Skip to Main content Skip to Navigation
Theses

Exposants de Lyapounov et Densité d'Etats Intégrée pour des opérateurs de Schrödinger continus à valeurs matricielles.

Abstract : We study dynamic and spectral properties of two types of matrix-valued Schrödinger operators. The first one is an Anderson model and the second one is a point interaction model. We prove absence of absolutely continuous spectrum for both of these operators by proving sperability of their Lyapunov exponents, then we study the regularity of the Lyapunov exponents and of the Integrated Density of States associated to these operators. We prove that both of these quantities are Hölder continuous.
Document type :
Theses
Complete list of metadatas

Cited literature [62 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00264341
Contributor : Hakim Boumaza <>
Submitted on : Sunday, March 16, 2008 - 11:07:42 AM
Last modification on : Wednesday, December 9, 2020 - 3:11:59 PM
Long-term archiving on: : Friday, September 28, 2012 - 11:15:50 AM

Identifiers

  • HAL Id : tel-00264341, version 1

Citation

Hakim Boumaza. Exposants de Lyapounov et Densité d'Etats Intégrée pour des opérateurs de Schrödinger continus à valeurs matricielles.. Mathématiques [math]. Université Paris-Diderot - Paris VII, 2007. Français. ⟨tel-00264341⟩

Share

Metrics

Record views

343

Files downloads

208