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Abstract

We present an experimental investigation of spin-up and spin-down for a linearly stratified

fluid over flat bottom. This study has revealed two very different behaviors depending on

the value of the Burger number, a measure of the relative importance of stratification and

Coriolis effects.

For Burger number> 1, the flow remains remarkably axisymmetric in the bulk of the fluid

in spite of the large Reynolds number, and no instability is observed. The confinement of the

secondary circulation due to the stratification is well described by the theory of Walin (1969).

The theory was scaled using the homogeneous spin-up time scale and thus viscous-diffusion

effects were omitted. However, the non-uniform spin-up of the interior gives rise to verti-

cal flow gradients which introduce viscous-diffusion sooner than anticipated by the theory.

Consequently, the comparison with the theory shows a faster rate of decay of the azimuthal

flow even over the shorter spin-up time scale. An attempt to provide an easy procedure to

include vertical diffusion of momentum in the Walin’s analytical solution is proposed. The

early stage of the flow is correctly described by the addition of viscous-diffusion effects, but

the faster decay rate of the measurements persists over intermediate times.

For Burger numbers < 1, the flow behavior is substantially different. The deeper penetra-

tion of the secondary circulation notably reduces the vertical flow gradients. The decay of the

azimuthal velocity is almost vertically uniform and the development of non-axisymmetric

disturbances is observed. The flow decay is well described in the early stage by the Walin’s

theory, but after the initial agreement the experimental results decay slower than the theoret-

ical predictions. The discrepancies correspond to the onset of the instability, at variance with

Smirnov et al. (2005) claiming that the formation of large-scale eddies provides an additional

mechanism for the transport of angular momentum from the solid boundaries. Neverthe-

less, the radial transport of momentum from the sidewall boundary layer may account for

the stronger decay observed over long times. The classical Eady’s model is shown to be

consistent with the structure of the observed waves in our experimental investigation. Its

derivation by Smirnov et al. (2005) in cylindrical geometry assuming reliable initial condi-

tions allows a reasonable estimation of the growth rate, which was untenable in the classical

theory. Indeed, the mechanism of baroclinic instability becomes the most plausible explana-

tion for the existence of the long-wave instability in spin-up or spin-down process.

Key-words: spin up/down; rotating flow; stratified flow





Résumé

Nous présentons une étude expérimentale du ”spin-up” et ”spin-down” en présence d’une

stratification linéaire sur un fond plat. Deux comportements très différents ont été mis en

évidence selon la valeur du nombre de Burger, une mesure de l’importance relative de la

stratification et des effets de Coriolis.

Pour des nombres de Burger supérieurs à un, l’écoulement est remarquablement ax-

isymétrique en dehors des couches limites, et aucune instabilité n’est observée malgré le

grand nombre de Reynolds. Le confinement de la circulation secondaire du à la stratification

est bien décrit par la théorie de Walin (1969), qui omet la viscosité. Cependant, le ”spin-

up” non-uniforme de l’intérieur provoque des gradients verticaux d’écoulement sensibles

aux effets visqueux. En conséquence, la comparaison avec la théorie montre un taux plus

rapide de décroissance de l’écoulement azimutal. On propose une prise en compte simplifié

de la diffusion verticale de quantité de mouvement dans la solution analytique de Walin.

Aux temps courts, l’écoulement initial est correctement décrit par l’addition d’effets diffusifs

visqueux, mais l’écart entre la théorie et les mesures persiste pour des temps intermédiaires.

Pour des nombres de Burger inférieurs à un, le comportement de l’écoulement est très

différent. La pénétration plus profonde de la circulation secondaire réduit notamment les

gradients verticaux de vitesse. La décroissance de la vitesse azimutale est presque ver-

ticalement uniforme et le développement des perturbations non-axisymmetriques est ob-

servé. Le déclin initial est bien décrit par la solution analytique. Cependant, la décroissance

expérimentale est plus faible que la prédiction théorique pour des temps plus longs. L’écart

correspond à l’apparition d’une instabilité. Ce résultat est en contradiction avec Smirnov et al.

(2005), qui affirment que la formation de tourbillons à grande échelle fournit un mécanisme

supplémentaire pour transporter le moment angulaire des frontières vers l’intérieur. En

revanche, le transport radial de quantité de mouvement des couches limites latérales vers

l’intérieur expliquerait la plus forte décroissance expérimentale aux temps longs. Le modèle

classique d’Eady est cohérent avec les structures expérimentales observées. En considérant

une dérivation de ce modèle par Smirnov et al. (2005), ainsi que des conditions initiales per-

tinentes, nous trouvons une estimation raisonnable du taux de croissance de l’instabilité, ce

qui n’aurait pas été le cas avec la théorie classique d’Eady. Ainsi, le mécanisme de l’instabilité

barocline est l’explication la plus plausible pour l’existence d’une instabilité à grand nombre

d’onde dans les processus de ”spin-up” et ”spin-down”.

Mots-clés: spin up/down; fluide en rotation; fluide stratifié





Riassunto

Questa tesi presenta uno studio sperimentale di ”spin-up” e ”spin-down” nel caso di fluido

linearmente stratificato in presenza di fondo piatto. Due comportamenti molto differenti

sono messi in evidenza a seconda del valore del numero di Burger, che esprime l’importanza

relativa della stratificazione rispetto alla forza di Coriolis.

Nel caso di numero di Burger minore di uno, il flusso rimane assisimmetrico nella regione

interna, e non sono osservate instabilitá. Il confinamento della circolazione secondaria in-

dotto dalla stratificazione é ben descritto dalla teoria di Walin (1969). Questa teoria é derivata

scalando le equazione del moto con il tempo scala di ”spin-up” in caso omogeneo, proce-

dura che omette gli effetti viscosi. Tuttavia, lo ”spin-up” non uniforme nella regione interna

origina gradienti di velocitá lungo la direzione verticale sensibili alla diffusione viscosa. Di

conseguenza, il confronto con la teoria mostra una rateo di decrescita piú rapido del flusso

azimutale giá nel breve tempo scala di ”spin-up”. Viene quindi proposta una procedura

non-rigorosa di inclusione degli effetti viscosi nella soluzione di Walin. Ciò permette di

descrivere correttamente l’evoluzione durante la fase iniziale, sebbene il rateo di decrescita

piú rapido persista su tempi scala intermedi.

Nel caso di numero di Burger maggiore di uno, il comportamento del flusso é sostanzial-

mente differente. La maggior penetrazione della circolazione secondaria nella regione interna

riduce sensibilmente i gradienti verticali di velocitá. La decrescita della velocitá azimutale

é pressochè verticalmente uniforme e perturbazioni non-assisimmetriche si originano. La

decrescita del flusso é ben descritta dalla teoria di Walin durante la fase inziale, ma suc-

cessivamente i risultati sperimentali decrescono meno rapidamente della predizione teorica.

Le incongruitá corrispondono all’insorgenza di instabilitá, in disaccordo con Smirnov et

al. (2005) secondo cui la formazione di vortici a grande scale fornisce un meccanismo ag-

giuntivo per il trasporto di quantitá di moto dalla frontiera. Ciò nonostante, il trasporto

radiale di quantitá di moto appare essere responsabile della consistente decrescita osservata

su tempi scala lunghi. Il modello classico di Eady risulta consistente con la struttura della

perturbazione osservata. La sua derivazione ad opera di Smirnov et al. (2005) in geometria

cilindrica, tenendo conto di condizioni iniziali appropriate, permette una stima corretta del

rateo di crescita dell’instabilitá, inattendibile per mezzo della sola teoria classica. In conclu-

sione, il meccanismo di instabilitá baroclina appare essere la spiegazione piú plausibile per

l’esistenza di instabilitá a grande scala durante il processo di ”spin-up” o ”spin-down”.

Parole chiave: spin up/down; fluido in rotazione; fluido stratificato
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Chapter 1

Introduction

An understanding of the combined effects of rotation and stratification is fundamental to

geophysical flows. When the fluid is homogeneous and the Coriolis force is large compared

with the viscous and inertia forces, the Taylor-Proudman (1917) [72] theorem (Eq.n (2.11))

states that the velocity is uniform along the direction of the rotation vector. However, if the

fluid is stratified the constraints which the Taylor-Proudman theorem imposes on the flow

do not apply, and the fluid can support significant vertical shears even if the rotation axis is

vertical.

When a column of fluid is stretched or squeezed in a rotating fluid, changes in vortic-

ity occur (¶ 2.1). A stable density stratification inhibits vertical motions, therefore altering

drastically the flow dynamics. Moreover, horizontal variations in density can also produce

many interesting motions in a rotating fluid. These horizontal density gradients may either

be due to external boundary conditions or arise from the internal dynamics in response to

some forcing. They provide a source of energy which may be released under appropriate

conditions, the so called baroclinic instability (¶ 2.5), to produce a wide range of important

phenomena.

This thesis concerns the general process by which a fluid in a container adjusts itself to

time-dependent boundary conditions. The fluid, density stratified, is assumed to be in solid

body rotation in a container over flat bottom. The angular velocity of the container is then

impulsively modified, generating a relative flow (primary circulation) which adjusts itself in

time to the new angular velocity of the boundaries. If the angular velocity of the container is

increased (decreased) the process whereby this adjustment occurs has come to be known as

spin-up (spin-down).

1



Introduction

If the impulsive change in angular velocity is much smaller than the final angular ve-

locity of the container, the process is called incremental spin-up and the advective terms in

the equations of motion are negligible. Note that the angular velocity change may also be a

slowly varying function of time, resulting in a process called secular spin-up.

The spin-up of a fluid in a container describes an adjustment mechanism which arises

frequently in both the atmosphere and oceans (e.g., wind-driven flows). In particular, winds

blowing in the along-shore direction with the coastline on the left when facing downstream

cause upwelling in the northern hemisphere (Fig. 1.1). The cross-frontal exchange of shelf and

Fig. 1.1: Where Ekman transport (¶ 3.1.2) moves surface waters away from the coast, these are replaced by denser

water that wells up from below in the process known as coastal upwelling. Note that the continental shelf is the extended

perimeter of each continent. The shelf usually ends at a point of increasing slope, named shelf break. The sea floor below

the break is the continental slope.

slope waters at the shelf break is an important aspect of the general problem of understanding

the transport of heat, salt, pollutants, and nutrients between the shelf and the deep ocean. A

coastal front is susceptible to baroclinic instability revealed in the form of frontally trapped

unstable waves motions, which are responsible for along-front variability and intensified

cross-shelf transport (Barth (1989) [2]).

Certainly, in natural conditions the bottom topography is never flat, but this must not

be seen necessarily as a restriction. In fact, a better understanding of the flow dynamics

in simple geometry such as a circular cylinder is essential for the development of coastal

oceanic models, where various topographic features (e.g., continental slopes, canyons, etc.)

modify the flow behavior (Smirnov et al. (2005) [68]).

The spin-up problem is also central to an understanding of the dissipative mechanisms

for large scale atmospheric and oceanic motions (Pedlosky (1967) [56]), where rotational

2
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effects are dominant (e.g., Ekman layer arrest (Fig. 1.2)).

Moreover, spin-up theory has provided justification for a simple parametrization of

the bottom boundary friction in geophysical flows, essentially as a surface drag linear in

the geostrophic velocity. Numerical and analytical models of large scale flows thus often

assumed that relative vorticity decays exponentially, rather than resolve the boundary layer

itself (MacCready & Rhines (1991) [48]).

1.1 Pioneering Works

The fundamental dynamics of the viscous boundary layer established in a rotating system

when a current in geostrophic balance flows above a rigid boundary was discussed since

1905 by the Swedish oceanographer Ekman [15]. He was even the first to perform spin-up

experiments, changing abruptly from zero to some finite value the rotation rate of a container

filled with fluid (Ekman (1906) [16]). Ekman suspended a light aluminium vane at mid-depth

in homogeneous and stably stratified fluids and measured the rate at which momentum was

transferred from the boundary layer to the level at which the vane was located. He described

the differences between the two cases in terms of different effective diffusion coefficients, and

concluded that stratification acts to inhibit the penetration of boundary effects.

The first comprehensive experimental study of spin-up was done by McLeod (1922) [50].

He made extensive velocity measurements of lycopodium particles floating on the free sur-

face of a fluid in a cylindrical container which was spun-up and spun-down impulsively.

McLeod obtained data for several angular velocities, using cylinders of various diameters

and lengths, and noted a departure from his purely diffusive theory which ”increases with

angular velocity and with the size of the cylinder, but tends to vanish at very low velocities”.

He attributed the observed differences between theory and experimental results to the effects

of the bottom boundary.

Pettersson (1931) [59] repeated the experiments of Ekman and made more careful and

detailed observations of the induced flow in the interior regions of the fluid. He confirmed

that Ekman’s conclusion was correct, i.e., stratification inhibits the upward transfer of mo-

mentum. He also observed a secondary circulation, caused by the spin-up of the container,

and realized that the upward transfer of momentum was due to this circulation rather than

viscous diffusion of momentum. However, the picture of the secondary flow described by

Pettersson was flawed: he claimed that the flow was thrown outward near the bottom of the

container, flowed upward near the sidewall, turned horizontally inward into the core of the

3
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(a) Near the seafloor the current is reduced by friction so that the pressure gradient

drives a cross-isobar flow. Lateral variations in the current cause variations of the flux

in the Ekman layer, and force flow into, or out of, the interior. Coriolis force acting on

this flow then reduces the initial current in the interior.

(b) Above a sloping bottom this dissipative process may be disrupted by buoyancy

force. As the imbalance of pressure gradient and Coriolis force drives fluid cross-slope,

the advection of density gives rise to a buoyancy force which opposes further motion.

When the final balance is achieved, there is no further Ekman flux and the interior flow

feels a nearly free-slip boundary condition at the seafloor.

Fig. 1.2: Differences in Ekman layer flux between flat and sloping bottom boundary, assuming a quasi-geostrophic

flow (¶ 2.4) in the ocean interior. Reproduced from Garrett et al. (1993) [27].

4
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flow, and then flowed into the bottom boundary layer via a narrow column at the center of

the container. Although Petterson did not analyze his results quantitatively, he pointed out

the correct qualitative nature of the process by which the rotation is transmitted to the main

body of the fluid.

1.2 Homogeneous Fluid

The modern era of spin-up studies was initiated by the seminal paper of Greenspan &

Howard (1963) [32], who considered small, impulsive changes in the rotation rate of arbitrary

containers filled of homogeneous fluid in solid body rotation. They presented the complete

solution of the linearized problem in case of small viscosity and exhibited the salient features

of the flow.

The relative azimuthal flow generated by a rotation rate increase leads to the formation

of Ekman layers on the horizontal boundaries. These boundary layers exhibit an outward

mass flux and draw fluid from the interior region, which leads to an inward meridional 1

circulation, named secondary circulation. This circulation fills the interior, where the direct

effects of viscosity are negligible, and uniformly spins-up the fluid to the new angular velocity

of the container, as shown in Fig. 1.3. This is somewhat surprising since, if the fluid were

~Ω

Fig. 1.3: Sketch of meridional streamlines for homogeneous spin-up. The flow direction is reversed for spin-down.

not rotating, then both dimensional analysis and physical reasoning would suggest that the

interior fluid spins-up in the longer diffusive time scale.

1It is common when describing swirling flows to refer to the (r, z)-plane as the meridional plane.
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Fig. 1.4 illustrates the frictionally-induced secondary circulation. Several drops of red

dye are added to the fluid in solid body rotation at the surface near the center of the tank.

After the change in the angular velocity of the tank the dye is quickly drawn from the interior

region, and an outward motion at the bottom of the tank is produced (Fig. 1.4(a)). At the

end of the transient spin-up process, the dyed fluid occupies a ring near the sidewall, while

the dark area in the middle of the tank is remnants of dye where it was initially added (Fig.

1.4(b)).

(a) (b)

Fig. 1.4: Spin-up: photographs from a demonstration of secondary circulation. Reproduced from McNoldy et al. (2003)

[51]

The previous explanation works equally well if the discs are slightly spun-down rather

than spun-up. It is necessary only to realize that the sense of the secondary circulation is

reversed. However, the spin-down is not exactly symmetric with respect to the spin-up since

the fluid particles near the sidewall may be affected by centrifugal instability according to

the Rayleigh criterion (see, e.g., Saric (1994) [65]). Note that, since this criterion is based on

the assumption that the fluid is inviscid and viscosity is presumably a stabilizing influence

for such swirling flows, a velocity profile which is predicted to be unstable on the basis of

the Rayleigh criterion may indeed be stable in practice. Moreover, this criterion was derived

for steady flows, and Davis (1976) [12] argued that it would be reliable in unsteady problem

such as spin-down process only if disturbances grow much faster than the basic flow varies

in time.
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1.3 Stratified Fluid

The stratified problem differs substantially from the homogeneous one in several ways.

The presence of stratification introduces physical processes and mechanisms wholly lacking

in the homogeneous system. The situation is sufficiently difficult that almost all theoretical

investigations were carried out within the Boussinesq approximation (¶ 2.3), whose two

common laboratory realizations are thermal-stratified and salt-stratified fluids.

Holton (1965) [34] considered the spin-up of a salt-stratified fluid and claimed that the

Ekman layers took on basically the same form as in the homogeneous case. Diffusive bound-

ary layers may also occur, but these play a passive role in the overall dynamics. The analysis

of Holton was qualitatively correct, but had some inaccuracies in the treatment of the vertical

sidewall layer (generally, the axis of rotation is assumed parallel to the local gravitational

acceleration).

Pedlosky (1967) [56] reexamined the problem and showed that when the sidewall is insu-

lated the vertical boundary layer is unable to transport the mass flux of the Ekman layer. This

led Pedlosky to argue that, since there can be no inflow from the vertical boundary layer into

the core (as there is in the homogeneous case), spin-up does not occur at all for configurations

with a no-diffusion sidewall condition. He incorrectly predicted that the spin-up would then

be achieved by diffusion of momentum.

The controversy was eventually resolved by Walin (1969) [74] and Sakuray (1969) [62],

who showed that neither Holton nor Pedlosky was totally correct. Holton properly predicted

the qualitative flow pattern, but missed the inability of the insulated sidewall layer to trans-

port fluid. Pedlosky, although correctly analyzing the sidewall layer, falsely concluded that

Ekman layers do not exist and the interior region spins-up by a strictly diffusive mechanism.

The effect of a stable stratification is indeed to restrict the recirculation of fluid from the

Ekman layers to a localized region adjacent to the horizontal boundaries. This mechanism

does not require transport into the sidewall layers, but the outward Ekman mass flux enters

into the interior directly from the corner regions 2, as shown in Fig. 1.5.

1.4 Flow Instabilities

Although a large body of work has been reported on the incremental axisymmetric strat-

ified spin-up, not much on the non-axisymmetric counterpart has appeared in the literature.

2regions where the sidewall intersects the horizontal boundaries
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~Ω

Fig. 1.5: Sketch of meridional streamlines for stratified spin-up. The flow direction is reversed for spin-down.

Experimental (e.g., Buzyna & Veronis (1971) [6]; Saunders & Beardsley (1975) [66]; Lee (1975)

[43]) and numerical investigations (e.g., Barcilon et al. (1975) [1]; Hyun et al. (1982) [39]) of

incremental spin-up in stably stratified fluid over flat bottom were performed since 1970s.

The numerical models were axisymmetric in nature and cannot be extended to large times

when appreciable non-axisymmetry is expected to develop in the flow field. Because of the

numerical difficulties in constructing fully three-dimensional models, the objective was to

examine the correct structure of the axisymmetric flow during the early phase of spin-up. On

the other hand, also the experimental investigations, performed only in small geometries,

were restricted in time. Although the possibility of a baroclinic instability existed, estimates

of the growth rate indicated that they would not be seen on the spin-up time scale, i.e., the

time in which the fluid adjusts to the new angular velocity of the boundaries, which is very

short in such small scale systems (e.g., Saunders & Beardsley (1975)).

These studies generally found that, over the spin-up time, the azimuthal flow decays

significantly faster than the theoretical predictions of Walin (1969) and Sakuray (1969). It

was concluded that viscous-diffusion effects, arising from interior flow gradients due to the

localized secondary circulation, may account for the discrepancies with the theory. The

above findings brought into question the usual practice of separating the flow field into

viscous Ekman layers and inviscid interior region when an investigation of stratified spin-up

is attempted (Hyun (1983) [37]).

Pedlosky (1970) [57] investigated the motion of a continuously stratified fluid in a rotat-

ing annulus. The flow was driven by the differential rotation from relative rest of a lid on

8
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the annulus in contact with the fluid. This work is the first pointing to baroclinic instability

during spin-up in stably stratified fluid, although it pertains to surface forcing rather than

an increase in the rotation rate of the whole system. Pedlosky (1970) established that the

interior region is characterized by a quasi-steady azimuthal flow which presents a linear

vertical shear. He found a minimum vertical shear of the interior azimuthal velocity above

which the flow was unstable to non-axisymmetric disturbances.

Linden (1977) [45] performed a series of similar experiments. He confirmed that the

axisymmetric basic flow is susceptible to instability due to the growth of non-axisymmetric

disturbances. Baroclinic instability can develop through the release of potential energy stored

in the horizontal density gradients which are set up in response to the vertical shear. In his

experiments the shear was proportional to the Rossby number (¶ 2.2), and so the basic flow

became unstable to non-axisymmetric disturbances for high enough Rossby number.

Greenspan (1980) [31] performed exploratory spin-up experiments from rest of a stably

stratified fluid. Although the mechanism of the meridional circulation driven by the Ek-

man layers is still predominant, spin-up from rest is a more complex, inherently non-linear

process. The fluid is not rotating initially and the meridional circulation cannot alter the

angular velocity of the fluid in the interior region. Before spin-up can occur, all the fluid

must be flushed out through the Ekman layers, where it acquires angular momentum before

being returned in the interior. The ensuing motion in the interior is divided into rotating

and non-rotating fluid separated by a propagating cylindrical shear layer. He showed that,

unlike the strictly vertical front in the case of homogeneous fluid (Fig. 1.6(a)), in the stratified

case the interface which separates rotating from non-rotating fluid is bowed (Fig. 1.6(b)). In

I II

(a) homogeneous case

I

II

(b) stratified case

Fig. 1.6: Spin-up from rest: sketch of early times showing non-rotating (I) and rotating (II) fluid regions separated by

a propagating shear layer.
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fact, since stratification causes the meridional flow to be concentrated in a region adjacent

to the Ekman layers, the front moves faster near the horizontal boundaries rather than at

mid-depth. Greenspan (1980) showed that the principal mechanism by which a stratified

fluid spins-up from rest is the fluid instability, as evidenced by the production of strong

penetrative vortices. However, he described only qualitatively the phenomenon, pointing

out that it is not clear whether baroclinic instability or the instability of a shear layer were

the dominant mechanism in the production of the vortices.

Spence et al. (1992) [70] considered the transient response of a linearly stratified rotat-

ing fluid to a constant stress applied impulsively to its horizontal upper boundary. They

performed numerical and experimental investigations, but the study was restricted to flows

which were stable since the objective was to gain an understanding of the transient behavior

of the fluid within the spin-up time scale.

Flor et al. (2002) [24] and (2004) [23] studied the spin-up from rest of a stably stratified

fluid. In the former work, they investigated the initial stage of spin-up, specifically the estab-

lishment and growth of the corner regions, which is always characterized by an axisymmetric

circulation. They showed that the differences between spin-up from rest and incremental

spin-up in stratified fluid appear in the shape of the zone influenced by the Ekman layer. In

incremental spin-up, the region adjacent to the horizontal boundary is dome-shaped with

maximal thickness at the center of the tank, as shown in Fig. 1.7(a). In fact, the secondary

(a) incremental spin-up - t/T ∼ 9.5 (b) spin-up from rest - t/T ∼ 8

Fig. 1.7: Contour plots of angular velocity in lower right-hand side quadrant for strong stratification obtained by

numerical simulations. Reproduced from Flor et al. (2002) [24].

circulation displaces fluid toward the center in the interior, and due to the initial vertical

vorticity, which is stretched near the center of the tank, a dome-shaped domain appears.

This is in contrast with spin-up from the rest, where there is a clear-cut connection between

changes in density and angular velocity: the fluid accumulates in the corner regions (Fig.
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Fig. 1.8: Spin-up from rest: schematic diagram showing the important features of the initial flow, and the resulting

effect on the background stable density field. An initial isopycnal surface, prior to the onset of disc motion, is shown as

the broken-line planar segment, and the corresponding deformed isopycnal surface in the current state represented by

the solid-line surface. Reproduced from Munro & Davies (2006) [54].

1.8) where both the surfaces of constant density and angular velocity are deflected upward,

as shown in Fig. 1.7(b).

In the latter work, Flor et al. (2004) examined the stability of the initially axisymmet-

ric configuration. At the end of the initial stage, the flow is characterized by a quiescent,

vertically-stratified interior core suspended between rotating, homogenized corner regions.

They observed that in case of low Burger number (¶ 2.3) the instability of the interior core is

initiated by the development of a baroclinic instability at the interfaces between interior and

corner regions. The subsequent evolution is interpreted in terms of combined influence of

baroclinic and elliptical instabilities of the interior core. Note that Flor et al. (2002) pointed

out that there were no reported observations of the instability in the interior region in the

incremental spin-up problem.

Moulin & Flor (2004) [53] investigated the response of a rotating, linearly stratified fluid

to local spin-up by a small rotating disc, with Rossby number around unity. The fluid ejected

by the Ekman layer mixes with ambient fluid, and density fronts form at the edges of the disc

(Fig. 1.9). They interpreted the continuous release of light fluid by the Ekman layer as an

axisymmetric gravity current which spreads until it becomes unstable to non-axisymmetric

disturbances, confirming that the baroclinic instability is the dominant mechanism.

Kanda (2004) [40] proposed a method to produce relatively isolated columnar baroclinic

vortices in continuously stratified fluids making use of the instability during spin-up and

spin-down. In most experimental runs, both from rest and incremental, the axisymmetric
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Fig. 1.9: Side-view schematic diagram of the flow near the disc of radius R after the onset of the disc rotation, showing

the Ekman layer and the formation of the density front. Reproduced from Moulin & Flor (2004) [53].

flow became unstable and undular waves grew near the sidewall. The instability occurred

for both spin-up and spin-down, and stable cases were found only for spin-up from rest.

Although no systematic density measurements were conducted, Kanda (2004) supposed the

presence of a front structure near the sidewall, with the long-wave instability caused by a

similar mechanism to that of the frontal instability, which grows primarily by extracting the

available potential energy of the mean flow via a baroclinic instability mechanism. How-

ever, some properties reminded him of the classical Eady-type baroclinic instability and he

suggested that measurements with higher accuracy of the instability wave number were

necessary.

Smirnov et al. (2005) [68] coped with non-axisymmetric flow during incremental spin-

up in stably stratified fluid. The aim was to analyze the stability characteristics of a zonal

flow over flat bottom in order to deepen the interaction of along-shelf currents with a sin-

gle submarine canyon incised in a long continental slope. They investigated the nature of

the long-term behavior of spin-up in a circular cylinder spotlighting on the formation of

large-scale eddies. Smirnov et al. (2005) proposed a theoretical framework, termed extended

Eady’s model, in which the sheared sidewall layers are taken into account in order to explain

the mechanism of eddy formation. They excluded that the instability of the Ekman layer,

confined to a thin layer adjacent to the bottom of the container, could have a role in this

phenomenon.

Munro & Davies (2006) [54] investigated the response of a rotating, linearly stratified

fluid to a forcing induced by differentially rotating a horizontal disc on the bottom boundary.

They observed the development of a front in the corner region, with formation of Kelvin-
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Helmholtz type billows 3 at the interface. Munro & Davies (2006) reported entrainment and

mixing between the two region, but no long-wave instability.

1.5 Motivations

We have illustrated briefly different impulsive spin-up processes whose flow develop-

ment is affected by long-wave instability. Note that we are interested in the long-wave

instability which develops, under appropriate conditions, exclusively in baroclinic fluid.

The analysis of the other instabilities which may affect barotropic fluids, such as barotropic

instability (see, e.g., Kuo (1949) [42]), goes beyond the scope of this thesis.

The impulsive spin-up processes may be distinguished into two classes: spin-up of the

entire system (i.e., forcing induced by modifying the rotation rate of the container) and local

spin-up (i.e., forcing induced by differentially rotating a lid in contact with the fluid) in

presence of background rotation. The former can be incremental (Kanda (2004), Smirnov et

al. (2005)) or from the rest (Greenspan (1980), Flor et al. (2002) and (2004)), while the latter

may concern discs with radius both comparable (Pedlosky (1970), Linden (1977), Spence

(1992), Munro & Davies (2006)) or smaller than the horizontal boundaries (Moulin & Flor

(2004)). This sorting of previous non-axisymmetric spin-up investigations is summarized in

Fig. 1.10.

Note that experiments concerning local spin-up from rest (e.g., Davies et al. (1995) [11])

were not considered since they involve the generation of a localized rotation in a non-rotating

system. Consequently, these investigations are focussed mostly on turbulence, entrainment

and mixing. Moreover, were excluded from our analysis the experiments in differentially

heated annulus, initiated since 1950s by Fultz and Hide (e.g., Hide (1958) [33], Fultz et al.

(1959) [26]) to understand the poleward heat transport from the equatorial latitudes by the

atmospheric circulation. This type of experiments also copes with a secondary circulation,

but this is due to thermal convection which arises in response to thermal forcing applied

continuously to the lateral boundaries.

Different explanations were proposed to elucidate the development of large-scale distur-

bances. In spin-up from rest, the dynamics of the flow is governed by the corner regions,

and the interface between rotating and non-rotating flow is affected by frontal instability.

In case of incremental local spin-up, the same mechanism appears to be responsible for the

3The instability at the interface between two horizontal parallel streams of different velocities and densities is

named Kelvin-Helmholtz instability.
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Fig. 1.10: Previous non-axisymmetric spin-up investigations. R and Rl are the radii of horizontal boundaries and lid,

respectively.

instability when the forcing is induced by a small disc. However, in case of forcing induced

by a disc of dimension comparable with the horizontal boundary, it seems that the corner

regions do not play a relevant role in the instability development. In fact, Munro & Davies

(2006) did not report any long-wave instability in their experiments, although they observed

the evolution of a front in the corner regions. Kanda (2004) supposed that the primary cause

of instability is ageostrophy due to large isopycnal deformation near the sidewall, but he did

not distinguish between incremental spin-up and spin-up from rest. Moreover, stable cases

were found only in spin-up from rest, but these should be the most unstable as long as the

instability is attributed to the corner regions. On other hand, Smirnov et al. (2005) did not

examine the corner regions, but proposed that the vertical sidewall should play a role in the

growth of the long-wave instability in incremental spin-up.

Consequently, the mechanism of long-wave instability in incremental spin-up has not

been made clear. In order to deepen the source of the instability we performed a series of

incremental spin-up and spin-down experiments. Both axisymmetric and non-axisymmetric

regimes in stably stratified fluid over flat bottom were considered. The experimental facility

used is the large cylindrical rotating tank (¶ 4.2) of the Coriolis-LEGI laboratory, character-

ized by an aspect ratio δ ≡ H/L ∼ O(10−1) relevant in the geophysical context. Moreover, we

set a very small Ekman number (E ∼ O(10−5)): it will be shown (¶ 4.2) that this provides a

better separation between the time scales over which the spin-up process takes place (¶ 3.1).

Consequently, the experimental results may be properly compared with the analytical theory
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of Walin (1969) (¶ 3.2), and the non-axisymmetric effects investigated over the outstanding

spin-up time scale.

1.6 Plan

This thesis includes eight chapters, organized as follow

- In chapter 2, the dynamical equations, fundamental theorems and conventions used

through this thesis are discussed.

- In chapter 3, the theory of spin-up process is presented, focussing on axisymmetric

containers. The Ekman layer is analyzed carefully, and the differences between spin-

up in homogeneous and stratified fluid are retraced. The chapter ends with a discussion

which summarizes the previous experimental and numerical works in axisymmetric

regime.

- In chapter 4, the experimental facility is presented, and the experimental runs described

and motivated. The main features of measurement techniques and data analysis are

illustrated as well.

- In chapter 5, the effect of the physical parameters which influence the flow evolution

is analyzed. This should be regarded as a preliminary study in order to restrict the

investigations in the subsequent chapters.

- In chapter 6, the axisymmetric spin-up behavior is analyzed in detail. A direct com-

parison with the analytical theory is performed and an attempt to improve it presented

and discussed.

- In chapter 7, the non axisymmetric counterpart is deeply investigated. A quantitative

comparison with the Eady’s model (¶ 2.5.1) is performed and a visualization of the

instability pattern provided.

- In chapter 8, the general conclusions are outlined and some perspectives suggested.
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Chapter 2

Fundamentals

2.1 Vorticity Basics

In classical mechanics, the conservation of angular momentum is often invoked in the

analysis of rigid motions which involve rotation. Analogous conservation laws apply to

rotational flows, keeping into account that in a continuous medium, such as the atmosphere

or oceans, the definition of rotation is trickier than for a solid object.

The vorticity is a vector field defined as the curl of the velocity field, i.e., ~ω ≡ ~∇ × ~u, and

it gives a microscopic measure of the rotation at any point in the fluid. The vorticity of the

fluid as observed from the absolute frame of reference is called absolute vorticity, ~ωa, defined

as

~ωa ≡ ~∇ × ~ua = ~∇ ×
(

~u + ~Ω × ~r
)

= ~ω + 2~Ω

being ~ua the absolute velocity. Thus, the absolute vorticity is the sum of planetary vorticity

2~Ω and relative vorticity ~ω, i.e., the curl of the velocity ~u observed from the frame of reference

rotating with uniform angular velocity ~Ω.

A vortex line is a line in the fluid which at each point is parallel to the vorticity vector.

A vortex tube is formed by the surface which consists of the vortex lines passing through a

closed curve C. The vortex tube strength, Γ, is defined as the flux of vorticity across any surface

with area A whose bonding curve is C and unit vector normal at each point is n̂, i.e.,

Γ ≡

"
A

~ω · n̂ dA

The flux of absolute vorticity, Γa, through a surface A is related to the relative vorticity

flux, Γ, by

Γa ≡

"
A

~ωa · n̂ dA = Γ + 2ΩAn
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where An is the area of A projected on a surface perpendicular to ~Ω. The difference between

absolute and relative vorticity flux is thus proportional to the number of planetary vortex

lines enclosed by the contour C bounding A.

The circulation is a scalar integral quantity which gives a macroscopic measure of the

rotation for a finite area of the fluid. It is defined as the line integral of the velocity field

around a curve C, i.e.,

Γ ≡

∮

C

~u · d~r

The Kelvin’s theorem states that the absolute circulation is conserved following the motion,

i.e., dΓa/dt = 0, if the fluid is barotropic on a material curve C and the viscous force vanishes

on it. Since Γa is the sum of the planetary and relative vortex tube strengths, Kelvin’s theorem

provides the mechanism of vorticity induction, i.e., a transfer between relative and planetary

vorticity as to conserve the absolute vortex tube strength. As C moves and deforms with

the fluid, it always forms the boundary of a tube of fixed absolute vortex strength. If the

cross-section of a tube decreases, the intensity of the tube strength, i.e., the absolute vorticity

in the tube, must increase in inverse proportion to the tube cross-sectional area.

The presence of viscous effects causes a diffusion of vorticity away from their original

fluid elements, and consequently changes the circulation. In baroclinic fluids, the isobaric

and isopycnal surfaces are not coincident. The net pressure force hence does not pass through

the center of mass of the fluid element, and the resulting torque can produce new vortex

lines.

The Vorticity Equation

The vorticity equation concerns the rate of change of the vorticity following a fluid

element. In a rotating frame of reference, omitting viscous and baroclinic effects, the equation

is
d~ω

dt
= (~ω + 2~Ω) · ~∇~u (2.1)

The terms on the right-hand side of Eq.n (2.1) describe two mechanisms called vortex tube

stretching/squeezing and vortex line tilting. The vortex tube stretching/squeezing alters the

vorticity parallel to a vortex line by convergence/divergence of the velocity components in

the plane perpendicular to the vortex line. This reflects the fact that in a nearly incompressible

fluid a decrease of the cross section of a column can be accomplished only by extension along

its length so as to preserve volume. A vertically stretching (squeezing) fluid column tends

to acquire positive (negative) vertical vorticity. The vortex line tilting alters the vorticity
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perpendicular to a vortex line by the shear of the velocity components along the vortex line.

The vorticity perpendicular to the vortex line is the component of the vorticity vector tilted

by the velocity shear along the vortex line. Note that merely a stretching or tilting of vertical

fluid lines is required for 2~Ω · ~∇~u to operate, in contrast to ~ω · ~∇~u where a stretching or tilting

of vortex lines is needed. This because vertical fluid lines contain planetary vorticity 2 ~Ω. If ~ω

is initially zero, the tilting and stretching/squeezing of the vortex lines in a fluid in presence

of planetary vorticity will introduce, if allowed to proceed, relative vorticity (Kundu (1990)

[41]).

Potential Vorticity

Ertel (1942) [17] derived a theorem which provides a constraint on the vorticity. For an

inviscid fluid it shows

d

dt

(

~ωa

ρ
· ~∇λ

)

=
~ωa

ρ
· ~∇

(

dλ

dt

)

+ ~∇λ ·

(~∇ρ × ~∇p

ρ3

)

(2.2)

where λ is a scalar fluid property. Thus, Eq.n (2.2) states that if: 1) λ is a conserved quantity

for each fluid element; 2) the fluid is barotropic or λ can be considered a function only of p

and ρ, then the potential vorticity

Π ≡
(~ω + 2~Ω)

ρ
· ~∇λ (2.3)

is conserved by each fluid element, i.e., dΠ/dt = 0. If Π is conserved following a fluid

element, when the distance between two adjacent λ-surfaces increases, ~∇λ must decrease,

and the component of the vector ~ωa/ρ parallel to ~∇λ must increase proportionally to keepΠ

constant. If ρ does not vary very much, then ~ωa increases and it may be considered that there

is a reservoir of vorticity associated with the packing together of λ-surfaces which can be

released as they are stretched by the mechanism of vortex-tube stretching (Pedlosky (1987)

[58]). Note that the conservation of potential vorticity is simply a consequence of the mass

and angular momentum conservation.

2.2 Homogeneous Fluid Dynamics

We consider only incompressible flows, i.e., flows in which the pressure variations do not

produce any significant density variation. One of the requirements for which this is a good

approximation is that the vertical scale of motion H is small compared with a scale height
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defined as a median value of ρ/|dρ/dz| (Batchelor (1967) [3]). This condition is satisfied in

the ocean since the scale height is about 40 times the depth (Gill (1982) [29]).

Equations of Motion

The equations governing the motion of a homogeneous incompressible fluid state the

conservation of momentum and mass. In a frame of reference rotating with uniform angular

velocity ~Ω = Ωk̂

∂~u

∂t
+ ~u · ~∇~u + 2Ωk̂ × ~u = −

1

ρ
~∇p̃ + ν∇2~u (2.4a)

~∇ · ~u = 0 (2.4b)

Note that the f -plane approximation has been considered, and the sphericity effects will be

neglected. The variable p̃ is the modified pressure 1, defined as

p̃ = p − p0 − ρ~g · ~r −
ρ

2

(

~Ω × ~r
)

·
(

~Ω × ~r
)

(2.5)

where p0 is a constant. It arises wholly from the effect of the relative motion of the fluid since

in solid body rotation the forces due to gravity and centrifugal effects acting on the fluid are

balanced by a pressure equal to ρ~g · ~r and (ρ/2)
(

~Ω × ~r
)

·
(

~Ω × ~r
)

. Note that Eq.n (2.5) is valid

strictly in homogeneous fluid for which the gravitational force may be represented as the

gradient of a scalar quantity.

These equations should be posed on some domain, and supplied with suitable initial and

boundary conditions. The mathematical difficulties presented by the Eq.n (2.4a) are so severe

that most of the existing solutions are applicable only to circumstances in which it reduces

to linear form.

Geostrophic Approximation

Let us suppose that the Coriolis force is large compared with both advection and viscous

terms

|~u · ~∇~u| ≪ |~Ω × ~u| (2.6)

|ν∇2~u| ≪ |~Ω × ~u| (2.7)

1a term first used by Batchelor (1967)
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Introducing L and U, respectively length and velocity scales characteristic of the motion, the

conditions (2.6) and (2.7) become

U

ΩL
≪ 1 (2.8)

ν

ΩL2
≪ 1 (2.9)

The non-dimensional quantities U/ΩL and ν/ΩL2, known as the Rossby number, ǫ, and the

Ekman number, E, indicates the relative importance of, respectively, advective term to Coriolis

force and viscous to Coriolis forces.

Restricting attention to steady flow, under the conditions (2.8) and (2.9) Eq.n (2.4a) may

be approximate

2Ωk̂ × ~u = −
1

ρ
~∇p̃ (2.10)

Flows in which the balance between Coriolis and pressure gradient forces pertains are named

geostrophic flows. The geostrophic balance is a diagnostic expression appropriate for quasi-

steady, large-scale motions in the atmosphere or oceans. Therefore, L and U are usually

horizontal length and velocity scales characteristic of the motion. Note that the velocity

HL

Coriolis Coriolispressure pressure
forceforce forceforce

Fig. 2.1: Geostrophic flow around low and high pressure centers

in a geostrophic flow is along the isobars since Eq.n (2.10) implies ~u · ~∇p̃ = 0. Fig. 2.1

shows a sketch of the geostrophic flow around low and high pressure centers in the northern

hemisphere, where the Coriolis force acts to the right of the horizontal velocity vector. This

requires the flow to be anticlockwise (viewed from above) around a low pressure region and

clockwise around a high pressure region.

Note that in this case the pressure involved is the modified pressure, which includes the

centrifugal effects. For this reason some authors (e.g., Holton (1992) [35]) refer to such flows

as gradient flows, limiting the term geostrophic to straight flows.

An important property of geostrophic flows is discovered by taking the curl of Eq.n (2.10)
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and using the continuity equation (2.4b)

∂~u

∂z
= 0 (2.11)

All the three components of the relative velocity are independent of the direction parallel

to the rotation axis. This constraint is known as the Taylor-Proudman theorem, and it follows

that a material line initially parallel to the rotation axis must always remains so as it moves

around like a rigid column. Such vertical rigidity is a fundamental property of rotating

homogeneous fluids.

2.3 Stratified Fluid Dynamics

The term stratified fluid is applied to a flow primarily in the horizontal direction which is

affected by a vertical variation of the density. The background rotation leads homogeneous

fluids to a strong tendency to behave in a columnar fashion, characterized by a vertical

rigidity. By contrast, a stratified fluid under gravity arranges itself so that higher underlie

lower densities (stable stratification). The vertical layering introduces an obvious gradient

of properties in the vertical direction, which affects also the velocity field. Hence, the

vertical rigidity induced by the effects of rotation will be attenuated by the presence of the

stratification.

Static Stability

Let us first consider a fluid in static equilibrium. Such lack of motion requires the absence

of lateral forces and, consequently, horizontal homogeneity: stratification is then purely

vertical. If a fluid particle is displaced vertically by a small distance δz from zA to zB > zA,

without disturbing its environment in hydrostatic balance such as dps/dz = −ρsg, being ps(z)

and ρs(z) pressure and density of the environment, the vertical acceleration of the particle is

d2

dt2
(δz) = −g −

1

ρA

∂pA

∂z
(2.12)

being pA ≡ ps(zA) and ρA ≡ ρs(zA) pressure and density of the particle. Let us assume that

the pressure of the particle instantaneously adjusts to the environmental pressure during the

displacement, so as pA is replaced by pB ≡ ps(zB) in Eq.n (2.12). Thus, using the hydrostatic

relationship of the environment, the pressure can be eliminated in Eq.n (2.12),

d2

dt2
(δz) = g

(

ρB − ρA

ρA

)

(2.13)
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Since ρB − ρA ≃ (dρs/dz) δz, Eq.n (2.13) becomes

d2

dt2
(δz) = −N2δz (2.14)

showing an oscillatory character, being

N2 ≡ −
g

ρA

dρs

dz
(2.15)

In stably stratified fluids, physically Eq.n (2.14) means that, when displaced upward, the

particle is heavier than its surroundings, feels a downward recalling force, falls down, and, in

the process, acquires a vertical velocity. Upon reaching its original level the particle’s inertia

causes it to go farther downward and to become surrounded by heavier fluid. The particle,

now buoyant, is recalled upward, and oscillations persist about the equilibrium level. The

quantity N, defined by the square root of Eq.n (2.15), provides the frequency of the oscillation

and is termed buoyancy frequency.

Equations of Motion

The equations governing the motion of a stratified incompressible fluid may be written

within the Boussinesq approximation

ρ0

(

∂~u

∂t
+ ~u · ~∇~u + 2Ωk̂ × ~u

)

= −~∇p̃ − ρ̃gk̂ + ρ0ν∇
2~u (2.16a)

~∇ · ~u = 0 (2.16b)
dρ̃

dt
+ w

∂ρs

∂z
= κ∇2ρ̃ (2.16c)

where Eq.n (2.16c) is the density diffusion equation, and the choice of the salt diffusivity

κ indicates that we focuss on salt-stratified fluids. In Eq.n (2.16a) the centrifugal term

was incorporated in the pressure gradient and the gravitational acceleration −gk̂ assumed

antiparallel to the rotation vector Ωk̂. Although this last assumption is usually not valid

in geophysical application, essentially the same set of equations is obtained without this

approximation, providing the depth of the fluid much smaller than the horizontal scale of

motion (shallow water approximation), which is often the case in geophysical situations (Walin

(1969) [74]).

Density and pressure field were split as

ρ = ρ0 + ρs(z) + ρ̃(~r, t)

p = p0 + ps(z) + p̃(~r, t)
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assuming that the flow is superposed on a background state of relative rest defined by

~∇ps = −(ρ0 + ρs)gk̂

The basic stratification, ρs = ρs(z), implies that the isopycnal surfaces are essentially parallel

to the horizontal for solid body rotation. The density perturbation, ρ̃ = ρ̃(~r, t), of the basic

stratification occurs as a result of the relative motion, and ρ0 is a reference density such that

the density anomaly is small, i.e., |ρ − ρ0| ≪ ρ0.

The Boussinesq approximation consists of taking the density constant when computing

the rates of change of momentum from accelerations, but including density anomaly when

they give rise to buoyancy term.

Thermal Wind

Assuming a flow in geostrophic and hydrostatic balance,

2Ωρ0k̂ × ~u = −~∇p̃ − ρ̃gk̂ (2.17)

let us consider a situation in which the isopycnal surfaces slope downward with x, the surfaces

at lower levels representing higher density (Fig. 2.2). This implies that the horizontal density

x

z

1 2

δz1

δz2

ρ
in

cr
ea

se
s

ρ = constantp = constant

Fig. 2.2: Isobars are indicated by solid lines and isopycnal by dashed lines.

gradient is negative, so that the density is larger along section 1 than section 2. Hydrostatic

equilibrium requires that the weights of columns δz1 and δz2 are equal, so that the separation

across two isobars increases with x, i.e., δz2 > δz1. Thereby, the isobaric surfaces must slope
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upward with x, resulting in a positive horizontal pressure gradient.

A manipulation of Eq.n (2.17) provides

∂~u

∂z
= −

g

2Ωρ0
k̂ × ~∇ρ̃ (2.18)

Thus, in presence of horizontal density gradient, the geostrophic velocity develops a vertical

shear. The meteorologists call Eq.n (2.18) the thermal wind equation since in the atmosphere it

gives the vertical variation of wind from measurements of horizontal temperature gradients.

When isobaric and isopycnal surfaces do not coincide, as in this case, the flow is named to

be in baroclinic state.

Rotation and Stratification

Let us consider a quasi-steady stratified non-rotating fluid, in absence of both viscous and

diffusive processes. The governing equations (2.16) assume the form

ρ0 ~u · ~∇~u = −~∇p̃ − ρ̃gk̂ (2.19a)

~u · ~∇ρ̃ + w
∂ρs

∂z
= 0 (2.19b)

A flow, with horizontal length scales L and velocity scale U, produces a perturbation ρ̃ of the

basic stratification ρs, whose relation is expressed by Eq.n (2.19b),

ρ̃ ∼
ρ0

g

WL

U
N2 (2.20)

Using Eq.n (2.19a), the hydrostatic balance provides

p̃ ∼ ρ0
WLHN2

U
(2.21)

and the horizontal balance of forces indicates

W/H

U/L
∼

U2

N2H2
≡ Fr2 (2.22)

where Fr is called internal Froude number. The analogy with the Rossby number, ǫ ≡ U/ΩL, is

immediate. Both Froude and Rossby numbers are ratios of the horizontal velocity scale to a

product of frequency and length scale. When Fr is small, stratification effects are important;

the stronger the stratification, the weaker the vertical velocity and vertical displacements.

In fact, vertical motions in a stably stratified fluid tend to carry heavier fluid upward and

lighter fluid downward, and are thus inhibited.

In a homogeneous rotating fluid in geostrophic approximation the horizontal divergence
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is zero, and consequently the vertical convergence. Actually, the flow cannot be purely

geostrophic, and the advective term, whose relative importance is measured by ǫ, yields a

correction to the geostrophic velocities of the same relative importance, i.e.,

W/H

U/L
∼ ǫ

In a stratified rotating fluid in geostrophic approximation the analysis remains unchanged,

except that the advective term in Eq.n (2.19a) is replaced by the Coriolis force. An analogous

procedure provides
W/H

U/L
∼

U2

N2H2

ΩL

U
=

Fr2

ǫ

As a result, the influence of a strong rotation (ǫ . 1) is to increase the scale of the vertical

velocity. However, since a vertical divergence cannot exist without horizontal convergence

(W/H . U/L), then Fr2
. ǫ must hold, i.e,

U

NH
.

NH

ΩL
(2.23)

This sets an upper bound for the magnitude of the flow field in a fluid under given rotation

(Ω) and of given stratification (N) in a domain of given dimensions (L,H). The inequality in

Eq.n (2.23) brings to the Burger number, Bu

Bu ≡
N2H2

Ω2L2
=
ǫ2

Fr2
(2.24)

It measures the relative importance of stratification and rotation. A value of Bu around 1

indicates that stratification and rotation have comparable influences; when Bu is small a

rotating flow is modified by stratification, and when Bu is large is the other way round. The

minimum horizontal length scale on which rotational effects are very significant, Ld ≡ NH/Ω,

is called the Rossby radius of deformation.

In circumstances for which only a single length scale is involved (L ≡ H), the relative

importance between stratification and rotation is measured by the stratification parameter S

S ≡
N2

Ω2

2.4 Quasi-Geostrophic Dynamics

The geostrophic approximation is very useful: once the pressure field is known, the

horizontal velocities, their vertical shear, and the vertical component of vorticity are immedi-

ately determined. However, the geostrophic balance is a diagnostic relation which does not
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allow to calculate the pressure field or predict its evolution with time. The geostrophic ap-

proximation alone, in fact, does not contain enough information to complete the dynamical

determination of the motion. Mathematically, the fact that the geostrophic approximation

leads to a zero horizontal divergence in the continuity equation means that these three equa-

tions do not give three independent items of information. In this sense, the geostrophic

equations are degenerate and cannot yield the ultimate steady solution by themselves. Con-

sequently, any pressure field can yield a consistent geostrophic velocity, but, at the level

of the geostrophic approximation, it is not possible to distinguish which of the proposed

pressure fields is the correct one. Moreover, a zero horizontal divergence implies the absence

of any vertical velocity over flat boundaries. This means no lifting and lowering of isopycnal

surfaces and thus no pressure disturbances and no motion. The resolution of this constraint

requires the consideration of small departures of the flow from exact geostrophic balance.

Charney & Stern (1962) [8] obtained the governing equation in shallow water approxi-

mation for a quasi-geostrophic motion in a continuously stratified fluid. For an inviscid flow

on a f -plane
[

∂

∂t
+
∂ψ

∂x

∂

∂y
−
∂ψ

∂y

∂

∂x

][

∇H
2ψ +

∂

∂z

(

4Ω2

N2

∂ψ

∂z

)]

= 0 (2.25)

where ψ ≡ p̃/2Ωρ0 is the geostrophic stream function such as

u = −
∂ψ

∂y

v =
∂ψ

∂x

The quasi-geostrophic potential vorticity equation (2.25) states the conservation of the poten-

tial vorticity (Eq.n (2.3)) in which the geostrophic and hydrostatic approximations are used

to evaluate horizontal velocities and density in terms of pressure. The departure from strict

geostrophy determines the evolution of the flow by involving either the advective term, of

the order of the Rossby number, and/or the viscous force, of the order of the Ekman number.

2.5 Baroclinic Instability

Baroclinic instability refers to a class of wavelike motions which can arise on large scale

flows with vertical shear in which Coriolis and buoyancy forces are important. Charney

(1947) [9] and Eady (1949) [14] provided the theoretical foundation of baroclinic instability in

the Earth’s atmosphere, which became a dominant topic of meteorological research through-

out the 1950s and 1960s. Oceanographers became interested in baroclinic instability in 1970s,
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following the discovery of energetic mesoscale eddies in the western North Atlantic (e.g.,

Gill et al. (1974) [28]).

The Basic Mechanism

Let us consider an eastward geostrophic current maintained by sloping isopycnal sur-

faces, as sketched in Fig. 2.3. This is an equilibrium situation only because the Coriolis

force is balanced by the horizontal pressure gradient (cf., Fig. 2.2). The horizontal density

gradients imply the presence of available potential energy, which may be transferred to small

perturbations superimposed to the basic flow by a process called baroclinic instability. Note

that the perturbations do not grow by extracting energy from the vertical shear field since

the vertical velocity is too small in quasi-geostrophic flows.

Let us consider the displacement of a fluid element from position A in Fig. 2.3 to a new

position B. Let the displacement of the fluid element along y and z direction be δy and δz,

z

yγ
α

ρ
~g

A

B

Coriolis Pressure

light heavy

decreasing

Fig. 2.3: The slope of the isopycnal surfaces with respect to the horizontal.

respectively. Since the fluid is incompressible, the element A keeps is density when moves to

the position B and adjusts to the environmental pressure. The force undergone by the fluid

element along the displacement direction is

F =

(

ρB − ρA

ρA

)

g sinγ (2.27)
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where γ is the angle of the displacement (tan γ = δz/δy). Since

ρB − ρA ≃
∂ρ

∂z
δz +

∂ρ

∂y
δy

=
∂ρ

∂z

[

δz +
(∂ρ/∂y)

(∂ρ/∂z)
δy

]

Eq.n (2.27) may be written as

F = −N2 sinγ

[

δz −

(

∂z

∂y

)

ρ

δy

]

(2.28)

As long as N2 > 0, the displacements which yield a restoring force, i.e., F < 0, are characterized

by a trajectory such as tanγ > (∂z/∂y)ρ. Otherwise, if fluid elements are displaced within the

wedge defined by the horizontal and the isopycnal surfaces, i.e., tanγ < (∂z/∂y)ρ, then F will

be positive and the buoyancy force will accelerate the fluid element further from its initial

position. This is the essential mechanism of baroclinic instability, and depends crucially on

the slope of the isopycnal surfaces. The releasing of the available potential energy implies

that light fluid rises and heavy fluid sinks: baroclinic instability may be seen as a form of

convection (sloping convection).

The instability condition requires

Bu ≡
L2

d

L2
≤ O(1) (2.29)

Length scales of the perturbations favored for baroclinic instability therefore exceed the

Rossby radius of deformation (Pedlosky (1987) [58]).

2.5.1 Eady’s Model

Let us consider a basic initial state ψ = Ψ(y, z) characterized by the zonal velocity

Ui = −∂Ψ/∂y. In the model proposed by Eady (1949) [14] the velocity Ui is independent

of y (e.g., Ui = U z/H) and the horizontal density gradient is constant. Furthermore, the in-

viscid flow is confined in the vertical direction by two rigid horizontal boundaries at z = 0,H.

Let us now assume that the total flow is composed of the basic stateΨ plus perturbations φ

ψ(x, y, z, t) = Ψ(y, z) + φ(x, y, z, t) (2.30)

If Eq.n (2.30) is substituted in Eq.n (2.25), a nonlinear problem for φ results. Let us assume

that, at least initially, the amplitude of the disturbance is sufficiently small, i.e., φ ≪ 1. This
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leads to the linear stability problem,

(

∂

∂t
+Ui

∂

∂x

)(

∂2φ

∂x2
+
∂2φ

∂y2
+

4Ω2

N2

∂2φ

∂z2

)

= 0 (2.31a)

(

∂

∂t
+Ui

∂

∂x

)

∂φ

∂z
−
∂φ

∂x
= 0 at z = 0,H (2.31b)

The essential physical question is now to determine if, given a particular initial state, the

perturbation field φ placed on the flow tends to grow or decay.

The existence of fluctuations is to be demonstrated as due to the instability of the flow

which would occur in the absence of the fluctuations. Therefore, it is first necessary to know

what the fluctuation-free state would be. However, the knowledge of the fluctuation-free

state is ordinarily very difficult, and thus it is natural to investigate if there are alternatives.

The observed mean flow is inevitably affected by the presence of fluctuations and therefore

this state cannot be used to determine if the observed fluctuations may be attributed to

an instability process. Instead of precisely calculating the basic state, an initial state may

be arbitrarily prescribed. This allows the consideration of classes of initial states, whose

stability may then be directly examined in order to deepen criteria for instability (Pedlosky

(1987) [58]).

The normal mode method of solution of the perturbation problem consists of introducing

on the initial stateΨ(y, z) a sinusoidal disturbances of the form:

φ(x, y, z, t) =ℜΦ(y, z)eık(x−ct) (2.32)

where k is the zonal wave number and c = cr + ıci the phase velocity. If solutions of the form

(2.32) are found with ci > 0, then φ will grow exponentially since

φ =ℜΦ(y, z)eık(x−cr t)ekcit

The assumption of an exponential time factor is not the most general evolution form which

a disturbance may take. However, if exponentially growing solutions are found, they grow

faster that any algebraic power, and it is almost plausible that the associate perturbation will

emerge first from the background of small disturbances. The wave number k for which kc i is

a maximum yields the wave number of the most unstable wave.

The normal mode problem for Φ is obtained by substituting relation (2.32) into Eq.ns

(2.31) to obtain
(

z − c
H

U

)(

4Ω2

N2

∂2Φ

∂z2
+
∂2Φ

∂y2
− k2Φ

)

= 0 (2.33a)
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(

z − c
H

U

)

∂Φ

∂z
−

U

H
Φ = 0 at z = 0,H (2.33b)

Real flow are bounded along the y-direction, especially in laboratory experiments. The

boundedness in y sets up normal modes in the form

Φ(y, z) = A(z) cos lm y lm = (m + 1/2)π/L m = 0, 1, 2, . . . (2.34)

Then A(z) satisfies
(

z − c
H

U

)(

d2A

dz2
− µ2A

)

= 0 (2.35a)

(

z − c
H

U

)

dA

dz
− A = 0 at z = 0,H (2.35b)

where µ2 = (k2 + lm
2)N2/4Ω2. The condition of nonsingular solutions of Eq.n (2.35a) and the

application of Eq.n (2.35b) yields to

c =
U

2
±

U

µH

[(

µH

2
− coth

µH

2

)(

µH

2
− tanh

µH

2

)]1/2

(2.36)

which shows that whether the solutions grow in time depends on the behavior of the

0 1 2 3
0

1

µH

coth(µH/2)

tanh(µH/2)

µH/2

unstable

Fig. 2.4: Sketch of the behavior of the functions in Eq.n (2.36).

functions under the radical sign (Fig. 2.4). For all µ, µH/2 ≥ tanh(µH/2) while µH/2 <

coth(µH/2) for a critical value of µH/2 = 1.20. Thus, for the instability to occur must be

µH < 2.40 or, using the definition of µ for the most unstable mode (m = 0),

k2 + l20 < 5.76/L2
d → k < (5.76/L2

d − l20)1/2 (2.37)
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The growth rate of the most unstable mode is

kci =
kU

µH

[(

coth
µH

2
−
µH

2

)(

µH

2
− tanh

µH

2

)]1/2

(2.38)

The structure of the unstable wave is

A(z) = coshµz −
U sinhµz

µcH
(2.39)

The solution (2.39) may be multiplied by an arbitrary constant since linear theory is incapable

of determining the amplitude of the disturbance.

For µH < 2.40

φ = |A(z)|ekcit cos lmy cos(kx − kcrt + α) (2.40)

where the phase angle α = α(z) is given by

α(z) = arctan

[

ciU sinhµz

µ|c|2H coshµz − crU sinhµz

]

(2.41)
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Chapter 3

Spin-up & Spin-down

Let us give a physical description of the transient approach to solid body rotation from

the initial phases, through spin-up, until the final stages of the motion. We start with the

homogeneous case since it gives insight on the most important mechanism of the spin-up

process, i.e., the secondary circulation, which is altered by the stratification.

3.1 Homogeneous Case

3.1.1 The Linear Problem

A homogeneous fluid is confined between two horizontal coaxial infinite discs whose

separation distance is 2H. The discs are impermeable and the entire system is assumed

to be in solid body rotation about its vertical axis. The rotation rate of both discs is then

simultaneously increased of an amount∆Ω = ǫΩ. Although the fluid is laterally unbounded,

the combination of two plane discs rotating in unison produces a motion which typifies all

contained spin-up flows (Greenspan & Howard (1963) [32]).

Let H,Ω−1, U characterize the typical length, time and horizontal velocity of a particular

motion. The replacement of the variables ~r, t, ~u, p̃ by their scaled counterparts H~r′, Ω−1t′,

U~u′, ρΩUHp̃′ (e.g., Greenspan (1968) [30]) allows a reduction of the governing Eq.ns (2.4a)

and (2.4b) to a non-dimensional form,

∂~u′

∂t′
+ ǫ~u′ · ~∇′ ~u′ + 2k̂ × ~u′ = − ~∇′p̃′ + E∇′2 ~u′ (3.1a)

~∇′ · ~u′ = 0 (3.1b)
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Homogeneous Case Spin-up & Spin-down

Thus, the spin-up process of a homogeneous fluid is almost entirely determined by the

Ekman number, E = ν/ΩH2, and the Rossby number, ǫ = U/ΩH = ∆Ω/Ω. If E ≥ 1, the

Coriolis effect is negligible, and the adjustment mechanism is simple viscous diffusion. We

rather assume that viscosity is small, i.e., E≪ 1, and the adjustment mechanism is the more

complicated but interesting convective spin-up process.

In the limit ǫ→ 0, the advective term is negligible and Eq.n (3.1a) reduces to

∂~u′

∂t′
+ 2k̂ × ~u′ = − ~∇′p̃′ + E∇′2 ~u′ (3.2)

The axisymmetric form of this equation describes the linear spin-up problem, solved by

Greenspan & Howard (1963) [32]. The detailed analysis, which uses Laplace transform

method to convert partial to ordinary differential equations, is difficult and is not presented

here. However, in quasi-steady approximation the resultant flow may be described in simple

terms.

3.1.2 Quasi-Steady Ekman layer

The role of viscous force in geophysical fluid dynamics is related to the structure of the

boundary layers. These layers exert a great influence on the dynamics of the flow even far

from the regions directly affected by viscosity. Let us limit the analysis to bottom Ekman

layer, pointing out that the treatment of the upper Ekman layer is specular since the system

is symmetric about mid-depth.

In the literature, the frames of reference rotating with both initial and final angular ve-

locities were considered when describing the spin-up process. In order to avoid ambiguity,

let us briefly illustrate the development of the Ekman layer from both the points of view,

assuming the fluid bounded by a horizontal surface at z′ = 0.

In the reference system rotating with the initial angular velocity, the impulsive change

in the rotation rate produces a shear layer at the bottom surface, which starts to thicken

by diffusion. However, the background rotation implies that vertical fluid lines coincide

with planetary vortex lines: the vortex line tilting due to the vertical shear of the horizontal

velocity then just cancels the diffusion term. An Ekman layer arises, which becomes fully

developed and quasi-steady after t′ ∼ O(1).

The axial symmetry of the resultant flow allows a considerable simplification of the
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Spin-up & Spin-down Homogeneous Case

governing equations (3.1b) and (3.2) when cylindrical coordinates are considered

1

r′
∂(r′u′r)

∂r′
+
∂w′

∂z′
= 0 (3.3a)

∂u′r
∂t′
− 2u′θ = E

∂2u′r
∂z′2

(3.3b)

∂u′
θ

∂t′
+ 2u′r = E

∂2u′
θ

∂z′2
(3.3c)

∂w′

∂t′
= −

1

ρ

∂p̃′

∂z′
+ E

∂2w′

∂z′2
(3.3d)

In quasi-steady approximation, the Eq.ns (3.3b) and (3.3c) of the horizontal velocity compo-

nents are

−2u′θ = E
∂2u′r
∂z′2

(3.4a)

2u′r = E
∂2u′

θ

∂z′2
(3.4b)

The solution satisfying the boundary conditions

u′θ = r′ u′r = 0 at z′ = 0

u′r, u
′
θ → 0 as z′ → +∞

is

u′r(r
′, z′) = r′e−z′/E1/2

sin(z′/E1/2) (3.5a)

u′θ(r
′, z′) = r′e−z′/E1/2

cos(z′/E1/2) (3.5b)

Thus, a steady flow in a layer near the surface with thickness z′ ∼ O(E1/2) is possible. This

steady flow exhibiting a balance between the viscous and Coriolis forces was first noticed by

Ekman (1905) [15] studying wind-stress on the ocean surface and it is named Ekman spiral. In

the bottom layer there is a balance between the externally imposed stress, the friction which

the upper exerts on the bottom layer, and the Coriolis force. This balance is reached after a

transient motion. Immediately after the impulsive change in the angular velocity, the fluid

velocity direction is that of the external stress. As the velocity increases, the Coriolis force

turns the velocity direction in clockwise sense, then also the friction exerted by the upper

on the bottom layer must turn. At the bottom the equilibrium is reached when the velocity

direction is 45◦ in clockwise sense with respect to the external stress. Therefore, the fluid is

transported azimuthally in the same direction as the disc, and the increase in Coriolis force

produces a flow radially outwards.

35



Homogeneous Case Spin-up & Spin-down

Note that some authors (e.g., Benton & Clark (1974) [4]) explained the development of the

Ekman layer as due to an increase of the centrifugal force near the horizontal rigid surface.

In fact, they include in the centrifugal term also the radial component of the Coriolis force,

which is responsible for the unbalance.

In the frame of reference rotating with the final angular velocity 1, the impulsive change

in the rotation rate generates in the interior region a depth-independent clockwise azimuthal

flow U′
θ
(r′) = −r′ in geostrophic equilibrium, i.e., −2U′

θ
(r′) = −∂p̃′/∂r′. The equations of

the horizontal velocity components differ from Eq.s (3.4a) and (3.4b) only by the addition

of a vertically uniform pressure gradient associated with the geostrophic interior flow. The

solution satisfying the boundary condition

u′θ → U′θ(r
′) u′r = 0 as z′ →∞

u′θ, u
′
r = 0 at z′ = 0

is then

u′r(r
′, z′) = −U′θ(r

′)e−z′/E1/2
sin(z′/E1/2) (3.6a)

u′θ(r
′, z′) = U′θ(r

′)
[

1 − e−z′/E1/2
cos(z′/E1/2)

]

(3.6b)

In this case, the Ekman spiral is the result of the composition of three forces: the pressure

gradient force, the Coriolis force and the viscous force. Far from the bottom, the velocity is

entirely in the direction of the geostrophic flow. As the bottom is approached, the retarding

effect of the friction decreases u′
θ
, weakening the radial component of the Coriolis force,

while the radial pressure gradient is independent of the depth. Therefore, a velocity in the

radial direction must be produced at the bottom layer, flowing from high pressure to low

pressure, retarded only by fluid friction. At the bottom surface the velocity vector has turned

45◦ in anticlockwise sense with respect to the geostrophic velocity. At the level z′ = πE1/2,

u′r nullifies and u′
θ

becomes slightly bigger than the geostrophic value U′
θ
. The viscous effect

is indeed to break the constraint of exact geostrophic balance and produce a flow radially

outwards.

The agreement between measured velocity profiles and theoretical predictions is very good

for laminar and transitional regimes. Fig. 3.1 presents the results obtained by Sous et al.

1hereinafter only this frame of reference will be considered
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Fig. 3.1: Ekman layer: comparison between measured velocity profiles - - - and theoretical predictions —. Experimental

profiles are obtained by averaging successive velocity fields around t/T ≃ 62.5, where T = 40 s is the tank rotation period.

Reproduced from Sous et al. (2008) [69]

(2008) [69] in laboratory experiments using Stereoscopic Particle Image Velocimetry (¶ 4.4.1),

an extension of the traditional Laser P.I.V. technique in which two cameras are used to obtain

a depth perception, and thus give access to the out-of-plane component of the velocity.

The continuity Eq.n (3.3a) shows that the divergent radial Ekman flow induces a vertical

velocity w′ = −E1/2 from the geostrophic interior toward the Ekman layer. Thus, the radial

and azimuthal velocity components are everywhere proportional to the distance from the

vertical axis of rotation, r′, while the vertical velocity is independent of r′ (Von Karman’s sim-

ilarity solution 2). A consequence is that the interior azimuthal velocity is a time-dependent

solid body rotation, evolving under the action of the horizontal Ekman layers which act

to transform the no-slip condition on the horizontal velocity in a more appropriate normal

flow condition on the interior flow. In addition, there are inertial oscillations 3, excited by

the initial impulse, at twice the rotation frequency but of very small amplitude. Note that

since the geostrophic approximation was assumed in the interior region, only information

about the motion in the boundary regions is given, and the structure in the interior must be

2The similarity framework reduces Navier-Stokes equations from partial to ordinary differential equations,

identifying solutions which depend on certain groupings of the independent variables rather than on each of the

independent variables separately.
3Inertial oscillations, also known as inertial waves, are a type of stationary wave present in the bulk of the

fluid, due to the restoring effect of the Coriolis force. A closed container imposes restrictions on the possible

frequencies of the waves, then inertial waves are often called inertial modes.
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Homogeneous Case Spin-up & Spin-down

determined.

The total flux per unit area in the Ekman layer caused by viscous force is

~Q′ = îr

∫ ∞

0

ũ′r dz′ + îθ

∫ ∞

0

ũ′θ dz′

= −
E1/2

2
U′θ(îr + îθ) (3.7)

being ũ′r ≡ u′r and ũ′
θ
≡ (u′

θ
− U′

θ
) the departures from geostrophic flow induced by the

presence of the viscous force. The divergence of Eq.n (3.7) is

~∇′ · ~Q′ == −
E1/2

2

1

r′

∂(r′U′
θ
)

∂r′
= −

E1/2

2
ω′z (3.8)

being ω′z the vertical vorticity of the geostrophic interior. The continuity equation then

provides

w′ =
E1/2

2
ω′z (3.9)

The vertical velocity is then proportional to the interior geostrophic vorticity. Lateral varia-

tions in the interior flow cause variations of the flux in the Ekman layer and force flow into,

or out of, the interior. This mechanism is referred as Ekman pumping/suction according to the

sign of the vertical velocity, as shown in Fig. 3.2.

The divergent radial flow in the Ekman layer is compatible with continuity requirements

Fig. 3.2: Ekman pumping/suction sketch in case of cyclonic/anticyclonic interior velocity field.

only if an equal radial inflow with velocity u′r = −(1/2)r′E1/2 arises in the interior region. In

this way the effect of the horizontal boundary layer is communicated directly to the interior

region through a forced secondary circulation.

This slow induced Ekman secondary circulation causes planetary vortex tubes in the inte-

rior to contract slightly. Since the interior region is practically inviscid, then each vortex tube

conserves its absolute circulation (Kelvin’s theorem). Therefore, the planetary vortex lines

will be gathered closer together, increasing the positive absolute vorticity by reducing the
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Spin-up & Spin-down Homogeneous Case

interior negative relative vorticity. The required additional relative vorticity in the interior

results from stretching of the planetary vortex lines by Ekman layer suction velocity. Using

dimensional variables it is straightforward to show that the spin-up time may be interpreted

as the time required for the interior vertical velocity w = ǫΩHE1/2 to stretch a vortex line an

amount ǫH (Benton & Clark (1974) [4]).

t ∼
ǫH

ǫΩHE1/2
= Ω−1E−1/2 → t′ ∼ E−1/2 (3.10)

This result may be interpreted also as a consequence of the conservation of angular mo-

mentum of the fluid contained in the vortex tube. Such an interpretation is possible since

the interior region is inviscid, and consequently the stress at the boundary of the vortex

tube exerts no torque on the fluid inside. The Ekman layer acts as a sink from low angular

momentum fluid in the interior, this fluid being replaced by high angular momentum fluid

drawn from larger radii (Greenspan & Howard (1963) [32]).

From an alternate point of view, note that the cross-isobars flow in the Ekman layer from

high (at the center) to low pressure (at the sidewall) means that work is being done on the

fluid by pressure force. Even now using dimensional variables

Ẇ= −

∫ ∞

0

~∇p̃ · ~̃u dz = −
∂p̃

∂r

∫ ∞

0

ũr dz =

= 2ΩρU2
θ

∫ ∞

0

e−z/δE sin(z/δE) dz = ρΩU2
θδE

being δE = HE1/2 = (ν/Ω)1/2 the dimensional thickness of the Ekman layer. This work is

associated with an energy loss in the interior due to the radial flow from low pressure to

high pressure. Thus, the energy loss in the interior region supplies energy to the fluid into

the Ekman layer, where it is depleted by viscous force. A geostrophic layer of fluid of depth

H, moving with velocity Uθ, possesses a kinetic energy per unit area K = (1/2)ρU2
θ

H and

supplies energy at a rate Ẇ to the Ekman layer. Unless externally maintained, the geostrophic

flow will decay through viscous dissipation in a time t = K/Ẇ identical to Eq.n (3.10) (Ped-

losky (1987) [58]).

As the interior fluid spins-up, the driving angular velocity gradient across each Ekman

layer weakens, so that the secondary circulation is then eliminated. Finally, at very large

times, t′ ∼ O(E−1), viscous diffusion has affected the whole interior region and residual mo-

tions are dissipated.

Thus, although the initial and final state of solid body rotation are simple, the tran-

sient motion is non-trivial since it involves three time scales corresponding to three distinct

physical mechanisms
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Homogeneous Case Spin-up & Spin-down

1. the development of the Ekman layers for τe = Ω
−1

2. the spin-up process for τs = Ω
−1E−1/2 defined as the time required for the fluid to reach

the final state of solid body rotation

3. the viscous decay of any residual motion for τv = Ω
−1E−1

All the above results were inferred by Greenspan & Howard (1963) [32] from suitable

approximations to the exact Laplace transform solution, which exists for the simple double-

disc container. An approximation of the interior azimuthal flow during spin-up time scale

(which omits inertial oscillations as well as boundary layer formation) is simply

u′θ(t
′) = U′θe

−t′/τ′s (3.11)

3.1.3 Axisymmetric Container

To cope with axisymmetric containers Greenspan & Howard (1963) made use of the

concepts of boundary layer theory. In order to determine the flow in the interior region a

rigorous procedure is necessary to include small non-geostrophic forces, i.e., the vortex-tube

stretching by Ekman suction velocity. Briefly, the basic idea is that, in situations in which

the Ekman number is small, the direct effect of viscosity is restricted to thin Ekman layers,

while the interior region can be regarded as essentially inviscid. A vertical stretched variable

ζ = z′/E1/2 is introduced in the Ekman layers: in these regions the flow is function of the

vertical coordinate scaled by the Ekman layer thickness, i.e, ζ = z/δe, rather by the vertical

length scale H. Consequently, as δe → 0, the highest derivatives pertinent to the viscous force

vary so rapidly that the viscous term becomes important in the Ekman layers even though

E→ 0, i.e.,

E
∂2u′

θ

∂z′2
=
∂2u′

θ

∂ζ2
= O(1)

Since the parameter separating the different time scales is E1/2, an approximate solution uni-

formly valid through the spin-up time is sought by introducing into the governing equations

an expansion of the solutions in half power of the Ekman number. A quasi-geostrophic

inviscid motion in the interior region is matched to a motion in the viscous Ekman layers

as to satisfy the boundary conditions. Greenspan & Howard (1963) showed that the fluid

spin-up is still completed by the same basic process as occurs between parallel discs, and

again in a time τ′s ∼ O(E−1/2). The motion in the interior region is again columnar, but the

interior angular velocity at any time t′ < τ′s is horizontally non uniform (e.g., in a sphere the

40



Spin-up & Spin-down Homogeneous Case

fluid at larger radii spins-up more rapidly).

The previous explanation is appropriate if the container has no finite parts of its bound-

aries parallel to the rotation axis. In this situation, the balance of forces necessary to produce

an Ekman layer is not possible on the sidewall, and the expectation was that spin-up may be

substantially affected. This conjecture was proved to be wrong: a set of two vertical boundary

layers, named Stewartson layers, arises from a balance which involves Coriolis force, pres-

sure gradient and radial viscous force. Anyway, Ekman layers still form on the horizontal

boundaries and these continue to produce spin-up of interior fluid exactly as in double-disc

system. The Stewartson layers, of thickness ∼ O(E1/4), satisfy the no-slip condition for radial

as well azimuthal velocities, but are too thick to provide sufficient viscous stresses on the

vertical motion. It turns out that an inner layer is required, of thickness ∼ O(E1/3), in which

the flux flowing radially outward in the Ekman layers is turned into the vertical direction.

The Stewartson layer is so wide that cannot affect the Ekman layer below it, in which the

analysis applies as an ordinary geostrophic flow were located above. Note that the vertical

turning of the fluid at the sidewall does not happen only for reasons of continuity. The

vertical velocity depends on the sign of the vorticity in the interior region relative to the

horizontal boundaries (cf., Eq.n 3.9). Far from the sidewall the vorticity of the boundaries is

larger than that of the interior region, therefore the fluid is sucked into the Ekman layer. At

the sidewall, the initial vorticity is diffused by viscosity in the Stewartson layer, providing

a high fluid vorticity, greater than that at the bottom boundary. Thus, the fluid does not

simply enter into the sidewall, but is pumped out of the Ekman layers. The nearly inviscid

core in the interior region is not directly affected by the vertical sidewall layers, which are

essentially steady on the spin-up time scale, and thus the spin-up process is accomplished

as in the case of double-disc system.

If the container is open at the top and the fluid held in it by gravity, the treatment at the

upper surface must obviously be modified. The first consequence of a free surface is that, in

first approximation, the viscous effects at the top surface are removed: the interior flow may

be considered as extending to the upper surface. Secondly, the change in the shape of the free

surface between the initial and final parabolic surfaces induces an additional radial motion,

modifying the spin-up process. The importance of this effect relative to the secondary circu-

lation is measured by the Froude number 4, F = Ω2L2/gH, whereΩ is the angular velocity of

the basic rotation. If F is very small, the upper boundary may be considered to be essentially

4The Froude number indicates the ratio of advective term to gravitational force.
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Stratified Case Spin-up & Spin-down

horizontal.

The theoretical predictions of Greenspan & Howard (1963) were shown to be in good

agreement with both numerical computations and laboratory measurements, e.g., Warn-

Varnas et al. (1978) [75].

3.2 Stratified Case

A continuously salt-stratified fluid is assumed to be in solid body rotation inside a right

circular cylinder. Note that the condition for static equilibrium is ~∇p̃ × ~∇ρ̃ = 0 (cf., Eq.n

(2.16a)), but the isobaric surfaces are paraboloids of revolution and the isopycnal surfaces

cannot be parallel because of diffusive processes. Therefore, such a state is not possible and

a relative flow, referred to as Sweet-Eddington circulation, occurs. We ignore this circulation,

which can be justified providing a small Froude number. Consequently, in solid body rotation

the isopycnal surfaces were assumed to be essentially parallel to the horizontal.

In stratified fluid the physical structure of the system is substantially more complicated,

and so the analysis. However, the homogeneous case has shown the existence of separated

time scales (i.e., development of Ekman layers, secondary circulation response, viscous

effects), suggesting a multi-timing treatment of the spin-up process.

Even now, let H, τ, U characterize the typical length, time and relative velocity of a

particular motion, restricting the analysis to the linear case. The replacement of the variables

~r, t, ~u, p̃, ρ̃ by their scaled counterparts H~r′, τt′, U~u′,ΩUHρ0p̃′,ΩUρ0ρ̃′g−1 (e.g., Duck & Foster

(2001) [13]) allows a reduction of the governing equations (2.16) to a non-dimensional form,

τ′
∂~u′

∂t′
+ 2k̂ × ~u′ = − ~∇′p̃′ − ρ̃′k̂ + E∇′2 ~u′ (3.12a)

~∇′ · ~u′ = 0 (3.12b)

τ′
∂ρ̃′

∂t′
−

Bu

δ2
~u′ · k̂ =

E

σ
∇′2ρ̃′ (3.12c)

Three additional non-dimensional parameters pertinent to rotating stratified flows appear:

the Schmidt number,σ ≡ ν/κ, which indicates the relative importance of momentum diffusion

to density diffusion; the Burger number Bu; and a time-scale parameter τ ≡ Ω−1τ′. Note that

in case of thermally stratified fluid the appropriate non-dimensional number is the Prandtl

number, Pr = ν/χ.

In a NaCl-saline solution σ ∼ O(103) (T ∼ 20◦, any concentration), while in fresh water
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Spin-up & Spin-down Stratified Case

Pr = O(10) (20◦ ≤ T ≤ 100◦). These differences do not imply discrepancies in the dynamics

of the spin-up since the role of density (temperature) diffusion during the spin-up process

becomes important only in case of small σ (Pr) (Sakuray et al. (1971) [64]).

The influence of stratification is easily seen referring to Eq.n (3.12c) in case of quasi-steady

flow
Bu

δ2
w′ +

E

σ
∇′2ρ̃′ = 0

Since in salt-stratified flow σBu/δ2 ≫ E1/2, the Ekman vertical velocity w′ ∼ O(E1/2) is larger

than the vertical advection necessary to balance the density diffusion, i.e., w′ ∼ O(δ2E/σBu),

and thus it is expected that the flow will be significantly different from the homogeneous

case (Linden (1977) [45]).

The process of spin-up of a stratified fluid in a circular cylinder was studied by Holton

(1965) [34], who considered the spin-up time scale derived by Greenspan & Howard (1963) in

homogeneous fluid, i.e., assuming τ′ = τ′s = E−1/2. Information in a time scale of O(1) is lost

with this substitution, but it has principally to do with inertial-internal gravity modes 5 which

are not important for the determination of the spin-up process. Holton (1965) showed that the

Ekman layers have the same structure as in homogeneous case since the vertical buoyancy

force cannot directly affect its horizontal force balance. Furthermore, density variations do

not occur on the small O(E1/2) scale of the Ekman layer. Rather, there is a thicker O(E1/4)

diffusive boundary layer in which density adjustments occur. Therefore, simple Ekman

layers develop and the resulting spin-up process is independent of the density conditions on

the horizontal boundaries.

A second conclusion from Holton’s work is that the interior dynamics is no longer

dominated by the Taylor-Proudman theorem (Eq.n (2.11)). Using boundary layer theory

Holton (1965) showed that the inviscid interior is governed on the spin-up time scale τ′s ∼

O(E−1/2) by the linearized form of the quasi-geostrophic potential vorticity equation (2.25).

In non-dimensional variables

∇′H
2ψ′ +

δ2

Bu

∂2ψ′

∂z′2
= 0 (3.13)

which provides for an elliptic equation in terms of the time derivative of the lowest order

interior pressure field, ψ′ ≡ ∂p̃′
(0)
/∂t′. Note that the first and the second term in Eq.n (3.13)

are, respectively, vertical relative vorticity and vertical stretching. Fixed δ, if Bu ≪ 1, i.e.,

weak stratification, vertical stretching dominates, and Eq.n (3.13) reduces to ∂2ψ′/∂z′2 = 0, a

5The inertial oscillations excited by the impulsive spin-up are modified by the stratification, resulting in

inertial-internal gravity modes.
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Stratified Case Spin-up & Spin-down

form of the Taylor-Proudman theorem valid in the homogeneous case. On the other hand,

if Bu ≫ 1, i.e., strong stratification, then the mechanism of vortex stretching is essentially

eliminated, and the relative vorticity is conserved for time scales shorter than those of viscous

dissipation and density diffusion.

The determination of ψ′ requires only specification of a boundary condition sufficient

to solve the elliptic equations (3.13), and may be formulated in terms of the vertical veloc-

ity evaluated at the top of the Ekman layer. The aim of the analysis is to determine the

development in time of the lowest order fields

∂u′
θ (0)

∂t′
=

∂ψ′

∂r′
(3.14a)

∂ρ̃′
(0)

∂t′
= −

∂ψ′

∂z′
(3.14b)

u′r (0) = w′(0) = 0 (3.14c)

Holton (1965) showed that the state resulting from the spin-up process is characterized

by non-uniform rotation such as

1. adjacent to the horizontal boundaries, just outside of the Ekman layers, the fluid rotates

at the new angular velocity;

2. further away from the horizontal boundaries, the angular velocity discrepancies be-

tween the fluid and the boundaries continuously increase on a vertical scale hp ∼ H/Bu1/2,

a relation first given by Rossby (1938) [60] 6;

3. the recirculation process and penetration depth of the fluid ejected from the Ekman

layers into the interior flow is governed by the Burger number. If Bu≫ 1, the spin-up

of the interior fluid is confined to thin layers near each horizontal boundary, named

rotational shear layers. The state is quasi-steady, characterized by a linear vertical shear in

the azimuthal velocity. Since there are no differences in local angular velocity between

the Ekman layers and the adjacent fluid, then no further Ekman pumping occurs.

Holton (1965) based his analysis of the interior region on a mathematically convenient,

but arbitrary, condition imposed at the sidewall (p̃′
(0)
= 0 rather than the correct ∂p̃′

(0)
/∂r = 0).

He recognized that this assumption does not satisfy the boundary conditions, and boundary

layers are required. However, he stated that the sidewall boundary layers play only a passive

role in closing the secondary circulation.

6note that the original relation was hp ∼ L/S1/2, being S = Bu/δ2
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Pedlosky (1967) [56] attempted to obtain a solution for the sidewall layer which closed the

secondary circulation. He showed correctly that, when the sidewall is insulated, the vertical

boundary layer is unable to carry the O(E1/2) mass flux discharged from the Ekman layer at

the corners. The physical reason is the inhibition of the vertical motions by buoyancy force,

and consequently there is no radial influx from the sidewall layers to the interior. However,

he was not able to match the interior solution to the sidewall layer, and this led him to assume

that there are no Ekman and Stewartson layers, and viscous diffusion rather than Ekman

layer suction were important in the fluid interior.

Holton & Stone (1968) [36] noted that the results of Pedlosky (1967) were at variance

with experimental observations also presented by Holton (1965), and pointed out certain

inconsistencies with some of Pedlosky’s scaling arguments.

The correct model for stratified spin-up was finally derived by Walin (1969) [74] and

Sakuray (1969) [62]. They agreed with Pedlosky’s considerations about the sidewall bound-

ary layer, but showed that the secondary circulation still exists. Walin (1969) and Sakuray

(1969) demonstrated that in the corner region there is the formation of a jet which returns the

Ekman layer flux directly into the interior region, forming a meridional secondary circulation

restricted to a region adjacent to the Ekman layers. Therefore, in the interior region there is no

net contraction of the total bundle of planetary vortex lines, and the interior vertical relative

vorticity remains constant in time. Although the total relative vorticity does not increase, the

existing relative vorticity imposed by the change in the rotation rate is rearranged. The radial

transport of fluid within the Ekman layer induces a vertical velocity which acts to stretch

fluid columns and so increases the relative vorticity, generating a downward deformation of

the initial isopycnal surfaces. In contrast, the isopycnal surfaces at the sidewall are deformed

vertically upwards, causing compression of the fluid columns and a decrease of the relative

vorticity. Finally, the net result is to shift the relative vorticity toward the center.

A complete analogy between salt-stratified and thermal-stratified fluids is not possible.

In fact, in case of thermal stratification the fluid may or may not exchange heat with the

sidewall, depending on the boundary conditions. Instead, in salt-stratified case the sidewall

does not allow salt diffusion, and only the non-diffusive boundary condition is applicable.

Note that the case of fixed-temperature (diffusive) sidewall was also analyzed (e.g. Sakurai

(1969) [61]; Sakuray et al. (1971) [63]). Since the fluid may exchange heat with the sidewall,

the buoyancy constraint on the vertical boundary layer is not so severe. Calculations show

that part of the Ekman layer flow goes through the sidewall layer and part goes directly in
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the interior region. Thus, both vorticity production and rearrangement are involved.

When discussing stratified spin-up problems care must be taken concerning the defini-

tion of a spin-up time. Since the adjustment is localized and thus position dependent, it is

possible to achieve a quasi-steady localized spin-up on the fast time scale

τ′ss ∼

(

ν

Ωh2
p

)−1/2

=
τ′s

Bu1/2
(3.15)

which is simply the usual Ekman spin-up time τ′s valid in the homogeneous case, but based

on the effective penetration depth of the secondary circulation, i.e.,

hp ∼ H/Bu1/2 (3.16)

Nevertheless, defining the spin-up time as the time in which the bulk of the fluid adjusts to

solid body rotation, then the time taken to spin-up is the longer diffusive time scale τ′v = E−1.

The solution for the lowest order interior velocity and density fields are usually expressed

by means of Bessel functions Jα

u′θ (0) = −r′δ +
∞
∑

n=1

Cn
cosh mnz′

cosh mn
J1(αnr′δ)[1 − exp(−t′/τn)] (3.17a)

ρ̃′(0) =

∞
∑

n=1

mn

αn
Cn

sinh mnz′

cosh mn
J0(αnr′δ)[1 − exp(−t′/τn)] (3.17b)

where Cn ≡ −2/αn J0(αn), mn ≡ Bu1/2αn/δ, τn ≡ (2m2
n)−1/2 tanh mn, and αn are zeros of the

first-order Bessel function.

The qualitative features of Eq.n (3.17a) are illustrated in Fig. 3.3. When Bu1/2 is small com-

pared with 1 (Fig. 3.3(a)), the process is essentially identical to the spin-up of a homogeneous

fluid, except in a region of thickness Bu1/2L close to the vertical sidewall. When Bu1/2 is large

compared with 1 (Fig. 3.3(b)), the spin-up process only penetrates to the dimensional height

H/Bu1/2.

3.3 Previous Works in the Axisymmetric Case

Early laboratory spin-up experiments on stratified flows were performed by Holton (1965)

[34], McDonald & Dicke (1967) [49] and Modisette & Novotny (1969) [52] using salt-stratified

fluids in circular cylinders. Holton (1965) obtained relative velocities of the fluid by timing

the angular displacements of wax pellets which were made neutrally buoyant at various

levels. Holton’s experiments demonstrated the essential features of the spin-up flow, but the

46



Spin-up & Spin-down Previous Works in the Axisymmetric Case

(a) Bu1/2 ∼ 0.1 (b) Bu1/2 ∼ 10

Fig. 3.3: Sketch of the secondary circulation for t′ ∼ O(1) with weak (Bu1/2 ∼ 0.1) and strong (Bu1/2 ∼ 10) stratification.

The shaded areas are essentially unaffected by the secondary circulation. Reproduced from Walin (1969) [74].

quantitative agreement with his linear theory was fortuitous since the sidewall boundary

condition used (perfectly conducting sidewall) was inappropriate to his experimental con-

figuration (salt-stratified fluid) (Buzyna & Veronis (1971) [6]).

McDonald & Dicke (1967) observed the damping of the azimuthal motion of the fluid by

the use of free surface floats. They concluded that the occurrence of Ekman pumping can

be inhibited or eliminated by a sufficient density gradient in the fluid. However, McDonald

& Dicke could not easily sense the spin-up process with surface floats, but rather they were

observing primarily the viscous-diffusion effects.

Modisette & Novotny (1969) repeated and extended the experiments of McDonald &

Dicke (1967). They interpreted McDonald & Dicke’s conclusions to mean that convective

spin-up can be prevented by a density gradient, and attempted to find a transition between a

convective and a purely viscous spin-up. However, their results were of insufficient accuracy

due to the coarse nature of their experimental technique.

More accurate experimental studies were conducted by Buzyna & Veronis (1971) [6],

Saunders & Beardsley (1975) [66], and Lee (1975) [43]. Buzyna & Veronis (1971) used a

salt-stratified fluid in a circular cylinder, measuring the motion of initially radial dye lines

in order to obtain the angular displacements of the fluid. They found that, even at relatively

small Rossby numbers, the interior fluid spins-up more quickly than predicted by Walin’s

asymptotic theory. Buzyna & Veronis then speculated that non-linear effects near the corner
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regions may be important even at small Rossby numbers. They also noted that the diffusion

of salt at the horizontal boundaries before the spin-up decreases the density gradient. The

weaker stratification near the boundaries may permit deeper penetration of the secondary

circulation, and thus produce longer spin-up time and better agreement with theory.

Saunders & Beardsley (1975) avoided the density diffusion difficulties by using a ther-

mally stratified fluid in a cylinder with insulated sidewall but fixed temperature at the

horizontal boundaries. They measured the temperature perturbation field with an array of

thermistors and generally found that the measured azimuthal velocities decayed faster than

predicted by the theory of Walin (1969). Various causes such as thermal variation of viscosity

and probe drag were postulated to account for the discrepancies, which were function of the

strength of stratification and the location in the fluid. They noted also that the possibility of

baroclinic instability existed, but estimates of the growth rate indicated that they would not

be seen on a time scale as short as spin-up.

Lee (1975) used the disturbance-free, high resolution, laser Doppler velocimeter measur-

ing technique in a thermally stratified fluid. He also found that, in general, the measured

azimuthal velocities showed faster decay rates than Walin’s theory. This established that

probe drag alone was not responsible for the discrepancies in previous studies. Lee (1975)

detected the oscillations excited by the impulsive start and showed that they were internal-

inertial gravity modes. However, he made no measurements of the meridional flow.

Barcilon et al. (1975) [1] pointed out that, for high values of the Burger number, the spin-up

time is comparable with the rotation period, a circumstance that invalidates the theory, based

on a multi-timing treatment of the spin-up process. They performed numerical experiments

on thermally stratified spin-up in a circular cylinder, solving the Navier-Stokes equations in

axisymmetric form by means of finite-difference technique on a uniform grid. Barcilon et

al. (1975) again found that the model results decayed faster than the theory of Walin (1969)

and established that the effects of non-linearity were not the cause of the discrepancies in

the range ǫ ≤ 0.10. The meridional stream function plots by Barcilon et al. (1975) showed

the progressive confinement of the meridional circulation into regions adjacent to the Ekman

layers as the stratification increases. From an examination of these plots, they pointed to

an oscillation of the inclination of the corner-jet between near horizontal and near vertical

positions, claiming an oscillation period of two or three times the rotation period. Barcilon

et al. (1975) then argued that this oscillation of the corner-jet causes that some fluid spends

more time in the viscous vertical boundary layer than it would if the jet was inclined at a
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steady angle to the vertical, as given by Walin’s theory. While this fluid is within the ver-

tical boundary layer, viscous shear adjusts its angular velocity to that of the sidewall more

efficiently than for the interior fluid. The fluid ejected into the interior from the vertical

boundary layer yields its newly acquired angular momentum to the interior region. Thus,

according to Barcilon et al. (1975), the fluid that is first forced into the vertical boundary layer

and than into the interior region provides a mechanism for spinning-up the bulk of the fluid.

Later, numerical simulations were carried out by Hyun et al. (1982) [39], extending the

model of Warn-Varnas et al. (1978) [75] to incorporate the effects of thermal stratification. The

numerical model was checked by comparing the predictions with the accurate measurements

of Lee (1975), showing an excellent agreement. Then, Hyun et al. (1982) made a discussion

of their numerical results and a comparison with the linearized theory of Walin (1969). Let

us summarize the most important points

- The interior azimuthal velocities are spatially non-uniform on the spin-up time scale.

- In the interior, well away from the Ekman layers, the flow decays initially at a slower

rate as the stratification increases. On other hand, in the interior, close to the Ekman

layers, the flow decays initially at a faster rate as the stratification increases. These

results were interpreted as showing the effect of the progressive confinement of the

meridional circulation by stratification.

- In general, spin-up proceeds initially more rapidly at smaller radii and decreases as

the radius increases, until the viscous boundary layer on the outer wall is reached.

This result confirms that the vortex-stretching by meridional circulation is not spatially

uniform, but it is stronger at smaller radii

- The overall disagreements between the theory of Walin (1969) and the numerical results,

aside from the presence of inertial-internal gravity modes (which were omitted from

the theory), are appreciable. In general, there is initial agreement for a time after the

impulsive start, but the curves begin to diverge, with the numerical results decaying

faster than the theory. The theory accurately predicts the flow evolution in case of

locations and times for which the secondary circulation is strong. Correspondingly, if

the meridional flow is weak, then agreement is poor.

- The results are only weakly dependent on the Rossby number, and hence non-linearity

cannot account for the discrepancies between the theory and the experiments in the

range ǫ ≤ 0.22.
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- The oscillation of the corner-jet inclination was shown to be the result of the superposi-

tion of meridional circulation flow and inertial internal gravity modes. This oscillation

was noticed previously by Barcilon et al. (1975), but they claimed to have observed a

much larger period. Hyun et al. (1982) suggested that, probably, their error arose from

having too few stream function plots, which in turn led to aliasing of the oscillations.

In order to account for the experimentally observed faster spin-up, Barcilon et al. (1975)

argued that this oscillating corner-jet transports angular momentum from the sidewall

boundary layer into the interior region. However, since the inward radial distance

moved by a fluid particle during the meridional circulation phase of the spin-up is

O(ǫR), the fluid ejected from the sidewall boundary layer would not reach the interior

region. Therefore the suggestion of Barcilon et al. (1975) is shown to be untenable

Since the effects of non-linearity and other possible sources were shown to be unimpor-

tant, Hyun et al. (1982) concluded that the observed discrepancies between the theory and

the numerical results on the spin-up time scale are due to viscous diffusion in the interior

region, which was omitted from the theory. The effects of viscous diffusion in the interior

are enhanced for stratified over homogeneous spin-up since the meridional circulation in

presence of stratification produces vertical gradients of azimuthal velocity, whereas in ho-

mogeneous fluid the azimuthal velocity decay is essentially independent of the vertical axis.

The above conclusion concerning the viscous effects in the interior region was verified

Fig. 3.4: Plot of Coriolis (solid line) and viscous terms (broken line). The ordinate shows the values in c.g.s. units.

Simulation for a medium stratified fluid. Reproduced from Hyun et al. (1982) [39].

by examining the size of each of the terms in the equation of the azimuthal velocity. In
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dimensional variables (cf., Eq.n (2.16a))

∂uθ
∂t
= −

1

r

∂

∂r
(ruruθ) −

∂

∂z
(wuθ) −

(

2Ω +
uθ
r

)

ur + ν

(

∇2uθ −
uθ
r2

)

Among the terms on the right-hand side of this equation, the non-linear advective terms

and the curvature term are several order of magnitude smaller than the Coriolis term, for

the linearized problem. Hyun et al. (1982) noticed that the Coriolis term oscillates with the

period of the inertial-internal gravity modes and, since the theory of Walin (1969) filtered

out the inertial-internal gravity modes, the Coriolis term used in Walin’s formulation would

be obtained by averaging the Coriolis term measured by Hyun et al. (1982) over one period

of the inertial-internal gravity oscillation. Fig. 3.4 shows that this averaged Coriolis term is

larger than the viscous term for early times, but after about one rotation period the averaged

Coriolis term becomes comparable to or even smaller than the viscous term. Therefore,

omitting the viscous term and retaining only the averaged Coriolis term, as in Walin’s theory,

would lead to an appreciable underestimation of the acceleration of the fluid in the azimuthal

direction.

Other numerical investigations of the thermally stratified problem were conducted by

Hyun (1984) [38]. He confirmed that the relative vertical vorticity profiles show an apprecia-

ble dependence on the vertical position through the flow field, pointing to the existence of

substantial flow gradients.

Spin-up of a stratified fluid is indeed controlled by both inviscid and viscous-diffusion

effects. The relative importance of these two is a function of the strength of stratification and

the location in the fluid. In the interior region, close to mid-depth, the limited penetration

of the meridional circulation creates large flow gradients, which give rise to the dominance

of viscous-diffusion over inviscid effects. On the other hand, at a location adjacent to the

Ekman layers, the meridional circulation is the principal contributor to spin-up, and thus

inviscid overcome viscous-diffusion effects. (Hyun (1983) [37]).
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Chapter 4

Experiments, Instruments and

Measurements

4.1 Overview

The physical system to be investigated is sketched in Fig. 4.1. An open right cylindrical

z

ρ∆ρ

H

R

~Ω

Fig. 4.1: Schematic representation of the physical system

vessel of radius R contains linearly salt-stratified fluid of depth H in solid body rotation at

t = 0. The increase (decrease) in the angular velocity of the tank generates an anticyclonic

(cyclonic) current in the interior region along the azimuthal direction.

The time response of the flow depends on seven dimensional parameters: the rotation

rate Ω, the change in the rotation rate ∆Ω, the buoyancy frequency N, the horizontal length

scale L (= R), the depth of the fluid layer H, the kinematic viscosity ν, and the salt diffusivity

κ. Using dimensional analysis, the problem can be described conveniently in terms of five

53



Overview Experiments, Instruments and Measurements

non-dimensional parameters which we take as the Rossby number ǫ, the Burger number Bu,

the (vertical) Ekman number E, the aspect ratio δ, and the Schmidt number σ. The fluid

depth is kept constant in all the experiments, the Ekman number is very small (E ∼ O(10−5)),

and the Schmidt number is large (σ ∼ O(103)). Consequently, the flow evolution depends

only on the Burger and Rossby numbers.

A series of spin-up and spin-down run pairs were performed, fixing the final rotation rate

of the tank for each pair in order to make a quantitative comparison between spin-up and

spin-down at otherwise the same parameters. The angular velocity of the tank was changed

from Ωi to Ω = Ωi ± ∆Ω, and thereafter kept constant during each experimental run. The

change in the rotation rate of the tank was performed in a time interval of approximatively

five seconds, and therefore may be considered as impulsive.

Even if the flow behavior differences in our experiments do not depend on the Ekman

number, it is a fundamental parameter in the spin-up process. In fact, as previously explained,

the theory of stratified spin-up relies on a multi-timing treatment which reflects the existence

of separated time scales (i.e., development of Ekman layers, secondary circulation response,

viscous effects). The separation of the three time scales is O(E−1/2) (cf., ¶ 3.1), and therefore

a very small Ekman number is suitable to properly compare the experimental results with

the analytical theory of Walin (1969). Table 4.1 shows the spatial dimensions, the aspect

EXP H L δ E

Buzyna & Veronis (1971) 6 9.5 0.32 ∼ O(10−4)

Saunders & Beardsley (1975) 4.5 10 0.45 ∼ O(10−4)

Lee (1975) 3 9.5 0.32 ∼ O(10−4)

Kanda (2004) 30 46 0.65 ∼ O(10−5)

Smirnov et al. (2005) 19 91 0.14 ∼ O(10−4)

Tab. 4.1: List of the most representative runs of the previous experimental realizations of incremental stratified spin-up

(entire system). H and L are, respectively, the vertical and horizontal length scale [cm], δ is the aspect ratio [−], E is the

Ekman number [−].

ratio and the Ekman number for the most representative runs of the previous experimental

investigations of incremental stratified spin-up. Note that the first three studies used a closed

container, and therefore half depth of the fluid layer has been reported since the system is

symmetric about mid-depth. Table 4.1 shows that the value E ∼ O(10−5) is approached

only in the study of Kanda (2004) [40], but this analysis was focussed on the evolution of

54



Experiments, Instruments and Measurements Overview

isolated baroclinic vortices, rather than on the instability mechanism itself. Moreover, our

experimental study ({H, L, δ,E} = {60, 650, 0.09,∼ O(10−5)}) is characterized by a small expect

ratio, which allows the results to be relevant in geophysical applications.

Obviously, a better separation between the time scales implies a longer spin-up time scale,

which can thus be properly analyzed. Our aim is therefore double

- in axisymmetric case, the viscous-diffusion effects, enhanced in stratified over homo-

geneous spin-up, can be influent not only in the viscous, but also in the shorter spin-up

time scale

- in non-axisymmetric case, the long-wave instability is expected to develop already in

the spin-up time scale, and its effects on the transport of momentum can be properly

investigated

EXP T Ω ∆Ω ǫ Bu

UP 1 50 0.126 +Ω/12 0.08 0.26

DW 1 50 0.126 −Ω/12 0.08 0.26

UP 2 50 0.126 +Ω/6 0.17 0.26

DW 2 50 0.126 −Ω/6 0.17 0.26

UP 3 200 0.031 +Ω/3 0.32 4.34

DW 3 200 0.031 −Ω/3 0.32 4.34

Tab. 4.2: List of performed experimental runs. T is the final (reference) rotation period of the tank [s], Ω is the final

rotation rate of the tank [rad s−1], ∆Ω is the change in rotation rate of the tank, ǫ and Bu are the Rossby and Burger

numbers [−].

The experimental runs and the relevant parameters are summarized in Table 4.2. Note

that the changes in the angular velocity of the tank were chosen as to keep constant in the

experiments the interior azimuthal velocity (uθ ≃ 5.5 cm s−1 at r = 550 cm, just after the start of

the run), and have only one pair (UP/DW 2) characterized by a double value of the azimuthal

velocity. Finally, a Rossby number, ǫ ≡ ∆Ω/Ω, versus Burger number, Bu ≡ (NH/ΩL)2,

diagram is plotted in Fig. 4.2.
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Fig. 4.2: Location of the different experiments in Rossby number (ǫ) versus Burger number (Bu) space.

4.2 Apparatus and Procedure

The spin-up and spin-down run pairs were performed in the large cylindrical rotating

tank (Fig. 4.3), 13 m diameter, of the Coriolis-LEGI laboratory. There was no rigid boundary

Fig. 4.3: The Coriolis turntable
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at the top of the tank, and it was covered with a floating foam canopy, removed before each

run, in order to avoid spurious perturbations caused by shear stresses exerted by the air on

the fluid surface during the filling.

The fluid was seeded with neutrally buoyant, light-scattering particles as to use P.I.V.

system. Two laser beams (6 W continuous argon lasers) generated as many laser sheets: a

horizontal one, 2.5 m × 2.5 m, and a vertical one, 0.6 m × 0.6 m, as sketched in Fig. 4.4 and

4.5. The horizontal laser sheet could scan seven different vertical positions in the bulk of the

profilers

horizontal

camera

camera

vertical

laser

laser

sheet

sheet

windows

0.6

2.5

2.5

6.5

0.5

1.0

1.6

1.0

1.0

Fig. 4.4: Experimental set-up, top view. The inner cylinder contains the laser used to produce the horizontal laser

sheet. The lengths are expressed in [m]

fluid by means of a laser sheet scanning system (Fig. 4.6(a)). Referring to Fig. 4.6(b), the

laser beam arrives from the top by optical fibers on a small oscillating mirror (model 6850 of

Cambridge Technology) which generates a vertical laser sheet. This small optical assembly

moves horizontally on a linear bearing traverse, and the vertical laser sheet is deviated into a

horizontal laser sheet by a 45◦ mirror. In this way, horizontal motion of the optical assembly

translates directly into vertical motion of the horizontal laser sheet. A fixed laser sheet in the

vertical plane was rather generated by means of a cylindrical lens.

The flow evolution was monitored for at least 100 rotation periods and images were taken
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(a) Experimental set-up, draft by Dr. H. Didelle

(b) horizontal laser sheet set-up (c) vertical camera set-up

(d) horizontal laser sheet (e) horizontal laser sheet

Fig. 4.5: Experimental set-up: draft and photos
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(a) apparatus (b) sketch

Fig. 4.6: Laser sheet scanning system.

by two digital CCD cameras with spatial resolution 1024 pixels × 1024 pixels. Each velocity

field was obtained from a burst of four images by means of P.I.V. technique. Such bursts were

repeated every 5 s at each horizontal level providing a measurement periodicity at a given

height of 35 s. For the fixed vertical laser sheet the measurement periodicity was of 15 s.

4.3 Experimental Set-up

The tank was filled with salt-stratified fluid at approximatively 20◦C (ν = 0.01 cm2 s−1)

while rotating at the desired rate. The parameter that most conveniently characterizes the

initial stable stratification is the buoyancy frequency, N ≃ 0.7 s−1. The background stratifica-

tion was kept constant, consequently the variation of the Burger number was accomplished

only by modifying the rotational rate of the tank. The boundaries were impermeable to the

solute, i.e., using the thermal analogy, the boundaries were insulated. The total depth of the

fluid layer at rest, H0 = 60 cm, was kept fixed in all the experimental runs. Since the tank

was rotating while filling, the fluid was displaced toward the periphery, until the resulting

inward pressure gradient prevented any further displacement. Equilibrium then requires

that at any point on the free surface the downward gravitational force and the outward cen-

trifugal force combine into a resultant force normal to the free surface. Anyway, the vertical

displacements are rather small and the difference in fluid height between the sidewall and

the center of the tank can be computed by means of Eq.n (A.8) in Appendix A. For instance,
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in case of a rotation period such as Ti = 50 s (Ωi = 0.126 rad s−1) it gives

H(R) −H0 =
Ω2

i
R2

4g
≃ 1, 7 cm

being H(R) the depth of the fluid layer at sidewall (r = R). Consequently, the Froude number

was relatively small in our runs, and this effect is neglected. The total depth of the fluid layer

is therefore considered independent of the radius (i.e., H = H0 = 60 cm).

Linear Stratification

The stratified fluid was prepared by a technique based on the slip-under method used by

Fortuin (1960) [25] in the preparation of density gradient columns. Considering Fig. 4.7, a

ρ f ρs

Q − q(t) q(t)

Q

test

storage

vessel

vessels

turntable

Fig. 4.7: sketch of the filling experimental apparatus

tube is connected to two vessels located in the laboratory frame of reference, one with fresh

water and the other with salt water (NaCl) of desired density. As light fluid is pumped at

a rate Q − q(t) from the fresh water vessel in the tube, dense fluid from the salt water vessel

flows at a rate q(t) through the tube. The salt water flow rate q(t), initially zero, is a linear

increasing function of time, and is obtained by means of a computer-controlled volumetric

pump. The mixed fluid is pumped at a flow rate Q in a rotating test vessel, located above
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the turntable. The total flow rate Q is maintained constant using an ultrasonic sensor which

records the fill level of the test vessel. This procedure increases the salt concentration of the

fluid, initially fresh water, and in turn its density. Then, the fluid feeds into the turntable

through a hole in the bottom edge by means of a filling tube passing down along the rotation

axis. The incoming denser fluid displaces the lighter fluid introduced previously. In this

way, a linear density gradient is obtained, which depends on the rate of flow from the storage

vessels.

Since dV = Q dt and

dm = (Q − q) ρ f dt + q ρs dt

= q ∆ρ dt +Q ρ f dt

being ρ f and ρs the density of fresh and salt water, respectively, then the final density is

ρ ≡
dm

dV
= ρ f +

q

Q
∆ρ

The rate of salt fluid flow is imposed linear in time by varying the rotation velocity of the

volumetric pump. Therefore

ρ(t) = ρ f +
α

Q
∆ρ t

being α a constant. Finally, the temporal profile of density in the test vessel must be converted

to the vertical profile of density in the turntable. In other words, it is possible to make a

change of variable since the fluid leaving the test vessel at some time ends up at some

particular elevation in the turntable

ρ(z) = ρ f +
∆ρ

H
z (4.1)

The stratification was characterized by the gradient ∆ρ/ρ0 ≃ 3 · 10−2 and the temperature of

the water is stabilized and controlled with precision better than 1◦C, so that density variations

associated with temperature fluctuations are negligible.
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4.4 Measurement Technique

4.4.1 P.I.V. & C.I.V.

In order to measure velocities and related properties in our experiments we used the

Particle Image Velocimetry (P.I.V.) system. The fluid is seeded with light scattering particles,

assumed to faithfully follow the flow dynamics, and the motion of these particles is used

to calculate velocity information. A laser beam is formed to a light sheet of a few mm thick

and the fluid is illuminated. The light scattered by the particles is recorded as series of

images by means of a CCD camera. The projection of the fluid velocity in the laser sheet

plane is obtained through evaluation of the particle displacement between the images. This

procedure is illustrated in Fig. 4.8.

The method used to obtain the displacement field proportional to the velocity field is the

Correlation Imaging Velocimetry (C.I.V.), developed by Fincham & Spedding (1997) [22] and

Fincham & Delerce (2000) [21]. This technique relies on the cross-correlation (covariance)

of the luminous intensity between image pairs, limited to small subdomains (boxes). The

velocity vector on each box is determined as the displacement which maximizes the covari-

ance, multiplied by the time between the images. A detailed description of the procedure is

illustrated in Appendix B.

Particles

The particles must be sufficiently bright to provide contrasted patterns, and small enough

to minimize inertia and sedimentation effects, as well as laser beam absorbtion. We used

expandable polystyrene particles of 350 µm (NOVA Chemicals Gedexcel R©), which can be

adjusted in density. In fact, these particles swell by heating in water at 70 − 80 ◦C due to the

formation of small pentane gas bubbles, decreasing randomly the density by a few percent

from its initial value of 1.05 g cm−3. After this heating, the particles are sorted by density

in order to have a flat distribution of densities matching that of the salt-stratified working

fluid, i.e., 1.00 ≤ ρ ≤ 1.03 g cm−3. This procedure ensures that an equal number of particles

is present at each depth. Note that a non-ionic wetting agent (ILFORD ILFOTOL) is mixed

with water to favor the wetting of particles and avoid agglomeration.

The seeding with particles must be dense, typically a density of dp ≃ 0.04 particles

per pixel in the images is needed to allow good statistic for correlation. For a field of

1000 × 1000 pixels, we need therefore Nl = 4 · 104 particles illuminated by the laser sheet. If
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(a) image at t

 

 

(b) image at t + dt

C.I.V.

 

 

(d) velocity field

 

 

(e) vorticity field

Fig. 4.8: Correlation Image Velocimetry: the velocity field is obtained from the cross-correlation between the particle

images at time t and at time t + dt. The vorticity field is deduced by differentiation.
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the corresponding volume of the laser sheet is Vl, the density of particles in the fluid is

n =
Nl

Vl
=

Nt

Vt
(4.2)

being Nt and Vt, respectively, the total number of particles in the fluid and the volume of the

fluid in the tank. The total volume of particles, V, to be seeded in the tank can be obtained

by setting in Eq.n (4.2) V = NtVp, being Vp the volume of a single particle, i.e.,

V =
Vt

Vl
VpNl

4.4.2 Data acquisition

The image acquisition and the laser sheet displacement are controlled by the software

ACQUIX, developed by Dr. G. Delerce. Since two computers were used for data acquisition,

it was not necessary that the two cameras worked in synchronous. The cameras used were

two DALSA, one with objective SCHNEIDER (focal length 25 mm and relative aperture 1)

and the other with objective SIGMA (focal length 20 mm and relative aperture 1.8). The

former was used for the horizontal laser sheet (shutter speed τhs = 1/15 s) and the latter for

the vertical laser sheet (shutter speed τvs = 1/30 s). The frame periods between the images

of each burst were not uniform in order to allow a best choice of time interval for the image

cross-correlation. The acquisition provided a series of bursts for each experimental run,

whose parameters are illustrated in the following sections.

UP/DW 1

1◦ 2◦ 3◦ 4◦
26 7 10

(a) horizontal laser sheet

1◦ 2◦ 3◦ 4◦
13 4 6

(b) vertical laser sheet

Fig. 4.9: Time intervals between consecutive images expressed in units of shutter speed.

The frame periods for each burst are sketched in Fig. 4.9, providing a comparison between

images with different time intervals, as sketched in Tab. 4.3.

UP/DW 2

The frame periods for each burst are sketched in Fig. 4.10, providing a comparison

between images with different time intervals, as sketched in Tab. 4.4.
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time intervals

horizontal vertical

image pairs [unit of τhs] [s] [unit of τvs] [s]

2 − 3 7 0.466 4 0.133

3 − 4 10 0.666 6 0.200

2 − 4 17 1.133 10 0.333

1 − 2 26 1.733 13 0.433

1 − 3 33 2.200 17 0.566

1 − 4 43 2.866 23 0.766

Tab. 4.3: Frame periods for the bursts of the runs UP/DW 1.

1◦ 2◦ 3◦ 4◦
26 4 10

(a) horizontal laser sheet

1◦ 2◦ 3◦ 4◦
13 2 6

(b) vertical laser sheet

Fig. 4.10: Time intervals between consecutive images expressed in units of shutter speed.

time intervals

horizontal vertical

image pairs [unit of τhs] [s] [unit of τvs] [s]

2 − 3 4 0.266 2 0.066

3 − 4 10 0.660 6 0.200

2 − 4 14 0.933 8 0.266

1 − 2 26 1.733 13 0.433

1 − 3 30 2.000 15 0.500

1 − 4 40 2.666 21 0.700

Tab. 4.4: Frame periods for the bursts of the runs UP/DW 2.

UP/DW 3

The frame periods were the same of the experimental runs UP/DW 2.
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Multilevel analysis

LEV vertical positions h [cm]

UP 1 DW 1 UP 2 DW 2 UP 3 DW 3

1 0 0 0 0 0 0

2 4 5 5 5 5.5 5.5

3 9 10 10 10 11 11

4 14 16 16 16 15.5 15.5

5 20 23 23 23 21.5 22

6 27.5 30.5 30.5 30.5 28 28.5

7 37 35.5 39.5 39.5 34 34

Tab. 4.5: Vertical positions of the horizontal laser sheet

The horizontal laser sheet could scan seven different vertical levels in the bulk of the fluid,

and one burst was made at each position every 5 s. The vertical positions of the horizontal

laser sheet are summarized in Tab. 4.5, being h the depth from the free surface.

4.4.3 Calibration Procedure

To get actual velocity data, it is first necessary to calibrate the images, transforming

pixel displacements into real distances, using some reference object. The objective is to

find the external (position and orientation relatively to a world coordinate system), and the

internal parameters of the camera (principal point or image center, focal length and distortion

coefficients).

Tsai’s model for camera calibration

The camera calibration technique used at Coriolis laboratory is the one proposed by Tsai

(1986) [73], retained for its accuracy and simplicity. Its implementation needs corresponding

3D point coordinates and 2D pixels in the images. It uses a two-stage algorithm, computing

the position and orientation in first stage and the internal parameters of the camera in second

stage. Note that the real power of this technique is felt in Stereoscopic P.I.V., but it is even

used in the traditional P.I.V. technique in order to standardize the calibration procedure.
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Experimental set-up

The calibration process should be performed very carefully to get sufficient measurement

precision. It is necessary to know exactly the position of the calibration target, its distance

from the bottom or any fixed element, and its angles with vertical and horizontal axis.

The procedure at Coriolis laboratory uses a calibration target with a grid of markers

placed in the acquisition area inside the laser sheet in the final experimental configuration.

One image of the target must be recorded and the image marker locations are found by

means of the software ACQUIX, developed by Dr. G. Delerce.

4.5 Velocity Fields

The velocity fields and their spatial derivatives, as well as information about the C.I.V.

processing, were stored in NetCDF 1 file format. The cameras co-rotate with the tank, and

thus the frame of reference rotating with the final angular velocity of the tank is considered.

The software UVMAT, based on MATLAB graphic user interfaces and developed by Dr. J.

Sommeria, was used to analyze images and velocity fields. It is also a powerful toolbox for

post-processing since it is designed to easily include new functions written by the user in

standard computer languages.

The main difference between spin-up and spin-down runs concerns the direction of the

relative flow in the interior region. Since the rotating direction of the tank is anticlockwise,

the change in the rotation rate generates a clockwise (anticyclonic) and an anticlockwise

(cyclonic) relative flow, respectively, in spin-up and in spin-down. Assuming the azimuthal

axis orientation anticlockwise, then the azimuthal velocity field is negative in spin-up and

positive in spin-down. In order to compare spin-up and spin-down velocity fields, let us

reverse the azimuthal spin-up velocity field.

As to compare different runs, the velocity of the flow at a given radial position was scaled

with the azimuthal velocity just after the start of the run at the same radial position, i.e.,

Ui(r) ≡ ui
θ
= |∆Ωir| where the i-apex variable indicates the run considered. Therefore, the

range of the non-dimensional azimuthal velocity field is 0 ≤ u
′i
θ
≤ 1 for all the runs.

1Network Common Data Form is a machine-independent format for representing scientific data, suitable for

large arrays. Each piece of data can be directly accessed by its name without reading the whole file. New records

can be added to the file without perturbing the remaining information
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The procedure to convert cartesian velocity fields in polar coordinates is illustrated in

the following steps. Note that, in order to avoid long expressions, horizontal and vertical

velocity fields are indicated, respectively, as TOP and SIDE VIEW data.

Referring to Fig. 4.11, let O be the center of the tank and ~r the vector position. The local

cartesian and polar frames of reference are respectively ( îx, îy) and (îr, îθ).

îx

îxîy

îy

îr

îr

îθ

îθ α
β

H

V ~r

~r

O

vertical laser sheet

Fig. 4.11: Relation between local cartesian and polar frames of reference

TOP VIEW Data

Let us consider a point H on the horizontal laser sheet and let α be the angle between

the two local frames of reference. The relation between cartesian (ux, uy) and polar velocity

components (ur, uθ) can be found by expressing the cartesian in function of the polar axis

îx = cosαîr − sinαîθ (4.3a)

îy = sinαîr + cosαîθ (4.3b)

Since

~u = ux îx + uy îy (4.4a)

~u = urîr + uθîθ (4.4b)
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using Eq.ns (4.3) in Eq.n (4.4a) and comparing with Eq.n (4.4b), it is straightforward to obtain

ur = ux cosα + uy sinα

uθ = −ux sinα + uy cosα

SIDE VIEW Data

Let us consider a point V on the vertical laser sheet and let β be the angle between the

two local frames of reference. The sought relation may be found by following an analogous

procedure

ur = −ux sin β + uy cos β (4.5a)

uθ = −ux cos β − uy sin β (4.5b)

Assuming that, generally, the radial velocity is negligible (Fig. 4.12), then Eq.ns (4.5) reduce

îx
îy

îr

îθ

β

~u

uxuy

vertical laser sheet

Fig. 4.12: Local cartesian and polar component of the velocity field. Assuming that, generally, the radial velocity is

negligible, then the horizontal velocity may be considered along the azimuthal direction.

to

ur ≃ 0

uθ ≃ −
ux

cos β

4.5.1 Consistency test

Since TOP and SIDE VIEW data concern the same experimental runs, it is necessary to

check the consistency between them. Fig. 4.13 shows a comparison of the non-dimensional
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Fig. 4.13: UP 3 ({ǫ,Bu} = {0.32, 4.34}) - non-dimensional azimuthal velocity [−] - temporal evolution: —�— TOP data;

—�— SIDE data

azimuthal velocity versus time (scaled by the tank rotation period). The temporal decay of

the azimuthal velocity represents the adjustment mechanism to the new angular velocity of

the container (i.e., the system approaches a state of relative rest). The TOP VIEW data concern

a stripe-average at fixed radial position, while the SIDE VIEW data involve a stripe-average

at fixed vertical location. Hereinafter, if not otherwise indicated, the velocity fields will be

spatially averaged in this way. In case of Fig. 4.13, the horizontal stripe is located at the

radial position, r = 550 cm→ r′ = r/R ≃ 0.85, corresponding approximatively to the location

of the vertical laser sheet, while the stripe height, z = 24 cm→ z′ = z/H ≃ 0.4, is the same of

the vertical location considered for the horizontal laser sheet (the seventh level).

Fig. 4.13 shows that, generally, the SIDE VIEW data are below the TOP VIEW data.

We believe that this is due to the fact that the horizontal laser sheet assumes a convex

upward configuration, therefore accomplishing a small overestimation of the velocity field.

However, TOP and SIDE data agree to within a few per cent, establishing the accuracy

of the measurements, and from this point we proceed to use both data, according to our

requirements.

4.5.2 Grids

Considering a velocity field, each velocity vector is applied on a grid point. By default, a

cartesian grid is considered, but the visualization of a polar velocity field on a cartesian grid
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may be misleading (Fig. 4.14(a)). Therefore, we applied the polar velocity vectors on a polar

grid (Fig. 4.14(b)).

In order to facilitate the visualization of the velocity field, the azimuthal variable was

multiplied by a scalar factor corresponding to the radius of the turntable (i.e., R = 650)

θ = Rθr (4.6)

being θr the real azimuthal variable. Since the values along the azimuthal axis are not the

physical ones, they will be omitted on the graphs when not necessary.
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(a) cartesian grid
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θ

r/
R

 

 

(b) polar grid

Fig. 4.14: Example of polar velocity field in different grids

71





Chapter 5

Preliminary Analysis

In ¶ 4.1, dimensional analysis has indicated that the flow evolution of our experimental

runs depends only on the Burger and Rossby numbers. Previous experimental works (¶ 3.3)

have shown that the incremental spin-up (spin-down) process is not affected by the Rossby

number in the range ǫ ≤ 0.22. Consequently, we expect that a preeminent role will be played

by the Burger number, which measures the relative importance of stratification and rotation.

The value of the Burger number controls the penetration of the secondary circulation in

the interior region (cf., Eq.n 3.16), and therefore the vertical profile of the azimuthal velocity.

Moreover, a low Burger number means large horizontal length scale and small Rossby radius

of deformation, suggesting that baroclinic instability might develop.

It has been long understood (Briley & Walls (1971) [5]) that spin-down is significantly

different from spin-up even in linear regime. In fact, the fluid particles near the cylindrical

sidewall may rapidly experience a centrifugal instability for impulsive spin-down.

5.1 Influence of the Rossby Number

TOP VIEW Data

In order to check the influence of the Rossby number let us consider the runs UP 1

({ǫ,Bu} = {0.08, 0.26}) and UP 2 ({ǫ,Bu} = {0.17, 0.26}) for which the Burger number is fixed.

The non-dimensional azimuthal velocity versus time at {r/R, z/H} ≃ {0.80, 0.75} (Fig. 5.1)

shows that the basic decay trend is similar for the two runs, and the discrepancies concern

only the oscillations superimposed to the basic flow. Nevertheless, some velocity fluctuations

are nearly coincident (cf., Fig. 5.1(a)) suggesting that the general properties of the associated
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(a) short time
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(b) long time

Fig. 5.1: TOP VIEW - {r/R, z/H} ≃ {0.80, 0.75} UP 1 —�— vs UP 2 —�— - non-dimensional azimuthal velocity [−] -

temporal evolution

instability (e.g., the oscillation period) are unaltered.

Fig. 5.2 shows the azimuthal velocity decay at different radial positions for the runs
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(a) UP 1 ({ǫ,Bu} = {0.08, 0.26})

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

t/T

u θ / 
|∆

 Ω
 r

|

 

 

(b) UP 2 ({ǫ,Bu} = {0.17, 0.26})

Fig. 5.2: TOP VIEW - z/H ≃ 0.75 - non-dimensional azimuthal velocity [−] - temporal evolution at different radial

positions: —�— r/R = 0.70; —�— r/R = 0.75; —�— r/R = 0.80; —�— r/R = 0.85; —�— r/R = 0.90

considered. It appears that the velocity oscillations are almost radially uniform in both

cases, but the run characterized by a smaller Rossby number (i.e., UP 1) presents a better

coherence of the fluctuations. Although previous experimental works have shown that the

flow behavior is not altered by a Rossby number ǫ ≤ 0.22, our analysis exhibits that this is
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confirmed strictly for the dynamics of the spin process, i.e, the adjustment mechanism to

the new angular velocity of the container, represented by the basic decay trend. In fact, a

double of the Rossby number seems to affect the long-wave instability that might develop in

the flow evolution. Since we are interested really in this flow instability, hereinafter we will

leave out a deeper study of the effects of non-vanishing Rossby numbers.

5.2 Influence of the Burger Number

Let us consider what are the differences in the flow dynamics between runs characterized

by small and large Burger numbers. Thereby, we consider the runs UP 1 ({ǫ,Bu} = {0.08, 0.26})

and UP 3 ({ǫ,Bu} = {0.32, 4.34}).

5.2.1 Evolution of the Vertical Shear

SIDE VIEW Data

In quasi-geostrophic regime a homogeneous flow in a container consists of two regions: an

interior one where the flow dynamics is independent of depth, and boundary layers adjacent

to rigid boundaries in which the velocity field adjusts to satisfy the no-slip condition. The

effect of the change in the rotation rate of the tank is transmitted to the interior region by a

vertical velocity w′ ∼ O(E1/2) independent of the depth.

In a stably stratified fluid, the buoyancy force associated to the vertical density gradient

tends to inhibit this motion. Consequently, for strong enough stratification, the Ekman layer

does not play a significant role in the flow dynamics. The most outstanding effect of the

stratification is evident in the vertical profiles of azimuthal velocity. Fig. 5.3 shows their

temporal evolution in the runs considered, omitting the regions closer to tank bottom and

free surface.

Just after the change in the rotation rate of the tank (t/T = 0) the fluid is approximatively

characterized by solid body rotation at the imposed angular velocity (u′
θ
≃ 1). As time

elapses, the two runs show a different dynamics. In the run UP 3 (Fig. 5.3(a)), the azimuthal

velocity develops in about 15 rotation periods a quasi-steady vertical shear in the interior

region. This vertical shear reflects the velocity gradients created by the secondary circulation,

and gives insight to the restriction of the spin-up of the fluid, due to the stable stratification.

In the run UP 1 (Fig. 5.3(b)), due to the deeper penetration of the secondary circulation, the

vertical shear of the azimuthal velocity is notably smaller with respect to the run UP 3 in the
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(a) UP 3 ({ǫ,Bu} = {0.32, 4.34})
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(b) UP 1 ({ǫ,Bu} = {0.08, 0.26})

Fig. 5.3: SIDE VIEW - non-dimensional azimuthal velocity [−] - vertical profile - temporal evolution

region 0.1 ≤ z/H ≤ 0.5. The vertical shear is proportional to the horizontal density gradients

by Eq.n (2.18), and this implies that the isopycnal surfaces are steeper in the run UP 3 than

in the run UP 1 in this region. In the latter run, the configuration of the isopycnal surfaces

is compatible with the presence of baroclinic instability according to Eq.n (2.29). Baroclinic

instability acts to convert the available potential energy in kinetic energy of the perturbations,

flattening out the isopycnal surfaces into a horizontal configuration, as evidenced by Fig.
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(a) UP 3 ({ǫ,Bu} = {0.32, 4.34})
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(b) UP 1 ({ǫ,Bu} = {0.08, 0.26})

Fig. 5.4: SIDE VIEW - non-dimensional azimuthal velocity [−] - vertical profile - temporal evolution

5.3(b).

The bottom Ekman layer is the region where the interior azimuthal velocity adjusts to the

velocity of the bottom boundary, and this layer decays as the interior fluid gradually spins-

up. The Ekman layer eventually vanishes when the secondary circulation is eliminated.

Bearing in mind that u′
θ
(z′ = 0) = 0, the vertical profile of the run UP 3 (Fig. 5.3(a)) develops

in t/T ∼ 15 a smaller vertical shear at the bottom than the profile of the run UP 1 (Fig.
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5.3(b)). This even if the run UP 3 is characterized by a thicker Ekman layer 1 (smaller

background rotation) than the run UP 1. These measurements suggest that the Ekman layer

is significantly weakened in flow with dominating stratification (i.e., large Burger number),

according to previous studies (e.g., Linden (1977) [45]).

The long time evolution of the vertical profile of the azimuthal velocity is shown in Fig.

5.4. In case of Bu > O(1) (i.e., run UP 3 - Fig. 5.4(a)), the flow reaches a nearly uniform vertical

shear (linear vertical profile) in the interior region after t/T ∼ 100, showing a slow decrease

of the azimuthal velocity. In case of Bu < O(1) (i.e., run UP 1 - Fig. 5.4(b)), the flow shows

a faster decrease of the azimuthal velocity in the upper half part of the fluid, suggesting

that the baroclinic instability may increase the vertical transport of horizontal momentum,

as stated by Smirnov et al. (2005) [68]. Moreover, the vertical shear of the flow in the interior

decreases in time, and at t/T = 127 the azimuthal velocity is almost vertically uniform in the

interior region, pointing that the fluid is returned in a state of minimum potential energy.

5.2.2 Decay of the Azimuthal Velocity

TOP VIEW Data

Fig. 5.5 shows a comparison between the runs UP 1 and UP 3 of the non-dimensional

azimuthal velocity versus time at z/H ≃ 0.75 for different radial positions. Note that, since

T = 50 s for UP 1 and T = 200 s for UP 3, by scaling the time with the tank rotation period T

then the measurement frequency is four times greater in the run UP 3 than in the run UP 1.

The change in the angular velocity of the tank generates an anticyclonic current along

the azimuthal direction, as shown in Fig. 5.6. In the run UP 3 ({ǫ,Bu} = {0.32, 4.34}) the

velocity field is characterized by circular streamlines oriented along the azimuthal direction.

The axisymmetry of the flow is retained through the spin-up process, as shown in Fig. 5.7

2, with some small eddies due to the horizontal shear of the current near the sidewall, as

shown in Fig. 5.7(c). The effect of this behavior is evident in Fig. 5.5: the stability of the flow

implies a slow velocity decay with fluctuations of the order of 10−2. Fig. 5.9(a) shows the

temporal evolution of the radial profile of the azimuthal velocity at z/H ≃ 0.75. The initial

solid body velocity profile, established immediately after the change in the rotation rate of

1δe = E1/2H = (ν/Ω)1/2

2The velocity vectors may be compared each others only inside each sub-image. In fact, as the the angular

velocity of the fluid adjusts to that of the boundaries, an increase of the scale factor is necessary in order to

properly visualize the flow.
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(a) r/R = 0.70
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(b) r/R = 0.75
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(c) r/R = 0.80
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(d) r/R = 0.85
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(e) r/R = 0.90

0 25 50 75 100 125
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t/T

u θ/|∆
 Ω

 r
|

 

 

(f) r/R = 0.95

Fig. 5.5: TOP VIEW z/H ≃ 0.75 - non-dimensional azimuthal velocity [−] - temporal evolution at different radial

positions: —�— UP 1 ({ǫ,Bu} = {0.08, 0.26}); —�— UP 3 ({ǫ,Bu} = {0.32, 4.34})
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Fig. 5.6: TOP VIEW lev 4 - velocity field - t/T = 0

the tank, transforms into a boundary layer profile. With time the influence of the sidewall

drifts toward the center of the tank, extending to r/R ∼ 0.90 after 120 rotation periods. Note

that outside the sidewall boundary layer the azimuthal velocity decreases maintaining a

solid body velocity profile in the interior region such as z/H ≃ 0.75.

In the run UP 1 ({ǫ,Bu} = {0.08, 0.26}) the velocity field shows two different regimes: at

the outset of the experiment just a relative small discrepancy is evident with respect to the

previous case, and the streamlines preserve a circular shape, as shown in Fig.s 5.8(a) and

5.8(b). In the temporal evolution (Fig. 5.5) it corresponds to a series of growing oscillations,

quite regular in period, superimposed to a faster decay with respect to the run UP 3. During

the second stage, after about 50 rotation periods, a drastic change occurs in the flow devel-

opment. The streamlines strain from circles into ellipses and non-axisymmetric disturbances

appear in the velocity field, which can even lead to local reversal flow, as in Fig.s 5.8(d) and

5.8(f). The effect on the azimuthal velocity temporal evolution consists in wider and lesser

regular oscillations, superimposed to a generally slower decay trend than the first stage, as

shown in Fig. 5.5. The temporal evolution of the radial profile of the azimuthal velocity

is more complex than in the run UP 3. Fig. 5.9(c) show that the azimuthal velocity decays

generally faster at smaller radii during the first 50 rotation periods. Later in time, the non-

axisymmetric disturbances perturb completely the radial profile of the azimuthal velocity.

The runs UP 1 and UP 3 are characterized by a different final rotation period, which

implies different Burger numbers, and a different change in the rotation rate of the tank,
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Fig. 5.7: TOP VIEW z/H ≃ 0.75 UP 1 ({ǫ,Bu} = {0.08, 0.26}) - velocity field
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Fig. 5.8: TOP VIEW z/H ≃ 0.75 UP 3 ({ǫ,Bu} = {0.32, 4.34}) - velocity field
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(a) UP 3 ({ǫ,Bu} = {0.32, 4.34})
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(c) UP 1 ({ǫ,Bu} = {0.08, 0.26})

Fig. 5.9: TOP VIEW z/H ≃ 0.75 - non-dimensional azimuthal velocity [−] - radial profile temporal evolution

which means different Rossby numbers. Smirnov et al. (2005) [68] proposed that the for-

mation of large-scale eddies depends on the relative values of Rossby and Burger numbers.

More precisely, for sufficiently small ǫ at fixed Bu and for sufficiently large Bu at fixed ǫ the

flow could be stabilized. The latter criterion seems to be in agreement with our results: the

runs UP 1 ({ǫ,Bu} = {0.08, 0.26}) appears to be baroclinically unstable, while the run UP 3

({ǫ,Bu} = {0.32, 4.34}) is baroclinically stable. In the run UP 3 the Rossby number was notably

larger than in the run UP 1, however the flow could be made stable by setting the Burger

number large enough.

The effects of the advective terms in the equations of motions were considered modest for

ǫ ≤ 0.22, and it appears that even in case of larger Rossby number (ǫ = 0.32) the nonlinearity

does not seem to play a relevant role in the development of the axisymmetric flow. Therefore,

we confirm that the discrepancies exhibited in the flow behavior between the runs UP 1 and

UP 3 depends on the value of the Burger number. Recognizing that the decrease of the az-

imuthal velocity means that momentum is being transferred from the solid boundaries to the

bulk of the fluid, the instability associated with Bu < O(1) may contribute to enhance it. In

fact, Smirnov et al. (2005) [68] reported that ”the formation of large-scale eddies through the

development of instabilities provides an additional mechanism for the transport of angular

momentum”, reducing the time of the spin-up process.
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5.3 Spin-up vs Spin-down

Let us consider pairs of spin-up and spin-down runs characterized by the same Rossby

and Burger numbers

run 1: {ǫ,Bu} = {0.08, 0.26} run 2: {ǫ,Bu} = {0.17, 0.26} run 3: {ǫ,Bu} = {0.32, 4.34}

5.3.1 Decay of the Azimuthal Velocity

TOP VIEW Data

Fig. 5.10 shows a comparison of the non-dimensional azimuthal velocity versus time at

z/H ≃ 0.75 for a radial distance relatively near to the sidewall (r/R = 0.80). During spin-

down the fluid motion is perturbed by flow instabilities which originate at the sidewall, while

it is always centrifugally stable in the case of spin-up. Fig.s 5.10(a) and 5.10(b) show that

the velocity decay is faster in spin-down than in spin-up, since the effect of the centrifugal

instabilities is to decelerate the fluid more rapidly by extracting energy from the mean flow.

Note that in the run 3 ({ǫ,Bu} = {0.32, 4.34}), characterized by baroclinically stable flow,

the spin-down run shows a drastic decay around t/T ≃ 25 (Fig. 5.10(c)). Therefore, if a

flow is locally centrifugally unstable, then the whole dynamics of the spin process might be

modified.

Lopez (1996) [46] and Lopez & Weidman (1996) [47] found that in addition to centrifugal

instability near the sidewall, inflectionally unstable circular waves arise at the outer edge of

the bottom boundary layer. However, it appears from their studies that this instability does

not influence the spin-down much unless the centrifugal instability is somehow eliminated.

Consequently, spin-down is a complex problem with at least two instability mechanisms that

lead to more rapid spin-down, and much more complicated dynamics than could possibly

be anticipated from the linear theory (Duck & Foster (2001) [13]).

5.3.2 Meridional Circulation

TOP VIEW Data

It has been shown that the main difference between spin-up and spin-down concerns the

direction of the basic flow in the interior region. Consequently, the secondary circulation is

reversed in the two cases: it is directed inward (outward) in case of spin-up (spin-down) in

the interior region.
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(a) run 1 ({ǫ,Bu} = {0.08, 0.26})
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(b) run 2 ({ǫ,Bu} = {0.17, 0.26})
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(c) run 3 ({ǫ,Bu} = {0.32, 4.34})

Fig. 5.10: TOP VIEW {r/R, z/H} ≃ {0.80, 0.75} - Spin-up —�— vs Spin-down —�— - non-dimensional azimuthal

velocity [−] - temporal evolution
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In order to visualize the secondary circulation in the interior region, since this radial flow

is characterized by a very small magnitude (u′r ∼ E1/2, being E ∼ O(10−5)), the first step was

to ensure that the calibration for the TOP VIEW data were sufficiently accurate. The method

used consisted in controlling that the radial velocity were zero in the interior region for the

run characterized by dominating stratification, i.e., the run UP 3 ({ǫ,Bu} = {0.32, 4.34}). In

fact, the stable stratification restricts the secondary circulation in a region adjacent to the

bottom, and no radial motion is expected in the interior such as z/H ≃ 0.75. Fig. 5.11(a)
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(b) ”right” configuration

Fig. 5.11: TOP VIEW {r/R, z/H} ≃ {0.80, 0.75} UP 3 ({ǫ,Bu} = {0.32, 4.34}) - non-dimensional radial velocity [−] —�—

and its cumulative sum —�— - temporal evolution

shows the non-dimensional radial velocity and its cumulative sum, which represents the net

effect, versus time at the level considered. Although the radial velocity is around zero, with

fluctuations of very small amplitude, the cumulative sum exhibits a linear increase in time

with no physical meaning. This behavior must be due to a continuous slight overestimation

of the radial velocity, and it is peculiar of systematic errors. We supposed that the cause

could be due to an error in the positioning of the center of the tank during the calibration

procedure. More precisely, considering the local cartesian frame of reference (¶ 4.5), the

error might affect the x-position of the center of the tank, where the polar frame of reference

is centered. Referring to Fig. 5.12, the misleading streamlines associated with the wrong

position of the center of the tank induce a false positive radial velocity component in the

interior region in case of spin-up. Knowing the radial and azimuthal velocity components

in the ”wrong” frame of reference and assuming the flow purely azimuthal (i.e., along the

axisymmetric streamlines) in the ”right” frame of reference, then it is possible to obtain the
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Fig. 5.12: The misleading streamlines associated with the wrong center of the tank induce a false positive radial velocity

component in the interior region in case of spin-up.

angle between the wrong and right streamlines, i.e.,

tanα =
u′r
u′
θ

at each time. A temporal average on t/T ∼ 50 was used to calculate tanα ≃ 4.8 · 10−3,

which allows to compute a possible correction of the position of the center of the tank, i.e.,

δx ≃ 2.5 cm, being δx = r tanα.

Fig. 5.11(b) corresponds to Fig. 5.11(a) after the shift of the center of the tank: also the

cumulative sum of the radial velocity shows a profile around zero, confirming our hypothesis

about the source of the error.

Using the correction, we computed the non-dimensional radial velocity and its cumu-

lative sum versus time at z/H ≃ 0.75 for the runs 2 ({ǫ,Bu} = {0.17, 0.26}). Fig. 5.13 shows

that the secondary circulation penetrates deeper in the interior region since the relative im-

portance of stratification with respect to rotation is weaker in the runs 2 rather than in the
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(a) Spin-up
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(b) Spin-down

Fig. 5.13: TOP VIEW {r/R, z/H} ≃ {0.80, 0.75} 2 ({ǫ,Bu} = {0.17, 0.26}) - non-dimensional radial velocity [−] —�— and

its cumulative sum —�— - temporal evolution

runs 3. As expected, in the interior region the secondary circulation, visualized by means of

the cumulative sum of the radial velocity, is directed inward in case of spin-up (Fig. 5.13(a))

and outward in case of spin-down (Fig. 5.13(b)).

The spin-down run is affected by centrifugal instability, which starts to grow at approx-

imatively t/T ≃ 25. Note that the onset of the centrifugal instability in the run DW 2 as

evinced from the radial velocity in Fig. 5.13(b) was hidden by the long-wave instability in

the azimuthal velocity decay (Fig. 5.10(b)). Notably, it corresponds to the onset of centrifugal

instability in the (axisymmetric) run DW 3 at the same radial position (Fig. 5.10(c)). However,

a deeper investigation of the centrifugal instability goes beyond the scope of this thesis (see,

e.g., Neitzel & Davis (1981) [55]).

5.4 Summary

Dimensional analysis has indicated that the flow evolution depends only on the Burger

and Rossby numbers, and in this chapter a preliminary study of the experimental runs has

been performed.

We have found that a weak nonlinearity (i.e., ǫ = 0.17) does not alter the general decay

trend of the spin-up process. Nevertheless, our results show that the long-wave instability is

affected by small differences in the Rossby number even for ǫ < 0.22, the threshold at which

the nonlinearity effects were ruled out from the flow dynamics in the literature.
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Our results suggest that the Burger number plays a preeminent role in the flow develop-

ment, controlling the penetration of the secondary circulation, and thus the spatial structure

of the velocity field. The vertical profile of the azimuthal velocity suggests the onset of the

long-wave instability in case of Bu < O(1), but its specific nature remains to be addressed.

The weakening of the Ekman layer with dominating stratification has been experimen-

tally visualized and the secondary circulation displayed in the interior region, both in spin-up

and spin-down runs. The spin-down runs have been found locally centrifugally unstable

according to previous studies.
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Chapter 6

Stable spin-up

In this chapter the results of the run characterized by axisymmetric velocity field (UP 3:

{ǫ,Bu} = {0.32, 4.34}) are presented. The reason of the preference of spin-up rather than

spin-down is that whereas the former is stabilized by its rotation in an early stage, the latter

is inevitably complicated by short-wave centrifugal instability near the sidewall.

6.1 Vertical Penetration of the Meridional Flow

TOP VIEW Data

Fig. 6.1 shows the non-dimensional azimuthal velocity versus time at various vertical

locations and radial positions. The vertical locations of the horizontal laser sheet are sum-

marized in Tab. 6.1. The levels considered are located in the interior region, relatively well

away from the Ekman layer.

The interior azimuthal velocity is not uniform along the vertical direction, and the Taylor-

Proudman theorem is no longer applicable. The theoretical penetration depth is hp ≃ 39 cm

(Eq.n (3.16)), corresponding to h′p ≃ 0.65. The secondary circulation is thus partially limited,

due to the strong relative importance of stratification with respect to rotation (i.e., large

Burger number). However, the aspect ratio of the experimental facility is δ ∼ O(10−1), al-

lowing the secondary circulation to penetrate relatively deeper in the interior region even

with dominating stratification. Fig. 6.1 shows that the velocity decay is enhanced at the

vertical locations (mainly, the levels 6 and 7) where the secondary circulation is situated (i.e.,

the rotational shear layer). Note that the velocity decay decreases considerably as the height

increases, confirming the confinement of the secondary circulation.
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(a) r/R = 0.70
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(b) r/R = 0.80
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(c) r/R = 0.90

Fig. 6.1: TOP VIEW UP 3 ({ǫ,Bu} = {0.32, 4.34}) - non-dimensional azimuthal velocity [−] - temporal evolution at

different vertical locations: —�— level 3; —�— level 4; —�— level 5; —�— level 6; —�— level 7
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LEV vertical positions

z [cm] z′ [−]

1 60 1

2 54.5 0.91

3 49 0.82

4 44.5 0.74

5 38.5 0.64

6 32 0.53

7 26 0.43

Tab. 6.1: UP 3 ({ǫ,Bu} = {0.32, 4.34}) - vertical positions of the horizontal laser sheet

6.2 Radial Dependence of the Vortex Stretching

TOP VIEW Data

Fig. 6.2 displays the non-dimensional azimuthal velocity versus time at various vertical

locations and radial positions. For later discussion, Walin’s theoretical predictions for the

interior region are also shown. Due to the experimental configuration used, only the velocity

field in the radial range 0.65 ≤ r/R ≤ 1 was available by means of the TOP VIEW data.

Fig. 6.2 shows that the azimuthal velocity is not uniform along the radial direction. This

result is in accordance with Hyun et al. (1982) [39]: the spin-up proceeds initially more

rapidly at smaller radii and decreases as the radius increases, out of the sidewall boundary

layer. This confirms that the vortex-stretching by meridional circulation is stronger at smaller

radii.

Note that at approximatively t/T ∼ 50 the experimental velocities at different radial

positions show the same magnitude, suggesting that the radial non-uniformity of the vortex

stretching is a transient process.

6.3 Comparison to Walin’s theory

Let us perform a comparison between the analytical theory of Walin (1969) [74] and our

experimental results. Note that, according to Hyun et al. (1982), the initial rotation rate Ω i

was chosen for the scaling. The linear expression derived by Walin (1969) for the decay of the
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(a) level 5: z/H = 0.64
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(b) level 6: z/H = 0.53
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(c) level 7: z/H = 0.43

Fig. 6.2: TOP VIEW UP 3 ({ǫ,Bu} = {0.32, 4.34}) - non-dimensional azimuthal velocity [−] - temporal evolution at

different radial positions. Experimental results: —�— r/R = 0.70; —�— r/R = 0.80; —�— r/R = 0.90. Walin’s theory: ××

×××× r/R = 0.70; ×××××× r/R = 0.80; ×××××× r/R = 0.90
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azimuthal velocity in the interior region was shown in Eq.n (3.17a). It could be argued that

these are unjustified comparisons since the theory is linear (ǫ = 0) while the experimental

results are for ǫ = 0.32. As previously explained, Hyun et al. (1982) [39] showed that the

results are only weakly dependent on the Rossby number in the range ǫ ≤ 0.22, and we

confirmed experimentally this results in ¶ 5.1. Moreover, it has been shown (¶ 5.2.2) that,

even in case of larger Rossby number (ǫ = 0.32), the nonlinearity does not play a relevant

role in the development of the axisymmetric flow.

The Walin’s solution was derived in presence of top and bottom horizontal boundaries,

z′w = +1

z′w = 0

z′w = −1

z′ = +1

z′ = +0.5

z′ = 0

z′w = z′ − 1

Fig. 6.3: Relation between non dimensional heights: Walin’s configuration (left); our runs (right)

e.g., for a close cylinder filled with fluid, while our runs were performed in an open tank,

in presence of a free surface. The Walin’s solution, symmetric about mid-depth, is usually

studied in the lower half part of the fluid, which corresponds to the range 0 ≤ z′w ≤ −1, being

z′w the non-dimensional height used in the Walin’s solution. In order to match the whole

fluid column in our experiments with the lower half part of the Walin’s configuration we

used the relation z′w = z′ − 1, being 0 ≤ z′ ≤ +1 (Fig. 6.3).

TOP VIEW Data

Fig. 6.2, which shows the spatial structure of the azimuthal velocity decay, reports also

the theoretical predictions of Walin (1969). The theory properly reproduces the experimental

velocity decay in early times, but after this initial agreement the curves begin to diverge, with

experimental results decaying faster than the theory. The theory of Walin (1969) was scaled

using the homogeneous spin-up time scale since it was supposed that viscous-diffusion effects

were only significant on the large viscous time scale, as in homogeneous case. However, in

agreement with previous experimental and numerical works (¶ 3.3), the comparison with

the theory shows a faster rate of decay for the experimental measurements.
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Note that the discrepancies between our experimental results and Walin’s theory increase

in time moving radially outward. The same feature is reported in the comparison between

the numerical results of Hyun et al. (1982) [39] and Walin’s theory (Fig. 6.4), although they

used a larger radial range with respect to that available in our experiments.

Fig. 6.4: Non-dimensional azimuthal velocity at mid-depth at different radial positions: A) r/R = 0.23, B) r/R = 0.50,

C) r/R = 0.77, D) r/R = 0.96, E) r/R = 0.98. The theoretical prediction for the points in the interior region are shown in

broken lines. The Burger number of the simulations, calculated with the initial angular velocity, is Bui = 3.84 (Bui = 9.47

for UP 3). Reproduced from Hyun et al. (1982) [39].

SIDE VIEW Data

Since all the previous works, both experimental (e.g., Buzyna & Veronis (1971) [6]; Saun-

ders & Beardsley (1975) [66]; Lee (1975) [43]) and numerical (e.g., Barcilon et al. (1975) [1];

Hyun et al. (1982) [39]), limited the analysis in a time t/T ∼ 8, we have considered first the

non-dimensional azimuthal velocity versus time in the temporal range 0 ≤ t/T ≤ 20. Fig.s

6.5 and 6.6 show the experimental results compared with the theoretical predictions of Walin

(1969), and for later discussion our improvements to the Walin’s theory are also shown.

In the interior region, relatively close to the Ekman layer (Fig. 6.5), again there is an initial

agreement for a short time after the start of the run, but the curves begin to diverge, with

experimental results decaying faster than the theory. Due to the well separation between

the time scales this behavior is observed not only on the viscous, but even over the shorter

spin-up time scale. The spin-up time τss ∼ 13.5 T, computed by means of Eq.n (3.15), has

been reported in Fig. 6.5(a) as a green vertical line.
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(a) z/H = 0.10
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(b) z/H = 0.13
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(c) z/H = 0.16
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(d) z/H = 0.19
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(e) z/H = 0.22
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(f) z/H = 0.25

Fig. 6.5: SIDE VIEW UP 3 ({ǫ,Bu} = {0.32, 4.34}) - non-dimensional azimuthal velocity [−] - temporal evolution at

different vertical locations: —�— experimental results; —�— Walin’s theory; —�— our model. The spin-up time has

been reported in fig. 6.5(a) as a green vertical line.
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(a) z/H = 0.35
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(b) z/H = 0.45
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(c) z/H = 0.55
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(d) z/H = 0.65
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(e) z/H = 0.80
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(f) z/H = 0.90

Fig. 6.6: SIDE VIEW UP 3 ({ǫ,Bu} = {0.32, 4.34}) - non-dimensional azimuthal velocity [−] - temporal evolution at

different vertical locations: —�— experimental results; —�— Walin’s theory; —�— our model
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Let us remember that care must be taken concerning the definition of spin-up time when

discussing stratified spin-up problems. The spin-up time expressed by Eq.n (3.15) describes

a quasi-steady localized spin-up process valid in the rotational shear layer. The Walin’s solu-

tion shows an asymptotic behavior since it keeps in account only the secondary circulation,

omitting viscous-diffusion effects. Thereby, in a region adjacent to the Ekman layer the spin-

up time must coincide with the time in which the Walin’s solution reaches his asymptotic

value. In the run UP 3 the penetration depth is h′p ∼ 0.65, and therefore the azimuthal tempo-

ral profile of Fig. 6.5(a) is computed in the region mostly affected by the spin-up mechanism.

This explains the good accordance between the Walin’s solution and the theoretical spin-up

time scale (cf., Fig. 6.8(a), a long time evolution of fig. 6.5(a) where the spin-up time has been

also reported).

In the interior region, well away from the Ekman layer (Fig.s 6.6(a)-(b)-(c)), the accor-

(a) Bui = 16.97 (b) Bui = 3.84

Fig. 6.7: Non-dimensional azimuthal velocity at mid-radius at different vertical locations: A) z/H = 0, B) z/H = −0.42,

C) z/H = −0.82, D) z/H = −0.93, E) z/H = −0.97. The theoretical prediction for the points in the interior region are shown

in broken lines. The Burger number of the simulations, Bui, is calculated with the initial angular velocity (Bui = 9.47 for

the run UP 3). Reproduced from Hyun et al. (1982) [39].

dance between the curves increases in the temporal range considered. Hyun et al. (1982)

found larger discrepancies between their numerical results and Walin’s theory in case of

strong stratification (Fig. 6.7(a)). Moreover, in case of weak stratification they found that

the disagreement, again wider with respect to our comparison, increased approaching mid-
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depth (Fig. 6.7(b)). Note that the numerical simulation of Hyun et al. (1982) were conducted

in a close cylinder filled with fluid, and the same reasoning made for Walin’s solution is

valid. Hyun et al. (1982) did not explain the causes of these discrepancies between relatively

strong and weak stratified flow. We suggest that the curve (C) is located in the rotational

shear layer in case of weak stratification (Fig. 6.7(b)), and thus the Walin’s solution shows a

very good agreement. In case of strong stratification (Fig. 6.7(a)), the curve (C) is located out

of the region directly affected by the secondary circulation. Therefore, the viscous-diffusion

effects, omitted in the Walin’s solution, may account for the discrepancies between numerical

results and Walin’s solution.

We report also the results for the upper half part of the fluid (Fig. 6.6(d)-(e)-(f)), absent in

the work of Hyun et al. (1982) since the configuration used was symmetric about mid-depth.

In the temporal range considered Walin’s theory and experimental results are consistent.

More precisely, the velocity profile predicted by the Walin’s theory falls inside the range of

fluctuations of the measured velocity.

Note that the discrepancies just after the start of the run in Fig. 6.6 may be due to the fact

that the fluid was not perfectly in solid body rotation at t/T < 0. In fact, this disagreement

affects the region far away from the bottom boundary and is lacking in the region close to

the Ekman layer (Fig. 6.5). However, the initial discrepancies in the azimuthal velocity are at

maximum of the order of 5%, and thus the general meaning of the discussion is not modified.

6.4 Improvement to Walin’s theory

SIDE VIEW Data

A different picture emerges from the long time evolution of the azimuthal velocity. Fig.s

6.8 and 6.9 correspond to Fig.s 6.5 and 6.6 for a wider temporal range. The discrepancies

between the experimental results and the Walin’s theory are considerable. Since the Walin’s

solution keeps in account only the contribution of the secondary circulation, when the partial

spin-up of the fluid is completed no further velocity decrease is expected.

Hyun (1983) [37] suggested that any viable model for stratified spin-up should include

the viscous-diffusion effects in both the boundary layers and the interior region. We decided,

thus, to incorporate the viscous-diffusion effects in the Walin’s analytical solution (3.17a) as

to improve the azimuthal velocity predictions.
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(a) z/H = 0.10
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(b) z/H = 0.13
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(c) z/H = 0.16
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(d) z/H = 0.19
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(e) z/H = 0.22
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(f) z/H = 0.25

Fig. 6.8: SIDE VIEW UP 3 ({ǫ,Bu} = {0.32, 4.34}) - non-dimensional azimuthal velocity [−] - temporal evolution at

different vertical locations: —�— experimental results; —�— Walin’s theory; —�— our model. The spin-up time has

been reported in fig. 6.8(a) as a green vertical line.
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(a) z/H = 0.35
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(b) z/H = 0.45
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(c) z/H = 0.55
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(d) z/H = 0.65
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(e) z/H = 0.80
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(f) z/H = 0.90

Fig. 6.9: SIDE VIEW UP 3 ({ǫ,Bu} = {0.32, 4.34}) - non-dimensional azimuthal velocity [−] - temporal evolution at

different vertical locations: —�— experimental results; —�— Walin’s theory; —�— our model
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In cylindrical coordinates, the azimuthal component of Eq.n (3.12a) is

τ′
∂u′
θ

∂t′
+ 2u′r = E∇′2u′θ (6.1)

We used the finite differences method for solving Eq.n (6.1), omitting the Coriolis term. In fact,

this term provides the contribution of the secondary circulation, and it is already considered

in the analytical solution of Walin (1969). Since the vertical Ekman number Ev = ν/ΩH2 is

larger than the horizontal Ekman number Eh = ν/ΩL2 (L >> H)

τ′
∂u′
θ

∂t′
= Ev

∂2u′
θ

∂z′2
(6.2)

being the azimuthal velocity of the flow at the fixed radial position r/R ≃ 0.85 (i.e., the

radial position of the SIDE VIEW data) function of time t′ = t/T and height z′ = z/H, i.e.,

u′
θ
= u′

θ
(z′, t′). We impose τ′ ∼ O(1): since in ¶ 3.2 we defined t′ = t/τ, being τ ≡ Ω−1τ′−1,

this assumption simply states t′ = t/T. Then, Eq.n (6.2) is the vertical diffusion equation of

the azimuthal velocity,
∂u′
θ

∂t′
= E

∂2u′
θ

∂z′2
(6.3)

being E ≡ Ev.

The basic idea of the finite differences method for solving partial differential equations is

to replace spatial and time derivatives by suitable approximations, then to numerically solve

the resulting difference equations. Specifically, instead of solving for u′
θ
(z′, t′) with z′ and t′

continuous, we have solved for u
′ j

θ i
(z′

i
, t′

j
), where z′

i
≡ i δz′ and t′

j
≡ j δt′ define the grid shown

in Fig. 6.10. The discrete time t′
j

was chosen according to the sampling time (15 s) and the

height was discretized in nlev = 45 vertical levels z′
i
.

The first order derivative
∂u

∂z
≡ lim
∆z→0

∆u

∆z

(being u ≡ u′
θ
, z ≡ z′ and t′ ≡ t in order to lighten the notation), evaluated at the grid points

(zi, t j), may be approximated in many different ways, the simplest being the following

• Forward Difference

(

∂u

∂z

) j

i

≈
u

j

i+1
− u

j

i

zi+1 − zi
=

u
j

i+1
− u

j

i

δz

• Backward Difference

(

∂u

∂z

) j

i

≈
u

j

i
− u

j

i−1

zi − zi−1
=

u
j

i
− u

j

i−1

δz
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δt′ t′

δz′
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j − 1
i + 1
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i + 1

j + 1
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j − 1
i

j
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j + 1
i

Fig. 6.10: Grid for our finite difference approximations. The point labelled i, j corresponds to (z′, t′) = (z′
i
, t′

j
).

• Central Difference

(

∂u

∂z

) j

i

≈
u

j

i+1
− u

j

i−1

zi+1 − zi−1
=

u
j

i+1
− u

j

i−1

2 δz

The second order derivative

∂2u

∂z2
≡ lim
∆z→0

∆
(

∂u
∂z

)

∆z

may be evaluated at the (fictitious) grid points (zi+ 1

2

, t j) using the central difference approxi-

mations

(

∂2u

∂z2

) j

i+ 1

2

≈

(

∂u
∂z

) j

i+ 1

2

−
(

∂u
∂z

) j

i− 1

2

zi+ 1

2

− zi− 1

2

=
u

j

i+1
− 2u

j

i
+ u

j

i−1

(δz)2
(6.4)

Following the same reasoning for the derivative with respect to time

(

∂u

∂t

) j

i

≈
u

j+1

i
− u

j

i

t j+1 − t j
=

u
j+1

i
− u

j

i

δt
(6.5)

Using Eq.ns (6.4) and (6.5) in Eq.n (6.3), and rearranging, the considered finite difference

equation can be iterated in order to find the approximate solution to the diffusion equation,

u
j+1

i
= u

j

i
+ s(u

j

i+1
− 2u

j

i
+ u

j

i−1
) = s(u

j

i+1
− u

j

i−1
) + (1 − 2s)u

j

i
(i = 2 : nlev − 1) (6.6)
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being

s ≡ E
∆t

(∆z)2
(6.7)

To solve this difference equation both initial and boundary conditions are required. The

initial condition is the solid body rotation of the whole fluid with no-slip condition at the

bottom (i.e., u
j=1

i=2:nlev
= 1 and u

j=1

i=1
= 0), while local Ekman friction and no-flux are the

boundary conditions at the bottom and at the free surface, respectively.

The local Ekman friction condition at the bottom states

(

∂u

∂z

) j

i=1

≈
u

j

i=1

δE

then
u

j

i=2
− u

j

i=1

δz
=

u
j

i=1

δE

which allows to calculate u
j

i=1

u
j

i=1
=

u
j

i=2

1 + κ
(6.8)

being κ ≡ δz/δE.

The no-flux condition at the free surface is a form of stress boundary condition. Since the

free surface is uniform in composition and temperature, the tangential stress is continuous

across the interface

Ew

(

∂u

∂z

) j

i=nlev

= Ea

(

∂u

∂z

) j

i=nlev

where Ew and Ea are the Ekman number in water and air respectively. Since Ea ≪ Ew

(νa ≪ νw) the shear stress vanishes at the free surface, i.e,

(

∂u

∂z

) j

i=nlev

≈
u

j

i=nlev
− u

j

i=nlev−1

δz
= 0 (6.9)

which allows to impose u
j

i=nlev
= u

j

i=nlev−1
.

In our model, at each time, the contributions of both secondary circulation and viscous-

diffusion to the decay rate of the azimuthal velocity are considered. More precisely, the

diffusion equation is solved using the velocity field which keeps in account the decay rate

due to both secondary circulation and diffusion during the previous times. In this way,

velocity gradients created in the interior by the secondary circulation are considered at each

time in the diffusion equation. The Walin’s solution is calculated independently by means of

the analytical solution (Eq.n (3.17a)) of Walin (1969). Since its contribution is larger than dif-

fusion during the spin-up time scale, then it should be only slightly affected by the inclusion
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of viscous-diffusion effects. Consequently, we suppose that the analytical solution of Walin is

still valid to represent the secondary circulation also in presence of velocity gradients. When

the secondary circulation has spun-up the fluid in a region adjacent to the bottom of the tank,

its contribution nullifies and the velocity decay is due wholly to diffusion.

This is an attempt to provide an easy procedure to include viscous-diffusion effects in

Fig. 6.11: Azimuthal velocity (r′ = 0.5, z′ = 0.5) during large-σ spin-up at relatively large Burger number. The Walin’s

solution (- - -); composite of Walin’s solution and viscous-diffusion effects (—). Note that the frame of reference rotating

with the initial angular velocity is considered. Reproduced from Duck & Foster (2001) [13].

the Walin’s solution. In fact, Duck & Foster (2001) [13], considering the longer, diffusive

timescale (by setting τ′ = E−1) and solving Eq.ns (3.12) found that the solution takes a par-

ticularly simple form in the case of large Schmidt number limit (σ → ∞). They included

the viscous-diffusion solution in the Walin’s solution (Fig. 6.11) and agreed that the absence

in the Walin’s theory regarding the modeling of the diffusive timescale behavior may be

responsible for the discrepancies. However, they did not explain further the procedure and

perform any comparison with neither experimental nor numerical results.

The inclusion of the viscous-diffusion effects allows a general enhancement of the con-

sistency with the experimental results. In the interior region, close to the Ekman layer (Fig.s

6.5 and 6.8), the divergence with the experimental results starts later and is less consider-

able. Our model behaves even better in the interior region, well away from the Ekman layer

(Fig.s 6.6(a)-(b)-(c) and Fig.s 6.9(a)-(b)-(c)). In fact, substantial flow gradients are created by

the secondary circulation in this region. Thereby, the inclusion of viscous-diffusion effects

causes a faster decrease of the azimuthal flow, even over the spin-up time scale. In the upper

half part of the fluid (Fig.s 6.6(d)-(e)-(f) and Fig.s 6.9(d)-(e)-(f)) the experimental results and
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Fig. 6.12: SIDE VIEW UP 3 ({ǫ,Bu} = {0.32, 4.34}) - non-dimensional azimuthal velocity [−] - vertical profile temporal

evolution: —�— experimental results; —�— Walin’s theory; —�— our model
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our model are in very good agreement. This is the region where the secondary circulation

does not penetrate and its effect is slightly felt. Consequently, the diffusion equation plays

a preeminent role and it is capable to correctly estimate the azimuthal velocity decay. This

suggests that, even if the Reynolds number 1 is ∼ O(104) in the interior region, stratification

and rotation efficiently prevent the onset of turbulence.

Note that the lower locations of the flow exhibit the development of velocity oscillations

from t/T ≃ 25 (Fig. 6.8). These locations are inside the rotational shear layer, where the flow

is characterized by a vertical shear in the azimuthal velocity. This suggests that a computa-

tion of the Burger number using the full depth of the fluid, which corresponds to Bu > O(1),

might not be representative of the flow dynamics in the whole domain. A Burger number

based on the effective penetration depth of the secondary circulation is consistent with the

presence of baroclinic instability at lower vertical locations, according to Eq.n (2.29).

Fig. 6.12 shows the temporal evolution of the vertical profile of the azimuthal velocity.

Note that the Walin’s solution is constant from t/T = 20 (Fig. 6.12(c)) because the spin-up

time scale has elapsed. Fig. 6.12 confirms that the best accordance between the experimental

data and our model takes place generally in the upper half part of the fluid. These profiles

match very well with the theoretical penetration depth h′p = 0.65: in fact, the velocity decrease

is very weak above this level pointing to the confinement of the secondary circulation. The

good agreement between the experimental results and our model persists even over large

time scales.

6.5 Vanishing of the Ekman Layer

The bottom Ekman layer is the region where the interior azimuthal velocity adjusts to

the velocity of the bottom boundary, and it decays as the interior fluid gradually spin-up.

The Ekman layer eventually vanishes when the secondary circulation is eliminated. The

flow transported along the bottom boundary could develop series of horizontal roll vortices

associated with instabilities in the laminar Ekman layer. Experimental (e.g., Faller (1963)

[18]; Faller & Kaylor (1966a) [20] ; Tatro & Mollo-Christensen (1967) [71]) and numerical

investigations (e.g., Lilly (1966) [44]; Faller & Kaylor (1966b) [19]) have shown that the Ek-

1The (vertical) Reynolds number, Re ≡ UH/ν, indicates the relative importance of advective term to viscous

force.
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man layer becomes unstable for local Reynolds numbers 2 around Reδe = 55. There are two

different types of instability associated with this boundary layer: type I waves, due to an

inflectional instability, and type II waves, resulting from an interaction of shear and Coriolis

force (see, e.g., Greenspan (1968) [30]). A new, stable, laminar motion could result from these

disturbances, or a transition to turbulence might take place, which eventually destroys the

instabilities. Using laboratory experiments, Caldwell & Van Atta (1970) [7] gave support

for the theoretical criterion and found that the transition threshold to fully turbulent regime

does not occur until Reδe = 148.

The vertical laser sheet used (60 cm × 60 cm) is not really appropriate for local measure-
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Fig. 6.13: SIDE VIEW UP 3 ({ǫ,Bu} = {0.32, 4.34}) - non-dimensional azimuthal velocity [−] - vertical profile temporal

evolution in a region near the bottom Ekman layer

ments in the Ekman layer. In fact, an Ekman layer thickness can be defined as δe ≡ E1/2H =

(ν/Ω f )
1/2 ≃ 0.57 cm → δe/H ≃ 0.01, too thin to be revealed by the measurement technique

considered. Note that another definition of Ekman layer thickness is the distance at which

the radial velocity analytical solution (Eq.n (3.6a)) has its first zero away from the boundary,

namely δe/H = πE1/2 ≃ 0.03. Anyway, our model was developed for large scale velocity

profile, using crude boundary conditions, and does not allow to properly compare velocity

fields in the range z/H < 0.03. Therefore, in Fig. 6.13 we report only the vertical profile of

2A Reynolds number based on the local measured values may be defined in the Ekman layer, Reδe ≡ Uδe/ν =

U/(νΩ)1/2, since its structure depends critically on the local external flow field.

109



Vanishing of the Ekman Layer Stable spin-up

the experimental non-dimensional azimuthal velocity at different times in a region close to

the Ekman layer.

Just after the change in the rotation rate of the tank (t/T = 0) the fluid rotates approxi-

matively at the imposed angular velocity (u′
θ
≃ 1), even close to the Ekman layer. As time

elapses, the velocity profile decays quickly, and the vertical shear in the bottom reduces

greatly. From these measurements it appears that the interior azimuthal velocity satisfy

the bottom boundary conditions directly over intermediate time scales. More precisely, the

interior azimuthal flow adjusts smoothly from the interior region to the bottom boundary

without undergoing boundary-like variations, unlike the homogeneous case (cf., Fig. 3.1).

This indicates, according to the numerical results of Hyun (1984) [38], that the Ekman layer

disappears in the temporal range t/T ∼ 18, which is approximatively the spin-up time scale

(i.e., τss ∼ 13.5 T).

Fig. 6.14 shows a comparison between the experimental azimuthal velocity and the
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Fig. 6.14: SIDE VIEW UP 3 ({ǫ,Bu} = {0.32, 4.34}) z/H = 0.01 - non-dimensional azimuthal velocity [−] - temporal

evolution: —�— experimental results; —�— Walin’s theory

Walin’s theoretical prediction at z/H ≃ 0.01, which may be considered very close to the

Ekman layer. This result is very different with respect to the comparison performed in a

region located in the range 0.10 ≤ z/H ≤ 0.25 (e.g., Fig. 6.8(a)). In fact, at z/H = 0.01 the ex-

perimental results do not decay faster than the analytical solution, and the theory is capable

to reproduce properly the decay rate. This because the decrease of the azimuthal velocity

is mostly due to the secondary circulation, and the viscous-diffusion effects are negligible.
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Note that the theoretical curve correctly reproduces the spin-up time scale.

The local Reynolds number is Reδe ≃ 312, and thus we expect that the regime in the Ekman

layer is fully turbulent. The experimental curve shows some small fluctuations, confirming

that the turbulence is restricted to the Ekman layer and the instabilities of the boundary layer

do not measurably disrupt the quasi-geostrophic flow, according to previous studies (e.g.,

Weidman (1976) [76]).

6.6 Summary

In this chapter the axisymmetric spin-up run has been deeply analyzed. The general

features of the spin-up process, as the penetration depth of the secondary circulation and the

radial dependence of the vortex stretching, have been experimentally confirmed.

A comparison with the analytical solution of Walin (1969) [74] for the interior azimuthal

velocity has shown, according to the literature, that the experimental results decay faster,

even over the shorter spin-up time scale. Only very close to the Ekman layer, the region

mostly affected by the secondary circulation, the Walin’s solution reproduces properly the

azimuthal decay rate. These results lead credence to the hypothesis that viscous-diffusion

effects arising from interior flow gradients are the cause of the discrepancy with the theory.

An attempt to improve the analytical solution by including viscous-diffusion effects via

finite-different method has been proposed. In our model, we computed at each time the

contribution of both secondary circulation and momentum diffusion to the decay rate of

the azimuthal velocity. While the vertical diffusion equation was solved using the velocity

field which keeps in account both the processes, the classical Walin’s solution has been

computed independently. Therefore, this procedure assumes that the secondary circulation

is not affected by the viscous-diffusion process. This seems a reasonable hypothesis since the

contribution of the secondary circulation is larger than diffusion over the spin-up time scale.

Later in time, the secondary circulation progressively weakens as the fluid is spun-up, and

it nullifies over the viscous time scale.

The numerical results show a general enhancement of the predictions. In the interior

region, well away from the Ekman layer, the experimental results and our model are in good

agreement, even if the Reynolds number is ∼ O(104). However, in the lower part of the

rotational shear layer, where the secondary circulation is mostly located, the faster decay

rate of the measurements persists. This suggest that viscous-diffusion effects may produce a

feedback on the secondary circulation.
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The rotational shear layer appears to be unstable, with oscillations superimposed to

the basic decay trend, and the vanishing of the boundary layer has been experimentally

visualized as the the fluid gradually spins-up.
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Chapter 7

Unstable spin-up

We analyze here an experimental run which appears to be baroclinically unstable with

non-axisymmetric disturbances in the velocity field. The results for the case characterized

by the smallest Rossby number (UP 1: {ǫ,Bu} = {0.08, 0.26}) have been preferred since it is

closer to the condition of quasi-geostrophy assumed in the theory. Therefore, the run UP 1

is characterized by the long-wave instability in its purest form, and the nonlinearity effects

associated with a non-vanishing Rossby number are secondary to the effects of baroclinic

waves traveling around the turntable (Linden (1977) [45]).

7.1 Comparison to Walin’s theory

SIDE VIEW Data

Fig. 7.1 shows the non-dimensional azimuthal velocity versus time in the temporal range

t/T ≤ 50 with the corresponding theoretical predictions of Walin (1969). The velocity behav-

ior is substantially different with respect to the axisymmetric case (i.e., the run UP 3). In fact,

the azimuthal velocity decay is nearly uniform in the interior region, showing only small

differences between the region close to the Ekman layer (e.g., Fig 7.1(a)) and the region well

away (e.g., Fig 7.1(d)). This confirms that spin-up in weakly stratified fluid (i.e., dominating

rotation) is similar to the homogeneous case in so far as the attainment of solid body rotation

is concerned (Siegmann (1971) [67]).

There is an initial agreement between experimental results and theoretical predictions for

a time t/T ∼ 10 after the start of the run, but the curves begin to diverge with experimental

measurements decaying slower than the theory. The appearance of the discrepancies corre-
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(d) z/H = 0.50
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(e) z/H = 0.70
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(f) z/H = 0.90

Fig. 7.1: SIDE VIEW UP 1 ({ǫ,Bu} = {0.08, 0.26}) - non-dimensional azimuthal velocity [−] - temporal evolution at

different vertical locations: —�— experimental results; —�— Walin’s theory
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sponds to the onset of growing oscillations associated with the long-wave instability. This

contrast with the stable run UP 3 for which the experimental results decay faster than the

theory after the initial agreement.

Neither experimental nor numerical analysis of azimuthal velocity were performed at

Fig. 7.2: Plot of zonal velocity versus time at mid depth and mid radius for Bui = 1.76. The tank rotation period is

T ≃ 12.2 s, thus t = 100 s→ t/T ≃ 8. Reproduced from Barcilon et al. (1975) [1]

such small Burger number over a long temporal range. However, Barcilon et al. (1975) [1]

performed a numerical simulation characterized by Bui = 1.76 (being Bui the Burger number

calculated with the initial angular velocity) for t/T ≃ 12 (Fig. 7.2), and found that the Walin’s

theoretical solution lied below the numerical prediction, in agreement with our experimental

results (UP 1: Bu = 0.26 → Bui = 0.32). For larger Burger number they confirmed that the

numerical results are located below the Walin’s theoretical solution, as we found in the stable

case (¶ 6.3). Note that the same trend was experienced in the work of Buzyna & Veronis

(1971) [6] (cf., Fig.s 6, 10 and 11 of their paper).

Fig. 7.3 corresponds to Fig. 7.1 for a wider temporal range. The Walin’s solution

is generally below the experimental results until t/T ∼ 150. From these measurements it

appears that the hypothesis of Smirnov et al. (2005) [68] claiming that the large-scale eddies

provide an additional mechanism for the vertical transport of angular momentum does not

seem to be valid. In fact, in our experiment the Walin’s solution, which omits the long-wave

instability, is capable to correctly estimate the general decay rate. Moreover, it seems that the

non-axisymmetric disturbances do not allow the fluid to reach the solid body configuration

faster than the secondary circulation would perform.

Later in time (t/T > 150) the experimental results fall generally below the Walin’s solu-
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(e) z/H = 0.70
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(f) z/H = 0.90

Fig. 7.3: SIDE VIEW UP 1 ({ǫ,Bu} = {0.08, 0.26}) - non-dimensional azimuthal velocity [−] - temporal evolution at

different vertical locations: —�— experimental results; —�— Walin’s theory; —�— our model
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tion, except relatively close to the Ekman layer (Fig 7.3(a)). However, this trend might be

caused by the onset of other mechanisms rather than due to the long-wave instability.

Fig. 7.3 reports also the theory of Walin (1969) with the inclusion of the viscous-diffusion

effects (¶ 6.4) at the upper vertical locations. It appears that the vertical diffusion of mo-

mentum does not add any contribution to the azimuthal velocity decay. Moreover, the small

discrepancies between the curves due to viscous-diffusion effects is noticeable only over a

time larger than the spin-up time scale (Fig. 7.3(d)). This was a predictable result: the lower

Burger number states the weaker importance of stratification with respect to rotation. There-

fore, the secondary circulation can penetrate deeper in the interior region, and the vertical

gradients of azimuthal velocity are considerable reduced. This reflects the nearly uniform

velocity decay of the experimental results in Fig. 7.3.

The spin-up time τss ∼ 126 T, computed by means of Eq.n (3.15), has been reported in Fig.

7.3(a) and 7.3(d) as a green vertical line. It appears a very good agreement with the Walin’s

theoretical prediction since the spin-up time coincides with the time in which the Walin’s

solution reaches its asymptotic value. Note that in the stable case (i.e., the run UP 3) the

relatively strong stratification restricts the secondary circulation in a region adjacent to the

horizontal boundary, and consequently the spin-up time is sensibly shorter. However, the

bulk of the fluid adjusts to solid body rotation in the longer viscous time scale. In the unstable

case (i.e., the run UP 1), the relatively weak stratification allows the secondary circulation to

penetrate deeper in the interior region, and the spin-up time is longer since wider is the area

in which the fluid is spun-up by the secondary circulation. However, in the run UP 1 the

bulk of the fluid adjusts to solid body rotation in a shorter time with respect to the run UP 3

(cf., e.g., Fig.s 6.9(f) and 7.3(f)).

Fig. 7.4 shows the temporal evolution of the vertical profile of the azimuthal velocity.

The vertical shear in the interior region is notably smaller with respect to the stable case (cf.,

Fig. 6.12), and the Walin’s solution accurately reproduces the early time profile (Fig. 7.4(a)).

Subsequently, the theoretical results decay faster than the measurements in the upper part

of the fluid, while a general agreement persists in the region close to the Ekman layer. Note

that in the stable case a better accordance between experiments and theory was generally

found in the upper part of the fluid. Later in time, the discrepancies progressively reduces

(Fig. 7.4(e)) and after t/T ∼ 120, which correspond to the spin-up time scale, the vertical

shear in the interior region nullifies (Fig. 5.4(b)). The Walin’s solution is incapable to predict

this behavior and we suggest that the discrepancies are due to the presence of the long-wave
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(f) t/T = 120

Fig. 7.4: SIDE VIEW UP 1 ({ǫ,Bu} = {0.08, 0.26}) - non-dimensional azimuthal velocity [−] - vertical profile temporal

evolution at different times: —�— experimental results; —�— Walin’s theory
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instability. Specifically, baroclinic instability acts to release the available potential energy,

addressing the fluid to a state characterized by uniform azimuthal velocity in the interior

region. The azimuthal velocity decay is larger than theory in the upper part of the fluid, while

it is smaller in the lower part (Fig. 7.4(f)). The effect of instability is therefore equivalent as a

weakening of the stratification.

7.2 Qualitative Analysis

TOP VIEW Data

Let us focus on the growth of the oscillations just after the change in the rotation rate

of the tank. Fig.s 7.5 and 7.6 show the non-dimensional azimuthal velocity versus time at

different radial positions and vertical locations in the temporal range t/T ≤ 50. Note that

data acquisition was begun about two rotation periods prior to the initiation of the run.

The vertical locations of the horizontal laser sheet are summarized in Tab. 7.1. The levels

LEV vertical positions

z [cm] z′ [−]

1 60 1

2 56 0.93

3 51 0.85

4 46 0.77

5 40 0.67

6 32.5 0.54

7 23 0.38

Tab. 7.1: UP 1 ({ǫ,Bu} = {0.08, 0.26}) - vertical positions of the horizontal laser sheet

considered are located in the interior region, relatively well away from the Ekman layer.

These fluctuations of the azimuthal velocity appear generally correlated both radially

and vertically, with some exceptions, pointing that all the measurements are performed in

the area occupied by the same eddies. It appears that the oscillations are superimposed to

a mean decay trend which presents the same characteristics analyzed in § 6.2: the spin-up

proceeds initially more rapidly at smaller radii and decreases as the radius increases (Fig.

7.5). The amplitude of the oscillations decreases in the lower part of the fluid (Fig. 7.6).
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(a) level 5: z/H = 0.67
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(b) level 6: z/H = 0.54
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(c) level 7: z/H = 0.38

Fig. 7.5: TOP VIEW UP 1 ({ǫ,Bu} = {0.08, 0.26}) - non-dimensional azimuthal velocity [−] - temporal evolution at

different radial positions: —�— r/R = 0.70; —�— r/R = 0.75; —�— r/R = 0.80; —�— r/R = 0.85; —�— r/R = 0.90;

—�— r/R = 0.95
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(a) r/R = 0.70
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(b) r/R = 0.80
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(c) r/R = 0.90

Fig. 7.6: TOP VIEW UP 1 ({ǫ,Bu} = {0.08, 0.26}) - non-dimensional azimuthal velocity [−] - temporal evolution at

different vertical locations: —�— level 2; —�— level 3; —�— level 4; —�— level 5; —�— level 6; —�— level 7
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Smirnov et al. (2005) [68] reported that the beginning of the eddy formation depends on

the value of the Rossby number, while it is substantially independent of the Burger number.

Their data analysis showed that the formation time decreases with increasing the Rossby

number. Since the run UP 1 is characterized by ({ǫ,Bu} = {0.08, 0.26}), then the time of

onset of eddy formation should be comparable with the corresponding in their run with

parameters {ǫ,Bu1} = {0.10, 0.23}. Instead, the time of onset of the growing oscillations is

t/T ∼ 1 in the run UP 1, while they reported a time of t/T ∼ 50 for their run. In order to

deepen this discrepancy, let us highlight that Smirnov et al. (2005) proposed their extended

Eady’s model since the structure of the observed waves was not consistent with the classical

Eady’s model. In fact, in their runs the eddies first appeared close to the sidewall and thus

they reputed necessary to include the region of lateral shear into the analysis. Initially thin

boundary layers at sidewall diffuse to become shear layers sufficiently thick for the baroclinic

motion within them to be essentially inviscid. The extended Eady’s model thus implies that

the principal factor limiting the development of the instability is the time required for the

sheared sidewall layers to grow under viscous-diffusion. The formation of baroclinic cyclonic

(anticyclonic) eddies during spin-up (spin-down) was attributed to the growth of sheared

wall layers.

Smirnov et al. (2005) carried out their experiments in a cylindrical tank of radius R = 91 cm:

the presence of sheared sidewall layers compensates for the narrowness of the cylinder and

provides a realistic estimate for the time of onset of eddies formation. Our experiments were

performed in a cylindrical tank of radius R = 650 cm, therefore baroclinic waves are allowed

to grow with the appropriate wave structure. Moreover, the flow region affected by the

sidewall layer is noticeably smaller: thus, the extended Eady’s model proposed by Smirnov

et al. (2005) is not appropriate for our experimental realization.

Before the start of the run the velocity field should be almost zero, signifying that the

system is in a state of solid body rotation. Fig. 7.7(a) rather indicates that near the free surface

there is a residual velocity field which gradually decreases moving towards the horizontal

boundary, becoming negligible only at mid-depth (Fig. 7.7(b)). However, the azimuthal

symmetry of the flow is immediately established after the impulsive change in the rotation

rate of the tank, as shown in Fig. 5.6(a). We believe that this perturbation is caused by shear

stresses exerted by the air on the free surface, although attention was placed to avoid this

1note that Smirnov et al. (2005) defines the Burger number as Bu ≡ NH/ f L, and its value has been converted

according our definition
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Fig. 7.7: TOP VIEW UP 1 ({ǫ,Bu} = {0.08, 0.26}) - velocity field at t/T ∼ −2

effect by means of floating foam canopy during the filling of the tank and before each run.

This effect is totally lacking in the experiments of Smirnov et al. (2005) since they maintained

the tank covered with a transparent canopy at all times. We suppose that this residual

motion may play a role to explain the evidence of the almost instantaneous development of

the eddies in the run UP 1 ({ǫ,Bu} = {0.08, 0.26}), at variance with Smirnov et al. (2005), who

reported a time t/T ∼ 50 for a run with comparable Rossby and Burger numbers.

7.3 Quantitative Analysis

TOP VIEW Data

It seems reasonable that the long-wave disturbances are due to the onset of the baroclinic

instability, but the nature of the fluctuations must be determined quantitatively. Note that

the Richardson number 2 is large (Ri ≃ 60), thus the instability is not due to turbulence induced

by a strong vertical shear (see, e.g., Cushman-Roisin (1994) [10]).

Although the comparison of the spatial profile evolution of the azimuthal velocity (Fig.s

7.5 and 7.6) is clearly not suitable to study the instability pattern, it may give insight on the

instability properties. Fig. 7.8(a) reports a comparison of the azimuthal velocity versus time

at {r/R, z/H} ≃ {0.85, 0.75} between the stable (i.e., UP 3 {ǫ,Bu} = {0.32, 4.34}) and the unstable

2the bulk Richardson number, Ri ≡ N2/(dU/dz)2 indicates the relative importance of stratification to the

vertical shear of the horizontal velocity
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(b) Fourier transform

Fig. 7.8: TOP VIEW {r/R, z/H} ≃ {0.85, 0.75}: non-dimensional azimuthal velocity [-] - —�— UP 1 ({ǫ,Bu} = {0.08, 0.26});

—�— UP 3 ({ǫ,Bu} = {0.32, 4.34})

(i.e., UP 1 {ǫ,Bu} = {0.08, 0.26}) runs. The temporal Fourier spectrum (Fig. 7.8(b), being

f0 = 1/T the rotation frequency) is not well defined since, aside from noise, the oscillations are

superimposed to a mean decay trend. However, the Fourier transform allows to investigate

the temporal characteristics of the instability, showing that the azimuthal velocity in the run

UP 1 oscillates with a frequency f/ f0 ≃ 0.18. This frequency corresponds to an oscillation

period t/T ∼ 5.52, confirming that the azimuthal flow becomes unstable forming large

periodic eddies. In agreement, Smirnov et al. (2005) [68] reported the development of the

instability in form of eddies of regular low-frequency oscillations f/ f0 ∼ 0.2 for the run

characterized by comparable Rossby and Burger numbers.

In order to estimate the wavelength of the instability, the azimuthal velocity was averaged

in small boxes such as that they had the same radial coordinate, but were separated from each

other by a given distance in the azimuthal direction, as sketched in Fig. 7.9. Fig. 7.10(a) shows

the azimuthal velocity temporal profile: the phase shift between the two curves is caused by

the time an eddy takes to travel from one box to the other. Each thick line in Fig. 7.10(a) is

the corresponding fit of the minima, with no direct physical meaning. However, in order to

enlighten the amplitude of the oscillations we removed the decay trend obtained in this way

from the velocity field. Fig. 7.10(b) shows the growing of the oscillation due to baroclinic

instability in the temporal range t/T ≤ 50. The corresponding temporal Fourier transform

(Fig. 7.11(a)) confirms the previous result of a perturbation with frequency f/ f0 ≃ 0.18. The

cross-correlation function (Fig. 7.11(b)) allows to know the relative time between the two
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Fig. 7.9: Sketch of the two boxes configuration on the horizontal laser sheet: boxes b1 —�— and b2 —�— are positioned

at r/R = 0.85 and separated some distance in the azimuthal direction, with the box b1 being upstream
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(a) temporal evolution
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(b) oscillation growing

Fig. 7.10: TOP VIEW {r/R, z/H} ≃ {0.85, 0.75} UP 1 ({ǫ,Bu} = {0.08, 0.26}): non-dimensional azimuthal velocity [-] -

boxes b1 —�— and b2 —�—

curves, ∆t/T = 0.7.

Knowing the frequency of the signal as well as the time spent by the perturbation to

move between the two boxes, we estimated the wave number of the instability. Referring

to Fig. 7.9, (∆θ such as ∆θr = π/12 rad, see ¶ 4.5.2), let us assume a perturbation of form

analogous to Eq.n (2.40). This is possible since, locally, the polar frame of reference may be

considered as a cartesian frame of reference, with the radial and azimuthal axis coincident
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(a) Fourier transform
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Fig. 7.11: TOP VIEW {r/R, z/H} ≃ {0.85, 0.75} UP 1 ({ǫ,Bu} = {0.08, 0.26}): boxes b1 —�— and b2 —�—

with the y and x axis, respectively. In this approximation, the perturbation of the interior

pressure field may be written (in non-dimensional variables) as

φ′ = |A′|ek′c′
i
t′ cos(k′θr − ω

′t′ + α′) cos l′mr′ (7.1)

where k′ = kL, ω′ = ωT, l′m = (m + 1/2)π.

At a fixed vertical location holds the relation

k′∆θr = ω
′∆t′ (7.2)

and since ω′ = 2π f/ f0 then

k′ = 2π
f

f0

∆t′

∆θr
≃ 3.04

The non-dimensional zonal wave number k′ provides the number of eddy pairs in the sys-

tem. Fig. 7.12 shows a sketch of the instability pattern predicted: three pairs of cyclones

and anticyclones advected in the anticyclonic direction by the basic flow. The corresponding

dimensional zonal wave number is k = k′/L ≃ 0.47 m−1, and hence the dimensional wave-

length is λ = 2π/k ≃ 13.43 m. The dimensional perturbation period is Tp = 1/ f ≃ 276.25 s

(Tp/T ∼ 5.52).

The theoretical growth rate is expressed by Eq.n (2.38). In non-dimensional variables it

takes the form

k′c′i =
k′

µ′

[(

coth
µ′

2
−
µ′

2

)(

µ′

2
− tanh

µ′

2

)]1/2

(being µ′ = (k′2 + l′2m )Bu) displayed in Fig. 7.13 for the most unstable radial mode (m = 0).
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Fig. 7.12: Sketch of the instability pattern as predicted by the Eady’s model.
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Fig. 7.13: UP 1 ({ǫ,Bu} = {0.08, 0.26}): —�— the growth rate k′c′
i

[−] for the most unstable radial mode; —�—

experimental wave number

The red line, indicating the experimental measurement, corresponds almost exactly with the

maximum in the growth rate, suggesting a very good agreement with the theoretical wave

number predicted by the Eady’s model.

Note that Kanda (2004) [40] reported that the growth rate is not uniform, and the eddies

differ in size. Once they are fully grown, larger eddies grow further by catching up with

smaller one and merging them. This later phase of vortex coalescence goes beyond the scope

of this thesis.

The growth rate predicted by the Eady’s model does not match with the experimental

results, but it appears to be one order of magnitude larger than the optimal one. Note
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that the classical Eady’s model assumes a linear vertical profile in the azimuthal velocity

as initial condition. In our experiments, the fluid is approximatively in solid body rotation

just after the change in the rotation rate of the tank (cf., Fig. 5.3), and the vertical profile

evolves in time. In axisymmetric case (i.e., the run UP 3), the fluid interior reaches in the

spin-up time scale an azimuthal velocity linear vertical profile in the rotational shear layer

(cf., Fig. 6.12). In non-axisymmetric case (i.e., the run UP 1), this process is weakened by the

deeper penetration of the secondary circulation and altered by the appearance of baroclinic

instability at early times (cf., Fig. 7.4).

Smirnov et al. (2005) [68] derived the Eady’s model in cylindrical geometry, using rather

as initial condition a linear vertical profile in the rotational shear layer. This is an appropriate

initial condition for their experimental configuration since the formation of large eddies

is experienced after the spin-up time scale. Note that now we consider the derivation of

the Eady’s model by Smirnov et al. (2005) without the inclusion of the sidewall boundary

layer. The boundedness along the azimuthal direction sets discrete wave numbers k′n = n

(n = 1, 2, 3, . . .), and the Eady’s condition for instability is (cf., Eq.n 15 of their paper)

nc′i = 2πǫ Bu

[

1

X

(

coth X −
1

X

)

−
1

4

]1/2

(7.3)

being X ≡ NKnH/2Ω such as Jn(KnR) = 0, where Jn is the n-order Bessel function. The
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Fig. 7.14: UP 1 ({ǫ,Bu} = {0.08, 0.26}): —�— the growth rate n′c′
i

[−] for the most unstable radial mode as derived by

Smirnov et al. (2005) [68]); —�— experimental wave number

theoretical growth rate expressed by Eq.n 7.3 is showed in Fig. 7.14 for the most unstable

radial mode (the first zero of the Bessel function). The most rapidly growing waves are
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characterized by n = 3 and n = 4, in accordance with the experimental results, while the

growth rate is one order of magnitude less than the predictions of the classical Eady’s model.

Moreover, keeping into account that in the run UP 1 the vertical shear in the azimuthal

velocity is almost half than the assumption of Smirnov et al. (2005) at the appearance of

the instability, we suggest to divide by two their prediction, which indicates nc′
i
≃ 0.075 for

n = 3. This is a reasonable procedure since the growth of the oscillations is controlled by the

available potential energy, and the horizontal density gradient is proportional to the vertical

shear. Fig. 7.15 reports the growing oscillations in the range t/T ≤ 50 and the growth trend
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Fig. 7.15: Fig. 7.10(b) with the growth trend —�— computed by means of Eq.n 7.4

A′ = A′0 ek′c′
i
t′ (7.4)

being nc′
i
= 0.035 and A′

0
= 0.09. A good agreement is indeed obtained using the derivation

of Smirnov et al. (2005) and considering the actual vertical shear.

7.4 Basic Flow and Fluctuations

TOP VIEW Data

The azimuthal velocity field in the temporal range t/T ≤ 50 was interpreted as a compo-

sition of two distinct physical processes. The flow is dominated by an anticyclonic current,

generated by the change in the angular velocity of the tank, which adjusts in time to the new

angular velocity of the boundaries. A series of long-waves oscillations of average period

t ≃ 276.25 s are superimposed to the basic fluctuation-free state. The knowledge of the
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oscillation period allows to separate the basic anticyclonic velocity field from the velocity

fluctuation field characteristic of the instability. The sampling time (5 s) provides a measure-

ment periodicity of 35 s for each horizontal level, indicating that each oscillation contains

about eight bursts. A 1-period central moving average algorithm was used as low-frequency

band pass filter. This tool removes the short term fluctuations leaving only the long term

trend due to the anticyclonic current. This velocity field has filtered out the velocity associ-

ated with the fluctuations and defines an observed mean flow state. It cannot be considered

the basic flow since it implicitly assumes the existence of fluctuations (Pedlosky (1987) [58]).

The velocity fluctuation field is then obtained by subtracting the observed mean velocity

field from the original velocity field. This procedure may compensate the absence of dye

visualization which would allow to know qualitatively the instability pattern.

In order to check the accuracy of the procedure, the temporal evolution of the original
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Fig. 7.16: TOP VIEW {r/R, z/H} ≃ {0.85, 0.75} UP 1 ({ǫ,Bu} = {0.08, 0.26}) - non-dimensional azimuthal velocity -

temporal evolution: original velocity —�—; basic flow —�— and fluctuation —�— obtained by means of moving

average tool; —�— reconstructed original flow. The —�— and —�— results are almost coincident.

velocity field is then reconstructed and compared to the original one. The agreement is

excellent at each time in the range considered. Fig. 7.16, which reports such a comparison

at {r/R, z/H} ≃ {0.85, 0.75}, may be considered representative of the whole domain. We are

therefore allowed to study the instability pattern by means of the moving average tool. Fig.

7.16 confirms that the fit of the minima removed from the original velocity field in ¶ 7.3 had

no physical meaning: note that it was used only to enlighten the fluctuation trend.
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7.5 Visualization of the Instability Pattern

TOP VIEW Data

Considering a series of velocity fluctuation fields corresponding to the same oscillation,

the first field is taken as a reference and the subsequent ones are suitably shifted along the

azimuthal direction of a distance

∆θ =
ω′

k′
R∆t′

(cf., Eq.ns (4.6) and (7.2)), being ∆t′ the time interval between the first velocity fluctuation

field and the considered subsequent one. Velocity fluctuation fields belonging to the same

vertical location are then merged together in order to obtain a series of extended velocity

fields, one for each level, which allow to reconstruct the horizontal perturbation pattern at

an arbitrary time. The procedure is illustrated and detailed in Fig. 7.17. Since all the fields

are suitably shifted, the series of merged velocity fluctuation fields may permit to investigate

the vertical profile of the perturbation.

..........

..........

..........

..........

..........

..........

..........

1

1 2

2

7

7

8

8

9

9

14

14

∆θ2

∆θ7

∆θ8

θ

t

Fig. 7.17: Shifting and merging field procedure. Let us imagine a series of velocity fluctuation fields corresponding to

the same oscillation, sketched by the squares on the top of figure. The first field belongs to the first horizontal level, and

so on until the seventh field. The fields belonging to the same horizontal level are suitably shifted and merged together

as to generate extended velocity field representative of the whole oscillation. In the example on the bottom of figure ∆θi

is the shift along the azimuthal direction which corresponds to the time interval between the first velocity fluctuation

field and the considered subsequent one, named i. This procedure originates a narrow overlap region between the fields

merged.

131



Visualization of the Instability Pattern Unstable spin-up

We obtained nine velocity fluctuation fields corresponding to the velocity oscillations in

the temporal range t/T ≤ 50. Fig. 7.18 displays the most representative vorticity fluctuation

fields at z/H ≃ 0.92 (second level). Note that in the overlap regions the grid points do not

perfectly coincide, generating a splitting effect in the vorticity field. We did not reverse

the azimuthal velocity in these extended fields (¶ 4.5), and therefore anticyclonic (cyclonic)

patterns in the vorticity field correspond to positive (negative) fluctuations in the observed

evolution of the azimuthal velocity (e.g., Fig. 7.8(a)). Along the abscissa we consider the

azimuthal variable, and the time increases from right to left, since the flow located upstream

will cross afterwards the horizontal laser sheet. The value of the azimuthal variable was

reported since it allows to obtain time information on the structure of the instability. Bearing

in mind Eq.ns (4.6) and (7.2)

∆t′ =
k′

ω′
∆θ

R

Then, as example, ∆θ = 100 rad corresponds to ∆t′ ≃ 0.41→ ∆t ≃ 20.6 s.

Fig. 7.18 allows to visualize the development of the baroclinic instability. During the first

oscillation (Fig. 7.18(a)) cyclonic and anticyclonic vorticity patterns present a small extension

and are alternated in the flow field. Fig. 7.18(b) shows the formation of positive vorticity

near the sidewall due to the radial shear of the interior velocity. This stage is followed

by extension and organization of the eddies, while strong cyclonic vortices appear at the

sidewall (Fig. 7.18(c)). During the seventh oscillation (Fig. 7.18(d)) the baroclinic instability

appears to be wholly developed, with a large anticyclone centered in the vorticity field. Note

that the azimuthal range considered along the abscissa is ∆θ ≃ 1100, which corresponds to

∆θr ≃ 2π/k′, being k′ = 3 the experimental wave number. Therefore, the range along the

azimuthal direction is of the order of the experimental wavelength of the perturbation, and

Fig. 7.18(d) clearly shows one cyclone-anticyclone pair moving around the flow domain (the

whole anticyclone and two half cyclones are displayed).

Note that in the lateral boundary layer the cyclones induced by the horizontal shear

follow to grow in size, and finally detach from the sidewall (Fig. 7.18(e)). We suggest that

this mechanism could be responsible for the faster decay of the azimuthal velocity over long

time, as evinced from Fig. 7.3. Therefore, the radial transport of momentum may play a role

in explaining the complex dynamics of the spin-up in weakly stratified fluid (i.e., dominating

rotation).
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(a) first oscillation t/T ≃ 1
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(b) third oscillation t/T ≃ 10
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(c) fifth oscillation t/T ≃ 20
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(d) seventh oscillation t/T ∼ 35

1000 900 800 700 600 500 400 300 200 100 0

0.70

0.75

0.80

0.85

0.90

0.95

1.00

θ

r/
R

 

 

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

(e) ninth oscillation t/T ∼ 45

Fig. 7.18: TOP VIEW UP 1 ({ǫ,Bu} = {0.08, 0.26}) - level 2 - vorticity fluctuation fields.
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7.6 Information on Phase and Amplitude

TOP VIEW Data
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Fig. 7.19: UP 1 ({ǫ,Bu} = {0.08, 0.26}): vertical profile - the phase —�— and the amplitude —�— for the most unstable

wave.

Fig. 7.19 shows the non-dimensional wave amplitude |A′| and phase α′ as function of the

non-dimensional height for the most unstable wave, characterized by k′ ≃ 3. Note that the

non-dimensional form of Eq.ns (2.39) and (2.41) is

A′(z′) = coshµ′z′ −
sinhµ′z′

µ′c′

α′(z′) = arctan

[

2c′
i
sinhµ′z′

2µ′|c′|2 coshµ′z′ − sinhµ′z′

]

The theory predicts that the amplitude of the disturbance is symmetric about the mid-depth,

where it attains its minimum value. The phase is an increasing function of z′, and thus the

orientation of the lines of constant phase is against the basic flow, precisely opposite to the

direction a passive tracer would be tilted by the shear flow. The wave at z′ = 0 leads the

wave field at z′ = 1 by very nearly π/2 rad, i.e., the crests and troughs of the perturbation

pattern at the upper level lag the bottom wave by nearly 90◦. In fact, the increase of α′ with z′

implies the tilting rearward of the waves with height. It may be shown that this is precisely

the condition for the baroclinic conversion of energy from the basic flow to the perturbations

(Pedlosky (1987) [58]).

Fig.s 7.20 and 7.21 report anticyclonic and cyclonic eddies extracted by the perturba-

tion field corresponding to the first oscillation at different vertical locations. Note that the
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(a) level 1: z/H = 1
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(b) level 2: z/H = 0.93
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(c) level 3: z/H = 0.85
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(d) level 4: z/H = 0.77

Fig. 7.20: TOP VIEW UP 1 ({ǫ,Bu} = {0.08, 0.26}): anticyclone extracted from the perturbation field of the first oscillation.

The legend is the same of Fig. 7.18
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(a) level 1: z/H = 1
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(b) level 2: z/H = 0.93
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(c) level 3: z/H = 0.85
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(d) level 4: z/H = 0.77

Fig. 7.21: TOP VIEW UP 1 ({ǫ,Bu} = {0.08, 0.26}): cyclone extracted from the perturbation field of the first oscillation.

The legend is the same of Fig. 7.18
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perturbation field at the second level is reported entirely in Fig. 7.18(a). Only the first four

levels were considered since the vorticity intensity decreases approaching mid-depth, and

the instability structures are no more recognizable in the perturbation field moving further in

deep. This is in agreement with the theoretical vertical profile of the wave amplitude; how-

ever, since the linear theory is incapable of determining the amplitude of the disturbance, no

further information can be obtained.

In Fig.s 7.20 and 7.21 a black line approximatively indicates the center of the vortices, but

the overlap region does not allow to precisely individuate it in the fourth level. Fig. 7.22

shows the vertical profile of the phase, as predicted by the theory, in the range 0.85 ≤ z/H ≤ 1,

which pertains to the horizontal levels considered. It provides ∆α′ ≃ 0.12 between the first

and the third level, and the relation (7.1) states (chosing θr as independent variable)

∆α′ = k′∆θr (7.5)

Thus, the theoretical phase suggests an azimuthal separation of the instability structures
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Fig. 7.22: UP 1 ({ǫ,Bu} = {0.08, 0.26}): vertical profile in the range 0.75 ≤ z/H ≤ 1 of the phase for the most unstable

wave. The vertical location of the three first levels is indicated: —�— level 1; —�— level 2; —�— level 3

between the first and the third level of ∆θr ≃ 0.04 rad, which corresponds to∆θ ≡ R∆θr ≃ 26.

In Fig.s 7.20 and 7.21 the azimuthal separation of the center of the eddies between the lev-

els considered is, respectively, ∆θ ≃ 20 and ∆θ ≃ 25. Therefore, although the procedure is

not rigorous, the measurements point to the same order of magnitude predicted by the theory.
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7.7 Summary

In this chapter the long-wave instability, leading to non-axisymmetric spin-up, has been

investigated in detail. The results for the run characterized by the smallest Rossby number

have been presented in order to best approach the quasi-geostrophic dynamics.

In spite of the instability, the Walin’s solution turns out to provide a reasonable prediction

of the decay trend. However, the experimental decay is slower than the theory, pointing that

the large scale eddies do not provide an additional mechanism for the transport of angular

momentum, as suggested by Smirnov et al. (2005) [68].

It has been confirmed that the viscous-diffusion effects are related to the penetration of

the meridional circulation. In fact, in the weakly stratified run considered it appears that the

secondary circulation affects the whole fluid, and the viscous-diffusion effects do not add a

significant contribution to the decay rate of the azimuthal velocity.

The measurements indicate that the extended Eady’s model proposed by Smirnov et al.

(2005) is not applicable to our experimental realization. The baroclinic eddies do not first

appear close to the sidewall, and their time of onset is not delayed. The large-scale dimension

of the facility allows the waves to attain the appropriate structure, and the effects of the wind

stress may play a role to enhance their development.

A quantitative comparison with the classical Eady’s model has shown a good agreement,

and both the wavelength of the most unstable wave and the vertical dependence of the phase

have been favorably compared with theory. However, the growth rate appears to be one

order of magnitude larger than the optimal one. The growth rate derived by Smirnov et

al. (2005) in cylindrical geometry, without the inclusion of the sidewall boundary layer, has

been optimized in order to keep in account the actual initial shear in the azimuthal velocity.

This growth rate fits properly with the experimental results, and the mechanism of baroclinic

instability becomes the most plausible explanation for the existence of the observed long-

wave instability in spin-up process.

Since the analysis of the spatial structure of the flow was flawed,we removed the observed

mean flow and displayed the perturbation field associated with the baroclinic instability.

Series of extended vorticity fluctuation fields have shown that the instability mechanism

is well developed after t/T ∼ 40. Moreover, the formation of strong penetrative cyclonic

vortices at the sidewall suggests the involvement of the radial transport of momentum over

long time scales.
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Conclusions

In this thesis an experimental investigation of stratified spin-up and spin-down has been

presented. The experiments were performed in the large rotating tank of the Coriolis-LEGI

laboratory, with linear density stratification over flat bottom. The runs differ in the change

of the rotation rate and in the final rotation of the tank, while the background stratification

was kept constant. The theory of stratified spin-up relies on a multi-timing treatment which

reflects the existence of three separated time scales. In a time t ∼ Ω−1 an Ekman layer de-

velops and becomes quasi-steady on the horizontal boundary. In the rotational shear layer,

where the secondary circulation is located, the fluid is spun-up to the final rotation rate of

the container in a time t ∼ Ω−1E−1/2. Finally, at very large time t ∼ Ω−1E−1, viscous diffusion

has affected the whole interior region and the fluid adjusts to solid body rotation. We set

a very small Ekman number (E ∼ O(10−5)) as to obtain a good separation between these

time scales in order to properly analyze the flow behavior over the spin-up time scale. The

non-dimensional parameters important in determining the observed response are the Burger

and Rossby numbers. We have considered the case of small Rossby number (ǫ ≤ 0.3), cor-

responding to an incremental (or linear) spin-up and spin-down. Then, the Burger number

plays a preeminent role in the flow development.

Our study has revealed two very different behaviors. For Burger number > 1 (i.e., dom-

inating stratification), three layers can be distinguished from Walin’s analysis. The usual

Ekman layer, adjacent to the horizontal boundary, not modified by stratification; the rota-

tional shear layer, in which the spin of the fluid by secondary circulation is confined; the

upper region, unaffected by the convective spin process, characterized by a slow velocity

decrease.

139



Conclusions

We observe that the flow is remarkably axisymmetric in the bulk of the fluid in spite

of the large Reynolds number (Re ∼ O(104)). The Richardson number (Ri ≫ 1/4) excludes

shear instability, and thus the oscillations in the lower region of the fluid may be associated

with the development of baroclinic instability. For spin-down runs, centrifugal instability is

observed, but it is restricted to the sidewall region.

A comparison with the Walin’s analytical solution shows that the experimental results

decay faster than the theoretical prediction. Considerable discrepancies are found in the

rotational shear layer, even over the shorter spin-up time scale. The early stage of the flow

is correctly described by the addition of viscous-diffusion effects, but the faster decay rate of

the measurements persists. The largest discrepancies between numerical and experimental

velocities are found in the lower part of the rotational shear layer, suggesting that viscous-

diffusion effects may produce a feedback on the secondary circulation. However, our model

has captured the importance of the viscous-diffusion effects which should be included for a

proper model of stratified spin-up.

For Burger numbers < 1 (i.e., dominating rotation), the rotational shear layer is not

vertically limited, but occupies the whole depth of the fluid. The development of non-

axisymmetric disturbances has been observed and a comparison with the Walin’s theory

shows a different trend with respect to the axisymmetric case. The decay is well described

in the early stage by the analytical solution, but later in time the experimental results decay

slower than the theoretical prediction. It has been found out that the discrepancies corre-

spond to the onset of the instability, and thus the eddies do not allow the fluid to spin-up

faster than enabled by the secondary circulation. This is in contradiction with the suggestion

by Smirnov et al. (2005) that the large-scale eddies provide an additional mechanism for

the vertical transport of angular momentum from the Ekman boundary layer. Nevertheless,

at late times, stronger decay is observed, and it may be explained by radial transport of

momentum from the sidewall boundary.

The longer spin-up time scale with respect to the work of Smirnov et al. (2005) has per-

mitted to observe the long-wave instability at an early stage. The narrowness of their facility

limits in time the development of the instability, and the sidewall boundary layers must

diffuse to become sufficiently thick to allow a baroclinic motion essentially inviscid within

them. The classical Eady’s model is shown to be consistent with the structure of the observed

waves in our experimental investigation. Its derivation by Smirnov et al. (2005) in cylindrical
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geometry using reliable initial conditions, without considering the dynamics of the sidewall

boundary, allows a reasonable estimation of the growth rate, which was untenable in the

classical theory. Indeed, the mechanism of baroclinic instability becomes the most plausible

explanation for the existence of the long-wave instability in spin-up and spin-down process.

A visualization of vorticity fluctuation fields associated to the large-scale eddies has been

proposed, and it appears that baroclinic instability is well developed after several tens of

rotation periods.

8.1 Perspectives

It would have been very hard to present a complete description of spin-up or spin-down

process in stratified fluid. We focussed on viscous-diffusion effects and long-wave instabil-

ity, but many other mechanisms are involved. Moreover, even in the domain investigated a

deeper study would be desirable.

Our model of vertical diffusion is empirical, and consequently insufficient for a fully quan-

titative description of the interaction between secondary circulation and viscous-diffusion

effects. It appears interesting to include viscosity more properly in the Walin’s theory, and

both analytical and numerical investigations would be welcome.

The inclusion of viscous-diffusion effects in the linear theory of Walin may provide an

appropriate initial condition for the study of the baroclinic instability. On the other hand, it

would be feasible to investigate the further development of the baroclinic instability in large

facility as to obtain small viscosity effects.

Moreover, our analysis implicitly assumes that the destabilizing shear is mainly vertical,

while actually both vertical and horizontal shear are present, and either may control the

development of non-axisymmetric disturbances.
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Appendix A

Rotating Tank Dynamics

A.1 Solid body rotation

Let us consider a cylindrical tank filled with fluid which is rotating about its vertical axis

of symmetry. If both the tank and the fluid rotate rigidly with the same constant angular

velocity ~Ω = Ωik̂ the motion is referred as solid body rotation. In the absolute frame of

reference the fluid shows a curve motion, thus a centripetal force is acting on the fluid. This

force is the pressure gradient force, due to the tilting of the free surface, directed radially

inward,

−
Uθ

2

r
= −

1

ρ

∂p

∂r
(A.1)

In the frame of reference co-rotating with the tank the fluid is at rest: a balance between

centrifugal and pressure gradient force pertains along the radial direction,

−
1

ρ

∂p

∂r
+Ω2

i r = 0 (A.2)

It is straightforward to obtain Eq.n (A.2) from Eq.n (A.1) using the relation Uθ = uθ + Ωir

which constrains the azimuthal velocities in the absolute, Uθ, and in the relative, uθ, frame

of reference. Assuming hydrostatic balance,

−
1

ρ

∂p

∂z
− g = 0 (A.3)

since p = p(r, z)

δp =
∂p

∂r
δr +

∂p

∂z
δz

Referring to Fig. A.1, since the free surface is an isobaric surface, in the limit δr, δz→ 0
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free

surface

δr

δz

α

Fig. A.1: free surface in a rotating tank

tanα ≡

(

∂z

∂r

)

p

=
∂H

∂r
= −

(∂p/∂r)z

(∂p/∂z)r
(A.4)

being H = H(r) the height of the free surface while rotating. Using Eq.ns (A.2) and (A.3) in a

nearly homogeneous fluid (∆ρ/ρ0 ∼ 10−2), Eq.n (A.4) becomes

∂H

∂r
=
Ω2

i
r

g
⇒ H =

Ω2
i
r2

2g
+ C (A.5)

being C a suitable constant. The value of C can be calculated by imposing the conservation

of the fluid volume. Being H0 the height of the fluid at rest

V = 2πH0

∫ R

0

rdr = 2π

∫ R

0

H(r)rdr⇒ C = H0 −
Ω2

i
R2

4g
(A.6)

Substituting Eq.n (A.6) in Eq.n (A.5)

H(r) = H0 +
Ω2

i

2g

(

r2 −
R2

2

)

(A.7)

The value of H(r) at sidewall (r = R) is then

H(R) = H0 +
Ω2

i
R2

4g
(A.8)

144



Rotating Tank Dynamics Relative motion

A.2 Relative motion

free surface

pressure gradient

modified pressure gradient
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surface

H(r)
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f
r2

2g

~Ω f

Fig. A.2: Spin-up: pressure gradient vs modified pressure gradient

After the change in the rotation rate of the tank the spin-up process, by which the fluid

adjusts to the new angular velocity of the boundaries, takes place. Since the cameras co-

rotate with the tank, it is convenient to consider the frame of reference rotating with the final

angular velocity, Ω f , in which the radial balance in the interior region is

−
1

ρ

∂p

∂r
+Ω2

f r ∓ 2Ω f uθ +
u2
θ

r
= 0 (A.9)

where uθ is assumed positive. Eq.n (A.9) can be obtained from the radial balance (A.2), valid

in the frame of reference rotating with the initial angular velocity, by means of the condition

Ω f = Ωi ± ∆Ω, being ∆Ω = uθ/r. In fact, the impulsive change in the angular velocity of the

tank does not perturb suddenly the motion of the fluid in the interior region, far from the

boundaries. Note that the curvature term u2
θ
/r is negligible in linear approximation and it

will not be considered anymore. Using Eq.n (A.5) the radial balance (A.9) becomes

−g
∂H

∂r
+Ω2

f r ∓ 2Ω f uθ = 0 (A.10)

Eq.n (A.10) may be simplified by writingΩ2
f
r = ∂(Ω2

f
r2/2)/∂r and defining a quantity ζ such

as

ζ = H −
Ω2

f
r2

2g

as the level of the free surface measured relatively to the reference parabolic surfaceΩ2
f
r2/2g.

Then Eq.n (A.10) may be written as
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Fig. A.3: Spin-down: pressure gradient vs modified pressure gradient

−g
∂ζ

∂r
∓ 2Ωuθ = 0 (A.11)

Obviously
∂p

∂r
∝
∂H

∂r
,

∂p̃

∂r
∝
∂ζ

∂r

where p̃ is the modified pressure (Fig.s A.2 and A.3), which includes the centrifugal and

gravitational effects

p(r, z) = p0 − ρg
[

H(r) − z
]

+ p̃(r, z)
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Appendix B

Data Analysis by C.I.V.

The Correlation Imaging Velocimetry technique is based on the calculation in physical

space of the cross-correlation of local regions between image pairs.

Referring to Fig. B.1, the procedure starts by setting the elementary box sizes (Bx,By)

Fig. B.1: Sketch of the C.I.V. procedure.

(in pixel) on the first image (a). This box, named pattern box, defines the region in which

correlations will be calculated along each direction (x, y). Large values lead to low spatial

resolution since the velocity obtained is an average in this elementary box. The second step

consists in setting the box which must contain the expected optimum pattern position on the

second image (b), named search box. It is defined by its center, equal to zero in the absence of a
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priori knowledge, and its size in each direction, (Sx, Sy). An excessive value of this range does

not change the result, but it increases the computation cost, and may lead to the appearance

of false vectors due to spurious covariance maxima. If the search range is too small, the true

maximum covariance is missed and false vectors are obtained. The cross-correlation is then

calculated with all the possible positions of the pattern box (Bx,By), inside the search box

(Sx, Sy).

Let us consider the pixel luminous intensities Ia(k, l) and Ib(k + i, l + j), being k = 1, . . .Bx,

l = 1, . . .By. The subscripts a and b refer to the two images between which the cross-

correlation is eventually calculated. The index origin (1, 1) is set at the lower left-hand corner

of the pattern box on the image (a). On the image (b), the pattern box is shifted from the

original position by a vector (i, j) which represents the displacements allowed by the search

box. The averages of the pattern box luminous intensities

Ia =
1

BxBy

Bx
∑

k=1

By
∑

l=1

Ia(k, l)

Ib =
1

BxBy

Bx
∑

k=1

By
∑

l=1

Ib(k + i, l + j)

are subtracted to each intensity, and the cross-correlation normalized by the variance, or

covariance C(i, j), is computed as

C(i, j) =

∑Bx

k=1

∑By

l=1
(Ia(k, l) − Ia)(Ib(k + i, l + j) − Ib)

[

∑Bx

k=1

∑By

l=1
(Ia(k, l) − Ia)2

∑Bx

k=1

∑By

l=1
(Ib(k + i, l + j) − Ib)2

]1/2
(B.1)

for each displacement (i, j) allowed by the search box. The velocity vector is then obtained as

the displacement which maximizes this covariance, multiplied by the geometrical scale (cm

per pixel) and the time interval. A key feature of C.I.V. technique is the interpolation of this

covariance to non integer displacements in order to reach sub-pixel precision.

The velocity vectors correspond to the position at the middle between the initial pattern

box center and its optimum displacement. For each point (x, y) on the measurement grid,

it has coordinates (x + ∆x/2, y + ∆y/2). The velocity field is therefore never obtained on a

regular grid, but it can be referred to a regular grid by interpolation, which also provides the

spatial derivatives.

A major difficulty in C.I.V. technique is the occurrence of secondary maxima of the co-

variance, which can spuriously exceed the maximum associated with the local displacement.

One method for limiting such false velocity vectors is to restrict the search box, using some a

148



Data Analysis by C.I.V.

priori knowledge of the velocity field. This knowledge is generally provided by a first C.I.V.

treatment, which can be thus refined in a hierarchical way. In fact, the results from the first

C.I.V. processing can be improved in an iterative way by a succession of false vector removal,

interpolation procedure, and C.I.V. processing with reduced search zone, using the estimate

from the previous processing.

Under optimum conditions, the measured mean root mean square error on the velocity

field is less than 2 %.
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