Contrôle stochastique et applications à la couverture d'options en présence d'illiquidité: Aspects théoriques et numériques

Résumé : Nous étudions quelques applications du contrôle stochastique à la couverture d'options en présence d'illiquidité. Dans la première partie, nous nous intéressons à un problème de surcouverture d'option dans un modèle à volatilité stochastique. L'originalité provient du fait que l'actif servant à couvrir la volatilité n'est pas liquide et que l'agent devra donc opérer un montant total fini de transactions. La deuxième partie concerne la couverture d'option en présence de volatilité incertaine dont la dynamique n'est pas spécifiée. Nous introduisons un critère permettant d'obtenir des prix d'options non triviaux, en autorisant l'agent à perdre de l'argent pour des réalisations de la volatilité qu'il juge peu probables. Enfin dans une troisième partie nous étudions un problème de contrôle impulsionnel pour lequel les contrôles prennent effet avec retard. Cette étude s'applique notamment à la couverture d'options sur hedge funds, pour lesquels les ordres d'achat et de vente sont exécutés avec retard. Dans chaque partie, nous caractérisons la fonction valeur du problème comme étant l'unique solution de viscosité d'une équation aux dérivées partielles. Dans la première et la troisième partie, nous introduisons dans un second chapitre des algorithmes de résolution numériques de ces EDP par différences finies. La convergence de ces algorithmes est prouvée de manière théorique.
Type de document :
Thèse
Mathématiques [math]. Université Paris-Diderot - Paris VII, 2008. Français
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-00262019
Contributeur : Benjamin Bruder <>
Soumis le : lundi 10 mars 2008 - 16:14:04
Dernière modification le : jeudi 27 avril 2017 - 09:46:20
Document(s) archivé(s) le : vendredi 21 mai 2010 - 00:07:56

Fichier

Identifiants

  • HAL Id : tel-00262019, version 1

Collections

INSMI | UPMC | USPC | PMA

Citation

Benjamin Bruder. Contrôle stochastique et applications à la couverture d'options en présence d'illiquidité: Aspects théoriques et numériques. Mathématiques [math]. Université Paris-Diderot - Paris VII, 2008. Français. <tel-00262019>

Partager

Métriques

Consultations de
la notice

560

Téléchargements du document

597