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Introduction générale



Introduction

Durant les années 1970, les mathématiques financieres ont connu une révolution grace
a l'utilisation du calcul stochastique. D’une part par 'introduction de la notion de cou-
verture d’option par Black et Scholes [16], et d’autre part par l'article de Merton [53]
appliquant les techniques du controle stochastique au probleme d’investissement optimal
en temps continu. Depuis, de nombreux travaux ont cherché a enrichir ces probléemes en
tenant compte d’éléments tels que 'incomplétude des marchés, les cotuts de transaction ou
lilliquidité de certains actifs. D’autres recherches ont eu pour but d’affiner la dynamique
des prix des actifs financiers, afin de les rendre plus cohérents avec I’observation des données
de marchés.

Le marché des produits dérivés s’est considérablement développé depuis cette époque,

particulierement pour les grands indices boursiers tels que le S&P500 et ’'Eurostoxx 50.
Certaines options Européennes, telles que les calls et des puts sur ces indices, sont devenus
des actifs pour lesquels il existe un marché organisé. Pour ces grands indices, les banques
cherchent a fournir des payoffs de plus en plus complexes. Les options Européennes sont
alors utilisées par les banques pour couvrir les options exotiques contre le risque de varia-
tion de volatilité de l'indice. Il s’est récemment développé une nouvelle classe de produits
liquides : les swaps de variance (le VIX par exemple). Ils consistent & échanger un flux fixe
contre la variance réalisée de l'indice considéré. Ceux ci pourraient supplanter les options
Furopéennes en tant que référence de produit de couverture du risque de volatilité. Cepen-
dant, il existe encore de nombreux actifs pour lesquels il n’existe pas de marché d’options
liquides. Par exemple, sur des indices boursiers plus petits, les options sont sujettes a de
forts cotlts de transaction. A 'extréme, les options sur fonds d’investissements tels que les
mutual funds et les hedge funds sont vendues de gré a gré sans qu’il n’existe de cotations
ou de de liquidité pour de telles options. Nous sommes donc, dans ces cas la, dans le cadre
de marchés imparfaits.
La théorie du contréle stochastique est un excellent outil pour valoriser les options en
marché imparfait. En effet, elle permet de trouver les stratégies d’investissement permet-
tant la minimisation d’un critere de risque donné. Ceci est généralement fait en caractérisant
I’espérance du risque minimal comme solution d’une équation aux dérivées partielles de type
Hamilton Jacobi Bellman. Pour une introduction générale a cette discipline, on pourra se
référer au livre de Soner et Fleming [38] ou de Pham [59] dans le cas des applications & la
finance. Ensuite, il reste a résoudre numériquement cette EDP pour obtenir de bonnes solu-
tions approchées. Dans cette thése, nous utiliserons ces techniques afin obtenir des résultats
de pricing et de couverture d’options dans le cas de marchés imparfaits, dans 'optique de
pouvoir les appliquer aux options sur mutual funds et hedge funds. Les aspects a étudier
pour la couverture de telles options sont nombreux. Cette these est constituée de trois
parties indépendantes. La premiere concerne la surréplication sous contraintes gamma. La
deuxieme porte sur une approche du risque de volatilité. Enfin la troisieme et derniere par-
tie étudie les problemes de controle avec retard.

En ce qui concerne la liquidité des instruments de couverture, on peut tout d’abord
s'intéresser aux couts de transaction. Ceux ci rendent le marché incomplet et, mis a part
quelques cas particuliers, la réplication parfaite des produits dérivés est impossible. Dans
ce cas, on ne peut plus définir un prix unique par absence d’opportunité d’arbitrage. La
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situation est telle qu’il existe un intervalle de prix non arbitrables. Les travaux de Cvita-
nic, Pham et Touzi [28] ainsi que ceux de Ben Tahar et Bouchard [12] étudient ces bornes
d’arbitrage lorsque 'actif sous jacent d’'une option Européenne est soumis a des couts de
transaction. Ils étudient pour cela le probleme de surréplication de I'option, développé par
El Karoui et Quenez [36], en y incluant les cotts de transaction. Une autre possibilité est
d’étudier le prix par indifférence de 1'option, introduit par Hodges [45]. Celui ci donne le
prix pour lequel un agent caractérisé par une fonction d’utilité donnée sera indifférent a
vendre ou non une certaine quantité d’options. Dans leur article, Davis Panas et Zaripho-
poulou [31] utilisent un probleme de controle singulier afin de pouvoir caractériser par une
inéquation variationnelle 1'utilité optimale de 'agent ayant vendu l'option. Ceci permet
alors d’obtenir ce prix d’indifférence.

La premiere partie de cette these concerne une approche indirecte aux cotits de transaction
via la surréplication avec contraintes de gamma, développée par Cheridito, Soner et Touzi
[63], [23], [65]. Le probleme consiste & prendre comme point de départ un marché complet,
mais a réduire I’ensemble des stratégies de couverture admissibles. L’idée est de décomposer
la dynamique instantanée de la quantité d’actif détenue dans le portefeuille de ’agent en
une partie Brownienne et une partie a variation finie. La contrainte gamma consiste alors a
contraindre l'intégrand de la partie Brownienne a rester dans un certain ensemble convexe.
En d’autre termes, c’est une contrainte sur la volatilité de la quantité d’actif sous jacent
détenue par 'agent. Or, la partie Brownienne ayant presque strement une variation infinie,
elle implique théoriquement des cotits de transaction infinis. Intuitivement, la contrainte
gamma est donc susceptible de réduire en pratique les couts de transaction liés a la cou-
verture d’option. Dans cette these, nous étudierons plus particulierement le cas particulier
dégénéré pour lequel on annule la partie Brownienne. On contraint donc les stratégies a
étre a variation finie. Ceci impliquera ainsi un montant fini de cotut de transactions.

Dans une deuxiéeme partie, nous nous intéressons au parametre de volatilité. Celui ci
a lui aussi été l'objet d’attention depuis le krach boursier de 1987. En effet, c’est alors
qu’est apparu de maniere significative le smile de volatilité. Or, celui ci entre en contradic-
tion avec I’hypothese de diffusion Brownienne avec volatilité constante faite par Black et
Scholes. Plusieurs types de modeles ont cherché a expliquer ce comportent, notamment les
modeles & volatilité stochastique de Heston [43] ou de Hull et White [47]. Cependant, pour
espérer couvrir parfaitement une option dans un tel cadre de travail, il faut disposer d’un
instrument de couverture de la volatilité parfaitement liquide mais aussi pouvoir supposer
les parametres du modele fixés et parfaitement connus. Or, en pratique, ces conditions ne
sont pas toujours vérifiées.
Lorsqu’il n’existe aucun instrument de couverture de la volatilité, dans le cadre d’options
sur fonds par exemple, plusieurs approches sont possibles. Tout d’abord les méthodes stan-
dard de marchés incomplets. On peut utiliser le pricing par indifférence en résolvant des
problemes de controle réguliers dans le cadre markovien des équation HJB, comme dans
larticle de Musiela et Zariphopoulou [54]. Plusieurs travaux, par exemple ceux de Rouge
et El Karoui [61], ont aussi cherché & trouver le prix par indifférence dans le cadre des
équations différentielles stochastiques rétrogrades. On peut enfin, chercher la stratégie de
couverture donnant la variance minimale pour le prix de couverture. Pour une vue générale
du sujet, on pourra se référer aux articles de Pham [57] et de Schweizer [62]. Cependant,
dans tous ces cas, il est nécessaire de supposer la dynamique de la volatilité parfaitement
connue. Dans le cadre général d’incertitude sur le modele, on pourra par exemple se référer
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aux travaux de Cont [25]. Dans le cadre de 'incertitude sur le parametre de volatilité, en
revanche, il est possible d’utiliser les techniques de surréplication. Les travaux de Cvitanic,
Pham et Touzi [29] ont trouvé le prix de surréplication dans le cadre d’une volatilité sus-
ceptible d’évoluer dans I'intervalle des nombres réels positifs. Cependant, le prix obtenu est
alors un prix d’arbitrage statique trivial qui est inutilisable en pratique. Avellaneda, Levy
et Paras [3], puis Gozzi et Vargoliu [40] ont quand & eux considéré le cas ou la volatilité est
supposée rester dans un intervalle donné. Nous chercherons dans la troisieme partie de cette
these a généraliser ces méthodes, en considérant le prix de surréplication pour une volatilité
non bornée, mais nous chercherons a éviter les prix d’arbitrage triviaux en introduisant des
pertes tolérées en fonction de la trajectoire de volatilité.

Enfin, dans la troisieme partie, nous considérerons un type d’imperfection peu étudié :
le retard a ’exécution des ordres. En effets les ordres d’achat et de vente de parts de hedge
funds doivent étre déclarés un ou plusieurs mois avant de pouvoir étre exécutés. Ceci en-
tralne évidemment des complications lorsqu’il s’agit de couvrir des options sur un tel sous
jacent. Ce probléeme peut étre vu de deux maniéres différentes. Follmer et Schweizer [39]
considerent la couverture donnant une erreur de variance minimale dans le cas d’un retard
d’information. La solution est alors de projeter au sens de L? la stratégie optimale en infor-
mation parfaite sur la filtration retardée. Bar-Illan et Sulem [4], quand & eux, résolvent un
probleme de controle stochastique avec retard a ’exécution, en horizon infini avec une dyna-
mique linéaire. Récemment, Oksendal et Sulem [55] ont montré ’équivalence des probléme
de retard d’information et d’exécution. Cela aboutit a la résolution du probleme lorsque
la dynamique des processus controlés satisfait une certaine hypothese, restrictive pour cer-
taines applications en finance. Nous chercherons dans une derniere partie & étudier les
problemes de contrdles avec retard permettant de résoudre notre probleme de couverture
d’option avec retard.

1 Présentation des résultats de la premiere partie

1.1 Chapitre 1 : Probleme de contraintes gamma et obtention de I’équation
caractéristique

On considere un espace probabilisé (2, F, P). On considére un marché a trois actifs, et
un horizon T'. Le premier actif est 'actif sans risque. Comme nous considérerons les prix
actualisés, on suppose que son prix est constant et égal a 1. Le deuxieme actif, dont le prix
sera noté s, représente par exemple le prix d’un indice boursier. On considere qu’il n’y a
pas de dividendes. Enfin, le troisieme actif représente, par exemple, le prix d’un contrat
swap de variance ayant pour sous jacent le deuxieme actif. Son prix est noté x. Sa maturité
est supérieure a T pour qu’il n’y aie pas de dégénérescence de son prix en T. On suppose
que ces deux actifs suivent la dynamique :

Sf,s,x =5, X;;s,a: =
asy™ = Si*o (4, X0 ) aw}
dejS’x =—u (u, Xz,s,x) du + ¢ <t7XZ,s,a:> dWUI +¢ (t,Xf[s’x> qug

Ou (W', W?2) est un mouvement Brownien standard de dimension 2. L’actif = distribue
continiment des dividendes p(t,z). L’hypothése importante dans ce modele est que la
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volatilité o de 'actif s dépend uniquement de la date et du prix de 'actif 2. Nous verrons
dans la suite que les autres parametres de la diffusion n’ont que peu d’importance.
Pour couvrir I'option, I'agent peut utiliser les stratégies autofinancées de la forme :

T T
visenr —y i [Calerasyos 4 [ ) @X5 4 e, X0
t t

Le probleme posé est de trouver le plus petit prix de surcouverture d’une option payant
g(St) en T, avec g une fonction C? et bornée. Ce prix s’écrit de la maniére suivante :

v(t, s, z) = inﬂfg {y : Y%’S’x’y’” > g (S%S’x> p.s. pour un m € At,s,x}
ye

Nous ajoutons les hypotheses suivantes sur le payoff et les coefficients de la diffusion :

Hypothese 1.1. La fonction de payoff g est borné, C? et la fonction v — x2¢"(x) est
bornée.
Les fonction o? et u sont localement Lipschitz et a croissance linéaire sur (0,T) x (0, 4+00).

Il reste a décrire I’ensemble A; 5, des stratégies admissibles. Nous cherchons a limiter
les variations de la quantité d’actif x détenue par ’agent. D’une part car en pratique celui
ci pourrait étre soumis a des couts de transaction, et d’autre part car cela permettra de
s’affranchir de connaitre précisément la dynamique de . Pour cela, on impose, en utilisant
les contraintes gamma de Cheridito, Soner et Touzi [23], que le processus décrivant la
quantité d’actif x détenue par ’agent soit a variation finie. Les stratégies concernant I'actif
x seront donc contraintes a étre de la forme :

N-1 .,
nx() = Y olase+ [ adu)du,
n=0 t

Les stratégies sur s sont elles non contraintes et peuvent étre de la forme :

N—-1 Id T T
rs(r) = 3 gl + / as(w)du + / 7o (u)dSL® + / 2 ()X,
n=0

ou les 7', 7;' sont des temps d’arréts croissants en n, les yi, y; sont respectivement Frs et

Frs mesurables et les processus oy, s sont adaptés et borné presque strement. Pour des
raisons techniques, les processus v%* et %% doivent pouvoir s’écrire de la méme forme que
Ts.

Les différences avec les hypotheses de Cheridito, Soner et Touzi [23] sont les suivantes :

— Dans leur article, la matrice v est supposée étre symétrique. Dans notre travail, nous
ne le supposerons pas. On peut donc avoir, en théorie, v*% £ 4% . Par ailleurs les
contraintes ne sont pas les mémes pour ces deux composantes. Nous donnons, en
annexe, un résultat complétant celui de Cheridito, Soner et Touzi [24], permettant de
voir que cette asymétrie n’influe pas sur le résultat.

— De plus, dans leur cadre, la matrice v est contrainte d’évoluer dans un ensemble
convexe d’intérieur non vide. Ici, la contrainte v** = %% = 0, rend l'intérieur de
cet ensemble vide. Ceci modifie alors la forme de 'opérateur utilisé dans 'EDP, et
introduit I'importance de la condition au bord en z.



1. PRESENTATION DES RESULTATS DE LA PREMIERE PARTIE 11

On cherche dans cette partie a caractériser le prix de surréplication v (¢,s,z) par une
équation aux dérivées partielles. La notion d’EDP utilisée ici est celle de solution de visco-
sité. On pourra se référer a l'article de Crandall, Ishii et Lions [27] pour une introduction
a ce type de solutions. Pour décrire ’EDP dans notre cas on introduit ’opérateur :

F(t5$DuD2u):

2
a ( H x>*—%sa<t L= < ><t gg? |
ou A~ désigne la plus petite valeur propre de la matrice. Pour avoir une solution unique a

I’EDP, il faut caractériser le prix aux bord du domaine en t = T et en x = 0. On obtient
les conditions aux bord :

g e = 1.1
t/‘T,S’l—Ig,Z’—mU( '8 ,.ZU) g(s), ( )

lim v(t', s, 2"y = g(s). (1.2)

t'—t,s'—s,2'—0

On peut ensuite caractériser le prix de surréplication, en montrant qu’il est solution de
viscosité de 'EDP suivante, puis en prouvant 1'unicité de la solution de ’équation grace a
un principe de comparaison.

Theoreme 1.1. Le prixz de surréplication v est ['unique solution de wviscosité bornée de
[’équation :
F (t,s,w,Dv,D%) =0 (1.3)

sur le domaine [0,T) x [0,400) x [0, +00) vérifiant les conditions aux bord (1.1) et (1.2).
De plus v est continue sur son ensemble de définition.

Nous pouvons par ailleurs obtenir une autre représentation de ce probleme en utilisant
IPEDP caractéristique. En effet, ’équation (1.3) peut se réecrire de maniere équivalente :

v ov 1 28211 1 2 5, 0% v
- R JR— t
S;lll)){ x,u(t,m) + = 58 552 + (t, :E)S 2 + plo(t,x)s———

On définit alors la diffusion controlée suivante :

p7£7t7s7‘/1: p7£7t787‘7;
St X

=s et =
d55’£7t737x =0 (t’X'gvg:t’s»x) Sﬁ>£7tvszxdW’l}
dX57£7t757'r — _H <t’ X57£7t757x> du + gquvgvtzszxdW,g
<dW1},dW3> = Du,

ou (&, p) € U sont des controles. Leur ensemble admissible s’écrit :

T
U= {(p, ¢)a valeur dans [—1,1] x [0, +00), adaptés, t.q :/ E2dt < —i—oo} )
0

On obtient alors un résultat semblable & celui obtenu dans Cheridito, Soner et Touzi [24] :

Theoreme 1.2. Le prix de surréplication v admet la représentation suivante :

v(t,s,z) = sup E [ (St“( ))} . (1.4)

(pE)eU
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Ce résultat montre que le choix des coefficients de la diffusion du processus X n’a aucun
impact sur le prix. La surréplication dans ce cadre ne demande pas de connaitre ceux ci.
Ceci nous assure donc une robustesse de la stratégie de surcouverture, par rapport a des
parametres difficiles & mesurer. Néanmoins, pour étre parfaitement rigoureux, il faudrait
montrer que la stratégie de couverture ne dépend pas non plus de ces parametres.

1.2 Chapitre 2 : Algorithme de résolution numérique

Ce chapitre a été réalisé en collaboration avec O. Bokanowski, S. Maroso et H. Zidani.
Elle porte sur ’étude de la résolution numérique de 1’équation obtenue dans le chapitre
précédent. En effet, 'EDP (1.3) est sous une forme non standard. Pour résoudre ce type
d’équation, il existe deux grandes familles de méthodes : les méthodes probabilistes, et les
approches par EDP (différences finies, éléments finis). Nous utiliserons ici des méthodes par
différences finies. Nous commencons par changer la forme de I’équation en remarquant que
la plus petite valeur propre d’'une matrice symétrique .J s’écrit :

A (J) = ||Hhin1 ol Ja,

pour a € R%. L’EDP (1.3) s’écrit alors :

. ov ov
mlna%-"—a%:l { _O‘%E(tﬂ S, 1‘) + M(t7 x)a%%(t, S, Hf) (1'5)

1
—§tr[a(061; a9, ta S, x)Dzv(t, S, J})]} = 0’

avec

doront50) ( aro(t,z)s ) ( aro(t,z)s >T'

§(t, w)az g (t, )

on remarquera en particulier le terme en o2 devant le terme de dérivée en temps. Ce
terme peut s’annuler, ce qui est la principale particularité de ’équation. Celle ci peut étre
interprétée comme la prise en compte des cas ou £ — oo dans la formulation (1.4) de la
fonction valeur comme probléeme de controle, tout en gardant des coefficients bornés dans
I’EDP. Cette idée pourrait étre adaptée a d’autres problemes de controle non bornés.
L’autre difficulté du probléme vient de la matrice a, de rang 1. En effet, d’apres les travaux
de Kushner [33], la consistance des schémas de différences finies classiques nécessite une
matrice ¢ & diagonale dominante, afin d’obtenir une interprétation probabiliste. Ici, cette
condition n’est remplie que pour a; = 0 ou g = 0. Nous utiliserons donc un autre type de
schéma, fourni par Bonnans, Zidani et Ottenwaelter [18],[17]. Pour obtenir la consistance,
la discrétisation en espace utilise non seulement les points immédiatement voisins du point
considéré, mais aussi les points éloignés, afin prendre en compte un maximum de direction
de diffusions dégénérées. On obtient grace a cela un schéma consistant. Cette discrétisation
prend la forme :

Acop(t, o, y) = o(t, v + Gh1,y + Gha) + ¢, v — Gh1,y — (2ha) — 26(t, 2, y)

ot ¢ = (1, ¢2) € N? est la direction de la diffusion, et (hi, ha) sont les pas de discrétisation
pour chaque coordonnée spatiale. En ce qui concerne la discrétisation en temps, on utilisera
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un schéma implicite. En posant p = (p, h, At) € N x (0, +00)? on obtient ainsi un schéma
de la forme générale :

SP(t,s,z,r,¢) =  min { _ a§¢(f + AZ? r) -7 Y Wt qi)(t,;, z —h)

a%-{—a%:l
_% ZCE{07~~,P}2 7?170[2 (tv S, .’L’) [¢(t7 S — Clha r — CQh) —2r+ (z)(ta s+ Clha x + CQh)] }

Les coefficients v ne seront pas explicités dans cette introduction. Tout au moins, nous
pouvons dire qu’il y en a uniquement trois non nuls.

On prouvera que ce schéma satisfait les trois hypotheses principales assurant la conver-
gence :

Proposition 1.1. Le schéma (1.6) satisfait les hypotheéses classiques :
(S1) Monotonie : SP(t,z,y,r,u) > SP(t,x,y,r,v),
pour tout r € R, x,y € R* , u,v € C([0,7T] x [0,00)?) tel que u < v in [0,T] x [0, 00)2.

(S2) Stabilité : Pour tout p = (h, At,pmax) € (R%) x (0,T) x N*, il existe une solution
bornée vy, de (1.6).

(S3) Consistence : Pour toute fonction ¢ € C™([0,T] x [0,00)2), n > 4, a dérivées
bornées, si p = 0(%), et il existe C' t.q. Pmaz > % alors
o¢ 9¢
. 2 2
min ¢ — « t,8, )+
a§+a§{ Lot ( ) 1H y

—SP(t,s,x,9(t,s,x), qb)‘ = O(h) + O(At),

(t,s,x) — %tr[a - D?¢(t, s, ac)]}

pour tout (t,s,z) € [0,T] x (R%)2.

Il faut encore montrer I'existence d’une solution au schéma. Comme on considére un
domaine infini, nous montrons tout d’abord, a pas de discrétisation p et controle « fixé,
I’existence d’une unique solution bornée au systéme linéaire infini décrit par le schéma impli-
cite. Ensuite, nous utilisons ’algorithme de Howard [46] pour obtenir une suite convergeant
simplement vers la solution du schéma discret (1.6).

En utilisant la proposition 1.1, ainsi que les résultats de Barles et Souganidis [10] on est alors
en mesure de prouver la convergence de ’algorithme. On obtient finalement le théoreme
suivant :

Theoreme 1.3. Sous les hypothéses 1.1, si p satisfait les hypothéses de la proposition (1.1)

(S3), alors la solution du schéma discret converge localement uniformément vers v quand
h, At — 0.

2 Présentation des résultats de la deuxieme partie

2.1 Chapitre 3 : Valorisation d’option avec volatilité incertaine et tolérance
aux pertes

Cette partie concerne la valorisation et couverture d’options Européennes en présence
de risque de volatilité. Nous nous placons dans le cadre d’un marché comprenant d-+1 actifs
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financiers. On considere les prix actualisés. Celui de I'actif sans risque sera donc supposé
constant et égal a 1. Nous ne supposerons aucune dynamique particuliere pour la matrice
de volatilité. Les prix des actif risqués évoluent de la maniere suivante :

dSy = diag(S?)odWy

Ou W, est un mouvement Brownien standard de dimension d et ¢ € ¥ est un processus
de dimension d x d dont les caractéristiques seront données dans la suite. On cherche &
valoriser une option dont le payoff est g(St) en T', avec g une fonction continue et bornée.
Si on valorise une option dans le modele de Black et Scholes avec une volatilité &, on
obtient un prix PB%(t,s). On peut alors estimer les pertes potentielles par les formules de
robustesse de El Karoui, Jeanblanc et Shreve [35]. On obtient alors, dans un marché a un
seul actif risqué, une erreur de couverture Y7 de la forme :

T 2 pBS
1 _,0°P .

Cette formule a connu un grand succes parmi les praticiens, du fait de sa simplicité et de
la relation explicite entre la volatilité réalisée et les profits. L’idée dévelopée dans notre
travail est d’effectuer la démarche inverse. Nous allons partir d’'une formule de robustesse
pour aboutir au prix de I'option.

Lorsque l'on ne tolére aucune perte, (c.a.d Y7 > 0 p.s.), des réponses ont été apportées par
Cvitanic,Pham et Touzi [29] puis par Avellaneda,Levy,Paras [3] et Gozzi,Vargiolu [40]. Les
résultats dépendent alors de I’ensemble dans lequel la volatilité est susceptible d’évoluer.
Lorsque celle ci n’est pas bornée, on obtient des prix de surréplication correspondant a des
stratégies de couverture statique et triviales. En revanche, lorsque I'on suppose la volatilité
bornée, on obtient des prix non triviaux. Le probléeme est que si jamais la volatilité ne
vérifie pas ces bornes, on a alors aucun controle sur I’erreur de couverture de ’option. Nous
cherchons donc a combiner les avantages de ces deux points de vue.

Nous considererons donc une volatilité non bornée a priori, et nous admettrons des pertes
de la forme :

T
/ f(t, S, 02)dt.
0

ot f:[0,T] x R x Sy — R U {+oo}. Le prix de I'option avec cette tolérance aux pertes
s’écrira donc :

v(t,s) =inf {z € R: il existe m € A; tel que
z
T T
z —|—/ T dSE7 > g(S5>7) — / f(u, 857 0)du p.s. pour tout o € Z}
t t

Ici, A; est 'ensemble des processus adaptés tels que fOT ﬂtng’s’J est bornée presque sur-
ement pour tout o € ¥. ¥ est défini par :

Y= {0 = (Ut)te[o,T] processus adapté, borné p.s., a valeurs dans Si

T
t.q. / F(t,82% oy)dt est borné p.s. } .
0
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Si on tolere des pertes infinie lorsque la volatilité reste dans un certain ensemble et des
pertes nulles sinon, on retrouve alors les résultats de [40] et [3]. Pour caractériser le prix
ainsi défini, nous introduisons tout d’abord la transformée de Fenchel f de la fonction f :

f(t,s, A) = sup {;TT‘ (A02) — f(t,s, 02)} .

0-2
Nous introduisons ensuite les hypotheses techniques suivantes :
Hypothese 2.1. (i) Pour tout (t,s) € [0,T] x R%, la fonction :
o2 — f(t,s,0°%)

est conveze et semi continue inférieurement.
(ii) La fonction f est continue par rapport d (t,s) uniformément en (t,s,c?).
(iii) La fonction f est bornée inférieurement, et il existe une fonction bornée :

o:(0,+00)? — 8¢
(t,s) — o(t,s)

et une constante C telle que f(t,s,0?(t,s)) < C, pour tout (t,s) € [O,T] x (0, +00).
(iv) Pour tout € > 0, il existe K. tel que :

f est K. — Lip dans int.(dom (f(t, S, .)))V(t, s)

et 0 € int (dom(f(t, s, ))) V(t,s)

D’apres la forme donnée au prix, le contexte naturel serait d’utiliser le cadre de surréplication
de Soner et Touzi [64]. Cependant, le principe de la programmation dynamique pour la sur-
couverture avec incertitude sur la volatilité a été uniquement prouvé dans le cas borné
par Denis et Martini [32]. Pour éviter ce probléme, nous introduisons donc le probleme de
controle standard :

T

w(t, s) = sup E[g(Séls’U) — / f(u, L7 a2)dul,
oex t

qui, d’apres les travaux de El Karoui et Quenez [36] dans un contexte légerement différent,

devrait avoir la méme valeur que le prix v. Nous utiliserons la caractérisation du prix par

EDP pour montrer cela. Nous introduisons d’abord l'opérateur G défini par :

inf {]B\ t.q A+ B ¢ dom(f(t,s,.))} si A € dom(f(t,s,.))

G(t,s,A) = ‘ N ‘
_inf {\B[ t.q. A+ B € dom(f(t, s, .))} si A ¢ dom(f(t,s,.))

Grace aux hypotheses formulées, on peut prouver que G ne dépend pas de (¢, s). On le note
donc G(A). On définit enfin 'opérateur :

F(t,s,p, B) =sup {min {—p — f(t, s, diag[s] Bdiag[s] — A) , (2.1)
A>0
140G (diag[s|Bdiag[s]) — tr (A)}} .

L’opérateur a cette forme particuliere afin de pouvoir controler son comportement lorsque

o tend vers l'infini, ce qui pourrait entrainer des valeurs infinies du Hamiltonien écrit sous
forme standard. On peut alors prouver le théoreme suivant, caractérisant la fonction w.
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Theoreme 2.1. Si les hypothéses précédentes sont vérifiées, alors w est continue et est
l'unique solution de viscosité bornée de l’équation :

ow
F(t,S, E,DSU}) =0
satisfaisant la condition terminale w(T—,.) = g, ot § est caractérisée comme ['unique
solution de viscosité de l’équation :
min {§(s) — g(s), G(diag|s] D?jdiag [s])} = 0. (2.2)

Il reste enfin & prouver que la fonction w est bien celle que 'on cherche. La preuve que
v > w est quasiment immédiate, en utilisant un argument de surmartingale. En revanche,
la preuve de v < w est basée sur un argument de couverture faisant appel a 'EDP vérifiée
par w, et a des procédures de régularisation de cette fonction pour pouvoir lui appliquer la
formule d’It6. On obtient finalement :

Theoreme 2.2. Les fonctions valeur des deuxr problémes sont égales :

vV =w

3 Présention des résultats de la troisieme partie

3.1 Chapitre 4 : Probleme de controle optimal avec retard a ’execution

Dans cette troisieme partie, réalisée en collaboration avec Huyen Pham, nous considérons
un probleme de controle pour lequel les actions de I’agent prennent effet avec retard. Cette
étude a été motivée par le probleme de couverture d’options dont le sous jacent est un
hedge fund. Ce type de fonds ayant récemment connu un succes grandissant aupres des
investisseurs, les banques commencent a les utiliser comme sous jagent des options qu’elles
émettent. Cependant, ceux ci posent des problemes de liquidité. En effet, les parts de hedge
funds sont des actifs qui ne s’échangent pas au sein de marchés organisés. Au contraire,
elles sont achetées et vendues directement auprés du gérant du fonds. Celui ci crée donc
de nouvelles parts lors des demandes d’achat, et les liquide lorsque des ordres de ventes
sont passés. Or, la plupart de ces fonds investissent dans des actifs eux mémes illiquides.
Du temps est alors nécessaire pour trouver de nouvelles opportunité d’investissement, ou
pour liquider une partie de leurs actifs. La solution pour le gérant du hedge fund est alors
d’imposer aux autres agents de déclarer leurs ordres d’achat ou de ventes de parts un ou
plusieurs mois & ’avance. Bien sur, une fois 'ordre déclaré, il n’est plus possible de I’an-
nuler. Le prix auquel 'agent effectuera la transaction sera celui de la part au moment de
I’exécution et non du passage d’ordres.

Lors de la couverture d’une option sur un tel sous jagent, les ordres passés par 1’agent
subissent donc un retard d’un ou plusieurs mois. La couverture sera donc imparfaite, et il
convient d’utiliser un critére tel le prix par indifférence de Hodges [45].

Pour pouvoir le mettre en oeuvre, nous avons choisi d’étudier de maniere générale un classe
de probleme de controles impulsionnel avec retard. Pour une introduction au controle im-
pulsionnel, on pourra se réferrer au livre de Bensoussan et Lions [13]. Dans notre probleme,
nous considérons un processus X, d-dimensionnel. Lorsque 1’agent n’agit pas, sa dynamique
est données par I’EDS suivante :

dX, = b(X,)ds+ o(X,)dWs,
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ou Wy est un mouvement Brownien standard de dimension n, et b : R — R et ¢ : R? —

R¥*™ satisfont les conditions de Lipschitz usuelles.

A tout temps d’arrét 7;, ’'agent peut décider d’agir sur le systéme en passant une impulsion
& basée sur l'information disponible en 7;. Cependant, cette impulsion prendra effet avec
retard en 7; + mh, ou (m,h) € N x (0,+00) sont des constantes. Le systéme subira alors
I’évolution suivante :

X(ziemh) = DXy 4mn)-» i)-

On suppose que la fonction I' est continue, et satisfait une condition de croissance linéaire.
L’ensemble des contréles admissibles s’écrit :

A = {a = (73,&)i>1 : 7 est un t.a., & est Fradapté, 741 — 73 > h}.

On constate ci dessus que 'on impose un temps minimal h entre deux interventions de
l’agent. En se donnant un contrdle o € A, et une condition initiale Xy € R, le processus
controlé X est alors solution de 'EDS :

Xs=Xo+ /0 b(Xu)du + /0 O'(Xu)qu + Z (F(X(Ti—f—mh)*vfi) — X(n-{—mh)*)'
Ti+mh<s

Le but du probleme est de maximiser I'espérance du gain de ’agent en 1T'. Ceci s’écrit :

T
Vo= supE | [ FXds+g(XR) 4 Y el &)
acA 0 Tt mh<T

On suppose que les fonctions de gain terminal g, de gain continu f et de gains aux tran-
sactions ¢ sont continues et satisfont une condition de croissance linéaire. Nous supposons
aussi, afin de pouvoir obtenir la continuité de la fonction valeur :

Hypothese 3.1. Les fonctions I', g et ¢ vérifient :
9(x) = g(T(z,e)) + c(z,e)
pour tout (x,e) € RY x E.

Cela entraine qu’il n’est jamais optimal de passer une impulsion en T — mh.
Nous cherchons ensuite a obtenir un systeme Markovien. Pour cela, nous devons introduire
une variable supplémentaire, p, représentant les ordres passés mais non encore exécutés.
Notons que grace a notre contrainte imposant un temps minimal h entre deux interventions,
il y a au plus m ordres en attente. A une date t € [0,7], si il y a k € {0..m} ordres en
attente, cette variable p appartient a ’ensemble :

Bg(k’) = {p = (ti,ei)lgigk (S ([O,T — mh] X E)k =t > h, 1= 2, .. .,k,
t—mh<m§uizlwuﬁ}

On peut ensuite définir les controles admissibles a partir d’une date ¢ et d’un ensemble
d’ordre en attentes p :

At’p = {a = (Ti7§z‘)i21 cA (Ti,fi) = (ti,ei), 7= 1, .. .,k and Th+1 > t}.
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Ceci permet alors de définir la fonction valeur du probleme démarrant en (¢, z,p) :

T
vp(t, z,p) = sup E / JXEE0)ds + g(XP) + Y e X6 |
acA t Titmh<T

le processus X admettant  comme condition initiale en ¢. Enfin, on note Dj, le domaine
de définition de vy, :

Dy = {(t.z,p) : (t,x) € [0,T] xR, p e Py(k)},
que 'on partitionne en deux sous ensembles :

D, = {(t,z,p) :(t,x)E[O,T}de,pEPt(k)t.q.tk+h>tout>T—mh}
D} = {(t,z,p) : (t,x) € [0,T] xR, p € Py(k) t.q. ty, +h <tett>T —mh}

Le théoreme suivant énonce le principe de la programmation dynamique utilisé pour ca-
ractériser la fonction valeur.

Theoreme 3.1. On note :

(t,a) = inf{i>1 :m >t—mh} -1 € NU{oo},
k(t,a) = card{i>1 :t—mh<7 <t} € {0,...,m},
p(tv 04) = (Ti-f—b(t,a) ) 57L+L(t,oz))1§i§k(t,o¢) € Pt(k(tv Oé))

La fonction valeur satisfait alors le principe de programmation dynamique suivant : pour
tout k = 0,...,m, (t,x,p) € Dy,

0
wltap) = swp B[ [ OEraass Y oX(Thn, 6)
acdip -t ri+mh<0
+ Ok, (6, X5 p(0, ). (3.1)

pour tout temps d’arrét 6 a valeurs dans [t,T], dépendant éventuellement de o dans (3.1).

Ce principe de la programmation dynamique nous permet alors de montrer la ca-
ractérisation des fonctions valeurs en termes d’EDP. Tout d’abord nous donnons les condi-
tions terminales :

Proposition 3.1. (i) Pour k = 1,...,m, p = (tj,e;)1<i<k € OF X EF e RY, wp((t +
mh)~,x,p) existe et :

ve((t1 +mh) ", z,p) = c(z,e1) +vg—1(t1 + mh,T(z,e1),p-). (3.2)
(ii) Pour k =1,...,m, on a :
r 0
wltap) = E[ [ F00050)ds+ 005, (33)
t

pour tout (t,x,p) € Dy t.q. t1 + mh > T.
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En utilisant le principe de programmation dynamique pour montrer que la fonction
vérifie 'EDP, puis un théoréme de comparaison pour montrer I'unicité de la solution sachant
les conditions au bord, on obtient le résultat principal.

Theoreme 3.2. La famille de fonctions valeurs vi, k = 0,...,m, est l'unique solution de

viscosité des équations

0
—%(t,x,p) — Lug(t,z,p) — f(x) = 0 sur D;’m, k=1,...,m, (3.4)
0
min{ _%(tv va) - £’Uk<t7xap) - f(x) )
vg(t, z,p) — sup vgq (¢, z, p U (t,e))} =0 sur Di’m, E=0,...,m—1(3.5)
eck

satisfaisant les conditions aux bords (3.2)-(3.3), une condition de croissance linéaire, et
linégalité :

%(ta x7p) Z Supvk+1(t,x,p U (tu €)>,
eck

pour toutk =0,...,m—1, (t,x,p) € Di, p = (ti, €i)1<i<k, tel que t = tp+h out =T —mh.
De plus, vi. est continue sur Dy, k = 0,...,m.

3.2 Chapitre 5 : Résolution numérique du probleme de controle avec
retard

Dans ce chapitre, nous cherchons a approximer numériquement les fonctions valeurs vy,
k=0,...,m décrites dans le probleme de controle impulsionnel avec retard du chapitre 4.
Les évaluations numériques de problemes de controle impulsionnel ont fait I’objet de nom-
breux travaux. On pourra, pour une introduction générale, se référer au livre d’Oksendal
et Sulem [56], ainsi qu’aux travaux récents de Chen et Forsyth [22]. D’autres problemes
proches, issus du contrdle singulier sont traités par Hodder, Tourin et Zariphopoulou [44].
Ici, nous résoudrons numériquement PEDP linéaire (3.4) et I'inéquation variationelle (3.5).
La premiere équation étant linéaire, sa discrétisation rentre dans le cadre standard. La
deuxieme équation peut étre interprétée comme un probleme d’arrét optimal, étudié no-
tamment dans les travaux de Barles et Daher [8]. On peut donc utiliser les discrétisations
standard pour ce type de probleme en considérant sup,cp vr4+1 comme un obstacle donné.
La difficulté, ici, est due au fait que la condition terminale (3.2) de ces deux équations,
ainsi que l'obstacle vg1 sont endogenes au probleme et doivent étre eux mémes calculés
numériquement. Le premier apport de ce travail est de fournir un algorithme décrivant
Pordre dans lequel il est possible de calculer les fonctions v, kK = 1...m. Nous introduisons
pour cela les ensembles suivants :

Dr(n) = {(t,z,p) €Dy : t1 >T —nh}
Di(n) = DN Dk(n)
Di(n) = DiNDx(n)
— Tout d’abord, on remarque que la fonction valeur vy satisfait 1’équation linéaire (3.4)

sur ’ensemble Dy(m). Grace a la condition terminale (3.3), on peut alors calculer vy
sur cet ensemble.
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— Ensuite, on procede par récurrence croissante sur n = m,..., N et, a chaque pas sur
n, par récurrence décroissante sur k = m(n),...,0, avec m(n) = (n —m) Am étant la
plus grande valeur de k telle que Dy (n) est non vide. Supposons que I’on connaisse les
fonctions valeurs vy, sur les ensembles Dy (n—1) pour k = 0,...,m(n—1). On remarque
alors que v, (,,) satisfait 'équation linéaire (3.4) sur Dy, () (1) /Dy ny (n—1). De plus la
condition terminale de I’équation fait appel aux valeurs de vy, (,)—1 SUr Dy, p)—1(n—1),
qui ont déja été calculées a une étape précédente. On peut donc calculer la fonction
valeur sur D, ) (n).

— Enfin, on suppose que l'on connait, pour un certain k € {0,...,m(n) — 1}, la valeur
de vg4+1 sur Dyy1(n). On connait alors 'obstacle dans 1’équation (3.5). On peut alors
calculer la fonction vy sur sur Dg(n) grace aux équations (3.4) et (3.5). En effet, la
condition terminale de ces équations a déja été calculée car elle fait appel aux valeurs
de v_1 sur Dy,_1y(n — 1).

Ainsi, on peut calculer par récurrence les fonctions valeurs sur les domaines Dy, k =
0,...,m, en supposant que l'on sait résoudre 'EDP linéaire et les inéquations variation-
nelles avec obstacle donné. Dans la suite du chapitre, nous donnons un schéma numérique
pour résoudre ces types d’équations. On se donne un vecteur § représentant le pas de
discrétisation dans chaque direction de I’espace. Sur I’ensemble D,i, k = 0,...,m, nous
avons le schéma implicite correspondant a ’équation linéaire (3.4) :

51’6((t,$,p),7', \I/k) _
51& N
r— Vi(t + 6, 2,p)

Ot

_L6(t7 r,p,T, \I’k)a

Ou L? représente la discrétisation standard du générateur infinitésimal de la diffusion pour
un schéma implicite. On pourra pour cela se référer par exemple au livre de Lapeyre, Sulem
et Talay [49]. Sur 'ensemble D, k = 0,...,m — 1, le schéma correspondant & I'inéquation
variationnelle (3.5) peut quand & lui s’écrire :

5276(“7 fﬂ,p), T, \Ijka \Ijk:—i—l)

Ot
. T—\I/kt+(5t,l’,p
mln{ (575 ) - Ld(txvpvra\:[lk’)v
\Ilk:(t?x’p) - sup {\Ilk-i-l(t?x’pu (t7 6))} }
e€Ede
La non linéarité due au minimum ci dessus peut se résoudre grace a ’algorithme de Howard.
On peut alors définir le schéma numérique sur D, k =0,...,m :
56((t,$,p),7‘, ‘Ijkvlllk-‘rl) — ]-(t’g;,p)e’DiSL&((t)xvp))ra ‘ljk)

+1(t»mvp)€Dl% 5275(@? x, p)a r, \Ilka \Pk-f-l)
L’équation discrete a résoudre est alors, pour un pas de discrétisation ¢ :
S(s((t7xap)7qlk(t7x>p)7\pka\I/k-i-l) :01 (36)

sur Dy, pour k = 0,...,m. Nous prouvons alors la stabilité, la monotonie et la consistance
de ce schéma. Ceci nous permet, en utilisant la méthode de Barles et Souganidis [10] avec
le principe de comparaison du chapitre précédent, de montrer la convergence du schéma.
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Theoreme 3.3. Pour tout pas de discrétisation 6, soit \I/i la famille de solutions de (3.6)
sur Dy, k = 0,...,m satisfaisant les conditions terminales (3.2) et (3.3). Alors pour tout
k=0,...,m, \I/i converge localement uniformément vers vy sur Dy lorsque 6 — 0.

Enfin, dans une derniere partie, nous donnons un exemple d’application financiere. Nous
considérons un marché composé d’un actif sans risque considéré comme le numéraire, et
d’un actif risqué dont le prix suit un processus S;. Nous supposons que ce processus suit
une modele de Black-Scholes :

St
Nous modélisons le processus d’état par X; = (S, Yy, Z¢), ou Y; représente le nombre de
parts d’actif risqué détenu par I’agent et Z; représente la quantité d’actif sans risque dans
son portefeuille. Une impulsion &; passée par 'agent & une date 7; représentera la quantité
d’actif risqué qu’il souhaite détenir & 'instant 7; +mh. Si § > Y7,y mp)-, cela représentera
un ordre d’achat, et si § < Y{7,,n)-, cela représentera un ordre de vente. La fonction I'
représentant 1’état du systeme apres I'exécution de I'ordre pourra donc s’écrire :

s s
F( Y ,e)z e
z z4+(y—e)s

Nous supposerons que l'agent possede une fonction d’utilité U portant sur la valeur liquida-
tive Zp + StYr de son portefeuille a la date T'. Dans ce cadre, nous donnerons des résultats
numériques pour le probleme de maximisation de I'espérance d’utilité de I'agent, puis pour
celui du pricing par indifférence d’une option Européenne.
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Chapter 1

Super-replication of European
options with a derivative asset
under constrained finite variation
strategies

We consider a financial market, in which a first asset will be referred as the underlying and
the second one as a derivative. In this market, the volatility on the underlying depends of
the price of the derivative. Furthermore, the derivative is constrained to be traded with
finite variation strategies. We study the super-replication problem of an European option
on the underlying, and characterize its price as the unique viscosity solution of a partial
differential equation with appropriate boundary conditions. We also give a dual representa-
tion of the price, as the supremum of the risk neutral expectation over a range of dynamics
of the price of the derivative.

Key words : Gamma constraints, super-replication, viscosity solutions, double stochastic
integrals

23
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1 Introduction

It is commonly known that, under unbounded stochastic volatility, with no instrument
to hedge oneself against this volatility, the super-replication price of an European option
is the price of the cheapest buy and hold strategy involving the underlying. Hence this
price is the concave envelope of the payoff of this option. This was treated, for example
in [29]. Meanwhile, another problem gives the same result: the super replication price
under constant volatility with fixed or proportional transaction costs. For example, see
[12] or [28]. On the other hand, we know that in some stochastic volatility models, for
example Heston’s model [43] or Hull and White’s model [47], one can perform a perfect
hedge with the underlying and another instrument, used to hedge the volatility of the
underlying. This is the case, for example, if another European option is traded on the
same underlying. Nowadays, a new instrument tends to become the reference asset to
hedge volatility: the variance swap. In this kind of contracts, a fixed payment is exchanged
against the realized volatility of the asset. The most famous variance swap price index is
the VIX index, which refers to the S&P500 American index. This kind of product has the
benefit of simplifying lots of calculations compared to the call options. It can also merge
all positions of the investors with respect to volatility in a single instrument, rather than
on a market with call options of numerous strikes. Nevertheless, either the call options and
variance swaps can be very illiquid and introduce lots of transaction costs. This is why, here,
we will constraint these volatility hedging instruments to be traded with finite variations.
These type of constraints are studied over the underlying in [12], and the result is again
the cheapest buy and hold super-replicating strategy. But the case of constraints over
the ”volatility asset” with no constraints over the underlying is not yet considered in the
literature, although important in practice. In this paper we focus on that case, and prove
that the super-replication strategy is not necessarily a ”Buy and Hold” strategy. Indeed,
the superreplication price has to be concave with respect to the volatility asset price, but
not w.r.t. the underlying. We characterize this price as the unique solution to a PDE in
the viscosity sense, and the terminal condition is found to be the payoff itself. Moreover,
we prove a dual representation as in [12] and [65], in which the price is the supremum of
the risk neutral prices over all possible dynamics of the ”volatility asset”. Here, we do not
consider vanishing transaction costs, but we require the quantity of asset in the portfolio
to be almost surely of bounded variation, as a limit case of gamma constraints used in [23],
when the authorized ”gamma” with respect to one asset is zero. This is a new feature of this
paper. Moreover, the gamma constraints considered here are not symmetric, which involve
a new result about double stochastic integral as in [24], which is valid for non-symmetric
integrands.

The structure of this paper is the following: In section 2, we define the model, the
super-replication problem and the portfolio gamma constraints. We also state the main
results. Then, in section 3 we show that the super-replication price is a solution of a partial
differential equation with specific terminal and boundary conditions. The uniqueness of
this solution is proved in section 4 with the help of a comparison principle. Finally, in
section 5, we prove a dual representation of the solution, with can be interpreted as the
supremum of the risk neutral prices of the option over a range of dynamics of the volatility
asset.
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2 Problem formulation and main results

2.1 Model

We consider a financial market with three different assets. The first one is a riskless bond,
which we take as numeraire, so that the interest rate can be considered constant and equal to
zero. The second one is a risky asset S, and the third one is an asset X whose price is linked
to the instantaneous volatility o (¢, X) of S. Note that it implies that the instantaneous
volatility of the underlying is a given function of the price of a single instrument, which
is not confirmed by statistical studies, see [26] for instance. This asset X distributes an
instantaneous cash flow (¢, X) > 0. Indeed, these cash flows are typically positive, if we
consider, for example X as a variance swap, for which the fixed leg would be payed upfront.
Then we would have p(t, X)=c?(t, X). Our problem is to find a super-replication price,
hence we are only interested in almost sure events. Therefore we can specify our market
under a risk neutral probability measure. We assume that the prices of the considered
assets evolve according to the dynamics:

{ dSt == StO' (t,Xt) thl (21>

dXy = —p (t, Xp) dt + C (8, Xy) AW + & (¢, X;) AW

Here, uncertainty is due to a two dimensional standard Brownian motion (W;) defined on
the probability space (Q2, F,P). We denote {F;,0 <t < T} the usual augmented filtration
of {W;,0 <t <T}. X; can be viewed as a pure volatility asset, for instance a variance
swap. In order to obtain a unique strong solution, one needs to assume some properties of
the functions o, 1 and £.

02, 1, ¢, € are locally Lipschitz and of linear growth on (0,7) x (0, 4+00) (2.2)

Furthermore, we will need two other assumptions, in order to find the boundary condition
of the pricing PDE:

§(,0)=0and {(.,z) >0 forz >0 (2.3)
¢(,0)=0and ¢((.,z)>0forz>0 (2.4)
wu(t,z) >0 on [0,7] x [0, +00) (2.5)
There exists a constant C,, such that o%(t,z) < Cyx for all(t,z) € [0,T) x [0, +00) (2.6)

These assumptions ensure that the process X remains nonnegative. Given those, one can
prove that equation (2.1) has a unique strong solution (Sg*", X5*") valued in [0, +00)?
given:

SIS — 5 XD =g (t,s,x) € 0,T] x [0, +00)?

Remark 2.1. It would be more realistic to consider the asset X as a call option, for
example. But conditions (2.3) and (2.6) would have to be modified (by arbitrage, the value
of a call option can not be below its discounted payoff). Modifying (2.3) would change
the domain of the pricing PDE, in the case of a call option from (0,T) x (0,+00)? to
(0,T) x (0,400) x ((s — K)4,s) Hence, the proof of the comparison principle would be
more complicated. Changing condition (2.6) may change the limit condition of the value
function near the boundary of the domain. It could make it more tedious to derive the
equivalence of propositions 3.5 and 3.6. Hence we decide to study the simple case which
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embeds variance swaps, or futures on VIX index (futures contracts on the implied volatility
level). Another issue is whether these results can be adapted to diffusion in dimension
n > 2, with k > 1 constrained assets. If k = 1, there is not much work to adapt the case.
Meanwhile, k > 1 would mean that each of the k boundary conditions would be the solution
of the same kind of problem with k — 1 constrained assets, which would introduce some new
difficulties.

The aim of this paper is to derive a hedging price for a contingent claim ¢g(S7) under
certain constraints described in the following. For the sake of simplicity, we will consider
some regularity assumptions on the payoff function:

g is bounded by a constant C* (2.7)
gis C? and s — s%¢”(s) is bounded by a constant Cy
The second assumption could be relaxed with little efforts (considering a sequence of regular
payoffs above the one of interest). Indeed, this assumption will only be used in the proofs
of propositions 3.5 and 3.6, and one can see that for most common payoffs, these can be
adapted.

2.2 The super-replication problem
Value function

The agent can trade assets on the market with self financing strategies, and its wealth
process can be written as:

T T
virne =y y [ et asion s [ (X0 + ut, X))
t t

Our problem is to find the super-replication price of a contingent claim g(S7) with a limited
set of admissible strategies. One must find the minimum amount of money which enables to
super-replicate de payoff of the option. Hence, the problem is to characterize the following
value function:

v(t,s,x) = in]% {y o (S;F’s’:r) a.s. for some 1 € At,s,w} (2.9)
ye

Gamma constraints

Here, we describe the set of admissible strategies A; ;.. The specificity of our work is the
following: we can buy and sell the asset S freely, without transaction cost or waiting time,
but the asset X is far less liquid, so we need some time to by and sell it. Mathematically,
this means that almost every adapted self-financed strategies (excepted doubling ones) will
be admissible for the asset S, but that the set of admissible strategies will be far more
constrained for the asset X. A trading strategy is a a vector m(t) = (wg(t), mx(t)), where
ms(t) is the amount (in unity of assets) of assets S of the strategy at time ¢. 7 is in Ay,
if it is of the form:

N-1 , ,
ms(r) = Z Ys Lrn>i +/ aS(U)du+/t 755 (u)d S +/t Y5 (u)dX 5",
n=0

r
t
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where 7¢' are stopping times for each n, y{ are Fin-measurable random variables, and
as,vs” and v5* are almost surely bounded adapted processes. While 7y satisfies:

N-1 .
wx(r) = Z Yplensy +/ oz (u)du,
n=0 t

with 77" and « filling the same conditions as above. For technical reasons, v = (7%, 7%%)
above must be of the form:

N-1

T T T
1= 2 e + [ vidut [ xiast+ [ wiaxie

n=0

With 9, x, k adapted and uniformly bounded. This is necessary to apply the result on
double stochastic integrals proved in the section 6.

In other words, the terms ~ with respect to X are constrained to be equal to zero.
There are two main reasons to study these kind of constraints on myx. As X is likely to
be an illiquid asset, it introduces transaction costs. Therefore, any portfolio strategy such
that v**% # 0 or 4" # 0 introduces infinite variation of the quantity of asset X held
in the hedging portfolio. Therefore it would introduce infinite transaction costs, which
are not acceptable. Hence, v can be viewed as a minorant of the super-replication price
with vanishing transaction costs. On the other hand, as we will see in the following, these
constraints induce robustness with respect to £ and ( as a byproduct. That is, constraining
(v™*,~%7) allows the super-replication pricing and hedging to work even with misspecified
& and (. This might be very useful, as £ and ¢ may be stochastic and driven by a factor
against which one cannot hedge with the available assets.

2.3 Main results
Operators

First, we use the following notation:

S(t, s, x) = ( sg(é’x) E(t?x) )

Remark that we did not include parameter ¢ on purpose. The operator used to to define
the super-replication price equation will be:

F (t, s, x, Du, D2u) = (2.10)
2 2
A [ T T gy st b )G —gso (o)l @) pte
—3s0(t, 2)&(t, 7) 3% —5 () 5

=\ (J (t, s, x, Du, D2u)) ,

where A~ represents the smallest eigenvalue of a matrix. One can easily check that this
operator is parabolic. One can derive a more intuitive formulation for this operator. Indeed,
by elementary properties of symmetric matrices, one can see that F (t, s, x, Du, D2u) has
the same sign as the expression:

ou ou 1, 0*u

—_— —_— 2 S —
+ p(t, x) ax 357 (t,az)as2 2161£ {sa(t, x)§

0*u +1 5 0%u
0S0X 27 9X?%)
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This expression reminds regular control problems, but it is not usable here as it may take
infinite values. In the following, we will denote the matrix H¢ as:

H* (t,s,z, Du, D*u) = +“(t ) 5% — %S o*(t, x)aT —580(t, Qx)gasax .
—3S0(t, m)gasax —382 5%

(2.11)
By observing that a 2 x 2 matrix is positive if and only if its diagonal terms and its
determinant are positive, we see that operator F' is positive if and only if matrix H¢ is
positive for a given £ # 0. Furthermore, we see that ( does not enter into account in these
operators.

Equations

Now, we can state the two main results of this paper:

Proposition 2.1. The solution v of the super-replication problem is the unique viscosity
solution of the equation:

a (t,s,x,Dv,D%) =0 on (0,T) x (0, 400)?

such that v is continuous on the boundaries x = 0 and t = T, with v(t,s,0) = v(T,s,z) =

g(s) for all (t,s,x) € [0,T] x [0, +00)?.
The second main result is a dual representation theorem of the value function.

Proposition 2.2. The solution v of the super-replication problem satisfies the dual repre-
sentation:

v(t,s,z) = sup E [g (S%s’x’p’g)} for all (t,s,z) € [0,T] x [0, 400)*
(pEeu

where SH5%P< s the solution of the equation:

ASLSTPE = (¢, XE0PE) GLewnd gy

dXLTPE = —p(t, XEPEYdu + €(u) XETPEdW 2
(AW, dW) = p(u)

Sty=s,X(t)==

and U is the set of all almost-surely bounded progressively measurable processes taking values
n [—1;1] x [0; +00)

3 Viscosity property

3.1 Sub and supersolution characterization

The proof of the viscosity property is very close to the proof in [23]. Though there are
two noticeable differences. The first one is that, here, the space of gamma constraints is
of empty interior, because the ”gamma” with respect to the second asset is constrained to
be zero. It has some impact on the proof of the subsolution property, but most of all on
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the uniqueness theorem. The second difference is that we did not suppose that the matrix
of the gammas was symmetric (i.e. we did not suppose 72 = 0, while we constrained
the gamma component of X to be equal to zero), so we will need to study the small
time behavior of double stochastic integrals involving non-symmetric matrices, which is a
new feature. The proof of the sub and supersolution properties involves respectively two
auxiliary value functions 7 > v and v < v , and are quite long and technical'. Furthermore,
the characterization of v is found by the comparison theorem, that gives v < v leading

vV=v=0

But here, for the sake of simplicity we will only give the main arguments of the proof,
without involving rigorous mathematics. But the same steps as in [23] could be used. We
will act as if we manipulated the original value function. One could object that we prove
the boundary properties in the next sections for v and that we should do it for v and v.
But the proof would be exactly the same, as the differences between the definitions of the
three value functions would not interfere.

Definition 3.1. Let w be a locally bounded function. Let w, (resp w*) be its lower (resp
upper) semicontinuous envellopes.
w is a viscosity supersolution of (2.10) if, for any (to, so, o) € [0,T) x (0, +00)?:

F (t()ay07D()0(t07y0>7D2g0(t07y0)) 2 0 (31)
for all ¢ € C* ([0,T) x (0,+00)?) such that

0= (ws — ) (to, yo) = i . — ) (¢,
(ws — o) (to, vo) oo L e (wse — ) (t,9)

And w a viscosity subsolution of (2.10) if, for any (to, s0,70) € [0,T) x (0, +00)%:
F (to, 0. Dp(to, o), D*¢(to, y0)) < 0 (3.2)
for all ¢ € C* ([0,T) x (0,+00)?) such that

0= (w*"— t = x — t
(w™ =) (to, %0) (Ly)[of;l[%o’m[?(w* ) (t,y)

Subsolution property

Let us begin by defining the upper bound v for the value function v. First, we define a
norm on the controls:

|ﬁ700
t,s

I = ma {1 oo 5 IV U 5 D705l

bkl D el Sl ol 8
We define another set of admissible controls with:

AN =V € Ao VI < M}
and the auxiliary value function:

oM (t, 5) := inf {yeR: X7, ,(T) > g(Sis(T)) for some v € Ai\{m} .

'T would like to thank Nizar Touzi for his explanations about this topic
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We get an upper bound of v by taking:

v := inf (vM)* .
v:= inf (v7)"( 5,2)

Now we can state the viscosity subsolution property:

Proposition 3.3. The function v is a viscosity subsolution of equation
F(t,s,x, D0, D*v) =0 on (0,T) x (0, 4+00)>.

Proof. The idea of the proof is that, if the function is not a viscosity solution, we can
exhibit a strategy of super replication that costs less than the value function. Thus it leads
to a contradiction. This is an adaptation of the proof in [23]. We omit some technical
condition, which can be transcribed easily. There are some differences, thought, as the
space of controls is of empty interior. As the payoff function is bounded, we know that the
value function is finite. Let ¢ € C° be a test function such that:

0= (v — p)(to, s0,z0) > (T —¢)(t,s,z) for all (t,s,x) # (to, S0, To)-
Then assume that on the contrary
F(to, s0, 0, D, D*¢) > 0. (3.3)
We will obtain a contradiction. Denote:
o(to, zo) = o0 , p(to,xo) = po-
First, remark that (3.3) leads to:

1 02 0 0
isgagai‘si(to, 30,:00) — uoai)s?(to, S0, (E()) + aff(to, 80,330) < 0. (34)

For ¢ > 0 sufficiently small, we consider a compact neighborhood N of (¢, sg, zo) such that:

2 2

o*(t,x)s* (D Oy

gy <at (to, 0, 50) MoaX( 0,50, %0) + €

92 4 Jult z) + max. 22t 5, 2) < 0 (3.5)
I S0, S xT max —— S, T .

3X 0550, S0) (L, sweN 375 59y >~

2 2
< 3085355 (¢, 5, 2) + (%f - ,uog%?) (to, 50, 20) + € 3500080 smn (£, 5, ) ) <0 (38
2 2 < .
1500080 2% (£, 5, ) 1308 (t,5,2)

for all (¢,s,7) € N.
As ¢ is C* and satisfies (3.3), N is nonempty and (o, so, zo) ¢ ON for sufficiently small .
As (to, S0, x0) is a strict maximizer of T — ¢, there exists 7 > 0 such that (v—¢)(¢, s, z) < 27
on ON. Let 0 be the stopping time:

0 :=1inf{t > to: (¢t,S:, X¢) ¢ N},
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and consider the following decomposition of ¢ into a super replicable part and a negative
part:

@(t7 va) = wl(t7 S, J:) + ¢2(t7 S,LE)

s—s0)% [0 o2
Y1(t, s, z) = ¢(to, s0,T0) — (530_30) <0f (to, s0,20) +€ — MO@X (to, 50,930))
Oy 0
+ (l‘ — .’Eo)aX (to, SQ,CL‘()) + (S — So)%(to, S0, .’Eo)

t
+/ ma 5g0(u s’ 2" )du
t

o (W, :v’)E/\f ot
1/]2(1:787:6) - @(t’ S LU) - So(t():SvaO)

(s —s0)? (D¢ Oy
A %0) ¢ _ ¢
T a2 \a ¢ (050, 70) + € “OaX( 0: 50, Z0)

3] Oy
—(s— 80)%(150, 50,20) — (x — fﬂo)aX (to, 50, Z0)
t
—/ ma a('O(u s, x')du.
"

o (u'ys’ x’)GN ot

e First, let us prove that one can super-replicate the first part of this decomposition.
Consider the initial capital:

Yo := v(to, 50, 0) — 1,
and the control:

Ty = Dgp(to, So,xo), Oé(t) = 0,

2(S — So) [(9¢ I
ms(t) = _W Kat ~Hogy (to, s0,x0) + €| .

Denote the portfolio strategy (Y, 7) := (Yl s vo.m0> Tlo.s0,20)- Lhen, by Ito’s formula,

combined with conditions (3.4) and (3.5), we have:

aY () = S (1o, s0,20) (dX + p(t, X))
- 2(53;850) [(aaf — Ho SX)(th 50, %0) + 6} as
AUy (t, S, X;) = —2(‘2%;850) K%‘f — 1 g}’;) (to, 50, 20) +5] s + mj\a}x%dt
+ 252;;((%)() [(%f — 4o gff) (to, 50, 0) +e] dt

d(Y (t) — ¢ (t, 5(t), X (1)) = 0.
This shows that Y (0) — ¢1(0,5(0), X(0)) > —n.

e Now, let us show that 12 < 0 on N. For t = ¢y, we have by differentiating with

respect to s and x:
D1ps (to, 50, 70) = 0.
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The Hessian matrix of 15 is given by: :

D21/Jg(t s,x) =
0, 0 92
( 952 (t S .’E) + 5320 ( 3790 MO@%) (t07307x0) +5> ﬁ(tvsa"ﬂ) )
2
Lo (t,5,7) 9%(t,s,)
for any (to,s,z) € N. Let Xy < > From assumption (3.5), we get:

1
520D2¢2(t0, S0, 20)%0 =

9?2 0\ 9?2
( %U(legagg(t73ax) + ( " NOax> (to, s0,0) + € %300050353%( (t,s,x) )
1 142092
5300050353)( (t,s,) 55(%3)(902 (t,s,m)
<0

We deduce that the function 19 is concave on N N {t = ¢y}, and its value and first
order derivative are 0 at (tg, sg, o). Hence, it is negative on N for t = t;. Now,
remark that its time derivative is negative on A, and so, 15 is negative on N for
t > 1.

Therefore, we have:
Y(G) > @(9’ So, XG) -n= U(Q, Sy, Xe),

and the dynamic programming principle is violated. This concludes the proof. O

Supersolution property

To prove the supersolution property, one has to define the relaxed stochastic control prob-
lem, for any M > 0:

Mt s x) = inf {y eR: }stxy( ) > g(St.s.2(T)) for some
(Q, F,F, P) and 7 € A%(Q)}.

Here, Y, S and A%(Q) are defined as in the original control problem. Then, define v
as the lower semicontinuous envelope of the inferior bound of v™ over all M > 0. The
change of probability and filtration is due to technical reason in order to obtain existence
of and optimal control, and lower semicontinuity of the value function. These, and the
corresponding dynamic programming principle are obtained in lemmas 5.1 and 5.2 in [23].

Proposition 3.4. For all M sufficiently large, v™ is a viscosity supersolution of equation:
F(t,s,z, Dv™, D?*v™) =0 on [0,T) x (0, 400)>. (3.7)

Proof. This proof is exactly like in Theorem 5.4 in [23], excepted for the limit result on
double stochastic integrals. Indeed, in that paper, the integrand of the double integral
is supposed to be symmetric, whereas here it is not. But anyway the result is the same,
as the integrand turns out to be necessarily symmetric. For these reasons, we only give
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a sketch of the demonstration. Let M > C* (where C* is the bound of g in assumption
(2.7)) be fixed. By lemma 5.2, in [23] vM is finite and lower semicontinious. Consider a
(to, s0,w0) € [0,T) x R% and a test function ¢ € C*°[0,7] x R? such that:

0= (" = 9)(to, 50, 0) = min (oM — 9)(t, 5, 2)
(t,s,z)E[O,T[XRi

Set yo = vM(tg, s0,20). By Lemma 5.2 in [23],~there exists a two dimensional brownian
motion W on a filtered probability space (2, F,F, P) satisfying the usual conditions and a
control 7 € A%’ so.ao Such that, for any stopping time ¢p < 6 <T*

V7 mo(6) = 0" (8, 5(6), X(6)) > (9, 5(6), X

t0,50,Z0

—

0)).

By twice applying Ito’s lemma, one obtains, by denoting Z = < ?’( >:

/al(r)dr+/9 (c+/ra(u)du+/Tb(u)dZ(u)>TdZ(r) >0, (3.8)

to to to to

where:

In [23] it is then proved that ¢ = 0 and by considering 6”7 = min(6, n), we have for any real
number £ > 0O:

on r T
lim 773/ / ( / a(u)du> dZ(r) = 0. (3.9)
n—07T to to
Then it follows from (3.8) that:
1 on r B T B
lim ir_&fl/ (/ b(u)dZ(u)) dz(r) > 0. (3.10)
n—0+ nloglog 7 Jto to

Therefore, it follows from proposition 6.14 that:
b(tp) is symmetric and positive. (3.11)

Hence, by definition of b, v = 0. Denoting

soo(to, o) 0 >
Yo = 3.12
o= (70 e 312
we get that the following matrix is positive:
5262 (Bio _ 78,8) 0500l
Yob(tg) Lo = 070 \ 052 » 0 8;956)( >0, (3.13)
—005080 g5% —&8 x5
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where all the derivatives are taken at point (g, o, zp). Finally, theorem A.2 in [23] shows:

Jim sup /t :n ( / ' b(u)dZ(u)> s = %Tr Sob(to) o]

n—o+ 7 to

Dividing (3.8) by 7, recalling (3.9) and that ¢ = 0, and taking the limit n — 0 we obtain:

1
—E(p(to, 80) — §T7’ [Eob(to)zg] > 0,

and so: 5 5 )
(p w 2
ot + ﬂ(thwo)aiX - 5(72@0,370)3%’}’88 >0
Plugging it into (3.13) finishes the proof. O

Then, one can prove that v is supersolution of the same equation, using the same steps
as in Corollary 5.5 in [23].

3.2 Boundary conditions

Following remark of example 4.1 in the last section, the viscosity property of the value
function v in the interior of the domain is not enough to ensure the characterization of
v. Indeed, one needs to derive the boundary behavior near the boundary = = 0 to obtain
uniqueness of the solution of equation (2.10) with this additional constraint. This is why
we need assumptions (2.3) and (2.5) to exhibit a superhedging strategy when X — 0, which
gives an upper bound on v.

Terminal condition

In many super-replication problems, the value function converges to a face-lifted payoff
when time tends to maturity. This is not the case here. Let us demonstrate that the
terminal condition of v corresponds to the payoff function g.

Proposition 3.5. The terminal condition of the value function v is g. In other words: For
any (s,z) € R%
t, s, a') = 3.14

Lpdim ot s,a') = g(s) (3.14)
That is, the value function is continuous ont =1T.
Proof. Recall assumptions (2.5),(2.8) and (2.6). Consider an instant ¢ < 7" and a state of
the market (s,x). Consider the following portfolio for any time ¢t < v < T, which will be
the key of the demonstrations below:

() Gatli) o

u

Here, Cy is the constant in assumption (2.8). On the other hand, by Ito’s formula one has:

T
1
9(51) = 9(50) = [ (S48, + 50*(w X,)S2g” (Su)du
t
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Plugging conditions (2.6) and (2.8) one obtains:
T 1
g(St) —g(Sy) < / g (Su)dS, + iCanXudu. (3.16)
t

Starting with the initial wealth g(S;) + 3 X,C;Cy(T —t), the continuous selling of X, gives:

71
/ §CgCgXudU,
t

while, with condition (2.5) we obtain positive dividends as p > 0. Therefore the profit and
loss associated with the component in X (excluded the buying price at the beginning) of
the portfolio dominates:

71
/ §CUCgXudu.
t

By combining with (3.16), one gets that wealth g(S;) + 22C,Cy(T —t) is enough to super-
replicate the payoff. Hence:

1
v(t,s,z) < g(s)+ ia:C’gCg(T —t).

The reverse inequality is more usual, and comes from the fact that v is dominated by the
replication price u(t, s, z) without constraints, which is the expectation of the payoff. We
will not prove this assertion here as it is classical. Once this is done, applying Fatou’s
lemma finishes the proof:

1
u(t,s,x) <w(t,s,x) <g(s)+ ngUCg(T —t).
Then as the LHS and the RHS converge to g, the value function does too. O

Lateral condition

The next proposition deals with the same type of conditions near x = 0.

Proposition 3.6. The boundary condition of the value function v near x = 0 is g: For
any (s,t) € R%
lim o(t', s, 2') = g(s). (3.17)

t'—t,s’—s,x'—0

Proof. The proof is essentially the same as above. O

4 The comparison result

In this section, we prove that equation (2.10) has a unique solution, by establishing a
comparison result. Our proof mostly relies on a strict supersolution argument, which has
been introduced by Ishii and Lions in [48] and used by Soner et al. in [23]. The idea is
to prove a comparison for perturbed sub and super-solutions, and then to take the limit of
the resulting inequalities when the perturbation tends to zero. But first, we will see under
which conditions does the comparison principle hold.
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4.1 Boundary conditions

Interestingly, unlike in most similar parabolic problems, one will not only need a terminal
condition to obtain uniqueness, but also some boundary conditions, when the spot price
and the volatility asset tend to zero. Another condition is naturally introduced by the fact
that we only consider bounded solutions. This is because equation (2.10) is not parabolic
in the most common sense, due to a nonlinearity in front of the time derivative. Here is a
simple example to illustrate this fact:

Example 4.1. This equation, defined for u(t,s), (t,s) € [O,T] x [0, +oo]:

. [Ov 2 0% 0%v)
uw(T)=0 (4.2)

has no unique solution. Indeed, let us consider two families of functions:
u(t,s) = (t —=T)\ and u(t,s) = (t — T)sA

With A > 0. Both are solutions of equation (4.1). In order to eliminate these solution we
need to impose a condition like:

u(t,0) =0 for all t € [0,T]
To eliminate the first kind of solution, and a more common condition
u is bounded on [0,T] x [0, 4o00[

For the second one. Then, with these boundary conditions, using the following method, one
can prove that u = 0 is now the only solution of equation (4.1) in the viscosity sense.

This is why one must use boundary conditions (3.14) and (3.17)

li t,s,.) = , i 5s,z)=g(95),
i o(ts,) = gls) , lim ol.,5,2) = g(5)

and v is bounded by a constant C.

4.2 Equivalent equation

In order to establish the comparison result, we can reformulate the operator (2.10) with
&(t,z) = max (1,z). We can easily see that changing the operator leaves the equation
unchanged on the open domain (0, +00)?, because of assumption (2.3). Indeed, changing
&(t, X)) > 0 into another positive function does not change the sign of the operator F for
fixed (t, s, x, Du, D2u), with £ > 0. So we can introduce a new assumption to prove the
uniqueness theorem:

&(t,x) = max (1,z) for all z € (0, +00). (4.3)

Note that this is only a notation to rewrite the PDE in an equivalent way. It is not meant
to describe the dynamics of the process X.
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4.3 Strict viscosity supersolutions

Let us now introduce the notion of strict supersolution, as in [23] and [48]. This strict
supersolution property will be necessary to prove the comparison principle.

Definition 4.2. For a strictly positive constant n, a function w is an n-strict viscosity
supersolution of equation (2.10) if:

F (to, y0. Dp(to, y0), D*¢(to, y0)) > 1 (4.4)
for all (to,y0) [0,T) x (0,400)? and ¢ € C* ([0, T) x (0,+00)?) such that

in (we — ) (t,y)

O = % — t R =
(e =) (f0:30) = | o BB 1o

The next step is to find a function w! > 0 which one can add to any viscosity super-
solution w of (2.10) to build a superior and arbitrary close strict supersolution w + sw?.
As we will prove a comparison result for strict supersolutions, the next lemma will enable
us to manage the comparison with any non-strict supersolution. Indeed, by perturbing the
supersolution and taking the limit when the perturbation tends to zero, one can extend
comparison. The main difficulty is that w! must always be superior to zero, and be concave

enough to have %2;{”21 sufficiently negative to ensure property (4.4).

Lemma 4.1. Assume (4.3). Then the function

w' (t,s,2) = (T —t) +In(1+z) >0

Is a n-strict viscosity supersolution of (2.10) on [0,T] x (0,4+00)? for some n > 0. Fur-
thermore, if w is a supersolution of (2.10) with w(T,.) > g, then, for any e > 0, w + ew?
is a €2n-strict supersolution of (2.10) with (w + ew')(T,.) > g.

Proof. One can easily check that w! is a strict supersolution:
14 4ol 0
F (t,s,x,le,Dle) = A\ ( +01+°”” (1,22) 1
max , L W
> 1

Now, we check that w+cw! is a e-strict supersolution. Indeed, for any (o, so, z¢) € (0,T) x
(0,400)?, and for any test function ¢ :€ C'* ((O,T) x (0, 400)* — ]R) which satisfies:

Min (cp —w —Ewl) = (go—w — awl) (to, so0,x0) =0

Then, as w! € C*® ((O,T) X (0,—1—00)2 — R), Y = ¢ — ew' is a test function for w such
that 1) — w attains its strict minimum at (o, s, z9). Hence, we have, by the supersolution

property of w:
F (th S0, 0, D1, D2¢}) >0

Then, considering that for any symmetric matrices: A= (A+ B) > A~ (4) + A~ (B)
F (to, s0,z0, D, D*@) > F (to, so, w0, Db, D*¥) + F (to, 50,20, D (cw') , D (ew'))
F (to, S0, xg, D, DQw) +eF (to, S0, o, Dw", Dzwl)

e

(AVARAYS

By homogeneity of F'in w. O
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Before approaching the technical proof of the comparison principle involving strict-
supersolutions, let us see how the preceding lemma allows us to extend that principle to
any supersolution, thus proving the main theorem that follows:

Proposition 4.7. If w and u are respectively super and subsolution of (2.10), and there
exists a function h such that for any (t,s) € [0,T] x Ry :

lim sup u < h(t,s) <lim inf w
(8" ") —(t,s,0) (t,s",3")—(t,,0)

and a function g such that for any s inR :

lim sup u<g(t,z) <lim inf w
(t',s",x")—(T,s,z) (t',8" 2" )—(T,s,z)

Then u* < w, on [0,T] x (0,+00)2. In particular, the solution of equation (2.10) in the
viscosity sense with boundary conditions is unique.

Proof. We use the same technique as in [23]. If w and wu are respectively super and sub-
solutions of (2.10). Furthermore suppose that they both verify the limit conditions (3.14)
and (3.17). Then, for any € > 0, with lemma 4.1, w + ew" satisfy the boundedness, strict
supersolution and boundary limits assumptions of theorem 4.8. Applying it, one gets:

w+ ew' > w on (0, +00)? x [0; 7]
Finally, letting £ converge to zero by positive values, we get the result:

w > u on (0,+00)? x [0; 7]

4.4 Modulus of continuity of F

We now introduce some technical lemmas which are classical in the viscosity solutions
theory. We need a modulus of continuity for the operator F'. It is given in the next lemma:

Lemma 4.2. Let A and A’ € S*(R) such that:

_3a<é ?)g(é _%,)g:m(_lj _II> (4.5)
And consider the function:

fi(s, s x,2) = (s + 8 4+ 2+ 2")e — (In(s) + In(s"))e?
For any (t,s,xz,p) and (t',s',2',p") for which:

o There exists a constant C1 such that:

Cl Cl
2 < 2 / <
o(z) < 5 and o°(x") < 5

e There exists a constant CI such that ¥ and p are Lipschitz of constant CI on a
convex domain K that contains (t,S,X) (t',5", X’)
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o There is a constant C3 (possibly dependent of €) such that:

Cs

maz(o*(@), 0% (@), %, 2 1) <

Then the following inequality holds:
F (t/7 3/7 HZ'/,p/, q/7 A/ - DZfE(S/7 Xl))) - F (t7 S, %,p,q, A + D2f5(87 .Z')) S

3CKa H(t —t,s—s,z— :1:')”2 + ok H:E — :c" g2+ Cie + }p —p/|
+Cs||(x — zey s — s2)|| + Cs H(a:’ — .8 — SE)H (4.6)

Proof. This proof is an adaptation of example 3.6 in [27]. First, by multiplying inequality
(4.5) by ( DIV ) on the left and ( g, ) on the right, one gets:

DAY — AT < 3a (2 - %)’

then, we introduce the symmetric matrices:

B — < p"‘lg(l')QZ 8 > —i—EDQfE(s,x)E

_ ( p+ p(x)ge + o (x)(e? + 3(s — s52)?) 0 >
0 max(1,2?)(3(x — x.)?)

and

/ AP,
B ( p +;6(a:)q2 8 ) D2 (s o)

( P+ p(a)gh — o (x)(e% + 3(s" — s52)?) 0 )
0 —max(1,2"?)(3(z' — x.)?)

And we add B — B’ on both sides:
AL+ B-YAY -B <32 (S -%)°+B-B

and
SAS + B<YA'Y + B +3a(2-%) +B- B

Then, we use the fact that for two symmetric matrices X and Y one has:
AT(X +Y) <AT(X) + A7 (Y)
Where A\ is the largest eigenvalue of a symmetric matrix. This gives:
A (SAS + B) < AT(S'A'S + B' +3a (£ -%)° + B - B)
<AHTAS 4 B) + 2 (3a (2 - %)% + AT (B - B)

Thus, knowing that AT(X) = —A7(—X) where A\~ is the smallest eigenvalue, we obtain:

AN (=X'A'S - B') = A (-ZAX - B) < 3aX\T((Z - 2’)2) + A" (B - B
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By definition (2.10) of the operator F, this is equivalent to:
F (t’7 s’ a' p,q, A — Dfe(s, 1:’))) —F (t, s,x,p,q, A+ D2f€(8,56)) <
3ot (2= %)% + AT (B - B) (4.7)

Now, we focus on the right hand side of (4.7) to obtain the result. First we have, as B and
B’ are diagonal matrices:

A(B — B') = max [Byy — B}y, By — Bl
< e*(o?(x) + (@) + |w(z) — p(a")| g2
+ Cs([[(z — e, s — se) || + || (2 — e, 8" — s0)])
<eCi+ 0y o — | g + |p— P
+ Cs([[(z — ey s — se) || + || (2 — e, 8" — s0)])

Finally, since ¥ is Lipschitz continuous one gets:

3art (2 — 2’)2) < 3aCK |t —t,s—s z— a:')H2
Plugging these two inequalities into 4.7, one obtains inequality 4.6, thus proving the
lemma. O

4.5 Proof of the comparison principle

Proposition 4.8. Suppose u is an upper semicontinuous viscosity subsolution of 2.10,
bounded from above and w a lower semicontinuous n-strict viscosity supersolution of (2.10)
bounded from below. If, furthermore, for some bounded functions g and h:

uw(T,.,.) <g(.) <w(T,..) and u(.,.,0) < h(.,.) <w(.,.,0)
Then u*(t, s, ) < wy(t,s,z) for all (t,s,2) € [O,T] x [0, 4+00)?

Proof. This proof is inspired by [23] and [48]. For £, > 0, let = be the upper semicon-
tinuous function:

t
O (t, s, 8" x,2") = ut,s,x) —w(t', s’ 2") — f{(s,8,2,2') + eln <T>
—a(dit—1t,s—s,z—1"))

where

d(a,b,c) = (a2 +b% + ¢?)

N |

and
fi(s,s w,a') = (s+ &' + 2 +2')e — (In(s) + In(s"))e?
to simplify, denote
fla(sv .%') = fla(sv 8, T, .1‘)

Next, set:
D°(t, 5, X) = d5(t,t, s, 8,2, x)
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As (u—w) is bounded from above by a constant C, one can see from the form of f(s, s, z, )
that the supremum of ®¢ is attained in [exp(%ﬁ),T] x [exp(#), & x [0, &] which is a
compact set. Therefore, ®¢ is an upper semicontinious function and attains its supremum
in a compact set, this supremum is a maximum. It follows that we can find a point (¢, s¢, x.)
such that:

a D (t, s, 1) = D°(t, s,
(O.T]x 0002 (t,5,) (te, 5e, 2c)

Now, there are three possible cases:
e there exist a sequence €, > 0 such that ¢, — 0 and t., =T for every k.
e there exist a sequence €, > 0 such that ¢, — 0 and z., = 0 for every k.
e there exist a constant e~ > 0 such that x; >0 and ¢, < T forall 0 < e < e~

Cases 1 and 2: One can prove easily that there is a contradiction if one of the two first
cases apply. Indeed, in the first case, one can see that for all e:

t
u(t,s,z) —w(t,s,x) = ®F(t,s,z)+ f*(s,s,2,2)+ e, In (T)

t
< QT s, wp) + (s, 5,7,2) —epln (T>

t
- u(T,Sk,a:k>—w(T,sk,wfak(s,x)—skln( )

T
= [ (sk k)
< u(Tsean) 0T + 45,0 - (1)

because f¢*(sg,z)) > 0. Since u(T),.,.) < g(.) < w(T,.,.) this implies

u(t,s,x) —w(t,s,x) < f*(s,z) — e ln <;>

For all (t,s,7) € [O,T] x [0, +00[? hence the proposition is proved by taking k — +o00. The
same kind of proof applies for the second case.
Case 8 This is the technical part. Consider the function:

. 1
O (t, s, 8w al) = (4t a8, 7)) — 3 [(t —t)P+(t - tg)Q]

~I [(s—s)* + (5" — s)* + (7 — 2) + (2 — 22)*]

—_

In the following, we denote f5(s, ) = % [(s — s )+ (2 — xe)ﬂ and ‘iﬁ(t, S,x) = és’a(t, t,8,8,2,1).
It is clear that
D5 (t, 5, 1) 1= DL, s,x) — (t —t.)2 — 2f5 (s, x)

Then for every € > 0, (t., S¢, z<) is a strict maximizer of de. Therefore, by lemma 3.1 in [27],
for every ¢ < ¢~ there exist a sequence oy, — 400 and maximizers (t o, L o, Se,as St o Te,as Tt o)
of ®5% such that:

! / /
(tE,OH te,ou SE,CH sa,om xf,a? xa,oa) - (t& t€> Se; Sey Le, xs)
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and

/ / ! 2
Qg H(t&a - te,av Se,a T Se ar Te,a xs,a)“ —0

And, as (t., s, xc) are in the interior of the domain for ¢ < e, then the maximizers of deo
are also in its interior for a4, sufficiently large. With this result, we can apply theorem 3.2
in [27], to the sequence of local maxima. We obtain that, for sufficiently large oy, there
exists two symmetric matrices Ay, A} € s? such that:

(Ag, A},) satisfies 4.5,
(pi» ak + D (ff + f5) (s, 21), Ak + D (ff + £5) (s, x)) € T ulte, s, k),
(Pl ar — D (fT + £3) (sh 74), A, — D> (ff + [5) (sh, 2})) € J>Fw(ty, sp, 2),)

where, by taking f = f1 + fo

Pr = O (tk — t;e) + (tk — te)
P = o (te — 1) — (8, — to)

Sk — S},
dr = Ok /

g2 2
S+ 3(sp — s 0
D[ (spap) = | % (or =)
0 3(xp — x.)?
and with J%Tw(t}, s}, #,) and J%~u(ty, sg, Tx) are, as in [27], the closed inferior and supe-
rior semijets of w and wu respectively. Then by the definition of viscosity subsolutions and
strict supersolutions we obtain:

F (i, Sk Tk, Pry Ak + D (s, 5)) <0

and
F (th,, ), T Py Af, — D* f2(s}, 23)) > 1

Combining these two inequalities, one gets:
E (e, ks T Do s A — D? £ (84 ) — F (thes Sks Thy P Gy Al + D2 f° (s, 2x)) > 1 (4.8)

On the other hand, since the maximum point t., s., x. is attained in [exp(%ﬁ),T] X
lexp(ZF), &]1%]0, &), and since (ty, g, 1) and (t}, s}, 2}) converge to this point, the local
Lipschitz condition (2.2) proves the existence of the constants C1,C5,C3, of lemma 4.2,
independent of k provided it is sufficiently large, and with C; independent of £ provided it

is sufficiently small. Now we can apply it to obtain gives the inequality:

F (t}, Sk Thos Py Ay, — €DI(s},, x},)) — F (g, Sk Ty Py Ak + €Dl (sp, 7)) <

Cyay H(ts,oc — Se,a — Sla,av LTea — xls,a)HQ +Cie

£,a0

+Cs(|(x — xey s — s2)|| + H(x' — 2,8 — sE)H) (4.9)

The right hand side of (4.9) tends to Cie when k tends to infinity, and by sending ¢ to zero,
this contradicts (4.8), thus proving the comparison result. O
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5 Dual representation

In this section, we give a dual expectation representation of the super-replication problem.
The dual maximization problem is done over all volatilities of X and all possible correlations
between X and S. This kind of duality was first introduced in [65] for one-dimensional
processes. First we define the value function v of the dual problem:

5 (t,s,2) = (p?;EuE [g (Sgﬁgﬁ (T))} (5.1)

Where U is the set of all almost-surely bounded progressively measurable processes taking
values in [—1; 1] x [0; +00):

T
U= {(p,{) valued in [—1,1] x [0,400) and prog. measurable]/ g2dt < —i—oo}
0

And the process St’t ’f is defined for u > t by the dynamics:

S{:ﬁx (t)=s and Xff (t) ==z
asgs, (w) = o (X205 () SpS,aWt (w)

AXES (u) = —p (£, X2 (u) ) du -+ € XES (u) dW? (u)
(AW (u) ,dW? (u)) = py

The main goal of this section is to prove that o is also solution of the primal super-replication
problem. In other words that © = v. First, we have to prove that the two functions verify the
same equation. Then, we prove that the two function have the same boundary conditions.
We then conclude by the comparison theorem.

Proposition 5.9. © is a viscosity supersolution of equation (2.10) on (0;T) x (0, +00)?.

Proof. This is a classical proof in the optimal control theory, see [59], chapter 4, for details.
That framework applies to one-dimensional problems, but there is no difficulty in extending
them to the multidimensional case. Hence the viscosity sub and supersolution characteriza-
tion in terms of Hamiltonian will be admitted, and we will focus on the equivalence between
the classical characterization and equation (2.10). The Hamiltonian of the problem is:

v 1 ,0% 1 0%v
2 : 2 2 2

H (S,ZE,’U,D'U,D 'U) = lé‘I}pf {axﬂ(t,X) — 55 @ — 50’ (t,l‘)S @
ov

_pga(u‘r)sasax}

And by classical techniques one can show that:

0
—a—z + H (s, x,v, Dv, D2v) >0 (5.2)

in the viscosity sense. Indeed, the Hamiltonian H is smooth, unless it takes infinite
negative values. In order to prove that the continuous operator F' (S, X ,17,D17,D217) of
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(2.10) is such that F' and H — % always have the same sign, the next step is to explicitly
solve the Hamiltonian H. Writing, for any vector b and any 2 x 2 symmetric matrix A:

H(Sv X, v,0b, A) = lfIlf {bQH(t’X) - %521422 - %O’Z(LX)‘SQAll - péa(taX)SAl2}
e

By elementary techniques, the minimization of H over p and & gives:

H(S,X,U,b,A) = —o0if Ay >0
H(S,X,’U,b,A) = —o0 if A22 =0 and Alg 7é 0
H (S, X, v, b, A) == bg,u(t, X) - %O’Z(t,X)SQAH if A22 =0 and A12 =0 (53)
2
H (S, X,v,b,A) = $52(t, X)S> (%z - AH) + bop(t, X') otherwise
In addition, the operator F' is positive if and only if the matrix J (t, s, x, Du, D2u) defined
in (2.10) is positive, that is, if and only if the two diagonal terms .J;; and Joo and the
determinant of J are positive. Clearly, by (5.3), F is positive if and only if H is positive.
Hence v is a viscosity supersolution of (2.10). O

Now, we concentrate on the subsolution property:
Proposition 5.10. @ is a viscosity subsolution of equation (2.10) on (0;T) x (0, +00)>.
Proof. Let ¢ € C?((0;T) x (0, +00)?) a test function such that

OZ(U*_()D) (agvy) = max (U*—(P) (t7S>X)
(t,5,X)€(0;T") x (0,4-00)>

for some (£, S, X) € (0;T) x (0,00)%. Suppose that, on the contrary,
F (t,8.X,¢,Dp,D*p) >0

Hence 95
_a%) + H (1,5, X, ¢, Do, D*0) > 0

considering (5.3), as H is continuous in the interior of the domain delimited by F > 0,
one can find a contradiction with a classical dynamic programming argument which can be
found in [59] for instance. O

In order to apply the uniqueness proposition 4.7, it would remains to verify that the
value function v of the dual problem has the same boundary conditions as v. There are
two parts in this question: The study for ¢ — 7" and for X — 0. Ideally, we would prove
the two following propositions directly. However this may be quite difficult, and they will
be demonstrated indirectly along the lines of the proof of proposition 5.13. Let us begin
by the first limit:

Proposition 5.11. The value function © of problem (5.1) extends continuously to a func-
tion © on (0;T) x (0, +00)? satisfying the terminal condition:

(T, S, X) = g(S)

Moreover, we need the condition near X =0
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Proposition 5.12. The function 0 extends continuously to a function © on (0;T] x (R )?
satisfying the boundary condition:

(t, 8,0) = g(5)
The study of the behavior of © near X = 0 requires several steps. We define the auxiliary

value function:
vc= sup FE [g (Sf%’p)}
(S?p)eUC '

Where Uc = {(§,p) € U|§ < C}. The preliminary goal is to prove the following technical
lemma :

Lemma 5.3. For any C > 0 there exists two constants Cy and Cy independent of (z,t,u) €
R x [0; T)? with t < u such that for any adapted processes (&, p) € [0;C] x [—~1,1] one has:

2 u
E [(Xtmugp> } <z 4+ Cle/t eC1u=3) g (5.4)
E [Xsz’p} <z+ C’ga:/t e“2(=9) g (5.5)

Proof. We use a similar procedure as in [59]. By It6’s formula, one has, for any stopping
time 7, and any 0 <t < s,z,(§,p) € Uc :

)2 2 T z,€,p z,8,p 260\ 2
(Xt,u/\T) =z + ’ 72Xt,s IU’(S’Xt,s )+(§Xt,s ) ds

[ e () aw o

choosing a sequence of stopping times: 7,, = inf {5 >t: € ( ’5 P ) > n}, which tends a.s.

to infinity when n — +o00, when have for fixed n :

E [ /t R (X;‘jfﬁf A2 (s)} —0

Then, using the linear growth coefficient K of y and the bound C' of ¢:
2 u/\Tn 9
E [(Xf 5. ] = 224 E< [ 2X0E 0 (5, X750 ) + (6x757) ] ds)
u/\Tn 9
2+ E < [21{ (x557) e (xrer) ] ds>

242K+ C)E ( /t R [( ng’p)z] ds>

By Gronwall’s lemma, writing C; = 2K + C:

2 UNATh,
E [(ng;@n> ] <2+ Clxz/t eC1ATn=5) g g

IN

IN
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Finally, using Fatou’s lemma and letting n — +oo
2 u
E [(Xffp> ] < 22 +Clx2/ eC1=s) g
t

Moreover, with the same arguments, one can prove that there exists a constant C5 inde-
pendent of z,&, p, t, u such that:

E|(X75)] <o+ G /tu ) ds

O
Now we have the tools to prove the convergence results for ve.
Lemma 5.4. The terminal condition of v¢ is:
(t,s’,x’l)iir}(T,s,x) o (t,s,2) = g(s) for any (s,z,C) € R3 (5.6)
Furthermore, the lateral condition of V¢ is:
lim e (t,s,x) = g (s) for any (t,s,C) € [0,T] x R (5.7)

(t/?s/7x)4)(t7870)

Proof. For sake of conciseness we prove the two propositions at the same time. Since
function g is bounded, function v¢ has the same bounds. Hence, if for a given point (¢, s, x)
and for any sequence (tn, Sn, Tn) — (t,8,2), Vc(tn, Sn, Tn) admits g(s) as an accumulation
point, then v is continuous at (¢, s, z) and equal to g(s). Therefore, we have to prove this
claim at points of type (T,s,z) and (t,s,0). Choose a sequence (t,, sy, 2,) € [0,7] x R%
converging to a given (7, s, x) or (t,s,0). Then, by definition of the value function v there
exists a sequence of controls (&,, p,) € Uc such that, denoting S™ as S&Pn:

~ 1
E (g(sgb,sn,xn)) S Uc(tn’ Sn,l‘n) S E (g(sgb,sn,xn)) + E (58)

Now, we get to the convergence of both sides. We use the Doleans exponential formula:

T T
S&sn,zn = 5, exp </ o (u, Xtr;,mn (u)) dW,, + ;/ o2 (u, X&M (u)) du>
tn tn

One gets, taking the logarithm (will not work with s = 0 but then the proof is trivial):
T
In(SE . +) —In(s) =In(s,) —In(s) + / o (u, X!, (u))dW,
tn

1T,
+2/t o (u,XﬁhIn(u)) du

Taking the square of this equality one gets:

T 2
(ln(S&,Smxn) — ln(s))2 = (In(s,) — ln(s))2 + (/t o (u,an,xn (u)) qu>
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Using (2.6) together with (5.4) gives:

T 2
E [/ o’ (u, X7 o, (u)) du] < (T —t,)Ca?
ln
And where C' is independent of n. Hence, in the context of lemma 5.4 we get:

lim In(S}

N——+00 tn,Sn,Tn

) = 1In(s) in L?

Then, there exists a subsequence n;, satisfying:

kgrfm ln(Sﬁfk,Snk@nk) = In(s) almost surely

And as g is continuous and bounded, we conclude, by the dominated convergence theorem:

3 Tk i : Tk —
i (92 ) = B (a1 S22 )) = 000

Remembering inequalities (5.8), we get that ¢(s) is an accumulation point of v (ty, Sn, Tn)
then the proof is complete. O

Now we are in position to prove the main result of this section:

Proposition 5.13. The value function of the primal problem an the dual problem are the
same. In other words:
V=0

Proof. We use the fact that v is a viscosity subsolution of the following equation (5.9),
studied in [12]. We will give no proof of this claim, see that paper for detail

inf —GPpt >0 wh .
pgeEC;C] { g go} > 0 where (5.9)
) 1 Po o So(t, X
G = a—f+§( So(t, X) p¢ ) ( 25, 95X ( (pg ) ) (5.10)
959X  0X2

And, because the negativity of matrix H' follows trivially from the negativity of Gy
1
(which is an minimum of the quadratic form defined by H over vectors of form . )

), we obtain that o is a viscosity subsolution of equation (2.10) in the viscosity sense.
Together with terminal conditions (5.6) and (5.7), we obtain:

o < v

Letting C' — 400 we get

S
IN
<

Furthermore as

N
S
IN
(31
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and 0p is a Black-Scholes price with deterministic volatility, we have, for any (¢, s) € [0, T] X
R

111%60 (ta va) =g (8)

Knowing the boundary condition of v by propositions 3.5 and 3.6, and as 99 < 0 < v we
have :

lim o (¢, s,2) = lim v (¢, s,2) = g (s)

r—0 x—0

Hence, we can conclude by the comparison principle of proposition 4.7 that:
V="

O]

6 Law of the iterated logarithm for some double stochastic
integrals

Here, we prove the lemma which we use in the demonstration of the super-solution property.
In particular, we have to show that if the matrix I' — D?¢ was constant, it would have to be
symmetric and positive in order to satisfy relation (3.10). Then, corollary 3.8 in [24], proves,
under some regularity assumptions, that if I' — D?¢ changes over time, then a necessary
and sufficient condition for (3.10) to hold is that (I' — D?¢) (0) is symmetric positive. As
the symmetric case is studied in [42] we will deal with the non-symmetric case. The key
issue is to estimate the limit of processes written as:

ft fu 0 1 ] Td
lim inf

t—0 tloglog %

Integrating the diagonal part, one obtains:
a 2 2 !
5 (Wlt + W2t) —at + / WiwdWoy — WodWhy,
0
Hence, it is sufficient to study the limit of:
a 2 2 !
Zi= 5 Wh+WE) + [ WaudWa, — Wa,dWh,
0
The process Ly is called the Levy area:
t
Lt = / WludWQu - W2udW1u
0

First, let us see how this study will enable us to solve the consider problem. That is, we
must find a result like the main theorem of [24] that embeds the case of nonsymmetric
matrices:
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Proposition 6.14. Let M(t) be an R%-valued martingale defined for any t > 0 by:
t
= / m(r)dW,
0
where m(t) is a M? valued, F progressively measurable process such that, for any t > 0:
t
/ im(r)|? dr < 400
0

Let b(t) be a bounded, M? valued, F progressively measurable process,and assume there exist
a random variable € > 0 such that almost surely:

/ m(r) — m(0)? dr = O(#'*%) and / b(r) — b(O)2dr = O(*5)  (6.1)
Fort — 0. Then:
1 t T T
lim inf / (/ b(u)dMu> dM, > 0 if and only if b(0) is symmetric positive
t—0+ tloglog i ;

Proof. The proof is an extension of proof of theorem 3.3 in [24]. If b(0) is symmetric, the
proof is already done in corollary 3.7 of that paper. So, suppose that b(0) is not symmetric.
One can decompose the integral into:

/0(/ b(u )dM) dM, = /(/ m(0)"b(0 )dW> dW, + Ry (t) + Ra(t)

where:
mt) = | t ( [ i) - m<o>]dwu>Tm<o>dwr
Roft) = | t ( / r b(u)m(u)dwu)T [m(r) — m(0)}aw,
Rt = [ t ( / [bu) - b(O)]m(O)qu)Tmm)dm

in [24] it is shown that assumption (6.1) gives:

im 7}%1 (t) = lim 7R2(t) = lim 7R3(t) =
t—0 tlog log % t—0 tlog log % t—0 tlog log %

Hence, one only has to study the behavior of fo (fg m(0)Tb(0)m (0 )dWU)T dW,.. We denote
m(O)Tb(O) (0) = c. Next we decompose ¢ into a symmetrlc part ¢; and a skew-symmetric
part co. We use a base W for W where ¢y is diagonal. In this base:

cl = AT 0 and ¢y = 0 —a
=0 o0 A 2~ \a 0
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0 0
0 A —A"

t r T t T T
/ < / chu> AW, = / ( / (C1+62)qu) aw,
0 0 0 0
t T T
_/ (/ (cQ+A+12+C3)qu) aw,
0 0

Now, as a # 0 using lemma 6.10 we get that:

1 t T T
liminf ———— + AT L)dw,, | dW, =
1?:151 tlog log% /0 (/o (e 2) )

1 trogroo At T
—la|lim sup ———— (——co — —1)dW, | dW, <0
1
t—0 tloglog; 0 0 |al |al

Where AT > A~. We define c3 = ( ) Then we get:

And as .
t r T 22
Wg)ye —t
/ </ (C3)qu> AW, = (- — AW =t
0 \Jo 2
and -
1 2\2
fminf ——— (- - an W=
t=0 tloglog ; 2
Then the proof is over. O

6.1 Density of the considered process

Now let us study the probability density of the process Z. It is given in this lemma:
Lemma 6.5. For everyt > 0, the probability density of the random variable Zy is:

exp (% arctan(a))
2pt [ch (57)]

Proof. To begin, we use the Levy formula (see [50]):

¢ (2t) =

2
|z]

tA T
W+ W3 = a:] = S o [% (1 — tAcoth (m))]

As the expectation is conditional to z? = W2 + W3, multiplying it by a function of the
conditioner, one obtains:

: o tA 2
E {e”‘(Lt+212) ‘,/Wft WS = :1:] = o P [@ (1 — tAcoth (tA)) + iA;‘x?]

tA 2
= exp [|3€2]t (1 — tAcoth (tN) + t)\ai)]

E |:€i)\Lt
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As 22 is the sum of two squared gaussian variables, it is distributed accordingly a two
dimensional chi-squared law. Therefore, its probability density is:

0P (22) = expgft)d (+?)

Thus, integrating expression (6.2) with respect to z2:

+oo
E |:ei)\(Lt+%zZ)} _ / E [eiA(LﬁgzZ) ‘\/m = a:] dP (z?)
0
2

oo A x
= /0 25 (1) exp [% (—tAcoth (tA\) + t)\ai)} d (z?)

2 +o0

[Sh e Colth DETL [‘;t (—tA coth (tA) + t)\ai)H

1
ch (tA\) — ai[sh (t\)]

0

Then, manipulating the expression to obtain a canonical form, one derives, defining p =

V1+a? and 0 = arg (1 — ai) = arctan (—a):

) a 2
E |: z)\(Lt—&—EmQ)} _
¢ etA + et — gietr 4 aje—tA
B 2
(1 —ai)et* + (1 +ai) et

2
p [0 4 g~ tA—if]

9 et/\
- (pe'iO) e—2i0 4 o2tA

To derive the probability density ¢ of the random variable z; = L; + %m2, we must calculate

the inverse Fourier transform of this function. Defining A’ = —2t\ and y = 5; a change of

variables gives:

2 +oo et)\efi)\z
p(z) = <27Tpew) /_Oo e—2i9+e2t)\d)\
( ) B 2671'9 /+oo e—%/eiy)\’ d)\/
v = dptm |_o e 20 4 eV

This Fourier transform can be found in [37]. Its inverse is:

9pil  o—if—2y0

Pl = 4pt sin (g — iwy)

672y9

2pt sin (g — iﬂ'y)
6—2y9

2t [ch (7y)]
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Hence we found the density of z; = L; + %x2

@(Zt):m

exp (% arctan(a))
2pt [ch (5F)]

¢ (2t) =
O

This density function enables us to derive an upper bound for the cumulative distribu-
tion of Z;:

Lemma 6.6. For given t > 0 and z > 0, the probability P(Z; > z) is majored by:

1 exp ((arctan ) %)
]P(Zt>Z)>1—% g—arctan( )

Proof. Integration of ¢ gives the probability of Z to be above a given z:

z

[T exp (% arctan(a))
Fa) = |, )
1 /+°° exp ( arctan(a)) &

TZ

pt e 2t + e 2t
1 [T®ex arctan
2 a 7 p ( TZ ( )) dZ
2pt e 2t
1 +°°
> 3/, exp (% arctan(a) — g—:) dz
< 1 exp ((arctan ) %)
- 2 5 - arctan( )

Where we use the fact that z > 0, hence that e + e2 < 2e2. This is the only
approximation in this formula, and one can see that the error is less than a factor 2. O

6.2 Approximating the Laplace transform

The Laplace transform of the considered process Zy = Ly + & (W3 + W3,) is defined as
follows:

U (c) = F (exp (czt))

As one knows the density of Z;, the following formula is straightforward:
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On can see that ¥ (c) < +oo iff = + % <c< g+ % If this holds true, then one can
dominate the Laplace transform with:

\p@gplt[/0+°°exp<<c_f_;>z>dz+/_ioexp<<c_f+;>z)d4

1 1

0 s 0 T
tToy—¢c -3ty

(6.2)

1
=
6.3 Proof of the law of the iterated logarithm
We study the superior limit of the process
t
Zi= 5 (Wh+WE) + [ WaudWa, — Wa,aWi,
0

In the almost sure sense, when t goes to 0. The Laplace transform of Z; can be used to
show the first estimate:

Lemma 6.7. The process Z is such that

: Zy 1
lim sup T < =
t—0+ tloglog  ~ § — arctan(a)

In the almost sure sense.

_ 1 _ t .
Proof. Define h (t) = loglog (1), g (t) = Wh (t) consider two real numbers 0 < 3 <
land 0 < § < 1, take t = " ! and ¢ = t%, then, Doob’s maximal inequality shows

that:

0<s<t

P [Ongl%{czs} > VIt dh (t)} — P [max {exp (¢Zs)} > exp (\/mh (t))}
< exp (~VIF+Oh (1)) E (exp (1))

Using the upper bound (6.2) on the Laplace transform of Z, one gets:

1 1 1
P [max {cZs} > V1+6h (t)} < e VIFO) — - + .
O<sst ptiS+%—c c—5+F
_ —VIFOR() 1 L 1
gz _ 310 510 _ g
2 V1496 V146 2

With C' a constant independent of n. We obtain converging series, and we can a apply the
Borel-Cantelli lemma:

P| max {Z,}<(1+90) B h (8" ;n — 4oo| =1

0<s<pgn—1 5 — arctan(a)
n—1
Zt < og@%ﬁl {Z} <(1+9) ;g (t) hh(fﬂ")) a.s. (6.3)

Afterwards, taking 6 — 1 and 6 — 0 completes the proof. O
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The other inequality is slightly more complicated to derive. We begin with the prelim-
inary lemma:

exp( (arctan(a)—Z)-Z-
Lemma 6.8. P (Z, — Z), > z| Fp) > p((arctan(a)— %) %) for anyt>h >0

4p 5 —arctan(a)
Proof. First, remark that for any ¢ > 0 and 0 < h < ¢:
~ a  ~ ~ ~ ~
Ze=Zn+ Lin+ 5 W2+ WE i) + (WiaWaeon — WouWaion)
+a (Wl,hWLtw - WQ,hWQ,tfh)

Zy =2+ Zy_p + <7ha Wt—h>

Denote Wy_j, = Wy — Wy, which is independent of W),. Define Z,_, Li_,, as before, but
with W instead of W. Remark that vn is a vector which is a linear transform of Wj,.
Therefore, 7y, is independent of L.Z and W. This independence is the key property to use
the Borel-Cantelli lemma. Next, one shows that for any z € R:

P(Z—Zn > 2| Fn) = P<Zt7h+<’}’haWt7h>>Z’fh>
> P <Zt—h >z, <’yh,Wt_h> > O‘ J’Eh)
> %IP (Zt_h > z)

The last inequality is due to the Brownian motion symmetry, and the independence property
between v, and Z. Indeed taking —W instead of W, does not change Z, and changes the

sign of <’yh, Wt—h>- ]

Now, we must prove that the Borel-Cantelli lemma holds for the sequence of events
{ Lty — Lty > z} with ¢, a decreasing sequence of times. We cannot use Borel-Cantelli
directly as these events are not independent.

Lemma 6.9. (Borel-Cantelli extension) Let t,,n € IN be a decreasing sequence of positive
numbers. And z, a sequence of real numbers. If there exists a deterministic sequence By,
such that for any n € IN

P ({Ztn — Ztn+1 > Zn}{ ftn+1) > Bn
almost surely, an if:
+o0o
IV
n=0
Then, Zy, — Zy, ., > zn infinitely often almost surely.

Proof. The proof is much the same as the original Borel-Cantelli lemma’s proof. Denoting
A, as the event {Ztn — 7 < zn}, and

n+1

B,="P ({Ztn — Ztn+1 > Z'n,}‘ ftn+1)
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u»(ﬁA) -

E (ﬁ:]lAi

One must prove that, for any k£ € IN:

As we have:

=

)

—+00
=FE|E (Ak| ]—}Hl) H ﬂAi] as t, is decreasing
i=k+1
“+oo
< (1-By)E H M]
i=k+1

Then, by a recursive argument, one obtains:

+oo +00
P (ﬂ/h») <[Ja-B)
i=k i=k
At last, we use the inequality 1 — a < e~® for any real number a. We obtain:
+oo “+o00
P (ﬂ AZ-) <exp—» B;<0
i=k i=k
As the series diverge by hypothesis. Then the proof is complete. O
With these considerations, one can prove the reverse limit inequality, that is to say:

Lemma 6.10. The process Z is such that

. Zy 1
lim s

u > >0 6.4
oot P tloglog 1 — § — arctan(a) (6.4)

In the almost sure sense.

Proof. Denoting the event:

an={12(8Y) = 2(3")] > (1 - B9 (5"

Using lemma 6.8, this event occurs with probability:

ﬂn 7577,-&-1
4p 7 — arctan(a)

2
> CO.n~ (10

2 n
exp (arctan(a) — E) A=p)"g(B")
P(Ad F) > — ( ’ )

v
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Which is the general term of some diverging series. Hence, the Borel-Cantelli lemma 6.9
leads to:

Z (") > (1—-p0)*g(B")+ 2 (")

infinitely often as n — 4o00. Using the proof of lemma 6.7 considering inequality (6.3) leads
to:

A (/Bn—l-l) < (1 —f—ﬁ)g (ﬁn—&-l)

almost surely for n sufficiently large. Therefore one gets:

Z(B")>(1-B)2g(B") —1+8)g(B™) > (1-4B8)g(8")

Infinitely often when n — +o00. So:

T
t u a 1
. <f° (—1 a )dW“) Mo 1-ap
lim sup >

t—0 tloglog 1 — § —arctan(a)

For any 8 > 0. Taking 3 — 0 finishes the proof. ]

Remark 6.1. At last, it is remarkable that the same kind of result could easily be derived
i dimension n instead of 2. One would have to work a little bit on the matrices to ob-
tain boundaries for the original n dimensional quadratic form. These boundaries would be
quadratic forms expressed as block-diagonal matrices with 2 x 2 and scalar blocks. Then
the same type of reasoning would give some estimates on the lower and upper limits, and
would enable to treat the gamma constraints problem in n dimensions with non symmetric
matrices.



Chapter 2

Numerical approximation for
superreplication problem under
gamma constraints.

This is a joint work with Olivier Bokanowski!, Stefania Maroso ? and Haasna Zidani.

In this chapter, we study the partial differential equation arising in chapter 1. We in-
troduce a method to handle unbounded volatility controls that could be generalized to
some Hamilton Jacobi Bellman equations. Many difficulties will come from the fact that
the underlying process is a two dimensional degenerated diffusion. That is to say, the vari-
ance matrix is always of rank 1, and therefore standard results of finite difference methods
do not apply. Hence, we use a generalized finite difference scheme that is consistent with
degenerated diffusions. We will derive the theoretical properties of our algorithm in the vis-
cosity solutions framework. Along this chapter, we will state the numerical scheme, prove
its convergence, and finally give some numerical results.
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1 Introduction

In a financial market, consisting in a non-risky asset and some risky assets, people are
interested to study the minimal initial capital needed in order to super-replicate a given
contingent claim, under gamma constraints. Many authors have studied this problem in
different cases and with different constraints: for example, see [29, 63], for problems in
dimension 1, [20] for problems in dimension 2, and [64, 23] for problems in a general dimen-
sion d. In all these papers, authors characterize the super-replication price as the viscosity
solution of an HJB-equation with terminal and boundary conditions. In a particular case,
the dual formulation of the super-replication problem leads to a standard form of optimal
stochastic control problem of [20].

In this paper we study numerically an HJB-equation coming from the super-replication
problem in dimension 2. We discretize the HJB equation using the Generalized Finite
Differences scheme [17, 18], then we study existence and uniqueness of the discrete solution.
Finally we prove the convergence of the numerical solution to the viscosity solution. In
particular, we are interested on the HJB equation which comes from the two dimensional
dual problem introduced in [20]:

I(t,z,y) = (pS,gEuE {g <ti§y(T))} , (1.1)

where (p,&) are valued in [—1,1] x (0,00), the process (X{jﬁy,}/;f’f) is a 2-dimensional
positive process which evolves according to the stochastic dynamics (2.1), and g is a payoff
function. The main difficulty of the above problem is due to the non-boundness of the
control set, this fact implies that the Hamiltonian associated to (1.1) is not bounded, and
numerical approximation for such a problem becomes more complicate.

In the literature, problems with unbounded control have been studied by many authors
(for example, [1, 21]). In all these cases, the authors decide to truncate the set of controls
to make it bounded. This truncation simplifies the numerical analysis of the problem.
However, there is no theoretical result justifying this truncation.

In this paper we do not truncate the set of controls, because we find a particular form
of our HJB equation which leads us to avoid the difficulty of unbounded control. In fact,
our HJB equation can be reformulated in the following way

A= (J(t,z,y, DI(t,x,y), D*I(t, z,y))) = 0,

where J is a symetric matrix differential operator associated to the Hamiltonian, and where
A7 (J) means the smallest eigenvalue of the matrix operator J. J does not depend on the
control, but when we look for the first time at this equation, it seems that it is very difficult
to treat. From standard computations on algebra, we rewrite the smallest eigenvalue as
follows:

A~ (J) = min ol Ja,

where o € R?. Then we have transformed our problem into a bounded control problem,
and now the numerical analysis is possible.

The structure of the paper is the following: in Section 2 we present the problem and the
associated HJB-equation. We prove boundary conditions satisfied by the value function,
then the existence, uniqueness and Lipschitz property of the viscosity solution. In Section
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3 we consider the discretization of the HJB equation, and recall the main properties of
the Generalized Finite Differences Scheme and we prove the consistency of this scheme. In
section 4, we prove existence and uniqueness of a bounded discrete solution, and finally in
Section 5 we prove the convergence of the numerical approximation.

2 Problem formulation and PDE

Let (92, F;,IP) be a probability space, and T" > 0 be a fixed finite time horizon. Let U
denotes the set of all F;-measurable processes (p, () := {(p(t),((t));0 < ¢t < T} with values
in [—-1,1] x Ry:

T
U= {(p, ¢) valued in [—1,1] x (0, +00) and F;-measurable | / CZdt < —i—oo}.
0

For a given control process (p, (), and an initial data (t,z,y) € (0,7) x RT x R* we
consider the controlled 2-dimensional positive process (Xﬁ f’y, Ytp y() evolving according to
the stochastic dynamics:

dX[S () = (s, YO () X5, () AW, se(t,T) (2.1a)
AV (s) = —p(s, Y00 (s))ds + C(s)YL (s)dW?2, s € (t,T) (2.1b)
(dW),dw?) =p(s),  aese(tT) (2.1¢)
XPe () =z, YO () =y, (2.1d)

where W1 and I/VS2 denote the standard Brownian motion defined on the probability space
(Q, F,P). The volatility o and the cash flow p satisfy the following assumptions:

(A1) 0 :[0,T] x R — R* is a positive function, such that o2 is Lipschitz. For
every t € [0,T], o(t,0) = 0 (typically o(t,y) = \/¥)-

(A2) p:(0,7) x Rt — R is a positive Lipschitz function, with u(¢,0) = 0
for every t € [0,T].

Assumptions (A1) and (A2) ensure that the stochastic dynamic system (2.1) has a unique
strong solution.
The variables X/ and Y;f)f describe two different assets from a financial market.

t,x,y
The first asset thi f,y

flow M(S,th;’f(s)), and its price is linked to the asset thjf,y by the means of volatility
o (s, YL ()

is risky, while the second one Y;p ?f distributes an instaneous cash

Remark 2.1. It is important to remark that the evolution of the variable Ytif does not
depend on ng’y.

Now consider a function g : R™ — R. Different assumptions will be made on g:

(A3) g is a bounded Lipschitz function. Let My > 0 such that: [|g||eo < M.
(A4) The function f: z — g (e?) is Lipschitz continuous.
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(A5) g € C3(R" — R). The functions * — z¢/(z) and = — 22¢"(x) are
bounded.

Consider the following stochastic control problem (P, ,) with its associated value func-
tion ¥ defined by:

W, z,y) = (:SEME [g (Xz’fg,iy(T))} . (2.2)

Assumption (A3) leads us to obtain a bounded and Lipschitz value function 9 of (2.2).
Assumption (A4) will be usefull to prove some boundary conditions satisfied by ¥ (see
section 2.1).

This control problem can be interpreted in [20] in the following sense: A trader wants
to sell an European option of terminal payoff g(X7) without taking any risk. Hence we
use a superreplication framework. The underlying X of the option is a risky asset, for
axample a stock, an index or a mutual fund. Unfortunately, in several cases, the volatility
o of the underlying X exhibits large random changes across time. Therefore, the Black-
Scholes model fails to capture the risks of the trader. One must then use a model that
features stochastic volatility. It is known that in this framework, the superreplication
problem has a trivial solution (see [29]). For example, if the volatility has no a priori
bound, the superreplication price is the concave envelope of the payoff g(X (7)), and the
hedging strategy is static. To obtain more accurate prices, we introduce another financial
asset Y whose price is linked to the volatility of the underlying X. For example, we can
consider a variance swap which continuously pays the instantaneous variance of X (hence
u(t,Y) = o?). For the sake of simplicity we assume that the price of Y and the volatility
of X are driven by a single common factor (hence o = o(t,Y")). If the parameters ¢ and p
of the dynamics of the price Y were known, and if there were no transaction costs for Y,

the super-replication price would simply be E {g <X£ fy(T))} But we face two problems:
e The parameters (¢, p) of the dynamics of Y are likely to be random and difficult to
measure. As there is no a priori bound to these parameters, the super-replication

price is given be the supremum of {g <X£ fy(T)ﬂ over all adapted processes (, p
(see [36]).

e The asset Y is likely to introduce transaction costs, and hence the trader cannot buy
and sell an infinite amount of asset Y during the period [0,7]. It is proved in [20]
that the super-replication price of g(X (7)) under the constraint of a finite amount of
transactions involving Y during [0, 7] is given by the value function of problem (2.2).
See also [63, 64] for a similar approach.

Denote by M the set of symmetric 2 x 2 matrices. The Hamiltonian function is defined
by: for t € (0,T), z,y € RT, p= (p1,p2)" € R?, and Q € Mo:

Htann@i= ot futmn - greann-Qf. @3)

(Cp)ER x[1,1]
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and the covariance matrix a is given by:

o(t,y)z? pCO(t,y):B)
pCo(t,y)x ¢ '

Now we look for a characterization of 9 as a viscosity solution of an HJB equation. In
a formal way, we can check that 1) satisfies the following PDE:

O H (1, DO, D%) =0 (2,9) € (0.7) x (0,400) x (0,400).  (24)

We will prove in Theorem 2.3 that the precise HJB equation satisfied by ¥ in the viscosity
sens s o9 99 _ 1 029 1 029
A <—at +ulty) g — 307 (L y)a® G —za(my)wamay) 0
J

ay 2 2
1 049 109
—50(6,Y)T 5.5, —2 057

alt, 2,9,C, p) = (

(2.5)

where A7(A) denotes the smallest eigenvalue of a given symmetric matrix A. We first
prove that ¥ is a discontinuous viscosity solution of (2.5). We will see later on that, under
(A1), ¥ is continuous thanks to a comparison principle, and even Lipschitz continuous when
assumptions (A3)-(A5) hold.

First, it is easy to see that the infimum in (2.3) can only be achieved for p = +1. Hence
denoting ¢ as p(, one can see that the Hamiltonian can be rewritten as:

H (tv Z,Y,p, Q) = érelﬂf{ {M(t y>p2 - %tl‘ (a(tv z,Y, C) ' Q)} ) (26)

where, this time, there is only one control variable ¢ taking values on the whole real line,
and the covariance matrix a is defined by:

0'2 .%'2 g T
wn- (7 76

By elementary techniques, the minimization over ¢, in (2.6) gives:

H(t7xvy7p7 Q) = =0 if Q22 > 0; (27&)
or Q2 =0 and o(t,y)xQ12 # 0, (2.7b)
H(t,z,y,p,Q) € R, otherwise. (2.7¢)

Remark 2.2. For this particular problem, it is not possible to find a continuous function
G:[0,T] x R? x RZ x My — R such that

H(t7x7y7p7 Q) > =00 & G(t7x7y7p7 Q) Z 0

Hence we can not use arguments introduced in [58] to obtain the HJB equation (2.5).

For t € (0,T), z,y € RT, r € R, p = (p1,p2)’ € R? and Q € My, introduce the
notation:

_ [T + M(t y)p - %0-2(1:7 y)szll _%O-(t7 y)xQ12
J(t,xz,y,r,p,Q) = ( —20(t, y)zQ12 —5Q '

With straightforward computations we obtain the following result.
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Lemma 2.11. Fort € (0,T), z,y € RY, r € R, p = (p1,p2)? € R? and Q € M, the
following assertions hold:

(7’) -T+ H(t7 z,Y,Dp,

Q)>0s A (J(t,x,y,7,p,Q)) > 0.
(i) —r + H(t,z,y,p,Q) > 0= —Qa > 0.

Q)

Q)

(i) —r+ H(t,z,y,p,Q) = 0= A~ (J(t,z,y,7,p,Q)) = 0.

(iv) A=(J(t,xz,y,r,p,Q)) >0= —r+ H(t,z,y,p,Q) > 0.

Now, for a function u : [0,7] x Rt x Rt — R, we define the upper (resp. lower)
semicontinuous envelope u* (resp. wuy) of u by : for t € [0,T),z,y € (0, +0c0),

u*(t,z,y) = limsup wu(s,w,z2),
(s,w,z)—(t,z,y)
$>0,w,z€(0,+00)
us(t,x,y) = ( lirgli(nf )u(s,w,z).
s,w,z)—(t,x,
sEO,w,zE(O,-ﬁ—go)
With these definitions, we can give the sens of viscosity solution of (2.5), according to

[5, 6, 27].

Definition 2.3. (i) u is a discontinuous viscosity subsolution of (2.4) iff for any (t,,7) €
[0,T) % (0, +00)?, and any ¢ € C? ([O,T) x (0, +oo)2), such that (t,
of u* — ¢:

Z,9) is a local maximum
A_(J(Z?? i‘a g)? 8t¢(£7 jv z))a D(]S(l?, i‘a g)v D2¢(£7
(ii) u is a discontinuous viscosity super-solution of (2.4)
(0,400)?, and any ¢ € C?([0,T) x (0,+00)?), such that (t
Uy — P!

,9))) <0.
iff for any (i,2,9) € [0,T) x
,Z,9) is a local minimum of
A_(J(£7j>g)7at¢(fajvg)aD¢(£ Q)7D2¢(£7£’7g))) > 0.

Y 'i.’
(iii) u is a discontinuous viscosity solution of (2.4) iff it is both sub and a super solution.

Theorem 2.3. Under assumptions (A1)-(A2), the value function ¥ is a viscosity discon-

tinuous solution of (2.5):
v o9 9%9 9%9
A (—at +ulty) 5 — 300 (L)t T ot y)xmy> 0
9% -

)
1 9% 1
—50 (L, Y)T 505, —2057

Moreover v is a discontinuous viscosity super-solution of

——— >0. (2.8)

Proof. The proof is splitted on two parts: the super-solution property and the sub-
solution property.
(a) Super-solution property. By a classical application of the Dynamic Programming
Principle, as done in [51], we obtain that J(¢,x,y) is a viscosity super-solution of

f% + H(t,z,y, DV, D*9) > 0.
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Then, Lemma 2.11(i) implies that also
A (J(t,z,y,0,0, D9, D*)) > 0,

and then 9 is also a viscosity super-solution of (2.5).

Moreover, this last inequality implies that f%gi;; > 0, and hence (2.8) is verified. (b)

Sub-solution property. Let ¢ be a smooth function, and let (¢, Z, §) be a strict maximizer
of ¥* — ¢, such that

0= (" - 9)(E.5,7).
Suppose that (¢, 7, ) belongs to the set M(y) defined by:
M(p) = {(t,z,y) € [0,T)x(0,+00)* : A~ (J(t,2,y, Brp(t, 2, y), Dep(t, z,y), D*p(t, 2,y))) > 0}
Since M(p) is an open set, then there exists 7 > 0 such that
[0 A(E=m),t+n] x By(Z,5) € M(p),

where B, (Z,7) denotes the closed ball centered in (Z,7) and with radius 5. From Lemma
2.11(iii), if (,2,y) € M(y), then

_O¢
ot

Using the Dynamic Programming Principle and the same arguments that in [58, Lemma
3.1], we get that:

(t,z,y) + H(t,2,y, Dp(t,z,y), D*p(t, z,y)) > 0.

sup —¢)=  max_ (I —9p), (2.9)

0y ([0A(F=n),+n] X By (Z,7)) [0A(t=n),t+n]x By (2Z,7)
where 8, ([t1,t2] X By(Z,7)) is the forward parabolic boundary of [t1,t2] x By(Z,7), i.e.
Op([t1,t2] x By(Z,7)) = [t1,t2] x OB, (Z, §)U{ta} x B, (Z,§). However, since (f,Z,y) is a strict
maximizer of 9* — ¢, equality (2.9) leads to a contradiction. Therefore, (¢,Z,7) &€ M(p),
and the result follows. O

In our paper, we are interested by the numerical computation of the value function
9. Although equation (2.5) has a rigorous meaning, the formulation with the smallest
eigenvalue makes difficult to deal with its numerical discretization. Of course, one can be
tempted to modify the hamiltonian in the following way: for (pax > 0,

. 1
H(tr,y.p.Q)=  min {mmy)pz — Latt, 2y 0) - Q)} .
CE[_Cma)nCmax} 2

However, the choice of (nax, guaranteeing a good approximation of H, does not appear
obvious to us. To avoid these difficulties, we first give an equivalent HJB equation satisfied
by ¥ and which is formulated with bounded controls. More precisely, we have:

Corollary 2.1. Under assumptions (A1)-(A3), the value function ¥ is a viscosity solution
of the HJB equation:

T 9 9 219 219
inf o7 *% + H(t,y)%y - %02(7573/)552% *%U(tvy)xc%ay a1 —
in 82’19 1 82’19 B

1
Oz%—l-a%:l a2 —§O' t,y)xaxay _§W
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Remark 2.4. Equation (2.5) can be reformulated as follows,

89 99 929 929
- ot + /’L(tv y)((JTy %0—2 (t7 y)xQ Ox2 % <t’ y).’l??’](t, y) 9zdy | — 0
A —Lo(t, y)an(t )ﬁ L2t )3219 )
20(,:1/%‘77 Y 0x0y 2 \hLY Iy*

(2.11)

where n(t,y) is any strictly positive function. 1 It is easy to see that changing the positive
function n(t,y) into another positive function, does not change the sign of the operator in
(2.5), for fived (t,z,y, DY, D*9).

In particular, when we will deal with the discretization of (2.10), we will use n(t,y) =
min(1,y).

2.1 Boundary conditions. Uniqueness result

Unlike in most similar parabolic problems, here we do not only need a terminal condition
to obtain the uniqueness, but also a border conditions when y tends to zero. Another
boundary condition is hidden by the fact that we only consider bounded solutions, which
is, intuitively, equivalent to Neumann conditions near infinity.

Lemma 2.12. Under assumptions (A1)-(A3), the value function ¥ is bounded and satisfies
the following conditions on the boundaries x =0 and y = 0:
( li)m( O)ﬂ(t',x’,y’) =9(t,z,0) = g(x),V(t,x) € [0,T] x R (2.12a)
t'ax'y' ) —(t,x,
im  9(,ay) = 9(t,0,y) = g(0),Y (y) € [0,T] x RS (2.12b)
(2" y")—(£,0,y)
and the terminal condition of the equation for t =T is:

lim I, 2 y) = (T, z,y) = g(x) for all (z,y) € (R)>. (2.12¢)
(t"a’y")—=(Tszy)

Proof. The statements (2.12a)-(2.12c) are proved in lemma 5.6 in [20]. The proof is
based on the assumptions (A1) and (A2) of o and p, and on the continuity and boundedness
of g (see (A3)).

Now to prove statement (2.12b), we first give a representation of ¥(¢, x, y) using Doleans
integral. Indeed, for every (t,x,y), we have:

ng’y = aZ5*, where Z5¥ = e @ YEF @AW+ [T (oY (9))ds,
Therefore,
I(t,z,y) = E [g(xggy)(T)] ~E|g <ngvp,>] (2.13)
We conclude that statements (2.12b) holds. O

We recall here the uniqueness result, proved in Lemma 4.3, Proposition 4.4, and Proposition
4.6 of [20].

Theorem 2.5. (Proposition 4.4 of [20]) Assume (A1)-(A8). Suppose that u is an upper
semi-continuous viscosity sub-solution of (2.5) bounded from above, and w a lower semi-
continuous viscosity super-solution of (2.5) bounded from below. If, furthermore,

w(T,z,y) < g(x) < w(T,zvy),
u(t,z,0) < g(x) < w(tx,0),

(2.14)



2. PROBLEM FORMULATION AND PDE 65

then u(t,z,y) < w(t,x,y), for all (t,z,y) € [0,T] x RL. In particular, the solution of (2.5)
in the viscosity sense with boundary conditions (2.12a) and (2.12¢) is unique.

We recall here the main ideas of the proof.
Proof. Suppose that v and w are respectively sub- and super-solution of (2.5), and that
they both satisfy the limit conditions (2.12a), (2.12b) and (2.12c). A classical argument
(see [7]) to prove uniqueness for equation as (2.5), consists in building a strict viscosity
super-solution of (2.5) w,, depending on the super-solution and on a parameter €. More-
over w. must to be such that, when the parameter € goes to zero, w. tends to w. Then
with classical arguments [27], a comparison principle between the strict super-solution and
the sub-solution can be obtained, and sending € to zero we have the desired comparison
principle.

In our particular case, for any £ > 0, we build

we =w+e((T —t) +In(1 +y)).

From Lemma 4.3 of [20], w, is a strict viscosity super-solution of (2.5), bounded from
below and such that conditions (2.14) are satisfied. Then we can apply Proposition 4.6 of
[20] which is a comparison principle between a strict viscosity super-solution and a viscosity
sub-solution, and we obtain

We = U,

for all (t,z,y) € [0,T] x R?. Sending ¢ to zero, we have the result. O

Since the boundedness property of ¢ would be tricky to manipulate numerically, in the
following proposition we give some growth properties of the value function which are a sort
of Neumann conditions at infinity. These conditions will guide us toward an implementable
scheme.

Proposition 2.15. Assume that (A1)-(A4) are satisfied. Then the following holds:
(i) For any a > 0, the function:

h%,y L ﬂ(ta z + avy) - ﬁ(ta x,y)

converges to zero, uniformly in (t,y), when r — +oo.
(ii) The function;
hiw iy — 9t @,y +a) —0(t,2,y)

converges to zero, uniformly in (t,x), when y — +o0.

Proof. (i) Let (¢t,z,y) € (0,T) x RT x RT. As in (2.13), we have:

e, z,y) = SCu;I))E [ (Xféy(T))} = sgug)E [g (xZg’p)] . (2.15)

By assumption (A3), the function f : z — g(e*) is Lipschitz continuous on R. Then, for
2’ € RT, we get:

It z,y) — I(t, 2, y) —supE( (¢257)) — supE (g (' 257))

(8o 2o (425)
)1 (1 (5]}

<sup{]E [f( )+ ln(Zcp
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and using the Lipschitz property of f, it yields to:
I(t, z,y) — I(t,2',y) < K |In(z) — In(z')|.
Therefore we get that

T +a

‘htly(x)‘ <K ‘ln ( ) ‘ — 0 as & — +oo uniformly in (¢,y). (2.16)

To prove assertion (i7), using (2.8), we see that v is a supersolution of

2
v,
0y?

Then, from [29], we deduce that the function ¥ is concave w.r.t. y. That is, for each (¢,z),
Y(t, x,-) is a concave function. Moreover, from (A3), ¥ is bounded and ||¥||s < My (where
the constant My > 0 is the same as in (A3)). Therefore, for any A, the function

hip iy — 9t z,y+A) — It z,y)

is decreasing. Considering that 9(t, z,nA +yo) = 9(t,z,y0) + >_i—; hi ,(iA + yo). Hence, it
follows that:

I(t, 2, n\+yo) > I(t, 2,90) + Y hi,(nA+ o)
=1

which gives:
2M
h? ,(nA + yo) < e

and we get convergence of 7 ,(y) to 0, which is uniform in (¢, ). O

2.2 Lipschitz property

Here we establish the Lipschitz property of the value function .
Proposition 2.16. Under assumptions (A1)-(A4), we have:

(i) The value function ¥ is Lipschitz w.r.t. x.

(ii) ¥ is Lipschitz w.r.t. y.

Proof. (i)As in the proof of proposition 2.15, we consider the representation of ¢ using
Doleans exponential:

V(t,x,y) =supE (g(Xf;%)) =supE [g (xZg’pﬂ vt € (0,T),z,y € RT, (2.17)
Cp o Cp

where Z5* = eli oYy ()Wi+5 [T (0(s Y0y (5))%ds

Then, for t € (0,T),z,2’,y € Rt we have:

[0(t, z,y) — I(t, 2", y)| < Sg},l;?E {g (a;Zg’p> -9 (a:Zg’p)} .
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As g is Lipschitz of constant K, we get:

[9(t, 2, y) — I(t,2',y)| < supE |K(x — ') 25"
¢p

< K|r —2'|supE <Z§’p> .
Cp
Therefore, using the fact that the Doleans exponential is a positive local martingale, and
hence a super-martingale, which implies that for any control (¢, p) € U:
E (eftT O’ﬁ’deu‘i’% ftT(G'u)C’p)Qdu> S 1’
and then taking the supremum leads to:
‘19(1‘-7 x, y) - ﬁ(tv xlv y)‘ < K|$ - 33’,‘

Which proves that 9 is Lipschitz w.r.t. x with the same constant as g.

(ii) Now we treat the Lipschitz property of ¥ w.r.t. y.

First,we recall that 9 is concave w.r.t. y. Furthermore, as g is bounded, we immediately
get that ¢ shares the same bound. Hence, it is sufficient to prove that ¢ is Lipschitz near
the boundary y = 0.

Recall that by (2.12a), we know that ¥(t,z,0) = g(z) for all (¢,x) € (0,7) x (0, +00).

Let (t,z,y) € [0,T] x (0,+00)?, with > 0. For any control (¢, p) € U, we have:

V@) =yt [ —n S @+ [ ovsaw?
¢ t
Furthermore, by a comparison argument for SDEs, we get, for any 7 € [t, T
Y/ () = 0.
Using the positivity of u, we get:
0<Y/i(s) <y+ /t S Yok (r)dW?.
Hence, the quantity above is a super-martingale and we get:
E[vZ()] <. (2.18)

Now, applying It6’s formula on g(X/ ’éy):

go(XPE () = gle)+ / d(XPS ()dXPS, (7) +

g (X5, (1) (X5, (1), dXEL, (7))

tx,y t.x,y t,xy

| =
e\

Il
Q

(2) + / ¢ (XPE ()dXPE, () +

/ts (Xf,’éy (7-)> 2 g’/(ng,y (T))O-Q(}/Iff (1))dr.

N =
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Since XS

t.ry 1s a locale martingale, there exists a sequence (8n)n, with s, — oo such that:

5( [ " xpS ()X P (o ) -0

Using (2.18), the Lipschitz property of o2, and the boundedness of x — 2%¢”(x), it yields:
there exists a constant C' > 0, such that:

Sp AT
B (st n AT —g@) | < [ cyar
t
Finally, as g is bounded, we conclude with Fatou’s lemma that:

B (g(x£,(T)) - g(2)) < C(T 1)y,

and since the constant C' is independent of p, (, we obtain:

9(t.2,9) = 9(t.2,0)| < sup {[E (s(XE2, (D)~ 9(a) I}

< CTy.

Hence, as 9 is concave w.r.t. ¥ and bounded, it is Lipschitz with respect to . O

3 Approximation Scheme

Now we want to approximate the (unique) bounded solution of the following Hamilton-
Jacobi-Bellman equation:

. 5 0V 50V 1
i { = a5 )+ u(e)a 50 ) - Sonfaor,on.t ) D] =0
(3.1)

with boundary conditions (2.12a), (2.12b), (2.12c), where p is a positive Lipschitz function,
and the diffusion matrix a is defined as follows:

._ afo?(t,y)z? arooo(t,y)n(t,y)x
alar, 02,8,2,9) := < aragn(t,y)o(t,y)z n*(t,y)a3

_ ( aro(ty)x ) ( aro(t.y)x )T

n(t, y)az agn(t,y) )

where n(t,y) = min(1,y), in agreement with (2.11). From now on we will write only a
instead of a(a1,ag,t,z,y), and p instead of pu(t,y), we omit all the dependences.

We can easily see that a is not a dominant diagonal matrix?®, in fact we can not ensure
that

(3.2)

aon > ajox, Y (t,x,y) €[0,T) x [0, +00)?, and V af + a3 = 1.

4We recall that a matrix X of dimension N x N is diagonal dominant if

X¢¢EZ|X1']'|7 Vi=1,...,N.
i
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This fact implies that we can not choose the Classical Finite Differences scheme to approx-
imate equation (3.1), we shall use the Generalized Finite Differences scheme introduced in
[17].

Consider a regular grid G, of discretization of R? | with discretization steps h = (h1, ha):

Gh = {(x“y]), T = ihl) Y; = jh27 /L’j € Nx N}’

and consider a discretization time step At. On the grid Gy, the derivative on time is
approximated by an implicit Euler scheme, and for the first derivative in y we use a finite
difference approximation. The main idea of the Generalized Finite Differences scheme is
to approximate the diffusion term a - D?¢ by a linear combination of elementary diffusions
pointing towards grid points. More precisely, for ¢ = (£1,&) € Z2, associate the second
order finite difference operator (for z,y € R):

Aed(t, v, y) = d(t, o + &1hy, y + aha) + o(t, 2 — §1hy,y — §2he) — 20(, 2, y),

where A¢ is an elementary diffusion in the direction {. By a Taylor expansion, we know
that

2
A§¢(t>x>y) = Z hihjéigjquiwj + 0(Hh2”)a
ij=1
where z1 = z and x9 = y.
Following ([17, 18]), we introduce a set S C Z?*\ 0, which contains {ej,e2}. We will

specify later how we choose this set. We approximate the second order term a - D?¢ by a
linear combination of elementary diffusions along &, with £ € S:

a - D2d) o Z,Y?LQQAéQs,
£es

“2 are coefficients which will be specified later.

where the ’y?l’
For a given set S, the scheme takes the following form:
Uh(T7$ay) :g(ﬂj) :Uh(t,l',()), Uh(t707y) :g(O), (33)

. 1
211119 {—a%(sﬂ)h(t, x, y) - O‘%H(Syvh(ta €, y) - 5 E ’Y?lﬂzAﬁvh(tu xz, y)} = 07 (34)
ajtaz=1 ces

for t < T — At, with
Uh(t+At>$7y) _’Uh(t,.’,U,y)

6tvh(taxay) = At )
vp(t,x,y — he) —vp(t, x,
Syon(t,z,y) = UL ;3 A y).

It is shown in [17, 18] that the above scheme is consistent if we choose a set S and variables

'y?l’” such that: for all oy, ao, t,x,y

et >0,VEES,
D oqerereet =al (3.5)

£es
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where a denotes the scaled matrix:
a" = {a;j/(hih;)}.
Equality (3.5) means that a” belongs to the cone generated by {£€7;¢ € S},
C(S) =4 Y ece™, v e R
£es
A natural choice for S is the following;:
S=38,={(&,&) € Z x Nymax(|¢1]; &) < p; (J&], §&2) irreducible},
for p > 1, and the correspondent cones C(S,). These cones have the following property:
C(S1) CC(Sy) C---CC(Sy) C---C MF,

where ./\/lf denotes the set of symmetric positive matrices. We can represent these matrices

(a) (b) ()

Figure 2.1: (a) Symmetric semi-definite positive matrix with trace equal to 1 and cone of
diagonal dominant matrix. (b) Cone C(S1), a is on the border of the semi-definite positive
matrix. (c¢) Cone C(Ss).

in R? using the following coordinates:
21 =ai, 22 = V22, 23 = an.

The cone of symmetric matrices is represented in figure 3 (a), together with the cone C(Sy)
of diagonally dominant matrices. One can make a cut of these cones, considering matrices
of a given constant trace. Then, we will use the following set of coordinates:

Z1 — 23 21+ 23

, Wo = Zo , W3 =
NG 2 2 3 /2

The cut will be made for constant ws, the axis of the two dimensional representation being
wy and wsy. The cuts of cones C(S1), C(S2), and C(S3) with the plan of trace 1 matrices are
represented on figure 3. Unfortunately, even for a big order p >> 1, the matrix a” does

w1 =
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e’

£/§/T

e (a) (b)

Z1

Figure 2.2: (a) Cone of positive definite matrices, embedding the cone of diagonally dom-
inant matrices C(S1), and projection of a matrix a” on C(S;). (b) Same figure, where we
draw the cut of the cone for matrices of trace Tr(ap,).

not satisfy necessarly the strong consistency (3.5).
Moreover a”
ities:

e The direction of diffusion < a;anx > points toward a point of the grid. This situation
2

is a rank one matrix and it is degenerated. This fact implies two possibil-

happens if the slope is a rational number r/q (with r» € Z and ¢ € N*). Then we consider
the vector &, = (r q)T, and we can write

h : T
a = PYOéTTqQQ &rabr g

10X

e The second possibility is that the direction of the diffusion ( > has a real slope.

Q27)
In this case, we approximate a” by its projection CLZ parallely to the zy axis (see figure 3)
into one of the cones C(S,), the order p being the order of neighbouring points allowed to
enter in the scheme (of course, this order depends on where we are situated on the grid
and on the direction of the diffusion). Note that the quantity a;; — ago is conserved and as
the trace does not change, and we obtain that a1, and as2 are invariant by this projection.
Only aq9 is modified.

Remark 3.1. As we can see in Figure 3 (b), matriz a” belongs to the border of the cone Mﬁ
(the cone of symmetric semi-definite positive matrices), and then there exist two vectors

&g and &y oo on Sy, such that we can project a" on the hyperplane generated by S ;—/q/
and &y ¢ f;:, T Then, we can write the projection of a” as follows:
h _ o102 T Q1,02 T
= 0y € + A (36)
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a2

where 'y?l’ are positive coefficients, and moreover

Yy O e < tr(ay).
As studied in [17], the generation of the directions &y o and &y o, can be performed (in
effective way) in O(p) operations, by using Stern-Brocot algorithm [41].

Remark 3.2. This is not the same projection as in [17], where an orthogonal projection
used. This modification is important to obtain the global convergence of our scheme (see
section 5).

Remark 3.3. The choice of the order p depends on where we are situated on the grid.
For instance, if we consider a point (x,y) in the middle of the grid, and we want to dis-
cretize a - D?¢(t,x,y), we can follow the direction of diffusion and choose the biggest order
of discretization p, because more p is bigger and better is the approzimation of the scaled
covariance matriz a. On the other hand, if we consider a point (x,y) near to the boundary,
it can often happen that following the direction of the diffusion, we involve in the discretiza-
tion some points which are out of the grid. In this case the choice of p is not free, and we
refer to the Appendix for a detailed discussion of this case.

Remark 3.4. In all the decompositions, the coefficients ’y?l’az
terms of (t,xz,y). Sometimes, for simplicity of notations we do no specify this dependence.

and also the vectors & are in

Error projection for scaled covariance matrices. For a symmetric matrix b of di-
mension 2 we use the Frobenius norm [|b]| = (3_; ;1 » b?j)l/ 2. Let pmax the maximum order
that we can consider for the discretization, and let us consider the projection b’ of a general
matrix b € Mﬁ on the cone C(Sp,,..). It is easy to prove by geometrical considerations
that the projection b’ of a general matrix b € My, on a hyperplane of C(S,,,,..) spanned by

pmax
€T and €(¢)7T is such that
b= ¥ < E2)l. 57)

where f/,\é’ denotes the length of the arc (£,¢’), see figure 3 (b). From this inequality and
[17, Lemma 6.1], the projection error will be bounded by €,||b||, where

o T
2Pmax

€p

Therefore, the error projection is guaranteed to be at most equal to e (for any € > 0), if we
choose pmax = p-, where

Pe i = —. (3.8)

3.1 The discrete equation

From now on, by [r] we denote the smallest integer greater than r, and we fix hy = hy = h,
the space step size®, pmax € N the maximal order of grid points allowed to enter in the

SWe set h1 = ha = h to simplify the analysis.
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scheme, and At the time step sizes. Set p = (Pmax, h, At), and define the scheme S (given
in a general setting) as follows. Let ¢ : [0,7] x Rt x Rt — R and

A : 2¢(t+At,£B,y)—T‘ 2 T—¢(t,$,y—h)
Sp(ta$aya Ty ¢) T a%r—i{lo%l:l{ - At _I—all’j/ h
1 o,
_5 Z '76 b Q(ta €Ly y) [¢(t7 T — glha Yy— th) —2r 4+ Cb(ta T+ glhv Y+ 52]7“)] }7
£eS(z,y)
(3.9a)
for (t,z,y) € [0,T) x (0,00)?, where
S(z.y) 1= S, with p = min(pruar. [o/h]. [y/h1), o

Z{eS(%y) ’7?170[2 (ta x, y)gg—r = ag(tv €, y)v

the projection of the scaled covariance matrix a" on C(S,) (a" = a/h?). In particular,
P = Pmaz if T — pmazh > 0 and y — ppash > 0 (points in the interior of the domain),
otherwise p = min([z/h], [y/h]) (points near to the boundary).

Now the discrete scheme for (3.1) is:

SP(t,z,y,vp(t,z,y),vp) =0, (3.10a)
for (t,x,y) € [0,T) x (0,00)?, and with the boundary conditions:
on(T,2,y) = g(x), ¥ (,y) € [0,00)?, (3.10b)
vp(t,z,0) = g(z), V (t,z) € [0,T] x [0, 00) (3.10¢)
onlt,0,9) = 9(0), ¥ (1,3) € [0,T] x [0, 00) (3.10d)

(the solution vy, will stand for an approximation of the value function ¥J.)

Remark 3.5. It is clear that if pmax is not linked to the step size h, then (3.10) is a discrete
scheme for the HJB equation with the covariance matriz a, = h2ag wnstead of a:
. 0 0¢ 1
2 2 2
i, { - ot o +atug ny) - Dol =0 @)
In what follows (subsection 3.2, and section 4), we will prove that the scheme (3.10)
satisfies the following properties:

(S1) Monotonicity: S?(t,x,y,r,u) > SP(t,x,y,r,v),
for all 7 € R, z,y € R%, u,v € C([0,T] x [0,00)?) such that u < v in [0,77] x [0, 00)%.

(S2) Stability: For all p = (h, At,pnax) € (R%) x (0,7) x N*, there exists a bounded
solution vy, of (3.10).

(S3) Consistency: There exists a constant C; > 0, and a constant such that, for every
¢ € C™([0,T] x [0,00)?), n > 4, with bounded derivatives,

9¢
dy

. 209 2
min ¢ —of—(,z,y) +ajp

_Sp(tam)y7 ¢(t7x7y)7¢)‘
< CL(1079loAt + uDydloh) + 16V/2pp, 40 |all|[ DU Gloh® + ep(t, 2, y) | D*lo,

(taxa y) - %tr[a : D2¢(tax7y)]}

(3.12)
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where aj is the projection of a on C(Sp), for p = min(pmaa, [2/R], [y/R]), and
ep(t,z,y) is the projection error such that €, = ||a — ap|| if p = pmas, and ¢, =
CK (z,y)h otherwise, where C depends on the Lipschitz constant of o2.

3.2 The consistency property
We start by proving the consistency property (S3). Consider a function ¢ € C™([0,T] x

[0, +00)?), with bounded derivatives and compute (first) the difference term:

. 0¢ 0¢ 1
2V 2 Yv . .2
O}%ﬂgg{ al 81} (tvxa y) + alluay (t7‘r7y) 2tr[ap D ¢(t,(177y)]}

_Sﬂ(t’ r,Yy, QZ)(tv €, y)7 ¢)

(3.13)

)

for the HJB-equation with the matrix a, instead of a. For the derivatives on ¢ and on y
we just apply a Taylor development to obtain the bound terms |02¢|oAt and M\D;gﬂgh.
Consider now the diffusion term: by a Taylor development, we get (for £ € S):

44 ked—k 0%
2h Zk:0§1 2 8:1:’“81;4*’“

AR[€][*| D lo,

D?*¢(h&, he) — Aeop

IAIA

where D¢ = Zizo _ 29 and the last inequality follows from the fact that Zi:o flfﬁgfk <

Ox’fax;lfk ’ -
2/|¢]|*. Moreover, from (3.6), we can deduce that

h
0 S ,.Yalon < tr(ap)

S

for every £ which appear in the decomposition of ag. Then, for the global diffusion term
we obtain

trla, D?p(t, @, y)] — Yees Ve Ded(t, 7, y) 2tl“(a;’.}:) |DYloh® Yees €112
p

<
< 8tr(a )|D4¢|0h4p72na1’
< 8tr(ap)| D dloh*phas

where the last inequality follows from the fact that & < ppasz, for ¢ = 1,2. We are now
looking for a bound of tr(a,) which depends on (¢,z,y). It is easy to see that tr(a,) <
V2||a,||, and moreover, by 3.7, we can show that

lapll < 2all, (3.14)

where ||a|| depends on ¢, z,y.
Therefore, we obtain

trla, D*¢(t, 2, y)] — e 2 At x,y) < 16V2]|al|| D ¢loh*phgs-
£es

Then we can conclude that
(3.13) < Ci(|97gloAt + p|D2gloh) + 16v/2p2,,. lall| D dloh?. (3.15)

On the other hand,
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e For the points (x,y) such that © — ppe.h > 0, and y — pazh > 0,
tr[a ' D2¢(t7 €T, y)] - tr[ap ’ D2¢<t7 €, y)] < HCL - ap”|D2¢‘0 < EP‘D2¢‘0'
Let us note that for a fixed ¢, depending on the space step h, following (3.8) we can

give a condition on py,,, to obtain an error which is at most equal to €.

e For the points such that * < ppaezh or ¥ < pmazh, using the equivalent formulation
of remark 2.11 with 7(¢,y) = min(1,y), and the Lipschitz property of o2, one gets

lal| < C(z®y + y* + 2y),

where C' depends on aq,os and on the Lipschitz constant of o2. Moreover, since
we know that p = min([z/h], [y/h]), then taking K(z,y) = (z Vy + 1), we get
lla|| < CK(x,y)ph. Then we obtain the following estimate:

la — ap|||D?¢|q

<
< epllall - [D?¢lo
< 20K($,y)|D2¢’0h,

trla - D2¢(t, x,y)] — tr[a, - D*¢(t, z,y)]

where the last inequality follows from the fact that €, < 2/(p).

This concludes the consistency property (S3), with €,(t, z,y) = ||a — ap|| if p = Pmae, and

eplt,,y) = CK (z, y)h? if p = min([z/h], [y/h]).
We give the following result.

Proposition 3.17. Suppose that

Pmaz ~ —2>

3

then

. 09 0¢ 1
2 2 2
m1n2{ - 0415(75,9579) + alua—y(t, T,y) — 5“[“ - D7o(t, x, y)]}

aj+o3
-89(t 0. 0(0,2.9).6)| = O(1) + O(A)
for all (t,z,y) € [0,T] x (R%)?.
Proof. The proof follows from the explicit form of the consistency property (S3). O

Remark 3.6. In the case when the direction of diffusion points toward a point of the grid,
the consistency remains the same, except for the error of projection which will be zero.

4 Existence of the numerical solution

In this section we prove the well-posedness of the implicit scheme (3.10a) with boundary
conditions (3.10b), (3.10c¢) and (3.10d), and show that it satisfies the required monotony
and stability assumptions (S1)-(S2).

We recall that the grid is Gj, = {(z;,y;),i,7 > 0} C R%, where z; := ihq, y; := jho.
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We first start to initialize the scheme by

Uh(T,fL',y) = g(ZL‘), (xay) € Gh'

Then, given vy (t + At,.) for some time ¢, we need to find v, (¢, z,y) for (z,y) € G such
that

Uh(t, z, y) B 'Uh(t, z,Yy— hz)

. 2’Uh(t,{11,y)—’l)h(t+At,$,y) 2
—= nyo”’azAgvh (t,z, y)} =0, V(z,y) € Gp, y>0, (4.1)
EES
and with the following ”"boundary conditions”:
vp(t,x,0) = g(z), Vo € N (4.2)
vp(t, ., .) bounded (4.3)

The scheme in abstract form. Since for all (z,y) € G}, with y > 0, an optimal control
(a1, a2) must be found, we introduce S! := {a = (a1, a2),a? + a2 = 1} and

A= (Sl)NXN*

the set of controls associated to the grid mesh (z;,;)i>0, j>1-
The scheme can then be expressed in the following abstract form: find X := v (t,.,.) €
RY*N* hounded, such that

min <A(w)X - b(w)) =0, (4.4)

weA
where A(w) is a linear operator on RN and b(w) is a vector of RN*N" " and are made
precise below.

Definition of the matrix A(w) and vector b(w): Let X = (Xjj)i>0,j>1, (resp. w =
(@ij)i>0,j>1, with a5 = (a1, @52)) be values (resp. controls) corresponding to the mesh
points (z;,y;) of Gp. Then
e A(w) is an infinite matrix determined by VX, Vi > 0, Vj > 1,
o2

1 1
(A(w)X)i; = Kt Xij + Oé?j,lu(t,yj)hf(Xij —(1=rj-1)Xij-1)
2
+§ Yo % = Ree) Ximg g + 22X — Xive jre)
E=(&1,62)€S

where ki :=1if k =0 and kg := 0 if k£ #£ 0.
e b(w) is defined by

a2 .
bij(w) = th w(t+ At 2, y5) + o) M(};zyj)ﬁjlg(%) (4.5)
1
t5 > R eg(Tiie)
E=(&1,62)€S

where vy, (t+At, x, y) is the solution at the previous time step and is assumed bounded.
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We shall also denote

01 0 1 i
0ij(w) = — =+ T s ys)Rj-1 + 5 > ke

§=(£1,62)€S
Remark 4.1. The matriz A(w) is 6(w)-diagonal dominant in the following sense:
Ay iy (W) = 8i(w) + Y 1A g ()]
(R 0)#(i,5)

Remark 4.2. Note that in the case no border points y = 0 are involved (i.e. when j >
Pmaz ), we have the more simple expressions:

2 2

Q551 Q551
(A(w)X)i; = Xij + plt, yi) (Xij — Xij-1)
At ho
1
+3 Y (X e 2K — Xivejie):
£=(&1,62)€S
and ) )
oz o’
bm(w) = X;fl Uh(t—i—At,:L'i,yj), 6ij(w) = Xél

Remark 4.3. Note that on the boundary v = 0, if we assume that vy (t + At,0,y) = ¢(0)
then the scheme reads

{ th(t, 0, y) B g(O)

Up, t)0>y — Up taoay_hQ
360D =90 | oy ) :02) = 60y = o

ha

min
oa%—i—a%:l

—l—éa%(—vh(t, 0,y — ha) + 2v,(t,0,y) — vi(t,0,y + hg))} =0, Vye€ hN* (4.6)
and with vp,(t,0,0) = g(0). One can show that vy(t,0,y) = const = g(0) is the only bounded
solution of (4.6) (using the results of Lemma 8.14, Prop. 8.20 and Prop. 9.22). Hence by
recursion we see that vp(t,0,y) = ¢(0) for all t and y € hoN. In order to simplify the
presentation of A(w) and b(w) we have preferred not to add this knowledge in a boundary
condition at x = 0.

Preliminary results. In order to find a solution of (4.4), we first consider the linear
system
A(w)X = b(w),

for a given w € A. For clarity, some specific results for such systems have been postponed
to an appendix. We can check that (A(w),b(w)) satisfy all the assumptions of Proposi-
tion 8.21. In particular, we obtain that A(w) is a monotone matriz, in the sense that if
X = (X ;)i>0,j>1 is bounded (or bounded from below) and such that

Vi>0,Vji>1, &j(w)=0 = (A(w)X); =0, (4.7)

then
Aw)X >0= X >0.
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Here (4.7) is equivalent to
Vi>0,721, a51=0=-X;;-1+2X;; — X; ;11 =0.
Since b(w) satisfies d;;(w) =0 = b; j(w) = 0, and that

b3 (w)]|

< maX(th(t + At? * ‘)H007 HQHOO)v

we also obtain by Proposition 8.21 (ii) that there exists a unique bounded X such that
A(w)X = b(w), and satisfying furthermore

1 X[oo := max [ X5 <max([|va(t + At ., )loos [19lloo)-
120,521

Howard algorithm We can now consider the following Howard algorithm for solv-
ing (4.4).

Let w® € A be a given initial control value
Iterate for kK >0

e Find X* bounded, such that A(w*)X* = b(w*).
o Wkl = argmin, . 4 (A(w) X* — b(w)).

In the second step note that the minimization is done component by component, since
(A(w)X* — b(w));; depends only of the control «;;; the minimum is also well defined since
the control set S' for a; is compact.

Then we have the following result, whose proof is postponed to the appendix.

Proposition 4.18. There exists a unique bounded solution X to the problem

in(A(w)X —b =0
min(A(w)X — b(w)) =0,
and the sequence X* converges pointwisely towards X, i.e., limp_.o0 ij = X;; Vi,j > 0.

Stability and monotonicity. First, the convergence thus leads also to the bound ||vp (¢, .)||cc =
[| X ||oo < max(||vg(t+ At,.)||oos ||9]lc0). Hence by recursion we obtain ||vg(,.)||co < |19]]cos

which shows the stability of the scheme.
Then, the monotonicity is also obtained directly from the definition of the scheme.

Remark 4.4. Note that we have the following stronger monotonicity result: if v}l(t + At)
and vi(t + At) are two bounded vectors defined on the grid, and X and X?* denotes the
two corresponding solutions of (4.4), then

it 4+ AL ) <VR(t+At) = X'< X2

To see this, let us denote b4(w), for ¢ = 1,2, the vectors corresponding to vi(t + At) as
defined in (4.6). We note that b*(w) < b*(w), Yw € A. Let w' be an optimal control for
X', Then
AwH) X —vl(w') = 0= miﬂ(A(w)X2 — b*(w))
we
A(wh) X2 — v (wh)
A(wh) X2 — bt (wh),

IA A
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and thus A(w!)(X? — X1) > 0. By the monotonicity property of A(w') and the fact that if
Sij(w') =0 then b?j(wl) - bilj(wl) =0, we conclude to X' < X?2.

Remark 4.5. Note that the stability and monotonicity results are obtained inconditionnaly
with respect to the mesh sizes hi,hy and At > 0.

5 Convergence

Since the scheme is monotone, stable and consistent, we can use the same arguments as
in [10, Theorem 2.1] to conclude the convergence of ¥;, toward ¢, taking into account the
comparison principle Theorem 2.5.

In order to prove the convergence, we first note that the following type of discrete
comparison principle holds for the scheme.

Lemma 5.13. Let Y = Y, a¢(t,z,y) be defined on (x,y) € Gj, and for T —t € AtN.
Suppose that Y is a super-solution of the scheme (resp sub-solution of the scheme), in the
following sense:

() Vt+At < T, (z,y) € Gp,y >0, SP(t,x,y,Y(t,x,y),Y) >0 (resp. SP(t,z,y,Y (t,z,y)) <
0),

(”) \V/(l',y) € Gp, Y(T,ZL‘,y) > g(l’) (Tesp Y(T7$7y) < g(lL’)),

(1ii) YVt < T, (z,y) € Gp, Y(t,2,0) > g(x) (resp Y(t,z,0) < g(x)),

(iv) Y (t,z,y) is bounded from below (resp. from above).

Then'Y > vy, (resp Y < wy), where vy, = vp(t,z,y) are the scheme values.

Proof. Indeed the proof can be obtained by recursion (using Y (t+ At,.) > v, (t+ At,.)
to show that Y (¢,.) > wvy(t,.)) following the same arguments as in Remark 4.4. In order to
conclude from A(wq)(Y (t,.) —vp(t,.)) >0 to Y(t,.) — vp(t,.) > 0 (for a given control wy),
we use the fact that Y'(¢,.) — vp(t,.) is bounded from below and Prop 8.21 1). The proof
for the sub-solution is similar. O

We can give now the convergence result.

Theorem 5.1. We assume (A1)-(A3) and that g is C*-regular and such that —x2g"(x) be
bounded from below. Suppose also that ppe, — +00 and pmaer = 0(%. Then the scheme

converges locally uniformly to 9 when h, At — 0.

Proof. In the following when we denote h — 0 we also mean that At — 0. Let © and
v be defined by

o(t,z,y) = lim sup ot 2", y'),
h7At_>07(t,»I,’y/)q(t?zﬂﬁl)
Q(t,x, y) = lim lnf 'Uh<t/733/>y/)a

h,At—0,(t' 2,y ) —(t,x,y)

(The function vy (¢, x, y) defined for (z,y) in the grid Gy, and for T—t = nAt can be extended
to [T,0] x RT x RT by a PO interpolation.) As in [10, Theorem 2.1], using properties (S1-
S3) of the scheme, we can prove that v and v are respectively bounded viscosity sub- and
super-solution of (3.1). If the following inequalities hold:

(T, z,y) < g(z) <o(T,z,y) (5.1)
o(t,z,0) < g(z) <wv(t,x,0)
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then, by the comparison principle (Theorem 2.5) we obtain © < v, hence ¥ = v and the
convergence of vy, towards the unique viscosity solution of (3.1), i.e. ¥.

Step 1: v(T,x,y) > g(x), and v(t,x,0) > g(x).
Considering Y (t,z,y) = g(x), we see that Y is a sub-solution of the scheme (in the sense
of Lemma 5.13). Hence v;, > Y and we deduce the two inequalities v(T, z,y) > g(z) and
u(t,,0) = g(x).

Step 2: 9(T,z,y) < g(x), and v(t,x,0) < g(x).
Let A,B,C > 0 and L > 0 be some constants such that ¢”(x) < A for all x € [0,1],
B > %ng”(:n), C > (z +1)¢"(x) and o?(t,y) < Ly for all positive z,y. Let K be a
constant such that K > (AV B+ C)L, and, for t € [0,T], let

Y(t,z,y) = K(T—1t)y+g(z).

For some point (¢,z,y) € AtN x Gp, fix the value of the controls ay, as. We get that the
value of the discrete operator can be decomposed as:

- ala - azli@*x
1 2 1 2
—5tr(a,D*Y (t.2,y))) + (Gtr(aD?Y (t,2,y))

S(t 0,9, Y (t,2,1),Y) = S(t 2,9, Y (t,2,9).Y) — (

1
—5tr(@,D?Y (t2.y))) + H(t.2,y,Y (t2,y),Y)

where the diffusion matrix a and its projection a, can be written

_ ([ Pty Eo(t,y)x (A (ty)z? b
a_<£0(t,y)x ¢ ) ’ ap_<b g2>

for some b. Consequently, we get that the projection error is null since:

2
0°Y o,
oxdy

%tr(aDZY(t, ,1)) - %tr(apDQY(t, 2.1)) = (Eolt, ) — b)

9%y

970y = 0. Moreover, let the discretization error W be defined by:

as

v = Styz,yY(txy),Y)

oY oy 1
[ —a? — a2 - 2
( Y — agp a9 2tr(apD Y(t,a:,y))) .

Since 0Y = D;Y =0, and using the fact that the only non-zero term in the matrix DY

is g‘;{, we get that the error is only due to the discretization of 3;715. Therefore we get as

g is C%([0, 4+0)):

1
Ut 2,9, Y (ta,y),Y) = of g2 (6 y) (9" (@) — 9" (0x)),

for some 0, 5, € [x — Pmazh, T + Pmazh]. Hence, we get:

L 202t )(¢" (0un) — o' (@)).

S(t7 Jj’ y? Y(t7 l’? y)7Y) = H(t7 $7 y? Y(t’ x? y)’ Y) + a%Q
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On the other hand, by direct calculations we have:

H(t,z,y,Y(t,z,y),Y) = af <Ky — ;:UQJQ(t,y)g”(x) + u(t,z)(T — t)) .

Using that p is a positive function we get:
1
S0, Y (0,090, ) = o (K= 32020, 0a)
1
> ail (Cy -5 - 9§,h)yg”<93c,h)>

1
> a2 (Cy = 5o = 0o+ 0us ) (020))

> alyL <A ~3

1
*pma:z?hpj +pma:th‘g”(93:,h)> >0

for all (t,x,y) as pmazh < 1 for sufficiently small h. Hence, Y satisfies the assumptions
(i)-(iv) of Lemma 5.13, and thus Y > vj. In particular,

U(T,.’E,y) = limsup vh(tlalj,y,) < limsup Y(t,x,y) = g(.’E)
h_>07(t/7'/1:,7y/)_>(T7$7y) h_)07(t,7x,7y/)—>(T7z7y)

We obtain 7(t, z,0) < g(x) in the same way. O

6 Numerical results

The approximation scheme of Section 3, hereafter refered as the Implicit Euler scheme, or
(IE) scheme, is now tested on some numerical examples. In all cases we have taken

u(t,y) =0,
i.e. no transport term, because this is not the main difficulty of the equation. Also we fixed
O-(t’y) = \/g (61)

All tests where done in Scilab (equivalent of Matlab), on a Pentium 4, 3Ghz computer.

6.1 Consistency test

Here we perform a verification of the consistency error of the spatial discretization. We
consider the function

vt z,y) =1 —e "V 4 (T = 1), (6.2)
and define f such that

ft oz, y) = (6.3)

T 20% 1
w {(™) e utt s Akt ot ()}
a?4a2=1 | \2 o(t, y):cyazay —3y? gy e%)
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Here f corresponds to the second member of (2.10) with ¥ = v. An exact computation
gives

1 4 0% 1 0%
flt,z,y) = 2[—(%—20 (t,z)z 902 Y a2 (6.4)

+ @—1—102(75 x)xQ@—l 0% 2+ o(t,x)x o \*
ot 27 T e T oY g, Y oy ) |

Following the definition of S” in (1.6), and together with the fact that p = 0, we define
here S?Nu such that:

) t,x,y) —v(t + At,z,y)
Sp’Nutvva taa ) = 2,0(” —
(t, 2,y v(t, 2,y),v) pnin {O‘Lk A
1
5 L Ac(tan) )
¢es

where oy = (o1, 1) = e2imk/(2Nu) (note that it is sufficient to take half of the unit circle
for the controls « in the definition of S, and we do the same for SP™Vv).

Then we compute at time t = T, the value of

SPNu(t, z,y, v(t, x,y),v) — f(t,z,y). (6.5)

The results are shown in Table 2.1, in L> and L? norms. The space domain is [0, Zmyax] X
[0, Ymax] With Zimax = Ymax = 3, and we have used here Neumann boundary conditions on
T = Tmax and oN Y = Ymax-

number of | Ny | Pmaz | L° error | L™ error | CPU time
space steps (seconds)
20x 20 20 2 0.0215 0.0396 0.23
40x 40 40 3 0.0094 0.0212 1.72
80x 80 80 4 0.0046 0.0121 14.98
160x 160 | 160 6 0.0020 0.0058 156.09

Table 2.1: Consistency error

Remark 6.1. Contrary to the the definition of the projection of the matriz a in section
3, we chose an orthogonal projection of a on C(Sp), as in [17]. Even if convergence is not
proved in that case, it gives better numercal results. Note that, from [17], the projection
C for some constant C.

2
Prmax

error ||a — aP|| becomes bounded by

Remark 6.2. A key parameter for the discretization scheme is the mazimum order pmax
that we consider. From the expression of the theoretical consistency error, we take ppgzr =~

% where C' is a given constant, and h is the space step (which is the same here for the x

or the y variable). We see that a small pmax, as in Table 2.1, is numerically sufficient to
obtain the desired consistency order (here O(h)).
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We obtain a consistency error that converges to zero with rate h in both L> and L?
norms. To this end we also found numerically that it was sufficient to increase the number
of controls as the number of space steps (as is done in Table 2.1).

In table 2.2, we also see that the consistency error behaves as O(Niu) when N, is
sufficiently small. For large N, and fixed space steps, the error does not more diminish,
because the spatial error dominates.

N, | L? error L™ error
5 0.035 0.051
10 0.014 0.024
20 0.010 0.022
40 0.009 0.021
80 0.009 0.021

Table 2.2: Error with varying number of controls IV,. Space steps 40 x 40 here.

6.2 Convergence test

Now we consider the time-dependant equation (2.11), with unkown ¥ and with a second
member f defined by (6.4) and (6.2), and with terminal data ¥(7T),.,.) = v(T),.,.). In this
case we know that the value of the solution is ¥ = v.

The results are given in Table 2.3, where we test the Implicit Euler scheme and also
the Crank-Nicolson scheme (second order in time, see [30]). We have used 7' = 1 with
different time steps. We find that the (IE) scheme converges with rate O(h) + O(At). The
Crank-Nicolson (CN) scheme (see Remark 6.3 below) gives better numerical results with a
similar computational cost, even if we have not proved its convergence.

In Table 2.4 (varying time steps), we see that the convergence rate is of order O(At)?
as expected.

number of | Ny, | N | pmax || L? error | L™ error | CPU time || L? error | L™ error

space steps (EI) (EI) (seconds) || (CN) (CN)
20x20 20 | 20 2 0.0590 0.0822 98 || 0.0136 0.0333
40x40 40 | 40 3 0.0284 0.0367 946 || 0.0051 0.0117
80x80 80 | 80 4 0.0138 0.0178 10120 || 0.0023 0.0053

Table 2.3: Error for the Implicit Euler scheme and the Crank-Nicholson Scheme.

Remark 6.3. The Crank-Nicolson scheme is defined here by the following implicit scheme:

0=

min

k=1,...,Ny,

{

2 ’U(t,.ﬁlf, y) — U(t + Atv xz, y)

a7 g

_.I_f

1
2

At

£es

(note that in our test ’y?’“ does not depend on time).

£es

1 a 1 a
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number of number of | L? error L™ error
space steps time steps
80x80 5 0.0026 0.0062
80x 80 10 0.0023 0.0052
80x 80 80 0.0023 0.0053
number of number of | L? error L™ error
space steps time steps
20% 20 80 0.0136 0.0332
40x40 80 0.0051 0.0118
80x 80 80 0.0023 0.0053

Table 2.4: Error with varying number of time steps (resp.
Nicholson Scheme.

space steps) for the Crank

6.3 Application

We apply the method to a financial example: we compute the price of a put option of
strike K = 1 and maturity 7' = 1. In this model, X represents the price of the underlying
of the put, and Y represents the price of the forward variance swap on the underlying X.
Therefore, the terminal condition is

(T, x,y) =

Numerically we compute the price of the option for larges values of Y (i.e., Y ~ 3), in
order to use Neumann conditions for large Y. This approach is coherent with the value of
interest which are typically for Y lower (or of the order of) unity. The result is shown in
Fig. 2.3

(K —x), .

Appendix
7 Resolution of infinite linear systems

Case of infinite 2d matrices. We say that the set of real numbers A = (A jy (r.0))1<ij k.0
is an infinite 2d matrix if {(k,£), Ag ;) k1) 7 0} is finite Vi, j > 1 (A is also an "infinite”
tensor). If X = (X; ;) ;>1 then we denote (AX);; = > 4 51 A j),(k,0)Xk,e- We also denote
X >0if X;; >0, Vi,j > 1.

The previous results can be easily generalized to infinite 2d matrices. We state here the
results without proof.

Proposition 7.19. Let A = (A(; ;) (k,0))1<ijke be an infinite 2d matriz such that
(i) For alli,j > 1, 365 > 0, Aii = 61 + X k.00i.5) 1A (00|

(i) A k2)<0V(l j) # (k. 1),

(vi1) 511 > 0, Vi>1,

(iv) 3C >0, Vi, j > 1, Z(,M ]A(” kg]>C6”,

(v) Vi>1,Vj>2,if6;; =0 then dg;; > 0 such that

(AX)ij = qij (= Xij—1 +2X; 5 — Xi j41).
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Approximated solution, t=0

o
CSSCSSCSS

S
SOCSOCSS
SIS
A

ot et ““

Figure 2.3: Surreplication price at time ¢ = 0, with 7"= 1, K = 1 and payoff (K — ).
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1) Then A is monotone in the following sense: if X = (X;;)ij>1 is bounded from below
and such that Vi,j > 1, 6;; = 0= (AX);; =0, then

AX >0= X >0.

bij
2) Ifb = (bij)i,jzl s such that (51']' =0= bi,j = 0, and max M

< 00,
i1, 6i;>0 Gjj

then there is a unique X such that AX =b and

b.,
max | X;;| < max M
i,j>1 i,j>1, 6;;>0 05

8 Properties of some infinite linear system

In this section we give some basic results for solving some specific infinite matrix system
that are involved in our scheme.

Notations. We say that A = (a;j)1<ij, ©,J € N*, with a;; € R is an infinite matrix if
{j =1, a;; # 0} is finite Vi > 1. If X = (2;);>1 then we denote (AX); =3, aj;z;. We
also denote X > 0if a; > 0, Vi > 1.

The following Lemma generalizes the monotony property of M-matrices.

Lemma 8.14 (monotony). Let A = (aij)i<i,; be a real infinite matriz such that
(1) For alli>1, 36; > 0, a; = 0; + >4, |aijl,

(id) ai; <0 Vi # j,

(iii) 61 > 0,

(’LU) Vi > 1, Z]J Q5 > 0.

(v) Vi > 2, if 6; = 0 then q; > 0 such that (AX); = qi(—xi—1 + 2x; — Tit1).

Then A is monotone in the following sense: if X = (x;);>1 is bounded from below and such
that ¥i > 1, 0; = 0= (AX); =0, then

AX>0=X>0.

Remark 8.1. Note that from Lemma 8.14 we deduce the uniqueness of bounded solutions
of AX =b for any b such that §; =0 = b; = 0.

Proof of Lemma 8.14. Let m = min;>1 ;.
Step 1. We first assume that there exists ¢ > 1 such that m = x;. Then

0 <ajz; + Z QijTj = O;; + Z |a,]](a:1 — xj) < é;x;
J#i J#i

If ; > 0, then x; > 0. In the case d; = 0, by assumption (v) we obtain that m = x; =
Ti—1 = Zijp1. In particular the minimum m is also reached by x;_1. Since §; > 0, by a
recursion argument we will arrive at a point j such that J; > 0 and thus xz; > 0.

Step 2. In the general case we consider Y = (y;) with y; := x; + ¢ ¢ for some ¢ > 0. We
note that y; — +o00, hence i — y; has a minimum. Also, (AY); = (4X); + ezjj a;j > 0.
Hence AY > 0 and Y > 0 by Step 1. Since this is true for any € > 0, we conclude that
X>0. 0O
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Remark 8.2. Note that in Lemma 8.14 we can relax the assumption (x;) bounded from
below by liminf; o % > 0.

Proposition 8.20 (Existence of solutions for linear systems). We consider A, an infinite
matrix, such that

(Z) Vi > 1, 351 > O, Qg5 = (52 + Zj?éi ]a,-j],

(ii) &1 > 0.

(#i1) Vi > 2, if §; = 0 then J¢q; > 0, such that (AX); = ¢;(—xi—1 + 2x; — xi41).

Let also b = (b;)i>1 be such that

Vi, 0, =0=b; =0, and max @<oo
k>1, 6,20 O

Then there exists a unique X, in the space of bounded sequences, such that AX = b, and
furthermore we have

[0
max || < max —.
E>1 k>1, 6,#0 O
Proof. We look for solutions (™ = (:Egn), o ,:E%n))T € R" of the first n linear equations

of AX = b, and set also x,(fn) := 0, Vk > n. (Dirichlet type boundary conditions on the
right border). This leads to solve the finite dimensional system

AM) () — p(n) (8.1)
where A(n) = (aij)lgiJSn and b(n) = (bl, ey bn)T,

Lemma 8.15. There exists a unique 2™ solution of (8.1) and furthermore it satisfies the
inequality

(8.2)

b
max ‘l"(cn)| < max M
1<k<n 1<k<n, 0,#0 Oy
Proof of Lemma 8.15. Suppose that z(™ exists, and let i be such that ’$£n)| =
maxi<;<n \x§")| Note that we still have V1 <i <mn, agf) =06+ 4 ]az(?)|. If 6; > 0,
bl = [af}"2{" | = 3 0 llaf”] = 8ife ("
J#

thus |xl(n)] < |§’:‘. If 6; = 0, we consider

ig :=sup{k < 7, o > 0}.

(ig exists since §; > 0). Then —:L"(;i)l + 2x§€n) - xlg”)l =by/q, =0 for k =i +1,...,4, and

+
l’éz)l — :ngl) = const = ¢g for k =ig,...,i. But 2™ 1@1, xﬁn) and xl(i)l.

i
Eﬁ)l = mgn) = xgi)l, and thus ¢g = 0 and z

is an extremum of x

(n) (n)

This implies that x i, = ; ~ is also an extremum.

Since d;, > 0, we can estimate \a:,fg)| as before. This implies the invertibility of A, and
thus the uniqueness of z(™. O
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Now we shall prove that the sequence X (™ = (3:(”),0,0, ...)T, which satisfies already
|1 XM)|| < C = = maxs, £0 5 Lbe] ’“' , converges pointwisely towards a solution X of the problem.

We first suppose that b > 0. We can see that A™ is still a monotone matrix (following the
proof of Lemma 8.14). Hence (™ > 0. Now we consider 2"+ and for i < n we see that

(A(”)a:("ﬂ))i =b; —a n+1w7(1++11) > b, = (A(")x(")) .

7

Hence we obtain that

n+1 n n
@) > ()

1 ey dp PRI

and in particular X < XD Since || X||so < C, we obtain the (pointwise) convergence
of X (™) towards some vector X such that || X||oo < C. In the general case, we can decompose
b=0b"—b" with bT = max(b,0), b~ = max(—b,0), and proceed in the same way. We obtain
the pointwise convergence of X (n) — x ).+ _ x (")~ towards some X, with X (™% > 0 and
| X (M%) < C’ hence also || X||e < C.

Since {j, aw # 0} is finite, for any given i we can pass to the limit n — oo in
> i1 ag)x;") = b;, and obtain (AX); =b;. O

Case of infinite 2d matrices. We say that the set of real numbers A = (A jy (5.0))1<ij k.0
is an infinite 2d matrix if {(k,£), A ),k 7 0} is finite Vi, j > 1 (A is also an "infinite”
tensor). If X = (X; ;) ;>1 then we denote (AX);; = >y 51 A(ij),(k,0) Xk,e- We also denote
X >0if X;; >0, Vi, j.

The previous results can be easily generalized to infinite 2d matrices. We state here the
results without proof.

Proposition 8.21. Let A = (A 7(k,g))1<” ke be an infinite 2d matriz such that
(i) For alli,j>1, A( P)(0.5) = 0ij + (k,0)£(i.5) ’A(z] kg)‘ with 6;5 > 0,
it) Agj), ko <0 V(Z J)# (k,0)

)

(

( >

(1) Vi, j =1, 32 0 (k+ O Aa ) ko) = 0,
(v) Vi>1,Vj > 2, if 0;5 = 0 then 3q;; > 0 such that

(AX)ij = gij(=Xij—1 +2Xij — Xijia).

1) Then A is monotone in the following sense: if X = (Xj;)ij>1 is bounded from below
and such that Vi, j > 1, 6;; = 0= (AX);; =0, then

AX>0= X >0.

b. .
2) [fb = (bij)ij>1 1s such that (Sij =0= bij = 0, and max M < 00,
v ’ i,j>1, 6;;>0 0;j
then there is a unique bounded X such that AX = b, and furthermore

b
max | X;;| < max | ”‘
1,7>1 1,j>1, 6;;>0 513
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9 Convergence of the Howard algorithm

In this section we prove the following result.

Proposition 9.22. Let S be a compact set, and A := SV, the set of infinite sequences of
S. For allw € A, let A(w) := (aij(w))i =1 be an infinite matriz, and b(w) := (bi(w))i>1.
We assume furthermore that

(1) If w = (wy)i>1, aij(w) depends only of w;, and also bi(w) depends only of w;, and this
dependence is continuous.

(i0) Vi, supyeq (Card{j, a;j(w) # 0}) < oo.

(13i) (monotony) For all w € A and X bounded,

Aw)X >0 = X >0.

(7v) 3C >0, YVw € A, 3X solution of A(w)X = b(w) and such that

|1 X]|oe < C.
Then
(i) there exists a unique bounded solution X to the problem
meiﬂ(A(w)X —b(w)) = 0. (9.1)

(ii) the Howard algorithm as defined in section 4 converges pointwisely towards X .

Remark 9.1. Proposition 9.22 can then be adapted in order to prove Proposition 4.18.
The proof is left to the reader.

Proof. Let us first check the uniqueness. Let X and Y be two solutions, and let w be
an optimal control associated to Y. Then

Aw)Y —b(w) = 0
= min(A(w)X — b(w))

weA

< A(w)X — b(w).

Hence A(w)(Y — X) < 0 and thus Y < X using the monotony property. We can prove
Y > X in the same way, hence X =Y which proves uniqueness.

The existence now is obtained by considering the sequence X* and controls w* as in
the Howard algorithm of section 4.

We first remark that for all k > 0, X* < X**! because

A(wk+1)Xk+1 - b(wk+1) 0
Aw®) XF — b(w")

n%i}n(A(w)Xk — b(w))
A(wk-‘rl)Xk - b(wk—i-l)

v

v

and using the monotony of A(w**1). Also, X* is bounded. Hence X* converges pointwisely
towards some bounded X. It remains to show that X satisfies (9.1).
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Let F;(X) be the i-th component of min,e4(A(w)X — b(w)), i.e.

Fi(X) = min(A(w)X — b(w));
weA
For a given 14, since (A(w)X); involves only a finite number of matrix continuous coefficients
(aij(W))j<jmaxs We Obtain that limg . F;(X*) = Fj(X). Also by compactness of S, by a
diagonal extraction argument, there exists a subsequence of (wk)kzo, denoted w®, that
converges pointwisely towards some w € A.
Passing to the limit in (A(w®)X® — b(w?)); = 0, we obtain (A(w)X — b(w)); = 0.
On the other hand,

Fi(X) = lim Fy(X%1)

k—o00

= lim (A(w¢k)X¢k — b(wd’k))i
= (A(w)X —b(w))

i

Hence F;(X) =0, Vi, which concludes the proof. O

10 Points on the boundary

We present in this section another way to consider the point near to the boundary in the
discretization of the second order term. Consider the grid points that are close to the
boundaries x = 0, y = 0. Fixes an order pp,q., for theses points, the discretization of the
second order term could involve some author points which are out of the grid.

Then we modify the expression of the elementary diffusion. Let us explain this modifi-
cation on a simple example drawn in the following picture

(x+&,y+ &)

T

The direction of the diffusion (the vector —) points toward a grid points (z £ &1 hy,y £
&2hs) in the neighborhood of order 2. However, (z —&1hy, y — &2hs) is out of the grid, which
is delimited by the positive part of the z-axis and the positive part of the y-axis.

Introduce a parameter 6; € [0, 1] and the associated point (z — 61£1h1,y — 61&2h2). The
real 0; is chosen in such a way that the point (z — 01&1h1,y — 01&2h2) is on the diffusion
direction and belonging to the y-axis (the intersection between the y-axis and the vector
formed by (z,y) and (x — & hy,y — aha)). Although (z — 61&1h1,y — 01&2h9) is not a grid
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point, we will use it in the scheme, because the function vy is known on the axis x = 0.
The elementary diffusion becomes

Acod(w,y) = d(x 4 01&1he, y + 0182h2) + ¢(Zz— 61&1hy,y — 01&2h2) — o(x, y)’ (10.1)
1

where 6, € [0, 1] is chosen such that (z — 01&1hy,y — 61&2h2) and (x + 01&1h1, y + 61&2h2)
are in the domain [0, +00)2.

(z.+&h1,y + §ah2)
z 4 016101,y + 0182h)

(= 9151/11 Y — 91§2h2)

>

‘H‘(‘x;._flhl;y §2h2)j .

1y

In general case, for £ is in the stencil Sp, .. and (z,y) in the grid Gy, if the points
(x £ &1 h1,y £ &hg) should be used in the approximation of the covariance matrix and if
thery are out of the domain [0, +00)?, then we modify the elementary diffusion A¢ by:

Ae pd(z,y) = O20(x + 01&1,y + 01&2) + O19(x — 0261,y — 0282) — 2(01 + 62)9(x, )
&0 0105(01 + 0) ’

where 61,02 € [0,1] are such that (z + 01&1h1,y + 01&2h2) and (x — 02&1h1, y — O282h9) are
in the domain.
Therefore, the scheme (3.4) should be written:

'Uh(T, z, y) - g(.’L’) = vh(t7 xz, 0)7 Uh(tv 07 y) = 9(0)7 (102)
min {—atsun(t, ,y) — atudyon(t, z,y) Z al’azAg oun(t,z,y)} =0, (10.3)
of+ai=1 2 s
for t < T — At.

This scheme satisfies consistency property, in the sense of Proposition 3.17.
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An uncertain volatility model
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Chapter 3

Option pricing with uncertain
volatility and tolerance against
losses.

This chapter studies European options hedging and pricing with volatility risk in an un-
certain volatility model as in [3]. It is well known that the superreplication criterion leads,
when the volatility is not a priori bounded, to trivial strategies and too expensive costs.
We propose a criterion, which does not require to hedge almost surely the option’s payoft,
as we admit some possible losses depending on the realized volatility until maturity. These
acceptable losses are described through a function depending on time, asset prices and
volatility. We show that our framework recovers solutions obtained in uncertain volatility
model [3], and gamma constraints [65].

Key words: uncertain volatility, super replication, viscosity solutions.

93



94 CHAPTER 3. UNCERTAIN VOLATILITY MODEL

1 Introduction

An important part of the literature about option pricing is motivated by the fact that the
Black and Scholes model fails to capture precisely the behavior of the financial asset prices.
Indeed, two important observations contradict that model. The first one is the discontinuity
of asset prices through time (i.e. prices jumps), and the second one is the heteroskedasticity
of asset returns, that leads to study models which features random volatility. In this chapter,
we are interested in the consequences of stochastic volatility on option pricing. To formalize
this problem, there are two possible approaches. The first one is to consider that, despite
the stochastic volatility, the market is still complete, that is, one can perfectly hedge an
option with the underlying and, say, another option. Then the problem is reduced to a
calibration problem. But this assumption is valid only if there exists a liquid market for
vanilla options. This is the case for large indexes and stocks but it is generally false for
more exotic underlyings like investment funds. The second approach is to consider that
the market is incomplete, but then the question of the pricing criterion arises. Many can
be found in the literature: for instance mean-variance hedging, see the surveys by Pham
[57] and [62], and indifference pricing (see [61]). But in order to use these techniques, one
must know precisely the dynamics of the underlying and its volatility. Indeed, the effects
of model misspecification in those frameworks are not well known. Also there may not be
enough available data to estimate the corresponding models, with a satisfying confidence
interval. But this problem can be circumvented if one prices and hedges the option with
a robust criterion. In this case, one would take into account model uncertainty. This kind
of uncertainty has been studied, for instance, recently in [25]. The advantage of that kind
of methods, is that one does not need to know precisely the dynamic properties of the
underlying, but rather some knowledge or priors about the probability distribution of the
volatility. The first step was the study of the robustness of the Black and Scholes formula
in [35]. Then, in [3] and [40], the authors derived a pricing formula that enables to perform
a superhedge of the option as long as the volatility evolves inside a given interval. The
problem of that method is that one does not control what happens if the volatility goes out
of that interval, and an inappropriate interval may theoretically leads to bankruptcy. Hence
one may be tempted to consider a very large interval, but this would lead to huge selling
prices. In our work we consider a criterion that enables to control the losses of the option’s
seller in any case, without necessarily involving superreplication. This criterion might prove
useful to control volatility risk in all possible outcomes with a reasonable price, and without
a precise knowledge of the volatility dynamics. We will use the same kind of model as in
[3], that is, an uncertain volatility model. It is modeled here as an adverse control, that
is, we consider a worst case scenario. Therefore, we will not postulate the dynamics of
the volatility. However, in contrast [3], the volatility o will not be constrained to lie in a
bounded set. Instead, all the assumptions concerning the volatility will be contained in an
admissible losses function. In practice, the option seller should admit to lose money for
levels of realized volatility that he thinks to be unprobable. Indeed, admitting losses has
the effects of reducing the options price, hence increasing the margins and profits in the
more probable outcomes. As a limit case, if he is absolutely certain that the volatility can
never take values above a given level, he should accept to risk infinite losses the volatility
effectively takes values above that threshold.

This function will modify the payoff of the option we want to price, and then we will use
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a more classical super-replication criterion to price this modified payoff. The aim of this
chapter is to characterize that price as the unique viscosity solution of a PDE. There are two
major difficulties, though. First of all, we do not have any dynamic programming principle
for the super-replication problem, as our framework differs from [32] because the volatility
is not a priori bounded. This difficulty is circumvented by introducing a dual representation
of the problem which is an expectation maximization problem. The second difficulty is to
obtain a verification theorem for the solution of a PDE which is not regular enough to apply
1t6’s formula. This is why we need to introduce some regularization techniques.

This chapter is organized as follows: First, we introduce our model and some technical
assumptions, and define the option seller’s price. Then, we state the main results and
derive the viscosity property for the dual representation. In the next section, we identify
the original problem with its dual representation. Finally, we prove the comparison principle
to obtain uniqueness of the viscosity solution of the equation satisfied by the price.

2 Problem formulation

2.1 Description

We consider a market with d + 1 asset. There is a riskless asset which will be taken as
the numeraire, so we can suppose the interest rate equal to 0. For the d risky assets, we
consider a d-dimensional uncertain volatility model:

dSt = diag(St)atth (21)

where W, is a d-dimensional Brownian motion, and ¢ is a d-dimensional positive symmetric
matrix valued process. The set ¥ of admissible processes o = (Ut)tE[O,T] will be defined later.
Working with a multidimensional model is obviously useful when considering covariance risk
for basket or exchange options on several underlings. But it also is possible to interpret
one of the prices as the underlying of an option that we are trying to sell, and the other
options as liquid options on the same underlying. Then we can obtain a robust version of
an existing volatility model.

The agent has a tolerance to losses which is a function of the prices, the date, and more
crucially of the volatility. This is modelled through a function

F:00,T] xREx Sy — RU {400}

where f(t,S;,0?) represents the maximum loss that the option’s seller admits per unit of
time at time time ¢. Now, we define the lowest selling price of the agent as:

v(t,s) =inf {z € R: there exists m € A; such that (2.2)
z

T T
z —I—/ TudSL*7 > g(85>7) — / f(u, SL57 02)du a.s. for all o € E}
t t

Here, A; is the set of adapted processes such that fOT mdSY7 is almost surely bounded
from below for all o € ¥, and X is defined as:

Y= {o = (0¢t)sejo,1] a-s. bounded and adapted processes valued in Si

T
s.t. / F(t, 507 ,)dt is a.s. bounded },
0
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the set of adapted processes taking values in Sﬁ that are a.s. bounded. S%*7 is the solution
of (2.1), for u > t, under volatility o € ¥ and starting from S; = s at time ¢. The super-
replication cost corresponds to the particular case f = 0. Unfortunately, there is no existing
dynamic programming principle for this problem. For instance, one cannot use the results
of [32] as the volatility does not admit a uniform bound. Following the dual approach to
superreplication criterion (see [36]), we introduce the classical stochastic control problem:

T
w(t, s) = sup E[g(S557) - / F(u, S5°7, 02)du] (2.3)
oEeY t

With this formulation, one can use the classical results of stochastic control to derive
the Hamilton-Jacobi-Bellmann equation. Then, in section 4, we will prove by a hedging
argument that problems (2.3) and (2.2) admit the same solution, that is, v = w. The only
technical difficulty is that, as usual, w is not supposed to be regular, and we must use regular
approximations to apply Ito’s formula to derive a hedging argument. An advantage of that
proof, is that we will be able to show that, at least with approximated prices, the optimal
hedging is a classical delta hedging. In other words, the hedging portfolio is, in quantity,
the gradient of the price w.r.t. the spot price, as in the usual Black-Scholes framework.
It is interesting since it shows that one does not need to know the actual volatility of the
underlying to perform the hedge. This might be useful when that volatility is difficult to
measure precisely. We end this section by stating some technical conditions.

Here, we state an assumption which will prove useful to simplify some demonstrations:

Assumption 2.1. For each (t,s) € [0,T] x RY, the function:

ftys,.):Sqg— R

o? — f(t,s,0°)
1s convexr and lower semicontinuous.

This is not a restrictive assumption, as we will see that the pricing PDE only involves
the Fenchel transform of f with respect to o2. Therefore the resulting price can be as well
associated to the convex lower semicontinuous envelope of f, if it is not already convex Ls.c.
To ensure the viscosity property, we need the following assumption, in order to control the
dependency of f w.r.t. time and spot prices:

Assumption 2.2. There exists a positive function:
h:(0,4+00) — (0,+00)
such that, for any e >0, and (t,s,0%) € [0,T] x (0,400)? x §¢
If(t,s,0%) — f(t',s',0%)| < e if [t —t| < h(e) and Hs - S'HOO < h(e)

We introduce another assumption, in order to make sure that the limit price of the
option when time approaches maturity is above the exercise price. In other words, we make
sure that we do not tolerate too much losses, which may introduce arbitrage opportunities
for other agents.



3. THE PDE REPRESENTATION 97

Assumption 2.3. The function f is bounded from below, and there exists a bounded con-
tinuous feedback control

o:(0,+00)? — 8¢
(t,s) — o(t,s)

and a constant C' such that f(t,s,o2(t,s)) < C, for all (t,s) € [0, T] x (0, +00).

Therefore, we will only consider acceptable losses functions such that there always
exists a bounded volatility scenario for which losses will be bounded. Now we introduce an
assumption on the Fenchel transform f of f (see (3.2)) which will ensure the uniqueness
result for the PDE satisfied by the value function. To fully understand it, one must recall
that under assumption 2.2, the domain of f w.r.t. o2 is independent of ¢, s.

Assumption 2.4. For any € > 0,there exists K. such that:

f is K. — Lip in int.(dom <f(t, S, .)))V(t, s)

and 0 € int (dom(f(t, s, ))) Y(t,s)
Where the e-interior a subset A of M%(R) is defined as:
int.(A) = {x € A such that B(z,e) C A}

and B(zx,¢€) is the ball of radius & centered on x. This assumption is verified for example if
dom(f(t,s,.)) is bounded uniformly in (¢, s). Indeed, in this case, dom(f(t,s,.)) = Sy and
f(t,s,.) is Lipschitz continuous uniformly in (¢, s). A typical example where this assumption
does not hold is, in dimension 1, f(t, s,0?) = o*. Indeed, this implies a quadratic behavior
for both f and f, which contradicts the assumption.

It is interesting to see that, in dimension 1, this assumption only implies that either f or
f are uniformly Lipschitz continuous on an interval of type o2 € [C,400), and that the
upper semicontinuous envelope of f, f*, is not uniformly equal to +o0c0. This is indeed a
much simpler statement. Sadly, this simple formulation does not seem to hold in dimension
higher than 1. The last assumption concerns the payoff function, and is used to prove

uniqueness of the solution of the characteristic PDE.

Assumption 2.5. The payoff g is Lipschitz continuous and bounded.

3 The PDE representation

3.1 Operator

As it is a classical problem in optimal control theory, the first candidate equation verified
by the value function of the dual control problem (2.3) is:

—% — f(t,s,diag [s] D?vdiag[s]) = 0 (3.1)
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where

f(t,s,A) = sup {;TT (Ao?) — f(t,s, 02)} (3.2)
g

is the convex conjugate of f. However,while this is the correct equation when f is finite, we

should take into account in our context that f may take infinite values and so adjust the

above PDE. This is why we introduce the second operator G. We know, from the definition

of f, that the domain of f is convex. This leads us to introduce the signed distance to the

complementary of the domain of f:

G(t,s, A) = inf{\B[ st. A+ B ¢ dom(f(t,s, ))} if A€ dom(f(t,s,.))
| -inf{IBl st A+ B edom(f(ts,)} if A ¢ dom(f(t,s,.))

With assumption 2.2, one can prove easily that dom( f (t,s,.)) does not depend of t and
s. Hence we will denote it dom(f). Therefore, G’(t,s,.) does not depends of (t,s). We
immediatly see that f(¢,s,.) is increasing, that is f(A) > f(B) for any A > B. Hence, if
B ¢ dom(f) then A ¢ dom(f). Therefore, we can conclude that G is decreasing. In the
next lemma, we prove that this function is also Lipschitz and concave.

Lemma 3.1. With assumption 2.2, for any A € Sq, one has:
G(t,s,A) =G(l',s',A) = G(A)
for all (t,t',s,5") € [0,T)> x R? Furthermore, the function, independent of (t, s)

GZSd—>R

A— Gt s, A)
1s Lipschitz continuous and concave.

Proof. For any A’ > A, if A+ B ¢ dom(f), then A’ + B ¢ dom(f). Hence G(A") < G(A).
But, on the other hand, if A’ + B ¢ dom(f), then A+ (A’ — A) + B ¢ dom(f), hence
G(A")+|A"— Al > G(A). As G is Lipschitz of constant 1 for any A" > A, then it Lipschitz
is on the whole space. Indeed, any symmetric matrix can be decomposed into a positive
and a negative part. O

Example 3.1. A very interesting case, in the one-dimensional framework, is introduced in
[63]. It leads to an equation one can obtain using the acceptable loss function:

t = N N
f(t,s,0) {%F.,.(O’Q—O'Q) ifo>0
Wher 6 and T'y are given strictly positive constants. The conjugate of the acceptable loss

function is therefore:

f~( 282'U> _ { —+00 Zf %82% > F+
1 v

S
1.2.20% ;1,202
§Sawlf*8?gr+
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The authors of [63] obtain the proper equation, where f s bound to take finite values:

, ov - 5 . [0% 1 0%
mln{—at— (t,s,s mm{@SQ’F+}>’F+_25852 =0 (3.3)

This equation is, in this case, formally equivalent to (3.1). This form has the advantage to
introduce only Lipschitz operators, which is very useful to prove uniqueness of its solutions.
In our work, we try to obtain such a smooth formulation, but the general form of f introduces
new difficulties, especially in the multidimensional case.

Indeed, we shall justify later that, in order to obtain a regular operator, a suitable
formulation of the PDE is:

ov 2 o . _@ 7 . 2 1. B
F(t,s, Fr Div) = 1841;% {mln{ 5 f (t, s, diag [s] D*vdiag[s] — A) (3.4)
, 1a—oG (diag [s] D*vdiag[s]) —tr (A)}} =0

3.2 Main result

The main result of the chapter is the characterisation of the price through equation (3.4),
together with a terminal condition.

Theorem 3.2. Let assumptions 2.2, 2.3, 2.4 and 2.5 hold. Then v is continuous and is the
unique bounded viscosity solution of equation (3.4) with terminal condition v(T~,.) = g,
where § is characterised as the unique bounded viscosity solution of:

min {§(s) — g(s), G(diag[s] D*§diag[s])} = 0 (3.5)

Proof. With assumptions 2.2 and 2.3, the viscosity property of the dual control problem
value function w is proved by propositions 3.1 and 3.2. The viscosity property is given for
the terminal condition g of w by proposition 3.3. With assumptions 2.3 and 2.5, it is easily
proved that the exists a constant C' such that:

g—C<w<g+C

Hence, uniqueness of the solution of (3.4) is ensured by proposition 5.1. Finally, equality
between v and w is treated in section 4. Uniqueness and continuity of bounded viscosity
solutions of equation (3.5) can be proved by similar but simpler arguments, which are not
exposed in this work for the sake of conciseness. ]

The next paragraphs relate rigorously, by means of viscosity solutions, the value function
of control problem (2.3) to the variational PDE. We also characterize the corresponding
terminal condition associated to (2.3). This is based on the following principle.

3.3 Viscosity solution property

Dynamic programming principle

Here, we state the classical dynamic programming principle (DPP) related to problem
(2.3). It is the essential tool to prove that the value function w verifies equation (3.4). It is
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discuted, among others, in [38] . It is separated in two parts, and is mathematically stated
as follows:
(DP1) For all 0 € ¥ and 0 € 7; 1, set of stopping times valued in [t,T]:

0
w(t,s) > E [— [ rtsie s wio s;*'f)} (3.6)
t

(DP2) For all € > 0, there exists 6° € ¥ s.t. for all 6 € 7y 7
0 ~€
wltes) e <E |- [ 1055, 60 du + w(o. 55| (37)
t

Supersolution property

Proposition 3.1. Assume assumption 2.2. Then, w is a viscosity supersolution of the
HJB equation:

- = ~(diag [s] D*wdiag[s]) = 0, (t,s) € [0,T) xR (3.8)

Proof. This proof is classical in stochastic control theory, see for example [59] or [58] for
details. The only difficulty here is that f can take infinite values, but it can be bypassed
with assumption 2.2. Let (£,5) € [0,7) x Ry and ¢ € C?([0,T) x R;) a smooth test
function satisfying:

= (w, — ¢)(%3) = i 1 .
0=(w ~@)E5) = min = (w.—)(ts) (39)

By the definition of f , one has to prove that:
1 _ _
——(t,3) — max {2T7‘ (JQdiag(E)DQQD(t,E)diag(E)) — f(t,5, 02)} >0
Let 02 € R,. If 02 ¢ dom (f (f, 3, )) then, trivially:

8—90 (t,3)

~%215) - L1 (o2diag(3)D20(F, 5)diag(s)) + f(E 5, 02) = +o0 > 0

2
Now, if 03 € dom ( f (f, 3, )) , then with assumption 2.2 one can deduce easily that:

(t,s) — f(t.s,08) € C°([0,T) x RY) (3.10)

Now, we can use the standard arguments to prove the proposition. By definition of w,(%,3),
there exists a sequence (t,,, $;,) in [0,7) x RT such that:

(tm, Sm) — (t,5) and w(tp,, Sm) — w«(t,35)
when m goes to infinity. Then by continuity of ¢ and 3.9, we have:

Ym = W(tm, Sm) — @(tm, Sm) — 0
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when m goes to infinity. Let S the process starting from s, at t,, and controlled by o3.
Consider 7, the first exit time of S from the open ball B (s,,) with 7 > 0, and (h,)
a positive sequence such that:

by — 0 and ™ — 0

m
when m goes to infinity. Applying the first part of the dynamic programming principle
DP1 (3.6) to w(tm, sm) and Oy, = T A (L + Ay, then using 3.9 and finally applying Ito’s
formula to ¢ between t,, and 0,, we get:

I
Jm + F [ / <(9tp + =Tr ( gdiag(SZ‘)ngo(u, S?)diag(sg"”))
t"l/

hum, hom, ot
+f (u, S, 08)) du] >

By the almost sure continuity of the trajectory S™, then for m sufficiently large (m >
N(w)), 0 (w) =ty + hy, a.s. Remarking that with property (3.10), the process inside the
expectation has continuous trajectories and it is bounded independently of m. Hence we
can use the mean-value theorem to find that the variable under the expectation converges
a.s. to —L%%(t,3)+ f (t 5 00) Finally, with the uniform bound, we can apply Lebesgue’s
dominated convergence theorem to obtain:

aaf(t 5) — fTr (Uodlag( )D2 (t,E)diag(E)) + f(t,53, 0(2)) >0
And we can conclude, due to the arbitrariness of og. O

Subsolution property

Proposition 3.2. Assume assumption 2.2. Then w is a viscosity subsolution of the HJB
variational inequality:

F(t,s, a—w, D?w) = sup {min {_811) —f (t, s, diag[s| D*wdiag(s] — A) (3.11)
ot A>0 ot
. 1a—oG (diag[s| D2wdiag[s]) —tr (A)}} =0 (3.12)

Proof. As in [58], one has to introduce, for a given smooth function ¢, the subset of [0, 7] x
RZ:
+

M(p) = {(t, s) €10,7) x R% : %’f f (t, s, diag [s] D*pdiag [s]) > 0
and G (t, s, diag[s] D*¢(t, s)diag [s]) > 0}
Then, we see that (t,s) € M(yp) if and only if:

dp
F(t —DQ 1
(Sat ©) >0 (3.13)

Indeed, if F > 0 and the supremum is attained for A # 0 in the definition of F', then we
have F' < 0 and we have a contradiction. If it is attained for A = 0, then

F(t,s, %t D2p) = min{—g’tp - ~(diag[s](D§g0)diag[s]) ,G(diag[s]ngodiag[s]))}

which is strictly positive if and only if (¢,s) € M. From this point we can exactly follow
the demontration in [58], using (DP2) as main argument. O
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3.4 Terminal condition

To define the terminal condition, we introduce the classical limit functions:

w(s) = liminf w(t,s’) and w(s) = limsup w(t,s’)

t,/T,s'—s t /T,s'—s
By definition, w < w, w is lL.s.c, and w is u.s.c. Now, we can characterize the terminal
condition as follows:

Proposition 3.3. Assume assumption 2.2, and that g is lower-bounded or satisfy a linear
growth condition. If g is lower semicontinuous, then w is a viscosity supersolution of

min [w(s) — g(s), G (T, s, diag[s] D*w(s)diag|s])]
If g is upper semicontinuous, then W is a viscosity subsolution of
min [W(s) — g(s), G (T, s, diag[s] D*w(s)diag s]) ]

Proof. The proof is identical to the one in [58]. One has to use the fact that w is a viscosity
solution of equation (3.4). The important assumption is that G is continuous, and that f
is continuous on its domain. In particular on domains such that G > ¢. This is given by
lemma 3.1. Given this lemma, the proof only relies on general PDE arguments. The only
part that may become different is to prove that v > ¢, because f may take infinite values.
This is given in the following lemma. O

Lemma 3.2. Suppose that g satisfy a linear growth condition and is lower semicontinuous.
Then:
w(s) > g(s),Vs € R

Proof. Take some arbitrary sequence (t,, Sm) — (1, s) with ¢,, < T. By assumption 2.3

tm,Sm

there exists a bounded continuous control o(t, S, ) € X such that there exists a constant
C verifying f(t, S{", o(t, S;™*™)) < C a.s. for every m. By definition of the value function
we have:

T
w(tm, Sm) Z E [ —f(u, SZM»3m7 U(t, Sfm’Sm))du + g(S:l;m,Sm)

>E [/3 —C + g(SéI"’S’")}
> (T —t,)C +E [g(StTm’Sm)}

Then, as o is bounded we can use the dominated convergence theorem, and the linear
growth of ¢g to prove that:

liminf w(ty,, spm) > E [lim infg(S;m’Sm)}

m—0o0 m—0o0
as ¢ is lower-semicontinuous, and by the continuity of the flow Séls in (t,s). Ol

The rest of the proofs are very classical and can be found in [58].
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4 Equivalence with the dual formulation

In this section, we prove that the original value function in (2.2) is equal to the value
function of the dual problem (2.3). This is achieved in two steps. In the first step, we show
the inequality v > w. The second step : v < w is more tedious to derive and involves PDE
and hedging arguments. Let us begin by the straightforward part.

4.1 The inequality v > w

Proposition 4.4. The super-replication price defined by (2.2) is larger than the value
function of the dual problem (2.3). In other words:

v>w on [0,T) x R"

Proof. By definition of v, for any (t,s) € [0,7) x R™, and any € > 0, there exist a hedging
portfolio m € A such that:

T T
olt,s) + / TdSEST > g(S15) / Flu, S5, 02)du,
t t

for any process o € . By definition of ¥ and A one has that ftT T, dSy is almost surely
bounded from below. As is its a local martingale, it is therefore is a supermartingale, one
can find that:

T
o(t,5)+ < > E [g<s§:“f> - [ s, az>du}
t

for any o € ¥. Hence v(t,s) + ¢ > w(t, s) for any € > 0. Letting ¢ — 0 gives the required
result. 0

4.2 The inequality v < w

Now, let us show the reverse inequality. To prove it, we will use a hedging argument based
on the It6 formula. In order to use this formula we need a C'? function. As w is not
supposed to be regular enough, we will need to use an approximation which is described as
follows:

Definition 4.1. For any € > 0, let f. defined as:

fo:[-&,T] xR¥x S; — R

t 2 inf t/ /2
( 150 ) - (t’,s’)ler}S’(t,s,s) {f( 1500 )}

where:
B(t,s,e) = {(t’,s’) e[0,T) xR st. t <t' <t+e¢
and s —e < s <s component wise }

Let us consider the approzimation of w, called w., defined as the solution of the stochastic
control problem:

T
we(t,s) = sup E <g(S§lS’O) — / f=(t, Sf,’s’a,oz)dt’>
t

oey
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We see that the only difference between w and w, is that we replaced f by f.. As, by
definition, f. < f, we obtain trivially that w. > w. In the following we will derive an upper
bound on w, in order to show it is indeed a good approximation of w. But to derive that
other bound, we have to use assumption 2.2. This is the most important reason why we
had to introduce it. Now we can introduce another approximation of u which is regular:

Definition 4.2. Let §(t,s) € C*° (R*! — R) be a positive function such that [, 6 =1,
and §(x) = 0 if x ¢ [0, 1], And let the approzimating function. w® : [0,T) x [0, +-00)" —
R be defined as

t 1 t—t s—¢
€(t,s) = v s 5 dt'ds' 4.1
wr(t:s) /C’(s,a) /t—awE( ) e s (4.1)

for all (t,s) € [0,T) x [0,4+00)"
where C(s,¢€) is the set of points s’ such that s < s’ < s+e.
Here, we prove the convergence of w® to w when ¢ — 0:

Lemma 4.3. For each (t,s) € [0,T) x R? one has:

liII(l) we(t,s) = w(t,s)

Proof. Indeed, with assumption 2.2, there exists a positive function h s.t. lim._qh(g) =0
and for any (¢,s') € [0,T) x R? and any process o € X:

fE(t/) 8/7 0-2) S f(t/a S/) 0-2) S fa(t/7 8/7 02) + h(E)
Plugging this inequality in the definition of w and w. we find that, for any (¢, s'):
wt',s") <w(t',s") <w(t',s) + h(e) (4.2)

Therefore, integrating (4.2) and using the definition of w® we get for any (¢, s,e) € [0,T) x
R? x R*:

t 1 t_tl _ /
/ / wlt! o) ard (0, s < ue(t,5) <
C(se) Ji—e

t 1 t—t s—s
s ) dt'ds’ + h
»/C(s,a) /t—e wlt' s )5n+1 ( e ¢ ) s+ h(e)

As w is continuous, (see proposition 5.6 below), the r.h.s and the Lh.s converge to w(t, s)
when ¢ — 0, and the proof is completed. ]

Now we restate a very classical result:
Lemma 4.4. For any e > 0, w® € C* ([0,T) x [0, +00))

We can prove the following lemma which helps us to conclude that w® is actually a
super-replication price:

Lemma 4.5. For any e > 0, w® is a supersolution of (3.4) with terminal condition w®(T,.).
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Proof. We proceed as in [9], using the fact that the operator (3.4) is concave (see lemma 5.8
below). The steps of the proof are the following: As w. is continuous, one can approximate
the integral with Riemann sums. These Riemann sum are supersolutions of (3.4) by lemma
5.8 . Then, as the Riemann sums converge uniformly to w® on any bounded domain, one
can use the stability result for viscosity solutions (see [27] lemma 6.1), which completes the
proof. O

This lemma provides a bound on the terminal condition w®(7},.)

Lemma 4.6. There exists K > 0 such that w*(T,s) + K (1 + |s|;) /e > g(s) for alle <1
and s € R}

Proof. By assumption 2.3, there exists a bounded function:

6:[0,7] x R* - MY(R)
(t,s) — a(t,s)

And there exists K s.t. f(u,s,6%(u,s)) < Ki and |6(.,.)] < K. By the arguments of
lemma 3.2 we find that, for any ¢t > T — e:

w(t.9) 2 B [o(s50%) - [ #t0.50.0%0 5,17

B g(S5"%)|1 7] + Kue (4.3)

v

Using the Lipschitz condition on g, and the boundedness of 6 we find that there exists K3,
depending of the Lipschitz coefficient of g, s.t. F [g(SélS/’Uﬂft} + K3K3+/e > g(s) for all

t>T—¢cand s > s > s —e. Hence, combining this with inequality (4.3) we obtain that
there exists K such that w®(T,s) > g(s) — Ky/e for all € < 1. O

At last one can show that for each ¢, the function w®+ K (1 + |s|;) v/ > g(s) is greater
that the super-replication price.

Proposition 4.5. For each (t,5) € [0, T] x R, w(t,s) > v(t,s), that is, the auziliary value
function is greater that the super-replication price v. Together with proposition 4.4, one has
w=v

Proof. Let (t',s") € [0,T) x R%. Using the previous lemma, there exists K such that for
any 1 > ¢ > 0, then
WF(T,) + K (14 |1y) vE = g() (1.4

Now, consider the function
w(t,s) = we(t,s) + K (1+|s];) Ve

As, by lemma (4.4) w° is regular enough, then for any a.s. bounded process oy we can use

It0’s formula:
owe

ot

1
di (t, S;) = Dw°dS; + ——dt + itr(diag[St]atDQwaatdiag[St])dt.
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Now, we introduce the following self-financed strategy:
’ oot T iy ,
Xp = [ =D, 8 ds)

t/

Then, considering the initial wealth w®(¢', s’), we obtain:

() + Xb = Shshor) (4.5)

@ (T,
//T < i 1tr(d1ag[5 oy D*if oy diag[S? ])) dt.

As w° is a supersolution of 3.4, we get that:

ow*

~ 5 " (diag[s)(D*wf)diag[s]) — f(t,s,0%) > 0.

Plugging this inequality into (4.5) gives:

T
(s + X¥ > wf (T, 85577 — [ £(t,S;° 7", o%)dt,
tl
and so by (4.4), one finally gets:
(s + X0 > g(sh o) — f( Stsher o2)at.

This proves that we(t',s") > v(t,s’). Now, letting ¢ — 0, by definition of w® and lemma
4.3 we obtain:
w(t',s') >t s).

5 Comparison principle
In order to fully characterize the value function v = w through PDE (3.4), we need an
uniqueness result for that PDE. In this section we prove a comparison theorem for equation

(3.4). It leads to the following uniqueness result:

Theorem 5.1. Assume 2.2,2.3, 2.4 and 2.5. Then there exists at most one viscosity
solution w of (3.4) with terminal condition § satisfiying:

g—C<w<g+C,
for some constant C. Moreover, this function is continuous if it exists.

This theorem is proved at the end of the section.
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5.1 Preliminaries
Regularity of the operator

Lemma 5.7. For any € > 0 there exist a constant K., s.t. for any (B,C) € (Sq)?,
satisfying B > C or C' > B:

‘F(t’ SapaB) - F(tlﬂ S/7p,7 C)‘ S €+K€|SBS - SICS/’ + ‘p_p/‘ +ﬁ(’8 - 8/‘ + ‘t - t/‘)ﬂ (51)

where f: Ry — Ry is a function that does not depend on e, B, and C, and B(x) — 0 as
xz — 0.

Proof. Let us decompose the inequality into several parts:

‘F<t787p7B) —F(t/,sl,p,C)‘ < ‘F(t,s,p,B) —F(t,s,p,D)‘
+ |F(t78ap7D) —F(t/,sl,p,C)‘7

where D is such that diag[s]Ddiag[s|] = diag[s'|Cdiag[s’] = I'. First, one can easely show
that:
|F(t7 S, Py D) - F(t,7 S/ap7 C)} S ﬁ(’s - Sl‘ + ‘t - t/|) (52)

Indeed, using assumption 2.2, we obtain:
f(t,s.0%) = f(t',s',0%)] < B(ls — 8| + [t = 1)),

with 3 = h~! is the pseudo-inverse of h defined in assumption 2.2. Hence, by definition of
fyif f(t,s,T) < +oc:

f(t,s,F) = su2p{< r,o%> —f(t,s,a2)}
< s(;zp {<T,0%>—f(t',s,0*)+B(s— |+t —t])}
a
< f(t,5,0) + B(ls — &'+ [t = 1']).
Hence, if f(t,s,F) < 400, then:

‘f(tvs,r) - f(t,, Slﬂr)’ < ﬂ(’s - 3/‘ + ‘t - tl|)'

We conclude that (5.2) holds, reminding the definition of F', and noting that, due to lemma
3.1, G does only depend on:

diag[s] Ddiag[s] = diag[s']Cdiag[s'] = T.
Now let us focus on the second inequality:
|F(t,s,p, B) — F(t,s,p, D)| < e+ K.|diag[s'| Ddiag[s'] — diag[s'|Cdiag[s']|.
With a symmetry argument, one has to prove actually the inequality:

F(t,s,p,B) — F(t,s,p, D) > —e — K.|diag[s'] Ddiag[s'] — diag[s'|Cdiag[s']|.
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By definition of F', we get:

F(t,s,p,B)— F(t,s,p,D) = 1541;% {min {—f(t, s,I'n —A),14=0G(B) — tr(A)}}

—sup {min { (1., T ~ 4); 1a4=0G(D) ~ tr(A)}}

Where we denoted I'y = diag[s]Bdiag[s] and I'y = diag[s|Ddiag[s]. These matrices are
symmetric, and so there exists 'y > 0 and I'_ <0 s.t.:

F2:F1—|—F+—|—F_

We have I'y — 'y > I'_. As F' is a parabolic operator, one gets:

F(t,5.p.B) = F(t.5,p, D)  sup {min {=F(01 = A); 1acoG(T1) — tr(4) }}

—1541;% {min {—f(Fl +T_ —A), 140G +T_) — tr(A)}} .

Then by definition of the supremum, for any n > 0, there exists A such that:

F(t,s,p,B) — F(t,s,p,D) > 1841;1()) {min {—f(f‘l —A);14-0G(T) — tr(A)}}

— {min {—f(Fl +I_—A), 1; G +T2) — tr(/i)}} — 1.
Finally using the inequality min(a,b) — min(c,d) > min(a — ¢,b — d) one gets:

F(t,s,p, B) = F(t,5,p, D) > sup {min { (I + T — 4) = f(1y - 4),
A>0

1acoG(Ty) — 14 oGy +T )+ tr(A — A)}} 1y
Now we divide the proof in two cases, depending on whether G(T'y) > ¢ or G(I'1) < e:

o Case G(I')) <e:
Taking A = —T'_ + A leads to:

F(t,s,p, B) — F(t,s,p, D) > min {f(n +T_— A)— f(ry - A),
1acoG(Ty) — 14 oGy +T_) + tr(A — A)} .
and we get:
F(t,s,p,B) — F(t,s,p,D) > min {0, -1 ;_ Gy +T_) +tr(I'_)} —n.
Using the K-Lipschitz continuity of G' given by lemma 3.1, we have for all n > 0:

F(t,s,p,B) — F(t,s,p, D) > min {0, -1 ;_(G(I'y + I'~) — G(I'1))
—1;_,GT) +tr(T2)} —n
F(t,s,p,B) — F(t,s,p,D) > —(K +1)[I'_| —e —1n
F(t,s,p,B) — F(t,s,p, D) > —(K + 1)|diag[s'] Ddiag|s']
— diag[s'| Bdiag[s']| — e —
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o Case G(I'y) > e:
Taking A = A and using assumption 2.4 gives:

F(t,5,p,B) = F(t,s,p, D) > min { (I + T — A) = f(Ty - A),

la=o(G(T1) = G(T1+T))} =7
F(t,s,p,B) — F(t,s,p,D)
F(t,s,p,B) — F(t,s,p,D)

az(Ke, K)[T-[ =7
ax (K., K)|diag[s'| Ddiag[s]
— diag[s'| Bdiag[s']| — n

>
>

Taking the limit when 1 — 0 gives the required result. O

Strict supersolution

First, we must prove the concavity of the operator with respect to the test functions:
Lemma 5.8. For any (t,s) € [0,T) x R, let p1 and s two C* test functions, such that:
F(t,s,Dcpl,D2<p1) >0 and F(t,s,Dgog,D2g02) > 0.

Then for any X € [0,1] , denoting o = Ap1 + (1 — N)p2, we have:
F(t,s,Dp,D*p) > AF(t, s, Dp1, D*¢01) + (1 — A)F(t, s, Dpa, D*p3). (5.3)

Proof. Let us fix (¢,s) and A for the rest of the proof. First of all, it is obvious that
f(t,s,diag[s] D*pdiag [s]) is convex in its last argument, as it is the convex conjugate of f.
Then, for any n x n symmetric matrices A; and As:

ft,s, D% 4+ AA; + (1 — \)A2) < Mf(t, s, D%p1 + A1) + (1 — N f(t, 5, D*p2 + A). (5.4)

Lemma 3.1 proves that G(t, s, D?p) is concave w.r.t its third variable. First, we will prove
that, when the operator is positive, then the supremum in its definition is attained for
A = 0. By definition of F', there exists a sequence A,, > 0 s.t.:

F(t,s, Dy, D*¢;) = lim <min {0{;0; —f (diag [s] D?pdiag [s] — An)

14, —0G(diag [s] D*p;diag [s]) — tr(An)}) = 0.

Looking at the second term of the minimum, we notice that 4, — 0. As f is lower
semicontinuous w.r.t. its third variable, one gets:

91

o — 1 (diag[s] D*p1diag s]) > F(t, 5, Dy, D*pr).

Moreover, it is obvious that:

G(diag [s| D*p1diag[s]) > F(t, s, Dp1, D*p1).
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Hence the supremum is indeed attained for A = 0. The same arguments can be applied for
2. As f(t,s,.) and G(.) are concave functions, so is their minimum. Finally we get:

F(t,s,Dp,D*p) > min {aaf —f (diag [s] D*pdiag [s]) , G(diag [s] D*¢diag [s])}

> \F(t,s, D1, D*p1) + (1 — N\ F(t, s, Doa, D*p3),
and this concludes the proof. ]

Let us point out a n-strict supersolution of the equation:
Lemma 5.9. Let assumption 2.4 hold. Then, for any constant ¢* the function:
wh(t,s) = (T —t)+c*
is a n'-strict supersolution of (3.4) for some n' > 0.

Proof. It follows from assumption 2.4 which ensures existence of n* > 0 such that G(t,0) >
n' for all t € [0, 7). Hence, taking A =0 in (3.4) gives:

F(t,s,wi(t,s), D*w'(t,s)) > min(1,n")V(t,s) € [0,T] x R%L.

One can also easily build 7-strict supersolutions of (3.4), as in [23].
Lemma 5.10. Let w® be a lower semicontinuous viscosity supersolution of the equation:
F(t,s,w)(t,s), D*uw’(t,s)) =0, (5.5)
and w' be a lower semicontinuous n-strict supersolution of the equation (5.5) for some
n > 0. Then, for all p € (0,1), the function w* = (1 — pw)w’ + pw' is a pn-strict

supersolution of equation (5.5).

Proof. The proof is exactly the same as in [23], which is based on the concavity of F' with
respect to the solution. O

5.2 Comparison result

Proposition 5.6. Let assumptions 2.3, 2.2 and 2.4 hold. Suppose u is an upper semicon-
tinuous subsolution of (3.4) and w a lower semicontinuous n-strict viscosity supersolution
of (3.4) for some n > 0. Assume that there exists a constant C' such that:

u(t,s) < g(s) + C and w(t,s) > §(s) — C for all (t,s) € [0,T) x (0, +00)? (5.6)

Then, w(T,.) < §(.) < w(T,.) implies u(t,s) < w(t,s) on [0,T) x (0, 400)?.
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Proof. We adapt the comparison result of [23]. The difference is that, here, one does not
have the Lipschitz condition on F', but a weaker condition (5.1) given by lemma 5.7. As
we show here, it does not interfere in the proof.

For €, > 0, consider the upper semicontinuous function:

(1, 7,5,5) = ult, ) — (it o) — =(U(s) + 1)) — s (6~ £ + (s~ 5)?)

where

d
I(s) = Z [s; — log s;] .

J=1

Let us consider the function:
D(t,s) = B (L, ¢, s, 5).

Then, with condition (5.6), we see that ¢° is bounded from above and tends to —oo on the
boundary of the domain, hence there exist ., s. such that:

max  ¢°(t,s) = ¢°(t, 5).

[0,77x[0,00)4
Now, let us study the case when:
te, = T for some sequence (ej)>1 with e, > 0 and &, — 0. (5.7)
Exactly as in [23] one can arrive at:

u(t,s) —w(t,s) = ®*(t, s) + 2exl(s)
< O (t, s.,.) + 2exl(s)
<u(T, se,,) —w(T, se,,) — 2el(se,,) + 2exl(s)
<u(T,se,) —w(T,se,) + 2eil(s)
< 2e4l(s) for all (t,s) € [0,T) x (0, 400)<.

Taking £ — oo gives the required result.
Now, in order to prove (5.7), we assume on the contrary that there exists a constant € > 0
such that

te<Tforall0<e <€

and we work toward a contradiction. Using the same arguments as in [23], one can prove
that there exists a sequence oy, — oo and a sequence (ty, 1), sk, s)) — (te,tL,se,s.) such
that

o (b — 1) + (sk — s5)?) — 0 as k — oo.

Note that for e sufficiently small and oy, sufficiently large, ¢, < T and ¢}, < 7. Based on
theorem 3.2 in [27], the arguments in [23] lead, for sufficiently large oz, to existence of two
symmetric matrices Ay, A} € S such that:

I; 0 A, 0 I —Iy
_ <
3ay, <0 Id) < ( 0 _A;€> < 3ay, <_Id I, (5.8)
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and
F (s pr + (t — te), A +eD?1(sg,) + Q(sy, — s2))
F (s, pr — (tr — t2), A, — eD?l(s},) — Q(s), — s2))

IV IA

0
n
where

pr = ap(ty — th,) and Q(2) := 22 ® z + |2|*Id.

First, we calculate explicitly the norms of the quantities defined above:

. 1
D2l(sk) = dlag[—g]
Sk

and
Qs — 52| < 2l(sp — 52)-(5 — )| + | (5 — 5. (55, — 5.)].

Then, we use lemma 5.7 with % to conclude that:
F (s, ps Ag) < F (s pr + (b — te), A + eD?1(sg) + Q(sk — s¢))

+ &+ [t — o] + Ky |dinglsi] [EDU(s6) + Qs — 52)]dings]|

< g  [tr = te] + K e + 3]st — se[*[si]?].
Using the same arguments, one can prove that:

F(shopr, A7) 20— 3 — [t — te] = Kle + 3]s}, — s |si .
Combining these two inequalities, we get:
F (s} s AR) = Flswspis Ax) 20— 1 = [t — te] = [t — £
- 3Kg|8 + |sk — sc|*[su]® + |s), — se|?|sk]?)-

Therefore, letting & — oo:

2
lim inf [F (s}, pr, A},) — F(sk, pr, Ag)| > ?77 —2Ke. (5.9)

k—oo

On the other hand, since Ay, A}, satisfy (5.8), we get, by multiplying both sides by (diag[s;]diag|s},)]
dioglsy]
d{ ;. P I
diag[s} ]
diag(sy,] Axdiag[sy] — diag[s,| A diag[s}] < diag (s, — s},)?)

Finally, using lemma 5.7 with %, we get:

F(s pr: At) — F(sk, i, Ax) < g + Kn|diag[s;| Ardiag[si] — diag[s),| A} diag]s}|
+ BIsk — sil)

< g—I_K% (ak[|sk—s;€|2]) + B(|sk — si)- (5.10)

Since ag[|sy — si.|*] — 0 anf |s;, — s}.| — 0 as k — oo, we obtain a contradiction between
(5.9) and (5.10) when € < g7L-. Hence (5.7) has to hold, and comparison is proved. O
[
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5.3 Proof of theorem 5.1

Let u and w be two viscosity solutions of (3.4). Then we know with lemma 5.10, that
wh = w + pw!, where w' is defined in lemma 5.9, is a un strict supersolution of (3.4).
Furthermore, with assumption 2.5 we get the existence of a constant C’ such that ¢ — C’ <
wh. Hence, using proposition 5.6 we get wi > u* for all 4 > 0. Taking u — 0 we get
wy > u*. By a symmetric argument, we get u, > w*. Moreover, as we have u* > wu,, we
finally get w, > u* > u, > w*, and therefore w = u and w is continuous.
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Chapter 4

Impulse control problem on finite
horizon with execution delay

This is a joint work with Huyen Pham !

We consider impulse control problems in finite horizon for diffusions with decision lag
and execution delay. The new feature is that our general framework deals with the impor-
tant case when several consecutive orders may be decided before the effective execution of
the first one. This is motivated by financial applications in the trading of illiquid assets
such as hedge funds. We show that the value functions for such control problems satisfy a
suitable version of dynamic programming principle in finite dimension, which takes into ac-
count the past dependence of state process through the pending orders. The corresponding
Bellman partial differential equations (PDE) system is derived, and exhibit some pecu-
liarities on the coupled equations, domains and boundary conditions. We prove a unique
characterization of the value functions to this nonstandard PDE system by means of viscos-
ity solutions. The uniqueness result and the boundary conditions are obtained by backward
and forward iterations on the domains and the value functions.

Key words : Impulse control, execution delay, diffusion processes, dynamic programming,
viscosity solutions, comparison principle.

!Laboratoire de Probabilités et Modeles Aléatoires, CNRS, UMR 7599, Université Paris 7 Diderot, and
Institut Universitaire de France, pham@math.jussieu.fr
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1 Introduction

In this paper, we consider a general impulse control problem in finite horizon of a diffusion
process X, with intervention lag and execution delay. This means that we may intervene
on the diffusion system at any times 7; separated at least by some fixed positive lag h,
by giving some impulse & based on the information at 7;. However, the execution of the
impulse decided at 7; is carried out with delay mh, m > 1, i.e. it is implemented at
time 7; + mh, moving the system from X, n)~ to T'(X(7, 4mn)-»&i)- The objective is to
maximize over impulse controls (7;,&;); the expected total profit on finite horizon 7', of the
form

]E[/OTf(Xt)dt+g(XT) + Z C(X(Tﬁmh)—afz')]

T +mh<T

Such formulations appear naturally in decision-making problems in economics and finance.
In many situations, firms or investors face regulatory delays (delivery lag), which may be
significant, and thus need to be taken into account when management strategies are decided
in an uncertain environment. Problems where firm’s investment are subject to delivery
lag can be found in the real options literature, for example in [4] and [2]. In financial
market context, execution delay is related to liquidity risk (see e.g. [66]), and occurs with
transaction, which requires heavy preparatory work as for hedge funds. Indeed, hedge
funds frequently hold illiquid assets, and need some time to find a counterpart to buy
or sell them. Furthermore, this notice period gives the hedge fund manager a reasonable
investement horizon.

From a mathematical viewpoint, it is well-known that impulse control problems without
delay, i.e. m = 0, lead to variational partial differential equations (PDE), see e.g. the books
[14] and [55]. Impulse control problems in the presence of delay were studied in [60] for m
= 1, that is when no more than one pending order is allowed at any time. In this case,
it is shown that the delay problem may be transformed into a no-delay impulse control
problem. The paper [11] also considers the case m = 1, but when the value of the impulse
is chosen at the time of execution, and on infinite horizon, and these two conditions are
crucial in the proposed probabilistic resolution. We mention also the works [4] and recently
[55], which study impulse problems in infinite horizon with arbitrary number of pending
orders, but under restrictive assumptions on the controlled state process, like (geometric)
Lévy process for X and (multiplicative) additive intervention operator I'. In this case,
the problem is reduced to a finite-dimensional one where the value functions with pending
orders are directly related to the value function without order.

The main contribution of this paper is to provide a theory of impulse control problems
with delay on finite horizon in a fairly general diffusion framework that deals with the im-
portant case in applications when the number of pending orders is finite, but not restricted
to one, i.e. m > 1. Our chief goal is to obtain a unique tractable PDE characterization
of the value functions for such problems. As usual in stochastic control problems, the first
step is the derivation of a dynamic programming principle (DPP). We show a suitable
version of DPP, which takes into account the past dependence of the controlled diffusion
via the finite number of pending orders. The corresponding Bellman PDE system reveals
some nonstandard features both on the form of the differential operators and their domains,
and on the boundary conditions. Following the modern approach to stochastic control, we
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prove that the value functions are viscosity solutions to this Bellman PDE system, and we
also state comparison principles, which allows to obtain a unique PDE characterization.
From this PDE representation, we will provide in the next chapter an easily implemented
algorithm to compute the value functions, and so as byproducts the optimal impulse con-
trol. This algorithm involves forward and backward iterations on the value functions and
on the domains, and appear actually as original arguments in the proofs for the boundary
conditions and comparison principles.

The rest of the paper is organized as follows. In Section 2, we formulate the control
problem and introduce the associated value functions. Section 3 deals with the dynamic
programming principle in this general framework. We then state in Section 4 the unique
PDE viscosity characterization for the value functions. In section 5, we describe how to
derive the optimal control from the value functions. Finally, Section 6 is devoted to the
proofs of results in this paper.

2 Problem formulation

2.1 The control problem

Let (€2, F,P) be a complete probability space equipped with a filtration F = (F})¢>0 satis-
fying the usual conditions, and W = (W;):>0 a standard n-dimensional Brownian motion.

An impulse control is a double sequence o = (7;,(;)i>1, where (7;) is an increasing
sequence of F-stopping times, and &; are F;,-measurable random variables valued in . We
require that 7,41 — 7 > h a.s., where h > 0 is a fixed time lag between two decision times,
and we assume that E, the set of impulse values, is a compact subset of R?. We denote by
A this set of impulse controls.

In absence of impulse executions, the system valued in R? evolves according to :

dX, = b(X,)ds+ o(Xs)dWs, (2.1)

where b : R? — R? and o — R4*" are Borel functions on RY, satisfying usual Lipschitz
conditions. The interventions are decided at times 7; with impulse values &; based on
the information at these dates, however they are executed with delay at times 7, + mh,
moving the system from X, 4rmn)- t0 X(rqpmn) = U(X(74mn)—>&i). Here I' is a mapping
from R? x F into R?, and we assume that I" is continuous, and satisfies the linear growth
condition :

Tz, e)|

sup ———= < oo (2.2)
(z,e)ERIXE 1—|—|SL“

Given an impulse control a = (75, &;)i>1 € ‘A, and an initial condition X, € R?, the controlled
process X is then defined as the solution to the s.d.e. :

Xy = Xo+ /0 b(Xu)du + /0 O'(Xu)qu + Z (F(X(Ti+mh)7 , 51) — X(Ti+mh)*)(2'3)
Ti+mh<s

We now fix a finite horizon T' < oo, and in order to avoid trivialities, we assume T — mh
> 0. Using standard arguments based on Burkholder-Davis-Gundy’s inequality, Gronwall’s
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lemma and (2.2), we easily check that

E[sup XS]] < oo (2.4)
s<T

Given an impulse control a = (7;,&;)i>1 € A, we consider the total profit at horizon T,
defined by :

T
a) = [ FX0ds+ g3+ Y Xy o)
0 Ti+mh<T

and we assume that the running profit function f, the terminal profit function g, and the
executed cost function ¢ are continuous, and satisfy the linear growth condition :

wp M@ @ ol o)

(z,e)ERIXE 1+ ’33|

This ensures with (2.4) that II(«) is integrable, and we can define the control problem :

Vo = supE[I(a)]. (2.6)
acA

We also impose the following assumption :
g(x) > g(D(z,e)) +c(ze), V(ze) e R x E. (2.7)

This condition economically means that a decision at time T — mh induces a terminal
profit, which is smaller than a no-decision at this time 7' — mh, and is thus suboptimal.
Mathematically, we shall see later that the condition (2.7) is crucial for the continuity of
the value function associated to our problem, see Remark 4.2 3. Finally, notice that any
intervention decided after date T'— mh will not influence the system and so the total profit
at horizon T', and therefore, we may require w.l.o.g. that any admissible impulse control «
= (13,&i)i>1 € A satisfies 7, + mh < T for all i s.t. 7; < 0.

Financial example
Consider a financial market consisting of a money market account yielding a constant
interest rate r, and a risky asset (stock) of price process (S¢); governed by :

dSy = B(S)dt +~v(Sp)dWr.

We denote by Y; the number of shares in the stock, and by Z; the amount of money (cash
holdings) held by the investor at time ¢. We assume that the investor can only trade
discretely, and her orders are executed with delay. This is modelled through an impulse
control a = (74, &;)i>1 € A, where 7; are the decision times, and &; are the numbers of stock
purchased if £ > 0 or selled if & < 0 decided at 7;, but executed at times 7; + mh. The
dynamics of Y is then given by

i = Yo+ > &
Ti+mh<t

which means that discrete trading AY; := Y; — Y,- = §; occur at times s = 7, + mh, i > 1.
In absence of trading, the cash holdings Z grows deterministically at rate r : dZ; = rZdt.
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When a discrete trading AY; occurs, this results in a variation of cash holdings by AZ, :=
Zy — Z;—- = —(AY}) Sy, from the self-financing condition. In other words, the dynamics of
Z is given by

t
Zi = Zo+ / rZydu— Y &.Sramn-
0

Ti+mh<t

The wealth process is equal to L(S, Y, Z;) = Z;+Y.S;. This financial example corresponds
to the general model (2.3) with X = (S,Y,Z), b= (80r), c = (y00), and

s
[(s,y,z,e) = e
z—es

In this case, condition (2.7) is satisfied with an equality . Fix now some contingent claim
characterized by its payoff at time 7' : H(S7) for some measurable function H. The two
following hedging and valuation criteria are very popular in finance, and may be embedded
in our general framework :

e Shortfall risk hedging. The investor is looking for a trading strategy that minimizes the
shortfall risk of the P& L between her contingent claim and her terminal wealth,

iniE[(H(ST) ~ L(Sr, Yr, ZT)>J .

[e1S

o Utility indifference price. Given an utility function U for the investor, an initial capital
z in cash, zero in stock, and £ > 0 units of contingent claims, define the expected utility
under optimal trading

Vo(z,6) = sup E[U(L(ST, Yo, Zr) — KH(ST))]
acA

The utility indifference ask price m,(k, z) is the price at which the investor is indifferent

(in the sense that her expected utility is unchanged under optimal trading) between paying

nothing and not having the claim, and receiving 7, (k, z) now to deliver x units of claim at

time 7. It is then defined as the solution to

Vo(z + ma(k,2), k) = Vy(z,0).

2.2 Value functions

In order to provide an analytic characterization of the control problem (2.6), we need as
usual to extend the definition of this control problem to general initial conditions. However,
in contrast with classical control problems without execution delay, the diffusion process
solution to (2.3) is not Markovian. Actually, given an impulse control, we see that the
state of the system is not only defined by its current state value at time ¢ but also by the
pending orders, that is the orders not yet executed, i.e. decided between time ¢ — mh and
t. Notice that the number of pending orders is less or equal to m. Let us then introduce
the following definitions and notations. For any t € [0,7], k = 0,...,m, we denote by

Pt(k) = {p: (tiaei)lﬁiﬁk c ([07T_mh] XE)k dt— i Zha i:27"'ak>

t—mh<t; <t z:lk}
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the set of k pending orders not yet executed before time ¢, with the convention that P;(0)
= (). For any p = (t;,ei)1<i<k € Pi(k), t € [0,T], k = 0,...,m, we denote

At,p = {a = (ﬂ',fi)iZl € .A . (Ti,fi) = (ti,ei), 1= 1,...,k3 and Thk+1 Z t},

the set of admissible impulse controls with pending orders p before time t.
For any (t,z) € [0,T]xR%, p € Pi(k), k=0,...,m, and @ € Ay, we denote by X%«
the solution to (2.3) for t < s < T, with initial data X; = x, and pending orders p, i.e.

X, - x—l—/ b(X du+/ X)W+ S (K ity &) — Xrsmny-)-

t<T;+mh<s

Using standard arguments based on Burkholder-Davis-Gundy’s inequality, Gronwall’s lemma
and (2.2), we easily check that

E[ sup |XIP012] < C(L+af?), (2.8)
t<s<T

for some positive constant C' depending only on b, o, I' and T. We then consider the
following performance criterion :

T
Jp(t,z,p,a) = E{/ FXEPPYds + g(XpTP ) + Z C(Xf;ff;gh)—7€i)]v
t

t<t; —‘rthT

for (t,z) € [0,T] xR, p € Pi(k), k=0,...,m, a = (13,&); € Atp, and the corresponding
value functions :

vp(t,z,p) = 21413 Jp(t,z,p,a), k=0,...,m, (t,x,p) € Dy,
@ t,p

where D, is the definition domain of vy, :
Dy = {(t,z,p) : (t,2) €[0,T) xR pe P(k)}.

For k = 0, P;(0) = (), and we write by convention vy(t, z) = vo(t, z,0), Dy = [0,T) x R? so
that the original control problem in (2.6) is given by Vj = v(0, Xy). Note, however, that
vg is defined on [0, 7] x R%. Notice from (2.5) and (2.8) that the functions vy, satisfy the
linear growth condition on Dy, :

t
sup |Uk( ,fl?,p)|

oo, k=0,...,m. (2.9)

3 Dynamic programming

In this section, we state the dynamic programming relation on the value functions of our
control problem with delay execution. For any ¢t € [0,T], a = (7;,&)i>1 € A, we denote :
tt,a) = inf{i>1 :7,>t—mh} -1 € NU{oo}, (3.1)
k(t,o) = card{i>1 :t—mh<m <t} € {0,...,m},
pt,a) = (Tituta) Sitelta))i<i<k(ta) € Pi(k(t,a)). (3.3)
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Theorem 3.1. The value functions satisfy the dynamic programming principle : for all k
=0,....,m, (tax,p) € Dy,

0
wtap) = swp B[ [ fxEmas s Y oX(The, 6)
acAp t T;+mh<6
+ Uk, (6, X407 p(6, ), (3.4)

where 0 is any stopping time valued in [t,T], possibly depending on « in (3.4). This means
(1) for all o« € Ay p, for all O stopping time valued in [t, T,

%
wltap) = B[ [ foxereydss 3 oX(rhn, 6)
t

t<t;+mh<6

+ Ok (0, X577 p(6, ). (3.5)

(i1) for all e > 0, there exists o € Ayp such that for all 6 stopping time valued in [t, T,

0
o(t,z,p) —e < E[ / FXGPPo)ds + Y e X&)
¢ t<T;i+mh<0

+ k() (6, X507 p(6, ) . (3.6)

We now give an explicit consequence of the above dynamic programming that will be
useful in the derivation of the corresponding analytic characterization. We introduce some
additional notations. For all ¢t € [0,7], we denote by Z; the set of pairs (7,&) where 7
is a stopping time, t < 7 < T —mh or 7 = oo a.s., and £ is a Fr-measurable random
variable valued in E. For any p = (t;,€;)1<i<x € Pi(k), we denote p_ = (¢, €;)2<i<i with
the convention that p_ = () when k = 1.

When no impulse control is applied to the system, we denote by Xﬁ’x’o the solution to
(2.1) with initial data X; = x, and by £ the associated infinitesimal generator :

Lo = b(:c).Dmcp—i—%tr(aa’(x)Dgcp).

If t < T — mh, we partition, for k € {1,...,m}, the set Pi(k) into P;(k) = P!(k) U
P?(k) where

Pl(k) = {p = (ti,ei)1<i<k € Pi(k) :tp >t — h}
Pi(k) = {p = (ti,ei)1<i<k € Pi(k) 1t <t— h}.

Else if t > T — mh, we denote P} (k) = P,(k) and P?(k) = (). We easily see from the lag
constraint on the pending orders that P?(k) = () if k = m, and so P,(m) = P}(m).

Corollary 3.1. Let (t,z) € [0,T) x R%.
(1) For k € {1,...,m}, and p = (t;,ei)1<i<x € PL(k), we have for any stopping time 0
valued in [t, (tx, + h) A (t1 +mh)) :

0 0
wltap) = B [ FOXE0)ds+ 0,70, p)]. (37)
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(2) Fork € {0,...,m—1}, and p = (t;, €;)1<i<k € P2(k), with the convention that PZ(k) = ()
and ti+mh =T when k = 0, we have for any stopping time 0 valued in [t, (t1+mh)A(t+h)) :

0
vp(t,z,p) = sup E[/ FXE=0Yds + v (0, X5, p)1ger (3.8)
(T,&)E.Tt t

+ vp41 (0, X;’I’O,p U (7,8))1r<0|,

Interpretation and remarks

(1) P}(k) represents the set of k& pending orders where the last order is within the period
(t — h, t] of nonintervention before ¢. Hence, from time ¢ and until time (¢t + h) A (t1 +mh),
we cannot intervene on the diffusion system and no pending order will be executed during
this time period. This is mathematically formalized by relation (3.7).

(2) P?(k) represents the set of k pending orders where the last order is out of the period of
nonintervention before t. Hence, at time ¢, one has two possible decisions : either one lets
continue the system or one immediately intervene. In this latter case, this order adds to
the previous ones. The mathematical formalization of these two choices is translated into
relation (3.8).

In the next sections, we show how one can exploit these dynamic programming relations
in order to characterize analytically the value functions by means of partial differential
equations.

4 PDE system viscosity characterization

For k = 1,...,m, let us introduce the subspace Oy, of [0,T — mh]* :
@k = {t(k) = (ti)lgigk S [O,T — mh]k e — 11 < mh, ti—ti1 > h, 1= 2, ce ,k}.

We shall write, by misuse of notation, p = (t;,€i)1<i<k = (t(k),e(k)), for any t) =
(ti)i<i<k € O, elk) — (ei)1<i<k € E*. By convention, we set Oy = EF = () for k =
0. Notice that for all ¢ € [0,7], and p = (t*),e(*)) € ©) x EF, k = 0,...,m, we have

p € P(k) < teTyk),
where T, (k) is the time domain in [0, 7] defined by :
Tp(k) = [tg,t1 +mh).

By convention, we set T, (k) = [0,7") for k = 0. We can then rewrite the domain Dy, of the
value function v in terms of union of time-space domains :

D, = {(t,:c,p) :(t,x)e']l‘p(k)de,pe@kxEk}.

Therefore, the determination of the value function vy, £ = 0,...,m, is equivalent to the
determination of the function vy (.,.,p) on Tp(k) X R? for all p € O x Ej,. The main goal
of this paper is to provide an analytic characterization of these functions by means of the
dynamic programming principle stated in the previous section.
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For k = 0, we set Dy = [0 T) x R%. For p = (ti, €i)1<i<k € O % E*. we partition the
time domain Ty (k) into Ty (k) = T, (k) U ']I'Q(k) where
T2(k) = {t eT,(k) N[0, T —mh] :t> tk+h} = [ty + h.ty - mh) ([0, T — mh],

T,(k) = Tp(k)\ T;(k)

with the convention that [s,t) = 0 if s > ¢. We then partition Dy, into Dy = D} U Dz where

D, = {(t,z,p) €Dy : teT}D(k)}

D} = {(t,,p) €Dy : teTf,(k;)}.

Notice that for k = 1,...,m, and any p € O x E*, ']I‘Ilj(k) is never empty. In particular,
D,ﬁ # (. For k = m, and any p = (t;,€i)1<i<m € Om X E™, we have t,, +h > t; + mh, and
so T2(m) = (). Hence, D2, = § and Dy, = D;,.

The PDE system to our control problem is formally derived by sending 6 to t < t; +mh
into dynamic programming relations (3.7)-(3.8). This provides equations for the value
functions v on Dy, which take the following nonstandard form, and are divided into :

8vk

5 —(t,z,p) — Log(t,z,p) — f(x) = 0 on D, k=0,...,m, (4.1)

vk(t,x,p)fsupvk_kl(t,x,pu(t,e))} =0 on Di k=0,....m—1, (42)
ecll

with the convention that D} = (T'— mh,T) x R? and D3 = [0, — mh] x R% .

As usual, the value functions need not be smooth, and even not known to be continuous
a priori, and we shall work with the notion of (discontinuous) viscosity solutions (see [27]
or [38] for classical references on the subject), which we adapt in our context as follows.
For a locally bounded function wy on Dy, we denote wy, (resp. wy,) its lower semicontinuous
(resp. upper-semicontinuous) envelope, i.e.

wy(t, x, = liminf — wi (¥, 2, ),
weho,p) = Iy kTP

wi(t,x,p) = limsup  wp(t,2',p"), (t,x,p) €Dy, k=0,....,m
'@’ p")—(t.z,p)

Definition 4.1. We say that a family of locally bounded functions wy on Dy, k =0,...,m,
is a viscosity supersolution (resp. subsolution) of (4.1)-(4.2) on Dy, k = 0,...,m, if :

(i) for allk = 1,...,m, (to,x0,p0) € D}, and ¢ € C*(D}.), which realizes a local minimum
of wy, — ¢ (resp. maximum of Wy — ¢), we have

0
=5 (0,20, p0) = Lo(to, x0) = flwo) = 0 (resp. < 0).
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(ii) for all k = 0,...,m — 1, (to,z0,p0) € Di, and ¢ € C*(D}), which realizes a local
minimum of wy — ¢ (resp. mazimum of Wy — @), we have

. 0
min { — %(to,fﬂo,po) — Lp(to, 0, po) — f(o) ,
wi(to, Zo, po) — Sugwk+1(t0>$07p0 U(to,e))} > 0
ec
(resp.
. dp
min { — E(to,wmpo) — Lp(to, xo, po) — f(xo) ,
Wk (to, T, po) — sup Wk1(to, z0,po U (to,€))} < 0)
ec
We say that a family of locally bounded functions wy on Dy, k = 0,...,m, is a viscosity

solution of (4.1)-(4.2) if it is a viscosity supersolution and subsolution of (4.1)-(4.2).

We then state the viscosity property of the value functions to our control problem.

Proposition 4.1. (Viscosity property)

The family of value functions vg, k = 0,...,m, is a viscosity solution to (4.1)-(4.2). More-
over, for allk =0,...,m—1, (t,x,p) € D,%, p = (ti,€i)1<i<k witht =t +h ort=T—mh,
we have :

vy (t, , p) > sup Vg1 (2, p U (¢, e)), (4.3)
ec

In order to have a complete characterization of the value functions, and so of our control
problem, we need to determine the suitable boundary conditions. These concern for k =
1,...,m the time-boundary of Dy, i.e. the points (t; +mh,z, p) for z € R%, p = (t;, €i)1<i<k
€ Oy, x B, and also the value function vy on (7, z), z € R? For a locally bounded function
wg on Dy, k =1,...,m, we denote

. / /
Wy (t, +mh,z,p) = lim sup w(t, 2, p'),
(t,a’,p’) — (t1 +mh,z,p)
(t,a',p') € Dy

w(ti +mh,x,p) = lim inf o(t, 2’ p'), x €RY p=(t;,e)1<i<k € O,
- (t,a',p’") = (t1 + mh, z,p)
(t,z',p') € Dy

and if these two limits are equal, we set
wi((t1 +mh)",x,p) = wWi(t1 +mh,z,p) = wi(ti +mh,x,p).

Proposition 4.2. (Boundary data)
(i) Fork =1,...,m, p = (t;,€;)1<i<k € Of X Bk, 2 € RY, vp((ty +mh) ™, x,p) exists and :

Uk((t1+mh)_>$ap) = C(l‘ael) +"Uk;_1(t1+mh,r(l’,€1),p7). (44)
(i3) At time T, for all z € RY, vo(T~, x) exists and:

vo(T™, ) = g(x) (4.5)
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We can now state the unique PDE characterization result for our control delay problem.

Theorem 4.1. The family of value functions vy, k = 0,...,m, is the unique viscosity
solution to (4.1)-(4.2), which satisfy (4.3), the boundary data (4.4)-(4.5), and the linear
growth condition (2.9). Moreover, vy is continuous on Dy, k = 0,...,m.

Remark 4.1. (Case m = 1)

In the particular case where the execution delay is equal to the intervention lag, i.e. m =
1, we have two value functions vy and v, and the system (4.1)-(4.2) may be significantly
simplified. First, remark that linear equation (4.1) on R? x (T — mh,T] together with
terminal condition (4.5) leads to:

T
vo(t,z) = E[/t f(X;””’O)ds—i—g(X;lw’o) , (t,x) € (T —mh,T]. (4.6)

Furthermore, from the linear PDE (4.1) and the boundary data (4.4) for k = m = 1, we
have the Feynman-Kac representation :

t1+h
wlt(te)) = B[ [ FXE0ds + (X he) oot + b DXL )] (47)
t

for all (t1,e1) € [0,T — h] x E, (t,x) € [t1,t1 + h) x R%. By plugging (4.7) for t = t; into
(4.2) for k = 0, we obtain the variational inequality satisfied by vy :

8’00
0= '{———,c —f, 48
min{ = 20—y, — 5 (43)
t+h
o — supE[ FXE™0)ds + o(XE50, €) + vo(t + h, T(XERL, e))] } on [0,7 —h] x RY,
eckE t

together with the terminal condition for £ = 0 (see (4.6)). Therefore, in the case m =
1, and as observed in [60], the original problem is reduced to a no-delay impulse control
problem (4.8) for vp, and v; is explicitly related to vg by (4.7). Equations (4.8)-(4.6) can
be solved by iterated optimal stopping problems, see the details in the next chapter in the
more general case m > 1.

Remark 4.2. In the general case m > 1, we point out the peculiarities of the PDE char-
acterization for our control delay problem.

1. The dynamic programming coupled system (4.1)-(4.2) has a nonstandard form. For
fixed k, there is a discontinuity on the differential operator of the equation satisfied by vy
on Di. Indeed, the PDE is divided into a linear equation on the subdomain D,ﬁ, and a
variational inequality with obstacle involving the value function vg,; on the subdomain
D2. Moreover, the time domain T,(k) of Dy, for vy(.,z,p) depends on the argument p €
O. With respect to usual comparison principle of nonlinear PDE, we state an uniqueness
result for viscosity solutions satisfying in addition the inequality (4.3) at the discontinuity
of the differential operator.

2. The boundary data also present some specificities. For fixed k, the condition in (4.4)
concerns as usual data on the time-boundary of the domain Dy on which the value function
vy, satisfies a PDE. However, it involves data on the value function v;_1, which is a priori
not known.
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3. The continuity property of the value functions v, on Dy is not at all obvious a priori
from the very definitions of v, and is proved actually as consequences of comparison prin-
ciples and boundary data for the system (4.1)-(4.2), see Proposition 6.4. In particular, if
assumption (2.7) is relaxed, then continuity does not hold necessarily for the value function.
For example, by taking b = ¢ = f = g = 0 and c(z,e) = 1 for all (z,e) € R? x E, we
easily see that vy(t,z) = max(0, {Tf’zhfﬂ ), where [z] denotes the smallest integer which
is superior to x, which is obviously not continuous.

The PDE characterization in Theorem 4.1 means that the value functions are in theory
completely determined by the resolution of the PDE system (4.1)-(4.2) together with the
boundary data (4.4)-(4.5). We show in the next section how to solve this system and
compute in practice these value functions and the associated optimal impulse controls.

5 Description of the optimal impulse control
In view of the above dynamic programming relations, and the general theory of optimal

stopping (see [34]), we can describe the structure of the optimal impulse control for Vy =
v0(0, Xo) in terms of the value functions. Let us define the following quantities :

» Initialization : n = 0

e given an initial pending order number k = 0, we define

%1(0) = inf{t>0 : vo(t, X&) = supwy(t, X, (t,e)} AT,
eck
égo) € arg maxvl(%l(o),X‘f;), (’7‘1(0),6)).
eclk T

If %1(0) + mh > T, we stop the induction at n = 0, otherwise continue to the next
item :

e Pending orders number k — k + 1 (this step is empty when m = 1) from k = 1 :

A inf {t > %,EO) +h

Te+1 =
£XY) = £, xo (70 &0 U (t AT
v (t, X)) sugvkﬂ(, ¢ 7(7-1 = )1§i§k (76))} )
ec

(0 (0 () ~(0 ~(0
e,(gll € arg maka+1(T,£_31, X% » (Ti(n), eg ))193,c U (Tlg_gl, e)).
eclE Tk’+1

As long as ?]EO) < ~1(0) + mh, increment k — k+ 1 : 7:]50) — Tppp, until

ko = sup{k : 7:,50) < ~1(0) +mh} € {1,...,m},
and increment the induction on n by the following step :

»n —>n+1:
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e given an initial pending orders number k = k, — 1, we define

7 = if (e > (7Y +mh) v (7Y +h)
Vpea (6 X Pno) = supy (6. X7 P U (L)} AT,
ec
é,(CnH) € argmaxuv, (%{HI,X?‘;H,ﬁW U (%,?'H,e)),
n GEE n ‘I'1 n
where we set p,,- = (%i(n), égn)>2§i§kn. We denote ?1(”+1) = %2(") if k, > 1, and 7:1(n+1)

= %,?’nﬂ if k, =1. If %1(n+1) + mh > T, we stop the induction at n + 1, otherwise
continue to the next item :

e Pending orders number k — k + 1 (this step is empty when m = 1) from k = k,, :

D = inf{e> 7 4on
on( XET) = supunga (6, X57 5 UG M), L U ) AT
égfll) € arg ?&«}7( U"/’H(%lgflrl)’X%}{l)’ﬁ”_ Y (%i(nﬂ)? é§n+1))kn§i5k U (ﬂiﬁl)» e))
As long as 7~_}§n+1) < ~1(n+1) + mh, increment k — k+ 1 : ?,gnﬂ) — %,ET{U, until
kny1 = sup{k :%,gnﬂ) < ~1(n+1) +mh} € {1,...,m},
and continue the induction on n : n — n + 1 until %1(n+1) +mh > T.

The optimal impulse control is given by the finite sequence {(%,gn), é,gn)) fon 1 <k<kn, T =

0,...,N}, where N = inf{n >0 : %l(n) +mh > T}, and we set by convention k_; = 1.

6 Proofs of main results

6.1 Dynamic programming principle

From the dynamics (2.3) of the controlled process, we derive easily the following properties
(recall the notations (3.1)-(3.2)-(3.3)) :

e Markov property of the pair (X, p(.,«)) for any a € A, in the sense that

E o (X5,) (X5, p(0r,0))]

Fo| = E[p(x8)

for any bounded measurable function ¢, and stopping times ¢; < 65 a.s.

e Causality of the control, in the sense that for any o = (74,&)i>1 € A, and 0 stopping
time,

= Agpo,a), and p(0,a) € k(0,a) a.s.

0 _
where we set a” = (Ti-i—L(O,a)? §i+b(9,o¢))i21'
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e Pathwise uniqueness of the state process,

xtape = x0XTPp0@0” o g 7,
for any (¢t,x,p) € Dy, k=0,...,m, a € Ay, and 0 € T, 1 the set of stopping times valued
in [t,T7.

From the above properties, we deduce by usual arguments the inequality (3.6) of the
dynamic programming principle, which can be formulated equivalently in

Proposition 6.1. For allk = 0,...,m, (t,x,p) € Dy, we have

witop) < s inf Ef / FXEPds + Y (XS, 6)
ac A, 0T t<7;+mh<0 '

+ Uk(@,a) (97 X;’x’p7a7p(95 Oé))] .

Proof. Fix (t,z,p) € D, k = 0,...,m, and take arbitrary o € A, 0 € T, 7. From
the definitions of the performance criterion and the value functions, the law of iterated
conditional expectations, Markov property, pathwise uniqueness, and causality features of
our model, we get the successive relations

0
Jk (t7 z,p, CE) = E |:/t f(X?I,P,OL)dS + Z C(Xt':f’rgh ’ 52)

t<T;+mh<6

7]

T
B[ [ et 1 g -3 X, 6)
0 0<t;+mh<T

0
= B[ [ satreys e Y dx(ln, )

t<T;+mh<6

+ Jk(@,oc) (0, Xg’Lp’aa p(97 Oé), a@):|

[%
< B[ pocmrnas s X xit, )
¢ t<T;+mh<0
+ Vk(6,0) (0, Xé,a:,p,oz7 (b, O‘))} .
Since # and « are arbitrary, we obtain the required inequality. O

As usual, the inequality (3.5) of the dynamic programming principle requires in addi-
tion to the Markov, causality and pathwise uniqueness properties, a measurable selection
theorem. This inequality can be formulated equivalently in

Proposition 6.2. For allk = 0,...,m, (t,xz,p) € Dy, we have

6

t7?7

altar) = swp s B[ [ pEdsE S X, 6)
a€Arp 0€T, T t t<t;+mh<6

+ ok ) (0, X577, p(0, ).
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Proof. Fix (t,x,p) € Dy, k =0,...,m, and arbitrary o € A p, 6 € T 7. By definition
of the value functions, for any ¢ > 0 and w € Q, there exists ac v € Ag(w) p(6(w),a(w)), Which

is an e-optimal control for v(9(w),a(w)) at (6, Xg‘””””a,p(e, a))(w). By a measurable selection
theorem (see e.g. Chapter 7 in [15]), there exists ac € Ag p(9,a) 8-t Qc(w) = acw(w) as.,
and so

Uk(@,a)(aX;w’p’avp(eaa))_5 < Jk(a’a)(07X5’$’p’a7p((9’a)’(js) a.s. (61)

Now, we define by concatenation the impulse control & consisting of the impulse control
components of a until (including eventually) time 7, and the impulse control components
of a. strictly after time 7. By construction, & € Ay, XH5P% = X502 on [t, 0], k(0,a) =
k(0,a), p(d,a) = p(h,a), and @’ = a.. Hence, similarly as in Proposition 6.1, by using law
of iterated conditional expectations, Markov property, pathwise uniqueness, and causality
features of our model, we get

0
Jlt.wp.a) = E| / FXEmP0ds+ Y (X&)
¢ t<r;+mh<6

+ Jk(@}a) (9, X;’$7p,a’ p(e, Oé), 0_55)i| .

Together with (6.1), this implies

0
Uk(t7$7p) > Jk(tvxupaa) > IE|:\/ f(X?x’p’a)dS—i_ Z C(Xf;ffﬁh)—agl)
¢ t<t;+mh<60

+ Vk(0,0) (07 Xg’%p’aa p(ﬁ, O‘))} — &

From the arbitrariness of €, «, and 6, this proves the required result. O
We end this paragraph by proving Corollary 3.1.

Proof of Corollary 3.1.

(i) Fix k € {1,...,m}, (t,z) € [O,T] X Rd, p= (ti;ei)lgigk S Ptl(k) such that t; + mh <
T, and 0 stopping time valued in [¢, (¢ + h) A (t1 + mh)). Then, we observe that for all «
= (14,&)iz1 € App, Xb0PY = X820 on [t,0], 7, +mh > 0, k(0,a) = k, and p(#,a) = p a.s.
Hence, relation (3.7) follows immediately from (3.4).

(ii) For k € {0,...,m—1}, p = (t;, e;)1<i<k € P2(k) such that ¢t; +mh < T, and 6 stopping
time valued in [t, (t; +mh) A (t+h)). Let o = (73,&;)i>1 be some arbitrary element in Ay ,,
and set 7 = 711, & = &y1. Notice that (7,€) € Z;. Then, we see that XH@P@ = X420 on
[t,0], i +mh >0, k(0,a) =k, p(0,a) =pif @ < 7,and k(0,a) = k+1, p(0,a) = pU(7,§)
if 0 > 7. We deduce from (3.5) that

0
wtap) = E[ [ FOX00)ds+ 00(6.X5" p)lacr
t
+ Vk+1 (97 ng’ov pU (T7 5))1T§9] )

and this inequality holds for any (7,&) € Z; by arbitrariness of a. Furthermore, from (3.6),
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for all € > 0, there exists (7,&) € I; s.t.

0
Uk:(ta :E,p) —e < ]E[/ f(X?x’O)ds + Uk(ea Xé,$,0’p)19<7_
t
+ ver1 (0, X" pU (Taf))lrge}-

The two previous inequalities give the required relation

0
ve(t,z,p) =  sup E[/ f(Xz’z’O)ds—l—vk(G,Xg’x’O,p)lkT
(T:£)€Ls ¢

+ o1 (8, Xy, p U (1,6)) <0

6.2 Viscosity properties

In this paragraph, we prove the viscosity property stated in Proposition 4.1. We first state
an auxiliary result. For any locally bounded function w on Dyyq, k = 0,...,m — 1, we
define the locally bounded function Hu on Di by Hu(t,z,p) = sup.cpu(t,z,pU (¢, e)).

Lemma 6.1. Let u be a locally bounded function on Dyy1, k = 0,...,m —1. Then, Hu is
upper-semicontinuous, and Hu < Hu.

Proof. Fix some (t,z,p) € D, and let (tn, Zn, pn)n>1 be a sequence in Di converging
to (t,x,p) as n goes to infinity. Since u is upper-semicontinuous, and E is compact, there
exists a sequence (e,), valued in E, such that

Hﬂ(tn,xnapn) = ﬂ(tnvxnapn ) (tna en))v n > 1.
The sequence (ey,), converges, up to a subsequence, to some é € F, and so

Hu(t,z,p) > u(t,z,pU(t,é)) > lmsup@(tn,Tn,pn U (tn,en)) = limsup Hu(ty,, n, pn),
n—oo n—oo
which shows that Huw is upper-semicontinuous.
On the other hand, fix some (¢, z,p) € Di’m, and let (t,, Tn, pn)n>1 be a sequence in D}
converging to (t,x,p) s.t. Hu(t,, y,,pn) converges to Hu(t, x,p). Then, we have

Hu(t,z,p) = lim Hu(tn,zn,pn) < limsup Hu(ty, xn, pn) < Hu(t,z,p),

n—00 n—00

which shows that Hu < Hu. O

Now, we prove the sub and supersolution property of the family vy, K = 0,...,m. There
is no difficulty on the domain D,{, since locally no impulse control is possible. Hence, in this
case, the viscosity properties can be derived as for an uncontrolled state process, and the
proof is standard from the dynamic programming principle (3.7), see e.g. [58]. Notice that
since the domain ’]I'Il)(k) is open in T, (k), we have no problem at the boundary. Indeed, this
set is open at (tx + h) A (t1 + mh) and eventually T'— mh, which is the usual situation,
and the closedness at t; and T" does not introduce difficulties, as the value function is not
defined before t;, and after T. Hence, when taking approximations of the upper and lower
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semicontinous envelopes of vg, we only need to consider points of the domain such that
t > tj, where the dynamic programming relation (3.7) holds. The proof of the viscosity
property of the value functions vy to (4.2) on Dj is more subtle. Indeed, in addition to the
specific form of equation (4.2), we have to carefully address the discontinuity of the PDE
system (4.1)-(4.2) on the boudaries t; + h and eventually 7' — mh of Tg(k). In the sequel,
we focus on the domain Dz, k=0,...,m—1.

Proof of the supersolution property on Di.
We first prove that for k = 0,...,m — 1, (to, zo,po) € D,% :

v (to, o, po) > sup V41 (to, 2o, po U (to, €)). (6.2)
ec

By definition of vy, there exists a sequence (t, Zpn,pn)n>1 € D} such that :

Uk(tnuxnapn) - %(t07x07p0) with (tnvxnapn) - (tO-;mO,pO)- (63)

We set po = (12, €9)1<i<k, Pn = (17, 1) 1<i<k, and we distinguish the three following cases :

o If t% +h <to <T —mh, then, for n sufficiently large, we have ¢! +h < t, < T —mbh,
ie. p, € an (k). Hence, from the dynamic programming principle by making an
immediate impulse control, i.e. by applying (3.8) to vg(tn, Tn, pn) With 8 = 7 = t,,,
and e € E, we have

Uk(tmxmpn) > Uk+1(tm$mpnu<tn;e>) > Uk+1(tmxmpnu(tme))-

By sending n to infinity with (6.3), and since vgy; is lower-semicontinuous, we obtain
the required relation (6.2) from the arbitrariness of e in E.

o if tg = tg + h # T — mh, we apply the dynamic programming principle by making an
impulse control as soon as possible. This means that in relation (3.5) for vg (¢, Tn, Pn),
we choose & = (73, &)i>1 € Aty pns 0 = Thp1 = Op =t V (I + h), &1 = e € E, s0
that :

67L
Uk(tnyxnapn) > E|: ] f(Xg)dS"i_ Z C(X(nTierh)*vfi)

tn <Ti+mh<6,
+ Vg1 (env Xgnapn U (On, 6))] :
Here X" := X!®0  Since t,, 6,, — to, Pn — Do, Xg — xo a.s., as n goes to infinity,

and from estimate (2.8) and the linear growth condition on f, ¢, vx41, we can use the
dominated convergence theorem to obtain :

v (to, 0, Po) > vkt1(to, zo, po U (to, €)),

which implies (6.2) from the arbitrariness of e € E.

o if ty = T'— mh, we show from condition (2.7) that it is not optimal to decide an
impulse intervention. First, notice from the definition of the value function and from
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the constraints on the impulse controls that, for all e € F :

T

Vg1 (to, To, po U (to,e)) = E[ f(XLomoPo)ds 4 Q(F(X?impov e)) (6.4)
to

k

t 5 5 0 t ) P

e ) 4 (X ).
=0

Moreover, by definition of vy, and by choosing not to decide an impulse intervention,

we get for all n :

T

Uk(tnvxmpn) Z E|: t”+mh)

k
f(th7fEn7pn)dS + g( tn»xnvpn + ZC tnywnvpn ,6?) .
tn =0

Hence, by the continuity and the linear growth conditions of f, g, I, ¢ together with
the dominated convergence theorem, we get by sending n to infinity into the previous
inequality :

T
vi(to, mo,p0) = E| [ F(XI0)ds 1 g(X200M) 3T e(X(0T ).
to 1=0,..,k ’

Finally, by using Assumption (2.7) and equality (6.4), we get :

vk (to, 0,P0) > Vkt1(to, zo,po U (to,€)) > vgi(to, zo,po U (fo,€)),
which proves the required inequality from the arbitrariness of e in F.

Finaly, in order to complete the viscosity supersolution property of vy to (4.2) on Dﬁ, it
remains to show that v, is a supersolution to :

(9Uk

on D,%. This proof is standard by using the dynamic programming relation (3.8) with 7 =
oo and Ito’s formula, see [58] for the details. O

Proof of the subsolution property on D,%.

We follow arguments in [52]. Let (to, z0, po) € DZ’m and ¢ € C1%(D3) such that vg(to, o, po)
= ¢(to, zo,po) and ¢ > T on D;%- If % (to, 0, po) < HUk11(to, o, po), then the subsolution
inequality holds trivially. Now, if U (o, z0,po) > Hog+1(to, Zo, po), we argue by contradic-
tion by assuming on the contrary that

0
n = —87(5(250,1‘0,]90)—£<P(t07$0>p0)_f(x0) > 0.

We set pg = (12, el )1§i§k. By continuity of ¢ and its derivatives, there exists some § > 0

1071

with o + & < (£ + mh) A T such that :

|

|

|
D

|
~
\Y

S

5. on ((to—d,to+0) x B(xo, ) x B(po,8)) N D™, (6.5)
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From the definition of T, there exists a sequence (tn, Tn, Pn)n>1 € ((to—9, to+9) x B(xo, d) X
B(po,d)) N D,% such that (t,,zn,pn) — (to,zo,po) and vg(tn, Tn,Pn) — Uk(to,xo,po) as
n — oo. By continuity of ¢ we also have that v, := vg(tn, Zn, pn) — ©(tn, Tn, Pn) converges
to 0 as n — oo. We set p,, = (7, el')1<i<k. From the dynamic programming principle (3.8),
for each n > 1, there exists a control (77,£") € Z;, such that

On

Vg (tns T, Pn) — Zén < E [ f(X¢)ds + v (0n, Xg., , 0n) 1o, <r,
tn

+ Uk‘—l—l(enu X9n7pn U (Tn7 gn))lTnSBn] N (66)

Here X" := X'%0 e choose 0,, = ¥, A (t, +6,), with 9, = inf{s > t,, : X ¢ B(x,, g)},
and (J,,), is a strictly positive sequence such that

On the other hand, from Lemma 6.1, we have

Hoky1(to, zo,po) < HUkt1(to,z0,p0) < Uk(to,zo,p0) < ¢(to,xo,po)-

Hence, since Hvg41 is u.s.c. and ¢ is continuous, the inequality Hvgr1 < ¢ holds in a
neighborhood of (tg, zg, pp), and so for sufficiently large n, we get :

vk+1(9ngn>an(Tnafn))lmé% < (P(Gn7X§Ln7pn)1Tn§9n a.s.

Together with (6.6), this yields :

0

Sp(tnaxmpn) + v — Qén < ]E[

! PO + (00, X5, 12|

tn

By applying It6’s formula to ¢(s, X7, p,) between s = ¢, and s = 6,,, and dividing by &,
we then get :

1 On 0y N |0n—tn
< —E i i X" p, < g . (6.
< 7E| [ (Grrrers)exrpa) < Je[t=t) e)

from (6.5). Now, from the growth linear condition on b, o, Burkholder-Davis-Gundy in-
equality and Gronwall’s lemma, we have the standard estimate : E[sup,c, 1,5, | XD —x,|%]
— 0, so that by Chebichev inequality, P[¢,, < t,,+d,] — 0, as n goes to infinity, and therefore
by definition of 8, :

|7
|
NS

O —tn
On

12E[ ] > P, >t,+,] — 1, as n — oc.

By sending 7 to infinity into (6.7), we obtain the required contradiction : —7 < —24. O
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6.3 Sequential comparison results

In this paragraph, we prove sequential comparison results. It involves some ideas of the
iterative algorithm used to computed the value function numerically in the next chapter.
First, we have to introduce some sets. For £k = 1,...,m, and any n > 1, we denote :

@k(n) = {t(k) = (ti)lgigk €O :t1 >T — nh},
N = inf{n>1 :T —nh <0},

so that Og(n) is strictly included in Ox(n+1) forn =1,...,N —1, and Ox(N) = ©). We
also denote for k = 0, and n > 1, T"(0) = (T'— nh,T] N [0,T] so that T"(0) = (T'—nh,T]
is increasing with n = 1,..., N — 1, and TV (0) = [0, T]. We assumed T —mh > 0 to avoid
trivialities so that N > m. We denote for kK =0,...,(n—m) Am,and n =m,..., N,

Di(n) = {(t,a:,p)EDk :pe@k(n)xEk},

Di(n) = Dy(n)NDi = {(t,:x,p)EDk(n) ;teqr;(k)}, i=1,2,

with the convention that Dg(n) = T"(0) x R%, so that Dy (n) is strictly included in Dy, (n+1)
forn=1,...,N —1, and Dg(N) = Di. We define sequential viscosity solutions as follows.

Definition 6.1. Letn € {m+1,...,N}. We say that a family of locally bounded functions
wg on Dg(n), k=0,...,m(n), is a viscosity supersolution (resp. subsolution) of (4.1)-(4.2)
at step n if :

(i) for allk = 0,...,m(n), (to,To,po) € Di(n), and ¢ € CH3(DL(n)), which realizes a local
minimum of wy — ¢ (resp. mazimum of Wy, — ¢), we have

0
_67;0(1&071'07190)_E(P(tﬂva’pO)_f(xO) > 0 (resp. < 0).

(ii) for all k = 0,...,m(n) — 1, (to,z0,po) € Di(n), and ¢ € CY*(Di(n)), which realizes
a local minimum of wy, — ¢ (resp. maximum of Wy — ¢), we have

. dy
min { — E(toﬁﬂo,po) — Lp(to, xo, po) — f(zo) ,
w (to, T, po) — Supwk+1(t0,xo7po U(to,e))} > 0

eclk

(resp.

. 0
min { — a*f(to,l‘o,po) — Lo(to, xo,p0) — f(z0) ,

W (to, To, po) — SUPwk+1(t07«TO7POU to,e))} < 0).
ecE

We say that a family of locally bounded functions wy on Di(n), k = 0,...,m(n), is a
viscosity solution of (4.1)-(4.2) at step n if it is a viscosity supersolution and subsolution of
(4.1)-(4.2) at step n.

We then prove the following comparison principle at step n.
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Proposition 6.3. Let n € {m +1,...,N}. Let up (resp. wg), k = 0,...,m(n), be a
family of viscosity subsolution (resp. supersolution) of (4.1)-(4.2) at step n satisfying growth

condition (2.9). Suppose also that wy, satisfies (4.3). If u and wy, are such that for all x €
R4

uik(tl + mh,x,p) < %(tl + mhyxvp)’ b= (tiaei)lgigk € @k(n) X Eku k > 1)
ug(T,xz) < wo(T,z).

Then, up < wy on Di(n), k =0,...,m(n).

Remark 6.1. We recall some basic definitions and properties in viscosity solutions theory,
which shall be used in the proof of the above proposition. Consider the general PDE

F(t,z,w, %—T,Dggw,Diw) = 0 on [tg,t1)x O, (6.8)
where ty < t1, and O is an open set in R?. There is an equivalent definition of viscosity
solutions to (6.8) in terms of semi-jets J2 w(t,x) and J? w(t, ) associated respectively
to an upper-semicontinuous (u.s.c.) and lower-semicontinuous (l.s.c.) function w (see [27]
or [38] for the definition of semi-jets) : an u.s.c. (resp. l.s.c.) function w is a viscosity
subsolution (resp. supersolution) to (6.8) if and only if for all (¢,x) € [to,t1) x O,

F(t7$7w(t7$)7r7QaA) < (resp, 2) 07 V(T,q,A) € j2’+ZU(t,l‘) ( resp. j27_w(t7$))'

For n > 0, we say that w" is a viscosity n-strict supersolution to (6.8), if w" is a viscosity
supersolution to

ow"
F(t,x,w",%,wa",Diw”) > 1n, on [ty,t1) xO.

n
7%}”D$wnrD§w")—-n:=0,

in the sense that it is a viscosity supersolution to F'(¢,z, w",
on [to,tl) x O.

As usual when dealing with variational inequalities, we begin the proof of the comparison
principle by showing the existence of viscosity n-strict supersolutions for equation (4.1)-
(4.2).

Lemma 6.2. Letn € {m +1,...,N}. Let wi, k = 0,...,m(n), be a family of viscosity

supersolutions of (4.1)-(4.2) satisfying (4.3). Then, for any n > 0, there exists a family of
viscosity n-strict supersolutions wj of (4.1)-(4.2) such that for k = 0,...,m(n) :

wk(t,a:,p) + 1701|'1"‘2 + nhk,n(ta tl) S wZ(t,l’,p) S /wk(t’ $,p) + 7702(1 + |1E|2) + nhk,n(ta tl)(69)

for all (t,x,p) € Dy, for some positive constants Cy, Cy independent on 1, with

1

- 1_
LT +nh k0

Pt 1) = Lz [T +nh

Moreover, for k = 0,...,m(n) — 1, (t,z,p) € Dx(n), p = (ti, €i)1<i<k with t =t + h, we
have :

wi(t,z,p) > Sggw2+1(t,x,pu(t,e))+n- (6.10)
e
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Proof. For n > 0, consider the functions :

wl(t,z,p) = wi(t,x,p) +nd1Et) + no2(t, x) + nosi(t, tr),
o1e(t) = [(T—t)+ (m—k)],
o(t,r) = %EL(T_t) (1 + |LE|2) )

bar(tt) = 1 L !
SEAH M = kzltl—T+nh =0y T Tk

with L a positive constant to be determined later. It is clear that w) satisfies (6.9) with C;
=1/2 and Cy = T +m + €T /2. Moreover, we easily show that wy + nel . is a viscosity
supersolution to

O(wg +nd1 k)

Ll ndie) = f = (6.11)
. . 091k B : o .
This is derived from the fact that — 9 Lo = 1, and wy, is a viscosity supersolution
0
to —% — Lwg, — f > 0. We now show that ¢ is a supersolution to
02
—— =L > 0. 6.12
N P2 > (6.12)

This is done by calculating this quantity explicitely. Indeed, we have
L
8512(15,95) = =" T+ a?), Lot ) = T (b(a).x + tr (00"()))
Since b and o are of linear growth, we thus obtain :

_9¢a
ot

for some constant C' independent of ¢, z. Therefore, by taking L sufficiently large, we get
the required inequality (6.12). furthermore we have:

03
- <
ot (t7t1) = 0

which shows together with (6.11) that w) is a viscosity supersolution to

L
(ta) = Loa(t,x) > PTDIS(Lt [af?) = CL+ Ja] + [2f) |

——E—Lw!—f > . (6.13)
Moreover, since

%(taxJ)) _Sugwk’-i-l(t’xvpu (t> 6)) > 07
ec

we immediately get

w)l(t, z,p) — sup wl, (tx,pU(te))
&

= wi(t,,p) + NP1 x(t) — Sgg wit1(t, z,pU (L, e)) — nd1p41(t)
e

no1LE(t) — nd1 e (t) > .

Y
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Together with (6.13), this proves the required viscosity n-strict supersolution property for
w)! to (4.1)-(4.2). O

The main step in the proof of Proposition 6.3 consists in the comparison principle for
n-strict supersolutions. Notice from (6.9) that once wy, satisfies a linear growth condition,
then wz satisfies the quadratic growth lower-bound condition :

Ui

CylafP—Co+ ————— <
e T

U)Z(t,x,p), (75793710) € Dk, (614)

for some positive constants Cy, Cs.

Lemma 6.3. Letn € {m+1,...,N} andn > 0. Let uy (resp. wy), k=0,...,(n—m)Am,
be a family of viscosity subsolution (resp. m-strict supersolution) of (4.1)-(4.2) at step n,
with uy satisfying the linear growth condition (2.9) and wy satisfying the quadratic growth
condition (6.14). Suppose that for all x € R,

Ur(t +mh,z,p) < wi(ty +mh,2,p), p=(ti,e)1<i<k € Ok(n) x E¥ k >1,6.15)
ug(T,z) < wo(T,x). (6.16)
wi(tk + bz, m) > supwiq (b + h,z,pU (te + hs€)) + 1, (6.17)

eckE

p = (ti,ei)1<i<k € Or(n) x EX, k <m — 1.

wk(T_mh7x>7T) > SUP W41 (T—mh,x,pU (T_mh7 6)) +n, (618)

eck
for all (T — mh,z,p) € Di(n). (6.19)

Then, u, < wy on Di(n), k =0,...,(n —m) Am.

Proof. From the linear growth of uj, and from the quadratic growth lower-bound of
wy, we have

_ Ui
uk(t,x,p)—%(t,x,p) S Cl <1+‘$|)_CQ ’x‘Q_ 1k>1t1+1k—0t—T+nh,

forall k=0,...,m, (t,z,p) € Dg(n), for some positive constants Cy, Co. Thus, for all k,
the supremum of the u.s.c function u; — wy, is attained on a compact set that only depends
on C; and Csy. Hence, one can find ko € {0,...,(n —m) Am}, (to,zo,po) € Di,(n) such
that :

M = sup [Uik(t,flf,p) _%(thap)]
ke {0,..., m}
(t,@,p) € Dy(n)
= T, (to, 0, po) — Wi, (to, 0, Do), (6.20)

and we have to show that M < 0. We set py = (tz , 61)1§i§k07 and we distinguish the six
possible cases concerning (ko, to, Zo, Po) :

e Case 1 : ko #0, to—t0+mh
o Case 2: kg =0,tg="T.
e Case 8 : ko #0,ty € T}Do(ko).
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o Case } : kg =0,ty € [0,T —mh) orky € {1,...,m—1}, tg € Tgo(k’o), to #tgo—i—h,
to #T—mh

) _ 40
o Case 5: ky e {l,...,m—1}, to = ty, +h.
e Case 6 : kg € {1,...,m—1}, to =T —mh, .

» Cases 1 and 2 : these two cases imply directly from (6.15) (resp. (6.16)) that M < 0.

» Cases 3 and 4 : we focus only on case 4, as case 3 involves similar (and simpler)
arguments. We follow general viscosity solution technique based on the Ishii technique and
work towards a contradiction. To this end, let us consider the following function :

@g(t,t/,x,x/,p,p/) - T%(t,l’,p) _%(tlvxlap/) - w&(tat,vxax,apapl)7
with

1
[[t = tol* + |[p — pol*] + 2z - wol!

DN | =

ve(t,t',z,2',p,p) =
1
too[E= 1P +le =2+ p—pP].

By the positiveness of the function 1., we notice that (to,xo,po) is a strict maximizer of
(t,z,p) — ®.(t,t,z,x,p,p). Hence, by Proposition 3.7 in [27], there exists a sequence of
maximizers (te, ., xc, 2L, pe, pl) of ®. such that :

(tévtév*xE’xéupE’p;) - (t07t07x07x07p07p0)7 (621
Tkg(tax&ps) - %(tfgvxlaap;) - T%(t07x07p0> - %(t()rxo’p())v (622)

1
- ([t —tL” + |ze — 2L* + |p- —p.[*] — 0 as e —0. (6.23)

By applying Theorem 3.2 in [27] to the sequence of maximizers (., ., xc, 2L, pe, pL) of g,
we get the existence of two symmetric matrices A., AL such that :

—2,+___
(7“57 Ge, Ae) cJ U (tea xsape) (6'24)
(rloal, AL) € T wey (¢, 2L, pl), (6.25)
where
A 1
Te = 8: (tsa tfga Le, $;7p€7p;5) = g(ts - t/{;‘) + (ts - tO)» (6'26)
A 1
Ti; = - at,e (teatlaax&x;ap&pé) = g(te - tle) (627)
0 1
qe = alif (té‘: té: Te, x;apapg = g(xs - x/g) + |.’IJ5 - xO‘Q (xé‘ - JJ()) ’ (628)
oY 1
qé - - 8.'1;: (teat,gam.E?x;va?p,g) - g(xé‘ _mlg)a (629)
and
A0 310 — Q (ve —x9) —314
< € € .
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with
Q(z) = 2z®z+ |zl

I, the identity matrix of dimension d x d, and for = (;)1<;<q € R, 2 ®z is the tensorial
product defined by z ® x = (2ix;), ;¢ (1.4y2- Here, to alleviate notations, and since there
is no derivatives with respect to the variable p in the PDE, the semi-jets are defined with
respect to the variables (¢,z), and we omitted the terms corresponding to the derivatives
of 1. with respect to p. We set p. = (£, €5)1<i<k,, and pL = (tf, ;5)1§i§k0. From (6.21),
we deduce that for e small enough, t. € T2 (ko) and t. # tg, T h. From (6.24)-(6.25), and
the formulation of viscosity subsolution of uy, to (4.2) and 7-strict viscosity supersolution

of wy, to (4.2) by means of semi-jets, we have for all € small enough :

min {—ra —b(x:)ge — %tr (UUI(l’a)Ae) — f(ze),

T%(t57$57p5) - Sug uko-i—l (t€7x67p€ U (t{-:a 6))} S 07 (631)
ec
. 1
min { =12~ bt 51n (00" (@) A2) — £ (a2,
wko(t x@pa) Sugwko-i-l(t xa?pa (tfzve))} > n (6'32)
ec

We then distinguish the following two possibilities in (6.31) :

e (i) for all € small enough,

Tko(téﬁ x&vp&) - Sng uko—i—l(tav xa)pa U (tfv 6)) S 0
e

Then, for all € small enough, there exists e. € E such that :

N3

Uy (te, 2o, D) < Tgri(te, Teype U (te, €2)) +
Moreover, by (6.32), we have
Wiy (85,20, p2) = Wiy (8, 22, pL U (B, €c)) + 1.
Combining the two above inequalities, we deduce that for all € small enough,
Uy (te, T2y P2) — Wiy (L, 22, L)
< Wrgrilte, w2 pe U (e, €)= Wiy (th, 7l pL U (thee)) — 5.

Since F is compact, there exists some e € F s.t. e — e up to a subsequence. From
(6.21)-(6.22), and since y,, —wy, are u.s.c., we obtain by sending € to zero :

Up, (o, %0, Po) — Wi, (o, T0, Po)

S uko-i—l(tO)xO?pO U (t07 6)) - wk‘o-‘rl(t(]ax(]vpo U (t(Ja 6)) -

N3

which contradicts (6.20).
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e (ii) for all £ small enough,

—Te — b(:EE)QE - %tr (O'O'/(xz-:)As) - f(ws) < 0

Combining with (6.32), we then get

/ /

n < re—rl+b(z)g — b(xl)ql
+ %tr (00 (2:)Ae — 00" (@) AL) + flae) — f(a). (6.33)

We now analyze the convergence of the r.h.s. of (6.33) as € goes to zero. First, we see
from (6.21) and (6.26)-(6.27) that r. — r. converge to zero. We also immediately see
from the continuity of f and (6.21) that f(xz.)— f(z.) converge to zero. It is also clear
from the Lipschitz property of b, (6.21), (6.23), and (6.28)-(6.29) that b(z.)g. —b(zL)q.
converge to zero. Finally, from (6.30), we have

tr (00’ (z2)Ae — 00’ (zL)AL) < gtr ((o(ze) = o(al))(o(x) — o (L))
— tr (JO”(:L’E)Q(-’IJ@ — .’IJ(])) ;

and the r.h.s. of the above inequality converges to zero from the Lipschitz property
of o, (6.21) and (6.23). Therefore, by sending ¢ to zero into (6.33), we obtain the
required contradiction : n < 0.

» Case 5 and 6 : We only consider the proof of case 5, as case 6 is similar. We keep the
same notations as in the previous case. The crucial difference is that wuy, and wy, may
be sub and supersolution to different equations, depending on the position of t. (resp. t.)
with respect to 7+ h (resp. t;fo + h). Actually, up to a subsequence for ¢, we have three
subcases. If t. > t,io +h and t. > t;fo + h for all € small enough, the proof of the preceding
case applies. If t. < thy T for all € small enough, then we have the viscosity subsolution

v
(resp. supersolution) property of U, (resp. wy,) to the same linear PDE : —a—: —Lu, — f

=0, at (tc, e, pe) (vesp. (I, 2L, pL)), and we conclude as in Case 3. Finally, if t. > 7 +h
and t. < t;fo + h for all ¢ small enough, then the viscosity subsolution property of uy,

to (4.2) at (t.,z.,pe), and the viscosity n-strict supersolution property of wy, to (4.1) at
(tL, aL, pl) lead to :

1
—re = b(at)g: — 5tr (00’ (2D AL) — f(ar) = m (6.34)
and the following two possibilities :
1
—re — b(ze)q: — §tr (JO’I(.%'g)AE) — f(zz) < 0, (6.35)
or

Tm(te; xs;ﬂe) - Sug Uky+1 (t&‘a ZeyPe U <t€7 e)) < 0 (6-36)
ec
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The first possibility (6.34), (6.35) is dealt with by the same arguments as in Case 4 (ii).
The second possibility (6.34), (6.36) does not allow to conclude directly. In fact, we use
the additional condition (6.17) :

Wy (to, 2o, po) > Sug W, +1(to, To, po U (to, €)) + 1. (6.37)
ec

Since wy, is lower semicontinuous, this implies by (6.21) that for all ¢ small enough :
o1 n
%(ts’l‘tﬁps) > %(t()ax()apﬂ) - 5

> sup Wky+1(to, o, po U (to, €)) +
ccE— —

N3

Hence, by combining with (6.36), we deduce that

Tko(téW anpE) - %(t;7 x;apf-:) + g
S Sup uk0+1 (t57 x67p5 U (taa C)) - Sup wk0+1(t07 xOJPU U (t()? 6))7
eck ecE—

for all £ small enough. From (6.22) and Lemma 6.1, we then obtain by sending ¢ to zero :

_ n
Uko (f0, 20, Po) — W (0, Z0, Po) + 5

< sup U, 11(to; o, po U (to,€)) — sup wi,+1(to, o, po U (o, €))
eck ecEE—

< Sug {Uk0+1(t07 x0, po U (to, e)) — wiy+1(to, o, po U (to, 6))} :
ec -

This is in contradiction with (6.20). O

Finally, as usual, the comparison theorem for strict supersolutions implies comparison
for supersolutions.

Proof of Proposition 6.3

For any n > 0, we use Lemma 6.2 to obtain an 7-strict supersolution wj of (4.1)-(4.2),
which satisfies (6.9), so that wy(t,z,p) — w](t, z,p) for all (¢, z,p) € Dy, as n goes to zero.
We then use Lemma 6.3 to deduce that @ < wi" on Dy(n), k =0, ..., (n—m)Am. Thus,
letting n — 0, completes the proof. O

6.4 Boundary data and continuity

In this paragraph, we shall derive by induction the boundary data (4.4)-(4.5) in Proposition
4.2, and the continuity of the value functions as byproducts of viscosity properties and
sequential comparison principles.

We first show relation (4.5), which follows easily from the definition of the value func-
tions.

Lemma 6.4. For all x € R, vy(T~, x) exists and is equal to:

vo(T™,x) = g(x) (6.38)
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Proof. For any (t,x) € (T —mh,T) x R%, we have from the definition of vg, and the
fact that no order can be passed after T' — mh:

vo(t, ) / f Xtmo)derg(X”O)}

Therefore, with the continuity and linear growth assumptions on f and g, we get the result
from the dominated convergence theorem. |

The derivation of relation (4.4) is more delicate. We first state the following result,
which is a direct consequence of the dynamic programming principle.

Lemma 6.5. (i) Fork = 1,...,m, and p = (t;,¢;)1<i<k € O x E¥, we have for all v €
Rd, and t € [tg, (tx + h) A (t1 +mh)) ,

(tg+h)A(t1+mh) 120
Uk(t,$;p) = 1E|:/ f(X > )d‘s_'_vk(tk +h, Xt +ha )1tk+h<t1+mh (639)
t
+ (C(Xtt{i’?m,el) +vp—1(t1 +mh, T'( fﬁ?nh, 1), p—)) 1t1+mh§tk+h]-
(ii)For k = 1,...,m, and p = (t;,¢;)1<i<k € O x E¥, we have for all x € R?, and t €
(T —mh,T) ,
t1+mh 20 20
vp(t,z,p) = E[/ f(Xb )ds+c(th+mh, e1) (6.40)
t

+ kal(tl +mh7F(Xtt a—:i-(r)nhﬂ ) p—) :

(i) For k =1,...,m, and p = (t;,€;)1<i<k € O X E®, such that tj, +h < t; + mh and
ty +h < T —mh, we have for all z € RY, and t € TA(k) = [ty + h,t1 +mh) N[0, T —mh],

t1+mh
wltap) = B[ [ fxee0)ds
t

+ c(Xttfi?nh, e1) + vgp_1(t1 + mh,T( :i?nh, 1), p,)} (6.41)

(t1+mh)AT 00 0
Uk(t,l‘,p) < ( Sl;p IE|:/ f()(svr7 )dS + vk+1(Ta XT’$7 ,pU (Ta 5))1T<t1+mh
T,£)ELt t

+ (C(X:fi?nh’ 61) + ’Uk;_l(tl + mh, F( :i(r)nh’ ) p,)) 1t1+mh§7':| . (6.42)

Proof. First, we recall from the dynamic programming principle that by making an
immediate impulse control, i.e. by taking in (3.8), § = t and 7 = ¢, £ = e arbitrary in E,
we have for all k = 0,...,m —1, p = (t;,€;)1<i<k € Ok X E¥, (t,x) € Tp(k) x R? with ¢ >
ty + h,

vp(t,z,p) > sugvkﬂ(t,x,pu(t,e)). (6.43)
ec

(i) Fix k = 1,...,m, p = (ti, €)1<i<k € O x EF, and (t,z) € T(k) x R%. We distinguish
the two following cases :
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e Case 1: t, +h < t; +mh. Then, for all a € A;,, we have from (2.3), Xe"P* = Xbe0
for t < s <t + h. Hence, by applying (3.4) with § = t; + h, and noting that 7, +mh > 0,
k(0,a) =k, p(0,a) = p for any a = (7,&;) € Ayp, we obtain the required relation (6.39),
i.e.

tr+h
Uk(tv LE,p) = IE|:/ f(XgLO)dS =+ Uk(tk‘ + h7 X:,;ﬁ%,p) .
t

e Case 2: t1+mh < ti+h. Then, for all & € A, we have from (2.3), xbepa _ xta0 g
t < s < t;+mh, and Xfli’;ﬁ; = F(Xfﬁgnm e1). Hence, by applying (3.4) with 6 = t; +mh,
and noting that for any a = (7;,&;) € Ayp, we have either k(0,o) = k — 1, p(6,a) = p—
if 7,41 > t1 + mh (which always arises when t; + mh < ty + h), or k(0,«a) = k, p(0,a)) =

p— U (Tht1,Et1) i 741 = tp + h = t1 + mh, we obtain

t1+mh 0 t2.0

7:E’

v(t,z,p) = Sup E[/ FX2™0)ds + (X e1)
aEALp t

2,0
+ g1 (bt +mh, DX e1), 0 )1 >t 4mh

+ vi(ty +mh, F(Xfl’:i’?nh, e1),p— U (t1 +mh, 1)) Ly =ty +mh=ty 41 | -
Now, from (6.43), if t1 +mh = t+h, we have v (t1 +mh, T(X[%0  e1), p_U(t1+mh, &x41))

< vg—1(t1 + mh, F(Xffi(r)nh’ e1),p—) for all {41 Fiy4mp-measurable valued in E. We then
deduce

t1+mh
vp(t,z,p) = E[/ f(szx»O)ds + C(X:ﬁ’?nh, e1) + vg—1(t1 + mh, I‘(Xttl’i’gnh, el),p_)] ,
t

which is the required relation (6.39). (ii) The proof is analogous to (i), case 1, as if
7, >t —mh, then 7, = 400.

(iii) Fix k = 1,...,m, p = (ti,ei)1<i<k € Of X EF,st. ty +h < t; +mh, and (t,z) €
']I‘z(k) x R, Then, for all & € Ay, we have from (2.3), xbope = xte0 for t < s <t +mh,
and Xflﬁ_fn‘z = F(Xffi?nh, e1). Let a = (73,&;) be some arbitrary element in A;,, and set
T = Tit1, & = &eg1. Observe that with 6 = (t1 + mh) A 7, we have a.s. either k(0,a) =
E+1,p0,a) =pU(r,&)if T <ty +mhor k(f,a) =k —1, p(0,) = p_ if 7 > t; + mh,
or k(0,a) = k, p(0,) = p_ U (1,€) if 7 = t1 + mh. Hence, by applying (3.5) to some o =
(73,&) € App s.t. Ty1 > t1 +mh as. and with 0 = ¢t + mh, we get the inequality (6.41).
Furthermore, from (3.6), for all ¢ > 0, there exists o = (74,&;) € Ay s.t. by setting 7 =
Tit1, € = &kr1, and with 6 = (tl +mh) AT,

(tl—‘rmh)/\T
Uk(tv :Cup) — & S ]E [/ f(X};’x’O)dS + Uk+1(7', Xf—’x’oap U (7—7 5))1T<t1+mh
t

t,2,0 t,,0
+ C(thimh’ 61)1t1+mhgr + vp—1(t1 +mh, F(thimh’ 61)7p*)1t1+mh<T

+ vi(t1 + mh, F(X:;i(r)nh7 e1),p— U (T, §)>1T=t1+mh} :

Now, we have vy (t;+mh, F(X:ﬁ_’gnh, e1), p—U(t1+mh, &)) < vp_1(t1+mbh, F(Xttfj_’gnh, e1),p—)

from (6.43). Since (7,€) € Zy, and € is arbitrary, we deduce the required relation (6.42). O
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Proposition 6.4. For all k = 0,...,m, v is continuous on Dy. Moreover, for all k =
1,....m,p= (tiaei)lgz‘gk € 0 X Ek, x € Rd,

vp((t1 +mh)”,z,p) = c(x,er) +vp_1(t1 + mh,T(x,e1),p-).

Proof. We shall prove by forward induction on n = m,..., N that (Hk)(n), k& =
1,...,m(n), and (HO)(n) hold, where

(Hk)(n) vy is continuous on Dy (n), and for all p = (t;,e;)1<i<k € Ok(n) x EF,
Uk;((tl + mh)_7$7p) = C(LL‘, 61) + Uk—l(tl =+ mh,r(l’, 61),;07), T € Rd'
(HO)(n) v is continuous on Dy(n),

with the convention that (Hk)(n) is empty for n = m.

» Initialization : n = m. We know from proposition 4.1 that vy is a viscosity solution
to (4.1) and (4.2) at step m. From lemma 6.4 we get (T, x) = vo(T, ) = g(x). Together
with the comparison principle at step n = m in Proposition 6.3, we get 75 < vg on Dy(m).
This implies continuity of vy on Dy(m), i.e. (HO)(m) is satisfied.

» Stepn—n+1 : ne{m,..,N—1}. Suppose that (Hk)(n), £ = 1,...,m(n), and
(HO)(n) hold. Let us prove that (Hk)(n+1), £ =1,...,m(n+ 1), and (HO)(n+1) are
satisfied.

e Take some k = 1,...,m(n + 1), and fix some arbitrary € R? and p = (t;,e;)1<i<k €
Or(n 4+ 1) x E¥. Notice that p_ € ©y_1(n) x E*~1 so that vx_1(.,.,p_) is continuous on
T, (k — 1) x R? from step n. Here, to alleviate notations, we used the convention that
T, (k—1) =T™(0) if k — 1 = 0. We distinguish two cases :

* Case 1. For some & > 0, Ta(k) N [t1 + mh — e,t1 + mh) = 0, i.e. t1 +mh <t +h or
T —mh < t1 +mh so that [ty + mh —e,t; +mh) € ’]I’Zl)(k:). From (6.39) and (6.40), we then
have for all ¢t € [t; +mh —e,t1 +mh) :

t1+mh
op(t, ,p) = E[/t FXE0)ds + o(X;50 o en) + vk-1 (b +mh, T(X50 1), 0|

By continuity of vg_1(t1 + mh,.,p_) (proved at step n), I'(.,e1), c(.,e1), growth condition
on f, ¢, I' and v_1, we deduce with the dominated convergence theorem that vg((t1 +
mh)~, z,p) exists and

Uk((tl+mh)_7$7p) - C(:’Uael) +’Uk_1(t1+mh,r(ﬂf7€1),p_)-

* Case 2. To(k) = [ty 4+ h,t1 +mh) # 0, ie. T —mh > t; +mh > t; + h (this implies in
particular that £ < (n +1—m) Am and m > 1). From (6.41)-(6.42), we first prove that
W(tl + mha :U,p)

< max [¢(z, e1) + vg_1(t1 + mh,z,p_),sup Vpp1(t1 + mh,z, p U (t; + mh,e))]6.44)
eclE

Indeed, consider some sequence (t., xc, pe)es0 € Dy converging to (t; + mh,x,p) and such
that lim._.o vg(te, ey pe) = U (t1 + mh, x,p). For any € > 0, one can find, by (6.42), some
(72,&) € Iy, s.t.

(t5+mh) A7
v(te, Te,pe) < E[/t f(X;axe’O)dS + Vg1 (7, X;Z@E’pra U ('f_aés))l?g<tf+mh

£ 670 €y 570
+ (C(Xttifmhﬂ 6?) + kal(t&i— + mh? F(X%fmm 6%),])3_)) 1t§+mh§f'5:| + €,
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where we denote p. = (5, €5)1<i<i and p.— = (&, €5 )a<i<k. By setting

€ 670 € 570
Ge = o(Xiymn ) + o1 (] + mh, DXl ef), pes),

we rewrite the above inequality as

(t5+mh)A7e . 0
Uk(ta,xaapa) < E|:/ f(XSE’%’ )dS + G¢
te
+ (Uk+1(?e,XZ’x5’0,ps U (=, €2)) — Gs) 17°s<t§+mh} +e. (6.45)

Since p_ € O4_1(n) x E*1, we have p._ € Op_1(n) x E*¥~! for ¢ small enough. Hence, by
continuity of vx_; on Di_1(n) (from part 1.), continuity of I' and ¢, and path-continuity of
the flow X2*°, we have

lIimG. = G := c(z,e1) +vk—1(t1 + mh,I'(z,e1),p-) a.s. (6.46)

e—0

~

Moreover, by compactness of F, the sequence (§.). converges, up to a subsequence, to some
¢ valued in E. We deduce that

: A te,xe,0 A f
lim sup (Uk—l—l(Tsa X;-E ‘ , Pe U (Te> fs)) - Gs) 17‘5<t§+mh

e—0

< <’Uk+1(t1 +mh,z,pU(t1 + mh,§)) — G> lim sup 17 <¢< ymn

e—0

< (sup Ug+1(t1 +mh,z,pU (t; +mh,e)) — G) limsup 14 <tz mn - a.s. (6.47)
eckE e—0

From the linear growth condition on f, ¢, I', vip_1, vg41, and estimate (2.8), we may use
dominated convergence theorem and send € to zero in (6.45) to obtain with (6.46)-(6.47) :

Uk (t1 + mh, z, p)

< E[G + (sup Upr1(t1 + mh,z,pU (t1 + mh,e)) — G) lim sup 15, <4< 4
eck e—0

< max [G, Sup vgy1(t1 + mh,z,pU (t; + mh, e))} ,
eckE

which is the required inequality (6.44).
We next show that

SUp Ugt1(t1 +mh,x,pU (t1 + mh,e)) < c(x,e1) +vg—1(t1 + mh,x,p_). (6.48)
eck

Indeed, for any arbitrary e € E, consider some sequence (t., Te, pe, €z )e>0 € Di X E converg-
ing to (t1 + mh, z, p, e) and such that limg_,g vgi1(te, xe, p- U (te, €c)) = Upr1(t1 +mh,x,pU
(t1 +mh,e)). For e small enough, t. +h > t +mh, and so from the DPP (6.39), we have :

t5+mh
taalteep Utee)) = B[ [ FOX0ds 4 (X [0 )
te

+ ot + mh,r(xf§f;2, €5),pe— U (te,€2))|. (6.49)
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Since p_ € O;_1(n) x E¥71, we have p._ € Op_1(n) x E¥! for ¢ small enough. Hence,
by continuity of vy on Dg(n), continuity and growth linear condition of f, I" and ¢, and
path-continuity of the flow Xﬁ’x’o, we send € to zero in (6.49) and get by the dominated
convergence theorem

Teri(ts +mh,z,pU (t1 +mh,e))
= c(z,e1) +vp(t1 + mh,T(z,e1),p— U (t1 + mh,e)). (6.50)

Moreover, from (6.43), we have vg_1(t1 +mh,['(z,e1),p—) > vg(t1 + mh,T'(z,e1), p— U (t1 +
mh,e)) for all e € E. Plugging into (6.50), this proves (6.48).
Finally, we easily see from (6.41) that

vp(ts + mh,z,p) > c(z,e1) +vp—1(t1 +mh,x,p_). (6.51)

Indeed, consider some sequence (t., ze,p:)es0 € Dy converging to (t; + mh,x,p) and such
that lim._o vg(te, ze, pe) = vi(t1 + mh, z,p). From (6.41), we have in particular

t5+mh
Vg(te, Te,pe) > E[/ f(Xéal‘e»U)ds
le

£ 570 €y 570
+ (Xl ) + v (6 + mh, D(X[ET ), pe )|

By continuity and linear growth condition of vx_1, I, ¢, f, and estimate (2.8), we get (6.51)
by the dominated convergence theorem, and sending € to zero in the above inequality.

Hence, the inequalities (6.44)-(6.48)-(6.51) prove that vg((t1 +mh)~, x,p) exists and is
equal to :

vp((tr +mh)”,x,p) = Tg(ti +mh,x,p) = vp(ti +mh,z,p) (6.52)
= c(z,e1) + vg-1(t1 + mh,I'(z,e1),p-).

We have then proved that (6.52) holds for all k = 1,...,m, p = (t;, ;) 1<i<k € Op(n+1)x E¥,
and = € R%.

e We know from Proposition 4.1 that the family of value functions vy, k = 0,...,m(n+ 1),
is a viscosity solution to (4.1)-(4.2), in particular at step n+ 1. We also recall from Lemma
6.4 that 1g(T,x) = vo(T,z) = g(x). Together with (6.52), and the comparison principle at
step n+ 1 in Proposition 6.3, this proves v, < v, on Dy(n+1). This implies the continuity
of vp on Di(n+1), k =0,...,m(n+ 1), and so (Hk)(n+1), £ = 1,...,m(n + 1), and
(HO)(n+1) are stated.

» The proof is completed at step N by recalling that O (N) = O, Dr(N) = Dy, for k =
0,...,m(N)=m. O

6.5 Proof of Theorem 4.1

In view of the results proved in paragraphs 6.2 and 6.4, it remains to prove the uniqueness
result of Theorem 4.1. Let us then consider another family wy, & = 0,...,m of viscosity
solutions to (4.1)-(4.2), satisfying growth condition (2.9), and boundary data (4.4)-(4.5) :
for k=1,...,m,p = (ti,ei)1<i<k € Ok X Ek, T € Rd,

wg((t1 +mh) ", z,p) = c(z,e1) + wi—1(t1 + mh,T'(z,e1),p-). (6.53)
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and
wo(T™,z) = g(x), =eR% (6.54)

We shall prove by forward induction on n = m, ..., N that vy = wg on Dg(n).

» Initialization : n = m. Relations (4.5), (6.54) and Proposition 6.3 at step n = m show
that vg = wp on Dy(m).

» Step n — n + 1. Suppose that vy = wy on Dg(n), k = 0,...,m(n). For any k
> 1, p = (ti,ei)<i<k € Or(n+ 1) x EF, we notice that p_ € O_1(n) x E*~!. Hence
vp_1(t1 +mh,T(z,e1),p_) = wp_1(t1 +mh,T(z,e1),p_), € R% and so from (4.4), (6.53),
we have

ve((t1 +mh)",x,p) = wi((t1 + mh)™,z,p).

We already know that vo(7~,x) = wo(T—,z) (= g(x)). Therefore, from the comparison
principle at step n + 1 in Proposition 6.3, we deduce that uy = wyp on Di(n + 1), k =
0,...,m(n). Finally, the proof is completed since Dy(N) = Dy.



Chapter 5

A numerical algorithm for impulse
control problems with execution
delay

In this chapter we describe a numerical algorithm to solve impulse control problems with
execution delay on finite horizon. In this problem, the family of value functions is char-
acterized by a family of variational inequalities. The main contribution of our work is a
general algorithm which enables to calculate the solutions of this sequence of variational
inequalities in a correct order. Then, we approximate the solution of each equation with a
finite differences scheme. We prove the convergence of this scheme by the method of [10],
in the framework of viscosity solutions. Finally, we give a concrete financial illustration
with several numerical results.

Key words : Impulse control, finite differences, viscosity solutions, execution delay.
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1 Introduction

In this chapter, we describe the numerical procedure for computing solutions of the delay
control problem of the former chapter. It fits in the general framework of impulse control
problems. For an overview of these kind of problems, the reader may refer to [13] and
[56]. The numerical computations of variational inequalities arising in impulse control and
optimal stopping problems have been studied by many authors, for instance in [21],[22] and
[8]. Other authors, like in [44] and [67] studied equations arising from singular control.
These methods can be roughly divided in two kinds. The probabilistic ones involve most
of the time Monte Carlo simulations of backward stochastic differential equations (see [19]
for instance). The analytic ones, which we will use, involve the approximate resolution of
a discretized PDE on the whole domain. More precisely, we will consider finite difference
methods. There are many theoretical frameworks to derive properties such as the conver-
gence rate of a finite difference scheme. The choice of a correct framework mainly depends
of the regularity of the function we try to approximate. In our case, we can not formu-
late any regularity property for the value function of our problem, excepted its continuity.
Therefore, we have to work with the viscosity solutions theory. The reader can refer to
[27] for a general introduction to this concept. The convergence of numerical scheme for
viscosity solution has been proved in a very general way in [10]. The rate of convergence
has been subject to a wide number of studies, see [9] for instance. However, here, we will
only consider the convergence property, leaving its rate to further research. In the former
chapter, keeping the same notations, we proved that the family of value functions of the
delay control problem is the unique viscosity solution of the equation:

FY(t,z,Dvg, D*v;) =0 on D}, k=1,...,m, (1.1)
and:
F2(t,x, Dug, D*v,v341) =0 on Di, k=0,...,m—1, (1.2)
with:
1 2 a?}k
F (tava’Uk’?D Uk‘) = _E(tvxap) _Evk(t7x>p) —f(l'>
0
FQ(t,.’L',DUk,DQUk,Uk+1) = mll’l{ - %(tv'xap) - £Uk(t,l’,p) - f(l') )
Uk(tv x,p) — Sup Uk+1(ta x,pU (tv 6))}
eckE

The value functions satisfy linear growth and the following boundary conditions:
(i) For k =1,...,m, p = (ti,e:)1<i<k € O x E¥ z € RY, v ((t1 + mh)~,z,p) exists and :

ve((t1 +mh)",z,p) = c(z,e1) +ve_1(t1 + mh,T(z,e1),p-). (1.3)
(ii) For all x € R?, vo(T~, x) exists and is equal to :
vo(T™,z) = g(z). (1.4)

The difficulty with this formulation is that there is a mixed dependence between vy and
vg+1- Indeed, to compute the solution vy, of PDE (1.2), we need to know the values of vj41.
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On the other hand, to compute vi 1, we need the values of vy to obtain the boundary
condition (1.3). This work gives a method to handle these dependencies. To this end, we
will use an iterative algorithm described in section 2 that reduces this problem to solving a
sequence of variational inequalities and linear PDEs. Then, we will use classical algorithms
for obstacle problems to solve each of these equations. Indeed, supposing that vgiq is
known, equation (1.2) can be interpreted as an optimal stopping problem. Therefore, one
can use some finite difference method developed for optimal stopping problems, such as the
Howard algorithm for implicit schemes (see [49] for instance). However, a major difference
with respect to the standard case is that the obstacle vi; and the terminal conditions are
endogenous, and is approximated jointly with vg. This is why we can not use standard
theorems to prove convergence directly.

In the rest of this work, we will use the well known condition for finite difference schemes :

Assumption 1.1. (i) o : R? — R™*? gnd b: R? — R? are Lipschitz continuous functions.
(i) The matriz o(x)o™ (x) is strictly diagonally dominant for all x € R,

This work is organized as follows. In section 2, we present the general algorithm to
compute the value functions by solving variational inequalities. In section 3, we present
a discrete scheme one can use to solve variational inequalities of the form (1.1), (1.2). In
section 4, we give some properties of this scheme, and we prove its convergence. In section
5, we introduce an impulse control problem without delay, in order to compare its value
function with the delay problem case. Finally, in section 6, we consider an example of
financial application of delayed control problem for optimal investment, and for the pricing
of a call option with an illiquid underlying. We describe the problem and give some some
numerical results.

2 General algorithm to compute the value function

We first make the following observation: Let us denote by Hg the function defined on
[0, T — mh] x R? by

Hg(t,SC) = supvl(t,x, (t’ 6))
eck

And for t € (T — mh,T], we denote:
T
Ht) = Ef / FXE0)ds + g(X520)]. () € (T — mh, T).
t

0H,
This function Hy clearly satisfies the linear PDE : —a—to —LHy— f=0on (T —mh,T)

together with the terminal condition Ho(T~, z) = g(x) = vo(T~, z). Hence, with (1.1) and
(1.4) for k = 0, this shows that
vo(t,z) = Ho(t,z), (t,z) € (T —mh,T] x R%, (2.1)

Moreover, from the PDE (1.2) for £ = 0, and a standard uniqueness result for the corre-
sponding free-boundary problem, we may also represent vy as the solution to the optimal
stopping problem :

w(t,z) = sup E[Ho(r,X;™0)], (t,z)€[0,T] xR, (2.2)
TE'E,T
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where 7; 1 denotes the set of stopping times 7 valued in [¢,T]. Hence, the value function
vg is completely determined once we can compute vy.

We show how one can compute vg(., ., p) on T, (k) xRéforallpe Oy xEF k=1,...,m
and v on [0, 7] x R%.

For k =1,...,m, and any n > 1, we denote :
@k(n) = {t(k) = (ti)lgigk €O, :t1 >T — nh},
N = inf{n>1 :T —nh <0},

so that ©g(n) is strictly included in O (n+1) forn =1,...,N — 1, and O (N) = ©. We
also denote for k = 0, and n > 1, T"(0) = (T —nh,T] N [0,T] so that T"(0) = (T —nh, T
is increasing with n = 1,..., N — 1, and TV (0) = [0, T]. We assumed T —mh > 0 to avoid
trivialities so that N > m. We denote for k = 0,...,(n —m)Am,and n =m,..., N,

Di(n) = {(t.2.p) €Dy :peOcln) x B},

Di(n)

Di(n) N D}, = {(t,ﬂz,p)EDk(n) ;teT;(k)}, i=1,2,

with the convention that Do(n) = T"(0) x R%, so that Dy (n) is strictly included in Dy (n+1)
form =1,...,N — 1, and Di(N) = Dy. We shall compute vy on Dg(n), k = 0,...,m, by
forward induction on n = m,..., N and backward induction on k.

» Initialization phase : n = m. From (1.4) and (2.1), we know the values of vy on
Do(m) :

T
wita) = B[ [ FO00m0)ds + g(005")].
t

» Stepn — n+1forn e {m,...,N—1}. We denote m(n) = (n—m) Am the maximum
number of pending orders at step n. Suppose we know the values of v on Dg(n), k =
0,...,m(n). In order to determine vy on Di(n + 1), k = 0,...,m(n + 1), it suffices to
compute vg(.,.,p) on Ty(k) x R? for all p € Og(n+1) x E¥, k= 1,...,m(n + 1), and vy
on T"F1(0) x R, We shall argue by backward induction on k = m(n + 1),...,0.

e Let k = m(n+1), and take some arbitrary p = (¢;, €;)1<i<mn+1) € Omm+1)(n+1) X
Em™+1) - Recall that 'H‘%(m(n + 1)) is empty so that Tp(m(n+ 1)) = T}J(m(n +1))
= [tmn+1),t1 +mh). From (1.3) for k = m, we have vy, 41)((t1 +mh)",2,p) =
c(z,e1) + Vmngn)—1(t1 +mh,I(z,e1),p-) for all z € R?, which is known from step n
since either p_ € ©,,(;,41)—1(n) X E™ D=1 when m(n+1) > 1, or t; + mh € T™(0)
when m(n+1)—1 = 0. We then solve v,,(,41)(-, ., p) on Tj(m(n+1)) x R? from (1.1)
for k = m(n + 1), which gives :

t1+mh t 2.0
Umn+1) (L, T,0) = E[/t f(Xg’x’O)ds + C(Xtﬁmh,el)
+ Um(n+1)—1(tl + ’I’)’Lh, F(X:;‘jl?nha el)ap*) .

We have then computed the value of vy, (;,4.1) (-, -, p) on Ty(m(n + 1)) x R,
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e From k+1 — k for k = m(n+ 1) —1,...,1. (This step is empty when m(n + 1)
= 1). Suppose we know the values of vgy1(.,.,p) on T,p(k + 1) x R? for all p €
Ok+1(n + 1) x E¥L. Take now some arbitrary p = (t;, ¢;)1<i<x € Or(n + 1) x EF.
We shall compute vg(., ., p) successively on Tg(k:) x R? (if it is not empty) and then
on T (k) x R?, and we distinguish the two cases :

(i) T2(k) = 0. This means t, +h > t; +mh or t;, +h > T —mh, and so Ty(k) =
T, (k) = [tr,t1 +mh). We then compute v(.,.,p) on Ty (k) x R? as above for k = m :

t1+mh 0 t2.0
X
Uk(ta x,p) = E[/ f()(;’gc7 )ds + C(XtiJ;mha 61)
¢
+ vp—1(t1 + mh, F(Xffi?nh, e1),p-)|,

where the r.h.s. is known from step n since either p_ € ©;_1(n) x E*¥~! when k > 1,
or t; +mh € T™(0) when k — 1 = 0.

(ii) ’]I'%(k) # (. This means t; + h < t; + mh and t; + h < T — mh, so ']I‘Zl)(k:) =
[ti,tr +h) U ([tk,tk +h)N (T - mh,T)) , ']I‘Z(k:) = [tp + h,t1 +mh) N [0,T — mh].
For all (t,z) € ']I‘]%(k) xR9 and e € E, we have p’ = pU (t,e) € Opyq(n+1) x EFFL

and (t,x) € Ty (k+1) x R% Hence, from the induction hypothesis at order k + 1, we
know the value of the function :

Hk,p(tvw) = Supvk-{-l(tal'vp U (t’ 6)), (t,l’) € T?y(k) X Rd'
ecel

We also know from step n the value of the function :
Grp(z) = c(z,e1) +vp_1(t1 +mh,T(z,e1),p-), z€R%

Then, from the PDE (1.2) and the terminal condition (1.3) at k, we compute vg(., ., p)
on 'H‘z(k) x R? as the solution to an optimal stopping problem with obstacle H, k,p and
terminal condition Gy, :

vp(t,x,p) = sup  E[Hy,(T, Xﬁ’x’0)17<tl+mh

T€7-t,t1+mh
0
+ Gk,p(XZfimh)]-T:h—i-mh]a (ta 1") € T?)(k) X Rd'
In particular, by continuity of vy (., ., p) on T, (k), we know the value of lim; ~, p, vi(t, z,p)

= vk (tx + h,p). We then compute vg(., ., p) on Th(k) x R? from (1.1) :

tr+h
w(tap) = B[ [ F0050)ds + e+ b X750
t

We have then computed the value of vi(.,.,p) on T,(k) x RY.

e From £k =1 — k = 0. From the above item, we know the value of vi(.,.,p) on
T,(1) x R? for all p € ©1(n + 1) x E. Hence, we know the value of :

Ho(t,z) = supuwi(t,z,(te)), V(t,z) € T"(0)x R
eck
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From (2.2), we then compute vy on T"*1(0) x R? as an optimal stopping problem
with obstacle Fj.

We have then calculated v(.,.,p) on T,(k) x R? for all p € Ox(n + 1) x E¥ and v
on T"F1(0) x R?, and step n + 1 is stated. Finally, at step n = N, the computation
of the value functions is completed since Dy (N) = Dy, k =0,...,m.

3 The discrete scheme

In this section, we describe the numerical scheme we use for equations (1.1) and (1.2). We
suppose that the scheme can be calculated on the whole space Dy, k = 0, ..., m. We suppose
that the derivatives of the function on R? are calculated with a space step 8, = (61, ..., 6,),
d; being the space step for direction f;, where (f;);—1. 4 is the canonical base of R4, We use
a uniform time step d;. We also need to discretize with respect to p. This variable is of the
form p = (t;, ei)z‘e{l,...,k} with each e; € E. Here we will consider the case E = [emin, €maz]-
We choose a step d;, = d; for the discretization of the times at which the orders are passed,
and a step 0. for the values of these orders. Note that one could use a step dy, = nd; for
some positive integer n, using linear interpolation to obtain the missing values, and the
scheme would work as well. Nevertheless, we choose n = 1 for the sake of simplicity. To
obtain a concise notation, we will write:

5 = (6t) 59}7 6tp7 66)

Now, we need to reduce the problem to a bounded space. This will be done with assumptions
3.2 and 3.3 below. We define the set:

A={z=(x1,...,24) : i € (Timin, Timaz)Vi} .

Intuitively, these assumptions will constrain the process X; to be confined in the space A.
With these assumptions, while still considering the equation on R¢, one can localize the
discrete scheme to a bounded space:

Adr — {z =(z1,...,2q) : i € (Timin — Oz;> Timaz + Ox;)Vi} .

Therefore, considering a given point z € A%, the scheme will involve the following discrete
grid:

Qys, = {JE = (1 +n101,...,24 +ngdq) € A‘SI, (n1,...,nq) € Zd}.

At last, we will discretize the space F, to obtain a computable scheme. To this end, we
introduce the set:

E‘s‘i:{e:e,m'n—l—née e€ B, neN}

3.1 Boundary conditions

In this section, we state the boundary conditions we will use in this framework. We consider
a function W, defined on Dj. First of all, there are the terminal conditions that were
described in the preceding section. The first one is:

Wo(t, ) = g(z) for all (t,z) € [T —d;,T) x R? (3.1)
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Secondly, we must take into account condition (1.3) which gives, for any k = 1,...,m, and
recalling the notations of the former chapter :

\Ili(t,:c,p) = \Ifi_l(tl +mh,I(z,e1),p ) + c(x,e1), (3.2)

for all (z,p) € R? x O, and t € [t; + mh — 0y, t1 + mh).

In practice, if ‘1’271 (t1+mh,T(x,eq1),p”) is not computed, on can use a linear interpolation.
Nevertheless, we will consider that the scheme is calculated on Dy, kK = 0,..., m. Therefore
we will not have this problem. Finally, we suppose that we do not need conditions on the
boundary of €2, 5,. To have good framework, we suppose that:

Assumption 3.2. For allz € RY, if ; < Timin OT Tj > Tjmax for some i € {1...d}, then
(u(x)), =0 and (,u,(:c))” =0 forallje{l...d}.

With this assumption, we do not need to specify any conditions at the boundaries of
A% Finally we need an assumption to be sure that we can reduce the problem to the
domain A%

Assumption 3.3. Any set B C R? such that:
{z = (21,...,24) : i € [Timin, Timaz) Vi } C B
18 stable with respect to I', that is for all e € E:
I'(B,e) C B

3.2 Discretization of the operators

We recall the classical space discretization of linear PDEs with finite difference schemes:

i,sign (1t 1 %]
Lo (t, 2, p, Uy) = +Z“’ )L Z i(UUT(x))i,jax’fc‘I’k
(i.)€{1..d}?

with the first order differential operators:

_ Wt w +0ifi,p) — Wi(t, 2, p)

%,
0y Uy, &
) \Il 7,7
G, = Kt x,p) = Uitz — bifs )
0;
and the second order differences:
bt =0 = 5 (2‘Pk(t z,p) — Vi(t,z + 6 fi,p) — Vi(t,z — 5ifzap))
it = = %5, <2‘1’k(t7$,29) + Ut + 03 fi + 05 f5,p) + Vi(t,x — 8i fi — 05 f5,p)
o 1
ORTNNES 555, <2‘Pk(t,1’7p) + Wt + 0ifi — hjfj,p) + Vi(t, o — 0ifi + 65 f;,p)
i0j

—V(t,x+6;f5,p) — Yi(t,x — 6 fj,p) — Wi(t,x + 6 fi,p) — Vi(t,x — 5ifiup)>'
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3.3 Time discretization: the linear case

For the linear equation (1.1), one can perform discretization in time of F'! using classical
f-scheme as follows:
SL(S((t? xap)7 \Ilk(tv xap)7 \Ijk)
Wy
‘Ilk(tu .T,p) - \I}k<t + 5t7 [L’,p)
ot
<:>\Ilk(t7x7p) _5t0L6(t7x7p7\IJk) - \Ilk(t+5t7$7p)_6t(1_9)L5(t+5t7x7p7 \I]k) = 0.

eLd(t,;U,p, \I/k) - (1 - O)L(S(t + 5t7xapa \Ijk) =0

This leads to a sequence of linear systems on 2,5 . We denote N = card(€;s,). We
suppose we order the elements of €2, 5 , so that:

Qu5, = {2 ie{l...N}}.

In this framework, for fixed p and t, we write:

Uy (t, 2t p)
X = :
Wy (t, 2™, p)
Then the scheme can be written as:
A'X — b0 =0, (3.3)

where X € RV contains the values of Wy (t,z,p) for all z € Q5. The vector b° € RN, and
the N x N squared matrix A° are functions of W (¢ + &, ., p), as described above. We have
the following property of A, which is important for stability and monotonicity issues.
Proposition 3.5. If 6; = &; for all (i,7) € {1...d}, and if (oo™ (x)) is strictly diagonally
dominant for all x, then the matriz A is strictly diagonally dominant.

This leads to the monotonicity and stability properties of the scheme for the case of the
implicit scheme # = 1 that we will consider in the rest of this work.

3.4 The non linear case

Now that we exposed the discrete scheme for the linear equation (1.1), we consider equation
(1.2). We assume that Wy has already been calculated. That equation can be discretized
as follows:

5276((t7 x7p)7 \I/k<t7 x7p)7 \Ilka \I]k+l)

Ot
min { \Ilk(t’ x’p) - ;-Ilk(t ha 5t7x’p) - 0L6(t7(£7p, \Ilk) - (1 - H)L(S(t + 6taxapa \Ilk)7
t
Uitap) — sup {(Una(ta,pU(te)} | =0.
ec ke

It can be written in the following form:

min {A%X — b} =0. (3.4)
ac{0,1}V

the parameter « controls each line of A and b. It acts as follows:
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e When a; = 0, the i-th line and A® and b® are equal to the i-th lines of A and ¢ in
the linear case (3.3).

e When «; = 1, the i-th line and A is equal to the i-th line of the identity matrix, and
b? = SUPeecpse {\I/k+1(ta i, p U (tv 6))}

3.5 Howard algorithm

To solve equation (3.4), we use the Howard algorithm, developed in [46]. It is an iterative
algorithm on the controls «. It can be described as follows:

e Step 1: For some arbitrary chosen ayg, calculate the solution X! of the system:

A X —p* =0

e Step 2n: Calculate the new control o, by:

a, =arg min (A" X" — )
ac{0,1}N

e Step 2n + 1: Calculate the new value X"+ of X by solving the linear system:
A%nt1 xntl _pantr —
and stop the algorithm if X"*! = X". Else proceed to step 2(n + 1).

If the matrix A® is diagonally dominant for all a this algorithm stops after a finite number
of iterations n, see [49] for details. It means that in this case we obtain:

A%n+1 x L pant1 — g%nt1 xT _ pon+1

therefore, with the definition of ay,,11 we obtain:

min (A*X" —b%) =0.
ac{0,1}V

Which is the solution of our problem.

4 Convergence of the discrete scheme

In this section, we will prove the convergence of the solution of the implicit scheme 6 = 1
to the value function. As we deal with viscosity solutions, we will use the method of [10].
This method can be applied with PDE satisfying a strong comparison principle for viscosity
solutions. It states that a stable, monotone and consistent scheme necessarily converges to
the correct solution. In our case, an additional difficulty comes from the terminal conditions
which are not stated in the viscosity sense. They have to be stated as a restriction on the
class of functions on which the comparison principle holds. Therefore, to prove convergence
of the algorithm, we must first prove that the limit of the solutions of the scheme satisfies the
terminal conditions. For the sake of conciseness, we will denote, by a misuse of notations:

F((t,l‘,p),DUk,D2’Uk»,’Uk+1) = 1(t,x7p)€’D,1€F1((t7xap)7DUkaDQUIG)
+1(t,w,p)EDiF2((t7xvp)7kaﬂDzvk7Uk+1)a
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even when vy is not defined. Remark that in that case, (t,z,p) € D,ﬁ, hence there is no
ambiguity. We will also denote, the same way:

Sé((tv xap)v \Ijka \Ijk(ta xvp)a \I/kJrl) = 1(15737,;;)61),165175((757 $7p)7 \Ilkw \Ilk‘(tv xap))
+1(t,$,p)€Dz5276((t7 xvp)7 \Ij]w \Pk(t7 $7P)7 \I/k+1)~

Finally, we say that a family of functions Wy, k = 0,...,m is a supersolution (resp subso-
lution) of the discrete equation:
Sé((tamap)a‘l}ka‘ljk(tvxap)v\Ilk-‘rl) =0 (41)

on aset A, if S((t, x,p), Ui, Ur(t, z,p), Uii1) is positive (resp negative) for all (¢, z,p) € A.
Let us start with the classical properties of the scheme. First, we state the monotonicity
property.
Proposition 4.6. (i) The implicit scheme is monotone in the sense of [10].
(ii) Furthermore, for any families of functions \Il,lg < \I/i, k=0,...,m defined on Dy, the
solutions X' and X? of the scheme at step (t,.,p), starting respectively with VL(t+&,.,p)
and supee gse Wiy (t, ., pU(t,e)) for X and Wi (t+6;, ., p) and sup.cgs. V7, (t,.,pU(t,€))
for X2 are such that:

X' < Xx?
where the inequality is to be taken component by component.
(i1i) Finally, let 0 be a given discretization. If the family of functions \1111’5, k € {0.m}
is a subsolution of the scheme and \11%5 s a supersolution of the scheme on Dy such that
\Il(l]’g(T, )< \I’g’a(T, .) on the boundary t =T of the domain, then:

U <0 on Dy, k€ {0.m}

Proof. (i) The monotonicity in the sense of [10] is directly given by the definition of b* and
the fact that A% is diagonally dominant for all a.

(ii) This can be proved using the fact that the matrix A% is strictly diagonally dominant
for all a. As X! is the solution of:

min (A°X! — b (¥})) =0,
ac{0,1}N

denoting o' as the minimizing quantity above, we get:
0 = A%X'—p (0
< A X b (B2,
that is:
AT (X2 = X1 > 6 (B2) - b (W) > 0,

as W2 > W! and the fact that b involves positive coefficients of W. Therefore, as A s
strictly diagonally dominant we get X2 > X1

(iii) From the fact that A® is strictly diagonally dominant, we get that at a given step
(t,.,p), a supersolution of (4.1) is always superior to a subsolution. Combining this result
with (ii), we get that a supersolution of the scheme is superior to a subsolution on the
whole domain Dy,. ]
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Now, we state the stability property:

Proposition 4.7. If g, f and ¢ are bounded by constants Cy, Crand Cy, then there exists
a constant C' such that the solution \I/i k=0,...,m of the scheme is bounded by C' for all
d, i.e. H\IfiHoo < C forall§.

Proof. Remark that ¢y (¢, x,p) =Co+Ch [T;tﬂ—l—Cg(T—t), with ¢y (t, z, p) =Co+C1 {%1 +Co(T—
t) is a supersolution of the scheme and of the boundary conditions for any §. Therefore,
with proposition 4.6, (i) and (iii), we have Wi (¢, z,p) < Co + C4 {T,_ltq + Cy(T — t) on
Dy, for all k € 0,...,m any any step . We also get the lower bound by considering
—Co—Cy [54]—Co(T —t) as a subsolution of the scheme. O

At last, we consistency is stated by the following property, in the sense on [10].

Proposition 4.8. For all families of functions (¢o,...,¢m) € C°(Do) % ... x C°(Dp,),
for all (t,x,p) € Dy, k=0,...,m:

S6((t/7 fL'/,p,), ¢k(t,7 x,)p,)7 ¢k) ¢k+1)
Ot

limsup S F*(t,l',p, D2¢kaD¢k7¢k+l)
6—0
t'a',p —tx,p

§—0
lim inf S(S((t,,-’E,,p/),¢k(t/,$/,p/),¢k,¢k+1)
0—0 Ot

t'a',p —ta,p
£§—0

> F*(twrupu D2¢k7 D¢k7 ¢k+1)

Proof. This can be done considering Taylor expansions of W. We will not expose the
demonstration here, as it is a classical result. One can refer, for instance to [22] or [21] for
such kind of impulse control problems. O

Now, we prove that the limit of the solutions of the scheme when § — 0 converge to
the value function. For any 4, let the family of functions \I/i defined on Dy, for kK =0,...m,
be the solution of the scheme satisfying the terminal conditions (1.3) and (1.4). We denote
W, and Wy, the upper and lower limit of \I/i over all sequences § — 0:

Wy(t,z,p) = lim sup \Ifi(t’, 2, p)
0—0
(t',2',p") — (t,2,p)
Wi(t,z,p) = lim inf \Ili(t', 2 p)
0—0

(t',2',p') — (t,2,p)

Theorem 4.1. Let assumptions 1.1 and 3.2 hold and 6 = 1. Then the solution of the
implicit scheme satisfies:
(i) For all x € R?, the limit Wo(T~, ) exists as:

Uo(T,x) = Wo(T,z) = g(x).
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(i) Fork = 1,...,m, p = (t;,e;)1<i<k € O x E¥, x € R%:
Uty +mh, z,p) = Ug(t1 +mh,z,p) = vg_1(t1 +mh,T(z,e1),p”) + c(z, e1).
(iii) For allk = 0,...,m —1, and (t,z,p) ED,% such that t =ty +h ort =T — mh:

%(tvxazﬁ > Sug l:[]k+1<t7x7pu (ta 6))
ec

(iv) The solution of the scheme converges locally uniformly on Dy, k =0,...,m:

‘Ilk(tvxap) = %(t,l‘,p) = ’Uk(t,l‘,p),
for all (t,x,p) € Dy.

Proof. This proof is not meant to be exhaustive. In particular, we will not prove conver-
gence for the discrete schemes of linear equations, and obstacle problems with an exogenous
given obstacle. For the proof in these cases, one can refer to [8].

First, we prove (i). As WJ is the solution of the linear scheme S on (T —mh, T) x R, it is
well known (see [8] for instance), that the solution of this scheme converges to the solution
vg of the equation F((¢,z), Dvg, D?vg) = 0 locally uniformly on (7' — mh,T] x R? as the
terminal condition g is continuous. Therefore (i) holds by continuity of vg. As a byproduct,
we also obtained that (iv) holds for ¥g on (T — mh, T] x RZ

To prove the rest of the theorem, we use a recursion on the the sets Dg(n) introduced in
section 2. We prove by forward induction on n = m, ..., N, and by backward induction on
k from m(n) = (n —m) Am to 0 that (H)(n,k) holds, where:

(H) (n,k) Statements (ii), (iii) and (iv) hold fold all (¢, z,p) € Dy (n), for k' = m(n), ..., k.
We know from the previous paragraph to that (H)(m,0) holds. Thus the induction is
initialized. Now, let us describe the induction procedure:

e Assume that (H)(n-1,k) holds for all £ =0,...,m(n — 1). To begin, we prove that
(H)(n,m(n)) holds. As D,,,)(n) = D}n(n) (n), we know that for each 0, the function
\Ilfn(n) is a solution of the linear scheme S'?. The terminal condition of the scheme is
given by (1.3) and involves \ijn(n)—l on Dy, (py—1(n — 1). But by induction hypothesis
(H)(n-1,m(n-1)), we know that \I’fn(n)_l converges locally uniformly to v,(,)—; on
Dy (n)—1(n—1). That is to say, it converges uniformly on every compact. In particular,
for any 0 < n < h, the set:

D

m(n)il(n —-1)= {(t,x,p) € Dyyny—1 st-x €A, t1 2T —nh+ 77}

is a compact set. Therefore, for any € > 0, n > 0, there exists C. such that for all
6]l < C2

Um(n)—1 — € < ‘I’il(n)ﬂ < Up(ny—1 + € o0 Dy 1 (n — 1).
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With proposition 4.7, ¥° -1 is bounded independently of 6 and (¢, z, p) on Dy, ()1 (n—

m(n
1)/D"p(ny—1(n—1). Therefore, as we have a stable, monotone and consistent scheme
for a linear equation, we get that:

() (t1 +mh,x,p) — e <wvp1(t +mh,T(z,e1),p”) +c(z,e1) < Wy (1 +mh,z,p) + ¢,

on ﬁ"m(n) (n) for all . This result is trivial on Dy, ,)(n) /1521(”) (n) as the equation
is degenerated due to assumption 3.2. Therefore, letting ¢ — 0 and n — 0 gives (ii)
on D,ny(n). Then we can use the procedure in [10] together with the comparison
theorem of proposition 6.3 of the former chapter and propositions 4.6, 4.7 and 4.8 to
prove (iv) on D,,(,y(n). Thus, (H)(n,m(n)) holds.

e Now, assume that (H)(n-1,k) hold for all k = 0,...,m(n—1), and that (H)(n,k+1)
holds. We prove that (H)(n,k) holds. First, we prove that (ii) is verified on Dy(n).
For any discretization step 0 consider the solution ¢i of the linear scheme S on
Dy (n), starting with terminal condition (3.2):

¢6(t7x7p) - \Ijifl(tl + mha F(JJ, el)ap_) + C(.’L’, €1)7

for all (x,p) € R? x Ox(n), and t € [t; +mh — &, t1 +mh). We get, as in the previous
step, that the lower limit of ¢° is such that:

Or(ty +mh,x,p) > vp_1(t1 + mh,[(z,e1),p ) +c(z,e1).

Therefore, is qﬁi is a subsolution of the scheme S, we get by proposition 4.6, (iii) that
¢ < W2 on Dy, for all k, d, therefore:

\I’k(tl + mh,x,p) > Uk—l(tl + mh)r(xvel)’pi) + C(x7€1))

for all (z,p) € R x O (n).

To prove the converse inequality, we use (H)(n,k41). We suppose that (¢, z,p) is in
D,%, otherwise one can proceed as for the former inequality. As \I/g 41 converges locally
uniformly to vg41 on Dgiq(n) by H(n,k+1) , we get that for any £ > 0,7 > 0 there
exist C! such that for all ||§]| < CL:

V)1 < Up(ny—1 +€ on DY (n). (4.2)
Now, we denote, for (t,z,p) € D3 (k + 1):

ﬁk(u :U7p) = Sup’l)k+1(t, x,pU (t7 6))
eckE

As vgy1 is continuous and the maximum is taken over the compact set E, vy is
continuous on Di’"(k). Therefore, with (4.2) we get, as a classical result for obstacle
problem that:

\Ijk(tl + mh,:ﬁ,p) < max ( Uk:—l(tl + mh,F(x,el),p*) + C(x,el), (43)

Up((t; +mh)™,z,p) + E).
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But with condition (1.3), we know that:

U ((ty +mh)”,x,p) =supvg(t,T(z,e1),p” U(t,e)) + c(z,er)
ecE

and with the dynamic programming principle of corollary 3.1 in the former chapter
we have:

vg—1(t, T'(z,e1),p7) > vp(t,I(z,e1),p” U(t,e)),

for all e € E. Therefore, letting ¢ — 0 and 7 — 0 in (4.3) gives the result. Thus we
proved (ii) on 25,%’0 (n). As before, the proof on D? (n)/f)i’o(n) is easier as the equation
is degenerated.

It remains to prove (iii). First, consider some (¢, z,p) € Di(n) such that t = t;+h. As,
by an elementary property of the scheme S%9 we have \Ili (t,z,p) > \I/i_H (t,xz,pU(t,e))
for all e € E%. Remember that, by (H)(n,k+1), we have that W9 ., — vy
uniformly on ﬁﬂ(k + 1), for all » > 0 and that vg4q is uniformly continuous on
this set. Thus, from the fact that F is a compact set, we get that for all € > 0 there
exists C. such that if [|6][, ,, < Ce:

\Iji(tw’E’p) > Sugvk—i-l(t)xvp U (t’ 6)) — €
ec

for all (t,z,p) € D" (k). Combining this fact with the properties of the linear scheme
St satisfied by Wy, on Di(n) for t <t + k, and letting € — 0, we get that:

%(taxap) > sup Uk+1(t7$,p U (ta 6)) > sup \Ijk-‘rl(tvl‘ap U (ta 6))
eclk eck

for all (¢,z,p) € f)i’” (n) such that t = t;+h. Once again, the proof on Di(n)/Déka(n)
is simpler.

At last, the proof of (iii) for t = T'— mh is based on the fact that ¥§ satisfies a linear
equation for t > T — mh, thus converges to vy, that \Ili 41 converges to v due to
hypothesis (H)(n,k+1), and that the value function is itself continuous and such
that:

vi(T — mh, @, p) > supvy(T — mh,z,pU (T — mh,c))
ecE

on all (T —mh,z,p) € D3.

Finally, to prove the convergence of the algorithm on Dy (n), we use the method of [10].
Then convergence follows from the monotonicity, stability and consistence properties
of propositions 4.6, 4.7 and 4.8. To apply the comparison principle of proposition
6.3 in the former chapter, we use the fact that properties (ii) and (iii) satisfied on
Dj(n—1) for all k=0,...,m(n—1) and on D;.(n) for all k=k,...,m(n). Then (iv)
is proved on D (n), and (H)(n,k) is satisfied.

O]
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5 Impulse control problem without delay

The major practical issue of the numerical procedure is the dimension of the problem.
Indeed, the dimension of the state space Dy, is 1 +d + m(1 4+ dim(E)). This dimension
grows linearly with m, which is therefore a critical parameter. Thus, in the practical
problem considered on the following, we will only deal with m = 1 in order to obtain
reasonable computational time. On the other hand, we try to estimate the consequences of
execution delay only, and not the consequences of discrete control. As the minimum time
between to order can be written as h = %, the discrete behavior of the control cannot be
neglected with respect to the delay.
To circumvent this difficulty, and to avoid taking high values of m, we also consider the same
optimization problem with discrete control but without execution delay. In this problem,
the process X follows the same diffusion, but this time, the actions of the agent, decided
at any stopping time 7; take effect immediately:

X, = F(XTi_,&).
Therefore, for a given control v € A, the controlled process X is defined as the solution
of the s.d.e:

S S
X* = X +/ b(X;j‘)dqu/ o(X$)dW, + Z (F(Xg’;_,,gi) — XG-)-
0 0 ri<s i
the set of admissible controls is written as:

A = {a = (Ti,&)izl 17 is a s.t., & is ]:Tiadapted, Ti4l — Ti = h}

And the objective is to maximize the expectation:

E[/OT f(Xodt + g(X7) + ) C(XT;,&)]-

TZST

This kind of problem has been studied in [13] and more recently in [56]. The reader can
refer to these works for some ideas on the proofs of the following results. Here, we just
state some results without demonstration.

We define u as the value function of the problem. It can be written as a function of time
t, of the variable x = X;, and of the time ¢; when the last order was passed. This function
is defined on the following set:

D = {(t,2,t2) € [0,T] x [0, +00)* x [0,T] | 1 <t}
We divide it into two subsets:

Dt = {(t,x,tl) eD|t—t <h}

D = {(t,x,tl) eD|t—t zh}

In this case, classical dynamic programming argument leads to the proof that u is a viscosity
solution of the equation:
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ou

—a(t,:z:,tl) — Lu(t,x, t1) — f(z) =0 (5.1)

on D!, and of the equation:

min{ —%(t,x,tl) ~ Lult, ) — f() (5.2)
Jut, z,t1) — Supecp {u(t, [(x,e),t) + c(z, e)}} =0 (5.3)

on D2
In numerous cases the terminal condition for the value function is of the form:

u(T™,z,ty) = 1t1>T—hg($) + 1 <r—p max {g(m)aigg {g(I‘(x, e)) + c(z, 6)}}

But here, with assumption 2.7 in the former chapter, we can prove easily that its is not
optimal to pass an impulsion at time 7', therefore the boundary condition reduces to:

w(T™,x,t1) = g(x) (5.4)

6 Optimal investment and indifference pricing problems

6.1 Problem formulation

Here, we restate the financial example of the former chapter, and we slightly modify it
for our numerical purpose. In the following, we will consider the delayed impulse control
problem, but the problem of discrete hedging without delay of section 5 can be recovered
by taking m = 0 in this description. We consider a two-asset, one factor market model
consisting a cash account and a risky asset. We take the cash account as a numeraire, and
we assume that the price of the risky asset follows a Black Scholes model:

dSt = St (,udt + O'th)

We denote by Y; the number of shares in the stock, and by Z; the amount of money (cash
holdings) held by the investor at time ¢. We assume that the investor can only trade
discretely, and his orders are executed with delay. This is modeled through an impulse
control a = (7,&;)i>1 € A, where 7; are the decision times, and &; are the numbers of stock
the agent decides to possess at 7;, but that he will have at times 7; + mh. Therefore, the
agent will buy & — Y7, 4 shares at time 7; +mh if & > Y, 1, and will sell Y 0 — &
shares if Y7, 1 pn < &. The dynamics of Y are then given by

Y; = Yo+ Z (51 - Yv(Tierh)f)v
Ti+mh<t

which means that discrete trading AY; := &; — Y;- occur at times s = 7; + mh, i > 1. We
assume that there are fixed minimal and a maximal number of shares that the agent can
hold, that is:

Y e [yminyymax] and gz S [ymina ymax] (61)
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In absence of trading, the discounted cash holdings Z is constant. When a discrete trading
AY; occurs, this results in a variation of cash holdings by AZ; := Z;, — Z,- = —(AY})S,
from the self-financing condition. In other words, the dynamics of Z are given by

Zy = Zo— Y (&= Yirmn-)-Srtmh-
Ti+mh<t

The wealth process is equal to L(S, Yy, Z;) = Z;+Y.S;. This financial example corresponds
to the general model with X = (S,Y,Z), b= (0r)’, o = (y00), and
s
[(s,y,z,e) = e
z2+(y—e)s
Note that one could introduce fixed and proportional transaction costs by modifying T,
and that assumption 2.7 of the former chapter would still be satisfied. It remains to fix
the objective of the financial agent, it is given by the utility of the liquidative value of his

portfolio at time 7. In the case of indifference pricing, the agent has sold a number x of
options which pay H(S7) at maturity. Therefore, the objective of the agent is to maximize:

Vo(z,s,y,k) = SuElE [U(ZT +YrSr — /@H(ST))}
ac

If k = 0, this is an optimal investment problem. The utility indifference ask price 7, (%, 2)
is the price at which the investor is indifferent (in the sense that her expected utility is
unchanged under optimal trading) between paying nothing and not having the claim, and
receiving 7, (k, z) now to deliver x units of claim at time 7. It is then defined as the solution
of

Vo(z 4+ ma(k,2), k) = Vy(z,0).

6.2 Considering exponential utility
In the numerical computations we performed, we chose the exponential utility:
U(z) = —e 7"
This utility has the nice property that U(z + 2’) = e=7#'U(z). This immediately leads to:
Volz,s,y,k) = e 7*Vp(0,s,9,K). (6.2)

The drawback is that this utility function does not follow the linear growth property for
large losses. Nevertheless, one can circumvent this difficulty by considering a bounded
Black Scholes model. We make the following assumption:

Assumption 6.4. The spot price S is stopped as soon as it reaches a given barrier Smaq -

This can be interpreted as the fulfillment of assumption 3.2. But, as pointed out by [8]
this corresponds also, in the numerical scheme, to a Dirichlet condition at the boundary
S = Smaz- This condition can be derived as:

v(t, 2, Smaz, Yy ) = —€xp (2 + YSmaz — KH (Smaz)) -
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Furthermore, the portfolio constraint (6.1) involves that, due to the discrete hedging, the
liquidative value of the agent portfolio is bounded from below by:

T
ZT + YTST Z Z— (ymax - ymin)smamﬁ- (63)

The fact that the payoff H of the option is continuous, it admits a maximum My on
[0, Smaz] Thus, one could consider the terminal condition:

U(z) = —exp (—’y(x V (=My = (Ymaz — ymin)£maz£)> :

With relation (6.3), we get that the value function of the problem with terminal condition
U and U are the same, along the path (Z;, Sy, Y:) of the portfolio of the agent, starting
from z = 0 at time ¢ = 0. Thus, we can still use relation (6.2). Meanwhile, U is bounded,
which means that we are in the framework of the former chapter. We obtain the following
expression for boundary condition:

vk((tl + mh)_a (57 Y, 0),])) = 6_7((y_81)8)vk—1(t1 + mha (Sa €1, 0)7p7)
Therefore, we obtain a framework in which we can omit the variable z in the numerical
discretization, considering only the case z = 0.

6.3 Numerical results

Here, we implemented the algorithm in the case m = 1. We chose to study two different
problems: the optimal investment problem and the indifference price for a call option. We
will see that the results are strongly dependent of the initial condition, in particular to the
initial number of shares Yy held by the agent at time t = 0. As we will use the exponential
utility described above, we can consider that the agent starts with initial wealth Zy = 0.
We have to compute the value of the following functions:

UO(t7 (87 y)) and ’U1(t, (57 y)7 (t17 61))
for the delay control problem, and the function:
U(t, (57 y)) tl)

for the impulse control problem without delay.

Optimal investment problem

Here, we compare the delay controlled problem with two other ones: the classical Merton
problem, and the impulse control problem of section 5. We suppose the following set of
parameters:

n = 6%7 0 = 10%7 Smaz = 2, s0 =1, v =20, Ymin = 0, Ymaz = 1.

We have m = 1, and we choose a delay and a minimum lag between to intervention of two
month, that is h = %. We use an explicit scheme (that is 6 = 0). The space discretization
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for s is done with a step d; = 0.015, the time step is 0.001. Changing the maturity T of
the problem, we obtain the values given in table 5.1 and plotted on figure 5.1 for vg and u
with (¢, (s,y)) = (0, (1,0)).

Note that these numerical computations are made in reasonable time, that is approximately
30 seconds for a one year maturity.

To understand the behavior of the value function better, we now consider the supremum
of the value functions vg and u over all possible initial number of shares y. Of course, we
compensate the price of these shares with the initial wealth z. That is, we calculate, for
the delay control problem

sup  {exp(vyso)vo(0, (s0,y))}
ye[yminaymax}

and for the non delayed case:

sup  {exp(vyso)u(0, (so0,y), —h)}.
YE([Ymin Ymac]
This will help to separate the loss utility due to the delay during the problem from the loss of
utility due to suboptimal initial portfolio (that is the loss of utility due to the non exposure
to the risky asset during the two first month in the delayed case). The loss of utility due
to the discrete or delayed investment is plotted on figure 5.2 for various maturities. These
results are given in table 5.2.

We see that most of the loss of utility was mainly due to suboptimal initial conditions.
This is not surprising, knowing that the optimal strategy in the Merton case is to maintain
a constant amount of money invested in the risky asset. This is not very far from the case
when the agent does not pass any order, which implies a constant investment in the asset
in terms of number of shares.

Indifference pricing problem

Now, we consider the problem of indifference pricing. In this problem, we use the following
set of parameters:

=0, 0= 10%7 Smaz = 2, 80 = 1, ¥ = 20, Ymin = 0, Ymaz = 1.

We consider a call option of strike K = 1 and we compute the indifference selling price of
one unit of this option, that is kK = 1. Notice that we took p = 0, so that the investment
problem gets degenerated for k = 0, that is vg(0, (sp,0)) = —1. We use the same discretiza-
tion as before. First, we compute the indifference price of a 3 years call option, for yg = 0,
for various delays. We obtain the prices of table 5.3, plotted on of figure 5.3.

Now, as in the previous example, we compute the value function with the best initial
endowment y. This is important, as in practice, a bank would sell an at the money forward
starting call. This means that, after the option is sold, the strike of the call option would be
determined later at some striking date, the strike depending of the price of the underlying.
This is in order for the bank to have purchased the correct amount of shares of underlying
at the striking date. We the results on figure 5.4. We see that a large part of the difference
between the Black Scholes price and the price with delay has disappeared, but that the
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maturity | Continuous discrete delayed relative loss of utility | relative loss of utility
investment | investment | investment | due discrete invest due to delay
0.3 -0.951 -0.952 -0.977 0.01% 2.74%
0.5 -0.920 -0.920 -0.944 0.02% 2.68%
0.75 -0.883 -0.883 -0.906 0.04% 2.73%
1 -0.847 -0.847 -0.869 0.05% 2.70%
1.5 -0.779 -0.779 -0.800 0.07% 2,711%
2 -0.717 -0.717 -0.737 0.10% 2,83%
2.5 -0.659 -0.660 -0.677 0.12% 2,73%
3 -0.607 -0.608 -0.624 0.15% 2,87%
4 -0.514 -0.515 -0.529 0.20% 2,88%
5 -0.435 -0.436 -0.448 0.25% 2,90%

Table 5.1: delayed and discrete investment problem with no initial endowment

maturity | Continuous discrete delayed relative loss of utility | relative loss of utility
investment | investment | investment | due discrete invest due to delay
0.3 -0.951 -0.951 -0.952 0.002% -0.018%
0.5 -0.920 -0.920 -0.920 0.004% -0.032%
0.75 -0.883 -0.883 -0.883 0.006% -0.049%
1 -0.847 -0.847 -0.847 0.008% -0.066%
1.5 -0.779 -0.779 -0.780 0.012% -0.102%
2 -0.717 -0.717 -0.718 0.017% -0.137%
2.5 -0.659 -0.660 -0.661 0.021% -0.173%
3 -0.607 -0.607 -0.608 0.026% -0.208%
4 -0.514 -0.514 -0.515 0.034% -0.280%
5 -0.435 -0.436 -0.437 0.042% -0.349%

Table 5.2: delayed and discrete investment problem with optimal initial endowment

effect of delay is still non negligible, contrarily to the previous example.
Finally, we perform the same calculations, taking a constant delay of 2 months, and con-
sidering various maturities, with the best initial endowment, it leads to the results of figure
6.3, and table 5.4.
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Figure 5.1: Expected utility for the Merton problem, the Discrete problem and the Delay
problem with no initial endowment (above), and difference w.r.t. the Merton case (below)
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Figure 5.2: Difference w.r.t. the Merton case (below) for discrete and delayed investment
problem with optimal initial endowment in risky asset.

delay | BS price discrete delayed discrete hedging | delayed hedging
(years) hedging y = 0 | hedging y = 0 optimal y optimal y
0.01 6.90% 6.94% 6.94% 6.85% 6.86%
0.025 6.90% 6.94% 7.03% 6.87% 6.91%
0.05 6.90% 6.97% 7.19% 6.89% 6.97%
0.075 6.90% 6.99% 7.34% 6.92% 7.05%
0.1 6.90% 7.03% 7.48% 6.94% 7.11%
0.15 6.90% 7.08% 7.79% 6.98% 7.23%
0.2 6.90% 7.16% 8.16% 7.03% 7.35%
0.3 6.90% 7.26% 8.75% 7.11% 7.59%
0.4 6.90% 7.42% 9.58% 7.19% 7.81%
0.5 6.90% 7.53% 10.32% 7.27% 8.02%
0.6 6.90% 7.66% 10.98% 7.35% 8.22%
0.7 6.90% 7.80% 11.84% 7.42% 8.41%
0.8 6.90% 7.93% 12.86% 7.49% 8.58%
0.9 6.90% 8.12% 13.97% 7.56% 8.75%
1 6.90% 8.48% 15.60% 7.62% 8.90%
1.5 6.90% 8.97% 23.49% 7.89% 9.47%

Table 5.3: indifference price for different values of h, in percentage of the initial spot price
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Figure 5.3: Indifference price for discrete and delayed hedging for various h and a 3 years
ATM call option, with no initial endowment.
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Figure 5.4: Indifference price for discrete and delayed hedging for a 3 years ATM call option,
with optimal initial endowment in risky asset.
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Figure 5.5: Indifference price for discrete and delayed hedging for h=2 month, with optimal
endowment in risky asset (above) and difference w.r.t. the BS price (below).
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maturite | BS price | discrete | difference | delayed | difference
(years) hedging | w.r.t. BS | hedging | w.r.t. BS
0.3 2.18% 2.25% 0.06% 2.40% 0.21%
0.5 2.82% 2.90% 0.08% 3.11% 0.29%
0.75 3.45% 3.55% 0.09% 3.78% 0.32%
1 3.99% 4.09% 0.10% 4.33% 0.34%
1.5 4.88% 4.99% 0.10% 5.25% 0.37%
2 5.64% 5.74% 0.10% 6.01% 0.38%
2.5 6.30% 6.40% 0.10% 6.68% 0.38%
3 6.90% 7.00% 0.10% 7.28% 0.38%
4 7.97% 8.06% 0.10% 8.35% 0.38%
5 8.90% 8.99% 0.10% 9.29% 0.38%

Table 5.4: indifference price for different maturities, constant h = 2 month, with optimal
initial endowment in risky assets.
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RESUME : Nous étudions quelques applications du controle stochastique & la couverture
d’options en présence d’illiquidité. Dans la premiere partie, nous nous intéressons a un
probleme de surcouverture d’option dans un modele a volatilité stochastique. L’originalité
provient du fait que P'actif servant a couvrir la volatilité n’est pas liquide et que 'agent
devra donc opérer un montant total fini de transactions. La deuxiéme partie concerne
la couverture d’option en présence de volatilité incertaine dont la dynamique n’est pas
spécifiée. Nous introduisons un critére permettant d’obtenir des prix d’options non triviaux,
en autorisant ’agent a perdre de 'argent pour des réalisations de la volatilité qu’il juge
peu probables. Enfin dans une troisieme partie nous étudions un probleme de controle
impulsionnel pour lequel les controles prennent effet avec retard. Cette étude s’applique
notamment a la couverture d’options sur hedge funds, pour lesquels les ordres d’achat et
de vente sont exécutés avec retard. Dans chaque partie, nous caractérisons la fonction
valeur du probleme comme étant I'unique solution de viscosité d’une équation aux dérivées
partielles. Dans la premiere et la troisieme partie, nous introduisons dans un second chapitre
des algorithmes de résolution numériques de ces EDP par différences finies. La convergence
de ces algorithmes est prouvée de maniere théorique.

MOTS-CLES : contraintes gamma, surréplication, solutions de viscosité, intégrales stochas-
tiques doubles, volatilité incertaine, controle impulsionnel, retard d’execution, principe de
comparaison, différences finies.

DISCIPLINE : MATHEMATIQUES

ABSTRACT : We study some applications of stochastic control to option hedge with illig-
uidity. In the first part, we focus on a superreplication problem in a stochastic volatility
model. The specificity comes from the fact that the asset which is used to hedge volatility is
illiquid, thus only a finite total amount of transactions can be operated during the hedging.
The second part is about option hedging in presence of uncertain volatility, which dynamics
are unspecified. We introduce a criterion to obtain non trivial prices, by allowing the agent
to lose money for improbable volatility scenarios. At last, in the third part, we study an
impulse control problem in which the actions take effect with delay. This can be applied
for hedging options on hedge funds. Indeed, buying and selling orders on these funds are
executed with delay. In each part, we characterize the value function of the problem as the
unique viscosity solution of a partial differential equation. In the first and third parts, we
also introduce, in a second chapter, numerical algorithms to solve those PDE with finite
differences methods. Convergence of these algorithms is proved in a theoretical framework.

KEY WORDS : gamma constrains, super replication, viscosity solutions, double stochastic
integral, uncertain volatility, impulse control, execution delay, comparison principle, finite
differences.
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