Lois de comportement et mise en forme des matériaux métalliques
Pierre-Yves Manach

To cite this version:

HAL Id: tel-00269039
https://tel.archives-ouvertes.fr/tel-00269039
Submitted on 1 Apr 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Lois de comportement et mise en forme des matériaux métalliques

Mémoire d’Habilitation à Diriger des Recherches

présenté par Pierre-Yves MANACH

Octobre 2004

Soutenu le 16 décembre 2004 devant le jury composé de :

M. FAIVIER DENIS Professeur des Universités Rapporteur
M. FERRON GÉRARD Professeur des Universités Rapporteur
M. GELIN JEAN-CLAUDE Professeur des Universités Rapporteur
M. MENEZES LUIS FILIPE Professor Associado com Agregação Examineur
M. MOUSSY FRANÇOIS Ingénieur Examineur
M. PILVIN PHILIPPE Professeur des Universités Examineur
M. RIO GÉRARD Professeur des Universités Examineur
Table des matières

Introduction Générale

<table>
<thead>
<tr>
<th>1</th>
<th>Lois de comportement en coordonnées matérielles entrainées</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>1.2</td>
<td>Cinématique générale 3D</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Description cinématique</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Repère matériel entraîné</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Tenseur métrique</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Tenseur des déformations d’Almansi</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Tenseur des contraintes de Cauchy</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Dérivée convective</td>
</tr>
<tr>
<td>1.2.7</td>
<td>Tenseur des vitesses de déformation</td>
</tr>
<tr>
<td>1.3</td>
<td>Formulation variationnelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Formulation des lois de comportement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.2</td>
<td>Principe de superposition</td>
</tr>
<tr>
<td>2.3</td>
<td>Modèle hyperélastique</td>
</tr>
<tr>
<td>2.4</td>
<td>Modèle d’hystérésis pur</td>
</tr>
<tr>
<td>2.5</td>
<td>Modèle viscoplastique de Norton</td>
</tr>
<tr>
<td>2.6</td>
<td>Modèle orthotrope entraîné</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.2</td>
<td>Modèle d’elastohystérésis : application aux alliages à mémoire de forme</td>
</tr>
<tr>
<td>3.3</td>
<td>Modèle d’elastoviscohystérésis : comportement dynamique d’un acier doux</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Identification des paramètres matériau</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Cisaillement à différentes vitesses de déformation</td>
</tr>
<tr>
<td>3.4</td>
<td>Modèle d’orthotropie entraînée : application aux composites élastomère-tissu</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Étude expérimentale</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Simulation numérique du comportement de tuyaux flexibles</td>
</tr>
</tbody>
</table>

Conclusion de la première partie

<table>
<thead>
<tr>
<th>II</th>
<th>Mise en forme des matériaux métalliques</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Elastoplasticité en grandes transformations</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
</tr>
</tbody>
</table>

5

9

15

23

37

51

57
4.2 Méthode de l’état local ... 58
4.3 Comportement élastique ... 58
4.4 Comportement plastique ... 58
 4.4.1 Surface de plasticité .. 59
 4.4.2 Écouissage isotrope .. 59
 4.4.3 Écouissage cinématique ... 60
 4.4.4 Écoulement plastique ... 60
 4.4.5 Critère de Hill 1948 .. 61
 4.4.6 Critère de Barlat 1991 avec écouissage cinématique 62
4.5 Extension aux cas des grandes transformations 63
 4.5.1 Décomposition du taux de déformation 64
 4.5.2 Décomposition multiplicative du gradient de transformation 65
4.6 Loi élastoplastique .. 67

5 Identification du comportement d’un alliage d’aluminium 69
 5.1 Introduction .. 69
 5.2 Essais mécaniques .. 69
 5.2.1 Essais de traction uniaxiale ... 70
 5.2.2 Essais de cisaillement ... 72
 5.2.3 Essais d’expansion biaxiale ... 73
 5.2.4 Essais de traction plane ... 75
 5.3 Modèle de comportement ... 76
 5.4 Identification et validation .. 76

6 Emboutissage et retour élastique .. 83
 6.1 Introduction .. 83
 6.2 Modèles d’écouissage ... 84
 6.3 Étude expérimentale de l’emboutissage inverse 85
 6.4 Simulation numérique de l’emboutissage inverse 86
 6.4.1 Etape 1 .. 88
 6.4.2 Etape 2 .. 89
 6.4.3 Changement de trajets de déformation 90
 6.5 Étude expérimentale du retour élastique 91
 6.6 Simulation numérique de la flexion cylindrique 94

7 Mise en forme des aciers inoxydables 97
 7.1 Introduction .. 97
 7.2 Modèle de comportement .. 97
 7.2.1 Description de la transformation austénite-martensite 98
 7.2.2 Transition d’échelles et homogénéisation 99
 7.3 Identification du comportement des matériaux 100
 7.4 Simulation numérique de l’emboutissage d’un godet cylindrique 102

Conclusion de la deuxième partie ... 107

Perspectives ... 111

Références Bibliographiques ... 117
Introduction générale

Mes activités de recherche s’effectuent depuis 1993 au Laboratoire de Génie Mécanique et Matériaux (LG2M) de l’Université de Bretagne Sud et ont pour motivation l’étude expérimentale, la modélisation et la simulation numérique du comportement mécanique des matériaux en grandes transformations. Elles ont concerné dans un premier temps les alliages à mémoire de forme et les propriétés spécifiques qui y sont associées telles que la transformation martensitique, la pseudoélasticité, l’effet mémoire de forme simple et double sens, puis dans un deuxième temps d’autres types de matériaux tels que les élastomères compacts et les composites élastomère-tissu. Enfin dans un troisième temps, elles ont été consacrées à l’étude du comportement en dynamique rapide des matériaux métalliques soumis à des chocs puis plus récemment à l’étude de la mise en forme des tôles d’acier et d’aluminium par emboutissage.

Au travers de ces études, deux thèmes principaux ont été abordés, à savoir dans un premier temps, le développement de lois de comportement dans un formalisme de coordonnées entraînées et dans un deuxième temps, l’étude de procédés de mise en forme par emboutissage. Ces deux thèmes constituent les deux parties de ce mémoire, la première (partie 1) étant intitulée : Lois de comportement en coordonnées matérielles entraînées et la seconde (partie 2) : Mise en forme des matériaux métalliques. Après une thèse (1990-1993) comportant à la fois des aspects numériques et expérimentaux [Manach(1993)], j’ai tout d’abord participé, lors de mon arrivée au laboratoire en 1993, au développement d’un code de calcul par éléments finis en intégrant plusieurs lois de comportement ainsi que différents algorithmes numériques (frottement, chargements, etc.). Puis, souhaitant revenir à des aspects plus expérimentaux, mes activités se sont orientées naturellement vers la mise en forme par emboutissage, domaine déjà présent au laboratoire par l’intermédiaire de contrats industriels (avec Renault notamment). La plupart des domaines traités dans ce mémoire ont fait l’objet de contrats industriels.

1HEREZH signifie mémoire ou hérédité en breton
2Gérard Ria, Professeur des Universités, directeur du LG2M

Les activités relatives à la deuxième partie de ce mémoire ont été initiées en partie au Grupo de Tecnologia (GT) du Centro de Engenharia Mecânica da Universidade de Coimbra[5] (Portugal) durant le premier semestre de l’année 2001 au cours duquel j’ai obtenu un CRCT[6]. Lors de mon séjour au Portugal, j’ai bénéficié d’une allocation de la FCT (Fundação para a Ciência e a Tecnologia), équivalent portugais du CNRS. L’objectif était l’étude expérimentale et numérique de l’emboutissage de tôles métalliques. En effet, beaucoup de travaux ont été consacrés à la modélisation mécanique et à la simulation numérique des processus d’emboutissage profonds et désormais plusieurs codes éléments finis commerciaux peuvent traiter avec succès de la simulation numérique d’un tel procédé. Le cadre principal de la modélisation est celui des grandes transformations élastoplastiques, du contact avec frottement, des lois de comportement élastoplastiques anisotropes et de calculs statiques implicites ou dynamiques explicites. Bien que de très nombreux travaux aient été réalisés dans ce domaine [Gélin et Picart(1999)] [Yang et al.(2002)], plusieurs aspects de la modélisation peuvent encore être améliorés afin de diminuer l’écart entre les résultats expérimentaux et numériques. Par exemple, en considérant l’emboutissage en plusieurs étapes, la distribution des contraintes et des épaisseurs résultant de la première étape influencera le comportement au cours des étapes suivantes. On s’attend à ce que les changements de chemins de déformation se produisent, exigeant alors des lois consti-

[4]Par contre, les développements peuvent être trouvés dans le recueil d’articles joint à ce mémoire
[5]CEMUC : laboratoire dans lequel L.F. Menezes, Professeur à l’Université de Coimbra, m’a accueilli
[6]CRCT : Congé pour Recherche ou Conversion Thématique

Concernant la caractérisation du comportement des matériaux, il est apparu que les lois d’écrasement traditionnellement utilisées pour les aciers dans les codes de calcul commerciaux ainsi que les critères de plasticité conventionnels ne permettent pas de rendre compte fidèlement des ruptures rencontrées sur des pièces en aluminium au cours des procédés d’emboutissage. Nous nous sommes intéressés à l’identification paramétrique de lois de comportement utilisées en emboutissage (2003-2004). Pour ce faire, nous avons établi, en concertation avec P. Pilvin et S. Thuillier une base expérimentale importante composée d’essais de traction, de cisaillement simple monotones et cycliques, de traction plane et d’expansion biaxiale de façon à identifier le comportement de plusieurs alliages d’aluminium en utilisant le logiciel d’identification SiDoLo. Le choix des lois de comportement s’est porté sur celles introduites actuellement dans les codes métier de simulation numérique de l’emboutissage et afin d’étudier l’influence du critère de plasticité, le critère de Barlat 1991 [Barlat et al.(1991)] a été écrit avec un écrasement mixte isotope et cinématique non linéaire puis comparé par rapport au critère de Hill 1948 [Hill(1950)]. Cette étude fait actuellement l’objet d’un contrat de recherche avec la société PCI sur les problèmes de la mise en forme par emboutissage de pièces de doublure pour automobiles en aluminium (portière, capot, etc.).

Enfin, je me suis aussi intéressé à l’emboutissage de matériaux plus complexes tels que les aciers inoxydables. En effet, les aciers inoxydables sous forme de tôles sont de plus en plus utilisés dans des domaines tels que l’automobile, l’architecture, l’industrie et les appareils ménagers, notamment grâce à leur grande résistance à la corrosion, leurs bonnes propriétés mécaniques et à leur aspect brillant. Par exemple, les tôles de certaines nuances austénitiques sont souvent utilisées pour des produits mis en forme par emboutissage grâce à leur bonne formabilité. En effet, l’austénite présente dans les aciers inoxydables, comme dans les aciers de type 304 par exemple, est instable et se transforme en martensite au cours d’une opération de mise en forme à froid. La martensite induite par la déformation provoque un accroissement du taux d’écrasement, ce qui est favorable en mise en forme car l’apparition de la striction se trouve ainsi retardée [Ludwigson et Berger(1969)]. Cependant, la transformation martensitique induite

7Sandrine Thuillier, Maître de Conférences, LG2M
8Philippe Pilvin : Professeur des Universités, LG2M
9SiDoLo : logiciel d’identification paramétrique développé par P. Pilvin à l’École Centrale de Paris
10PCI : Process Conception Ingénierie Le Rheu, Rennes

\[^{11}\text{Thèse que je co-encadre depuis 2002 avec P. Pilvin}\]
Première partie

Lois de comportement en coordonnées matérielles entraînées
Partie I. Lois de comportement en coordonnées matérielles entraînées
Le but de cette partie a été initialement d’intégrer la loi de comportement d’élastohystérésis étudiée dans le cadre de ma thèse [Manach(1993)] dans un code de calcul de type éléments finis, afin de pouvoir simuler le comportement mécanique de pièces ou structures intégrant des alliages à mémoire de forme (AMF) [Manach et al.(1994b)] ou des élastomères compacts. En effet, l’originalité de cette implantation était de pouvoir mettre en œuvre le schéma d’élastohystérésis dans un code de calcul et par là même de disposer d’un des rares outils de dimensionnement 3D permettant de calculer des pièces en AMF et de simuler leurs comportements complexes. Compte tenu des grandes déformations rencontrés dans ces matériaux (allongement relatif en traction uniaxiale de 10% pour les AMF et 200% pour les élastomères), cette étude se situe dans le cadre des grandes transformations géométriques. Dans ce contexte, l’approche cinématique étudiée concerne une cinématique 3D complète ne privilégiant aucune direction particulière. Le comportement thermomécanique élémentaire est modélisé en utilisant la théorie de l’élastohystérésis, pour laquelle la contrainte totale est exprimée comme la somme de deux contributions de contrainte, respectivement de type hyperélastique et d’hystérésis pure [Manach(1993)]. La contribution hyperélastique est directement fonction de l’énergie libre et de la partie réversible de l’énergie interne ; elle est exprimée dans le cadre général de la mécanique des systèmes réversibles. La contribution d’hystérésis pure est décrite par un modèle de type héréditaire à mémoire discrète et les équations constitutives obtenues dépendent explicitement de la température.

Dans une première phase, ce travail a consisté à développer et à implanter cette loi dans le code de calcul par éléments finis HEREZH développé au LG2M. La formulation est écrite en coordonnées matérielles entraînées et les équations différentielles gouvernant le comportement sont résolues par une méthode de Newton. Le système final issu de la méthode des éléments finis est approché par une méthode implicite de Newton-Raphson [Rio et al.(1995b)]. Le chapitre 1 présente brièvement la cinématique utilisée dans le code de calcul et la définition des quantités tensorielles nécessaires à l’établissement des lois de comportement. Cette modélisation a été validée sur des cas simples pour lesquels une solution semi-analytique existe, puis dans une seconde phase, la validation des résultats numériques par rapport à un certain nombre de résultats expérimentaux a été effectuée :

- sur des alliages à mémoire de forme ; de nombreux cas de flexion de poutres et de plaques ont été publiés, montrant la pertinence de cette approche.
- sur des élastomères compacts ; en effet, la modélisation des élastomères homogènes et isotropes est actuellement principalement effectuée en utilisant la théorie de l’hyperélasticité et les différents potentiels élastiques classiques, en général exprimés sous forme polynomiale des elongations principales. Les phénomènes de dissipation ne sont pas pris en compte alors que la considération d’expériences de traction de type charge-décharge réalisées sur les élastomères montre que ces matériaux présentent en fait des effets d’hystérésis dépendant ou non de la vitesse de sollicitation. Il est donc apparu que la modélisation de ce type de comportement pouvait être améliorée en utilisant une loi d’élastohystérésis. Différents cas de validation ont donc été effectués, notamment sur des élastomères compacts thermoplastiques sollicités en traction et en cisaillement [Manach et al.(1994a)] [Favier et al.(1997)].

Les développements numériques [Rio et al.(1995b)] qui ont permis d’analyser la validité de la loi de comportement d’élastohystérésis appliquée à plusieurs types de matériaux sont présentés dans le chapitre 2. Différents cas de calcul ont été publiés, parmi lesquels on peut
citer l’étude de la génération des contraintes internes dans les alliages à mémoire de forme [Manach et al.(1995)] qui est présentée au chapitre 3 ou encore l’effet d’un cyclage thermomécanique sur la déformation de bagues de serrage en alliage NiTi [Desplats et al.(1996)].

La loi d’élastohystérésis permet également de décrire le comportement mécanique élastoplastique de matériaux plus classiques tels que les aciers par exemple [Favier(1981)] [Han(1985)]. Dans ce cadre, on s’est intéressé à la modélisation du comportement mécanique des structures navales soumises à des chocs et plus particulièrement au comportement d’un acier doux sous chargement dynamique. Ce travail constitue une des premières études de la dynamique rapide prenant en compte l’amortissement et l’hystérésis au cours des cycles charge-décharge se produisant lors de l’impact des matériaux métalliques. Cette étude a fait l’objet de la thèse de N. Couty [Couty(1999)]. On s’est concentré uniquement sur le comportement en dynamique rapide des structures, sans tenir compte des inévitables couplages fluides-structures apparaissant dans les structures navales. Cependant, on s’intéresse à la fois à l’aspect numérique et expérimental du problème. L’équation du mouvement du corps déformable est discrétisée en espace par la méthode des éléments finis et en temps par une méthode explicite. Le système incrémental non-linéaire ainsi obtenu est résolu par une méthode de Newton-Raphson. Ce travail a consisté principalement à développer les trois parties suivantes :

– Il s’est tout d’abord agit d’étudier et d’implanter les aspects de contact dans le code de calcul. Il est à noter que ces phénomènes imposent des difficultés supplémentaires qui viennent s’ajouter aux non-linéarités dues à la loi de comportement et aux grandes transformations. On s’est limité au cas de deux corps dont un est rigide et l’autre déformable, le contact étant du type évolutif incrémental. Cette méthode consiste donc à imposer une condition de contact localement pour chaque nœud concerné et à l’introduire dans l’algorithme global de résolution correspondant au problème classique non-linéaire de la méthode des éléments finis.

– Il a ensuite été nécessaire de prendre en compte les effets de frottement. La première loi de frottement introduite est celle de Tresca où la force tangentielle est proportionnelle au déplacement dans le plan tangent à la direction du contact. La seconde est la loi de frottement classique de Coulomb où la force de frottement est fonction de la force normale au contact. On modifie alors les équations du problème général sans frottement en ajoutant une correction à tous les termes correspondant à un nœud en contact. Ces deux premiers points sont présentés dans la thèse de N. Couty [Couty(1999)].

– Enfin, lorsque l’on s’intéresse aux phénomènes de dynamique rapide, il est nécessaire de tenir compte de la sensibilité du matériau à la vitesse de déformation. L’approche retenue dans le cadre de cette étude consiste à utiliser une loi de comportement viscoplastique de type Norton-Hoff dans laquelle la contrainte d’écoulement dépend uniquement de la vitesse de déformation plastique. Cette loi de comportement est présentée dans le chapitre 2 et une application à la modélisation d’essais de cisaillement monotones et cycliques à différentes vitesses de déformation est présentée dans le chapitre 3.

J’ai plus particulièrement participé au développement des deux derniers points. Parallèlement, une partie expérimentale a été entreprise pour analyser le comportement mécanique de ces matériaux lors d’un impact. Cette étude, que j’ai encadré dans la phase de conception, a consisté en la mise au point d’une machine d’impactométrie accélérée de façon à tester le comportement sur une large plage de vitesse de déformation. La pièce impactée se présente sous forme de tôle rectangulaire et le projectile est hémisphérique ; plusieurs dimensions de plaques et de projec-
tiles peuvent être testés et la vitesse du projectile peut atteindre environ 20 m/s. Les résultats expérimentaux obtenus et les simulation numériques relatives à ces tests ont fait l’objet de la thèse de N. Couty [Couty(1999)], d’un contrat industriel avec la DCN**Lorient, d’une publication [Manach et Couty(2001)] et de 2 conférences [Couty et al.(1998)] [Couty et al.(1999)].

Enfin, dans une troisième phase, on s’est intéressé à l’étude expérimentale et la simulation numérique du comportement mécanique de matériaux composites élastomère-tissu au travers de pièces particulières (durits automobiles) intéressant la société Avon Polymères France [Manach(1995)]. L’étude a consisté à développer des outils de caractérisation expérimentale et de modélisation numérique permettant de prendre en compte les aspects non linéaires géométriques et constitutifs de ces matériaux. L’originalité de ce travail réside dans le développement d’une loi de comportement orthotrope simple d’utilisation et de son application sur des géométries industrielles. Les durits étudiées sont composées de deux constituants principaux, à savoir d’une couche de tissu textile polyester insérée entre deux couches d’élastomère silicone (appelées robes). Il s’est avéré qu’une modélisation de la durit en trois couches distinctes pouvait être envisagée en utilisant une loi hyperélastique pour les deux couches d’élastomère et une loi orthotrope pour le renfort de tissu.

Du point de vue théorique, il s’est agit de développer les lois de comportement nécessaires à la modélisation des durits. Ainsi, de façon à modéliser le comportement fortement non-linéaire des élastomères, une loi hyperélastique permettant la description des grandes déformations élastiques est utilisée, selon le cadre conceptuel défini dans le chapitre 1. Pour tenir compte du comportement anisotrope du renfort textile et de l’ampleur des déformations rencontrées, une loi d’orthotropie entraînée est définie dans le cadre des grandes transformations géométriques.

Dans cette approche, les directions principales d’orthotropie correspondent aux directions des fibres du tissu et on considère que ces directions sont constantes sur chaque élément, la normale à la surface étant confondue avec une des directions du repère d’orthotropie. Le développement et l’implantation de cette loi de comportement dans le code de calcul HEREZH est présentée dans le chapitre 2.

Enfin du point de vue expérimental, il a été nécessaire dans un premier temps, de caractériser séparément chaque constituant de la durit de façon à en extraire les paramètres caractéristiques des lois de comportement utilisées au niveau de la modélisation. Ceci a consisté en la réalisation d’essais de traction et de cisaillement sur des éprouvettes représentatives des matériaux étudiés, c’est-à-dire d’élastomère silicone seul pour les robes intérieure et extérieure et de tissu enduit de silicone pour la couche de tissu polyester. Dans un deuxième temps, un banc d’essais permettant de réaliser quatre types de sollicitations, à savoir traction, compression, flexion et torsion a été conçu pour pouvoir être adapté sur une machine de traction. Ce dispositif a permis de tester plusieurs longueurs de durit et de montrer que les résultats obtenus sont reproductibles. Compte tenu de la difficulté résidant dans l’instrumentation du banc d’essais due à la faible rigidité des durits, l’étude a consisté à suivre l’évolution de la force au cours de l’essai. Les résultats obtenus sont présentés dans le chapitre 3. Les développements théoriques et numériques relatifs à la loi d’orthotropie entraînée ont été publiés [Manach et Rio(2001)] et les principaux résultats concernant les calculs sur les durits ont été présentés à une conférence [Manach(1999)].
Chapitre 1

Mécanique des milieux continus

1.1 Introduction

Pour les types d’applications envisagées dans ce mémoire (AMF, composites élastomère-tissu, élastomères), une représentation adéquate du comportement matériel perd de son intérêt si une cinématique de grandes transformations (grands déplacements et grandes déformations) n’est pas adoptée. Dans cette première partie, les lois de comportement étudiées l’on été dans le cadre du développement du code de calcul par éléments finis HEREZH qui utilise une cinématique 3D basée sur un référentiel matériel entraîné. L’objet de ce chapitre est donc d’introduire les éléments de géométrie différentielle essentiels à l’écriture des équations d’équilibre et à la définition des modèles de comportement. La notion de repère matériel entraîné est introduite, associée à un choix particulier de coordonnées curvilignes appelées coordonnées matérielles entraînées. Le tenseur des déformations d’Almansi est ensuite défini à partir du tenseur métrique. Enfin, la dernière partie établit l’écriture des équations d’équilibre mécanique sur la base des éléments de géométrie différentielle en coordonnées matérielles entraînées. Ces dernières sont exprimées sous une forme faible, équivalente au principe des puissances virtuelles, ce qui permet ici une approximation éléments finis classique C^0 de la cinématique.

1.2 Cinématique générale 3D

La description du mouvement est basée sur les évolutions spatiale et temporelle de la position des points matériels. L’espace euclidien à trois dimensions E_3 fournit le cadre spatial et le temps
est représenté par la variable t. L'espace E_3 est rapporté à un repère général fixe orthonormé (O, \mathbf{I}_a), $(a = 1, 2, 3)$ appelé repère cartésien. Dans ce repère, on considère un solide déformable Ω et on suppose que sa frontière $\partial \Omega$ est assez régulière pour appliquer le théorème de la divergence permettant l'obtention des équations d'équilibre local. Afin de modéliser les phénomènes physiques relatifs au milieu réel, on fait l'hypothèse de milieu continu. Le milieu réel est donc remplacé par le corps homogène Ω à l'intérieur duquel il n'y a pas de vide et où toutes les fonctions décrivant l'état de ce corps sont supposées continues et continûment différentiables.

1.2.1 Description cinématique

Le corps Ω est supposé se déformer dans l'intervalle de temps $[0, t]$ à partir d'un état non déformé défini à l'instant $t = 0$. On appelle, configuration à l'instant t notée C_t, l'ensemble des positions spatiales des points matériels constituant le solide à un instant t. La configuration de référence désigne la configuration particulière C_{t_0} du système à un instant t_0 fixé. En particulier, la configuration de référence à $t_0 = 0$ est la configuration initiale, notée C_0. La notion de déformation est attachée au solide, et dans notre cas elle est définie en introduisant un paramétrage matériel précisément attaché au solide lui-même.

On considère un point matériel M appartenant au solide Ω. A un instant t, quand le corps Ω est dans la configuration C_t, le point M occupe dans le repère (O, \mathbf{I}_a) une position \mathbf{M}_t définie par le vecteur position :

$$\mathbf{M}_t = x^a(t)\mathbf{I}_a \quad (1.1)$$

Ces coordonnées sont eulériennes puisqu'elles sont définies sur la configuration C_t, contrairement aux coordonnées lagrangiennes $x^a(t_0)$ définies sur la configuration C_{t_0} de référence. La position du point matériel M à un instant t peut être repérée à l'aide d'un système de coordonnées curvilignes θ^i ($i = 1, 2, 3$). Dans la configuration C_t, la position du point M s'exprime alors selon :

$$\mathbf{M}_t = x^a(\theta^i, t)\mathbf{I}_a \quad (1.2)$$

Le système de coordonnées curvilignes que nous adoptons est lié à la matière et se déplace avec elle au cours de la déformation. En ce sens, les paramètres θ^i sont appelés coordonnées matérielles entraînées. Ce paramétrage est établi dans la configuration initiale C_0 et reste fixe durant toute la déformation. Ainsi, si les variables d'espace $x^a(t)$ sont eulériennes, celles-ci sont repérées à l'aide de variables lagrangiennes, c'est-à-dire indépendantes du temps, représentées par le paramétrage curviligne θ^i. La description du mouvement peut alors être considérée comme lagrangienne. Un paramétrage curviligne évident peut être constitué par exemple des coordonnées à l'instant initial (description lagrangienne classique). Par souci de simplicité, c'est le paramétrage de la discrétisation par éléments finis qui joue le rôle de paramétrage matériel.

1.2.2 Repère matériel entraîné

A tout instant t, un repère local relatif au paramétrage curviligne est défini au point M selon :

$$\mathbf{g}_i = \frac{\partial \mathbf{x}}{\partial \theta^i} = \frac{\partial x^a}{\partial \theta^i} \mathbf{I}_a \quad (1.3)$$

Cette relation définit le repère dit covariant dépendant du temps (M, \mathbf{g}_i). La base $(\mathbf{g}_i)_{i=1,2,3}$, appelée base naturelle, est entraînée par la matière. Le paramétrage curviligne étant matériel,
(M, \vec{g}_i) est intrinsèque au solide et est objectif car indépendant du repérage global du solide. Il est donc bien adapté à l’écriture des lois de comportement. Les vecteurs de base \vec{g}_i sont tangents aux courbes décrites par le point M quand seul le paramètre \theta^i varie (cf. Fig. (1.1)).

Fig. 1.1 – Base naturelle \((\vec{g}_i)_{i=1,2,3}\) associée aux coordonnées matérielles entrainées.

A l’aide du produit scalaire classique noté \((,\)\), on peut associer au repère précédent un repère contravariant noté \((M, \vec{g}^i)\). La base \((\vec{g}^i)_{i=1,2,3}\) est appelée base duale et est définie par :

\[
\vec{g}_i \cdot \vec{g}^j = \delta^j_i
\]

où \(\delta\) désigne le symbole de Kronecker. Le champ des vecteurs de base \(\vec{g}_i\) contient l’information géométrique spatiale appliquée aux points de la carte de coordonnées matérielles. En effet, si l’on considère un point matériel \(M(\theta^i)\) de position \(M_t\) à l’instant \(t\) et un point géométrique \(P\) du voisinage de \(M\), tel que \(\vec{P} = \vec{M}_t + \vec{dl}\), alors dans le repère \((M, \vec{I}_a)\), \(P\) peut être repéré par :

\[
\vec{M}_t \vec{P} = \vec{dl} = dx^a \vec{I}_a
\]

Mais \(P\) peut également être considéré comme la position \(M'_t\) du point matériel \(M'(\theta^i + d\theta^i)\) du voisinage matériel de \(M\) où \(d\theta^i\) désigne la différence infinitésimale entre les coordonnées \(\theta^i\) et \(\theta^i + d\theta^i\). La définition (1.3) du champ de vecteurs de base permet de réécrire (1.5) sous la forme naturelle :

\[
M_t \tilde{M}'_t = \vec{dl} = d\theta^i \vec{g}_i
\]

Si les positions \(M_t\) et \(M'_t\) des points matériels \(M\) et \(M'\) évoluent au cours du temps, la relation (1.6) reste néanmoins toujours valable. Les composantes \(d\theta^i\) restent constantes et les vecteurs de base \(\vec{g}_i\) évoluent avec la déformation et sont donc convectés par la matière.

1.2.3 Tenseur métrique

Si l’on connaît les composantes d’un tenseur dans la base naturelle, il est souvent nécessaire de pouvoir obtenir ses composantes dans la base duale, et inversement. Pour cela, on utilise les matrices de changement de base :

\[
g_{ij} = \vec{g}_i \cdot \vec{g}_j \quad \text{et} \quad g^{ij} = \vec{g}^i \cdot \vec{g}^j
\]
Les g_{ij} et g^{ij} sont les composantes du tenseur métrique G respectivement dans la base duale et dans la base naturelle :

$$G = g_{ij} \vec{g}^i \otimes \vec{g}^j = g^{ij} \vec{g}_i \otimes \vec{g}_j = \delta^i_j \vec{g}_i \otimes \vec{g}^j = \delta^a_b \vec{I}_a \otimes \vec{I}_b = \mathbf{I}$$

(1.8)

Le tenseur métrique est symétrique par construction et \mathbf{I} est le tenseur identité. Si on pose $g = \det[g_{ij}]$ on peut montrer que :

$$\det[\vec{g}_a] = \sqrt{\det[g_{ij}]} = \sqrt{g}$$

(1.9)

$\sqrt{\vec{g}}$ représente ainsi le jacobien $|\partial x^a/\partial \theta^i|$ de la transformation $\theta^i \rightarrow x^a$. La définition d’une déformation basée sur la variation au cours du temps du produit scalaire de deux vecteurs élémentaires $\vec{d}M$ et $\vec{d}M'$ définis à partir du point M et de longueurs infinitésimales est réalisée à partir du tenseur métrique. L’intérêt du produit scalaire est qu’il inclut à la fois les notions de longueur et d’angle. En reprenant les formules (1.5) et (1.6) avec $\vec{d}M = d\theta^i \vec{g}_i$ et $\vec{d}M' = d\theta^{ij} \vec{g}_{ij}$, on obtient :

$$d\vec{M} \cdot d\vec{M}' = \vec{I}_a \cdot \vec{I}_b \, dx^a dx^b = \vec{g}_i \cdot \vec{g}_j \, d\theta^i d\theta^j = g_{ij} \, d\theta^i d\theta^j$$

(1.10)

Soit $(M_{t_1}, \vec{g}_i(t_{t_1}))$ le repère naturel au point matériel M de position M_{t_1} à l’instant t_1 et $(M_{t_2}, \vec{g}_i(t_{t_2}))$ le repère analogue à l’instant t_2. Les vecteurs élémentaires respectifs sont $d\vec{M}(t_1)$ et $d\vec{M}'(t_1)$ à l’instant t_1, $d\vec{M}(t_2)$ et $d\vec{M}'(t_2)$ à l’instant t_2. Comme les termes $d\theta^i$ restent constants, la différence des produits scalaires correspondants peut s’exprimer :

$$d\vec{M}(t_2) \cdot d\vec{M}'(t_2) - d\vec{M}(t_1) \cdot d\vec{M}'(t_1) = (g_{ij}(M, t_2) - g_{ij}(M, t_1)) \, d\theta^i d\theta^j$$

(1.11)

Ce résultat laisse entrevoir la définition d’un processus de comparaison entre les produits scalaires de vecteurs élémentaires estimés à des instants différents, autrement dit entre les longueurs et les angles.

1.2.4 Tenseur des déformations d’Almansi

La notion de déformation entre un instant t_R passé et l’instant présent t nécessite la comparaison des vecteurs élémentaires $d\vec{M}(t_R)$ et $d\vec{M}(t)$ (cf éq. (1.11)). Cette comparaison n’est possible que si le vecteur $d\vec{M}$ est mémorisé à l’instant t_R et transporté tel quel à t, ce qui est noté :

$$t_{t_R} d\vec{M} = d\vec{M}(t_R)$$

(1.12)

D’après la relation (1.11), la variation du produit scalaire de deux vecteurs élémentaires $d\vec{M}$ et $d\vec{M}'$ définis à partir du point matériel M s’exprime maintenant par :

$$d\vec{M}(t) \cdot d\vec{M}'(t) - d\vec{M}(t_R) \cdot d\vec{M}'(t_R) = d\vec{M}(t) \cdot d\vec{M}'(t) - t_{t_R} d\vec{M} \cdot t_{t_R} d\vec{M}'$$

$$= \left(g_{ij}(t) - t_{t_R} g_{ij}\right) d\theta^i d\theta^j$$

(1.13)

(1.14)

Cette expression fait intervenir les composantes deux fois covariantes du tenseur de Cauchy-Green droit défini par :

$$t_{t_R} \cdot G = t_{t_R} g_{ij} \vec{g}^i(t) \otimes \vec{g}^j(t) = g_{ij}(t_R) \vec{g}^i(t_R) \otimes \vec{g}^j(t_R)$$

(1.15)

On peut alors définir le tenseur des déformations d’Almansi entre les états t_R et t par :

$$\epsilon_{t_R}^t = \frac{1}{2} \left(G - t_{t_R} \cdot G \right)$$

(1.16)
Ce tenseur est symétrique. Le sens physique accordé à cette définition de la déformation tient dans l’existence à l’état \(t \) de l’information \(\mathbf{r}_R \cdot \mathbf{G} \) transportée intacte de \(t_R \) à \(t \). Autrement dit, elle implique l’hypothèse selon laquelle la matière est support de mémoire. Parmi toutes les mesures de déformation possibles, la déformation d’Almansi est eulérienne et en relation directe avec le tenseur des vitesses de déformation \(\mathbf{D} \). Cependant, ses invariants classiques n’ont pas une signification géométrique directe [Mora(2004)].

1.2.5 Tenseur des contraintes de Cauchy

Pour définir le tenseur des contraintes en se plaçant dans la configuration actuelle \(C_t \), on considère la force de cohésion \(d\mathbf{F} = dF^i \mathbf{g}_i(t) \) qu’exercent les différentes parties du corps \(\Omega \) sur un élément matériel infinitésimal de surface \(d\mathbf{S} \) autour d’un point matériel \(M \) et de vecteur normal unitaire \(\mathbf{N} \). On définit ainsi le vecteur : \(d\mathbf{S} = dS \mathbf{N} = dS_i \mathbf{g}^i(t) \). Selon l’hypothèse de Cauchy, on postule une relation linéaire entre les composantes \(d\mathbf{F} \) et \(d\mathbf{S} \) :

\[
dF^i = \sigma^{ij} dS_i
\]

(1.17)
de telle sorte que :

\[
d\mathbf{F} = \left(\sigma^{ij} \mathbf{g}_i(t) \otimes \mathbf{g}_j(t) \right) \cdot d\mathbf{S}
\]

(1.18)

Les composantes \(\sigma^{ij} \) sont celles d’un tenseur \(\mathbf{\sigma} \), appelé tenseur des contraintes de Cauchy, qui s’écrit dans les différentes bases :

\[
\mathbf{\sigma} = \sigma^{ij} \mathbf{g}_i(t) \otimes \mathbf{g}_j(t) = \sigma_{ij} \mathbf{g}^i(t) \otimes \mathbf{g}^j(t) = \sigma^{i j} \mathbf{g}_i(t) \otimes \mathbf{g}_j(t)
\]

(1.19)

La notion de transport, déjà utilisée au sujet du tenseur métrique, est supposée s’appliquer aux contraintes. Autrement dit, on admet qu’il est possible en tout point matériel \(M \) d’accorder un sens physique à un processus de transport matériel d’une contrainte \(\sigma(M, t_R) \) entre les instants \(t_R \) passé et \(t \) actuel [Guélin(1980)]. Cette opération sera employée dans le cadre du schéma d’hystérésis pure.

1.2.6 Dérivée convective

Alors que la dérivation spatiale dite covariante est classique, l’attention est ici portée sur l’introduction d’une dérivation temporelle de tenseur qui soit objective, c’est-à-dire qui ait une signification au niveau de l’élément matériel indépendamment de son mouvement dans l’espace [Pégon(1988)]. En effet, une telle dérivation permet d’une part de respecter le principe d’objectivité dans la définition du principe de superposition (cf. chapitre 2) et d’autre part de conduire à un tenseur des vitesses de déformation (défini au §1.2.7) qui soit objectif.

La dérivation matérielle en un point matériel fixe dans l’espace d’un tenseur d’ordre 2 s’exprime :

\[
\left(\frac{\partial \mathbf{T}}{\partial t} \right)_{\mathbf{\theta}^k = \text{cste}} = \frac{\partial T^{ij}}{\partial t} \mathbf{g}_i \otimes \mathbf{g}_j + T^{ij} \frac{\partial}{\partial t} \left(\mathbf{g}_i \otimes \mathbf{g}_j \right)
\]

(1.20)

Dans cette relation, le premier terme est indépendant du mouvement du solide, contrairement au second qui est entraîné par le mouvement de ce solide. Le premier terme paraît donc tout à fait indiqué pour obtenir une dérivation temporelle objective. On distingue ainsi les dérivations
Partie I. Lois de comportement en coordonnées matérielles entraînées

Selon la représentation du tenseur T, ce qui donne par exemple dans le cas d’une représentation du tenseur en coordonnées mixtes, l’expression de la dérivée de Jaumann :

$$\frac{1}{2} (L_v^T + L_v) \ T = \frac{1}{2} \left(\frac{\partial T^i_j}{\partial t} \ \bar{g}_i \otimes \bar{g}^j + \frac{\partial T^j_i}{\partial t} \ \bar{g}^i \otimes \bar{g}_j \right)$$ \hspace{1cm} (1.21)

Le taux L_v est appelé dérivée de Lie de T. Il est à noter que la nullité de la dérivée convective exprime la condition d’existence de mémoire discrète matérielle. C’est le cas pour le tenseur de Cauchy-Green droit (1.15), dont la définition s’appuie sur ce concept :

$$L_v \cdot (t_R \cdot G) = \frac{\partial g_{ij}(t_R)}{\partial t} \ \bar{g}^i \otimes \bar{g}^j = 0$$ \hspace{1cm} (1.22)

1.2.7 Tenseur des vitesses de déformation

L’ensemble des vitesses des points du solide est obtenu en dérivant par rapport au temps la position $\mathbf{\bar{x}}(\theta^i, t)$ dans le repère matériel entraîné :

$$\mathbf{\bar{v}}(\theta^i, t) = \frac{d\mathbf{\bar{x}}}{dt} = \dot{x}^a(\theta^i, t) \bar{I}_a$$ \hspace{1cm} (1.23)

Le gradient du champ de vitesses précédent est un tenseur du second ordre défini par la relation :

$$L = \frac{\partial \mathbf{\bar{v}}}{\partial \mathbf{\bar{x}}} = \delta^i_j \ \frac{\partial \mathbf{\bar{v}}}{\partial \mathbf{\bar{x}}} \otimes \frac{\partial \theta^j}{\partial x^a} \bar{I}_a$$ \hspace{1cm} (1.24)

Grâce aux définitions de la base naturelle (1.3) et de la base duale (1.4), on peut écrire L sous la forme :

$$L = \delta^i_j \left(\frac{d\bar{g}_i}{dt} \right) \otimes \bar{g}^j = g^{ij} \left(\frac{d\bar{g}_i}{dt} \right) \otimes \bar{g}_j$$ \hspace{1cm} (1.25)

Le gradient du champ de vitesses apporte une information importante sur le mouvement de l’ensemble des points du voisinage du point M. On peut alors considérer deux cas particuliers. Lorsque L est antisymétrique, le voisinage de M se déplace comme un solide rigide, il tourne par rapport à (M, \bar{I}_a) mais ne se déforme pas. Par contre, lorsque L est symétrique, il possède alors trois directions principales dans lesquelles les points voisins de M ne font que s’éloigner ou se rapprocher de lui mais ne tournent pas. Ces remarques conduisent à décomposer le gradient du champ de vitesses en une partie symétrique et une partie antisymétrique :

$$L = D + W$$ \hspace{1cm} (1.26)

avec :

$$D = \frac{1}{2} (L + L^T) \quad \text{et} \quad W = \frac{1}{2} (L - L^T)$$ \hspace{1cm} (1.27)

où W est appelé tenseur des taux de rotation et D tenseur des taux de déformation. Dans le cas du repère matériel entraîné, on peut montrer que D est lié au tenseur des déformations d’Almansi par la relation :

$$D = L_v \cdot \epsilon^i_{t_R}$$ \hspace{1cm} (1.28)

qui d’après la définition du tenseur des déformations d’Almansi (1.16) et l’invariance du tenseur de Cauchy-Green droit (1.22) se réduit à :

$$D = \frac{1}{2} \ L_v \cdot G$$ \hspace{1cm} (1.29)

Compte tenu du caractère objectif de la dérivée convective L_v, cette dernière expression implique que le tenseur des vitesses de déformation est une grandeur objective.
1.3 Formulation variationnelle

Les parties précédentes ont permis d’introduire les éléments qui définissent une cinématique de grandes transformations basée sur la définition de coordonnées matérielles entraînées. Les tenseurs caractéristiques sont le tenseur métrique, le tenseur des déformations d’Almansi et le tenseur des contraintes de Cauchy qui lui est associé. Ces grandeurs entrent en jeu dans l’écriture des équations d’équilibre du mouvement local du solide Ω, qui s’écrivent en statique :

\[f_i^v + \sigma^{ij}|_j = 0 \] \hspace{1cm} (1.30)

où les termes \(\sigma^{ij}|_j \) sont les dérivées covariantes du tenseur des contraintes \(\sigma \) et \(f^v \) les forces volumiques (par exemple le poids) qui s’exercent sur le solide Ω. L’équilibre du milieu continu est représenté par le système d’équations aux dérivées partielles (1.30) qui est, au travers de la loi de comportement et des relations cinématiques, fonction des positions \(\vec{x}(M, t) \) recherchées. Ces équations sont alors exprimées sous une forme faible par application du principe des puissances virtuelles. Cette forme permet d’obtenir les équations discrétisées par la méthode des éléments finis. Le paramétrage issu de cette discrétisation spatiale étant lié à la matière, il est tout naturellement désigné pour jouer le rôle de coordonnées curvilignes entraînées par la matière.

On considère un ensemble de champs de vecteurs particulier : l’ensemble \(V^*_ad \) des champs de vitesses virtuelles \(\vec{v}^* = v^*_i \vec{g}^i \) cinématiquement admissibles. Ce champ de vecteurs défini sur Ω est qualifié de virtuel de manière à le distinguer du mouvement réel et il représente en fait toutes les vitesses possibles, compatibles avec les conditions limites géométriques (ou cinématiques), avec \(\vec{v}^* = \vec{0} \) sur \(\partial \Omega \). En effectuant une projection des équations d’équilibre sur les vitesses virtuelles, on obtient de manière équivalente :

\[\int_\Omega \left[\sigma^{ij}|_j v^*_i + f^v v^*_i \right] \, dv = 0 \quad \forall \vec{v}^* \in V^*_ad \] \hspace{1cm} (1.31)

Cette relation est la forme variationnelle des équations d’équilibre (1.30). Après intégration par parties du premier terme, application du théorème de la divergence et en tenant compte des conditions limites mécaniques, on obtient une formulation en vitesse, dite forme faible :

\[\int_\Omega \left[\sigma^{ij} v^*_i \, v^*_j - f^v v^*_i \right] \, dv - \int_{\partial \Omega} f^s v^*_i \, ds = 0 \quad \forall \vec{v}^* \in V^*_ad \] \hspace{1cm} (1.32)

où les termes \(v^*_i \) désignent les dérivées covariantes des composantes du vecteur \(\vec{v}^* \) et \(f^s \) les forces surfaciques s’exerçant sur la frontière \(\partial \Omega \) du solide Ω. En exprimant la relation liant le tenseur des vitesses de déformation \(\mathbf{D} \) et les vitesses \(\vec{v} \), cette expression peut s’écrire :

\[\int_\Omega \left[\sigma^{ij} D^*_ij - f^v v^*_i \right] \, dv - \int_{\partial \Omega} f^s v^*_i \, ds = 0 \quad \forall \vec{v}^* \in V^*_ad \] \hspace{1cm} (1.33)

L’intérêt de cette forme est de diminuer le degré de dérivation de \(\sigma^{ij} \) donc de \(x^i \), l’inconnue principale. Par ailleurs, la relation (1.33) est équivalente au principe des puissances virtuelles, dont l’écriture est fondée sur une approche plus physique [Germain(1986)]. À partir de l’approximation par éléments finis, la résolution de l’équation précédente satisfaite pour tout champ de vitesses virtuelles, conduit à la résolution d’un système non linéaire par la méthode de Newton-Raphson.
Partie I. Lois de comportement en coordonnées matérielles entraînées
Chapitre 2

Formulation des lois de comportement

2.1 Introduction

Dans le cas des matériaux métalliques, l’existence simultanée de trois mécanismes, que sont l’élasticité (mécanisme réversible), la plasticité (mécanisme irréversible) et la visco-sité (dépendance vis-à-vis de la vitesse de déformation, fluage et relaxation) est clairement mise en évidence par de nombreuses études expérimentales et métallurgiques [Lemaitre et Chaboche(1985)]. Le point de départ de cette étude est basé sur un formalisme particulier, développé antérieurement dans le cadre du schéma d’élastohystérésis par Guélin, Pégon et Favier, constitué de la superposition d’une contribution de contrainte hyperélastique [Favier(1988)] et d’une contribution de contrainte d’hystérésis pure [Favier(1988) [Pégon(1988)]]. Il s’appuie sur les processus physiques gouvernant le comportement thermomécanique des alliages à mémoire de forme (AMF). Mais le chapitre 3 montrera dans quelle mesure ce modèle est susceptible de décrire aussi des comportements de matériaux plus conventionnels comme ceux des aciers doux. Le cadre conceptuel général est celui mis en place dans les travaux de Guélin [Guélin(1980)] et on présente dans ce chapitre les hypothèses et les relations qui ont permis son introduction dans le code de calcul HERZH.

Ce chapitre présente tour à tour les modèles de lois de comportement développés et leur rôle dans le modèle final. La loi d’hyperélasticité, modélisant un comportement élastique non linéaire, est d’abord présentée. Le principe du schéma d’hystérésis est ensuite exposé. Ce modèle comporte une partie irréversible et permet donc de représenter la plasticité du matériau. Il autorise
également la réalisation de cycles de charge-décharge dissipatifs. Enfin, le modèle viscoplastique de Norton-Hoff est présenté. Il rend compte de la dépendance du comportement vis-à-vis de la vitesse de déformation. L’union de ces trois schémas est baptisée modèle d’élastoviscohystérésis.

Enfin, dans le cadre de la modélisation des matériaux composites élastomères-tissu, le comportement du tissu peut induire de grandes déformations élastiques des fibres et de la matrice. Quand de telles déformations sont considérées, il est clair qu’un comportement orthotrope classique ne peut plus être considéré en raison de la perte de symétrie matérielle. Afin de garder une loi simple, même pour de grandes déformations, le concept d’orthotropie entraînée a été défini. La loi de comportement orthotrope est aussi développée dans le cadre des grandes transformations en utilisant les repères matériels entraînés présentés au chapitre 1. Cette loi est dédiée à la modélisation des matériaux élastiques qui présentent un comportement orthotrope fortement marqué comme, par exemple, les tissus ou les fibres. La loi de comportement orthotrope entraînée est présentée à la fin de ce chapitre.

2.2 Principe de superposition

Les lois de comportement développées dans cette partie sont basées sur la superposition de plusieurs contributions de contrainte, chacune représentant un comportement élémentaire des matériaux à modéliser. Cette décomposition, qui est généralement effectuée plutôt sur la déformation que sur la contrainte, a initialement été suggérée par Duham [Duhem(1980)]. Selon le principe de superposition suivant, le tenseur des contraintes d’élastohystérésis s’exprime à partir des tenseurs des contraintes hyperélastique et d’hystérésis pure sous la forme :

\[d\sigma_{\text{élastohystérésis}} = d\sigma_{\text{hyperélastique}} + d\sigma_{\text{hystérésis}} \] (2.1)

Cette écriture différentielle est rendue nécessaire car la contribution d’hystérésis pure dépend du trajet de chargement emprunté pour atteindre l’état actuel. Plus tard, lors de l’étude dynamique d’un acier doux, il a été observé que l’effet de la vitesse de déformation sur le comportement du matériau semblait approximativement indépendant du niveau de déformation [Couty(1999)]. Il est donc apparu justifié de considérer la contrainte totale comme la superposition d’une contribution indépendante du temps et d’une contribution fonction du temps mais indépendante du niveau de déformation. La première est représentée par le modèle d’élastohystérésis et la deuxième par le modèle de Norton-Hoff. Selon le même principe de superposition des contraintes, la contrainte totale est donc exprimée sous la forme différentielle suivante :

\[d\sigma_{\text{élastoviscohystérésis}} = d\sigma_{\text{élastohystérésis}} + d\sigma_{\text{Norton}} \] (2.2)

La relation (2.2) définit le schéma tensoriel dit d’élastoviscohystérésis, par analogie au schéma d’élastohystérésis. Enfin, dans le but de modéliser le comportement orthotrope lors des grandes déformations élastiques de matériaux composites élastomère-tissu, la même approche a été utilisée pour simuler le comportement de ces matériaux avec :

\[d\sigma = d\sigma_{\text{hyperélastique}} + d\sigma_{\text{orthotrope}} \] (2.3)
2.3 Modèle hyperélastique

La loi de comportement hyperélastique est définie pour modéliser un comportement réversible non linéaire dans le domaine des grandes déformations. Comme défini dans le principe de superposition, l’hyperélasticité n’est pas entendue ici au sens de premier stade de la déformation précédant la plasticité mais plutôt au sens de l’existence d’une contribution réversible à n’importe quel stade de déformation. La définition d’un schéma d’hyperélasticité repose sur l’existence d’un état initial neutre \((t_R = 0)\) tel qu’après déformation, le tenseur des contraintes \(\Delta^0_0\sigma\) dépend uniquement du tenseur de déformation induit, calculé à partir de cet état de référence : \(\Delta^0_0\epsilon\). L’état de référence étant l’état neutre \((\Delta^0_0\sigma(0) = 0)\), on écrit simplement \(\sigma = \Delta^0_0\sigma\) pour la contrainte et \(\epsilon = \Delta^0_0\epsilon\) pour la déformation.

La définition du comportement s’appuie sur la conservation de l’énergie et sur le postulat de l’existence d’une énergie élastique, fonction d’état. La densité d’énergie élastique \(E\) est définie à partir de l’inégalité de Clausius-Duhem [Lemaitre et Chaboche(1985)] :

\[
\frac{\partial (\sqrt{g} E)}{\partial t} = \sqrt{g} \sigma : D = \sqrt{g} \sigma^{ij} D_{ji} \tag{2.4}
\]

où \(D\) est le tenseur des vitesses de déformation. \(E\) dépend à chaque instant d’un certain nombre de grandeurs scalaires \(p_a\) caractérisant les variations intrinsèques de la géométrie entre l’état neutre et l’état déformé. Les fonctions \(p_a\) peuvent s’écrire sous la forme :

\[
\frac{\partial p_a}{\partial t} = f^{ij}_a D_{ji} \tag{2.5}
\]

Le terme \(\partial (\sqrt{g} E)/\partial t\) peut ainsi être exprimé selon :

\[
\frac{\partial (\sqrt{g} E)}{\partial t} = \frac{\partial (\sqrt{g} E)}{\partial p_a} \frac{\partial p_a}{\partial t} = \frac{\partial (\sqrt{g} E)}{\partial p_a} f^{ij}_a D_{ji} \tag{2.6}
\]

Par identification, les composantes du tenseur des contraintes sont par conséquent définies par :

\[
\sqrt{g} \sigma^{ij} = \frac{\partial (\sqrt{g} E)}{\partial p_a} f^{ij}_a \tag{2.7}
\]

\(E\) est supposée fonction uniquement de la variation de forme entre l’état neutre et l’état actuel. En particulier, ce changement de forme peut être décrit par le tenseur des déformations d’Almansi \(\epsilon\). L’hypothèse d’un comportement isotherme et isotrope permet de restreindre à trois le nombre de grandeurs \(p_a\) dont dépend \(E\) : elles peuvent être choisies sous la forme d’invariants de \(\epsilon\). Après calcul de \(\partial p_a/\partial t\) et sachant qu’on postule une forme donnée par la relation (2.5), on en déduit la forme des termes \(f^{ij}_a\), puis celle de \(\sigma\) en fonction de \(E\). Par exemple, pour les variables \(p_a\) on peut choisir la variation de volume \(v\) et les éléments \(Q_\epsilon\) et \(\varphi_\epsilon\) d’une représentation polaire classique du tenseur \(\epsilon\) définis par :

\[
v = \frac{\sqrt{g}}{\sqrt{g}_0} \tag{2.8}
\]

\[
Q_\epsilon = \sqrt{2\Pi_\epsilon} \tag{2.9}
\]

\[
\cos(3\varphi_\epsilon) = 3\sqrt{6} \left(\frac{\Pi_\epsilon}{Q_\epsilon}\right) \tag{2.10}
\]
 où $\bar{\Pi}_\epsilon$ et $\bar{\Pi}_\epsilon$ désignent les moments du déviateur du tenseur des déformations [Favier(1988)]. Le tenseur des contraintes σ peut alors s’exprimer sous la forme [Favier(1988)] :

$$\sigma = \alpha_0 G + \alpha_1 \epsilon + \alpha_2 \epsilon \cdot \epsilon$$

(2.11)

L’écriture des coefficients α_i ($i = 1, 2, 3$) peut être trouvée dans [Couty(1999)]. Si l’on veut par exemple que la partie isotrope du tenseur des contraintes soit indépendante de la phase φ, une solution triviale est que E ne dépend pas de φ. Un exemple d’un tel potentiel E est celui utilisé dans le cadre des alliages à mémoire de forme [Favier et al.(1989a)] :

$$E = \frac{k}{6} \ln^2 v + \frac{Q_0^2}{2\mu_r} \ln \left[\cosh \left(\frac{2\mu_r}{Q_0r_\mu} \sqrt{2\bar{\Pi}_\epsilon} \right) \right] + 2\mu_\infty \bar{\Pi}_\epsilon$$

(2.12)

où μ_r, μ_∞, Q_{0r} sont des paramètres caractéristiques du matériau. Le paramètre k a la signification d’un coefficient de compressibilité volumique : $k = 3\lambda + 2\mu$ (λ et $\mu = \mu_r + \mu_\infty$ sont les paramètres de Lamé). La dépendance du potentiel E vis-à-vis de la phase permet par exemple de représenter la différence de comportement observée expérimentalement au cours d’essais de traction-compression. Cette dépendance peut être envisagée au travers des paramètres caractéristiques précédents (par exemple $Q_{0r} = Q_{0r}(\varphi)$) [Krenk(1996)].

Par analogie avec la théorie de la plasticité, on peut introduire la contrainte équivalente au sens de Von Mises et la déformation équivalente associée qui conduisent à l’écriture monodimensionnelle de la loi hyperélastique obtenue à partir de la formulation tridimensionnelle :

$$\sigma_{eq} = \frac{Q_{0r}}{2} \sqrt{2} \tanh \left(\frac{3\mu_r \epsilon_{eq}}{\sqrt{3}Q_{0r}/\sqrt{2}} \right) + 3\mu_\infty \epsilon_{eq}$$

(2.13)

En considérant que la déformation est isovolume, on peut calculer les contrainte et déformation équivalentes correspondant à une essai de traction et à un essai de cisaillement. La figure (2.1) met en évidence la signification des paramètres matériau de ce modèle.

![Diagram](image.png)

FIG. 2.1 – Signification des paramètres matériau de la loi hyperélastique sur un essai de cisaillement simple (figure de gauche) et de traction uniaxiale (figure de droite).

2.4 Modèle d’hystérésis pure

La contribution d’hystérésis pure est toujours irréversible mais présente néanmoins certaines particularités qui la distinguent des modèles plastiques classiques. La plus évidente est qu’elle

Une représentation simple du comportement d’hystérésis pure peut être faite à partir d’un essai de cisaillement simple dont l’intérêt est de ne faire intervenir, au premier ordre, qu’une seule composante des tenseurs de contrainte et de déformation : $\Delta t_0 \tau = \Delta t_0 \sigma_{12}$ est la contrainte de Cauchy en cisaillement et $\Delta t_0 \gamma = 2 \Delta t_0 \epsilon_{12}$ représente le cisaillement d’Almansi dans le repère fixe (O, \vec{I}_a). Si l’on considère que l’état neutre coïncide avec l’état à $t = 0$, ces grandeurs se réduisent simplement à $\Delta t_0 \tau = \tau - t_0 \tau$ et $\Delta t_0 \gamma = \gamma - t_0 \gamma$.

On s’intéresse aux évolutions représentées sur la figure (2.2). Le passage d’une phase de charge à une phase de décharge et vice-versa est appelé inversion. Ainsi, le point A matérialise une inversion dans le passage de la branche de première charge OA à la branche de décharge AB. La discontinuité que représente le point A en fait un événement mémorable dans la mesure où il va jouer un rôle dans l’évolution ultérieure du milieu. Par conséquent, le long de la branche AB, la contrainte actuelle τ se déduit de la définition de la variation de contrainte entre t_A et t, notée $\Delta A \tau$:

$$\Delta A \tau = \tau - t_A \tau = \tau(t_A) \implies \Delta A \tau = \tau(t_A) + \Delta A \tau$$

où la contrainte de référence $\tau(t_A)$ aura dû être préalablement mémorisée. Le point A fait donc office d’état de référence pour l’état à t. De la même façon, le point d’inversion B représente

![Fig. 2.2 – Evolution complexe dans un cas monodimensionnel de cisaillement simple.](image URL)
l’état de référence le long de la branche \(BC \). On constate donc le rôle essentiel joué par les notions de mémoire discrète et de transport dans la description du modèle d’hystérésis pure. Physiquement, on observe que la branche \(BC \) ne peut être prolongée par \(CC’ \) mais doit l’être par \(CD \) c’est-à-dire selon la première charge. Le point \(C \) est appelé point de coïncidence ou point de rattrapage. Le cycle \(ABC \) se ferme sur lui-même de telle sorte que le long de \(ABC \) il est nécessaire de conserver les mémoires de \(A \) et \(B \) mais ces mémoires peuvent être définitivement effacées une fois sur la branche \(CD \). Autrement dit, au delà de \(C \), tout se passe comme si le cycle \(ABC \) n’avait pas été réalisé et le nouvel état de référence est l’état neutre représenté par le point \(O \). Toutes les branches des cycles d’hystérésis se déduisent de la branche de première charge \(OD \) par une homothétie de rapport \(\omega = \pm 2 \), \(\omega \) étant appelé paramètre de Masing. Ainsi, sur \(OD \) et \(OE \) le paramètre de Masing vaut \(\omega = 1 \) alors que sur les branches \(AB \), \(BC \) ou encore \(AE \) et \(FC \) (\(C \) désignant ici le rattrapage de la branche de première charge par la branche issue de \(F \) : \(\omega = 2 \). De plus, les pentes \(d\tau/d\gamma \) à droite des points d’inversion tels que \(A \), \(B \) ou \(E \) sont égales à la pente à l’origine \(\mu_h \).

Si l’indice \(r \) désigne un état de référence, l’équation fonctionnelle du comportement d’hystérésis pure monodimensionnel peut s’écrit sous la forme :

\[
\Delta^t_\tau = \omega S_{0h} \tanh \left(\frac{\mu_h}{\omega S_{0h}} \Delta^t_\gamma \right) \tag{2.15}
\]

ou sous forme différentielle :

\[
\dot{\tau} = \mu_h \left(1 - \frac{\Delta^t_\tau^2}{(\omega S_{0h})^2}\right) \dot{\gamma} = \mu_h \dot{\gamma} + \left(\frac{-\mu_h}{(\omega S_{0h})^2}\right) \phi \Delta^t_\tau \tag{2.16}
\]

où \(\phi = \Delta^t_\tau \dot{\gamma} \) représente la dissipation intrinsèque [Pégon(1988)] définie par : \(\phi = -P_i - \pi \), avec \(P_i = -\tau \dot{\gamma} \) la puissance des efforts intérieurs et \(\pi = \tau \dot{\gamma} \) la puissance réversible [Guelin(1980)].

L’extension du cas monodimensionnel au cas tridimensionnel est effectuée en supposant d’une part que le matériau est isotope et d’autre part que la contribution d’hystérésis pure est entièrement déviateur [Favier(1988)]. Le schéma constitutif peut se présenter sous la forme suivante :

\[
\frac{\partial \Delta^t_{S_{ii}}}{\partial t} = 2\mu_h \tilde{D}_{ij} + \beta_4 \tilde{\phi} \Delta^t_{S_{ii}} \tag{2.17}
\]

où \(S’ \) désigne le déviateur du tenseur des contraintes de Cauchy et \(\tilde{D} \) le déviateur du tenseur des vitesses de déformation. La valeur \(t_r \) du paramètre d’avancement représente une situation de référence qui correspond à l’état initial lors de la première charge et au dernier état d’inversion dans le cas courant. Le paramètre \(t \), analogue au temps, sert à décrire une évolution positive. Les deux paramètres intrinsèques au matériau sont \(\mu_h \) et \(\beta_4 \). Le premier, \(\mu_h \), apparaît dans la formulation monodimensionnelle (2.16) et correspond au module de cisaillement. Si \(S_{0h} \) représente la contrainte seuil de cisaillement simple alors dans le cas particulier d’une surface de plasticité de Von Mises, \(\beta_4 \) est défini par [Pégon(1988)] :

\[
\beta_4 = 1 - \frac{\mu_h}{(\omega S_{0h})^2} = -\frac{2\mu_h}{(\omega Q_{0h})^2} \tag{2.18}
\]

où \(Q_{0h} \) représente le rayon du cercle de Von Mises : \(Q_{0h} = \sqrt{2} S_{0h} \). Le terme \(\tilde{\phi} \) correspond à une mesure de la dissipation intrinsèque qui s’exprime :

\[
\tilde{\phi}(t) = \Delta^t_{S’} : \tilde{D} = \Delta^t_{S_{ii}} \tilde{D}_{ij} \tag{2.19}
\]
Enfin, la définition de l’équation (2.17) est réalisée en utilisant un schéma à transport mixte (schéma de Zaremba) dont l’intérêt par rapport aux autres types de transport (Zaremba à transport covariant ou contravariant) est l’indépendance vis-à-vis de la métrique [Pégion(1988)]. Les composantes symétriques deux fois contravariantes de \(S \) s’obtiennent par la relation suivante :
\[
S_{ij} = \frac{1}{2} \left(S'^i_k \ g^{kj} + S'^j_k \ g^{ki} \right) \tag{2.20}
\]
L’équation (2.20) définit en fait la dérivée de Lie de \(S' \) une fois contravariante et une fois covariante, dont l’usage permet de satisfaire automatiquement le principe d’objectivité. L’équation (2.17) est une équation différentielle du premier ordre. La technique retenue pour en approcher la solution est une linéarisation au premier ordre puis une intégration exacte de manière implicite par un algorithme de Newton. L’équilibre global de la structure étant approché par une méthode éléments finis incrémentale en déplacement de type lagrangienne réactualisée, il est nécessaire de définir une cinématique d’évolution le long d’un pas de temps. Deux techniques simples peuvent être envisagées [Pégion(1988)] : la vitesse de déplacement est supposée constante sur l’incrément, ou bien la vitesse de déformation est supposée constante. \(D \) est ainsi fixée sur l’incrément. L’expérience montre que les résultats diffèrent peu mais la solution à vitesse de déformation constante a été privilégiée dans la majorité des calculs parce qu’elle paraît a priori plus conforme à la réalité. Le détail de la résolution de l’équation constitutive peut être trouvé dans [Rio et al.(1995b)].

Détermination des inversions et des coïncidences. Le critère d’inversion s’appuie sur une mesure de la dissipation instantanée d’énergie qui peut être obtenue en utilisant le taux de dissipation intrinsèque défini dans la relation (2.19). Si \(t \) correspond à l’état précédent l’état actuel \(t + \Delta t \) tel que \(t_r \leq t < t + \Delta t \), où \(t_r \) représente l’état de référence, le taux de dissipation intrinsèque vaut :
\[
\bar{\phi}(t + \Delta t) = \Delta t^r \Delta t \ S'^{ij}_r \ D^j_i \tag{2.21}
\]
Cette grandeur est relative à un élément de volume et doit être toujours positive, en accord avec l’expression du second principe de la thermodynamique [Pégion(1988)]. Un critère d’inversion lié à la discrétisation peut donc s’exprimer de la manière suivante :

si \(\bar{\phi}(t + \Delta t) < 0 \) alors l’état à \(t \) est considéré comme point d’inversion

Le tenseur des contraintes \(S'(t) \) est alors mémorisé et cet état représente la nouvelle référence \(S'_r \) pour les états suivants, jusqu’à une nouvelle inversion ou une coïncidence. En particulier, le calcul de l’état à \(t + \Delta t \), qui a permis de détecter l’inversion, doit être repris pour prendre en compte justement cette nouvelle référence. Sur la figure (2.3), les points A, B, C et D sont des points d’inversion. Si l’inversion a lieu à partir de la première charge \((\omega = 1) \), comme c’est le cas du point A, le paramètre de Masing est affecté à la valeur \(\omega = 2 \), jusqu’au retour à la branche de première charge au point de coïncidence \(F \) où de nouveau \(\omega = 1 \).

Dans le but de déterminer les points de coïncidence, on introduit la fonction d’aide \(W \) :
\[
W = \frac{2}{\omega^2} \int_{t_r}^{t} \bar{\phi}(\tau) \ d\tau \quad \text{avec} \quad W(t^+_r) = 0 \tag{2.22}
\]
Par définition, cette fonction représente en fait une mesure de l’énergie échangée le long d’un trajet entre deux points d’inversion. La coïncidence est observée lorsque le niveau courant
d’énergie échangée rejoint le maximum atteint lors de la branche précédente. La coïncidence représente alors la fermeture d’un cycle qui peut donc être oublié. La figure (2.3) montre l’évolution de la fonction d’aide dans le cas d’un cycle complexe.

A titre d’exemple, considérons la branche DE pour laquelle D est l’état de référence. Soit deux états consécutifs t et $t + \Delta t$ sur cette branche. Si $W(t + \Delta t) < W(t_D)$ alors l’évolution est normale et le calcul de $S'(t + \Delta t)$ est validé puis on passe à l’incrément suivant. Par contre, si $W(t) < W(t_D) < W(t + \Delta t)$ alors la branche précédente BA est rattrapée : il y a coïncidence. Il existe donc entre t et $t + \Delta t$ un état E tel que : $W(t_E) = W(t_D)$, c’est-à-dire que l’énergie échangée le long de la branche DE est égale à celle échangée le long de CD. Le cycle CDE est alors oublié, ce qui est traduit par l’égalité : $W(t_E) = W(t_C)$ et le point B devient nouvel état de référence sur la partie de branche EF. Sur la figure (2.3), les points E et F sont des points de coïncidence.

Le processus de gestion des coïncidences met en évidence la nécessité de mémoriser la valeur de la fonction d’aide aux points d’inversion (en l’occurrence en D et C), en plus du tenseur des contraintes S'. Si le paramètre d’avancement t représente un état d’inversion, les grandeurs S' et $W(t)$ sont mémorisées simultanément et deviennent les grandeurs de référence S'_r et W_r jusqu’à la prochaine inversion ou coïncidence. La procédure algorithmique générale de détermination des points d’inversion et des coïncidences peut se résumer sous la forme suivante :

\[
\begin{align*}
\bar{\phi}(t + \Delta t) < 0 & \rightarrow \text{état } t : \text{point d’inversion} \\
\bar{\phi}(t + \Delta t) \geq 0 & \rightarrow \\
\begin{cases}
W(t + \Delta t) \leq W_r & \rightarrow \text{monotonie} \\
W(t + \Delta t) > W_r & \rightarrow \text{coïncidence}
\end{cases}
\end{align*}
\] (2.23)

Enfin, en vue de son identification, le modèle d’hystérésis pure peut être exprimé dans le cas monodimensionnel, de manière analogue à la loi hyperélastique. La contrainte équivalente σ_{eq} d’hystérésis pure et la déformation équivalente associée ϵ_{eq} sont ainsi liées par la relation :

\[
\sigma_{eq} = \frac{Q_{0h}\sqrt{3}}{\sqrt{2}} \tanh \left(\frac{3\mu_r\epsilon_{eq}}{\sqrt{3Q_{0h}/\sqrt{2}}} \right)
\] (2.24)
Dans l’hypothèse de déformation isovolume, la figure (2.4) met en évidence le rôle des paramètres matériau du modèle d’hystérésis pure respectivement dans les cas du cisaillement et de la traction simple.

\[S = 2K \left(\sqrt{3} \dot{\mathbf{\varepsilon}} \right)^{m-1} \mathbf{\bar{D}} \] (2.25)

où \(S \) désigne le déviateur du tenseur des contraintes, \(\mathbf{\bar{D}} \) le déviateur du tenseur des vitesses de déformation, \(\dot{\mathbf{\varepsilon}} \) la vitesse de déformation généralisée. \(K \) (MPa.s\(^m\)) la consistance du matériau et \(m \) la sensibilité à la vitesse de déformation sont les deux paramètres matériau. Comme dans le cas du modèle d’hystérésis pure, la vitesse de déformation \(\mathbf{D} \) peut être calculée à partir de deux cinématiques différentes au cours d’un incrément : soit à vitesse de degrés de liberté constante ou à vitesse de déformation constante. La vitesse de déformation généralisée est classiquement donnée par la relation :

\[\dot{\varepsilon} = \left(\frac{2}{3} \mathbf{\bar{D}} : \mathbf{\bar{D}} \right)^{1/2} \] (2.26)
Le système étant résolu par la méthode de Newton-Raphson dans le cas implicite, il est nécessaire de calculer la variation de S par rapport aux degrés de liberté. Le calcul de ces termes est détaillé dans [Manach et al. (2001)]. Ce calcul fait intervenir un terme en $\dot{\varepsilon}^{-1}$ qui pose un problème lorsque la vitesse de déformation est nulle, c’est-à-dire au début de chaque incrément. La solution retenue consiste à utiliser une loi linéaire de type Newton, ce qui revient à prendre $m = 1$ dans la loi de Norton-Hoff pour la première itération de chaque incrément.

Cette loi de comportement a été appliquée au calcul de la déformation d’une inclusion viscoplastique noyée dans une matrice viscoplastique [Manach et Couty (2001)]. Les résultats obtenus ont montré une très bonne corrélation avec la solution théorique établie par Gilormini [Gilormini (1985)].

2.6 Modèle orthotrope entraîné

Dans le cas des matériaux à fibres, des déformations finies peuvent apparaître par cisaillement dans le plan des fibres sans avoir de grandes déformations dans la direction des fibres. Le matériau déformé n’est plus alors orthotrope, bien que le comportement initial soit le même dans la direction principale des fibres. Selon la théorie classique de l’élasticité, ces remarques mènent à un comportement anisotrope défini par 21 coefficients. Cependant, il s’avère que le comportement le long des directions correspondant aux directions principales entraînées sur le corps déformé ne change pas beaucoup. C’est l’idée principale employée ici pour définir l’évolution de l’orthotropie initiale. Le modèle obtenu permet de ne garder que les 9 paramètres initiaux du comportement orthotrope général. On considère un champ de vecteurs objectivement définis qui est initialement le repère orthonormé lié aux directions de l’anisotropie matérielle. Ce champ est entraîné par le mouvement des coordonnées matérielles [Pégon et Guélin (1986)]. Ce repère matériel unitaire \vec{O}_i($i = 1, 2, 3$) dont les directions coïncident avec la direction initiale des fibres représente les directions principales orthotrope du corps par rapport au repère fixe \vec{I}_a de référence. La relation entre le repère d’orthotropie initial et la base naturelle \vec{g}_i peut être définie par une rotation d’angle α dans le plan tangent à la surface moyenne de l’élément (voir Fig. 2.5).

![Fig. 2.5 – Définition des vecteurs d’orthotropie \vec{O}_i par rapport aux vecteurs de la base naturelle \vec{g}_i. Les lignes pointillées représentent les directions des fibres.](image-url)
La loi de comportement orthotrope est représentée par un tenseur d’ordre 4 non constant E :

$$\sigma = E : \epsilon$$ \hspace{1cm} (2.27)

Dans l’état initial, les coordonnées de E dans le repère \vec{O}_i peuvent être représentées par la matrice classique suivante, obtenue en inversant la matrice de rigidité pour laquelle les termes sont généralement plus simples :

$$E^{-1} = \begin{pmatrix}
1 & -\nu_{21} & -\nu_{31} & 0 & 0 & 0 \\
\frac{E_1}{\nu_{12}} & \frac{E_2}{1} & \frac{E_3}{-\nu_{32}} & 0 & 0 & 0 \\
\frac{E_1}{\nu_{13}} & \frac{E_2}{-\nu_{23}} & \frac{E_3}{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2G_{23}} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2G_{13}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2G_{12}} & 0
\end{pmatrix}$$ \hspace{1cm} (2.28)

où E_i sont les modules d’Young, ν_{ij} les coefficients de Poisson et G_{ij} les modules de cisaillement dans la direction principale des fibres, c’est-à-dire dans le repère \vec{O}_i. Conformément à notre hypothèse, les composantes de E sont supposées constantes pendant la déformation et le tenseur E est écrit dans le repère orthotrope initial \vec{O}_i :

$$E = E^i_{jk} \vec{O}_i \otimes \vec{O}_j \otimes \vec{O}_k \otimes \vec{O}_l$$ \hspace{1cm} (2.29)

La loi de comportement est alors obtenue en coordonnées mixtes (contravariant et covariant) dans le repère orthotrope puisque le repère mixte est le seul repère où les contraintes et les déformations demeurent de la même grandeur que \vec{I}_a. Cependant, comme tous les termes de la loi doivent être écrits dans le même repère, on a par exemple :

$$\sigma^{ij} = E^{ijkl} \epsilon_{kl}$$ \hspace{1cm} (2.30)

Dans notre cas, il est nécessaire de calculer les coordonnées covariantes de E dans la base naturelle. De plus, le repère dans lequel est exprimée cette relation doit être normé puisque les vecteurs \vec{O}_i sont déformés de manière similaire aux vecteurs \vec{G}_i. Dans les conditions initiales, les vecteurs \vec{O}_i sont définis par :

$$\vec{O}_i = A_i^j \frac{\vec{G}_j}{||\vec{G}_j||} \quad \text{et} \quad \vec{O}^i = B^j_i \frac{\vec{G}^i}{||\vec{G}||}$$ \hspace{1cm} (2.31)

où $(i, j = 1, 3)$. L’hypothèse d’orthotropie entraînée conduit à des coefficients A et B qui restent constants pendant la déformation, c’est-à-dire que le repère d’orthotropie suit la rotation de la base naturelle ; on obtient dans le repère déformé :

$$\vec{o}_i = A_i^j \frac{\vec{g}_j}{||\vec{g}_j||} \quad \text{et} \quad \vec{o}^i = B^j_i \frac{\vec{g}^i}{||\vec{g}^i||}$$ \hspace{1cm} (2.32)
En introduisant les notations suivantes :

\[\Gamma^\beta_{\alpha} = \frac{\bar{\delta}^\beta_{\bar{\alpha}}}{||\bar{\delta}^\beta||} \cdot \bar{g}^\beta \quad \text{and} \quad \Lambda^\beta_{\alpha} = \frac{\bar{\delta}^\beta_{\bar{\alpha}}}{||\bar{\delta}^\beta||} \cdot \bar{g}_\alpha \]

(2.33)

le tenseur \(\hat{E} \) dans la base naturelle déformée \(\bar{g}'_i = \bar{g}_i/||\bar{g}|| \) peut être exprimé par :

\[\hat{E} = E^{i j k} \Gamma^j_{\mu} \Lambda^k_{\nu} \Gamma^l_{\rho} \Lambda^\rho_{\delta} \bar{g}'_{\alpha} \otimes \bar{g}'_{\beta} \otimes \bar{g}'_{\gamma} \otimes \bar{g}'_{\delta} \]

\[\hat{E} = E^{\alpha\beta\gamma\delta} \bar{g}'_{\alpha} \otimes \bar{g}'_{\beta} \otimes \bar{g}'_{\gamma} \otimes \bar{g}'_{\delta} \]

(2.34)

où \(\alpha, \beta, \beta', \gamma, \gamma', \delta = 1, 2, 3 \). Il subsiste néanmoins une limitation de ce modèle lorsque l’on considère des sollicitations telles que celles présentées Fig.(2.6). En effet, on peut envisager le cas élémentaire d’un matériau composé de 2 fibres de module d’Young \(E_1 \) dans la direction principale des fibres (les autres propriétés mécaniques étant mises à zéro), dans une matrice dont les propriétés mécaniques sont négligeables par rapport à celles des fibres. L’éprouvette est déformée initialement selon Fig.(2.6.b) par un cisaillement d’angle \(\theta \). On s’intéresse à la différence entre une traction sur le matériau prédéformé en cisaillement comparée à une traction du même matériau sans cisaillement préalable. En fait, il est clair que le comportement devrait être équivalent puisque les fibres n’ont pas été déformées par le cisaillement initial, le seul changement entre les deux configurations étant relatif à la section. Cependant, la limitation vient de l’aptitude de ce modèle à évaluer avec précision la proportion entre des déformations significatives de cisaillement et les grandes déformations.

\[\text{Fig. 2.6 – Déformation d’une éprouvette élémentaire. a) Etat initial, b) l’éprouvette est soumise à un grand cisaillement d’angle } \theta \text{ et c) l’éprouvette est soumise à des grandes déformations sous l’action de la force } F. \]

Quand l’échantillon est d’abord soumis à une déformation de cisaillement, on peut considérer que le repère matériel est déformé en cisaillement d’un angle \(\theta \) et que les propriétés orthotropes sont également modifiées par le même angle, selon Fig.(2.6). Quand le matériau est alors soumis à un essai de traction dans l’axe principal des fibres, le module apparent est \(E'_1 = E_1/\cos \theta \) puisque la section a changé (voir Fig.(2.6.c)). Cependant, il semble évident que le module apparent devrait être identique au module initial, c’est-à-dire à \(E_1 \). Le modèle est donc cohérent avec cette observation tant que \(\cos \theta \) est proche de 1. Dans une approche orthotrope classique, le module apparent change linéairement en fonction de l’angle \(\theta \). Notre approche est donc valide sur une gamme plus large de déformation de cisaillement.
Afin de résoudre ce problème, un paramètre additionnel appelé densité de fibre df, peut être introduit. Cette densité de fibre est liée au volume de l’éprouvette et est comparée à la densité initiale de fibre df_0. Le module apparent a donc la variation suivante :

$$E'_1 = E_1 \frac{df_1}{df_0}$$

(2.35)

Il est clair que le rapport de ces deux densités varie en $1/\cos \theta$, ce qui résout le problème précédent. Cependant, cette modification ne satisfait pas l’équation de l’isotropie linéaire quand les coefficients matériau sont mis égaux aux propriétés isotropes. Ceci produit en fait une orthotropie induite dans le matériau, même si le matériau est initialement isotrope, pour plusieurs cas de chargement puisque la densité de fibre peut changer. Une telle approche pourra être comparée au modèle actuel. Quoi qu’il en soit, quand les rotations ne sont pas trop importantes, les deux approches donnent des résultats relativement proches. L’originalité ce modèle est donc de permettre, comme dans le cas de l’orthotropie linéaire, de ne conserver que 9 coefficients pour décrire l’orthotropie non linéaire.
Partie I. Lois de comportement en coordonnées matérielles entraînées
Chapitre 3
Applications

3.1 Introduction

Ce chapitre est consacré à quelques applications utilisant les lois de comportement présentées dans le chapitre [2]. En ce qui concerne le modèle d’élasto-hystérésis, les développements numériques ont permis d’analyser la pertinence de ce modèle en l’appliquant à la simulation numérique du comportement mécanique des AMF. Différents cas de calcul ont été étudiés, parmi lesquels on peut citer l’étude de la génération des contraintes internes, ou encore l’effet d’un cyclage thermomécanique sur la déformation de bagues de serrage en alliage NiTi qui est présenté ici. Puis, lors de l’étude du comportement dynamique d’un acier doux, nous avons montré que la prédiction de la résistance des structures soumises à des chargements mécaniques rapides nécessite, quand le chargement fait intervenir des cycles ou des grandes déformations, de prendre en compte non seulement les effets d’écrouissage monotones et cycliques mais aussi la dépendance en fonction de la vitesse de déformation. On présente dans ce chapitre une application du modèle d’élasto-viscohystérésis à la simulation numérique d’essais de cisaillement expérimentaux monotones et cycliques à différentes vitesses de déformation [Manach et al.(2001)]. Enfin, la dernière partie concerne l’étude expérimentale et la simulation numérique du comportement mécanique de matériaux composites élastomère-tissu. On présente ici une application du modèle orthotrope entraîné au cas de sollicitations élémentaires de durits droites automobiles.

3.2 Modèle d’élasto-hystérésis : application aux alliages à mémoire de forme

On s’intéresse à l’étude numérique de l’expansion d’un raccord de tubes en alliage à mémoire de forme NiTi soumis à un champ de déplacement interne uniforme. Le but est d’analyser la génération des contraintes internes pendant la déformation pseudoélastique avant l’effet de mémoire de forme et de mettre en évidence les distributions de contraintes résiduelles à la fin du processus de prédéformation. Les paramètres matériau ont été identifiés sur un alliage NiTi à partir de résultats expérimentaux obtenus en traction et en cisaillement simple [Manach(1993)] [Manach et Favier(1997)]. Dans l’état martensitique, \(Q_{0r} \) est mis à zéro puisqu’il caractérise la transformation martensitique induite et les autres paramètres sont donnés dans le tableau [3.1]. La courbe contrainte-déformation obtenue en utilisant ces paramètres présente un comportement caoutchouteux qui est caractéristique du comportement de la phase martensitique.
Ce cas concerne une utilisation assez répandue des AMF, à savoir celle des raccords pour la tuyauterie [Stockel(1989)]. Le principe de ces applications est de fabriquer un raccord tubulaire qui a un diamètre intérieur légèrement plus faible dans l’état austénitique que le diamètre extérieur des tubes à relier. À une température inférieure à \(A_s \) (température de début de transformation martensite-austénite), le raccord est déformé dans l’état martensitique tel que le diamètre intérieur excède légèrement celui des tubes. Le raccord est alors placé autour des tubes puis chauffé. Lorsque la transformation inverse se produit, le matériau tente de retrouver sa forme austénitique initiale, le raccordement étant alors immédiatement opérationnel.

Le raccord a un rayon intérieur de 5 mm, une longueur de 25 mm et une épaisseur de 3 mm. Pour des raisons de symétrie, seul le quart du raccord a été maillé et les champs de déplacement et les conditions limites sont définis Fig.(3.1). Sur les faces 1 et 2, les conditions limites sont des conditions de symétrie. Le connecteur est soumis à un champ radial uniforme de déplacement \(u = 0.5 \text{ mm} \) sur sa face interne et le point O est complètement fixe. Le maillage est constitué d’hexaèdres quadratiques avec 4 éléments dans la longueur, 10 éléments le long de la circonférence et 3 éléments dans l’épaisseur. La courbe force-déplacement obtenue pendant cette simulation est présentée Fig.(3.2.a) et les distributions des contraintes principales dans l’épaisseur au point \(A \) du raccord sont présentées Fig.(3.2.b), Fig.(3.2.c) et Fig.(3.2.d) respectivement pour \(\sigma_1 \), \(\sigma_{III} \) et la contrainte équivalente \(\bar{\sigma} \) au sens de von Mises. La valeur de la contrainte principale majeure \(\sigma_1 \) correspond à la contrainte de traction dans l’épaisseur (c’est-à-dire à la contrainte \(\sigma_{\theta\theta} \)), alors que la valeur de la contrainte principale mineure \(\sigma_{III} \) est la contrainte de compression \(\sigma_{rr} \) dans le raccord.

On observe sur la figure Fig.(3.2.b) que la répartition de la contrainte \(\sigma_1 \) dans l’épaisseur du raccord augmente du rayon intérieur vers sur la surface externe lorsque la déformation augmente. De même, la distribution de \(\sigma_{III} \) montre que les éléments placés près du rayon intérieur sont plus comprimés que ceux situés sur la surface libre, générant ainsi un état de contrainte non homogène dans l’épaisseur. Ces résultats sont cohérents pour les premiers incréments de calcul avec des résultats théoriques obtenus sur un tube en appliquant la théorie de l’élasticité linéaire aux coques épaisses [Timoshenko et Woinowsky-Krieger(1968)], où les distributions de contraintes \(\sigma_{rr} \) et \(\sigma_{\theta\theta} \) suivent une loi en \(1/r^2 \), où \(r \) représente le rayon du tube. Au cours de la décharge, la contrainte de traction \(\sigma_1 \) diminue pour tendre vers une valeur faible sur la surface.

<table>
<thead>
<tr>
<th>(k_r)</th>
<th>(\mu_r)</th>
<th>(\mu_\infty)</th>
<th>(\mu_h)</th>
<th>(S_{0h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>95000</td>
<td>22500</td>
<td>1000</td>
<td>15000</td>
<td>200</td>
</tr>
</tbody>
</table>
Fig. 3.2 – a) Courbe force-déplacement obtenue au point A et distribution des contraintes b) \(\sigma_I \), c) \(\sigma_{III} \) et d) \(\bar{\sigma} \) en fonction de l’épaisseur pour différents états de déformation. Les numéros se réfèrent aux incrément de calcul de a).

externe, la face intérieure restant sous contrainte ; lorsque la charge est complètement retirée, des contraintes résiduelles persistent sur la face interne du raccord. On observe sur la distribution de \(\sigma_{III} \) que la contrainte sur les faces intérieures et externes tend vers zéro. La distribution de contrainte suit alors une courbe parabolique, la partie moyenne du tube restant chargée. Enfin, la distribution de contrainte \(\bar{\sigma} \) est comparable à \(\sigma_I \) puisque la valeur de \(\sigma_{III} \) reste faible. Au cours de la décharge, la répartition de la contrainte \(\bar{\sigma} \) montre que la face intérieure reste soumise à des contraintes résiduelles. Ce calcul de raccord en NiTi comprenant en plus des rainures circonférentielles sur la face interne (pour améliorer le sertissage) a aussi été traité dans le cas non isotherme, de façon à mettre en évidence l’effet mémoire simple sens. Les résultats sont présentés dans [Desplats et al.(1996)].

3.3 Modèle d’élastoviscohystérésis : comportement dynamique d’un acier doux

Le modèle d’élastoviscohystérésis est comparé à des essais expérimentaux monotones et cycliques de cisaillement simple à température ambiante pour différentes vitesses de déformation. L’identification des paramètres matériau est effectuée par analyse inverse en utilisant des essais
de compression quasistatiques et dynamiques. Le matériau est une tôle d’acier doux dont les constantes élastiques sont $E = 190000$ MPa, $\nu = 0.29$ et de limite d’élasticité $\sigma_0 = 355$ MPa.

3.3.1 Identification des paramètres matériau

L’identification de la contribution de contrainte viscoplastique est réalisée en utilisant les résultats des essais de compression obtenus à différents niveaux de déformation. L’expression monodimensionnelle du modèle de Norton-Hoff dans le cas de la compression uniaxiale est obtenue à partir de l’équation (2.25), en supposant qu’il n’y a pas de variation de volume au cours de la déformation plastique. La contrainte viscoplastique σ_{vp} est ainsi une fonction de la vitesse de déformation $\dot{\epsilon}$ dans la direction de traction ou de compression selon :

$$\sigma_{vp} = K \sqrt{2^{m+1}} \dot{\epsilon}^m = A \dot{\epsilon}^B$$

(3.1)

En prenant comme référence la plus basse vitesse de déformation $\dot{\epsilon}_{min} = 10^{-3}$ s$^{-1}$, la contrainte de Norton-Hoff peut être identifiée pour une vitesse de déformation donnée $\dot{\epsilon} > \dot{\epsilon}_{min}$ par la différence entre la contrainte $\sigma(\dot{\epsilon})$ et la contrainte $\sigma(\dot{\epsilon}_{min})$. Afin d’identifier les paramètres K et m, il est donc nécessaire de déterminer l’évolution de la contrainte σ_{vp} en fonction de la vitesse de déformation $\dot{\epsilon}$ pour différents niveaux de déformation en mesurant l’influence de la contrainte sur le terme $\sigma_{vp} = \sigma(\dot{\epsilon}) - \sigma(\dot{\epsilon}_{min})$. Pour chaque niveau de déformation, la contrainte est examinée pour les différentes vitesses de déformation précédentes et une régression de type puissance est établie par la méthode de moindres carrés. Pour les niveaux de déformation considérés ici, l’écart entre les points calculés et expérimentaux reste inférieur à 4%.

Les mesures réalisées avec les barres d’Hopkinson exigent l’hypothèse d’une réponse instantanée, ce qui revient à supposer que la distribution de contrainte dans l’échantillon est homogène. Dans la pratique, il est nécessaire d’attendre un nombre suffisant de réflexions dans l’échantillon avant de pouvoir considérer l’état de contrainte comme homogène. Les courbes contrainte-déformation ne sont pas directement utilisables pour les très petites déformations (inférieures à quelques %). En effet, plus ou moins rapidement, la vitesse de déformation atteint un seuil, considéré comme la vitesse de déformation de l’essai. Celui-ci intervient pour une déformation inférieure à 5 % pour les plus basses vitesses de déformation ($\dot{\epsilon} \leq 2500$ s$^{-1}$) et augmente avec la vitesse de déformation pour atteindre 20 % à $\dot{\epsilon} = 8000$ s$^{-1}$.

Le tableau (3.2) donne les coefficients K et m identifiés pour différents niveaux de déformation. Suite à la remarque sur l’exploitation des essais de barres d’Hopkinson, les résultats relatifs aux plus basses déformations $\epsilon = 0.05$ et $\epsilon = 0.1$ n’ont pas été pris en considération. Les coefficients correspondants à $\epsilon = 0.2$ ont été retenus, soit $K = 28.1$ MPa.sm et $m = 0.179$. On observe dans
le tableau (3.2) que des coefficients K et m varient peu avec la déformation, ce qui conforte le choix d’une contribution de contrainte viscoplastique indépendante de la déformation.

\[
\begin{array}{cccc}
\epsilon^p & 0.05 & 0.1 & 0.2 & 0.3 \\
K\times10^6 & 29.38 & 27.39 & 28.10 & 25.64 \\
m & 0.179 & 0.179 & 0.179 & 0.195 \\
\end{array}
\]

Tab. 3.2 – Paramètres matériau K (en MPa.sm) et m de la loi de Norton-Hoff identifiés pour plusieurs valeurs de déformation.

L’identification des paramètres matériau de la contribution indépendante du temps est effectuée en utilisant un essai de compression correspondant à la plus basse vitesse de déformation $\dot{\epsilon}_{\text{min}} = 10^{-3}$ s$^{-1}$. La signification des paramètres utilisés dans le modèle d’élastohystérésis est donnée dans le cas monodimensionnel dans le chapitre [2] et [Rio et al.(1995b)]. L’identification est effectuée par méthode inverse couplée au code de calcul HERZH [Moreau et al.(1999)]. Les résultats obtenus pour ces paramètres sont présentés dans le tableau (3.3). Le comportement essentiellement plastique, les paramètres Q_0 et μ_r relatifs à la contribution hyperélastique sont fixés à 0. Enfin, k_r est calculé à partir du module d’Young et du coefficient de Poisson.

\[
\begin{array}{cccc}
\kappa & 151000 \\
\mu_\infty & 220 \\
S_{0h} & 250 \\
\mu_h & 62380 \\
\end{array}
\]

Tab. 3.3 – Paramètres matériau de la loi d’élastohystérésis identifiés par méthode inverse sur un essai de compression à $\dot{\epsilon} = 10^{-3}$s$^{-1}$. Les valeurs sont exprimées en MPa.

3.3.2 Cisaillement à différentes vitesses de déformation

On s’intéresse maintenant au comportement mécanique en cisaillement simple pour différentes vitesses de déformation. Les éprouvettes de cisaillement ont une forme rectangulaire $L \times l = 40 \times 18$ mm2 avec une largeur utile cisaillée $h = 4.5$ mm ; l’épaisseur de la tôle est $e = 1$ mm et la direction de cisaillement est celle de la direction de laminage. Le principe de l’essai et le dispositif expérimental de cisaillement sont présentés dans le paragraphe [5.2.2]. Comme l’état de contrainte est supposé homogène, les simulations des essais de cisaillement sont effectuées en utilisant un seul élément fini de type hexaèdre linéaire. Fig. (3.3) présente les courbes numériques contrainte-déformation en cisaillement obtenues pour différentes vitesses de déformation, c’est-à-dire pour $\dot{\gamma}$ variant de 10^{-4} s$^{-1}$ à 1 s$^{-1}$. On peut observer que l’influence de la contribution viscoplastique est significative, puisque la différence de contrainte entre les deux courbes obtenues pour la plus basse et la plus grande vitesse de déformation atteint 40 MPa. Cependant, ce modèle correspond à une formulation viscoplastique sans effet de saturation de la partie visqueuse. Ce point peut être amélioré en décrivant la sensibilité à la vitesse par une fonction conduisant à la saturation de la vitesse de déformation viscoplastique au-dessus d’un certain seuil [Nouailhas(1989)]. Enfin, la superposition d’une contribution de contrainte viscoplastique croissante augmente la valeur de la pente à l’origine, ce phénomène n’étant pas observé expérimentalement.

Des essais de cisaillement cyclique centré sont réalisés de façon à mettre en évidence le durcissement cyclique de ce matériau sous des chargements cycliques. L’éprouvette est soumise à 10 cycles entre $\gamma = -0.25$ et $\gamma = 0.25$ et Fig. (3.4) présente l’évolution de la contrainte de cisaillement en fonction de la déformation de cisaillement.
Fig. 3.3 – Courbe contrainte-déformation en cisaillement simple pour différentes valeurs de vitesses de déformation simulées avec le modèle d’élastoviscohystérésis.

Fig. 3.4 – Courbes contrainte-déformation en cisaillement simple, expérimentales et numériques pour $\dot{\gamma} = 10^{-3}$ s^{-1} et $\dot{\gamma} = 1$ s^{-1}. Pour les courbes expérimentales, seuls le premier et le dixième cycles sont tracés.

Le cycle tracé correspond à l’état stabilisé pour chaque niveau de vitesse de déformation de cisaillement. Expérimentalement, le premier chargement et le dixième cycle pour $\dot{\gamma} = 0.001$ s^{-1} et $\dot{\gamma} = 1$ s^{-1} sont tracés. Numériquement, un seul cycle a été réalisé pour les deux vitesses de déformation, correspondant à l’état stabilisé. On observe que l’influence de la sensibilité à la vitesse de déformation permet de prévoir le comportement cyclique grâce à la partie visqueuse du modèle. Le durcissement cyclique n’est pas pris en considération dans le modèle actuel bien qu’il ait été précédemment étudié dans le modèle d’élastohystérésis [Favier et al. (1987)]. Le principe

Fig. 3.5 – Courbes contrainte-déformation en cisaillement simple de type charge-décharge pour \(\dot{\gamma} = 10^{-3} \text{ s}^{-1} \) et \(\dot{\gamma} = 0.25 \text{ s}^{-1} \).

Finalement, le comportement du matériau pendant des essais de charge et décharge en cisaillement a été étudié pour observer l’évolution des boucles de charge-décharge. Les résultats présentés Fig. (3.5) montrent une bonne concordance avec les données expérimentales. Il s’avère que les boucles sont plutôt bien modélisées pour la plus basse vitesse de déformation, alors que pour la vitesse de déformation la plus élevée, la largeur des boucles augmente de manière significative, ce qui n’est pas observé dans de telles proportions expérimentalement.

3.4 Modèle d’orthotropie entraînée : application aux composites élastomère-tissu

On s’intéresse au comportement mécanique de tuyaux flexibles droits pour l’automobile. Ces durits se composent de tissu polyester enduit d’élastomère incorporé entre deux couches d’élastomère silicone, chacune des trois couches ayant une épaisseur de 2 mm. Les propriétés mécaniques des couches d’élastomère sont déterminées à partir d’essais de traction afin de déterminer les paramètres matériau de la loi hyperélastique. Ceux de la couche de tissu enduite sont obtenus à partir d’essais de traction ainsi que d’essais de cisaillement puisque le comportement est choisi comme étant orthotrope.

3.4.1 Étude expérimentale

Le comportement des élastomères étant généralement considéré comme isotrope [Charlton et al.(1994)], l’identification des paramètres matériau est effectuée en utilisant seulement des essais de traction. Les éprouvettes ont une forme d’haltère dont la base de
mesure est de 100 mm, l’épaisseur est de 2 mm et la déformation est mesurée à partir du déplacement des mors. Les résultats obtenus sur deux échantillons différents sont présentés Fig. (3.6) et à partir de ces résultats, les courbes contrainte de Cauchy-déformation d’Almansi sont calculées. Le module de compressibilité k_r est calculé avec $E = 3(\mu_r + \mu_\infty)$ et $\nu = 0.47$ qui sont respectivement le module d’Young et le coefficient de Poisson. Les paramètres matériaux obtenus par identification inverse de la loi hyperélastique [Moreau et al.(1999)] [Favier et al.(1997)] sont donnés dans le tableau (3.4).

<table>
<thead>
<tr>
<th></th>
<th>k</th>
<th>Q_0</th>
<th>μ_r</th>
<th>μ_∞</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250</td>
<td>0.94</td>
<td>0.055</td>
<td>0.0153</td>
</tr>
</tbody>
</table>

Tab. 3.4 – Paramètres matériaux de la loi hyperélastique des couches d’élastomère silicone. Les valeurs sont en MPa.

La couche de tissu enduit d’élastomère est composée de tissu en polyester tissé à 90° et enduit d’une couche d’élastomère silicone. Pour les essais de traction, les éprouvettes ont les mêmes formes et dimensions que pour les élastomères. Cette couche étant modélisée par une loi de comportement orthotrope, les directions principales des fibres du tissu sont testées, c’est-à-dire 0° et 90°, les résultats des essais de traction étant présentés Fig. (3.6).

On peut observer sur cette figure que le comportement est fortement anisotrope. Le module de cisaillement G_{12} dans le plan de la couche est déterminé à partir d’essais de cisaillement à l’aide du dispositif expérimental présenté dans le paragraphe (5.2.2). Le coefficient de Poisson ν_{12} est pris comme la valeur usuelle utilisée pour les matériaux élastomère [Charlton et al.(1994)]. Enfin, les paramètres $E_3, \nu_{13}, \nu_{23}, G_{13}, G_{23}$ de la loi orthotrope sont considérés comme négligeables par rapport aux paramètres dans le plan de la couche. Les paramètres matériaux issus de l’identification de la loi de comportement orthotrope [Manach et Rio(2001)] sont données dans le tableau (3.5).

Un dispositif expérimental a été conçu pour tester des tuyaux flexibles droits soumis à des essais élémentaires tels que traction, compression, flexion et torsion. Comme les déformations générées par la pression interne en service ($P = 0.12$ MPa) sont plutôt faibles comparées à celles produites par les débattements et les mouvements angulaires, les essais mécaniques sont effectués sans pression interne. Le dis-
positif est monté sur une machine de traction et la force est mesurée par une cellule dont la capacité est de 5 kN, la mesure du déplacement étant directement donnée par le déplacement de la traverse. La vitesse de déplacement est 5 mm/min.

<table>
<thead>
<tr>
<th>E_1 (MPa)</th>
<th>E_2 (MPa)</th>
<th>ν_{12}</th>
<th>G_{12} (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>15</td>
<td>0.47</td>
<td>12</td>
</tr>
</tbody>
</table>

Tab. 3.5 – Paramètres matériau de la loi orthotrope entraînée de la couche de tissu enduit.

Pour les essais de traction et de compression, les tuyaux flexibles sont placés de chaque côté dans deux adapteurs striés et serrés par des colliers flexibles. Pour les essais de flexion, le dispositif expérimental présenté Fig.(3.7.a), permet de tester deux tuyaux flexibles ensemble. Un plateau en forme de U est relié à la traverse mobile de la machine de traction. Sur les parties latérales de ce plateau, deux tuyaux flexibles sont serrés à l’aide des mêmes adapteurs qui sont utilisés pour les essais de traction. Au niveau de l’axe central, les deux tuyaux flexibles sont maintenus à l’aide des embouts de traction qui sont directement reliés au bâti de la machine de traction, selon Fig.(3.7.a). Puis, en déplaçant le plateau par rapport à l’axe central, une sollicitation de flexion encastrée aux deux extrémités est obtenue sur les tuyaux flexibles.

![Diagrama](image.png)

Fig. 3.7 – Représentation schématique du dispositif expérimental pour tester les tuyaux flexibles droits. a) essais de flexion et b) essais de torsion.

Pour les essais de torsion, le dispositif est semblable au précédent, excepté au niveau de l’axe central, (Fig.(3.7.b)). Un axe de rotation est inséré entre les parties latérales du plateau en U et l’axe central est monté sur cet axe par deux roulements à billes. Le mouvement de rotation de l’axe central est effectué à partir du déplacement linéaire de la machine de traction par un système de bielle et de manivelle. Les tuyaux flexibles sont également maintenus en utilisant les adapteurs de traction et les colliers flexibles.
3.4.2 Simulation numérique du comportement de tuyaux flexibles

Les tuyaux flexibles sont composés de trois couches d’épaisseur égale 2 mm, soit une couche de tissu enduit incluse dans deux couches d’élastomère silicone. L’orientation initiale du tissu est 45° par rapport à la direction longitudinale. Les dimensions sont une longueur de 170 mm, avec 100 mm de longueur utile et 35 mm de chaque côté pour la partie maintenue par le collier flexible, un diamètre intérieur de 58 mm et une épaisseur totale de 6 mm. Trois couches d’hexaèdres quadratiques représentent les différentes couches du tuyau flexible. Le maillage se compose de 10 éléments dans la longueur, 3 dans l’épaisseur et 16 sur la circonférence. L’axe \(\vec{z} \) est pris dans le sens de la longueur du tuyau. Les conditions limites dépendent évidemment du type d’essai mais dans tous les cas, une rangée d’éléments de l’extrémité est complètement fixe. Pour les essais de traction ou de compression, une rangée de l’autre extrémité est telle que \(u = v = 0 \). Pour les essais de traction \(w > 0 \) et pour les essais de compression \(w < 0 \). Pour les essais de flexion, cette rangée est telle que \(u = w = 0 \) et \(v > 0 \), alors que pour les essais de torsion, un couple est appliqué autour de l’axe \(\vec{z} \) sur l’extrémité droite.

Les résultats présentés Fig.(3.8) montrent les courbes obtenues pour les différents types d’essais. On observe une bonne concordance entre les courbes expérimentales et les résultats simulés jusqu’à des déformations de l’ordre de 10%. Dans les autres cas que la traction, les résultats sont obtenus pour des déformations telles qu’il n’y a pas apparition du flambement. En ce qui concerne les essais de compression, les résultats numériques obtenus en utilisant les paramètres du tableau (3.5) présentent un écart important entre les résultats expérimentaux et numériques (voir Fig.(3.8 b.1)). Ceci est dû au fait que cet essai est réalisé en utilisant des paramètres matériau identifiés uniquement en traction. Cependant, il s’avère que le comportement n’est pas symétrique en traction et en compression, ce qui n’était pas pris en compte initialement dans le modèle. Pour améliorer les simulations, une dépendance par rapport à l’angle de phase \(\varphi \) est ajoutée par l’intermédiaire du paramètre \(Q_{0r}(\varphi) \) qui remplace le paramètre \(Q_{0r} \). La relation suivante est utilisée :

\[
Q_{0r} = \frac{Q'_{0r}}{(1 + \gamma \cos 3\varphi)}
\]

où \(Q'_{0r}, \gamma, n \) sont des paramètres caractéristiques du matériau. Cette relation permet d’obtenir un seuil différent en traction \((\varphi = 0) \) et en compression \((\varphi = \pi/3) \), de ce fait menant à un comportement dissymétrique. Les résultats obtenus en utilisant ces paramètres sont présentés Fig.(3.8 b.2). L’accord entre les résultats expérimentaux et numériques est alors satisfaisant pour une large plage de déformation. Enfin, pour les essais de torsion, les résultats expérimentaux sont obtenus en termes de déplacement de la bielle en fonction de la force. Ces résultats sont ensuite transformé en courbes angle de rotation en fonction du couple. Les résultats numériques sont aussi en bon accord avec les résultats expérimentaux.
Chapitre 3. Applications

![Graph showing tensile tests](image)

Fig. 3.8 – Résultats numériques et expérimentaux obtenus sur des tuyaux flexibles droits soumis à des sollicitations élémentaires a) traction, b) compression, c) flexion et d) torsion. Pour la courbe b), simulation 1 est sans φ_e est simulation 2 avec φ_e.
Conclusion de la première partie

Cette partie présente les développements théoriques, numériques et expérimentaux effectués au cours des années 1993-1999. Ces études ont consisté à développer plusieurs modèles de comportement dans le cadre du code de calcul HEREZH développé au LG2M. Tout d’abord, afin de réaliser des calculs par éléments finis sur des pièces en alliage à mémoire de forme, un modèle d’élastohystérésis a été implanté et validé sur de nombreux cas tests, que ce soit sur des AMF ou sur des élastomères compacts. Dans un deuxième temps, lors de la modélisation du comportement en dynamique d’un acier doux, un modèle d’élastoviscohystérésis a été développé en superposant au modèle d’élastohystérésis précédent, une contribution visqueuse de type Norton-Hoff. Enfin, un troisième modèle, dit d’orthotropie entrainée a été développé pour modéliser le comportement élastique orthotrope en grandes déformations des matériaux tissés. Compte tenu des déformations rencontrées dans ces matériaux, ces différentes lois ont été développées dans le cadre des grandes transformations en utilisant une approche cinématique de type coordonnées matérielles entrainées sur laquelle est basée la formulation du code HEREZH.

En ce qui concerne les AMF, on a confirmé que le modèle d’élastohystérésis permet de prendre en compte les différents comportements de ces matériaux et que l’approche éléments finis permet d’envisager le calcul de structures complexes intégrant ces alliages. Il est à noter que la prise en compte des effets liés à la température (effet mémoire de forme par exemple) a été introduite dans la code par Desplats [Rio et al.(1995a)] [Desplats et al.(1996)] et permet de simuler des pièces intégrant ces alliages, en fonction de la température.

En ce qui concerne la modélisation du comportement de matériaux plus classiques en dynamique rapide, on a montré que le modèle d’élastoviscohystérésis permet de simuler, en plus de la plasticité classique, quelques phénomènes liés à la vitesse de déformation. Le modèle visqueux étant relativement simple, il est clair que la prise en compte d’effets tels que la relaxation nécessite des modèles visqueux plus complexes. Néanmoins le cadre général existe et les résultats obtenus sont satisfaisants. Dans ce mémoire, on a présenté la simulation d’essais homogènes de cisaillement simple, mais dans le cadre de la thèse de N. Couty [Couty(1999)] de nombreux résultats ont été obtenus sur des essais d’impact et d’explosion. Notamment, lors de l’utilisation des modèles d’élastohystérésis et d’élastoviscohystérésis en dynamique rapide, un certain nombre de cas particuliers liés à la gestion des points d’inversion et de coïncidence du modèle d’hystérésis pure se sont posés. En effet, il semble que les phénomènes de propagation d’ondes qui caractérisent les problèmes d’impacts et d’explosions génèrent localement des variations sensibles et très rapides de l’état du matériau conduisant à des situations complexes du point de vue de son comportement. Par rapport à la première implantation, la procédure de gestion des points d’inversion et de coïncidence a été totalement réécrite de manière à prendre en compte l’ensemble de ces cas. Enfin, au cours de ce travail de thèse, les aspects de contact et
de frottement et d’intégration temporelle explicite ont été introduits qui n’étaient pas présent initialement dans le code. Il est à noter que parallèlement aux développements numériques, une partie expérimentale importante a été effectuée pour caractériser le comportement en dynamique rapide des aciers doux.

Concernant le comportement des composites élastomères-tissu, les résultats obtenus ont montré que le comportement mécanique des tuyaux droits est bien modélisé par ces types de lois, aussi bien en ce qui concerne les maillages déformés, les distributions des contraintes que les courbes relatives au comportement macroscopique en traction, flexion et torsion. En ce qui concerne la sollicitation de compression, on a montré que le comportement peut être bien modélisé par une loi hyperélastique dont le potentiel prend en compte l’angle de la sollicitation par rapport aux directions principales. Cette approche est relativement novatrice dans ce domaine puisque en utilisant ce type de potentiel, on a vu qu’il est possible de modéliser le comportement de la durit en compression jusqu’à l’apparition du flambement [Manach(1999)]. Depuis, de nombreuses études complémentaires ont consisté en l’application de cette modélisation à des formes de durits plus complexes soumises à des sollicitations combinées [Manach et Razafintsalama(1996)]. De plus, une adaptation de ces modèles au cas des contraintes planes a été réalisée.

Tous les modèles présentés dans cette partie sont régulièrement améliorés depuis plusieurs années. Par exemple, Blès [Blès(2002)] a développé un modèle pour décrire le comportement viscoélastoplastique des matériaux tissés et des polymères solides. Le modèle développé est basé sur la superposition de trois contributions de contrainte, de type hyperélastique, d’hystérésis pure et viscoélastique linéaire. Le schéma d’hystérésis pure a été amélioré par l’introduction d’une nouvelle fonction tensorielle permettant de mieux prendre en compte des comportements spécifiques de types trajets polygonaux dans le plan déviateur. Le modèle viscoélastique dépend à la fois de la déformation et de la vitesse de déformation et permet notamment de rendre compte des effets de fluage et de relaxation observés sur ces matériaux. Plus récemment Chache [Chache(2004)] s’est intéressée à l’étude du comportement élastoplastique, de l’écrouissage monotone et cyclique des matériaux métalliques. L’objectif est de proposer une modélisation, sur la base du schéma d’hystérésis pure, d’une part de la distorsion des surfaces seuil à faible offset en déformation et d’autre part des phénomènes de rochet d’écrouissage cyclique ainsi que des comportements d’écrouissage cyclique par durcissement et adoucissement.
Deuxième partie

Mise en forme des matériaux métalliques
Partie II. Mise en forme des matériaux métalliques
Partie II. Mise en forme des matériaux métalliques

L’emboutissage est un procédé de mise en forme largement répandu permettant de former des tôles métalliques par déformation plastique à température ambiante. D’une manière générale, un flan est placé entre une matrice et un serre-flan tandis qu’un poinçon entraîne le matériau dans la matrice. Dépendant principalement de la géométrie des outils et des conditions aux limites, la déformation a lieu par étirement ou par expansion. Les champs d’application sont nombreux, de l’industrie automobile aux biens ménagers. Ce procédé de mise en forme dépend de plusieurs facteurs importants, tels que le nombre d’opérations, la conception des outils et les paramètres du procédé comme l’effort de serre-flan ou la lubrification [Pearce(1992)]. Ces paramètres étaient encore traités empiriquement dans beaucoup d’industries il y a quelques années. C’est pourquoi un grand nombre de travaux théoriques et numériques ont été consacrés depuis plusieurs décennies à la simulation numérique de ce processus, afin de réduire le temps de conception et par conséquent les coûts. Ces travaux ont abouti à plusieurs codes de calcul métier dédiés à l’emboutissage qui donnent dans la plupart des cas des résultats satisfaisants.

Dans cette partie, on s’intéresse principalement à la comparaison expérimentale et numérique de procédés d’emboutissage. Le processus de mise en forme par emboutissage constitue un problème élastoplastique fortement non linéaire, caractérisé par de grandes déformations et rotations et l’existence du contact-frottement. Ainsi, les modèles mécaniques de comportement associés à ces problèmes sont complexes. Dans notre cas, les simulations numériques de ce procédé ont été réalisées majoritairement avec le code de calcul par éléments finis DD3IMP [Menezes et Teodosiu(2000)] développé par le CEMUC et avec le code commercial ABAQUS [ABA(2003)]. De plus, compte tenu des différentes lois de comportement utilisées dans ce travail et des différents matériaux qui ont constitué des champs d’applications de ces lois, il a été nécessaire de disposer d’un outil permettant d’identifier les paramètres matériaux. Notre choix s’est porté sur le logiciel d’identification SiDoLo [Pilvin(2003)]. Le chapitre 4 présente la formulation du problème associé à la mise en forme des tôles métalliques basée sur une formulation de grandes transformations élastoplastiques telle qu’elle est utilisée dans la plupart des codes de calcul par éléments finis.
Concernant le comportement plastique des matériaux utilisés en emboutissage, il est apparu que les lois d’écrouissage isotrope traditionnellement utilisées dans les codes de simulation numérique, telles que Hollomon ou Swift ainsi que les critères de plasticité conventionnels (von Mises, Hill 1948) ne permettent pas de rendre compte fidèlement des ruptures rencontrées sur les pièces en aluminium au cours des procédés d’emboutissage. En vue d’améliorer la modélisation, il est envisagé d’utiliser des lois d’écrouissage permettant de mieux modéliser le comportement mécanique ainsi que des critères de plasticité dédiés aux alliages d’aluminium. Dans le chapitre 5 on détermine pour un alliage d’aluminium particulier, les paramètres de la loi de Hocket-Sherby pour décrire l’écrouissage isotrope et du critère de plasticité de Barlat 1991 pour prendre en compte l’anisotropie. De plus, afin d’améliorer la modélisation des phases de retour élastique après emboutissage, un écrasement cinématique est introduit. L’extension du critère de plasticité de Barlat 1991 avec un écrasement mixte a été introduite dans le logiciel SiDoLo et est présentée dans le chapitre 4. Cette étude a notamment permis de caractériser de façon fine le comportement mécanique d’un alliage d’aluminium à partir d’une base expérimentale importante. L’obtention de la base de données matériau et la procédure d’identification des paramètres, qui sont communes à tous les matériaux étudiés dans cette partie sont présentés dans le chapitre 5.

De façon à étudier expérimentalement et numériquement l’emboutissage des tôles métalliques, beaucoup de nos travaux ont été consacrés à deux procédés particuliers de mise en forme par emboutissage ; un procédé d’emboutissage de godets axisymétriques en deux étapes en inversant la direction entre les deux étapes d’emboutissage (ré-emboutissage par retournement) [Gelin et Picart(1999)] et un pliage de tôle rectangulaire [Yang et al.(2002)]. L’intérêt du premier procédé est le développement d’une histoire complexe de déformation et le second est bien adapté pour l’étude du retour élastique. L’originalité de ce travail réside dans l’utilisation et la caractérisation de plusieurs modèles plastique d’écrouissage, ainsi que dans la comparaison entre les simulations numériques et les résultats expérimentaux.

Un dispositif expérimental d’emboutissage en deux étapes permettant de réaliser des godets axisymétriques a été développé au LG2M et installé sur une machine de traction électromécanique. À partir d’un flanc de diamètre initial 170 mm, un godet cylindrique de diamètre 100 mm et de hauteur 60 mm est obtenu au cours de la première passe avec un poinçon creux puis cette pièce est emboutie une seconde fois, à l’aide d’un poinçon de diamètre 73 mm. Le sens de déplacement du poinçon est inversé entre les deux étapes, ce qui correspond à un ré-emboutissage par retournement. Les avantages du processus d’emboutissage inverse sont un outillage plus compact, sans nouveau positionnement de la pièce entre les deux étapes, un meilleur aspect extérieur que dans le cas d’un processus direct parce que l’extérieur est en contact seulement une fois avec le rayon de matrice et finalement un plus petit nombre d’opérations de pliage-dépliage [Parsa et al.(1994)]. Les simulations numériques relatives à cette étude ont été réalisées avec le code DD3IMP en collaboration avec L.F. Menezes et S. Thuillier. Une comparaison entre expérience et simulation, avec le code DD3IMP et le code commercial PAMSTAMP a été présentée à une conférence [Manach et al.(2001)] [Thuillier et al.(2001)] et l’influence des modèles d’écrouissage à la conférence internationale Plasticity2002 [Menezes et al.(2002)]. De plus, une comparaison entre le ré-emboutissage direct et par retournement a été publiée dans une revue [Thuillier et al.(2002)]. L’ensemble de ces travaux est détaillé dans [Thuillier et al.(2002)] et les principaux résultats sont présentés dans le chapitre 6.
La compréhension et la prédiction du retour élastique des pièces mises en forme par emboutissage est un sujet d'étude très actuel, comme en témoignent les nombreux travaux publiés à Numisheet2002. L'état de contrainte local est fortement dépendant de l'histoire mécanique du matériau et dans de nombreux cas est seulement grossièrement évalué, ce qui conduit à une grande dispersion des résultats concernant les dimensions finales, après retour élastique. Une étude a été consacrée à la simulation numérique avec le code DD3IMP et au développement expérimental d’un procédé de pliage sans serre-flan, avec un poinçon cylindrique (benchmark Numisheet2002). Le dispositif expérimental a été développé au LG2M et est utilisé sur une machine de traction électromécanique. Le suivi de la forme pendant la charge et pendant le retrait des outils est effectué par traitement d’images réalisées avec une caméra vidéo numérique haute résolution. L’objectif est d’obtenir une mesure fiable et reproductible des paramètres qui caractérisent le retour élastique. La caractérisation du comportement mécanique du matériau étudié (aluminium) a été réalisée par S. Bouvier1 au cours d’une collaboration lors de mon séjour au Portugal. Les résultats expérimentaux sont ensuite confrontés aux résultats numériques afin de mettre en évidence l’influence du comportement matériel. La comparaison entre expérience et simulation du procédé de pliage sans serre-flan a été présentée à la conférence Numisheet 2002 [Manach et al.(2002)]. L’obtention et le traitement des résultats expérimentaux ont été obtenus dans le cadre du DEA de G. Guérin2 [Guérin(2002)].

Enfin, le chapitre 7 porte sur la modélisation du comportement mécanique d’aciers inoxydables austénitiques métastables utilisés lors la mise en forme des éviers par emboutissage. Les nuances austénitiques utilisées sont constituées d’une austénite métastable. Par déformation à température ambiante, cette phase austénitique peut se transformer en une phase martensitique. L’apparition de cette phase engendre des problèmes au niveau du procédé de mise en forme et notamment l’apparition de casse différente [Giraud et Baroux(1990)]. On observe également un changement du caractère magnétique de la pièce emboutie. Initialement amagnétique, il apparaît après emboutissage des zones magnétiques sur la pièce engendrées par la formation de martensite, illustrant bien la présence d’un changement de phase au cours de la déformation.

1Salima Bouvier, Maître de conférences, Laboratoire LPMTM, Université Paris 13
2Guillaume Guérin, DEA de l’Université de Bretagne Sud, que j’ai encadré en 2002
3Loïc Le Rhun, DEA de l’Université de Bretagne Sud, que j’ai encadré en 2003
Partie II. Mise en forme des matériaux métalliques
Chapitre 4

Elastoplasticité en grandes transformations

4.1 Introduction

Dans l’étude des procédés de mise en forme par emboutissage, les simulations numériques ont été effectuées pour la plupart avec les codes de calcul DD3IMP et ABAQUS et l’identification des lois de comportement a été réalisée avec le logiciel SiDoLo. Ces codes utilisent une formulation classique des lois de comportement en grandes transformations basée sur l’utilisation du tenseur de gradient de la transformation.

Dans ce cadre, la description d’une loi de comportement élastoplastique classique [Naghdi(1990)] [Lemaitre et Chaboche(1985)] est basée sur la décomposition additive du tenseur des déformations et nécessite au minimum la définition de trois éléments constitutifs. Une loi élastique qui donne l’état de contrainte du matériau en fonction de son état de déformation élastique. Un seuil qui sépare un domaine élastique défini par le critère de plasticité, d’un domaine élastoplastique dans lequel se produisent des transformations irréversibles. Une loi d’écoulement qui, lorsque le seuil est dépassé, caractérise la direction de l’écoulement du matériau et son intensité dans le cas d’un écoulement viscoplastique. En général, une partie de la déformation totale étant réversible, la loi d’écoulement ne décrit que l’évolution de la partie irréversible de la déformation. Les déformations inélastiques subies altèrent généralement la taille et la forme du seuil. Pour rendre compte de cette modification, la fonction de charge est écrite grâce à des variables supplémentaires : les variables d’écrasage, qui peuvent être scalaires ou tensorielles. Il est alors nécessaire de spécifier des lois d’évolution pour ces variables. Les modèles élastoplastiques définis dans ce chapitre sont des modèles pour lesquels il existe un domaine de comportement purement réversible, autrement dit des modèles à seuil. Il est à noter que les modèles de type élastohystérésis décrits dans la partie I ne sont pas des modèles à seuil et ne sont donc pas des modèles élastoplastiques au sens premier du terme.

Ce chapitre présente la formulation classique des lois de comportement élasto(visco)plastiques, tout d’abord dans le cas des petites déformations. La généralisation au cas des grandes transformations est ensuite développée en distinguant l’approche qui consiste à décomposer le taux de déformation (cas du logiciel SiDoLo) de celle qui consiste à décomposer le gradient de la transformation (cas du code DD3IMP).
4.2 Méthode de l’état local

La méthode de l’état local proposée par [Germain(1986)] offre un cadre intéressant pour le développement de modèles de comportement. Elle s’appuie sur des principes physiques fondamentaux (ceux de la thermodynamique) qui définissent des conditions d’acceptabilité des modèles. L’utilisation de la méthode de l’état local repose sur un postulat énoncé par [Lemaitre et Chaboche(1985)] de la façon suivante : "... l’état thermodynamique d’un milieu matériel en un point et à un instant donné est complètement défini par la connaissance des valeurs à cet instant d’un certain nombre de variables ne dépendant que du point considéré...”

Ces variables se définissent en deux catégories : les variables observables et les variables internes. Dans le cas des lois de comportement élastoviscoplastiques, les variables observables sont le tenseur des déformations \(\epsilon \) et la température \(T \). Nous nous limitons, dans le cadre de ce travail, aux transformations mécaniques isothermes et la seule variable observable est la déformation \(\epsilon \).

La formulation d’un modèle élasto(visco)plastique nécessite d’introduire une variable interne, qualifiée de déformation (visco)plastique ou de déformation inélastique, notée \(\epsilon_p \). L’introduction de la variable \(\epsilon_p \) conduit à une partition de la déformation :

\[
\epsilon = \epsilon^e + \epsilon^p
\]

où \(\epsilon^e \) est la partie élastique de la déformation. En petites perturbations, l’hypothèse de décomposition additive de la déformation (4.1) implique une décomposition additive de la vitesse de déformation :

\[
\dot{\epsilon} = \dot{\epsilon}^e + \dot{\epsilon}^p
\]

et réciproquement. La fonction d’état qui décrit l’état thermodynamique du point matériel est une fonction scalaire des variables d’états appelée potentiel thermodynamique. L’expression des différentes variables d’état par rapport au potentiel thermodynamique peut être trouvée dans [Lemaitre et Chaboche(1985)].

4.3 Comportement élastique

Dans le cas des comportements élastoplastiques, on suppose généralement que les déformations élastiques sont petites par rapport à l’unité et on néglige l’influence de la déformation inélastique sur les constantes élastiques ; ces hypothèses sont parfaitement justifiées dans le cas des matériaux métalliques. Comme les procédés de mise en forme ont un caractère incrémental, on écrit généralement la loi de Hooke sous la forme différentielle suivante :

\[
\dot{\sigma} = C^e : \dot{\epsilon}
\]

où \(\sigma \) est le tenseur des contraintes de Cauchy et \(C^e \) est le tenseur de quatrième ordre des constantes élastiques. Cette relation correspond à la forme hypoélastique de la loi de Hooke.

4.4 Comportement plastique

Pour décrire le comportement plastique, il est nécessaire de préciser la surface de plasticité, la loi d’écoulement et la loi d’écrouissage. En ce qui concerne les critères de plasticité, on distingue généralement les critères isotropes (Tresca, von Mises, Drucker, [Hosford(1972)])
Partie II. Mise en forme des matériaux métalliques

4.4.1 Surface de plasticité

On observe généralement que les déformations plastiques apparaissent seulement pour certains états de contrainte ; cette condition est traduite par le critère de plasticité au moyen de la fonction de charge f qui dépend du tenseur des contraintes de Cauchy σ et de l’état d’écouissage :

- Le comportement est élastique si :
 \[f < 0 \quad \text{ou} \quad f = 0 \quad \text{et} \quad \frac{\partial f}{\partial \sigma} : \dot{\sigma} \leq 0 \]
 \[(4.4)\]

- il est élastoplastique si :
 \[f = 0 \quad \text{et} \quad \frac{\partial f}{\partial \sigma} : \dot{\sigma} > 0 \]
 \[(4.5)\]

Pour le chargement plastique, l’évolution du critère est telle que l’état de contrainte actuel se trouve toujours sur la surface de plasticité, ce qui est exprimé par la condition de cohérence :

\[\dot{f} = 0 \]
\[(4.6)\]

où \dot{f} est la dérivée temporelle de f. On suppose que la surface de plasticité est décrite par une équation du type :

\[f(\sigma, R, X) = 0 \]
\[(4.7)\]

qui dépend du tenseur des contraintes σ, d’une variable scalaire d’écouissage isotrope R et d’une variable tensorielle X d’écouissage cinématique.

4.4.2 Ecrouissage isotrope

Parmi les possibilités de choix de la variable R, on utilise généralement une mesure intrinsèquement plastique. Classiquement, on choisit la déformation plastique cumulée $p = \int \dot{\varepsilon}^p$:
\(\dot{\varepsilon}^p dt \) et on suppose que le critère de plasticité s’écrit :

\[
f(\sigma, R, X) = f(\sigma, X) - R = \bar{\sigma} - R = 0 \quad (4.8)
\]

ou \(\bar{\sigma} \) désigne la contrainte équivalente au sens du critère de plasticité. L’évolution de \(R \) peut être choisie sous différentes formes qui doivent être adaptées au comportement du matériau considéré. Par exemple, la loi de Swift correspond généralement bien aux aciers doux :

\[
R = K(\epsilon_0 + \varepsilon^p)^n \quad (4.9)
\]

avec \(\epsilon_0 = (\sigma_0/K)^{1/n} \) et \(\varepsilon^p \) la déformation plastique équivalente, \(K \) et \(n \) étant des paramètres matériau. On peut aussi utiliser la loi de Voce (ou la loi de Hocket-Sherby) plus adaptée aux alliages d’aluminium :

\[
R = B - (B - A) \exp(-C\varepsilon^p) \quad (4.10)
\]

où \(A, B, C \) sont des paramètres matériau.

4.4.3 Écrouissage cinématique

Si la fonction de charge \((4.7) \) admet la propriété \(f(\sigma, 0) = f(-\sigma, 0) \), cette propriété est conservée par l’écrouissage isotrope ; à tout instant on a \(f(\sigma, R) = f(-\sigma, R) \) et le critère est dit symétrique. L’écrouissage isotrope n’est donc pas adapté à la description de l’effet Bauschinger \([\text{Lemaitre et Chaboche}(1985)]\). On est ainsi amené à introduire un écrouissage dit cinématique au travers d’une variable \(X \), qui intervient dans la fonction de charge en se soustrayant à la contrainte. L’effet de cette variable est d’opérer une translation de la surface seuil dans l’espace des contraintes. La loi d’évolution de l’écrouissage cinématique est celle proposée par Armstrong-Frederick \([\text{Lemaitre et Chaboche}(1985)]\) avec une composante linéaire :

\[
X = \frac{2}{3} C_X \alpha + \frac{2}{3} H_X \varepsilon^p \quad (4.11)
\]

avec :

\[
\dot{\alpha} = \dot{\varepsilon}^p - D_X \dot{\varepsilon} \quad (4.12)
\]

\(C_X \) détermine l’intensité de l’écrouissage, \(D_X \) caractérise la vitesse pour tendre vers la valeur de saturation et \(H_X \) est le module de la partie linéaire. \(\alpha \) est la variable interne associée à \(X \) et \(\dot{\varepsilon} \) est la vitesse de déformation associée à la déformation plastique cumulée.

4.4.4 Ecoulement plastique

La modélisation présentée est basée sur la décomposition du tenseur vitesse de déformation en une partie élastique et une partie plastique. Cette dernière est calculée par la loi d’écoulement plastique qui fait intervenir le potentiel de déformation plastique. Dans le cas de l’écoulement associé (ce qui est le cas lorsque la fonction de charge est quadratique et que l’écrouissage cinématique est linéaire), ce potentiel est identifié à partir de la fonction de charge \(f \). On suppose que la vitesse de déformation plastique est déterminée d’après la loi d’écoulement par :

\[
\dot{\varepsilon}^p = \lambda \frac{\partial f}{\partial \sigma} \quad (4.13)
\]

ce qui exprime que la vitesse de déformation plastique est normale à la surface seuil au point de chargement \(\sigma \). L’introduction d’une loi d’évolution non linéaire de la variable d’écrouissage
cinématique en fonction de la déformation plastique nécessite de sortir du cadre de la plasticité associée [Pilvin(1990)]. Une des solutions pouvant être envisagées consiste à modifier directement certaines lois d’évolution des variables internes obtenues par une modélisation associée. Il devient alors indispensable de vérifier la positivité de la dissipation mécanique.

Le scalaire \(\dot{\lambda} \), appelé multiplicateur plastique, est calculé avec la condition de cohérence (4.6). Dans le cas de la plasticité non visqueuse, si on considère un critère de plasticité quadratique (ce qui est le cas dans le chapitre 6), on peut montrer que :

\[
\dot{\lambda} = \dot{p}
\]

Dans le cas de la viscoplasticité, on considère que la composante viscoplastique de la déformation suit une loi d’écoulement dérivant d’un potentiel viscoplastique \(\Omega \) qui est une fonction puissance de la fonction de charge [Lemaitre et Chaboche(1985)]. C’est cette approche qui est retenue dans le chapitre 5, le potentiel étant défini par un relation du type Norton selon :

\[
\Omega(f) = \frac{K}{N+1} \left(\frac{f^+}{K} \right)^{N+1}
\]

où \(N \) est un coefficient de sensibilité à la vitesse de déformation, \(K \) un coefficient de pondération de la partie visqueuse de la contrainte et \(f^+ \) la partie positive de \(f \). Le comportement est donc élastique si \(f < 0 \) et la vitesse de déformation viscoplastique s’écrit :

\[
\dot{\epsilon}^p = \frac{\partial \Omega}{\partial \sigma} = \Omega'(f) \frac{\partial f}{\partial \sigma}
\]

En utilisant ce formalisme, les équations (4.13) et (4.16) montrent que quelque soit le critère de plasticité (quadratique ou non), le multiplicateur plastique \(\dot{\lambda} \) peut être obtenu par un calcul direct, selon :

\[
\dot{\lambda} = \left(\frac{\bar{\sigma} - R}{K} \right)^N
\]

4.4.5 Critère de Hill 1948

La contrainte équivalente \(\bar{\sigma} \) est définie dans le cas du critère de Hill 1948 [Hill(1950)] par la forme quadratique :

\[
\bar{\sigma}^2 = (\sigma - X) : M : (\sigma - X)
\]

où \(M \) est un tenseur symétrique du quatrième ordre qui vérifie \(M_{ijkl} = M_{jikl} = M_{klij} \) et \(M_{ijkl} = 0 \). Cette dernière relation, traduit l’incompressibilité plastique et permet de remplacer le déviateur de \(\sigma \) par \(\sigma \) dans (4.18). Pour la mise en forme des tôles laminées, on suppose que le matériau présente une orthotropie plastique initiale. Ainsi, en considérant que les axes d’orthotropie \((\vec{x}, \vec{y}, \vec{z}) \) coincident initialement avec les axes du repère global cartésien, on définit le tenseur initial d’anisotropie \(\tilde{M} \) correspondant au critère de Hill et la relation (4.18) peut s’exprimer sous la forme indicielle suivante, en notant \(\sigma^X = \sigma - X \) :

\[
\bar{\sigma}^2 = \tilde{M}_{ijkl} \sigma^X_{ij} \sigma^X_{kl}
\]

\[
= F(\sigma^X_{yy} - \sigma^X_{zz})^2 + G(\sigma^X_{zz} - \sigma^X_{xx})^2 + H(\sigma^X_{xx} - \sigma^X_{yy})^2 + 2L(\sigma^X_{yz})^2 + 2M(\sigma^X_{xz})^2 + 2N(\sigma^X_{xy})^2
\]

où \(F, G, H, L, M, N \) sont des paramètres du matériau appelés coefficients de Hill.
4.4.6 Critère de Barlat 1991 avec écouissage cinématique

Dans le critère de Barlat 1991 [Barlat et al.(1991)], la fonction seuil f est définie par :

$$f = \left(\frac{\phi}{2} \right)^{1/m} \quad (4.20)$$

avec :

$$\phi = |S_1 - S_2|^m + |S_2 - S_3|^m + |S_3 - S_1|^m = 2\bar{\sigma}^m \quad (4.21)$$

où $\bar{\sigma}$ est la contrainte équivalente relative à l’écoulement plastique du matériau et m un paramètre matériau. Cette forme est dérivée de celle proposée par Hershey et Hosford pour un matériau isotrope. Elle donne une bonne approximation des surfaces d’écoulement calculées avec des modèles polycristallins [Barlat et al.(1997b)] quand $m = 6$ et 8 respectivement pour des matériaux de structure cristalline cubique centrée et cubique face centrée. $S_i=1,2,3$ sont les valeurs propres de la matrice symétrique S définie dans le repère $(\vec{x}, \vec{y}, \vec{z})$ des axes d’orthotropie, à partir des composantes du tenseur $\sigma^X = \sigma - X$ selon :

$$S_{xx} = \frac{1}{3} \left[c(\sigma_{xx}^X - \sigma_{yy}^X) - b(\sigma_{zz}^X - \sigma_{xx}^X) \right]$$

$$S_{yy} = \frac{1}{3} \left[a(\sigma_{yy}^X - \sigma_{zz}^X) - c(\sigma_{xx}^X - \sigma_{yy}^X) \right]$$

$$S_{zz} = \frac{1}{3} \left[b(\sigma_{zz}^X - \sigma_{xx}^X) - a(\sigma_{yy}^X - \sigma_{zz}^X) \right] \quad (4.22)$$

$$S_{yz} = f\sigma_{yz}^X \quad S_{zx} = g\sigma_{zx}^X \quad S_{xy} = h\sigma_{xy}^X$$

a, b, c, f, g, h sont des paramètres matériau caractéristiques de l’anisotropie. Dans le cas où l’on ne considère pas l’écouissage cinématique ($X = 0$), l’équation (4.22) redonne l’expression classique du critère de Barlat 1991 [Barlat et al.(1991)]. En utilisant la notation de Bishop et Hill, on définit les quantités suivantes :

$$A = \sigma_{yy}^X - \sigma_{zz}^X, \quad B = \sigma_{zz}^X - \sigma_{xx}^X, \quad C = \sigma_{xx}^X - \sigma_{yy}^X$$

$$F = \sigma_{yz}^X, \quad G = \sigma_{zx}^X, \quad H = \sigma_{xy}^X \quad (4.23)$$

Avec cette notation, la matrice symétrique S s’écrit dans le référentiel $(\vec{x}, \vec{y}, \vec{z})$:

$$S = \begin{bmatrix}
\frac{1}{3}(cC - bB) & hH & gG \\
hH & \frac{1}{3}(aA - cC) & fF \\
gG & fF & \frac{1}{3}(bB - aA)
\end{bmatrix} \quad (4.24)$$

Les valeurs propres $S_i=1,2,3$ de cette matrice peuvent s’écrire :

$$S_1 = z^{1/3} + \bar{z}^{1/3}, \quad S_2 = \omega z^{1/3} + \bar{\omega} \bar{z}^{1/3}, \quad S_3 = \bar{\omega} z^{1/3} + \omega \bar{z}^{1/3} \quad (4.25)$$

où les nombres complexes z et ω sont :

$$z = I_3^3 + i(I_2^3 - I_3^3)^{1/2}, \quad \omega = e^{-2i\pi/3} \quad (4.26)$$
Les termes I_2 et I_3 sont les coefficients de l’équation caractéristique de degré 3 de la matrice S ($\lambda^3 - 3\lambda^2 + 2I_3 = 0$) et sont définis par :

$$I_2 = \frac{(fF)^2 + (gG)^2 + (hH)^2}{3} + \frac{(aA - cC)^2 + (cC - bB)^2 + (bB - aA)^2}{54}$$

$$I_3 = \frac{(cC - bB)(aA - cC)(bB - aA) + fghFGH}{54} - \frac{(cC - bB)(fF)^2 + (aA - cC)(gG)^2 + (bB - aA)(hH)^2}{6}$$

(4.27)

$I_2 \geq 0$, mais cependant I_3 peut prendre n’importe quelle valeur réelle. La fonction de charge ϕ peut alors être réécrite sous la forme suivante :

$$\phi = (3I_2)^{m/2} \left[2\cos\left(\frac{2\theta + \pi}{6}\right)\right]^m + \left(2\cos\left(\frac{2\theta - 3\pi}{6}\right)\right)^m + \left(-2\cos\left(\frac{2\theta + 5\pi}{6}\right)\right)^m$$

(4.28)

avec $\cos \theta = I_3/I_3^{3/2}$. Cette forme se réduit au cas isotrope quand les coefficients a, b, c, f, g, h sont égaux à 1 et en particulier au critère de Von Mises lorsque $m = 2$ ou 4. Selon la définition précédente de la fonction seuil ϕ, le gradient $\partial \phi / \partial \sigma_{\alpha \beta}$ nécessaire pour obtenir $\dot{\epsilon}_{\alpha \beta}^p$ à partir de la règle de normalité généralisée est obtenu à partir de la relation suivante :

$$\frac{\partial \phi}{\partial \sigma_{\alpha \beta}} = \left(\frac{\partial \phi}{\partial S_k}\frac{\partial S_k}{\partial I_2}\right)\frac{\partial I_2}{\partial \sigma_{\alpha \beta}} + \left(\frac{\partial \phi}{\partial S_k}\frac{\partial S_k}{\partial I_3}\right)\frac{\partial I_3}{\partial \sigma_{\alpha \beta}}$$

(4.29)

Le détail des calculs des différents termes de cette équation peut être obtenu dans [Manach et Thuillier(2003)]. Comme pour les critères de plasticité plus classiques (von Mises, Hill), on doit imposer que la contrainte d’écoulement initiale dans la direction de laminage (DL) soit égale à la limite d’élasticité quels que soient les coefficients d’anisotropie. Pour ce faire, on suppose un état de contrainte uniaxial, le critère devant vérifier $\phi = 2\sigma_{0}^m$ avec σ_{0} la limite d’élasticité en traction dans la DL. On obtient ainsi une condition supplémentaire sur les paramètres b et c tels que :

$$f(c) = \left[\frac{1}{2} \frac{m}{3} (|2c + b|^m + |b - c|^m + |2b - c|^m)\right] - 1 = 0$$

(4.30)

Cette équation non linéaire est résolue par une méthode de Newton-Raphson. On suppose b connu, et on calcule c en utilisant l’algorithme suivant :

$$c_{k+1} = c_k - \frac{f(c_k)}{f'(c_k)}$$

(4.31)

avec

$$f'(c) = \frac{m}{2} \frac{m}{3} \left[2(2c + b)^{m-1} + (2b + c)^{m-1} + (c - b)^{m-1}\right]$$

(4.32)

4.5 Extension aux cas des grandes transformations

Les approches cinématiques couramment utilisées en grandes transformations sont en fait issues d’une généralisation des modèles définis en petites déformations. L’objectif est d’obtenir une décomposition additive des vitesses de déformation élastique et inélastique comme dans la
théorie des petites déformations. Pour ce faire, l’usage en mécanique des grandes transformations a consacré le gradient de la transformation F, défini par exemple dans [Mandel(1974)], [Malvern(1969)]. On considère un solide déformable dans une configuration de référence C_0 à l’instant t_0 et on note C_t la configuration courante. On désigne alors par x_0 et \bar{x} les vecteurs position d’un point matériel de cette structure respectivement dans C_0 et C_t. Dans le voisinage de ce point, la déformation locale est définie par le tenseur gradient de transformation F, défini par :

$$ F = \frac{\partial \bar{x}}{\partial x_0} $$

correspondant à la transformation finie de x_0 à \bar{x}. Le gradient de la transformation F est donc une grandeur permettant de connaître la déformation du voisinage d’un point matériel. Cependant, F ne contient pas seulement l’information relative au changement de forme mais aussi celle relative au mouvement de corps rigide.

Dans la suite, on présente les solutions retenues dans SiDoLo et DD3IMP pour substituer aux variables internes ϵ^e et ϵ^p de la théorie de l’élastoplasticité en petites perturbations, des variables internes adaptées à la prise en compte des grandes transformations. Dans le cas des transformations finies, il n’est en effet plus possible d’utiliser le tenseur des déformations de la théorie des petites perturbations. Il est d’usage d’utiliser alors deux variables, le tenseur des contraintes de Cauchy σ et le tenseur des taux de déformation D.

Dans le cas de SiDoLo, la formulation utilise le référentiel corotationnel et la décomposition additive du taux de déformation :

$$ D = D^e + D^p $$

proposée par [McMeeking et Rice(1975)]. Dans DD3IMP, la formulation utilise la décomposition multiplicative du gradient de la transformation telle que :

$$ F = F^e.F^p $$

associée à la notion de configuration relâchée proposée par [Green et Naghdi(1965)]. A part cette distinction au niveau de la formulation du tenseur taux de rotation, les deux approches conduisent à la même décomposition du tenseur taux de déformation. Il est à noter que dans les deux approches citées ci-dessus, l’intégration temporelle du tenseur taux de déformation ne donne pas une mesure exacte de la déformation. Cependant, lorsque les rotations restent raisonnables (cisaillement < 1), l’intégration de D dans ces repères fourni une bonne approximation de la mesure de déformation logarithmique [Mora(2004)].

4.5.1 Décomposition du taux de déformation

Il est possible, pour construire une théorie générale de l’élastoplasticité en grandes transformations, de partir du postulat d’une décomposition additive du tenseur taux de déformation D en une partie élastique D^e et une partie plastique D^p. Deux possibilités sont ensuite classiquement employées pour décrire la partie réversible du comportement. La première consiste à utiliser D^e pour écrire une loi hypoélastique et la seconde est d’intégrer la relation (4.34) dans un repère rigide. L’utilisation de repères locaux objectifs fournit une méthode systématique pour transposer des lois de comportement développées dans le cadre des petites déformations au cas des transformations finies. Considérons par exemple les lois de comportement décrites dans les
paragraphes précédents. En transformations finies, D et σ/ρ (où ρ est la masse volumique du solide) sont les variables privilégiées dans un référentiel E.

Considérons alors un repère local objectif E' en chaque point dont l’évolution par rapport à E est décrite par la rotation Q. On transporte alors dans E' les quantités précédentes :

$$\dot{e} = Q^T D Q$$

$$s = Q^T \frac{\rho}{\rho} \sigma Q$$

Les variables internes ainsi que leurs lois d’évolution sont définies dans le repère local objectif et peuvent être ramenées dans E par la rotation inverse de la précédente. Cette méthode systématique a été proposée par [Ladeveze(1980)] et développée dans [Dogui et Sidoroff(1986)].

Le point délicat concerne le choix du référentiel local objectif, ici le référentiel corotationnel.

Le référentiel corotationnel. Il existe une famille unique de référentiels locaux objectifs R_c tels qu’en tout point et à chaque instant, le taux de rotation du milieu par rapport à ce référentiel soit nul. En effet :

$$\forall M \in \Omega, \quad W' = QQ^T + QWQ^T$$

Pour que $W' = 0$, il faut que :

$$- Q^T_c \dot{Q}_c = \dot{Q}_c^T Q_c = W$$

Cette relation définit entièrement R_c à une translation près. Par rapport à ce référentiel, la matière au voisinage de M se déforme sans tourner. On dit que c’est le référentiel corotationnel en M. La dérivée associée est la dérivée de Jaumann :

$$\left(\frac{dT}{dt}\right)_{R_c} = Q_c^T \left(Q_c T Q_c^T \right) Q_c = \dot{T} + TW - WT$$

4.5.2 Décomposition multiplicative du gradient de transformation

L’approche utilisée dans DD3IMP consiste à introduire une configuration particulière : la configuration relâchée [Lee(1969), Sidoroff(1982), Teodosiu(1989)]. Cette configuration est supposée être celle obtenue en relâchant les contraintes internes tout en bloquant les mécanismes de plasticité. L’introduction de cette configuration relâchée se traduit localement par une décomposition multiplicative du gradient de la transformation :

$$F = F^e.F^p$$

où F^e représente la transformation locale de la configuration relâchée à la configuration actuelle (partie réversible de la transformation locale F) et F^p représente la transformation locale entre la configuration initiale et la configuration relâchée. Pour définir l’orientation de la configuration relâchée, la définition cinématique proposée par Mandel [Mandel(1982)] est adoptée, en choisissant un repère tel que l’orientation cristallographique moyenne reste la même pendant le mouvement. Ce repère peut être défini cinématiquement, en égalant sa vitesse de rotation avec la
Chapitre 4. Elastoplasticité en grandes transformations

La vitesse de rotation moyenne des grains [Teodosiu(1989)]. Dans le cas des matériaux métalliques, la transformation élastique F^e génère des déformations qui sont petites devant l’unité, bien que de grandes rotations soient possibles [Sidoroff(1982)]. Ainsi, on peut adopter l’hypothèse des petites déformations élastiques. Sous cette hypothèse, on utilise la décomposition polaire de F^e sous la forme :

$$F^e = VR$$ \hspace{1cm} (4.42)

où R est un tenseur orthogonal de rotation élastique et $V = 1 + \epsilon$, un tenseur symétrique positif avec $\epsilon << 1$. Comme il a été vu au chapitre [1], le gradient de la vitesse peut être décomposé en une partie symétrique D et une partie antisymétrique W. Ces deux tenseurs peuvent être décomposés à leur tour en parties élastique et plastique. On obtient donc :

$$D = D^e + D^p \quad \text{et} \quad W = W^e + W^p$$ \hspace{1cm} (4.43)

On considère alors que la vitesse de rotation plastique W^p peut être négligée devant la vitesse de déformation élastique. Ainsi on peut montrer que l’équation (4.43) se réduit à [Menezes et Teodosiu(2000)] :

$$D = D^e + D^p \quad \text{et} \quad W = W^e = \dot{R}R^T \quad \text{avec} \quad W^p = 0$$ \hspace{1cm} (4.44)

L’évolution de la rotation élastique R au cours du temps peut être déduite à partir de la relation (4.43). On aboutit à l’équation différentielle suivante :

$$\dot{R} \approx (W - W^p)R \approx WR$$ \hspace{1cm} (4.45)

Cette évolution est similaire à l’évolution du repère corotationnel (voir paragraphe (4.5.1)). On peut donc considérer que les deux approches sont similaires. Dans ce cas, $\dot{\epsilon}$ devient égal à la dérivée objective de Jaumann de ϵ, définie par :

$$\dot{\epsilon}^J = \dot{\epsilon} + \epsilon W - W \epsilon$$ \hspace{1cm} (4.46)

L’hypothèse de négliger la vitesse de rotation plastique, qui conduit à l’introduction de la dérivée de Jaumann est habituelle dans la modélisation des procédés de mise en forme [Eterovic et Bathe(1990)] où cette hypothèse est explicitée, ou alors [Chiou et al.(1990)] où cette hypothèse est implicite, dû à l’utilisation directe dans la formulation du modèle de la dérivée de Jaumann. Elle est cependant bien justifiée à condition que le cisaillement ne soit pas trop important [Mora(2004)]. Dans le cas de l’emboutissage des tôles minces, par exemple, le cisaillement est peu important, il est donc raisonnable d’accepter cette hypothèse. De plus, l’évolution de la rotation élastique R est semblable à l’évolution du repère corotationnel. En effet, en posant $R = Q^T$, on peut montrer que W' est nulle. Dans le cas des petites déformations élastiques, les deux approches précédentes sont donc équivalentes.

Enfin, la loi de comportement doit être invariante par rapport à un changement de référentiel d’observation (principe d’objectivité [Sidoroff(1982)]. L’extension du formalisme des petites aux grandes déformations, qui permet de contourner cette difficulté, est bien connue : on a besoin de définir un référentiel tournant localement avec la matière dans lequel on écrit la loi de comportement en petites déformations en assurant l’objectivité de celle-ci [Sidoroff(1982)]. Dans le cas présent, le principe d’objectivité sera satisfait si la loi de comportement est formulée par rapport à la configuration naturelle relâchée C^R [Green et Naghdi(1965)] [Lee(1969)] et que toutes les quantités tournent à la vitesse de rotation W. Ainsi, pour prendre en compte l’évolution des directions d’anisotropie pendant le processus de déformation, on suppose que le matériau initialement orthotrope le reste pendant la déformation et que les axes d’orthotropie du matériau tournent à la vitesse de rotation W.

4.6 Loi élastoplastique

En manipulant les équations précédentes, on peut obtenir la forme en vitesses de la loi de comportement élastoplastique du type :

$$\dot{\sigma}^I = C^{ep} : D$$

(4.47)

où C^{ep} est le module élastoplastique. Son calcul va dépendre des algorithmes utilisés dans l’intégration de la loi de comportement. En effet, le caractère incrémental des problèmes élastoplastiques conduit à leur résolution par des schémas incrémentaux où l’objectif est d’avancer le processus pas à pas. A chaque pas on connaît l’état au début et on veut calculer l’état à la fin du pas. L’intégration de la loi de comportement pour chaque pas dépend du type de rapport considéré entre l’état à la fin et l’état au début du pas ; on parle alors d’approches explicites, implicites ou semi-implicites, qui conduisent à des formulations différentes du module élastoplastique.
Chapitre 4. Elastoplasticité en grandes transformations
Chapitre 5
Identification du comportement d’un alliage d’aluminium

5.1 Introduction

Ce chapitre porte sur la caractérisation et la modélisation du comportement mécanique d’un alliage d’aluminium Al5182-O\(^1\). L’objectif de cette étude est de déterminer les paramètres matériau et de valider la loi de comportement sur des trajets de déformation très différents. On détermine donc pour cet alliage les paramètres de la loi de Hocket-Sherby pour décrire l’écrouissage isotrope et ceux du critère de Barlat 1991 pour prendre en compte l’anisotropie. Les paramètres sont déterminés à partir d’essais de traction et de cisaillement pour différentes orientations dans le plan de la tôle, d’essais de traction plane et d’expansion biaxiale (bulge test). Le choix de ces essais est essentiel puisqu’il s’agit des sollicitations élémentaires le plus souvent rencontrées en emboutissage. De plus, afin d’améliorer la modélisation des phases de retour élastique après emboutissage, un écouissage cinématique est introduit. La partie cinématique de l’écrouissage est mise en évidence à partir d’essais de cisaillement cycliques puis modélisée par une loi non-linaire de type Armstrong-Frederick. La première partie de ce chapitre présente l’alliage étudié ainsi que les essais mécaniques effectués au cours de cette étude. Dans la seconde partie, on défini la loi de comportement utilisée et la stratégie d’identification avec le logiciel SiDoLo. Enfin, on montre les résultats obtenus sur ce matériau, notamment en ce qui concerne les paramètres matériaux et la comparaison entre les courbes expérimentales et numériques.

5.2 Essais mécaniques

En vue de réaliser une identification complète du comportement mécanique d’un matériau donné, il est impératif de disposer d’informations sur la réponse du matériau en fonction de différents états de déformation. Pour ce faire, des essais de traction uniaxiale et de cisaillement simple ont été réalisés. Les mesures de déformation sont réalisées en utilisant un extensomètre à couteaux et une caméra numérique haute résolution. La précision de la mesure obtenue par la caméra numérique (5 \(\times\) 10\(^{-3}\)) est moins bonne que celle obtenue par l’extensomètre (5 \(\times\) 10\(^{-5}\)) mais elle permet par contre d’investiguer une plus grande plage de déformation et d’accéder aux déformations transverses. Les essais ont été réalisés avec des vitesses de déformation faibles, limitant ainsi l’élévation de température provoquée par la déformation.

\(^1\)Cet alliage est utilisé par la société PCI pour des pièces de doublure mises en forme par emboutissage
5.2.1 Essais de traction uniaxiale

Les essais de traction ont été réalisés sur des éprouvettes rectangulaires de dimension $20 \times 180 \times 1.2 \text{ mm}^3$ découpées initialement à la cisaille. Les bords ont ensuite été usinés de façon à diminuer la zone écrouie par la découpe et augmenter ainsi le domaine de déformation homogène. Une série d’essais de traction monotones est réalisée dans une direction de sollicitation à 0°, 45° et 90° de la direction de laminage (DL) pour étudier l’anisotropie du matériau. La déformation logarithmique est choisie comme mesure de la déformation, à savoir $\epsilon = \ln(1 + \Delta L/L_0)$ où L_0 désigne la base de mesure initiale et ΔL l’allongement de l’éprouvette. Cette mesure de la déformation est cohérente avec le fait que l’intégration temporelle de D dans le repère corotational donne une bonne approximation de la mesure de déformation logarithmique [Mora(2004)]. Les déformations longitudinale et transverse sont mesurées par caméra numérique et par extensomètre. Lors d’un essai de traction simple, lorsque les champs mécaniques sont considérés comme homogènes, le tenseur du gradient de la transformation F s’écrit :

$$F = \sum_{i=1}^{3} F_{ii} \vec{b}_i \otimes \vec{b}_i$$

où les \vec{b}_i sont les vecteurs de base du repère associé au laboratoire. Les axes $\vec{1}$, $\vec{2}$ et $\vec{3}$ désignent respectivement la direction de traction, la direction transverse et la direction normale au plan de la tôle. Si la traction est réalisée suivant l’axe 1, seule la composante F_{11} est imposée. Pour les tôles minces, on mesure la composante F_{22} par l’intermédiaire de la caméra numérique. Le tenseur des contraintes de Cauchy se réduit donc à :

$$\sigma = \frac{F}{S} \vec{b}_1 \otimes \vec{b}_1$$

Fig. 5.1 – Essais de traction monotone à 0°, 45° et 90° par rapport à la DL.
Les variables observables sont le temps t, l’allongement relatif longitudinal $\Delta L/L_0 = F_{11} - 1$, le rétrécissement transversal $\Delta l/l_0 = F_{22} - 1$ et la contrainte de Cauchy $\sigma = F/S$, avec S la section courante. Pour ces essais, une vitesse de déformation constante est imposée à $\dot{\varepsilon} = 10^{-3}$ s$^{-1}$. En considérant que les matériaux métalliques sont en général incompressibles ($\det F = 1$), à partir de la mesure de la force F, de la section S_0 et longueur L_0 initiales de l’éprouvette, ainsi que de celle de l’extensomètre longitudinal (L), on peut calculer la contrainte de Cauchy.

La figure (5.1) présente les résultats expérimentaux obtenus pour les orientations 0°, 45° et 90° de la DL. L’effet discontinu observé sur ces courbes est dû à un phénomène de vieillissement dynamique caractéristique des alliages d’aluminium de la série 5000. En effet, sous certaines conditions de température T et de vitesse de déformation $\dot{\varepsilon}$, ce phénomène résulte de l’interaction entre les dislocations mobiles et les atomes interstitiels ou substitutionnels, ici les atomes de magnésium [Baird(1973)]. Dans une partie du domaine $(T, \dot{\varepsilon})$, il apparaît donc sur la courbe de traction des discontinuités qui portent le nom de Portevin-Le Chatelier (PLC) et qui résultent de la propagation de bandes de déformation plastique localisées [Cuddy et Leslie(1972)] [McCormick et al.(1993)].

Fig. 5.2 – Mesure des coefficients d’anisotropie de Hill par détermination de la pente de la droite $d\varepsilon_{22}^p = f(d\varepsilon_{33}^p)$ au cours d’un essai de traction.

En ce qui concerne l’anisotropie de contrainte, on observe sur les courbes de la figure (5.1) que les caractéristiques mécaniques sont légèrement supérieures pour les essais réalisés sur des éprouvettes prélevées dans la DL. Celles-ci sont sensiblement identiques pour les essais réalisés sur les éprouvettes à 45° et 90° de la direction de laminage. Cependant, l’anisotropie de contrainte est peu marquée pour cet alliage. En ce qui concerne l’anisotropie de déformation, le suivi de la déformation transverse permet de calculer les coefficients d’anisotropie à 0°, 45° et...
Partie II. Mise en forme des matériaux métalliques

90° par rapport à la DL. La déformation transverse est mesurée par la caméra et la déformation dans l’épaisseur est calculée par la relation d’invariance du volume plastique $\text{tr}(\epsilon^p) = 0$. Les coefficients d’anisotropie peuvent être mesurés de deux façons :

– soit par le rapport $\epsilon_{22}^p/\epsilon_{33}^p$ pris pour une valeur de déformation longitudinale $\epsilon_{11}^p = 0.1$. Ces coefficients sont les coefficients de Lankford,

– soit comme la pente de la courbe déformation transverse en fonction de la déformation dans l’épaisseur. Ces coefficients sont les coefficients de Hill (figure 5.2).

Au cours de nos essais, ces deux méthodes ont donné des résultats très proches. Cependant, la méthode de Hill a été retenue car elle donne des résultats plus reproductibles. Les caractéristiques mécaniques mesurées pour le module d’Young E, la limite d’élasticité conventionnelle $R_{p0.2}$ et les coefficients de Hill r_α représentent une moyenne obtenue sur 5 essais.

Le coefficient d’anisotropie moyen, qui caractérise l’anisotropie normale est déterminé par la relation $r_{\text{moy}} = (r_0 + r_{90} + 2r_{45})/4 = 0.73$. Sa valeur est relativement éloignée de 1 ce qui signifie que l’anisotropie normale est importante. Enfin, l’anisotropie planaire, mesurée par le coefficient $\Delta r = (r_0 + r_{90} - 2r_{45})/2 = 0.014$ est faible.

<table>
<thead>
<tr>
<th>Orientation</th>
<th>0°</th>
<th>15°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
<th>75°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (MPa)</td>
<td>72776</td>
<td>72745</td>
<td>72785</td>
<td>72884</td>
<td>73226</td>
<td>73771</td>
<td>74422</td>
</tr>
<tr>
<td>$R_{p0.2}$ (MPa)</td>
<td>151.3</td>
<td>152.5</td>
<td>153.0</td>
<td>153.0</td>
<td>153.5</td>
<td>153.4</td>
<td>153.8</td>
</tr>
<tr>
<td>r_α, Hill</td>
<td>0.738</td>
<td>0.736</td>
<td>0.730</td>
<td>0.726</td>
<td>0.729</td>
<td>0.739</td>
<td>0.742</td>
</tr>
</tbody>
</table>

Tab. 5.1 – Valeurs des caractéristiques mécaniques mesurées sur l’alliage Al5182-0 en fonction de l’orientation par rapport à la DL.

5.2.2 Essais de cisaillement

Les essais de cisaillement ont été réalisés sur un dispositif spécifique développé au laboratoire [Manach et al. (2001)] (voir figure 5.3). Cet essai revêt un grand intérêt pour l’étude expérimentale des lois de comportement, car dans le cas des tôles minces, c’est un essai qui comme l’essai de traction uniaxiale, peut être considéré avec une bonne approximation comme homogène [Rauch et G’Sell (1989)]. De plus, la symétrie du montage permet de réaliser des essais cycliques en inversant la direction de sollicitation. Ce dispositif est monté sur une machine de traction. Les éprouvettes de cisaillement sont de dimension $18 \times 50 \times 1.2$ mm3 et la largeur de la zone cisaillée de l’éprouvette est égale à 4.5 mm. Des essais de cisaillement monotone ont été conduits sur des éprouvettes à 0°, 45° et 90° de la DL, dans des conditions expérimentales identiques à celles de la trac-
Chapitre 5. Identification du comportement d’un alliage d’aluminium

5. Identification du comportement d’un alliage d’aluminium

tion, en utilisant la caméra numérique pour la mesure de la déformation de cisaillement. Les essais sont réalisés en imposant une vitesse de déplacement de la traverse de 0.5 mm/min, ce qui correspond à \(\dot{\gamma} = 2 \times 10^{-3} \text{ s}^{-1} \), \(\gamma \) étant le cisaillement imposé. On analyse l’essai de cisaillement dans l’hypothèse d’une cinématique de glissement simple. Dans ce cas, \(F \) s’écrit :

\[
F = I + F_{12} \, \vec{b}_1 \otimes \vec{b}_2
\]

(5.3)

Avec cette cinématique, la composante de cisaillement du tenseur des contraintes de Cauchy se déduit de la mesure de l’effort \(F \) selon \(\sigma_{12} = F/S \), la section \(S \) étant constante pendant l’essai. Les données observables au cours de l’essai sont le temps \(t \), le glissement \(F_{12} \) mesuré par la caméra numérique et la contrainte de Cauchy.

La figure (5.4) montre les résultats expérimentaux obtenus pour les orientations 0°, 45° et 90° par rapport à la DL. On observe que l’anisotropie de contrainte est négligeable. Au cours de ces essais, nous n’avons pas noté d’effet PLC pour ce mode de déformation. Enfin, des essais cycliques ont été réalisés de façon à mettre en évidence l’effet Bauschinger sur ce matériau, puis d’identifier les paramètres d’écrouissage cinématique du modèle utilisé pour la simulation numérique (voir figure (5.5)). Ces essais sont composés d’une charge jusqu’à différentes valeurs de cisaillement imposé (ici \(\gamma = 0.1, 0.2, 0.3 \)), puis d’une charge dans la direction opposée jusqu’à rupture. L’alliage étudié ici présente un effet Bauschinger, caractérisé par une limite d’élasticité à la rechargement plus faible que la contrainte atteinte en fin de charge.

5.2.3 Essais d’expansion biaxiale

Le bulge test est un essai de caractérisation des matériaux par expansion biaxiale permettant de déterminer le comportement mécanique d’un matériau en grandes déformations sous un état

FIG. 5.4 – Essais de cisaillement monotone à 0°, 45° et 90° par rapport à la DL.
Partie II. Mise en forme des matériaux métalliques

Fig. 5.5 – Essais de cisaillement Baushinger à 0° par rapport à la DL pour différentes valeurs du cisaillement imposé ($\gamma = 0.1, 0.2, 0.3$). Superposition d’un essai de cisaillement monotone.

Fig. 5.6 – Schéma de principe de l’essai d’expansion biaxiale.

biaxial de déformation (figure [5.6]). Cet état de déformation est couramment rencontré en emboutissage. Le dispositif est composé d’une matrice sur laquelle repose l’éprouvette, d’un serre-flan et d’un support de capteurs. Le serre-flan est maintenu sur la platine par le serrage de plusieurs vis serrées à couple constant (136 Nm). Un jonc est ajouté sous toute la périphérie du serre-flan de façon à supprimer l’écoulement de la matière et réaliser ainsi un encastrement. Les éprouvettes utilisées sont des flans circulaires de diamètre 325 mm, contenant 12 trous sur
Chapitre 5. Identification du comportement d’un alliage d’aluminium

tout le pourtour. Le gonflement de la tôle est obtenu par l’application d’une pression d’huile asservie par une pompe électrique et mesurée par un capteur de pression. Le suivi de la forme du flan au cours de l’essai est obtenu par trois capteurs de déplacement dont un est placé au centre de l’éprouvette, les deux autres étant diamétralement opposés à une distance de 50 mm du centre. L’exploitation des données recueillies au cours de l’essai est réalisée en considérant que la forme de l’éprouvette déformée est sphérique. Cette hypothèse permet de déterminer la déformation et la contrainte. La déformation logarithmique est calculée selon :

$$\epsilon = \ln \left(\frac{R}{a} \arctan \left(\frac{a}{R-h} \right) \right)$$

(5.4)

où a désigne le diamètre utile du flan, h le déplacement du capteur central et R le rayon de courbure tel que $R = (D^2 + \Delta^2)/2\Delta$ avec D la distance entre chaque capteur et Δ la différence de hauteur entre les capteurs radiaux et le capteur central. Cette définition correspond à une mesure locale de la courbure au voisinage du pôle. Dans le cas d’un comportement isotrope, la contrainte est directement donnée par la relation :

$$\sigma = \frac{PR}{2e}$$

(5.5)

avec $D = 50\text{mm}$, $a = 250\text{mm}$ et e désigne l’épaisseur de la tôle. Lors d’un essai d’expansion biaxiale, le gradient de la transformation est tel que F_{11} et F_{22} sont égales et imposées simultanément. Les données observables sont le temps t, les composantes F_{11} et F_{22} du tenseur gradient de la transformation et la contrainte de Cauchy calculée à partir de l’équation (5.5).

5.2.4 Essais de traction plane

Un dispositif de traction plane a été conçu pour cette étude. En effet, une forme d’éprouvette particulière [Vegter et al.(1999)] a été choisie pour obtenir un état de déformation plane selon la figure (5.7). Une des difficultés de cet essai est de garantir un état de déformation plane uniforme sur toute l’éprouvette, à savoir $\epsilon_{22} = 0$. En effet, à cause de l’état de contrainte uniaxial existant sur les bords de la zone utile de l’échantillon, il est nécessaire d’utiliser des éprouvettes dont la largeur est beaucoup plus grande que la longueur. La mesure de la déformation par caméra permet alors de vérifier que dans la zone centrale de l’éprouvette, la déformation transverse est quasiment nulle. Les essais ont été réalisés dans la DL uniquement. Lors d’un essai de traction plane, le gradient de la transformation est tel que seule F_{11} est imposée. Un essai de traction plane est considéré comme idéal lorsque $F_{22} = 1$. Cette condition n’étant pas imposée, le rapport longueur/largeur important permet de s’en approcher. Le tenseur des contraintes de Cauchy est :

$$\sigma = \sigma_{11} \vec{b}_1 \otimes \vec{b}_1 + \sigma_{22} \vec{b}_2 \otimes \vec{b}_2$$

(5.6)

La mesure optique permet de vérifier que la déformation transverse est quasiment nulle, (figure (5.8)). Les données observables sont le temps t, la composante F_{11} et la contrainte de Cauchy.
Fig. 5.8 – Evolution des déformations ϵ_{11} et ϵ_{22} en fonction du temps au cours d’un essai de traction plane.

5.3 Modèle de comportement

Le modèle utilisé dans cette étude a été introduit dans le logiciel SiDoLo [Pilvin(2003)]. C’est un modèle elastoviscoplastique à écouissage mixte (isotrope et cinématique) présenté dans le chapitre 4. Le comportement anisotrope du matériau est décrit par le critère de Barlat 1991 et l’écouissage cinématique est non linéaire défini par la relation (4.11). L’évolution de la variable d’écouissage isotrope R est choisie sous la forme de la loi de Hocket-Sherby :

$$ R = B \left(B - A \right) \exp(-C(\bar{\epsilon}^p)^n) $$

où A, B, C, n sont des paramètres caractéristiques du matériau. Il est à noter que la loi de Hocket-Sherby redonne la loi de Voce pour $n = 1$. Le modèle utilisé comporte donc 18 coefficients, à savoir :

E, ν	coefficients d’élasticité
a, b, c, f, g, h, m	coefficients du critère d’anisotropie de Barlat 1991
A, B, C, n	coefficients de l’écouissage isotrope (loi de Hocket-Sherby)
C_X, D_X, H_X	coefficients de l’écouissage cinématique
K, N	coefficients de viscosité

5.4 Identification et validation

Le matériau étudié est un alliage d’aluminium Al5182-O. Il se présente sous forme de tôles laminées à froid, de dimension 700×1200 mm2 et d’épaisseur 1.2 mm. L’identification des
paramètres est réalisée avec le logiciel SiDoLo [Pilvin(2003)]. La recherche d’un jeu optimum de paramètres, représenté sous la forme d’un vecteur \(\mathbf{A} \), est basée sur la minimisation d’une fonctionnelle \(L(\mathbf{A}) \) qui mesure l’écart entre les données expérimentales et les données simulées. Elle est définie par :

\[
L(\mathbf{A}) = \sum_{n=1}^{N} L_n(\mathbf{A})
\]

où \(N \) est le nombre d’essais de la base expérimentale et :

\[
L_n(\mathbf{A}) = \frac{1}{M_n} \sum_{i=1}^{M_n} \left(\frac{Z_{exp}(t_i) - Z_{sim}(t_i, \mathbf{A})}{\Delta Z} \right)^2
\]

avec \(M_n \) le nombre de points de l’essai \(n \), \(t_i \) l’instant d’observation, \(Z \) la grandeur observable et \(\Delta Z \) un coefficient de pondération [Pilvin(2003)].

La base expérimentale est constituée d’essais avec deux grandeurs observables, à savoir la contrainte et la déformation. Un coefficient de pondération est affecté à chacune de ces grandeurs observables, dont la valeur est choisie en fonction de l’incertitude sur les mesures expérimentales. Pour la contrainte de cisaillement, la valeur du coefficient de pondération est \(\Delta \tau = 2 \text{ MPa} \) et pour les essais de traction, \(\Delta \sigma = 3 \text{ MPa} \) et \(\Delta \epsilon = 0.001 \). La base d’essais initiale est composée de 3 essais de traction (à 0°, 45° et 90° de la DL), de 3 essais de traction prenant en compte la déformation transverse (à 0°, 45° et 90° de la DL), de 3 essais de cisaillement monotone pour les mêmes orientations et d’un essai de traction plane, d’un essai d’expansion biaxiale et d’essais de cisaillement Baushinger dans la DL. Certains coefficients sont fixés \((E = 73230 \text{ MPa}, \nu = 0.33, f = g = 1.0, m = 8) \), les paramètres de la partie visqueuse ayant été déterminés pour avoir une très faible influence de la vitesse de déformation tout en assurant une nombre raisonnable d’itérations de calcul \((K = 5 \text{ MPa.s}^{1/N} \text{ et } N = 5) \), ce qui correspond à une contribution visqueuse inférieure à 1 MPa. Compte tenu de l’évolution des courbes de rechange des essais Baushinger, un écouissage cinématique linéaire est considéré. Les valeurs des coefficients identifiés pour ce modèle se trouvent dans le tableau (5.2).

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(h)</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(n)</th>
<th>(H_X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al5182-O</td>
<td>1.070</td>
<td>1.018</td>
<td>0.9813</td>
<td>1.019</td>
<td>139</td>
<td>375</td>
<td>10.18</td>
<td>0.9547</td>
<td>60</td>
</tr>
</tbody>
</table>

Tab. 5.2 – Valeurs des coefficients identifiés avec le modèle de Barlat 91, un écouissage isotope de type Hocket-Sherby et un écouissage cinématique linéaire. \(A, B, H_X \) sont en MPa.

Les résultats obtenus lors de l’identification d’un essai de traction dans la DL sont présentés sur la figure (5.9). Il s’avère que l’anisotropie de contrainte, qui est faible sur ce matériau, est bien décrite pour toutes les orientations. En ce qui concerne les pics de relaxation observés sur les courbes simulées, ceux-ci sont dus à l’évolution non linéaire de la déformation en fonction du temps. Cette évolution saccadée, qui est une conséquence de l’effet PLC, est partiellement reproduite par ce modèle élastoviscoplastique. Par contre, on observe sur la figure (5.10) que l’anisotropie de déformation est moins bien modélisée. En effet, plusieurs études traitant de l’identification des paramètres de différents critères de plasticité [Wu(2002)] [Lademo et al.(1999)] ont montré également la difficulté de décrire à la fois l’anisotropie de contrainte et celle de déformation dans le cas des critères de plasticité tels que Hill 1948, Barlat 1991, etc. En utilisant le critère de Barlat 1991, il n’est pas possible de décrire correctement les courbes de contrainte-déformation en traction et les coefficients \(r_\alpha \). Un seul jeu de paramètres peut être
lissé à la fois. Ce problème peut être surmonté en définissant un critère dépendant de plus de paramètres indépendants, afin de décrire toutes les données [Barlat et al.(2003)].

La simulation des essais de cisaillement monotone de la figure (5.11) donne aussi de très bons résultats. En ce qui concerne les essais de cisaillement cycliques de la figure (5.12), il est nécessaire de prendre en compte l’écrouissage cinématique pour décrire l’effet Baushinger.
Chapitre 5. Identification du comportement d’un alliage d’aluminium

En effet, la simulation des courbes de cisaillement inverse a tendance à surestimer la valeur de la contrainte à la recharge si l’écrouissage cinématique n’est pas considéré. Par contre, dans ce cas précis, la modélisation par un écouissage cinématique linéaire n’est pas complètement satisfaisante et il semble que l’identification de l’écrouissage cinématique non linéaire permettrait d’améliorer la transition élastique-plastique lors de la recharge en cisaillement Baushinger. Ce travail est actuellement en cours. Enfin, les simulations des essais de traction plane de la figure...
(5.14) et d’expansion biaxiale de la figure (5.13) montrent que ces essais sont décrits de façon satisfaisante par ce modèle.

![Diagrama 1](image1.png)

Fig. 5.13 – Essais d’expansion biaxiale.

![Diagrama 2](image2.png)

Fig. 5.14 – Essais de traction plane à 0° par rapport à la DL.

Enfin, on note sur la figure (5.15) que la forme du critère de plasticité obtenu diffère sensiblement du critère de von Mises et du critère de Hill dans la partie comprise entre la traction équibiaxiale et la traction plane.
Ce dernier mode de déformation est fréquemment rencontré en emboutissage et constitue le point le plus bas des courbes limites de formage, c’est-à-dire le mode de déformation le plus sévère. On peut donc envisager une influence du critère de plasticité sur la prédiction des ruptures en emboutissage se produisant selon ce mode de déformation. Il est à noter que la forme du critère est peu affectée par la variation des paramètres issus soit d’une identification sur les essais de traction-cisaillement seuls soit d’une identification sur la base expérimentale complête.

Fig. 5.15 – Forme des critères de plasticité obtenus avec le critère isotrope de von Mises, le critère anisotrope de Hill 48 et le critère de Barlat 91 sur l’alliage Al5182-O.
Partie II. Mise en forme des matériaux métalliques
Chapitre 6

Emboutissage et retour élastique

6.1 Introduction

La simulation par éléments finis des processus d’emboutissage profond des métaux devient un outil fiable pour étudier l’emboutissabilité d’une pièce et on s’attend maintenant à ce qu’elle prévoit exactement les dimensions finales de la partie emboutie. Toutefois l’état local de contrainte, qui dépend fortement de l’histoire de déformation, est dans beaucoup de cas seulement estimé, menant à des prévisions dispersées sur la forme finale notamment dans le cas de l’aluminium. En effet, pendant le retrait des outils, le rétablissement partiel de la partie élastique de la déformation conduit à une modification de la géométrie obtenue après chargement. C’est le phénomène de retour élastique auquel de nombreuses études ont été consacrées afin d’améliorer sa prévision. Hors, pendant un processus d’emboutissage, les inversions de contrainte comme les changements complexes de chemin de déformation se produisent plus ou moins localement et affectent l’état final de contrainte. Il a été montré que le modèle d’écrouissage a une influence importante sur le calcul du retour élastique [Xia(2001)] et qu’un modèle d’écrouissage isotrope et cinématique combiné, qui permet de prendre en compte l’effet Bauschinger, conduit à un meilleur accord avec les résultats expérimentaux [Makinouchi(2001)].

L’objectif de ce chapitre est de mettre en évidence l’influence de la loi de comportement sur la réponse du matériau au cours d’essais d’emboutissage et de pliage. Les simulations numériques sont comparées par rapport à des résultats expérimentaux au cours de la phase de mise en forme et après retour élastique. Les procédés d’emboutissage considérés sont issus de benchmarks proposés lors des conférences Numisheet [Danckert et al.(1999)] [Yang et al.(2002)]. Le premier cas consiste à emboutir des godets cylindriques en deux étapes et dans deux directions opposées : le rapport d’emboutissage est de 1.7 dans la première étape et de 1.36 dans la deuxième étape. Un dispositif expérimental a été conçu pour réaliser ce test, afin de pouvoir être utilisé sur une machine de traction classique. Les données expérimentales mesurées se composent de courbes force-déplacement du poinçon et de distributions des épaisseurs dans le mur des godets à 0°, 45° et 90° par rapport à la DL. Le second cas consiste en un essai de flexion cylindrique sans contrainte (pliage). Un dispositif expérimental a également été conçu pour réaliser la flexion cylindrique de flans rectangulaires et une attention particulière à être apportée à la mesure de la forme du flan au cours de l’essai et après retour élastique. Parallèlement, des simulations numériques de ces tests ont été effectuées avec le code éléments finis DD3IMP en considérant plusieurs lois de comportement différentes. Les dispositifs sont décrits et les résultats obtenus sont présentés et comparés aux résultats expérimentaux.
6.2 Modèles d’écrouissage

Conformément aux spécifications du benchmark Numisheet99, les essais d’emboutissage inverse ont été réalisé sur une tôle d’acier doux de qualité emboutissage profond et d’épaisseur 0.98 mm. Trois modèles d’écrouissage différents ont été testés sur ce matériau. Le premier est un modèle à écrisage isotrope classique décrit par une loi de Swift (voir équation (4.9)). Le second est un modèle à écrisage mixte, l’écrisage isotrope étant modélisé par une loi de Swift et l’écrisage cinématique est non linéaire défini par la relation (4.11). Enfin, le troisième modèle est le modèle d’écrisage mixte de Teodosiu et Hu [Teodosiu et Hu(1998)], dont les variables internes sont liées à la microstructure de dislocation [Hiwatashi et al.(1997)].

En effet, sur ce type de matériau, on observe au cours d’un second trajet en cisaillement (voir figure (6.1), 2.1, 2.2, 2.3, 3), tout d’abord une première phase d’écrisage lors de la recharge, puis un adoucissement et enfin une reprise de l’écrisage. Lors du premier chargement monotone, les dislocations s’arrangent en structures planaires polarisées. Lors de l’inversion de la contrainte, ces systèmes de glissement sont actifs, mais dans la direction opposée. Ces structures se désintègrent progressivement par phénomène d’annihilation et une fois totalement disparues, le cisaillement crée de nouvelles structures de polarité opposées. Cet aspect microstructural de la déformation en trajet de cisaillement n’est pas pris en compte dans les deux premiers modèles. Par contre, on observe sur la figure (6.1) que le modèle de Teodosiu et Hu permet de modéliser cet aspect. La définition des paramètres de ce modèle peut être trouvée dans [Bouvier et Haddadi(2001)].

Les essais de flexion cylindrique ont été réalisé sur un alliage d’aluminium. Le matériau est une tôle d’aluminium Al6111-T4 et d’épaisseur 1.0 mm. Les propriétés mécaniques de ce matériau
Chapitre 6. Emboutissage et retour élastique

sont données dans [Yang et al.(2002)]. Comme dans le cas du matériau précédent, trois modèles d’écrouissage différents ont été testés. Le premier est un modèle à écrasement isotope décrit par une loi de Swift. Le second est un modèle à écrasement mixte, l’écrasement isotope étant modélisé par une loi de Voce (voir équation (4.10)) et l’écrasement cinématique est non linéaire du type de l’équation (4.11). Enfin, le troisième modèle est le modèle d’écrasement mixte de Teodosiu et Hu. Les paramètres caractéristiques de ces deux matériaux ont été identifiés avec SiDoLo, à partir d’essais homogènes de traction et de cisaillement par S. Bouvier au LPMTM [Bouvier et Haddadi(2001)], selon une procédure similaire à celle présentée dans le chapitre 5.

6.3 Étude expérimentale de l’emboutissage inverse

Le but de ce dispositif est d’emboutir successivement une tôle plane circulaire de diamètre initial 170 mm, premièrement en un godet cylindrique de diamètre 100 mm et deuxièmement en un godet de diamètre 75 mm, dans la direction opposée [Gélin et Picart(1999)]. On impose un écartement fixe entre la matrice et le serre-flan pour les deux passes d’emboutissage. La raison de ce choix est que sur certaines presses, il est difficile de contrôler la force de serre-flan alors qu’en spécifiant un écartement fixe de serre-flan, la plupart des laboratoires peuvent effectuer ce test [Danckert et al.(1999)]. Lors de la première étape, le dispositif est composé d’une matrice qui donne le centrage du flan (voir figure (6.2) gauche). La matrice a un diamètre intérieur de 104.5 mm et un rayon d’entrée de 8 mm. Le serre-flan est relié à la matrice par des vis. Pour calibrier l’espace entre le serre-flan et la matrice, des cales de réglage sont interposées entre les deux parties. Le poinçon a un diamètre externe de 100 mm, son rayon étant de 5.5 mm.

Fig. 6.2 – Représentation schématique du dispositif d’emboutissage inverse lors de la première étape (partie gauche) et lors de la deuxième étape (partie droite).

Le dispositif de la deuxième étape utilise la plupart des pièces de la première étape (voir figure [6.2] droite). En effet, à la fin de la première étape, le godet est laissé sur le poinçon creux.
qui constitue alors la matrice de la deuxième étape. Comme à la première étape, le serre-flan est relié à la matrice par des vis et placé à une distance constante de la matrice par des cales de réglage. Le poinçon de la deuxième étape est constitué d’un cylindre de diamètre 73.4 mm dont le rayon d’entrée est 8.5 mm. Afin d’obtenir des résultats reproductibles, une attention particulière a été portée sur l’alignement du poinçon, de la matrice et du serre-flan. Il est à noter que, contrairement aux presses d’emboutissage standard, plusieurs pièces doivent être retirées entre les deux étapes, ce qui conduit à des temps de manipulation assez importants.

Au cours des essais, la force sur le poinçon et le déplacement de la traverse sont enregistrés. Après la première étape, quelques godets ont été retirés du poinçon et gardés de côté pour effectuer une mesure d’épaisseur tandis que les autres étaient emboutis dans la seconde étape. Des photos de godets emboutis sont présentées sur la figure (6.3).

Les mesures d’épaisseur sont effectuées sur une machine à mesurer tridimensionnelle. Les coordonnées des points sont prises à l’intérieur et à l’extérieur du godet pour une même hauteur, l’épaisseur étant alors calculée. En raison de la courbure du godet près du fond, il n’était pas possible de mesurer l’épaisseur en-dessous de 7 mm pour la première étape et de 12 mm pour la deuxième étape. Enfin, la hauteur des cales de réglage du jeu matrice/serre-flan a été déterminée empiriquement de façon à avoir l’écartement le plus grand possible (pour ne pas serrer la tôle) tout en empêchant la formation de plis. L’écart a été augmenté jusqu’à ce que des plis soient observés sur les godets (voir figure (6.3)). Les écarts mesurés pour ce matériau sont 1.0 mm pour la première étape et 1.4 mm pour la deuxième étape.

6.4 Simulation numérique de l’emboutissage inverse

Le processus d’emboutissage inverse décrit dans la partie expérimentale a été simulé en utilisant le code éléments finis implicite DD3IMP. Dans ce code, le contact avec frottement est décrit par la loi de Coulomb et son évolution est contrôlée par une formulation mixte (cinématique et statique), utilisant une approche de type lagrangien augmenté. Le contact est traité entre une tôle déformable et des outils rigides modélisés par des surfaces de Bézier [Menezes et Teodosiu(2000)] [Alves et Menezes(2001)]. Compte tenu des conditions de symétrie, un quart du flan a été maillé. Le maillage est concentré et composé de 2016 éléments hexaédriques linéaires avec 2 couches dans l’épaisseur. Le coefficient de frottement fait partie des données du benchmark $\mu = 0.15$ pour un matériau lubrifié. Bien qu’il ait déjà été utilisé dans des études précédentes traitant de la comparaison entre des résultats expérimentaux et numériques [Ahmetoglu et al.(1995b)] [Barlat et al.(2003)], le coefficient de frottement n’est
pas ici un paramètre ajustable permettant de lisser les données expérimentales. Numériquement l’écart entre la matrice et le serre-flan est fixé à 1.13 mm pour la première étape et 1.4 mm pour la deuxième étape.

La figure (6.4) présente l’évolution de la force de poinçon pendant la première et la deuxième étape respectivement obtenues expérimentalement et avec les trois modèles d’écrouissage définis précédemment. La figure (6.5) montre la répartition de la déformation plastique équivalente avec le modèle à écrouissage isotope de Swift à la fin de chaque étape. Enfin, la figure (6.6) présente la répartition de l’épaisseur dans le mur du godet à 0°, 45° et 90° par rapport à la DL.

Fig. 6.4 – Courbes force-déplacement du poinçon expérimentales et numériques au cours de l’étape 1 et de l’étape 2.

Fig. 6.5 – Répartition de la déformation plastique équivalente au cours de l’étape 1 (figure de gauche) et de l’étape 2 (figure de droite).
Partie II. Mise en forme des matériaux métalliques

Fig. 6.6 – Distribution expérimentales et numériques de l’épaisseur dans le mur des godets après l’étape 1 (partie droite) et l’étape 2 (partie gauche) à 0°, 45° et 90° de la DL.

6.4.1 Étape 1

La force maximale atteinte pendant l’étape 1 est 80.8 kN pour un déplacement de 25 mm. En raison de la légère anisotropie du matériau, les godets présentent des cornes à 0° et à 90° par rapport à la DL, ce qui est cohérent avec le fait que le coefficient d’anisotropie r_{45} est inférieur à r_0 et à r_{90} [Marciniak et Duncan(1992)]. L’évolution de l’épaisseur est très semblable à 0° et à 90° de la direction de laminage mais est différente à 45°. Un amincissement de la tôle est noté au-dessus d’une hauteur d’environ 25 mm (entre 18 mmm et 30 mm) et un épaississement au-dessus. Au début, et en raison d’une force de frottement résistive élevée au niveau du serre-flan, le procédé de déformation implique un léger glissement de la tôle sous le serre-flan ainsi qu’une extension de la tôle située entre le rayon de la matrice et le rayon du poinçon. Cette extension provoque un amincissement de la tôle. Ensuite, la force totale diminue puisque la force résistive diminue. Une compression circonférentielle se produit alors et par conséquent un épaississement de la tôle. Une zone de transition, entre une épaisseur donnée au-dessous ou au-dessus de la valeur initiale, peut clairement être notée sur le godet, environ à mi-hauteur. Une telle évolution est typique d’un procédé de déformation par extension.

Les simulations numériques montrent une bonne adéquation par rapport aux résultats expérimentaux, en terme de force maximum atteinte et de largeur de courbe pour les trois modèles. Les courbes numériques commencent par une pente plus élevée que la courbe expérimentale en raison probablement des déformations élastiques des outils ou d’une fausse...
Chapitre 6. Emboutissage et retour élastique

rigidité du flan due à l’interpolation linéaire des éléments finis. Les oscillations sur les courbes simulées sont dues aux instabilités numériques liées au contact entre le maillage déformé et l’outil. En effet, quand on utilise un maillage concentrique, tous les éléments à un rayon donné entrent en contact avec l’outil en même temps. La présence de ces instabilités est liée au rapport entre la taille des éléments du maillage et le rayon de courbure des outils. Pour éviter de tels problèmes, la taille des éléments du maillage devrait être inférieure à 20% du rayon de courbure de la matrice, ce qui correspond à 1.6 mm pour la première étape (la taille du maillage est environ 3 mm). Mais une trop petite taille d’élément conduit à des temps de calcul prohibitifs.

On observe sur les distributions d’épaisseur de la figure (6.6) que l’épaisseur à 45° et à 90° de la DL est surestimée par le code, les écarts étant de l’ordre de 4-5 % à la fin de la première étape. Il semble que la répartition des épaississeurs ne soit pas sensible à la loi d’écrouissage puisque quelque soit le modèle on obtient les mêmes résultats. Par contre, on a observé que la répartition des épaississeurs est fortement influencée par les coefficients du critère de Hill. En effet, si les coefficients de Hill sont identifiés à partir des courbes contrainte-déformation et non pas à partir des coefficients \(r_\alpha \), cela conduit à un abaissement de la courbe force-déplacement (autour de 7%) et influence considérablement la distribution d’épaisseur. Il semble donc que la contrainte d’écoulement et les valeurs des coefficients \(r_\alpha \) ont une grande influence sur l’épaisseur, d’une manière découpée [Thuillier et al.(2002)]. Une étude traitant d’un processus d’emboutissage différent [Thuillier et al.(2001)] a montré également la sensibilité des résultats à la détermination des coefficients de Hill.

6.4.2 Étape 2

Pendant l’étape 2, la force maximale atteinte est de 73.6 kN pour un déplacement de 58 mm. L’évolution de l’épaisseur est semblable pour les trois orientations, jusqu’à environ 50 mm (voir figure (6.6)). On peut noter sur les courbes force-déplacement de la figure (6.4) qu’un changement de pente intervient au-dessus de 20 mm. En fait, le diamètre du godet à emboutir est de 100 mm et le diamètre de poinçon est de 73 mm. Par conséquent la première étape du processus est principalement une déformation de la tôle située sous le poinçon et qui n’a pas été déformée pendant la première étape. Ceci correspond à une première zone, presque linéaire, sur la courbe force-déplacement. Puis une transition a lieu, lorsque la partie déjà déformée commence à glisser entre la matrice et le serre-flan. En raison du frottement et de l’histoire de la déformation, ceci a pour conséquence un changement sur la courbe force-déplacement. La pente de la courbe force-déplacement est plus faible, correspondant principalement au glissement et à l’emboutissage du godet et est associée à un amincissement du mur. En effet l’épaisseur mesurée demeure plus faible qu’après l’étape 1, quelque soit l’orientation. Au-dessus de 50 mm, un épaississement important de la tôle à 45° de la direction de laminage est noté, jusqu’à 1.09 mm. On ne l’observe pas dans les deux autres directions. Il est certainement associé aux cornes formées à 0° et à 90° de la direction de laminage, comme dans le cas de la première étape. Le pic qui a lieu aux alentours de 40 mm est lié au passage de la zone épaissie du mur du godet après l’étape 1, entre la matrice et le serre-flan [Esche et al.(2000)].

On observe sur les courbes force-déplacement du poinçon (voir figure (6.4)) que l’influence de la loi de comportement est importante. En effet, les courbes obtenues numériquement surestiment la force, sauf pour le modèle de Teodosiu et Hu. Il s’avère donc dans ce cas que la prise en compte de l’écrouissage cinématique n’est pas suffisante pour décrire correctement la courbe de
la deuxième étape. Il semble donc que ce procédé mettent en jeu des changements de trajets de déformation importants qui mettent en évidence la pertinence de ce modèle. Comme dans l’étape 1, la distribution des épaisseurs obtenues numériquement est conforme aux résultats expérimentaux avec une tendance à surestimer l’épaisseur à 90° de la DL.

En ce qui concerne le dispositif expérimental lui-même, des déformations élastiques du serre-flan ont été envisagées, plusieurs auteurs ayant rapporté la difficulté d’empêcher les déformations élastiques de cette pièce [Shulkin et al.(1995)]. De plus, le dispositif a été placé sur une machine d’essai classique d’une capacité de charge maximum de 100 kN. Les expériences ont été alors effectuées dans une plage de force près du maximum. On s’est ainsi attendu à ce que se produise une déformation élastique de la machine, ce qui est un effet indésirable [Shulkin et al.(1995)]. Cependant, il est intéressant de noter que les courbes force-déplacement obtenues par les autres participants à ce benchmark sont proches les unes des autres, l’écart maximum étant de l’ordre de 11%, et diminue à 6% en ce qui concerne l’évolution des épaisseurs [Gélin et Picart(1999)]. La déformation élastique de la presse et du serre-flan semble donc ne pas avoir une influence significative sur ce type de procédé d’emboutissage profond.

6.4.3 Changement de trajets de déformation

L’amplitude de ces changements de la direction des vitesses de déformation peut être évaluée avec le paramètre β défini par :

\[
\beta = A_1 : A_2
\]

où \(A_i \) est le tenseur normé par rapport au deuxième invariant du tenseur vitesses de déformation à l’incrément \(i \) [Rauch et Schmitt(1989)]. \(\beta \) varie continuellement de -1 (inversion de la contrainte) jusqu’à 1 (chargement continu) en passant par 0 (chargement orthogonal). Le comportement du matériau pendant le deuxième trajet de déformation dépend de la valeur de \(\beta \) et présente un effet Baushinger ainsi qu’un plateau sur la courbe contrainte-déformation (\(\beta = -1 \)) ou un adoucissement (\(\beta = 0 \)).

Le tenseur incremental de déformation plastique \(\mathbf{d} \mathbf{\varepsilon}_p \) est donné à chaque incrément de la résolution de la méthode des éléments finis et \(\beta \) est calculé entre deux états correspondant
Chapitre 6. Emboutissage et retour élastique

6.5 Étude expérimentale du retour élastique

Dans cette partie, le phénomène de retour élastique est étudié expérimentalement sur un essai de flexion cylindrique. La géométrie des outils est donnée d’après un benchmark de la conférence Numisheet02 [Yang et al.(2002)]. Un flan rectangulaire de dimensions 120 × 30 × 1 mm³ est déformé dans le passage d’une matrice par un poinçon cylindrique sans l’utilisation de serre-flan. Un dispositif expérimental a été conçu pour cette étude et monté sur une machine de traction (voir figure (6.5)). La force est mesurée par une cellule de force de capacité 1 kN. Dans une première étape, le poinçon est placé en contact avec la tôle et le poinçon se déplace. Lorsqu’il atteint son déplacement maximum (28.5 mm), un éjecteur applique le flan contre le poinçon et il se déplace en sens inverse.

La vitesse de déplacement du poinçon est égale à 0.2 mm/s. En effet, dans la gamme 0.2 – 50 mm/s, aucune influence de la vitesse de déplacement du poinçon sur la courbe force-déplacement n’a été notée. Les essais ont été effectués sans lubrifiant. Les flans sont découpsés pour que la longueur de l’éprouvette soit dans la DL.
Fig. 6.8 – Schéma du dispositif expérimental pour la flexion cylindrique. A gauche : avant le déplacement de poinçon. A droite : flan plié après le déplacement maximum du poinçon.

Fig. 6.9 – Courbes force-déplacement du poinçon expérimentale et numérique pour l’aluminium Al6111-T4 dans la DL.

La courbe force-déplacement du poinçon est présentée sur la figure 6.9. La force maximum est atteinte à environ 23 mm puis pour les valeurs supérieures du déplacement on observe un glissement du flan entre la matrice et le poinçon. Pendant le processus, le bord du flan est suivi avec une caméra numérique haute résolution. Des images à niveaux de gris pour plusieurs valeurs du déplacement du poinçon (7, 14, 21, 28.5 mm respectivement et après retour élastique) sont enregistrées. Ces images codées sur 10-bit sont ensuite seuillées pour obtenir des images en noir et blanc afin d’extraire les contours du flan.
Chapitre 6. Emboutissage et retour élastique

Fig. 6.10 – Définition de la mesure des angles d’ouverture (à droite) et de contact (à gauche).

On considère deux angles différents définis sur la figure (6.10) : le premier est l’angle d’ouverture qui correspond à l’angle entre les deux parties droites de l’éprouvette. Cet angle est mesuré sur le contour extérieur du profil du flan à la fin de la charge et après retour élastique. Les valeurs mesurées de cet angle sont données dans le tableau (6.1) dans la colonne angle d’ouverture. Les valeurs présentées sont des moyennes de six essais et l’écart type est compris entre 0.2° et 0.6°.

<table>
<thead>
<tr>
<th>Angle d’ouverture</th>
<th>Angle de contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.5 mm</td>
<td>54.4 mm</td>
</tr>
<tr>
<td>21.0 mm</td>
<td>52.5 mm</td>
</tr>
<tr>
<td>21.4 mm</td>
<td>54.0 mm</td>
</tr>
<tr>
<td>21.4 mm</td>
<td>54.2 mm</td>
</tr>
</tbody>
</table>

Fig. 6.11 – Traitement d’images de mesure de l’angle entre les lignes de contact.

De plus, afin d’étudier l’évolution du contact au cours l’essai, la position des lignes en contact entre la tôle et avec le poinçon est étudiée (voir figure (6.10) gauche). Le procédé suivant est employé : le contour intérieur du profil est considéré pour un déplacement donné et le poinçon est représenté par un cercle, dont le centre est connu à partir de l’image (voir Fig.6.11). La distance d entre le contour de l’éprouvette et le cercle est calculée le long d’une direction radiale et les lignes de contact sont choisies lorsque la distance est minimum. Deux lignes sont alors définies, du centre du poinçon à chaque zone de contact et l’angle entre ces lignes est calculé. Cet angle est appelé angle de contact dans le tableau (6.1).
6.6 Simulation numérique de la flexion cylindrique

La simulation numérique de ce processus a été réalisée avec le code de calcul DD3IMP, en utilisant les trois modèles d'écrouissage décrits précédemment. Le flan est maillé avec 60×20 éléments hexaédriques quadratiques, et une couche d'éléments dans l'épaisseur. L'influence du maillage et du type d'interpolation (linéaire ou quadratique) a été testée et des résultats stables ont été obtenus pour une certaine taille d'éléments [Oliveira et al.(2002)]. On peut souligner qu'à la fin de l'étape de chargement, la déformation plastique équivalente maximum est de moins de 4%. Les résultats des simulations numériques obtenus avec les différents modèles sont présentés dans le tableau (6.1). La même méthode que pour les profils expérimentaux a été employée pour calculer les angles. On observe que les résultats numériques et expérimentaux sont très proches, les écarts étant souvent inférieurs à 2%.

Au cours de ce test, les déformations plastiques rencontrées étant relativement faibles, la figure (6.12) présente la répartition de la contrainte équivalente pour les trois lois constitutives étudiées. Les isovaleurs de la partie gauche de la figure correspondent à la fin de la descente du poinçon et celles de la partie droite à la fin de la phase de retour élastique, c'est-à-dire après le retrait des outils. On observe que les contraintes sont concentrées sous le poinçon alors que les bords sont libres de contrainte puisqu'il n'y a pas de serre-flan. Quelque soit le modèle considéré, la distribution de contrainte est du même ordre de grandeur à la fin de la charge et atteint environ 225 MPa. Cette valeur n'est pas homogène sur les peaux du flan à cause de l'effet anticlastique se produisant au cours de l'essai.

Par contre, après retour élastique, la répartition des contraintes est différente selon le modèle utilisé. La valeur de la contrainte équivalente moyenne est de l'ordre de 40 MPa pour le modèle à écrouissage isotrope de Swift, 65 MPa pour le modèle à écrouissage mixte de Voce et de 80 MPa pour le modèle de Teodosiu et Hu. Un tel écart provient de la prise en compte de l'écrouissage cinématique entre les deux premiers modèles. En fait, lorsque l'on utilise uniquement un écrouissage isotrope, on obtient un plus grand accroissement de la surface de plasticité qui conduit après décharge à une plus grande relaxation des contraintes résiduelles. Par contre, en utilisant un écrouissage cinématique, la relaxation des contraintes est plus faible car l'écrouissage isotrope est plus faible. Pour les deux modèles à écrouissage mixte, la différence est essentiellement due à l'évolution de l'écrouissage cinématique. En utilisant le modèle de Teodosiu et Hu, on observe que la valeur de X atteinte à la fin de la phase de charge est plus faible que celle atteinte avec le modèle à écrouissage mixte de Voce, ce qui conduit à une augmentation des contraintes résiduelles.

En ce qui concerne la prédiction des formes, aucune différence significative n'a été observée au cours de la phase de descente du poinçon entre les trois modèles. Ceci est dû d'une part, au fait que la forme de l'éprouvette est essentiellement gouvernée par les outils dans cette phase et d'autre part au fait que les déformations plastiques sont trop faibles pour mettre en valeur le rôle de la loi de comportement au cours de la charge. Par contre, en ce qui concerne la prédiction du retour élastique, les résultats du tableau (6.1) montrent que l'angle d'ouverture est mieux modélisé en prenant en compte l'écrouissage cinématique. Par contre, les différences entre les deux modèles à écrouissage cinématique est négligeable, probablement à cause de la simplicité de ce test qui ne fait pas intervenir des changements de trajets de déformation suffisamment importants.
Chapitre 6. Emboutissage et retour élastique

Fig. 6.12 – Répartition de la contrainte équivalente à la fin de la charge (figures de gauche) et après retour élastique (figures de droite). a) et b) correspondent au modèle à écrouissage isotrope de Swift, c) et d) au modèle à écrouissage mixte de Voce et e) et f) au modèle de Teodosiu et Hu.
Partie II. Mise en forme des matériaux métalliques
Chapitre 7

Mise en forme des aciers inoxydables

7.1 Introduction

Ce chapitre est consacré à la caractérisation et à la modélisation du comportement mécanique d’aciers inoxydables austénitiques stables et métastables et plus particulièrement à leur application aux procédés d’emboutissage profond. En effet, les aciers inoxydables métastables présentent au cours de leur déformation plastique une transformation martensitique induite. En dépit de nombreuses études sur l’instabilité de l’austénite des aciers inoxydables [Fang et Dahl (1991) Stringfellow et al. (1992) Nagy et al. (2003)], l’incidence de cette transformation martensitique induite sur leur aptitude au formage à température ambiante demeure mal appréciée expérimentalement et donc par conséquent numériquement. C’est pourquoi il est apparu intéressant de comparer les comportements en écrouissage et d’analyser leurs conséquences sur l’emboutissabilité de godets profonds dans le cas de deux nuances d’acier inoxydable austénitique, soit instable (du type AISI 304) soit stable (du type AISI 316L). La différence entre ces deux matériaux se situe essentiellement au niveau du taux de nickel, qui est plus faible dans le cas de la nuance 304, ce qui rend l’austénite instable au cours de la déformation plastique. Comme l’apparition de cette phase martensitique engendre des problèmes au niveau des procédés de mise en forme et notamment l’apparition de casses différées [Giraud et Baroux (1990)], il est nécessaire de développer des lois de comportement fidèles aux nuances austénitiques et prenant en compte cette transformation martensitique.

Dans une première partie, on présente un modèle micromécanique susceptible de prendre en compte l’évolution microstructurale du matériau ainsi que la comparaison de ce modèle par rapport à un modèle phénoménologique utilisant le critère de Hill. Dans une seconde partie, on présente la campagne expérimentale menée pour déterminer les paramètres des modèles étudiés sur les deux nuances d’acier. Cette campagne est composée d’essais de traction uniaxiale, de cisaillage simple et d’essais séquentiels de type prédéformation en traction suivie d’un cisaillage simple. Enfin, on compare les résultats obtenus avec ces deux approches sur la simulation numérique de l’emboutissage d’un godet cylindrique.

7.2 Modèle de comportement

On présente dans cette partie une approche micromécanique qui prend en compte la transformation de l’austénite en martensite ainsi que la différence de comportement entre ces deux
phases. L’objectif de ce modèle est de caractériser le comportement à l’échelle macroscopique (contrainte Σ, déformation E) à l’aide de la modélisation du comportement des phases présentes et de la prise en compte de la fraction volumique de chaque constituant. Le changement d’échelle est réalisé de façon à mettre en évidence les contraintes internes ainsi que l’hétérogénéité de déformation des phases. Cette démarche est illustrée sur la figure [7.1]. Pour simplifier l’étape de changement d’échelle, nous supposerons que l’austénite et la martensite ont le même comportement élastique isotrope.

La loi de comportement retenue pour chaque phase est de la même forme que dans le cas du modèle phénoménologique de Hill présenté dans le chapitre [4]. Le comportement de l’austénite (phase majoritaire) dans le matériau est représenté à l’aide d’un critère orthotrope, alors que, dans une première approche, le comportement de la martensite est supposé isotrope. Le critère de plasticité de la phase austénitique s’écrit sous la forme de l’équation (4.18). L’évolution de l’écrouissage isotrope est reliée à la déformation plastique cumulée p_A dans l’austénite selon l’équation (7.6). La loi d’évolution de l’écrouissage cinématique est donnée par la relation (4.11). En ce qui concerne la phase martensitique, l’écrouissage est uniquement isotrope, son évolution étant gouvernée par la déformation plastique cumulée dans la martensite p_M.

7.2.1 Description de la transformation austénite-martensite

Il est maintenant clairement établi que l’austénite des aciers AISI 304 subit une transformation martensitique induite par la déformation plastique à température ambiante [David(1990), Giraud et Baroux(1990)]. L’évolution de la fraction volumique de phase martensitique dans la phase austénitique peut être décrite, par exemple, par des lois de type [Olson et Cohen(1975)] permettant de rendre compte de la cinématique expérimentale de la transformation martensitique induite par la déformation plastique. Ces lois apparaissent en effet appropriées pour décrire cette cinématique dans une gamme de température comprise entre -200°C et 100°C [Choi et Won(1997)].

Dans cette étude, l’évolution de la fraction volumique de phase martensitique est décrite par la loi de Shin [Shin et al.(2001)], dérivée de la loi de Olson et Cohen, dans laquelle la transformation martensitique est considérée comme une relaxation continue de l’énergie de déformation interne accumulée durant la déformation plastique. Comme le modèle biphasé étudié calcule la déformation dans la phase austénitique, la fraction volumique de martensite formée dépend de la...
déformation plastique équivalente dans l’austénite ϵ_{eq}^A et non de la déformation macroscopique. Cette loi a été retenue car elle a été validée sur un intervalle de température correspondant aux températures atteintes au cours de nos essais (entre 20 et 50°C), qu’elle est établie à partir d’hypothèses métallurgiques et qu’elle s’exprime sous forme explicite (voir figure [7.2]). Ce dernier point implique que la loi sera plus facile à développer sous forme incrémentale lorsque les phénomènes de plasticité de transformation seront pris en compte. Cependant, dans cette étude, ces termes seront négligés.

![Figure 7.2](image)

Fig. 7.2 – Evolution de la fraction volumique de martensite en fonction de la déformation plastique pour différentes températures, obtenue avec la loi de Shin et al [Shin et al.(2001)].

Pour décrire le fait que la cinétique de la transformation dépend du trajet de chargement et en particulier qu’elle s’effectue plus rapidement en traction uniaxiale qu’en cisaillement simple [Lebedev et Kosarchuk(2000)], on suppose que le seuil de la transformation austénite-martensite dépend du taux de triaxialité des contraintes dans l’austénite $\chi(\sigma^A)$. La loi d’évolution de la fraction volumique de martensite f_M s’exprime donc en fonction d’un critère $g(\epsilon^A, \sigma^A)$ selon l’expression :

$$\dot{f}_M = n \beta_M [\max(0, g)]^{n-1} (f_S - f_M) \dot{p}_A$$ \hspace{1cm} (7.1)

avec :

$$g(\epsilon^A, \sigma^A) = \epsilon_{eq}^A - [\epsilon_0 + \epsilon_1 \chi(\sigma^A)]$$ \hspace{1cm} (7.2)

où f_S désigne la valeur de la saturation de la fraction volumique de martensite, β_M la vitesse d’évolution de la transformation, et ϵ_0, ϵ_1 décrivent la dépendance du seuil d’apparition de la transformation en fonction du taux de triaxialité des contraintes.

7.2.2 Transition d’échelles et homogénéisation

Le comportement étant défini individuellement pour les deux phases, l’objectif est à présent d’effectuer un changement d’échelle permettant de relier les variables de chacune des phases aux variables à l’échelle macroscopique du matériau. Cette transition d’échelle se déroule lors des étapes de localisation et d’homogénéisation [Zaoui(1990)]. Cette première étape de localisation vise à relier les variables mécaniques des deux phases, c’est-à-dire (σ^A, ϵ^A) et (σ^M, ϵ^M), aux
variables à l’échelle macroscopique (Σ, E). La transition d’échelle pour chaque constituant est décrite par une relation de la forme [Forest et Pilvin(1999)] :

$$\sigma^i = \Sigma + \frac{E}{2(1+\nu)}(B - \beta^i)$$

(7.3)

où $i = M, A$. L’expression des variables d’accommodation B et β^i introduites dans l’équation (7.3) est détaillée dans [Pilvin et al.(1996)]. L’étape finale consiste à obtenir le comportement moyen à l’échelle du volume élémentaire représentatif à partir de :

$$E = f_A \epsilon^A + f_M \epsilon^M \text{ et } \Sigma = f_A \sigma^A + f_M \sigma^M$$

(7.4)

avec la condition $f_A + f_M = 1$. Si l’on suppose que l’élasticité est isotrope et homogène dans les deux phases et que l’on néglige dans une première approche la plasticité de transformation, la vitesse de déformation plastique macroscopique est alors obtenue à l’aide de l’expression :

$$\dot{E}^p = (1 - f_M) \dot{\epsilon}_A^p + f_M \dot{\epsilon}_M^p + f_M (\epsilon_M^p - \epsilon_A^p)$$

(7.5)

Ce modèle nécessite donc la connaissance de la fraction volumique de martensite et comporte les coefficients matériaux suivants :

E, ν	coefficients d’élasticité
$R^A, Q^A_1, b^A_1, Q^A_2, b^A_2, C^A_X, H^A_X, D^A_X$	coefficients d’écrouissage de la phase austénitique
$R^M, Q^M, b^M_1, Q^M_2, b^M_1, C^M_X, H^M_X, D^M_X$	coefficients d’écrouissage de la phase martensitique
K, N	coefficients de viscosité

7.3 Identification du comportement des matériaux

Les matériaux étudiés sont des aciers inoxydables austénitiques, le X2CrNiMo17-12-2 (AISI 316L) et le X4CrNi18-9 (AISI 304). Les deux matériaux se présentent sous forme de tôles laminées à froid, de dimension $500 \times 500 \text{ mm}^2$ et d’épaisseur 0.8 mm dans un état final recuit brillant. L’évolution de la variable d’écrouissage isotope suit une loi de type Voce, telle que :

$$R = Q_1[1 - \exp(-b_1p)] + Q_2[1 - \exp(-b_2p)]$$

(7.6)

où Q_1 et Q_2 représentent l’amplitude de l’écrouissage isotope et b_1, b_2 la vitesse de saturation de l’écrouissage. La loi d’évolution de l’écrouissage cinématique est décrite par l’équation [11].

La base expérimentale est composée d’essais de traction et de cisaillement tels que ceux définis au chapitre 5 auxquels ont été ajoutés des essais séquentiels composés d’une prédéformation de 0.3 en traction suivie d’un essai de cisaillement monotone. Pour la contrainte de cisaillement, la valeur du coefficient de pondération est $\Delta \tau = 3 \text{ MPa}$ et pour les essais de traction, $\Delta \sigma = 5 \text{ MPa}$ et $\Delta \epsilon = 0.005$. Certains coefficients sont fixés ($L = M = 3$ et $E = 200 \text{ GPa}$, $\nu = 0.29$) ou déterminés manuellement à partir d’essais de sauts de vitesses, à savoir $K = 20 \text{ MPa.s}^{1/N}$ et $N = 15$ pour les deux nuances étudiées. Les valeurs des autres coefficients identifiés se trouvent dans les tableaux 7.1 et 7.2.

Les résultats obtenus lors de l’identification des essais mécaniques sont présentés sur les figures
Chapitre 7. Mise en forme des aciers inoxydables

<table>
<thead>
<tr>
<th>Matériau</th>
<th>F</th>
<th>G</th>
<th>N</th>
<th>R_0</th>
<th>C_X</th>
<th>D_X</th>
<th>H_X</th>
<th>Q_1</th>
<th>b_1</th>
<th>Q_2</th>
<th>b_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 304</td>
<td>1.62</td>
<td>0.55</td>
<td>5.83</td>
<td>234</td>
<td>11930</td>
<td>200</td>
<td>1010</td>
<td>696</td>
<td>0.026</td>
<td>373</td>
<td>3.6</td>
</tr>
<tr>
<td>AISI 316L</td>
<td>0.45</td>
<td>0.25</td>
<td>4.36</td>
<td>265</td>
<td>10800</td>
<td>244</td>
<td>648</td>
<td>466</td>
<td>0.013</td>
<td>503</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Tab. 7.1 – Valeurs des coefficients identifiés avec le modèle de Hill. Les valeurs de R_0, C_X, D_X, H_X, Q_1 et Q_2 sont en MPa.

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>F</th>
<th>G</th>
<th>N</th>
<th>R_0^A</th>
<th>C_X^A</th>
<th>D_X^A</th>
<th>H_X^A</th>
<th>Q_1^A</th>
<th>b_1^A</th>
<th>Q_2^A</th>
<th>b_2^A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austénite</td>
<td>1.66</td>
<td>0.91</td>
<td>4.84</td>
<td>282</td>
<td>32061.5</td>
<td>291.3</td>
<td>364.7</td>
<td>1545.2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>R_0^M</th>
<th>Q_1^M</th>
<th>b_1^M</th>
<th>f_S</th>
<th>ϵ_0</th>
<th>ϵ_1</th>
<th>β_M</th>
<th>D</th>
<th>Δ</th>
<th>D_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martensite</td>
<td>1200</td>
<td>550</td>
<td>1.01</td>
<td>0.45</td>
<td>0.05</td>
<td>-0.16</td>
<td>3.3</td>
<td>516.9</td>
<td>0.027</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Tab. 7.2 – Valeurs des coefficients identifiés avec le modèle biphasé. Les valeurs de R_0^A, C_X^A, D_X^A, H_X^A, Q_1^A, Q_2^A, R_0^M, Q_1^M sont en MPa).

(7.3) et (7.4) dans la direction de la laminage pour les deux nuances étudiées. La réponse du modèle biphasé est présentée pour la nuance 304 et la nuance stable 316L est simulée uniquement avec le modèle de Hill. Les deux modèles donnent des résultats satisfaisants pour les deux matériaux lors de la simulation des essais de traction et de cisaillement (monotones et Bauschinger).

Fig. 7.3 – Identification avec le modèle biphasé des paramètres matériaux de l’acier 304 à partir d’essais de traction monotone (1), de cisaillement monotone (2), de cisaillement de type Bauschinger pour $\gamma = 0.1$ (2.1), $\gamma = 0.2$ (2.2), $\gamma = 0.3$ (2.3), et d’un essai séquentiel (3).

Par contre, on observe sur la simulation des essais séquentiels dans le cas de la nuance 304, que le modèle biphasé améliore sensiblement la corrélation par rapport aux résultats expérimentaux. En effet, le modèle biphasé est initialement représenté par le comportement de l’austénite, qui est à l’origine la seule phase présente. Avec l’apparition de la phase martensitique, la contrainte augmente sous l’influence de la nouvelle phase et il apparaît donc que la prise en compte de
Partie II. Mise en forme des matériaux métalliques

Fig. 7.4 – Identification avec le modèle de Hill des paramètres matériaux de l’acier 316L à partir d’essais de traction monotone (1), de cisaillement monotone (2), de cisaillement de type Bauschinger pour \(\gamma = 0.1 \) (2.1), \(\gamma = 0.2 \) (2.2), \(\gamma = 0.3 \) (2.3), et d’un essai séquentiel (3).

La transformation martensitique diminue l’écart observé entre la courbe expérimentale et la simulation. Il est à noter que dans le cas de l’identification du modèle biphasé, on retrouve bien les valeurs couramment observées pour les limites d’élasticité \(R^A_0 \) et \(R^M_0 \) respectivement pour les phases austénitique et martensitique.

7.4 Simulation numérique de l’emboutissage d’un godet cylindrique

Les modèles identifiés précédemment ont été utilisés pour simuler l’emboutissage de godets cylindriques sur les deux nuances d’aciers inoxydables avec le code de calcul ABAQUS. On s’intéresse uniquement aux godets réalisés au cours de la première étape du dispositif d’emboutissage inverse (voir chapitre 6). La réalisation de godets expérimentaux sur ces matériaux a nécessité d’appliquer une force de serre-flan pour ne pas avoir de formation de plis. L’application de la force de serre-flan est obtenue par les serrage des vis reliant la matrice au serre-flan à la clé dynamométrique. Dans un premier temps, les calculs sont réalisés dans un cas axisymétrique et l’anisotropie n’est pas prise en compte. Le maillage est composé d’éléments quadrangulaires comprenant 4 éléments dans l’épaisseur et 200 éléments le long du rayon. Les outils sont définis par des surfaces analytiques. Le coefficient de frottement entre les outils et le flan est fixé à 0.11 ce qui correspond au lissage de la fin de la courbe force-déplacement du poinçon, c’est-à-dire lorsqu’il n’y a plus que du glissement. De façon à avoir une force de serre-flan réaliste, celle-ci est maintenue constante à 93 kN jusqu’à un déplacement du poinçon de 44 mm puis retirée. Les courbes force-déplacement sont présentées sur la figure (7.5) pour les deux matériaux.
Chapitre 7. Mise en forme des aciers inoxydables

Fig. 7.5 – Courbes force-déplacement du poinçon expérimentales et numériques obtenues sur les aciers 304 et 316L. Les courbes notées 2P se rapportent au modèle biphasé.

Les courbes obtenues avec le modèle de Hill montrent une bonne corrélation par rapport aux résultats expérimentaux pour l’acier 316L, notamment en ce qui concerne la force maximum atteinte. Concernant l’acier 304, il apparaît que le modèle de Hill surstime la valeur de la force dans la plage correspondant à un déplacement de poinçon de l’ordre de 10 à 35 mm. Par contre, le modèle biphasé conduit à une meilleure description de la courbe expérimentale jusqu’à ce que la force maximale soit atteinte. Le changement de courbure dans la gamme 10 à 35 mm de déplacement de poinçon est probablement dû à la transformation martensitique. La différence concernant la largeur de la courbe entre les courbes expérimentales et numériques à la fin du procédé peut provenir de la force appliquée par le serre-flan qui semble mal modélisée. Le saut observé sur les courbes numériques pour un déplacement de 44 mm est dû au retrait de la force de serre-flan. Expérimentalement, il semble que le serre-flan ne soit pas parfaitement rigide et que la simulation pourrait être améliorée en considérant un serre-flan déformable à la place d’un outil rigide. Ce point est actuellement en cours.

Mesures par courants de Foucault. De façon à caractériser expérimentalement l’évolution de la transformation martensitique ainsi que la localisation de chaque phase dans les godets, des mesures de courants de Foucault ont été réalisées sur les godets emboutis pour les deux nuances d’acier inoxydables. On utilise un dispositif expérimental composé d’une sonde Forster et d’un instrument de mesure de courants de Foucault Defectoscoop AF. Avant les mesures, on effectue une calibration de la sonde sur le fond d’un godet. Une fréquence d’excitation de 20 kHz a été choisie pour la mesure des courants de Foucault de façon à obtenir des courants d’une profondeur suffisante par rapport à l’épaisseur des godets. Le signal de la sonde est amplifié avec un gain de 30 dB. Le déplacement de la sonde le long de la surface extérieure des godets est réalisée en utilisant une table micrométrique.

La figure (7.6) présente la répartition de la fraction volumique de martensite dans le godet. L’axe de gauche est relatif à la répartition numérique sur les peaux intérieure et extérieure.
Fig. 7.6 – Evolution de la fraction volumique de martensite et des courants de Foucault en fonction de la distance par rapport au centre du godet sur le godet déformé.

du godet alors que l’axe de droite est relatif au signal réel donné par le dispositif de courants de Foucault. Concernant les courbes numériques, on observe un gradient sur la répartition de la fraction volumique de martensite entre les peaux intérieure et extérieure. Un pic apparaît près du nez du poinçon sur la peau située en traction alors que sur la peau en compression, il n’apparaît pas de martensite produite. Ceci est dû à l’évolution de la fraction volumique de martensite qui n’est pas symétrique en traction et en compression (voir équation (7.1)).

De même, en haut du mur du godet, la peau extérieure est en compression et la peau intérieure est en traction, ce qui conduit à une grande différence sur la répartition de la fraction volumique de martensite dans cette région. Enfin, dans le mur du godet, le gradient entre les peaux

Fig. 7.7 – Evolution de la fraction volumique de martensite en fonction du déplacement du poinçon en haut (A) et en bas (B) du mur du godet.
intérieure et extérieure est relativement faible puisque toute cette région est dans un état de traction plane. Concernant les mesures expérimentales, le signal enregistré par les courants de Foucault reste faible le long du mur d’un godet en acier 316L alors qu’on observe une évolution marquée de ce signal sur le godet en acier 304, dont l’évolution est similaire à celle observée au cours de la simulation numérique.

Enfin, la figure (7.7) présente l’évolution au cours du procédé d’emboutissage de la fraction volumique de martensite au sommet (point A) et au fond (point B) du mur du godet, à la fois sur la peau intérieure et sur la peau extérieure. La transformation martensitique apparaît d’abord près du nez du poinçon, c’est-à-dire dans la zone B. Dans cette zone, la transformation est plus rapide sur la peau intérieure que sur la peau extérieure, le rayon de courbure étant plus petit pour la peau intérieure. Cependant, à la fin du déplacement du poinçon, la fraction volumique de martensite atteint une valeur constante qui reste plus importante sur la peau extérieure, puisqu’il se produit plus de martensite en traction pour la même déformation plastique équivalente. Concernant la zone du point A, le gradient de fraction volumique de martensite est plus petit que dans la zone B mais un écart est aussi observé sur la courbe lorsque le flan passe sur le rayon matrice.
Partie II. Mise en forme des matériaux métalliques
Conclusion de la deuxième partie

Cette partie constitue une synthèse des activités de recherche que j’ai mené entre 1999 et 2004. Elles ont été consacrées principalement à la mise en forme des matériaux métalliques et plus particulièrement au procédé d’emboutissage des tôles minces. Contrairement à la première partie où la plupart des travaux ont été consacrés à la modélisation numérique, cette seconde partie traite de façon équitable les applications numériques et expérimentales. Plusieurs facettes de ce procédé ont été étudiées, à savoir, l’emboutissage de godets cylindriques, l’emboutissage inverse et le retour élastique. De même, plusieurs matériaux ont été étudiés : des aciers doux, des alliages d’aluminium et des aciers inoxydables. Une partie importante a d’ailleurs été consacrée à l’identification de lois de comportement particulières dédiées à chaque matériau. En ce qui concerne les simulations numériques, elles ont été réalisées essentiellement avec les codes de calcul DD3IMP et ABAQUS. La formulation des problèmes élastoplastiques en grandes transformations utilisée dans ces codes, ainsi que celle utilisée dans le logiciel d’identification paramétrique SiDoLo fait l’objet du chapitre 4.

Sur alliage d’aluminium particulier, on présente la stratégie d’identification utilisée avec le logiciel SiDoLo dans le chapitre 5. On détermine pour cet alliage les paramètres de la loi de Hocket-Sherby pour décrire l’écrouissage isotrope, les paramètres d’anisotropie du critère de plasticité de Barlat 1991 et les paramètres d’évolution de l’écrouissage cinématique. Ceux-ci sont déterminés à partir d’essais de traction et de cisaillement dans différentes orientations du plan de la tôle. La base expérimentale est complétée d’essais de traction plane, d’expansion biaxiale et de cisaillement de type Bauschinger. Les résultats obtenus montrent que le modèle permet de bien rendre compte des comportements observés aussi bien en traction qu’en cisaillement et que la forme du critère de plasticité obtenue diffère sensiblement du critère de von Mises et du critère de Hill. Il semble donc que l’utilisation de ce modèle lors de la simulation des procédés d’emboutissage des alliages d’aluminium aura une influence significative sur la prédiction des casses.

Une investigation expérimentale et numérique de l’emboutissage inverse de tôles d’acier doux est présentée dans le chapitre 6. Expérimentalement, la force du poinçon a été enregistrée et les épaisseurs à 0°, 45° et 90° par rapport à la DL ont été mesurées à la fin des deux étapes. Parallèlement, des simulations numériques ont été effectuées avec le code de calcul DD3IMP et trois modèles de comportement différents ont été testés. Les points suivants peuvent être soulignés :

− Les résultats expérimentaux et simulés présentent un écart inférieur à 10% au cours de la première étape quelque soit le modèle de comportement utilisé. Par contre, la simulation numérique de la deuxième étape a montré que la loi de comportement a une grande influence sur les résultats obtenus, notamment en ce qui concerne la courbe force-déplacement du
poinçon. Des trajets de déformations complexes ont été mis en évidence au cours de la deuxième étape, dont l’occurrence se produit lorsque le modèle de Teodosiu et Hu s’écarte des autres modèles.

– En ce qui concerne les prévisions d’épaisseurs, les résultats numériques ne dépendent pas du modèle d’écrouissage retenu. Seule l’épaisseur dans la direction de laminage est correctement prédite. L’épaisseur est surestimée dans les deux autres directions.

– Une meilleure prévision de l’épaisseur est prévue en améliorant la description du comportement anisotrope, en utilisant des paramètres matériaux identifiés à la fois à partir des courbes contrainte-déformation et des coefficients d’anisotropie.

– Les changements de chemin de déformation se produisent pendant les deux étapes du procédé d’emboutissage inverse. Ceci suggère qu’un modèle d’écrouissage uniquement isotrope ne permet pas de fournir une description précise du comportement matériel pendant les différentes étapes du procédé.

Le phénomène de retour élastique a aussi été étudié expérimentalement et numériquement dans le cas de la flexion cylindrique sans contrainte (voir chapitre 6). Le but de l’étude numérique était de mettre en évidence l’influence de la loi constitutive sur la prévision de l’état de contrainte et donc sur le retour élastique. Au cours du processus, la flexion est prédominante et le matériau est légèrement déformé plastiquement. Une étude expérimentale a été réalisée, permettant d’obtenir des résultats en termes de courbes force-déplacement et des différents angles liés à la forme après retour élastique et pendant la phase de descente du poinçon. L’étude numérique a été faite en utilisant trois modèles d’écrouissage différents, dont un uniquement à écrouissage isotrope, et deux à écrouissage mixte isotrope et cinématique. Dans les trois cas, on observe une bonne concordance avec les résultats expérimentaux. Cependant, on montre que la prise en compte de l’écrouissage cinématique permet d’améliorer la prévision de l’angle de retour élastique, ce qui aurait pu être plus marqué si les déformations plastiques et les changements de trajets de déformation avaient été plus importants. Un développement du dispositif est actuellement en cours d’instrumentation pour appliquer une force de serre-flan lors de la descente du poinçon. Ceci devrait permettre de faire varier les paramètres de retour élastique en augmentant la déformation plastique et les changements de trajets de déformation.

Enfin le chapitre 7 présente une étude consacrée à l’emboutissabilité d’aciers inoxydables métastables présentant une transformation martensitique induite par la déformation plastique. Une base de données expérimentale, constituée d’essais de traction et de cisaillement monotones à plusieurs orientations par rapport à la direction de laminage, d’essais de cisaillement Bauschinger et d’essais séquentiels traction-cisaillement a été établie sur deux nuances d’aciers austénitiques. Le premier matériau étudié est un acier X2CrNiMo17-12-2 stable (de type AISI 316L) et le second X4CrNi18-9 est instable (type AISI 304). Deux modèles de comportement ont été identifiés, à savoir un modèle phénoménologique de Hill et un modèle micromécanique.
à deux phases prenant en compte le changement de phase se produisant lors de la déformation plastique des aciers inoxydables austénitiques métastables.

Les résultats de l'identification du modèle biphasé montrent que ce modèle est plus proche de l'expérience que le modèle phénoménologique, notamment sur la description des essais séquentiels traction/cisaillement. Ces lois de comportement, intégrées dans le code de calcul ABAQUS, ont permis de simuler l'emboutissage d'un godet cylindrique tel que celui obtenu avec le dispositif du chapitre 6. Les simulations ont montré que le modèle biphasé donne une meilleure description de la courbe force-déplacement du poinçon, notamment lorsque la transformation martensitique se produit. On a observé que les simulations numériques pourraient être améliorées en considérant un serre-flan déformable au lieu d'un outil rigide. De plus, la simulation réalisée avec le modèle biphasé a permis d'avoir accès à la répartition de la fraction volumique de martensite induite par la déformation, répartition qui semble cohérente avec les mesures par courants de Foucault réalisées sur les godets expérimentaux.
Partie II. Mise en forme des matériaux métalliques
Perspectives

La synthèse des travaux présentés dans ce mémoire permet d’envisager un certain nombre de projets à plus ou moins longue échéance dans lesquels je compte m’impliquer. Tout d’abord, il s’agit de terminer les travaux engagés dans la thèse de S. Gallée concernant notamment l’étude de la loi d’évolution de la transformation martensitique et l’amélioration de la simulation numérique des godets cylindriques. Les activités s’orientent d’une part vers une caractérisation mécanique et métallurgique de la cinétique d’évolution de la fraction volumique de martensite et d’autre part vers la prise en compte d’une échelle plus fine du comportement, du type modèle polycristallin. Il s’agit donc d’effectuer des mesures de la fraction volumique en fonction de la déformation, de réaliser des mesures complémentaires au cours de changements de trajets de type traction/casement et de mettre en évidence la dépendance de la loi d’évolution en fonction de l’état de contrainte. Pour ce faire, il est nécessaire de calibrer notre mesure par courants de Foucault par rapport à des mesures de diffraction X. On envisage aussi l’utilisation d’un modèle d’homogénéisation polycristallin[1], qui prendra en compte la texture cristallographique du matériau et le mécanisme de déformation plastique par glissement.

Cette partie fait aussi l’objet d’un projet de recherche entre l’Université de Bretagne Sud et l’Escola de Engenharia Metalurgica UFF Volta Redonda au Brésil qui a été soumis en mai 2004 au COFECUB[2]. Ce projet de collaboration est articulé autour de plusieurs thématiques de recherche impliquées dans une problématique commune : la simulation numérique des procédés de mise en forme. Dans la thématique des aciers inoxydables, les chercheurs français impliqués sont P. Pilvin, S. Thuillier, P.Y. Manach et S. Gallée et les chercheurs brésiliens sont P.R. Rios, J.P. de Gouvêa, L.P. Moreira et M. Flavio. Il est à noter que cette étude sur les aciers inoxydables peut s’adresser aussi à des nuances récentes d’aciers, comme par exemple les aciers à transformation de phase, ou les aciers Dual Phase. En effet, les aciers multiphasés sont encore peu commercialisés, car leur comportement n’est qu’imparfaitement maîtrisé et mal modélisé. Le fait que ces matériaux sont pressentis pour être les aciers du futur, par exemple par les constructeurs automobiles, suscite un grand intérêt pour ces matériaux. Les développements numériques et expérimentaux qui sont réalisés pour l’emboutissage des aciers inoxydables pourront aussi être applicables à l’ensemble de ces matériaux industriels.

Une autre thématique déjà engagée concerne l’étude de la mise en forme des alliages d’alu-

minium. Ces alliages sont en effet de plus en plus utilisés dans l’industrie automobile, leur progression a été en moyenne de 6% par an et cette tendance devrait s’accélérer sous l’effet des besoins créés par les nouvelles normes annoncées, notamment au niveau du recyclage des

[2] Comité Français d’Evaluation de la Coopération Universitaire avec le Brésil
matériaux. Les constructeurs automobiles mais aussi les outilleurs sont amenés à travailler avec ces matériaux et rencontrent, comme nous l’avons vu dans le domaine de la mise en forme par emboutissage, des problèmes liés au choix des lois de comportement, à l’identification des paramètres ou à la prédiction du retour élastique. De plus, dans le domaine de l’assemblage, les matériaux sont soumis à des haute températures et leur comportement est sensiblement affecté (chute de la limite d’élasticité de quelques dizaines de MPa pour une variation de température de 200°C par exemple). Nous avons montré que les lois d’écrouissage traditionnellement utilisées dans les codes de simulation numérique ainsi que les critères de plasticité conventionnels ne permettent pas de rendre compte fidèlement des ruptures rencontrées sur les pièces en aluminium au cours des procédés d’emboutissage, alors que les résultats sont satisfaisants pour des aciers traditionnels.

1. L’analyse des lois de comportement existantes et le recensement des besoins industriels, pour répondre à une problématique actuelle. En effet, on constate un grand écart entre les lois de comportement développées dans les laboratoires de recherche et celles utilisées dans le milieu industriel. Cette différence s’explique par la difficulté à identifier les paramètres et à trouver un compromis entre un grand nombre de paramètres et la précision numérique recherchée. Cependant, l’augmentation des moyens de calculs repoussent les limites et les solutions de conception entièrement numériques nécessitent une prédiction très proche de la réalité, en particulier des lois de comportement qui sont au plus près du comportement des matériaux. Pour preuve, les codes de calculs par éléments finis métier commencent à intégrer des lois avec un écrouissage cinématique saturant. Mais leur utilisation nécessite la détermination d’un plus grand nombre de paramètres matériel. Les trois équipes ont une solide expérience des modèles : élastoviscoplastiques avec écrouissage mixte non linéaire, thermoviscoplastiques de type Anand et de façon plus originale, des lois avec prise en compte des changements de trajets de déformation.

2. La constitution d’une base de données expérimentales sur différentes nuances d’alliages d’aluminium (séries 1000, 5000 et 6000) qui sont utilisées dans l’industrie automobile. Les essais mécaniques sont des essais homogènes de traction, compression à l’ambiante et à haute température et des essais de cisaillement simple. Pour la construction de critères de plasticité, on a montré que des trajets de déformation supplémentaires, du type essai de traction plane et d’expansion équibiaxiale, permettent d’avoir une meilleure prédiction de la surface de charge.

3. Le développement d’une méthodologie d’identification des paramètres. Deux grandes approches sont classiquement utilisées : les méthodes de gradient et les méthodes de type

3Laboratoire CEMUC, Dept. Engenharia Mecânica, Professeur L.F. Menezes
4Dept. Engenharia Mecânica, Dr. P. Teixeira-Dias
Les trois équipes sont déjà impliquées dans ces thèmes : l'équipe de l'Université d'Aveiro est plus spécialisée dans le domaine des hautes températures, à la fois pour la caractérisation expérimentale et pour la modélisation ainsi que dans le développement d'algorithmes génétiques pour l'identification paramétrique. L'équipe de l'Université de Coimbra est spécialisée dans le domaine de la simulation numérique de procédés de mise en forme (elle a participé à un projet mondial 3DS sur ce sujet). L'équipe de l'Université de Bretagne Sud est compétente dans la caractérisation expérimentale du comportement mécanique à température ambiante, dans le développement de dispositifs simulatifs d'opérations de mise en forme (emboutissage de godets cylindriques, essai de pliage) et dans l'optimisation paramétrique utilisant une méthode de type gradient. Un travail commun a déjà été réalisé sur ces aspects ainsi que des échanges de personnes : séjours de S. Thuillier et P.Y Manach au CEMUC en 2001, séjour de Antonio Gil Campos en 2003 au LG2M.

Parallèlement, les développements qui seront effectués dans cette étude serviront de base à une étude expérimentale et numérique du retour élastique d’un alliage d'aluminium dans le cadre d’un contrat avec la société PCI. Elle constituera une étude globale de la simulation numérique du retour élastique et de sa corrélation par rapport à des résultats expérimentaux. En effet, comme nous l’avons vu, la prédiction du retour élastique dépend de l’état de contrainte et de déformation de la pièce en fin de chargement. Le choix de la loi de comportement (écrouissage, critère de plasticité) est donc particulièrement important. L’idée de l’étude est d’identifier un modèle polycristallin pour un alliage d’aluminium considéré, afin de construire une référence. Un modèle phénoménologique existant dans les codes EF métier utilisés par PCI sera alors comparé à cette référence. La simulation numérique du retour élastique sur une géométrie de laboratoire pourra être réalisée avec les deux modèles, pour mettre en évidence la pertinence de la loi de comportement sur la prédiction du retour élastique.

Une autre perspective est actuellement à l’étude avec la société PCI, pour maîtriser la simulation numérique du sertissage, procédé qui se situe en aval du procédé de mise en forme par emboutissage et qui est jusqu’à présent peu modélisé sur les alliages d’aluminium. En effet, la forme après retour élastique étant évaluée à partir d’abaques expérimentaux sur des géométries simples, la simulation des étapes consécutives à l’emboutissage donne des résultats aléatoires sur la géométrie finale après assemblage. L’idée est donc de mettre au point un benchmark
permettant de simuler le sertissage entre une pièce de peau et une pièce de doublure. L’étude regroupe plusieurs équipes de recherche et nécessite de simuler plusieurs opérations après emboutissage, à savoir, le tombage de bord, le prédéformation puis le sertissage. Les simulations numériques seront réalisées avec le code ABAQUS et l’influence du comportement matériau sera analysée en comparaison avec les codes métiers permettant de simuler ce procédé.

Enfin, à plus longue échéance, un nouveau projet va permettre de faire le lien entre les deux parties de ce mémoire. Cette étude s’inscrit dans le cadre général de la caractérisation du comportement mécanique des structures et des matériaux. Les thèmes abordés sont les lois de comportement, la simulation numérique par éléments finis, l’expérimentation mécanique, l’emboutissage et l’impact. Ces thèmes seront fédérés par la volonté d’appliquer une démarche globale du matériau et de son procédé de mise en forme par déformation plastique à son comportement ultérieur en service.

Ce projet concerne le lien existant entre le procédé de mise en forme d’une pièce et son comportement ultérieur en service sous sollicitations statiques ou dynamiques, en adoptant une démarche tant expérimentale que numérique. L’objectif est d’établir une passerelle entre les deux grands domaines de recherche que sont la mise en forme et le comportement sous sollicitations sévères, car ce dernier est bien évidemment conditionné par l’état final de la pièce à la fin de l’étape de mise en forme. Cette démarche est au cœur de préoccupations très actuelles, comme en témoignent par exemple le projet MACARENA\[5] ou les outils de simulation proposés par ESI Group (PamStamp2G, PamCrash, etc.), pour les matériaux métalliques.

Une première particularité réside dans le fait que la base de données expérimentales classique dont dispose le mécanicien des matériaux est élargie à des essais d’emboutissage simples, à des essais de traction rapide et à des essais d’impact sur échantillon et sur structures. L’objectif est d’être capable d’obtenir des modèles de comportement pouvant être utilisés à la fois lors de la simulation de la mise en forme de la pièce et lors de la simulation du comportement de la même pièce sous des conditions de chargement sévères. La deuxième particularité correspond au fait d’utiliser différents logiciels de simulation numérique, à la fois des codes commerciaux (LS-DYNA et ABAQUS) et des codes universitaires (HEREZH, DD3IMP), comme par exemple tous les développements relatifs à l’élastohystérésis. En maîtrisant le passage des informations entre les codes, on devrait pouvoir créer un environnement logiciel complet, permettant d’envisager la simulation de pièces ou de structures, du procédé de mise en forme jusqu’à son utilisation en service, qu’elle soit statique ou dynamique.

\[5\]Modélisation Au Crash de structures Réelles obtenues par Emboutissage, moNtage ou Assemblage (MACARENA), projet qui relève du Réseau National des Technologies Logicielles (2001) et dont l’objectif est le couplage entre la simulation de l’emboutissage et du crash
\[6\]Groupe de Recherche de la Région Bretagne en Mécanique des Matériaux
\[7\]Notamment entre le LG2M et le MA2G de l’INSA de Rennes, avec le Professeur E. Ragneau

En résumé, mes perspectives s’articulent autour de trois parties. La première est constituée par la thèse de S. Gallée sur les aciers inoxydables et doit être terminée dans un an. Il s’agit donc de finaliser les développements théoriques et d’amorcer la collaboration avec l’Université brésilienne de Volta Redonda. La deuxième partie relative au comportement des alliages d’aluminium a déjà été initiée au travers de contrats de recherche avec la société PCI depuis plus d’un an et devrait se poursuivre encore au moins deux ans. Elle consistera tout d’abord à améliorer la simulation du retour élastique puis à proposer une modélisation du procédé de sertissage. Ces études seront réalisées en partie dans le cadre d’une collaboration avec des laboratoires portugais, par des échanges de chercheurs et de doctorants. Enfin, la dernière partie plus ambitieuse, concerne la simulation numérique depuis le procédé de mise en forme jusqu’à la tenue en service. Cette étude devrait s’échelonner sur plusieurs années, puisque le G2RB2M vient de recevoir l’accord du Ministère par l’intermédiaire d’un contrat de plan Etat-Région pour une durée de quatre ans.
Références bibliographiques

[Francou(1995)] T. Francou, Modélisation numérique de la perforation d’une cible en acier doux par un projectile de petit calibre, Rapport DCN/STSN/CTSN, Direction Générale de

[Han(1985)] S. Han, *Le comportement d’hystérésis des solides et sa description par un schéma à mémoire discrète : le cas des aciers inoxydables*, Thèse de doctorat, Université Joseph Fourier, Grenoble (France), 1985.

Références Bibliographiques

