and microchannel plates using synchrotron radiation (10 eV???82.5 keV), Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.66, issue.4, pp.479-484, 1991.
DOI : 10.1016/0168-583X(92)95422-N

S. Gosavi, Stability improvement at high emission densities for gold thin film photocathodes used in advanced electron beam lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.19, issue.6, pp.2591-2597, 2001.
DOI : 10.1116/1.1418414

M. J. Powers, Observation of a negative electron affinity for boron nitride, Applied Physics Letters, vol.67, issue.26, pp.3912-3914, 1995.
DOI : 10.1063/1.115315

G. A. Allen, The performance of negative electron affinity photocathodes, Journal of Physics D: Applied Physics, vol.4, issue.2, pp.308-317, 1971.
DOI : 10.1088/0022-3727/4/2/317

S. H. Kong, Photocathodes for free electron lasers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.358, issue.1-3, pp.272-275, 1995.
DOI : 10.1016/0168-9002(94)01425-6

K. A. Elamrawi, Preparation and operation of hydrogen cleaned GaAs(100) negative electron affinity photocathodes, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.17, issue.3, pp.823-831, 1999.
DOI : 10.1116/1.581654

F. S. Shahedipour, Efficient GaN photocathodes for low-level ultraviolet signal detection, IEEE Journal of Quantum Electronics, vol.38, issue.4, pp.333-335, 2002.
DOI : 10.1109/3.992544

M. P. Ulmer, Progress in the fabrication of gan photocathodes, Proc. SPIE, pp.246-253, 2001.

P. Sandvik, AlxGa1???xN for solar-blind UV detectors, Journal of Crystal Growth, vol.231, issue.3, pp.366-370, 2001.
DOI : 10.1016/S0022-0248(01)01467-1

D. J. Leopold, High quantum efficiency ultraviolet/blue AlGaN???InGaN photocathodes grown by molecular-beam epitaxy, Journal of Applied Physics, vol.98, issue.4, pp.43525-43526, 2005.
DOI : 10.1063/1.1999026

E. A. Taft, Photoelectric emission from the valence band of some alkali halides, Journal of Physics and Chemistry of Solids, vol.3, issue.1-2, p.1, 1957.
DOI : 10.1016/0022-3697(57)90041-0

J. Edgecumbe, Attenuation Length for Secondary Electrons in Bulk???Density KCl and CsI, Journal of Applied Physics, vol.37, issue.7, pp.2916-2917, 1965.
DOI : 10.1063/1.1782156

J. Edgecumbe, CsI as a High???Gain Secondary Emission Material, Journal of Applied Physics, vol.37, issue.8, pp.3321-3322, 1966.
DOI : 10.1063/1.1703207

V. Dandendorf, Progress in ultrafast CsI-photocathode gaseous imaging photomultipliers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.308, issue.3, pp.519-532, 1991.
DOI : 10.1016/0168-9002(91)90065-X

E. Shefer, Photoelectron transport in CsI and CsBr coating films of alkali antimonide and CsI photocathodes, Journal of Applied Physics, vol.92, issue.8, pp.4758-4771, 1993.
DOI : 10.1063/1.1505684

A. Breskin, New ideas in CsI-based photon detectors: wire photomultipliers and protection of the photocathodes, IEEE Transactions on Nuclear Science, vol.42, issue.4, pp.298-305, 1995.
DOI : 10.1109/23.467832

J. E. Lees, Thermally annealed soft X-ray photocathodes, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.381, issue.2-3, pp.453-461, 1996.
DOI : 10.1016/S0168-9002(96)00681-X

H. S. Cho, A columnar cesium iodide (CsI) drift plane layer for gas avalanche microdetectors, IEEE Transactions on Nuclear Science, vol.45, issue.3, pp.275-279, 1998.
DOI : 10.1109/23.682393

L. Periale, Evaluation of various planar gaseous detectors with CsI photocathodes for the detection of primary scintillation light from noble gases, conference paper Presented at the 1st Topical Symposium on Functional Breast Imaging with Advanced Detectors, 2001.
DOI : 10.1016/S0168-9002(02)01918-6

E. Schyns, Status of large area CsI photocathode developments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.494, issue.1-3, pp.441-446, 2002.
DOI : 10.1016/S0168-9002(02)01520-6

A. Di and . Mauro, Study of the quantum efficiency of csi photo-cathodes exposed to oxygen and water vapour, Nucl. Inst. and Meth. A, vol.461, pp.584-586, 2001.

A. Breskin, Electric field effects on the quantum efficiency of CsI photocathodes in gas media, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.344, issue.3, pp.537-546, 1994.
DOI : 10.1016/0168-9002(94)90874-5

T. H. Dias, and incident VUV photon energy, Journal of Physics D: Applied Physics, vol.37, issue.4, pp.540-549, 2002.
DOI : 10.1088/0022-3727/37/4/006

R. Aleksan, Measurements of CsI photocathode quantum efficiency in methane, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.343, issue.1, pp.173-191, 1994.
DOI : 10.1016/0168-9002(94)90547-9

S. Hanany, Measurement of the electron yield of CsI with polarized x rays, Physical Review B, vol.48, issue.2, pp.701-709, 1993.
DOI : 10.1103/PhysRevB.48.701

A. S. Tremsin, X-ray-induced radiation damage in CsI, Gadox, Y2O2S and Y2O3 thin films, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.459, issue.3, pp.543-551, 2001.
DOI : 10.1016/S0168-9002(00)01059-7

G. Ward, The holodeck ray cache: an interactive rendering system for global illumination in nondiffuse environments, ACM Transactions on Graphics, vol.18, issue.4, pp.361-98, 1999.
DOI : 10.1145/337680.337722

. Agostinelli, Geant4???a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.506, issue.3, pp.250-303, 2003.
DOI : 10.1016/S0168-9002(03)01368-8

URL : https://hal.archives-ouvertes.fr/in2p3-00020246

J. C. Butcher, Electron number distribution in electron-photon showers in air and aluminum absorbers, Nucl. Phys, issue.20, 1960.

R. Ford, The egs4 code system, Tech. Rep, vol.265, 1985.

F. Salvat, A code system for monte carlo simulation of electron and photon transport, Workshop Proceedings, 2006.

D. Cullen, Epdl97: the evaluated photon data library, 97 version
DOI : 10.2172/295438

S. T. Perkins, Tables and graphs of electron-interaction cross-sections from 10 ev to 100 gev derived from the llnl evaluated electron data library (eedl), pp.1-100
DOI : 10.2172/5691165

S. T. Perkins, Tables and graphs of atomic subshell and relaxation data derived from the llnl evaluated atomic data library (eadl), pp.1-100

H. H. Andersen, The stopping and ranges of ions in Matter, 1977.

J. F. Ziegler, The Stopping and Range of Ions in Matter, 1977.
DOI : 10.1007/978-1-4615-8103-1_3

H. H. Andersen, The stopping and ranges of ions in Solid, 1985.

A. Allisly, Stopping powers and ranges for protons and alpha particles, tech. rep., ICRU, 1993.

A. Gibrekhterman, Characteristics of secondary electron emission from CsI induced by x rays with energies up to 100 keV, Journal of Applied Physics, vol.74, issue.12, pp.7506-7509, 1993.
DOI : 10.1063/1.354975

T. Boutboul, An improved model for ultraviolet- and x-ray-induced electron emission from CsI, Journal of Applied Physics, vol.86, issue.10, pp.5841-5849, 1999.
DOI : 10.1063/1.371601

B. L. Henke, The characterization of x???ray photocathodes in the 0.1???10???keV photon energy region, Journal of Applied Physics, vol.52, issue.3, pp.1509-1520, 1981.
DOI : 10.1063/1.329789

J. Barba, Penelope: An algorithm for monte carlo simulation of the penetration and energy loss of electrons and positrons in matter, Nucl. Inst. and Meth. B, vol.100, pp.31-46, 1995.

F. Salvat, Penelope, a code system for monte carlo simulation of electron and photon transport, Proceedings of a Workshop/Training Course, pp.92-64, 2001.

J. M. Fernández-varea, Private communication during hands on session of the workshop on use of monte carlo techniques for design and analysis, 2006.

B. L. Henke, 0.1???10???keV x???ray???induced electron emissions from solids???Models and secondary electron measurements, Journal of Applied Physics, vol.48, issue.5, pp.1852-1866, 1977.
DOI : 10.1063/1.323938

G. Charpak, Some studies of the applications of CsI photocathodes in gaseous detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.333, issue.2-3, pp.391-398, 1993.
DOI : 10.1016/0168-9002(93)91181-L

J. Van, A microgap photomultiplier for the read-out of a laf 3 : N d(10÷) scintillator, Nucl. Inst. and Meth. A, vol.410, pp.229-237, 1998.

F. Garibaldi, A PET scanner employing CsI films as photocathode, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.525, issue.1-2, pp.263-267, 2004.
DOI : 10.1016/j.nima.2004.03.071

A. Laikhtman, Absolute quantum photoyield of diamond thin films: Dependence on surface preparation and stability under ambient conditions, Applied Physics Letters, vol.73, issue.10, pp.1433-1435, 1998.
DOI : 10.1063/1.121967

J. Roberston, Band diagram of diamond and diamond-like carbon surfaces, Diamond and Related Materials, vol.7, pp.620-625, 1998.

D. Vouagner, Photoemission properties and hydrogen surface coverage of CVD diamond films, Diamond and Related Materials, vol.13, issue.4-8, pp.969-974, 2004.
DOI : 10.1016/j.diamond.2003.11.068

M. Globus, Inorganic Scintillators For Modern And Traditional Applications, National Academy of Sciences of Ukraine, 2005.

E. Shefer, Photoelectron transport in CsI and CsBr coating films of alkali antimonide and CsI photocathodes, Journal of Applied Physics, vol.92, issue.8, pp.4758-4771, 1993.
DOI : 10.1063/1.1505684

D. P. Lowney, Characterization of csi photocathodes at grazing incidence for use in a unit quantum efficiency x-ray streak camera, Review of scientific instruments, vol.7510, pp.3131-3137, 2004.

M. P. Lorikyan, Study of counting characteristics of porous dielectric detectors of radiations, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.515, issue.3, pp.701-717, 2003.
DOI : 10.1016/j.nima.2003.07.029

H. S. Cho, A columnar cesium iodide (CsI) drift plane layer for gas avalanche microdetectors, IEEE Transactions on Nuclear Science, vol.45, issue.3, pp.275-279, 1998.
DOI : 10.1109/23.682393

A. Breskin, Electric field effects on the quantum efficiency of CsI photocathodes in gas media, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.344, issue.3, pp.537-546, 1994.
DOI : 10.1016/0168-9002(94)90874-5

A. Breskin, New ideas in CsI-based photon detectors: wire photomultipliers and protection of the photocathodes, IEEE Transactions on Nuclear Science, vol.42, issue.4, pp.298-305, 1995.
DOI : 10.1109/23.467832

J. M. Nation, Advances in cold cathode physics and technology, Proceedings of the IEEE, vol.87, issue.5, pp.865-889, 1999.
DOI : 10.1109/5.757258

R. M. Bozorth, THE CRYSTAL STRUCTURES OF CESIUM TRI-IODIDE AND CESIUM DIBROMO-IODIDE, Journal of the American Chemical Society, vol.47, issue.6, p.1561, 1925.
DOI : 10.1021/ja01683a009

J. Runsink, Refinement of the crystal structures of (C6H5)4AsI3 and CsI3 at 20??C and at ???160??C, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.28, issue.5, pp.1331-1335, 1972.
DOI : 10.1107/S0567740872004248

T. R. Briggs, The Polyiodides of Cesium???Cesium Iodide, Iodine, and Water at 25??, The Journal of Physical Chemistry, vol.34, issue.9, pp.1951-1960, 1930.
DOI : 10.1021/j150315a008

L. E. Topol, Thermodynamic studies in the polyiodide systems, rubidium iodide-rubidium triiodide, ammonium iodide-ammonium triiodide, cesium iodide-cesium triiodide, and cesium triiodide-cesium tetraiodide, Inorganic Chemistry, vol.7, issue.3, pp.451-454, 1968.
DOI : 10.1021/ic50061a013

V. Dandendorf, Progress in ultrafast CsI-photocathode gaseous imaging photomultipliers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.308, issue.3, pp.519-532, 1991.
DOI : 10.1016/0168-9002(91)90065-X

E. Shefer, Photoelectron transport in CsI and CsBr coating films of alkali antimonide and CsI photocathodes, Journal of Applied Physics, vol.92, issue.8, pp.4758-4771, 1993.
DOI : 10.1063/1.1505684

A. Breskin, New ideas in CsI-based photon detectors: wire photomultipliers and protection of the photocathodes, IEEE Transactions on Nuclear Science, vol.42, issue.4, pp.298-305, 1995.
DOI : 10.1109/23.467832

B. L. Henke, The characterization of x???ray photocathodes in the 0.1???10???keV photon energy region, Journal of Applied Physics, vol.52, issue.3, pp.1509-1520, 1981.
DOI : 10.1063/1.329789

J. E. Lees, Thermally annealed soft X-ray photocathodes, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.381, issue.2-3, pp.453-461, 1996.
DOI : 10.1016/S0168-9002(96)00681-X

G. C. Smith, Gas-based detectors for synchrotron radiation, Journal of Synchrotron Radiation, vol.13, issue.2, pp.172-179, 2006.
DOI : 10.1107/S0909049505033923

G. F. Knoll, Radiation Detection and Measurement, 2000.

H. Sipila, Mathematical treatment of space charge effects in proportional counters, Nuclear Instruments and Methods, vol.176, issue.1-2, pp.381-387, 1980.
DOI : 10.1016/0029-554X(80)90731-4

E. Mathieson, Gain reduction due to space charge in a multiwire proportional chamber irradiated by a uniform beam of rectangular section, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.316, issue.2-3, pp.246-251, 1992.
DOI : 10.1016/0168-9002(92)90906-K

L. Détecteursdétecteursà-gaz-constituent-maintenant-une-technologie-mature, Ils ont comme avantage principal de permettre la fabrication de détecteurs de grande dimension et rapidesàrapidesà un coût acceptable, tout en permettant un fonctionnement en comptage (par opposition aux détecteurs fonctionnants avec desécransdesécrans fluorescents, qui impliquent un mode d'opération en intégration

. Le-mécanisme-qui, ´ ejection de l'´ electronàelectronà l'extérieur de la photocathode est en fait complexe : l'´ electron(s) ´ emisàemisà la suite de l'absorption par effet photoélectrique du photon incident subit une série d'interactions

. Au-cours-de-ce and . Trajet, il ionise lui-même d'autres atomes et crée ainsi une série d'´ electrons chauds secondaires au sein du matériau, Eventuellement, un ou plusieurs de cesélectronscesélectrons peuvent atteindre la surface et quitter la photocathode

P. Cependant and . Quitter-le-matériau, ´ electron doit passer unebarrì ere de potentiel appelée affinité affinitéélectronique dans le cas des semi-conducteurs, ou travail de sortie dans le cas des métaux Du fait de leur thermalisation rapide aprèsaprèséjection de l'atome, peu d'´ electrons peuvent effectivement passer cettebarrì ere et les rendements d'´ emission sont en général faibles

. Le-développement-d, un code de simulation par méthode Monte Carlo introductionàintroductionà la méthode Monte Carlo A la suite de sapremì ere utilisation au cours du Projet ManhattanàManhattanà Los Alamos au lendemain de la seconde guerre mondiale pour le développement de la bombe nucléaire américaine, la méthode Monte Carlo pour la simulation du