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Introduction

Le sujet de cette these est I'étude de certains problemes aux limites elliptiques
linéaires intervenant en mécanique et en physique, dans la géométrie particuliere
du demi-espace. De nombreux problemes de la physique mathématique peuvent
étre modélisés par des équations aux dérivées partielles dans un tel domaine.
C’est le cas en particulier de ’équation des ondes, de 1’équation de Helmholtz
pour la pression acoustique, des équations de Maxwell pour le champ électro-
magnétique et des équations de Navier-Stokes en mécanique des fluides. L’étude
de ces problemes célebres passe par la résolution d’équations portant sur des
opérateurs différentiels linéaires de base. Au premier rang de ceux-ci, on trouve
I'opérateur de Laplace. En effet, I’équation de Laplace

Au=f dans (,
avec une condition aux limites de type Dirichlet
u=g¢g surl,

ou de type Neumann
ou

I sur I
a fait I'objet de nombreuses études tant en domaines bornés qu’en domaines
non bornés. Une différence essentielle entre le borné et le non borné tient dans
la description du comportement & l'infini des données du probleme et de ses
solutions éventuelles pour le second cas. Le premier domaine non borné est
naturellement l'espace tout entier RY. Viennent ensuite les problémes posés
dans un domaine extérieur, c’est-a-dire ou €2 est le complémentaire d’un compact
de RY. Dans ce cas, la frontiere est elle-méme compacte et on peut utiliser une
partition de I'unité pour ramener le probleme posé a la somme de deux problemes,
I'un en domaine borné et I'autre dans RY. Avec le demi-espace, une nouvelle
difficulté apparait du fait que la frontiere est non compacte. On se trouve ainsi
conduit a définir des espaces de traces permettant de décrire le comportement
a l'infini de leurs éléments. Cependant, la géométrie du demi-espace offre la
particularité d’un prolongement des fonctions harmoniques a tout 1’espace par le
principe de réflexion établi par H.A. Schwarz. Cela permet donc la aussi d’utiliser
les résultats précédemment établis dans tout I’espace. Pour aborder ces problemes
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en domaines non bornés, plusieurs auteurs ont eu recours aux espaces ﬁé P(RY)
obtenus par complétion de l'espace D(RY) par rapport a la norme IVl Lo @y,
ou certains de leurs raffinements, ou encore aux espaces homogenes DVP(RY)
des fonctions L7 (RY) & gradient dans LP(R"). Les résultats obtenus dans ces
cadres fonctionnels sont toutefois comparables et présentent I'inconvénient de ne
rien dire du comportement a l'infini des données et des solutions. Une autre
approche est celle des espaces de Sobolev avec poids. Elle présente I'avantage de
donner des informations non seulement sur toutes les dérivées, mais aussi sur les
fonctions elles-mémes. C’est ce cadre fonctionnel que nous adopterons ici.

Outre la description du comportement a ’infini des fonctions en jeu, il y a une
raison plus profonde qui impose I'adoption d’un cadre fonctionnel autre que celui
des espaces de Sobolev classiques utilisés en domaine borné. En effet, I'inégalité
de Poincaré, fondamentale pour la résolution de tels probléemes dans le cas borné,
n’est plus satisfaite dans ces géométries pour certains opérateurs classiques (voir
I'introduction du chapitre 2 pour l'opérateur biharmonique). Par contre dans
les espaces de Sobolev avec poids, on retrouve des inégalités de type Poincaré
comme conséquences naturelles d'une inégalité de Hardy ou d’une inégalité de
Hardy généralisée. Ces inégalités de Poincaré sont quant a elles au coeur de la
méthode variationnelle pour résoudre des problemes aux limites faisant intervenir
des opérateurs elliptiques. Nous utiliserons une classe d’espaces de Sobolev avec
des poids logarithmiques (voir [5] et le chapitre 1), qui étendent ceux introduits
par B. Hanouzet (voir [33] et la remarque 1.2.1) et qui permettent d’exclure moins
de valeurs critiques que ces derniers.

Le demi-espace et ’espace entier sont donc les deux géométries entre lesquelles
nous ferons de fréquents allers et retours. Pour revenir a I’équation de Laplace
dans ces deux domaines, ou plus exactement tout d’abord a I’équation de Poisson
dans RY, nous nous sommes basés sur les résultats d’isomorphismes établis par
C. Amrouche, V. Girault et J. Giroire dans [5] et [6]. Concernant le demi-espace,
on trouve des résultats partiels dans des espaces de Sobolev avec poids, avec
notamment les travaux de V.G. Maz’ya, B.A. Plamenevskii et L.I. Stupyalis (voir
[38]) qui traitent du probleme de Stokes et trouvent un champ de vitesses dans
W, 2(R3) ou W *(R3). Pour le méme probleme, N. Tanaka (voir [43]) obtient un
champ de vitesses dans W;" +2’2(R§r) avec m > 0. Toujours dans le cas hilbertien,
T.Z. Boulmezaoud (voir [20]) a obtenu des résultats généraux, mais qui excluent
cependant la dimension deux a cause des valeurs critiques inhérentes aux poids
qu’il utilise (en fait les espaces de B. Hanouzet). Ces résultats ont été ensuite
généralisés en théorie LP par C. Amrouche et S. Necasové (voir [7, 8]) pour les
dimensions N > 2, avec la résolution de certains cas critiques au moyen de cette
classe d’espaces avec des facteurs logarithmiques dans les poids.

Nous venons de parler du systeme de Stokes et cela nous ramene au sujet de
cette these, apres ce bref et tres lacunaire état des lieux ... Notre objectif est de
poursuivre ce travail de généralisation pour d’autres opérateurs elliptiques. Par
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généralisation, nous entendons un travail se développant suivant trois axes. Le
premier est de fournir des résultats en théorie LP pour 1 < p < o0, le second
est de réduire au mieux les valeurs critiques — sachant que certains résultats
peuvent encore étre raffinés par 'emploi d’espaces adéquats, ce que nous n’avons
pas exploité — et le dernier est d’envisager des conditions aux limites singulieres
et de chercher des solutions tres faibles correspondantes. Notons d’ailleurs que
ce dernier axe est devenu peu a peu prépondérant dans ce travail et illustre toute
la richesse du raisonnement par dualité mis en ceuvre dans ces questions.

Nous avons ainsi abordé dans un premier temps le probleme biharmonique,
pour utiliser ensuite ces résultats dans le probleme de Stokes. La encore, bien
sur, le terrain n’était pas vierge ! Citons, simplement pour la géométrie qui nous
intéresse, le travail de R. Farwig et H. Sohr (voir [28]) pour le systeme de Stokes.
Ces auteurs travaillent dans des espaces homogenes, mais utilisent un schéma
de démonstration dont nous nous sommes en partie inspirés pour les solutions
généralisées du probleme de Stokes, en passant par la résolution d’'un probléeme
biharmonique. Les preuves que nous donnons divergent ensuite notablement du
fait des cadres fonctionnels et des outils utilisés. Citons a nouveau un travail de
T.Z. Boulmezaoud (voir [21]) pour ces deux problemes. Cet auteur commence par
résoudre le probleme de Stokes par une méthode qui ne lui permet pas d’obtenir
des solutions généralisées et résout ensuite le probleme biharmonique. Nous avons
cependant utilisé une caractérisation tres intéressante qu’il donne du noyau de
I'opérateur de Stokes, que nous obtenons de maniere différente en partant de celui
de l'opérateur biharmonique qui présente ’avantage de s’exprimer beaucoup plus
naturellement. Il semblerait donc que nos objectifs de généralisation aient été
atteints dans les trois axes évoqués précédemment.

Le découpage en différents chapitres de cette these retrace davantage 'ordre
chronologique du travail de recherche qu’il ne laisse paraitre une unité logique
dans les questions abordées. En effet, on peut observer que certaines questions
similaires reviennent dans différents chapitres et auraient pu avantageusement
étre traitées ensemble dans une partie autonome. Il s’agit en particulier des
lemmes donnant un sens a des traces de fonctions dans des cas singuliers. On
pourra toujours arguer que cela présente I'avantage pédagogique de la motivation
des questions au fil de leur apparition naturelle ... Une raison plus prosaique,
mais aussi plus véridique, est que ce découpage provient de la rédaction initiale
sous la forme d’articles autonomes pour différentes revues ! En fait la partie
délicate de ce travail de synthese a plutot été de donner une apparence d’unité
a I’ensemble en évitant les redondances. Nous avons en outre conservé la langue
anglaise dans laquelle ont été rédigés les articles, non par conviction politique
ou philosophique, mais pour une raison plus sordide de temps qui passe toujours
trop vite.

Le premier chapitre est naturellement dévolu aux notations, aux définitions
et propriétés des espaces fonctionnels et aux résultats fondamentaux sur lesquels
nous nous appuyons dans la suite. Il s’agit principalement des résultats sur les
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problemes de Dirichlet et de Neumann pour laplacien dans le demi-espace, ainsi
que du lemme de traces. Tous ces résultats sont donnés sans démonstration et
nous renvoyons a la bibliographie pour les détails.

Dans le second chapitre, nous abordons le probleme biharmonique. Nous
commencons par donner des résultats d’isomorphismes dans tout l'espace pour
I'opérateur biharmonique, en utilisant ceux établis pour le Laplacien dans [5] et
[6]. Ensuite, nous passons au probleme biharmonique dans le demi-espace avec
des conditions aux limites portant sur u et dyu, ou u est la solution cherchée.
Apres la caractérisation générale du noyau, nous étudions le probléme homogene,
pour lequel nous donnons des solutions généralisées et un résultat de régularité,
puis nous passons enfin au probleme non homogene pour lequel nous fournissons
un résultat portant sur les solutions généralisées. Ce chapitre a fait 'objet d'une
publication dans la revue Jounal of Differential Equations (voir [9]).

Le troisieme chapitre porte sur les solutions fortes et un résultat de régularité
pour le méme probleme. Nous revenons ensuite au probléeme homogene, pour
lequel nous étudions le cas de conditions aux limites singulieres et tres singulieres.
Nous obtenons deux résultats par des techniques de dualité, fournissant ainsi des
solutions faibles et tres faibles de ce probleme. Nous envisageons pour finir le cas
d’autres conditions aux limites. Ce chapitre a fait 'objet d’un article a paraitre
dans le numéro de décembre de la revue Communication in Pure and Applied
Analysis (voir [11]). Ces deux derniers chapitres ont aussi fait I'objet d’une note
aux Comptes Rendus de 1’Académie des Sciences (voir [10]).

Au quatrieme chapitre, nous commencons 1’étude du probleme de Stokes avec
des conditions de Dirichlet. Nous envisageons tout le spectre des régularités,
pour fournir des solutions généralisées, fortes et tres faibles, ainsi qu'un résul-
tat de régularité. Nous nous sommes cependant limités ici aux poids basiques
pour les comportements a l'infini, afin de dégager 1'essentiel de la méthode. Ce
chapitre provient lui aussi d’un article rédigé en collaboration avec S. Necasova
et a paraitre dans la revue Jounal of Differential Equations (voir [12]).

Nous reprenons au cinquieme chapitre le travail du précédent, mais pour tout
le spectre des poids et donc des comportements a l'infini possibles. Surgissent
alors naturellement la question du noyau dans sa généralité et les conditions
d’orthogonalité pour les données. La méthode utilisée précédemment pour les
solutions généralisées s’applique encore quand les poids considérés sont négatifs
et nous récupérons les poids positifs par dualité. Les résultats donnés ici englobent
ainsi ceux du précédent chapitre.

Au sixieme chapitre, qui est aussi le fruit d’une collaboration avec S. Necasova,
nous nous intéressons toujours au probleme de Stokes, mais avec des conditions
de Navier (ou conditions de glissement) sur I'hyperplan frontiere. Nous adaptons
la méthode utilisée pour les conditions de Dirichlet a ce cas. Les objectifs et le
plan sont les mémes qu’au quatrieme chapitre.

Le septieme et dernier chapitre envisage un systeme de Stokes généralisé avec
un terme d’élasticité et différents parametres, systeme que 1’on rencontre dans
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la littérature sur le sujet (voir H. Beirao da Veiga, [17]). Les conditions aux
limites sont la aussi de type Navier. Apres une étude préliminaire du probleme
correspondant dans tout l'espace, qui suit de pres celle du probléeme classique
effectuée par F. Alliot et C. Amrouche (voir [3]), nous montrons que la méthode
du précédent chapitre s’applique tout a fait a ce cas dans le demi-espace.

Nous ne serions pas tout a fait complets si nous ne parlions pas des « oublis »
de ce travail et des perspectives qu’il nous ouvre encore. Pour les questions laissées
de coté, nous avons déja cité la possibilité de combler les vides laissés par certaines
valeurs critiques en introduisant des espaces judicieux (voir la référence [6]). 11 y
a aussi I’approche par les solutions fondamentales, avec par exemple en domaine
borné 'article fondateur de L. Cattabriga (voir [24]) et dans le demi-espace les
travaux de S. Ukai (voir [44]), puis plus récemment, ceux de M. Cannone, F.
Planchon et M. Schonbek (voir [23]), avec laquelle il conviendrait d’établir un
pont. Pour le travail en cours, il reste a généraliser aux poids quelconques le
probleme de Stokes avec des conditions de Navier, ce qui ne doit pas poser de
probleme. Quant aux perspectives, il faut voir comment utiliser ces résultats
pour le probleme non linéaire de Navier-Stokes. Une approche possible est de
commencer par s’intéresser aux équations d’Oseen dans le demi-espace, sachant
que des résultats dans tout I'espace et en domaine extérieur ont déja été obtenus
par C. Amrouche, H. Bouzit et U. Razafison. Il reste aussi tout le champ des
problemes d’évolution dans cette géométrie.






Chapitre 1

Functional framework and known
results

1.1 Notations

For any real number p > 1, we always take p’ to be the Holder conjugate of p,
1.€.

1 1

p p
Let Q be an open set of RV, N > 2. Writing a typical point z € RY as z =
(2',zy), where 2’ = (z1,...,2x_1) € R¥"L and xy € R, we will especially look

on the upper half-space RY = {z € RY; zx > 0}. We let RY denote the closure
of RY in RY and let I' = {z € RY; 2y = 0} = RY"! denote its boundary. Let
lz| = (22 + -+ + 2%)"/? denote the Euclidean norm of x, we will use two basic
weights

o= (1+ |t and lgo=1n(2+ o).

We denote by 0; the partial derivative %, similarly 0?2 = 0; 0 9; = o° 8%- =

8_1227
0;00; = %;gﬂ_, ... More generally, if A = (A1,...,\y) € NV is a multi-index,
then
A A A o
=00 = ———— ,where |\ =X+ + \y.

IR Oy
In the sequel, for any integer ¢, we will use the following polynomial spaces:

— P, is the space of polynomials of degree smaller than or equal to g¢;

— qu is the subspace of harmonic polynomials of Py;

— PqAQ is the subspace of biharmonic polynomials of Pg;

— AqA is the subspace of polynomials of PqA, odd with respect to xy, or equiva-
lently, which satisfy the condition ¢(z’,0) = 0;

— /\/'qA is the subspace of polynomials of PqA, even with respect to xy, or equiv-
alently, which satisfy the condition dyp(2’,0) = 0;

9



10 CHAPITRE 1. FUNCTIONAL FRAMEWORK AND KNOWN RESULTS

with the convention that these spaces are reduced to {0} if ¢ < 0.

For any real number s, we denote by [s] the integer part of s.

Given a Banach space B, with dual space B’ and a closed subspace X of B, we
denote by B" 1. X the subspace of B’ orthogonal to X, i.e.

B LX={feB;YweX, (fv)=0}=(B/X).

Lastly, if & € Z, we will constantly use the notation {1,...,k} for the set of
the first k positive integers, with the convention that this set is empty if k is
nonpositive.

1.2 Weighted Sobolev spaces

For any nonnegative integer m, real numbers p > 1, a and 3, we define the
following space:

WrE©) ={ue D(@); 0 <IN <k, 0" (1g0)" ! 9u € D(Q); (1.2.1)
FH1<A < m, o " (Ig0) 0 € (@) }, )

where
o N
k::{_l if > +a¢{l,...,m},

N e N
m— -« 1f;—i—a€{1,...,m}.
Note that TW."(Q2) is a reflexive Banach space equipped with its natural norm:

a—m - p
ey = (2 o™ (1g )" 0 ullqq
0<IAI<k

—m p 1/p
> e g 0) Pulf)
E+1<IA|<m

We also define the semi-norm:

1/p
|U|W;’f*ﬂp(ﬂ) - ( Z |0 (g Q)ﬁ 6’\u||12p(9)> .
[A|l=m

The weights in definition (1.2.1) are chosen so that the corresponding space satis-
fies two fundamental properties. On the one hand, D(Rﬁ ) is dense in W’ (RY).

On the other hand, the following Poincaré-type inequality holds in W' (RY) (see
[7], Theorem 1.1): if

%+a§é{1,...,m} or (B—1)p#—1, (1.2.2)
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then the semi-norm | - |, WP RY) defines on W' (RY)/Py- a norm which is equiv-

alent to the quotient norm,
m,p N
Vu e W, p(R ), ||U||W$bp(Rf)/Pq* <C |U|W§j’ﬂp(Rf)a (1.2.3)

with ¢* = inf(q,m—1), where ¢ is the highest degree of the polynomials contained
in W,/ (RY). Now, we define the space

WiBRY) = DY) s

which will be characterized in Lemma 1.3.1 as the subspace of functions with null
traces in W/ (RY). From that, we can introduce the space W_"";(RY) as the

dual space of Wm P(RY). In addition, under the assumption (1.2.2), | - |Wm,ﬁ PRY)

is a norm on Wm P(RY) which is equivalent to the full norm,
Vu € Wm J(RY), [l p@yy < Clulywms gy (1.2.4)

We will now recall some properties of the weighted Sobolev spaces W7 (RY).
We have the algebraic and topological imbeddings:

« a—

N
WPRY) = WIWPRY) — - s Wl (RY) if ot ¢ {1,...,m}.

When % +a=j€{l,...,m}, then we have:

m,p m—j+1,p m—j,p
Wa,ﬁ - - Wa —j+1,8 - a—j, -1 - Wa m,B3—1"

Note that in the first case, for any v € R such that % +a—vy¢{l,...,m} and
m € N, the mapping

€ WP RY) v glu e WP ,(RY)

is an isomorphism. In both cases and for any multi-index A € NV, the mapping
e WP (RY) — 9 u e WP P(RY)

is continuous. Finally, it can be readily checked that the highest degree ¢ of the
polynomials contained in W7 (RY) is given by

%—l—ae{l,...,m} and (S —1)p > —1,
m—(ﬂ—l—a)—l, if or
. P
4= Ttae{je j<0} and fp> -
[m—(%—i—a)], otherwise.
(1.2.5)
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Remark 1.2.1. In the case 3 = 0, we simply denote the space W7'}"(Q2) by
WrP(Q). In [33], Hanouzet introduced a class of weighted Sobolev spaces with-
out logarithmic factors, with the same notation. We recall his definition under
the notation H"?(Q):

H™P(Q) = {u eD(Q); 0< |\ <m, o™y e LP(Q)}.
It is clear that if % +a ¢ {1,...,m}, we have WP(Q) = HI"?(Q). The
fundamental difference between these two families of spaces is that the assump-

tion (1.2.2) and thus the Poincaré-type inequality (1.2.3), hold for any value of
(N, p, @) in W2»?(Q), but not in HJ*?(Q) if % +ae{l,...,m}. o

1.3 The spaces of traces

In order to define the traces of functions of W2=?(RY) (here we don’t consider
the case § # 0), for any o € |0, 1[, we introduce the space:

WTP(RY) = {u c D'(RY); wu € LP(RY) and

_ p
[ besar g, )
RN xgN |2 — y|N TP

1/o

(1.3.1)

where w = g if N/p # o and w = o (lgp)"/? if N/p = 0. It is a reflexive Banach

space equipped with its natural norm:

_ p 1/p
Y LB
RN xRN

LP(RN) |z — y|N+op

u
gy = (o

Similarly, for any real number o € R, we define the space:

WoP(RY) = {u € D'(RY); w*%u € LP(RY),

/ |0*(2) ulz) — (W) u@)I” | dy < 00}7

|z —y|Ntor

where w = o if N/p +a # o and w = o(Ig )" if N/p + a = 0. For any
s € RT, we set

Wer®Y) = {ue DEY); 0 <A <k, 0N (lgo) ! Du e IP(RY);

E+1< N <[5 =1, Mot e IPRY); A = [8], 0% € WP (RY) )
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where k = s— N/p—aif N/p+a € {o,...,0+][s]}, witho =s—[s] and k = —1
otherwise. It is a reflexive Banach space equipped with the norm:

a—s — p
fullg iy = (32 10" g 0) ™ Pl o,

0<IAI<k

s P 1/p
Y e Pulen) S 10Ul e
E4+1<IA<[s]-1 [A=[s]

We can similarly define, for any real number 3, the space:
WrHRY) = {ve DRY); (1g0)"v e Wi (RY)}.

We can prove some properties of the weighted Sobolev spaces Wézg(RN ). We
have the algebraic and topological imbeddings in the case where N/p + a ¢
{o,...,0+[s] —1}:

WaB(RY) = WiZ P B(RY) — - = WIR ) S(RY),

SBRY) = W, GRY) oo W02 S(RY).
When N/p+a=j€{o,...,0+[s] — 1}, then we have:

Wj’g (S T — W57j+1’p [SEEEN Wsij’p (S g — WU’p

a—j+1,8 a—j, B—1 a—|s], -1’
5,p [s],p [s]—ji+1,p [s]—d,p 0,p
Wa,ﬁ - Wa+[s]—s,,8 o Wa—cr—j—l—l,ﬁ - Wa—o—j,,@—l o Wa—s,ﬂ—l‘

If u is a function on RY, we denote its trace of order j on the hyperplane I' by:
VieN, vyu:a € RV dhu(a’,0).

Let us recall the following traces lemma due to Hanouzet (see [33]) and extended
by Amrouche-Necasova (see [7]) to this class of weighted Sobolev spaces:

Lemma 1.3.1. For any integer m > 1 and real number o, the mapping

—_

m—

Y= (707717’ . 77m—1) : D(@) — H D(RN71)7

=

can be extended to a linear continuous mapping, still denoted by -,

m—1
v WPRY) — [ W e,
j=0

Moreover v is surjective and Kery = W2P(RY).
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. . N
1.4 The Laplace equation in R

We shall now recall the fundamental results of the Laplace equation in the half-
space, with nonhomogeneous Dirichlet or Neumann boundary conditions. These
results have been proved by Boulmezaoud (see [20]) in the particular case where
p = 2 for N > 3, then generalized by Amrouche-Necasova (see [7]) and Amrouche
(see [8]) in LP theory for N > 2, with solutions of some critical cases by means of
logarithmic factors in the weight. Let us also quote the partial results of Maz’ya-
Plamenevskii-Stupyalis (see [38]) for the Stokes system in R? with the velocity
obtained in W,*(R3) or W{"*(R%), and those of Tanaka (see [43]) for the same
problem and the velocity vector field in W *(R3) with m > 0.
Let us first recall the main result of the Dirichlet problem

(Pp) {Au:f in RY,

u=g on I,
with a different behaviour at infinity according to /.

Theorem 1.4.1 (Amrouche-Necasovd [7]). Let ¢ € Z such that
N N
—¢{l,.... 0} and —¢{1,... —(}. (1.4.1)
p p

For any f € W, "P(RY) and g € Welfl/p’p(f‘) satisfying the compatibility condi-
tion
Vo € A[AH@—N/F’]’

1.4.2
<f, > _1 p(RN)XWI N (]RN) <97 aN@) 1 1/p, P(F)Xw:el/p’,p/(r) 3 ( )

problem (Pp) admits a solution u € I/V1 P(RY), unique up to an element of
Al —nyp» and there exists a constant C such that

Ainf Ju+ QHWZLP(Rf) < C (HfHW[LP(RQ) + ||9||Welfl/p,p(r)> :

€A —o—N/pl
The second recall deals with this problem for more regular data.

Theorem 1.4.2 (Amrouche-Necasova [7]). Let € Z and m > 1 be two integers
such that

E,gé{l,...,ﬂl} and E@é{l,...,—f—m}. (1.4.3)

For any f € W' P(RY) and g € W:;:el 1/pp(F), satisfying the compatibility

condition (1.4.2), problem (Pp) has a solution u € W:figl P(RY), unique up to

an element of A[AlfffN/p]’ and there exists a constant C' such that

et sy < C (Whggegn 19l

1AL /)
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Concerning the Neumann problem
Au = in RY,
(Pn) I -
Ovu=g¢g onl,
let us first recall the result for the weakest data.

Theorem 1.4.3 (Amrouche [8]). Let ¢ € Z such that
N N
Egé{l,...,é} and E¢{1,...,—€+1}. (1.4.4)

For any f € WO P(RY) and g € W,_{ L/p, "P(T) satisfying the compatibility condition

Vo € NNy
(f,9) e g, ) N (1.4.5)
7 WO p RN) Wgylp (Rf) g, SO W[ill/pyp(r)xwizi{p , P (F) =y,

problem (Py) admits a solution u € W, SN(RY), unique up to an element of
./\/[éé_ N/ol? and there exists a constant C' such that

inf et alzgey < O (1w + 9y ) -
N2 N/p]
As for the Dirichlet problem, we can prove the following result:

Theorem 1.4.4. Let ¢ € Z and m = 0 be two integers such that
N N
—/é{l,...,ﬁ} and — ¢ {l,...,—{—m}. (1.4.6)
p b

For any f € W"H(RY) and g € Wxigl YPP(TY satisfying the compatibility con-
dition (1.4.5), problem (Py) has a solution u € VVmJr2 P(RY), unique up to an

element of/\/'[QAfng/p}, and there exists a constant C’ such that

fJutalpey < C (e + ol o)

€N e—N/p)






Chapitre 2

Generalized solutions to the
biharmonic problem in RY & Rf

2.1 Introduction

The purpose of this chapter is the resolution of the biharmonic problem with
nonhomogeneous boundary conditions

A’u=f inRY,
(P) S u=go on ' = RN,

Oyu=g¢g; onl.

Since this problem is posed in the half-space, it is important to specify the be-
haviour at infinity for the data and solutions. We have chosen to impose such
conditions by setting our problem in weighted Sobolev spaces, where the growth or
decay of functions at infinity are expressed by means of weights. These weighted
Sobolev spaces provide a correct functional setting for unbounded domains, in
particular because the functions in these spaces satisfy an optimal weighted
Poincaré-type inequality. The weights chosen here behave at infinity as pow-
ers to |z|. The reason of this choice is given by the behaviour at infinity of the
fundamental solution Ey to the biharmonic operator in RY. Let us recall for
instance that

Cs

x|’

and in particular if f € D(RY), the convolution Ey * f behaves at infinity as Ey.
In this work, we shall consider more general data f; and the solutions will have
a behaviour at infinity which will naturally depend on the one of data in Rﬂ\r’ and
on the boundary.

Let us throw light on this functional framework in the L? case. If we consider
Problem (P) with homogeneous boundary conditions, i.e. go = g1 = 0, we can

Es(z) =cslz|, Eur)=c4 In|z|, Es(x)=

17
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give the following variational formulation: For any given f € V’, find u € V such
that

Yv eV, / AuAvdr = (f,v) . -
Ry

Which is the appropriate space V' to use the Lax-Milgram’s lemma? We must
have firstly, for any v € V, Av € L*(RY) and secondly, the coercivity condition
for the bilinear form: (u, v) — [pn AuAvdz.

+

According to 1.2.4, we have:
©2.2
Yo e WERY), ollwgran) < OVl v
Moreover,

Yo e W2ARY), ||V = [[Av[| 2y,

L2(RN
hence the coercivity of the form. Consequently, Problem (P) with gy = g; = 0 is

well-posed on V' = I/V2 2(RN ). Which are the appropriate spaces of traces for the
complete problem? Thanks to Lemma 1.3.1,

e WEARY) = (you, mu) € W2 (RN ) x Wy (RN,

consequently we must take (go, g1) € I/V?’/2 P(RN-1) VVl/2 *(RM-1) in the prob-
lem with nonhomogeneous boundary conditions.

Remark 2.1.1. If we consider the problem for the operator I + AZ:
u+A?u=f inRY,
(Q) {u=29 onT,
ONu = g1 on T,

we have the following variational formulation with gy = ¢; = 0: For any given
f eV find u €V such that Vv € V,

/uvdm+/ AuAvdr = (f,v) . -
RY RY

This form satisfies naturally the coercivity condition on V = Hg(RY), where
H3(RY) denotes here the classical Sobolev space of functions v € H?(RY) such
that v = dyv = 0 on I'. For the nonhomogeneous problem, we must take

(90, 91) € HY2(®RN7Y) > HVA(RYY), o

Our analysis is based on the isomorphism properties of the biharmonic opera-
tor in the whole space and the resolution of the Dirichlet and Neumann problems
for the Laplacian in the half-space. This last one is itself based on the isomor-
phism properties of the Laplace operator in the whole space and also on the
reflection principle inherent in the half-space. Note here the double difficulty
arising from the unboundedness of the domain in any direction and from the
unboundedness of the boundary itself.



2.2. THE BIHARMONIC OPERATOR IN R 19

2.2 The biharmonic operator in RY

In this section, we shall give some isomorphism results relative to the biharmonic
operator in the whole space. We shall rest on these for our investigation in the
half-space. At first, we characterize the kernel

K={veW}"R"); A%=0 inR"}.
Lemma 2.2.1. Let { € Z.
) IFY¢{1,...,—0}, then K =P5,_y 1.
(i) IF X e{l,..., =0}, then K =P, .

Proof. Let u € K. As we know that A%y = 0 and moreover u € W P(RY) C
S’(RY), the space of tempered distributions, we can deduce that u is a polynomial
on RY. But according to (1.2.5), we know that the highest degree ¢ of the
polynomials contained in W;”(RY) is given by:

J1—t—=N/p S +rle{jeZ; j<O0},
= [2—¢— N/p] otherwise.

We can thus see the conditions of the statement appear precisely. Il

More generally, for any integer m € N, we define the kernel

K™ ={ve WIPPRY); A2v=0 in RV},

The same arguments lead us to a result which includes the precedent, correspond-
ing then to case m = 0.

Lemma 2.2.2. Let { € Z and m € N such that

(i) % ¢ {1,...,—0—m}, then K™ = P[%ig_N/p}'
(i) ¥ e{l,....,—0—m}, then K™ =P, .

We can now formulate the first result of isomorphism in R¥:

Theorem 2.2.3. Let ¢ € Z. Under hypothesis (1.4.1), the following operator is
an isomorphism:

2 — 2
A% WP RY) PR gy — W PRY) L PRy -
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Proof. Let us recall (see [5]) that under assumption (1.4.1), the operator
A WEPRN)/PE o — WOPRY) L PGy (2.2.1)
is an isomorphism. By duality, we can deduce that it is the same for the operator
A WPPRN) P, v — W PPRY) L PR - (2.2.2)

If we suppose now that £ — N/p’ < 0, we can compose isomorphisms (2.2.1) and
(2.2.2) to deduce that the operator

2 —
A WPPRN) PRy — Wi 2P (RY) L PRy nyw (2.2.3)
is an isomorphism. By duality, we can deduce that the operator
_ 2
AQ : W€27P(RN>/P[§f€7N/p} - Wg 2’p(RN) 1 Pé+€7N/p’] (224)

is an isomorphism provided that we have —¢ — N/p < 0.

To combine (2.2.3) and (2.2.4), it remains to be noted that if ¢ — N/p’ <
0, then we have 73[%;_ N = 77[%+£_N/p,] = Pio+e—nyp); and symmetrically, if
—{—N/p < 0, we have P[Siﬁ—N/p] = P[%—E—N/p] = Pp2—t—nyp- Moreover, if we note
that the reunion of those two cases covers all integers ¢ € Z, we can deduce that
for any ¢ € 7Z satisfying (1.4.1), the operator

A2 : W€27P(RN>/Pé757N/p} - nglp(RN) 1 7)[%+57N/p’] (225)
is an isomorphism. O

We can establish now a result for more regular data, with two preliminary
lemmas.

Lemma 2.2.4. Let m > 1 and ¢ < —2 be two integers such that
N
— ¢ {l,...,—0—m}, (2.2.6)
p

then the following operator is an isomorphism:

m-+2, 2 m—2,
A? WP (RY) /PQ_E_N/M — W PP(RY).

Proof. We use here another isomorphism result (see [6]). Let m > 1 and ¢ < —1
be two integers. Under hypothesis (2.2.6), the Laplace operator

AWt PPRNY PRy — Wi P(RY), (2.2.7)

m—+~ m—+~

is an isomorphism. Then, replacing m by m — 1 and ¢ by ¢ + 1, we can obtain
that for m > 2 and ¢ < —2, under hypothesis (2.2.6), the operator

A WnHRNY /PR,y — Wil P(RY), (2.2.8)

m—+L m+L
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is an isomorphism. Moreover (see [5]), for £ < —2, the operator
A WHHRY)/ Pl ngp — Wi (RY)
if N/p ¢ {l,...,—¢—1},

is an isomorphism. Then, combining (2.2.8) and (2.2.9), we can deduce that for
m > 1 and ¢ < —2, under hypothesis (2.2.6), the operator

(2.2.9)

A WIERN) /PR,y — Wi 2P (RY), (2.2.10)

m—+L m—+L

is an isomorphism. Replacing now m by m+1 and ¢ by £— 1 in (2.2.7), we obtain
that for m > 0 and ¢ < 0, under hypothesis (2.2.6), the operator
A WP RN PR gy — Wiih(RY), (2.2.11)

is an isomorphism. The lemma follows from the composition of isomorphisms
(2.2.10) and (2.2.11). m

Lemma 2.2.5. Let m > 1 an integer such that
N
v #1 or m=1,

then the biharmonic operator
A Wt PP (RY) [ Pingp) — Wit " (RY) L Paonyp)
18 an isomorphism.

Proof. Let us note that it suffices to prove that the operator is surjective. Here
again, we compose two Laplace operators. We have the following isomorphism
(see [5]): for m € N,

AWt P(RYN) /Py — W T PRY) L Py

ifN/p#1 or m=0. (22.12)
Replacing m by m — 1, we obtain that for m > 1, the operator
A Wi (RY)/Paonyp — Wi U P(RY) L Py (22.13)
ifN/p#1 or m=1,
is an isomorphism. Composing with (2.2.11), for £ = —1, we obtain the result. [

We can now give a global result for the biharmonic operator.

Theorem 2.2.6.
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(i) Let ¢ € Z such that
N N
;%{1,,64—1} and E¢{1”_£_1}7

then the biharmonic operator
3, 2 -1, 2
AW RN PR e nym — Wt PRY) L PR nyp
s an isomorphism.

(i) Let ¢ € Z and m > 2 be two integers such that
N N
—¢{l,....0+2} and — ¢&{l,...,—(—m},
p p

then the biharmonic operator

m+2, 2 m—2, 2
A? WIEPPRY) PR gy — Wit PRY) L PR np

s an isomorphism.

Proof. For £ < —1, it’s clear that lemmas 2.2.4 and 2.2.5 exactly cover points (i)
and (ii). It remains to establish the theorem for ¢ > 0.
According to [5], for £ > 0, the following operator is an isomorphism:

A WEERY) — W LP(RY) L Pé—i—f—N/p’}

) (2.2.14)
it N/p' ¢ {1,...,0+1}.
For m > 1 and ¢ > 1, we also have the isomorphism:
AW PP (RN — WP P(RY) L PRy (22.15)

it N/p ¢ {1,...,0+1).

Replacing m by m — 1 and ¢ by ¢ + 1, we deduce for m > 2 and ¢ > 0, the
isomorphism:

A WLRY) — W:nnJ:ZQ’p(RN) 1L P[%JrﬁfN/p’]

_ (2.2.16)
it N/p ¢ {1,...,0+2}.

Replacing m by m+ 1 and ¢ by £ — 1 in (2.2.15), we obtain for m > 1 and ¢ > 2,
the isomorphism:

A WIEPPRYN) — WINERY) L PRy

mtt . (2.2.17)
it N/p ¢ {1,...,0}.
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And now replacing m by m~+1in (2.2.12), we obtain for m > 1, the isomorphism:

A WIEPPRY) [ Pungp — Wit h(RY) L Pu_np

2.2.18

if N/p' #1. ( )

Finally, if we return to (2.2.7) with ¢ = —1 and m + 1 instead of m, we have for
m > 1, the isomorphism:

A WERRP(RNY /Py — Wi P(RY). (2.2.19)

Then, combining (2.2.17), (2.2.18) and (2.2.19), we obtain for m > 1 and ¢ > 0,
the isomorphism:

A WnTiEQ P(R N)/P[2—€—N/p] — W M(RN) 1 P[z N/p]
it N/p' ¢ {1,...,0}.
It remains to justify the orthogonality condition to compose (2.2.20) with (2.2.14)

or (2.2.16), which will give us respectively the isomorphisms of points (i) and (ii).

Let f € W,:;HQ P(RM) L P[QH N/p] with m > 1, then we have f L PéM N/p]

and according to (2.2.14) or (2.2.16), there exists u € W, (RY) such that Au =

f. We will show that u L P[%fN/p,]. Let ¢ € P[efN/p,], we know that there exists
¢ € Ppaye—nyp) such that ¢ = Ay, ie. ¢ € P%iz N/

(a) Case m =1: u € Welﬁ(RN) fe We+11p(RN> €L 7)[2+15 N/p]'

Let us note that ¢ € ng (RY) and ¢ € W;f (RY), since & §é {1,...,¢}.
We also have the imbedding W27 (RY) — W7 (RY), since > 7é 0+ 1. Then
we have 1) = Ap € WP (RN). This implies

(2.2.20)

<u7 ¢>W2¥€(RN)XW:2L€/(RN) - <u A@) 1 JD(RN)XWf1 »’ (RN)
- <Au 90> 1 P(RN)le ! L(RY)

<f (p> _1 ) P RN)XWI ! (RN)
= 0.

(b) Case m > 2: u € WinH(RY), f € WiT2P(RY) L P,y

Since £ > 0, we have ¥ S Tm+l¢{l. .. ,m}, therefore we can deduce the
chain of imbeddings W)} (RN ) = o= WLR(RY). Moreover > # {42, then
we also have W::HQ p(RN) o W&g(RN) — W, DP(RN). After that, we

repeat the reasoning of case m = 1.

Then, we have u € W,"H(RY) L P[%_N/p,], and (2.2.20) shows us that there

exists z € Wmt2P(RY) such that Az = u. Thus it follows that the operator
m+2, m—2,
A Wm—t@ p(]RN)/,PQ ¢—N/p] — Wm—i—Z p(RN) 1L P[2+€ N/p']

is an isomorphism. O



24  CHAPITRE 2. GENERALIZED SOLUTIONS TO THE BIHARMONIC PROBLEM

2.3 Generalized solutions in Rﬁ

In this section, we shall deal with Problem (P) in the half-space.
For any ¢ € Z, we introduce the space B, as a subspace of PqM:

B, = {u e P&,

b u:aNu:OonF}.
We shall establish the main theorem of this chapter:

Theorem 2.3.1. Let ¢ € Z and assume that

N N
Fg’:‘{l,...,f} and Egé{l,...,—f}. (2.3.1)

For any f € W[Zp(]Rf), go € WZQ_I/p’p(F) and g, € W;_l/p’p(F) satisfying the
compatibility condition
Vo € Biato—nyp,

B _ (2.3.2)
o)y @y T (91 89)r = (90, OnAp)r = 0,

problem (P) admits a solution u € WpP(RY), unique up to an element of
Bio—i—nyp), and there exists a constant C' such that

inf , <
. lu+ qllwzr@y) <

C (1w wqay + N0l z-simr ey + Nnllyr-simogey ) -

NB: (a) (g1, Ap)y denotes the duality bracket (g1, Ap) 1-1/n.5
14

and (go, OnAg) the duality bracket (go, 8NAQD>W2,1/p,,,
4

(T') x W:Zl/pl’ p’ (T) )

(O)xw 2y~ )
(b) With hypothesis (2.3.1) on critical values, we find hypothesis (1.4.1) of
Theorems 1.4.1 and 2.2.3.

2.3.1 Characterization of the kernel
Let us denote by K the kernel of the operator
(A% 50,m) s WPPRY) — WP (RY) x WP (D) WP 7(D),

i.e.
K={ue W2P(RY); A%u=0inRY, u=0dyu=0on r'}.

The following characterization uses the reflection principle (see Farwig [27]).

Lemma 2.3.2. Let ¢ € Z.
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(i) [f % € {1, ceey —f}, then IC = B[Q_E_N/p}.
(ii) If % e{l,...,—}, then K = Bi_i_nyp-
Proof. Given u € K, we set

(e o) = u(z', xN) if zn >0, (23.3)
N (—u — 2zNnOyu — 23 Au) (2, —zy) if 2y <O. o

Then we have @ € S'(RY) and we show that A%z = 0 in RY. We can deduce
that @, and consequently u, is a polynomial. Furthermore, v € WZ’p (Rf ) implies
that its maximum degree is the same as in Lemma 2.2.1. O

More generally, for any m € N, we denote by K™ the kernel of the operator

(A% 90, 71) : WP (RY) — WP P(RY) x W2 P21y s Wit =ter (),

- K™ ={ueWriZP®RY); A2u=0nRY, u=0dyu=00nT}.
Identical arguments lead us to the following result:
Lemma 2.3.3. Let { € Z and m € N.

(i) If % ¢{l,...,—C—m}, then K™ = Bp_o—n/p]-

(i) If 5 € {1,...,—C —m}, then K™ = Bi_¢_nyp.

We now introduce the two operators IIp and Iy, defined by:

1 [
Vr € AL, Tpr= 5 / tr(x' t)dt,
0

1 N
VSENkA, HNS:EIN/ S(l’/,t)dt.
0

So we obtain the second characterization of X™:
Lemma 2.3.4. Let { € Z and m € N. Under hypothesis (2.2.6), we have
K™ = Bpo—e-nyp = Up AR ¢y ® IINNE - (2.3.4)

Proof. A direct calculation with these operators yields the following formulas:

Allpr=r in RY,
1
Vr € A2, Onllpr = SINT in RY, (2.3.5)

HDT = aNHDT =0 on F,
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and
Allys =s in RY,
Vs € NP, OnIlys = % (ZL‘NS + /OIN s(a')t) dt) in RY, (2.3.6)
[MIys =0nIIys =0 on I

Moreover, for any r € A2 and s € N2, Ilpr € Pryo and [ys € Pryo. Thus,
if r € A[A_E_N/p] and s € /\/'ﬁg_N/p], we can deduce that IIpr € Bp_s_n/y and

HNS € B[Q,g,N/p}.

Conversely, if we consider v € Bjp_¢—n/p), then we have Au € 73[6 C—N/p)" Since
P[AféfN/p} = A[AfefN/p] @J\fﬁng/p], there exists (r,s) € A[AfefN/p] X '/\[[éffN/p] such
that Au = r + s in RY. According to formulas (2.3.5) and (2.3.6), the function
z = u — lIpr — Ilys satisfies: Az = 0 in Rf and 2 = dyz = 0 on I'. The
function z belonging to A[%_E_N/p] N J\/'[Q_E_N/p] = {0}, then u = TIpr + Tys.
Furthermore, the sum (2.3.4) is direct, because if (r,s) € A[A_K_N/p] X ./\/[QZ_N/p]
such that IIpr = Iys = u, then Au = r = s. That implies Au = 0 in RY with
u:(()Nu:OonF,henceu:Oin]Rf. n

The following proposition clarifies the kernel Bjy_s_n/p) in the simplest cases.
Proposition 2.3.5. Let ¢ € Z such that % ¢ {1,...,—(}.
(i) [f —0 — N/p < 0, then B[Q,g,N/p] = {0}
(ii) If 0 < —¢— N/p <1, then Byp_¢_nsy = Ry

Proof. If —¢ — N/p < 0, then we have Ba_s_n/, C Pi. Now, if ¢ € Py with
¢ = Onve = 0 on T', we necessarily have ¢ = 0. If 0 < —¢ — N/p < 1, then

Bo—t—nyp = B2 = {go € PQAQ; @ =0np =0 on F}. Now, if ¢ € Py with ¢ =

Ony = 0 on I, a direct calculation shows that ¢(z) = cz%, where ¢ € R. O
Remark 2.3.6. This proposition yields an answer to important particular cases:
(i) I£>0o0r ({ =—1and N/p > 1), then Bp_s_n/p = {0}.

(ii) If ¢ = —1 and N/p < 1, then Bjs_n/y = B = Rz} &

2.3.2 The compatibility condition
We shall now show the necessity of condition (2.3.2) in Theorem 2.3.1.

Lemma 2.3.7. Let ¢ € 7 such that

N
L0 (2.3.7)
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Let f € W, 2P(RY), go € W VPP(T) and g, € W, VPP(D). If problem (P)
admits a solution in W;’p (RY), then we have the compatibility condition:

VSD S B[2+€—N/p’]> <fa §0>We—2,p + <gl7 A90>F - <90> aNA(10>F = 07

o /
®RY)xw? P (RY)

where (g1, Ap)y. denotes the duality bracket (g1, Ap) 1-1/p. and
4

(O)xw =77 (1)

(90, ONAY) - the duality bracket (go, 8NA¢>WZ2,1/,,J,(F)ijél,l/p/,p/(r).

Remark 2.3.8. By Proposition 2.3.5, if {— N/p’ < 0 and particularly if £ < 0, we
have Bjays—nyp) = {0}. Thus there is no compatibility condition in these cases.

%

Proof. So we assume that ¢ > 1. The first point is to justify the dualities in the
spaces of traces. Noting that under hypothesis (2.3.7), for any ¢ € Bpyo—n/p,

we have ¢ € Wéﬁl(Rf ) and also ¢ € Wf’fiﬂﬂ%ﬁ ), we can deduce that Ayl €
Wi;j{p/’p/(l“) and OyAp|p € Wlﬁé”/’p/(l“). It remains to verify the imbeddings

WP (T = W), (2.3.8)
WP P(r) s WD), (2.3.9)

(i) To show (2.3.8), we break down this imbedding into

WP RN WO (RN, (2.3.10)
/ _ —1 /’ / _
WOLL RN P (RN, (2.3.11)
where (2.3.11) is equivalent by duality to
WP RN o W (RN, (2.3.12)

Observe that (2.3.10) is satisfied if and only if % —(+1#1- z%, i.e. g # 0,
which is included in (2.3.7). Likewise (2.3.12) holds if and only if % 4 ¢ #
i.e. % # —{ + 1, which cannot happen for ¢ > 1.

(ii) Similarly, the imbedding (2.3.9) is equivalent to

1_1 /7 / _ , 12 _
WP @YY whs L (RN (2.3.13)
14+1/p, _ , _
W PRk (RYTY), (2.3.14)

The imbedding (2.3.13) holds if and only if g # (—1, which is included in (2.3.7).
The imbedding (2.3.14) holds if and only if % ¢ {—C+1, =+ 2}. Since £ > 1,

it suffices that % # 1 for £ = 1. Assume that ¢ = 1 and % = 1, then we have

g = N — 1 and thus Bpy/_n/py) = Bu-n). If N = 3, there is no compatibility
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condition because By_n) = {0}. If N = 2, then we have p = p' = 2 and % =1,
but that is excluded by (2.3.7). o
Now it is clear that for any u € D(Rf ) we have

Vi € Bloye-n/pls /RN 0 A*udr = /uA@ng dx’ —/8Nu Apdx'.
r
N

T

Let u € WZ’p(Rf) and ¢ € Bj4—nyp). Thanks to the density of D(R_f) in
W7 P(RY), there exists a sequence (uy)ren C D(@) such that uy — u in
W P(RY). Therefore A?uy — A?u in W, *P(RY), uy — u in Wffl/p’p(f‘) and
Onup — Oy in Wel_l/p’p(F). Writing the previous formula for any uy, we obtain
by passing to the limit as k — oo

Vo € Biseonpp)y (A% 0)y ann o ) = (4 ONAG) = (Onu, Ap)y.

This proves the necessity of condition (2.3.2). ]

2.3.3 The homogeneous problem

Here we consider the homogeneous problem in Rf , t.e. f =0, with standard
boundary conditions. Let the problem

Ay =0 inRY,
(P’) qu=go  onT,

oyu=g¢g; onl,

with gy € Weg_l/p’p(F) and g € W;_l/p’p(F),
Lemma 2.3.9. Let ¢ € Z. Under hypothesis (2.5.1), for any gy € Wf_l/p’p(l”)
and g, € Wélfl/p’p(lﬂ) satisfying the compatibility condition

Vo € Bprenpw) s (91, A9)r — (90, OnAp)p = 0, (2.3.15)

problem (P°) admits a solution u € W}P(RY), unique up to an element of
Bia—¢—nyp), with the estimate

inf ] Ju+ C]||w£2»P(M) < C (Hgonwj‘l“’vp(r) + ”ngWj‘”W(r)> .

q€Bp2_¢—N/p

Proof. Firstly, thanks to Lemma 2.3.4, note that condition (2.3.15) is equivalent
to both conditions

Vr € AR njppe (90,0n7)p =0, (2.3.16)
Vs € NP wjwpy (01,8)p = 0. (2.3.17)
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Consider the Dirichlet problem:

(RY) AY =0 inRY,
v=g99 onl.

Since gy € sz_l/p’p(F) = W1+1_1/p’p(f‘), Theorem 1.4.2 holds with m = 1 and

14+(¢—1)
¢ — 1 instead of ¢. Then hypothesis (1.4.3) becomes ;7\{ ¢ {1,...,0} and % ¢
{1,...,—¢}. Moreover compatibility condition (1.4.2) corresponds precisely to

(2.3.16). We can deduce that problem (R°) admits a solution ¥ € W?(RY).
Consider now the Neumann problem:

() AC=0 inRY,
On(=g¢g; onl.

Theorem 1.4.4 holds with m = 0. Moreover compatibility condition (1.4.5) corre-
sponds precisely to (2.3.17). We can deduce that problem (S°) admits a solution
(e Wf’p (RY). So we can readily verify that the function defined by

is a solution to (P°). However we must show that u € W>?(RY). For this, we
remark that u satisfies

(1) {Ali: 20%(¢—v) inRY,
U= go on I,
with 202%(¢ — ) € WIP(RY) and go € W, /PP(I).
(i) If & # —£ 41, then we have the imbedding W;"*(RY) — W,"7(RY).
By (2.3.18), we deduce that u € W,»2(RY). Furthermore we have the following
Green formula:

Vr € A[%fN/p/P <A’U,, T> = <U’7 aNr)

Wel:ll/Py IJ(F) XW_l/pl’ ' ) )

-1, °1,p
W,y p(Rf)XW—ﬁ;—l(R-«A—T) —04+1

1.€.

VT € A[%—N/p’}? <2 8]2V<C — 19), T>W[__11’p ° 1, p N) = <g(), aNT')F .

(Rﬁ)XW—ZH(RJr

Thus the compatibility condition of problem (7') is satisfied and thanks to The-

orem 1.4.4, it admits a solution y & Wf’p (RY), unique up to an element of

AéfﬁfN/p}‘ So the function z = u —y € W,"(RY) and satisfies

{Az:o in RY,

z=20 on I
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We can deduce that z € Aéfng/p], .e. u = y—+r with r € A[Azfefzv/p] C
W P(RY), which shows that u € W "P(RY).

(i) If % = —/( + 1, the previous imbedding does not hold. Then we only have
WEP(RY) Wél_’zi_l(Rf ), with the introduction of a logarithmic weight in the
second space. By (2.3.18), we can deduce that u € ngfl’,_l(]Rf ). Furthermore
we have ¢ — % < 0, thus there is no compatibility condition for (7") which admits
consequently a solution y € Wf’p (RY), unique up to an element of A> = Ray

which is included in Wf’p (RY). The end of the proof is similar to the previous
case. O

We can now extend this result to more regular data.

Lemma 2.3.10. Let £ € Z and m > 1. Under hypothesis (1.4.6), for any go €
W:nnif_l/p’p(F) and g1 € Wgrgl_l/p’p(F), satisfying the compatibility condition
(2.3.15), problem (P°) admits a solution u € W'TPP(RY), unique up to an

m—+/
element of Bia_¢_n/p with the estimate

el ot dhzzzrayy < C (Il + 19 higg-vn)-

Proof. We strictly resume the proof of Lemma 2.3.9. In this case, we note that

go € W((Zrll)):(lg:llgp’p(F) and g; € Wgrgl_l/p’p(l“), then we use Theorems 1.4.2
and 1.4.4. To show that u € WHT:Z”) (RY), we must distinguish two cases. If
% # —( —m + 1, then we have the imbedding W"FP(RY) — WribP(RY). If
% = —( —m + 1, then we have W/"[PP(RY) — ijzlﬁ’_l(Rf). In the second
case, we must remark that ¢ — g < 0, so there is again no compatibility condition
for (7). O

Note that we have the chain of imbeddings W,"/2P(RY) — W P(RY) —

- WPP(RY) if and only if % ¢ {—¢(—m+1,...,—(}, and then Lemma 2.3.10
is a regularity result with respect to Lemma 2.3.9.

2.3.4 Existence of a solution to this problem

We come back to the general problem (P) and Theorem 2.3.1. By Lemma 1.3.1,
there exists a lifting function u, € W>?(RY) of (go, 1), i-e. u, = go on T’ and
Onug = g on I', such that

Hug”WE’p(Rf) g C (Hgongfl/PvP(F) + Hgluwzfl/np(r))-

Set h = f — A%u, € W, >P(RY) and v = u — u,, then problem (P) is equivalent
to the following with homogeneous boundary conditions:

Av=h ian, v=0yv=0 onl.
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Then, the compatibility condition (2.3.2) for Problem (P) becomes:

Yo € B[Q_l,_f_N/p/} , <h, (p>We_2 p(RN)XV?/Q /(RN) =0. (2.3.19)

So, we can consider now the lifted problem
A%y =f in RJI ,
(P*) Su=0 on T,
Oyu=0 onl,

where f € W, 2P(RY) and f L Boyo-n/p)-
Give at first a characterization of W, > RY):
Lemma 2.3.11. For any f € W, ?P(RY), there evists F = (Fij)icijen €
2
Wéo’p(Rf)N such that

f=divdivF = Z F;,

i, =1

with the estimate

N
Z HE'jHWZOvP(Rﬁ) < CHfHW[?vP(Rf)‘
i, j=1

Proof. We know by Hardy’s inequality (1.2.4) that the norm and the semi-norm

in WQ_}” / (RY) are equivalent, i.e. there exists a constant C such that

vu e WY (RY),

IV2ull < C[[VPul| N2

w2 ®Y) wo ®Y)"

OP RN) ||U,

Let

o , ’ N2
T OWRRY) — W RY)

u — Vu.

By the previous inequalities, T" is a linear continuous injective mapplng We set
N2
=T <W2 7 (RN)>, equipped with the norm of W 4 RY) ,and S =T7":

[I]

(11

. W%f (RY). The mapping H € Z +— (f, SH)W[Q’P(R%XVV’;"(RQ) is a

linear functional on =. Thanks to Hahn-Banach theorem, we can extend it to a
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/ N?
linear functional on Wff (RY)  denoted by ®. Thanks to Riesz representation

2
theorem, we know that there exists F = (F};) € Wf’p(Rf)N such that

/ N2
VH = (hl]) < WE’EP (Rf) , <(I),H> = /N Fi]’ hij d.ﬁE,
R

+

with Einstein convention of sumation on repeated indices. Particularly, if H € =,
we have

<faSH>:/ Fj hsjdx,
RN

+
1.€.

Va e WAPRY), (f,u) = / Fy 0ude.

N
R+

We can deduce that
Vue DRY), (f u)=(9F;u),
ie. f=divdivF = 81-2]-FZ-]-. m
Now we can establish a first isomorphism result in the half-space:

Proposition 2.3.12. Let ¢ € Z. Under hypothesis (2.3.1), with 2+{—N/p' <0
or 2—{— N/p <0, the biharmonic operator

A% Wy (RY)/Ba--nym) — Wi P(RY) L Bopyenpw)
18 an isomorphism.

Proof. Let us first assume that 2 4+ ¢ — N/p’ < 0. Let f € We_g’p(Rf). Then
by Lemma 2.3.11, we can write f = 0}, F; with (Fy),¢, oy € Wf’p(Rf)N2. If
we extend F}; to RY by 0, we obtain (Ej>1<i,j<N € Wé]’p(]RN)NZ, and thus f =
0% F,; € W, P(RYN) as extension of f such that ||f~HW[2’p(RN) <C HfHW;?vp(Rﬁ)'
By Theorem 2.2.3, there exists 2 € W/P(RY) such that f = A%Z in RY and
writing z = Z[gy, we have f = A?z in RY, with z € W2 P(RY), 2|, € W} PP(r)
and Oyz|p € ngfl/p’p(f‘). Since Bpte—n/py] = {0}, there is no compatibility

condition for Lemma 2.3.9 which asserts the existence of a solution v € W;>? (RY)
to the homogeneous problem

A’v=0 inRY, v=2 and 9yv=0yz onT. (2.3.20)

The function u = z — v answers to problem (P*) in this case.
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So we have shown that if 2+ ¢ — N/p’ < 0, the operator
A WP (RY)/Biamenjy — Wi P(RY)
is an isomorphism. Thus by duality we obtain the isomorphism
A% EPRY) — WP (RY) L Boye wym,
if2—¢— N/p<0. O
It remains to solve (P*) if
2+0—N/p >0 and 2-(—N/p>0. (2.3.21)

It suffices to check the cases £ € {—1,0, 1}, outside which condition (2.3.21) does
not hold. For that, we establish a preliminary proposition:

Proposition 2.3.13. Let ¢ € {—1,0} such that N/p # 1 if £ = —1. For any
f € WPP(RY), there exists z € W,P(RY) such that A%z = f.

Proof. Under these hypotheses, consider the extension f of fto RN by 0, so
f € W)P(RY). Show at first that there exists 2 € W,"P(RY) such that A%% = f.

(a) If £ = —1, then f € W2P(RV) and we have N/p # 1. Thus Lemma 2.2.4
of isomorphism in R" holds with m = 2 and ¢ = —3, hence the existence of
z e WhP(RV) such that A%z = f.

(b) If £ = 0, then f € LP(RY). Here again Lemma 2.2.4 holds with m = 2 and
¢ = —2, hence the existence of z € Wy'?(RY) such that A2z = f.

Then we come back to the restriction z = 5]]@ for which we naturally have
A?z = fin RY. O

Now, we can fill the gap of Proposition 2.3.12:

Proposition 2.3.14. Let ¢ € {—1,0,1} such that
N N
—#1df l=1 and —#1 if {=—1
p p

Then the btharmonic operator

AQ : W%p(R—i]\—f)/BpfffN/p] — Wé—?,pa&f) 1 B[2+€7N/p/]

18 an isomorphism.
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Proof. At first we will use Lemma 2.3.11 and Proposition 2.3.13 to solve (P*) for
e {-1,0}.

Let f € W, >P(RY) with ¢ € {~1,0} verifying (2.3.1). By Lemma 2.3.11,

2

there exists F = (F};),; oy € Wgo’p(Rf)N such that f = divdivF. It suffices to
apply Proposition 2.3.13 to all the components F;; of F to find U = (Uy),; ;<n €
Wf’p(Rf)N such that A*U = F in RY. Setting z = divdivU, we obtain z €
Wg’p (RY) such that A%z = f in RY because the operators div and A commute.

Thus we have z|. € W, /PP(T') and dyz|. € W, /PP(I'), and Lemma 2.3.9
asserts the existence of a solution v € Wf’p (RY) to problem (2.3.20), since we
have still Bja1s—n/p) = {0} (see Remark 2.3.8). Then the function v = z — v
answers again to problem (P*) for £ € {—1,0}.

Finally to solve the case £ = 1, we proceed by duality from the case £ = —1.
We have the isomorphism

N
A2 PP RY) /By — W EPRY) i 7L
hence, by duality, the operator
A? W2 "(RY) — Wy P(R ) L B lf ;7L

is also an isomorphism. O

Remark 2.3.15. It is also possible to solve directly the case ¢ = 1. The first
step is to extend Proposition 2.3.13 to £ = 1 with N/p" # 1. Here we consider
the extension f € W{"?(RY) of f € W"P(RY) defined by:

i f(', xN) if xy >0,
f@',zy) = <0 if zy =0,
—f(2', —zy) if xy <O.

Then we use Lemma 2.2.5 with m = 2, which asserts the existence of a function
z € W"P(RYN) such that A%Z = f in ]RN, if N/p/ #1 and f L 73[1 N/p)- There
are two cases: either N/p’ > 1, then P[lfN/p] = {0} and there is no condition on
f; or N/p' < 1, then P[f_N/p,] = P, and we must have f L Py. But N/p <1
implies that W"?(RN) < L*(RY) and we have

fdx=0,
RN

as a straightforward consequence of this extension of f. That exactly means that
f L Py. Thus 2 = Z|gn € W,P(RY) satisfies A%z = f in RY.
+
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The second step is to resume the proof of Proposition 2.3.14 for ¢ = 1 with
N/p" # 1. If N/p' > 1, we have still Bjg_n/y = {0}, so the same reasoning
holds; if N/p' < 1, we know that Bjz_n/y) = Ra% and Lemma 2.3.9 requires the
following compatibility condition for problem (2.3.20):

Yo € RJ:?V, (Onz, AQO)p — (2, 8NA90>1“ =0,

which boils down to

(Onz,1)p = 0. (2.3.22)

But remember that f must satisfy the orthogonality condition for (P*), i.e.
2 _ — A2, N.

<f’$N>Wf2’p(R$)XV?/3‘fI(R$) = 0 and moreover we have f = A%z in RY; thus

(A%z,2%)

WP RY ) ®RY) 0. It suffices to write the Green formula

2. .2 _ 2\ _
(A Z’xN>W;2’p(Rﬁ)xvf/2_’f”(Rﬁ) = — <8N2,A:L'N>F = —2 (Onz, 1)p,

to see that (2.3.22) holds. O

To finish the proof of Theorem 2.3.1, it remains to combine Propositions 2.3.12
and 2.3.14, which provides the isomorphism

A% Wy P (RY)/B-enyp) — Wy 7 (RY) L Biave-nywy,

for any ¢ € Z verifying (2.3.1). This answers globally to problem (P*) and thus
to general problem (P) by means of the lifting function mentioned above.






Chapitre 3

Strong and very weak solutions
to the biharmonic problem in ]Rf

3.1 Introduction

In the previous chapter, we established the existence of generalized solutions
to problem (P), i.e. solutions which belong to weighted Sobolev spaces of type
Wf’p (RLY). Here, we are interested both in the existence of more regular solutions,
as for instance strong solutions which belong to spaces of type ijg(Rf ), and
singular solutions which belong to Wff;(Rf ) in the case f = 0 with singular
boundary conditions. We also establish the existence of solutions which belong
to intermediate spaces as for example Wz‘qj’r’{ (Rf ). To finish this study, in the
last section, we shall consider the biharmonic equation with different kinds of
boundary conditions.

3.2 Weak solutions, strong solutions, regularity

The purpose of this section is the study of solutions to the nonhomogeneous
problem (P) for more regular data. We shall now establish a global result which
extends Theorem 2.3.1 to different types of data.

3.2.1 A global result in the nonhomogeneous case

Theorem 3.2.1. Let ¥ € Z and m € N and assume that
N N
— & {1,...,0+min{m, 2}} and — & {1,...,—(—m}. (3.2.1)
p p

37
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For any f € W PP(RY), go € W;f:;fl/p’p(l“) and g, € ng;fl/p’p(f’) satisfy-

ing the compatibility condition

Vo € Bato—n/p)s .
<fa ¢>We_2’p(Rﬁ)Xﬁ/2_fl(Rf) + <gl, Ag@)r — <g0’ aNASO>F — 0’ L.
problem (P) admits a solution u € Wwmt2p

U P(RY), unique up to an element of
Bio—i—ny/p), with the estimate

qeg[ggffw/m e QHWZLL?J(R%

< C (Hf”w;”;[?vp(]gf) + HgOHW:n"If’l/p’p(F) + ||gl||W7’:1nI‘€171/p,p(F)) .

Proof. Note at first that if m = 0, we find Theorem 2.3.1. The kernel has been
globally characterized by (2.3.4). Let us recall that this kernel is reduced to {0}
if £ > 0 and symmetrically the compatibility condition (3.2.2) vanishes if ¢ < 0.

Moreover under hypothesis (3.2.1), the imbeddings W, »P(RY) — W, >P(RY),

WYy o WEYPP) and WTVPP(D) < W) TVPP(D) hold for all
¢ > 1, hence the necessity of (3.2.2) for any m € N. So it suffices to show
the existence of a solution. By Lemma 1.3.1, we can consider the problem with

homogeneous boundary conditions

A%y =f in RJI,
(P*) Su=0 on T,
Oyu=0 onl,

with f L Bjpy¢—nyp)- This orthogonality condition naturally corresponds to the
compatibility condition (3.2.2). We dealt with these questions in Chapter 2.
Let us now give the plan of the proof of the existence for m > 1:

(i) If £ < —2, we establish globally the existence of a solution.
(ii) If £ > —1 and m = 1, we show that by a direct construction.

(iii) If £ > —1 and m > 1, we show that by induction on m from the previous
case (m = 1), thanks to a regularity argument.

(i) Assume that ¢ < —2. Then hypothesis (3.2.1) is reduced to (2.2.6). Let

f e Wnrf;ez’p (]Rf ). Let us first suppose m > 2. We know that there exists a

continuous linear extension operator from W, »P(RY) to W' »P(RY) and thus

f e W PP(RY) which extends f to RY. Then we use Theorem 2.2.6 to obtain

zZ € WTZTLQ”’(RN) such that f = A2Z in RY and thus f = A2z in RY, with



3.2. WEAK SOLUTIONS, STRONG SOLUTIONS, REGULARITY 39

z = 2|R$ € W;n:f’p(Rf). Then Proposition 2.3.10 asserts the existence of a

W er

solution v € W, /'y

(RY) to the homogeneous problem
A%y =0 ian, v=2z and Oyv=0yz onl,

with z|.. € W;f:;fl/p’p(f‘) and dyz|p € W:nnizlfl/p’p(lﬂ). We remark again that

Bioti—nyp) = {0} because £ < 0, thus there is no compatibility condition. Then
the function uw = z — v answer to problem (P*) in this case.

Let us now consider the case m = 1, i.e. f € W, P(RY). As we did for
the distributions of W, »”(RY) in Lemma 2.3.11, we can show that there exists

F=(F), e € W&’{(Rf)N such that f = divF = Y.~ | 9,F,, with the estimate
S Flwergyy, < Cllflw o) Let us denote by F € WoE(RN)™ the
extension by 0 of F to RY. Since % {1,...,—¢ — 1}, by Theorem 2.2.6, there
exists ¥ € Wfﬁ(RN)N such that F = A?¥ in RY. Setting ¢y = div¥ and
RS mRﬁv so we have ¢ € W;’J’rﬁ’(Rf) and by Proposition 2.3.10, there exists
v € WP(RY) such that

A’ =0 in Rf, v=1 and Oyv =0y onl.
The function u =1 —v € ng’r’{ (RY) is a solution to Problem (P*) in this case.
(ii) Assume that ¢ > —1 and m = 1. Note that the distribution f €

W, i P(RY) defines the linear functional L on A@ o n/p) DY

Lir (fr),,

_1, o1, p
e+1p(R$)XW—zp—1(Rf) ’

and introduce the inner product ¢ on A[% oo N/ X A[% 2 N/ defined by

P (MaT)H/Q,_Qe_I_N/pJFN/p/ Onp Oyr da’.
r

Note that
re Ay np = 0T Oy € LP(D),

and
1E Ao iy = Ao niwengpnyy = O TN g€ (T,

Thus, thanks to Holder inequality, ® is well-defined. Then, there exists a unique
e A[%JerN/p,] such that

VT € A[%_i_Q_N/p/], L(T) = @(M,T’),
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1.€.

Vr € A[%+27N/p/]7
(3.2.3)

_ 1—20—1—N/p+N/p' /
<f7 T>Wélll’p(Rf)X‘X/E;:1(Rf) - /FQ aNM aNT de‘ .

Let us set & = o271 NPN/P 9y then we have & € Wztll/p’p(f‘) and (3.2.3)
becomes
Vr e A[%—FQ—N/])’]?

3.2.4
<f T> _1 p(RN)XI/?/l_’f_ll(Rf) = <£078NT> 1 1/p p(F)XW_l/p o’ (F) . ( )

That is precisely the compatibility condition of the Dirichlet problem
AE=f inRY,
(@) y
5 = 50 on Fa

Thus, by Theorem 1.4.1 (replacing ¢ by ¢ + 1), problem (@) admits a solution
§ € Wgﬁ(Rf ) under hypothesis (3.2.1). Here we shall use the characterization
(2.3.4) of Lemma 2.3.4:

Biase-njp) = Mo AR nyp © N vy

Since f L Bjats—nyp), We have

A _ —
Vr e A[Z—N/p’]: <A£7 HDT>WZ__~_11”'(R$)><VL[)/I_’;)_II(R£) - <f7 HDT> = 0.
By a Green formula, we can deduce that
A _
\V/T S A[Z—N/p’]; <§7 AHDT>W4111’:D(R )XI/?/l ;+1(R§) - 07

because W21 (RY) < W,y P(RY) unless & = —lor I = (. The second possibil-
ity is excluded by (3.2.1), and since ¢ > —1, the only problematic case is £ = —1.
But then [¢ — N/p'] < 0 and the condition vanishes. Thus, we have

Vr e A@_N/p,], (f,T>W =0,

JPRY )XW R (RY)
which is the compatibility condition for the Dirichlet problem

(R*) AY=¢ inRY,
¥ =0 on .

Thus, by Theorem 1.4.2 (with m = 2 and replacing ¢ by ¢ — 1), problem (R*)
admits a solution ¥ € W,;%(RY) under hypothesis (3.2.1). Similarly we have

Vs € '/V‘[EA*N/P/]’ <A£’ HNS) z?-llp(RN) W Y (RN <f7 HNS> - O’
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therefore as previously, we have

A _
Vs € -/\/’[Z_N/p’]? (€, S>W51117P(Rf)><vc[)/1;f+/1(Rf) =0

which is the compatibility condition for Neumann problem

N(=0 onl.

As for problem (R*), we can show that (S*) admits a solution ¢ € Wei]f (RY)
under hypothesis (3.2.1) according to Theorem 1.4.4 with m = 1. Then the
function defined by
is a solution to (P*). It remains to show that u € Wi’ﬁ (RY).

If % # —(, then we have the imbedding W, %(RY) — W>P(RY) therefore

u € W7P(RY). Moreover u satisfies the system

() {Au =20%(C—9)+¢& mmRY,

u =0 on I,

with 20% (¢ — ) + € € Weljj(Rf). As for (R*), we know that problem (7*) has
a solution y € WH(RY). We can deduce that u —y € e WE(RY),
i.e. u € ijf{(Rf).

If % = —/, then we have necessary ¢/ = —1 and moreover the imbedding
WeP(RY) — WP (RY) with ¢ — & = ¢+ 5 — N = —N <0, therefore no
compatibility condition for (T*). So we can still deduce that u € W, (RY).

(iii) Assume that ¢ > —1 and m > 1. Consider f € W;Zj’p(Rf) 1
Bioti—n/p). Remark at first that we have the imbedding

N
WP (RY) — W MP(RY) if > #£0+2 or m=1.
Then, thanks to the previous step, there exists a solution u € ijf{(Rf ) to
problem (P*). Let us prove by induction that, under hypothesis (3.2.1),

feWZPRY) = ue WIEIRY). (3.2.6)

For m =1, (3.2.6) is true. Assume that (3.2.6) is true for 1,2, ..., m and suppose

that f € W P(RY). Let us prove that w € Wi/ P(RY). Let us first observe

that Wg;llﬁ(Rf ) — WHT;Z’p (RY), hence u belongs to W:ﬁf’p (RY) thanks to

the induction hypothesis. Now, for any i € {1,..., N — 1},

2 N -1 1
A(pdiu) = 0 Adyu + E x.Vo;u + ( . + E) oiu.
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Then let us set v; = %:C.V(?iu + <% + %) O;u. We can remark that v, €

m,p N 3
W5 (RY) and moreover we can write

A*(00u) = Ao Adyu) + Av;,

with Av; € W::Jj’p(Rf). It remains to see the first term, i.e.

2 N -1 1

We can see that A(p9;Au) € W PP(RY), hence A2(pdu) € W PP(RY).

m—+/ m-+£
Let us set z; = pOQju and f; = A%z € Wﬁj’p(Rf). A priori, we only have
z; € follﬂ(Rf ). However, we know that you = y;u = 0, then we can deduce
that

Y0z = (00u)|p =0 and 712 = (OyoOiu + g@fNu)|F =0, since?# N.

Therefore
A%z = fi in ]Rf, zi=0nz=0 onT,

with f; € W 2P(RY) — W, »P(RY) under hypothesis (3.2.1). Moreover,

thanks to the Green formula, we have for any ¢ € Bjaq/—n/p:

2, = (2. A? =
<A Ziy (,0>W£72,p(R$)XVC[’/2!Zp/(Rﬁ) - <Z’La A SO>I/?/§,P(R£)XW:ZQ,;D’(R_’1Y) - O

So the orthogonality condition f; L Bjaje—nyp is satisfied for the problem

A*G = fi in Rf,
(Qi) $¢G=0 on I,

8NCZ» =0 on F,
which admits, by the induction hypothesis, a solution (; € W;::Z’p (RZY), unique
up to an element of Ba_y_n/p. Thus z; — ¢ € Bp—s—nyp, hence we can deduce
that z; € W72 P(RY). Since 2 = 0d;u, that implies

Vie{l,....,N—1}, OQueWrirRY) (3.2.7)

and consequently, for any (i,7,k) € {1,...,N}?> x {1,...,N — 1},

O (Onu) = O (Ou) € W (REY). (3.2.8)

m

Furthermore, (3.2.7) gives us

V(i,j) € {1,....N} x {1,...,N =1}, 0?0%u e W H(RY),

m+1+¢
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which implies

N

u=f— Y = R%u eWyr HRY) (3.2.9)
ij=1
(4,)#(N,N)

3

Then combining (3.2.8) and (3.2.9), we obtain that V3(dyu) € W™ L2 (RY)™
and knowing that dyu € W' P(RY), we can deduce that dyu € W3 (RY),
because m > 1. Adding this last point to (3.2.7), we have Vu € ijfﬁ,(]l%f)]v,
hence we can conclude that u € W/ P (RY). O

3.2.2 Panorama of basic cases

The purpose of this part is to extract the basic cases included in Theorem 3.2.1.
We give them for the lifted problem (P*). There is no orthogonality condition
in these cases because ¢ € {—2,—1,0}, hence Bjgis—n/py) = {0}. For m > 3, we
introduce the notation

Vf/}f"p(Rf) ={ueW""(RY); u=0yu=0o0nT}.
Corollary 3.2.2. The following biharmonic operators are isomorphisms:

(i) For =0

AT WARY) — WitI(RY)
AT OIRTRY) — WiMPRY), N £ L
A% WATRY) — WEPRY), if N/p ¢ {1,2}.

—~

A2 WAEPRN)/Bp-np — WDPRY), if N/p# 1.
A Wol(RY)/Bi-npm — Wy P(RY).
A2 W?’p(Rﬁ)/B[g_N/p] — Wlo’p(Rf), if N/p' # 1.

(RY)/Bu-nyy — WI3PRY), if N/p¢ {1,2}.
PPRY), if NJp #£ 1.
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Remark 3.2.3. Note that we have without any critical value, the isomorphism
A? I/f/g’p(Rf)/B[g_N/p] — Wy "P(RY). On the other hand, we have the iso-
morphism A% : Wi (RY) 0 W21 (RY)/Bis /) — Wy "P(RY) only if N/p # 1,
which is necessary for the imbedding Wy ?(RY) < W?*P(RY). Hence the speci-
ficity of spaces Vf/zn’p (RIY). &

3.2.3 What is new?

Recall the Boulmezaoud theorem on the biharmonic problem (see [21]), using the
spaces H™P(RY) instead of W?(RY) (see Remark 1.2.1):

Theorem (Boulmezaoud [21]). Let ¢ € Z and m € N and assume that
N
5} ¢ {1,...,|(| +2}.

For any f € H;:;glfl(Rf), go € H;IIZ/F?’Q(F) and g, € Hsﬁ’ffﬂ“) satisfying

the compatibility condition (5.2.2), problem (P) has a solution u € H:n"igfl(Rf),
unique up to an element of Big_y_n/2) and this solution continuously depends on

the data with respect to the quotient norm.

The most important point is about the regularity of data. In Theorem 3.2.1,
we can take f € W, ?*(RY), g, € WZ3/2’2(F) and g1 € Wel/2’2(F), whereas the

lower level in Boulmezaoud theorem is for f € HZJ{Q(Rf ), 90 € H, ff(F) and

g1 € Hj 4212(1“) The second point is about critical values which appear for all
the even dimensions. Particularly for the dimensions N = 2 or N = 4, the
Boulmezaoud theorem unfortunately does not give any answer to problem (P),
whereas we can see in Corollary 3.2.2 that Theorem 3.2.1 gives solutions with f
in Wo_z’Q(Rf), Wo_l’z(Rf) or L*(RY) ... The last point concerns the underlying
functional setting of our work, which is that of Lebesgue spaces LP(Q2), with
1 <p<oo.

3.3 Singular boundary conditions

The purpose of the second part of this chapter is now to find some solutions to
the homogeneous problem (PY) for singular boundary conditions. We suggest an
answer to this question through Theorems 3.3.4 and 3.3.5.

3.3.1 Extension of traces

In this section, we establish the existence of traces in special cases we shall use
for the study of singular boundary conditions.
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For any ¢ € Z, we introduce the spaces
0, 0,
YIRY) = {v e WRARY) A% e WIARY)}
0, 0,
Yép 1 {U e W, gGR ); A% e WHQI(RJI)} :
They are reflexive Banach spaces equipped with their natural norms:
lollyp@y) = lollwop@y) + 1A% g0 @y,

HUHYP ®RY) = ||U||W0 2(RY) + ||A2U||W0 2 L®RY)
Lemma 3.3.1. Let ¢ € Z such that

N N
?9?{1,--%—2} and ?¢{1,...,—£+2}, (3.3.1)

then the space D(R_f) is dense in Y/ (RY) and in Y}, (RY).
Proof. (i) We use an extension of the Riesz representation theorem to weighted

Sobolev spaces: Given T € (Yf (RY ))I, there exists a unique pair (uj, ug) €
(LP (RY))” such that

Vo e YI(RY), (T,p) = /N uy 0 pda +/ uy 0772 Ao du. (3.3.2)
RY R

N
+

Let us suppose that 7' = 0 on D(@), thus on D(RY). Then we can deduce from
(3.3.2) that
0P ur + A% (6" up) =0 in RY. (3.3.3)

We set v; = 02wy and vy = 0"T2uy, and we respectively denote by 9, and ¥,
the extensions by 0 of v; and vy to RY. We have for any ¢ € D(RY),

/ U goda:—l—/ Uy A?pda :/ vy god.r—l—/ vy A% dx = 0, (3.3.4)
RN RN RY RY

according to the assumption on 7', since <,0|RN € D(@) Therefore we can deduce

that 0; + A%0y = 0 in RY. We know that 0; € W HQ(RN), then we also have

A0y, € WO +2(RN ). Moreover, we have the following Green formula: for any
p € D(RY),

2~ /A~ 2
<A V2, (‘0>WE’£L,2(RN)><W£;2(RN) - <U2, A SO>WE‘2P:2(RN)><WO P(RN) (335)

+2

and we know that P5°, . C W/iE(RY) — W 5(RY) under the hypothesis
? ¢ {1,...,—( + 2}. Since D(RY) is dense in WHQ(RN), we can deduce that
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(3.3.5) holds for any ¢ € Péing/p] and consequently that A%d, L Péing/p}.
Thanks to Theorem 2.2.6, with m = 2, —/ instead of ¢ and exchanging p and p',
we can deduce that under hypothesis (3.3.1), we have @, € W, +2(RN ). Since ¥y

is an extension by 0, it follows that v, € I/V4 / +2( ). Now, thanks to the density
of D(RY) in i : +2( ), we have the following Green formula:

Vo € Y/(RY), Yw € W45+2 NWOF,(RY),

/@A2wdx—/ wA*pdz.
RY RY

Then it sufﬁces to come back to (3.3.2) and to use (3.3.6) with w = vy which
belongs to WL, (RY) N W, (RY), to obtain for any ¢ € Y/ (RY):

(3.3.6)

<T,<P):/ v190dx+/ ngchdx:/ (v1 + A%v) pdz =0,
RY RY RY

according to (3.3.3). Then we have proved that 7 = 0 on Y/(RY), and the
Hahn-Banach theorem assures us that D(]R_f) is dense in YV/'(RY).

(ii) Likewise, we can prove the density of D(@) in Y/, (RY). The differences
only concern the logarithmic factors in the weights.

Given T € (Y&(Rf)),, there exists a unique pair (u;, us) € (L¥' (Rf))z such
that

Yo € Yé’l(Rf), (T, @) = /N up 02 o da +/ ug 0" 1lg 0 A2pdz.  (3.3.7)
RY R

N

+

Let us suppose that 7' =0 on D(@), then we have
o' 2wy + A? <Q£+2 lgous) =0 inRY. (3.3.8)

We set v1 = 02 u; and vy = 02 1g pus, and we respectively denote by 9; and
Uy the extensions by 0 of v; and v, to RY. We have the analog of identity (3.3.4)
for any ¢ € D(RY). Therefore we can deduce that ©; + A?0y = 0 in RY. We
know that v; € WE’&E(RN ), then we also have A0y € WE’gQ(RN ), whence the
analog of Green formula (3.3.5) where the duality of the right side is replaced
by ngpflz {(RY) % W£+g ((RY). Since PéiffN/p] - W;fz},l(RN) - Wf;g(RN) if
% ¢ {1,...,—(+2}, we can deduce by density that this formula holds for any ¢ €
Péﬁzf N/l and consequently that A%, L 73[%2 —N/p]- Thanks to Theorem 2.2.6,
we can deduce that under hypothesis (3.3.1), we have 7, € W*7 fo (RN, Tt follows
that U2 € I/V4 : +2( ). We also have the analog of Green formula (3.3.6) for any

w e W HQ(Rf) Wgﬁz_l(Rf). The end of the proof is quite similar to the
previous case. O
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Thanks to this density lemma, we can prove the following result of traces:

Lemma 3.3.2. Let ¢ € Z. Under hypothesis (3.53.1), the mapping
(0. m) : D(RY) — DR,
can be extended to a linear continuous mapping
(o, ) + Y2, (RY) — WP (1) x W2y (D),
and we have the following Green formula:

Vo € Y/ (RY), Vp € W4£+2

2
(A% ‘P>W£+’2’ LRV WO, ®Y) T <U,A 90>Wo,p Ny WO (B (3.3.9)
<'U 8NA90> 1/P P(D)x Wl/p p’ (1) <aNU A(,D> 1 1/p, p(F)XW1+1/p P’ -

Proof. Let us first remark that for any ¢ € I/V4 / +2( ), we have
= 0%p and OyAp =03p onT.

Moreover, we always have the imbedding W™ +2(Rf ) — Wgﬁ 2, _1(RY). So we
can write the following Green formula:

Vv eD(RY), Vp € W4£+2
/ npszdx—/ vAzgod:c:/v@NAgpdx’—/ﬁNvAwdx’.
RY RY r r

In particular, if ¢ € W HQ(Rf) and such that ¢ = Oyp = 0%p = 0 on I, we
have

(3.3.10)

< lollp, @y lellyay @y

/ vOnApdr’
r

For all g € Wlfiép P(T"), thanks to Lemma 1.3.1, there exists a lifting function
o € W:%(]Rf) such that ¢y = Onpy = 03¢0 = 0 on ' and 93¢y = g on T,
satisfying moreover

||900HW3112(Rf) <C ”gHWi;iéP"P’(p)?

where C' is a constant not depending on ¢y and g. Then we have

/
[wgar’| < ol Ionlhysyap) < C Mol Nolhyn ey

Thus
H’.YO/UHW[_lQ/PyP(F) g C HUHYEI(RE‘Y)
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Therefore, the linear mapping v : v — v| defined on D(@) is continuous for
the norm of Y}, (RY'). Since D(RY) is dense in Y| (RY), 79 can be extended by
continuity to a mapping vy € E(Yfl(Rf); W[_lz/p’p(f‘)).

To define the trace y on Y/ (RY), we consider ¢ € WfﬁQ(Rf ) such that
0 =0yp =0%p=0onT. In this case, we have

/ Oyv Apda’
r

< ||U||YZI(M) HSOHWf’zi(M)'

For all g € foép/’p/(f‘), thanks to Lemma 1.3.1, there exists a lifting function
Yo € WfﬁQ(Rf) such that oy = Onpe = a0 = 0 on T’ and 9%y = g on T,

satisfying moreover
||()00 HWE’ZZL,Q(Rf) g C ||gHWz;_’1_éP/sP/(F)7

where C' is a constant independent of ¢y and g. Once again, the linear mapping
M 2 v — Onolp, defined on D(RY) is continuous for the norm of Y, (RY), and
it can be extended by continuity to a mapping v, € E(YZ’I(Rf); W[_lgl/p’p(lﬂ)).

To conclude this proof, we can deduce the formula (3.3.9) from (3.3.10) by
density of D(@) in Y/ (RY). O

Remark 3.3.3. Note that the logarithmic factors are unnecessary in the case
where & ¢ {¢ — 1,4, ¢+ 1, + 2}, because the imbedding WfﬁQ(Rf) —

p/
W7, (RY) holds. So we can replace the space Y/ (RY) by Y (RY) in the lemma,
with a Green formula without logarithmic factors, 7.e. where the first term of the

o 2
left side is replaced by (A®wv, 90>W,_9+”2’ RY) WO (RY) &

3.3.2 Very weak solutions

We now come back to the homogeneous problem, and we consider here singular
boundary conditions. Let go € W, yP"(T') and g, € W,_5 /P?(T"), we search
u € W5 (RY) solution to the problem

A*u=0 inRY,
(PO) U = go on Fa

Oyu=g¢g; onl.

Let us first remark that if u € W"5(RY) verifies (P°) under hypothesis (3.3.1),
then it belongs to Y/, (RY) and thanks to Lemma 3.3.2, you € W, YPP(T') and
MU € Weié_l/p’p(F), which gives a sense to (P°).
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Theorem 3.3.4. Let ¢ € Z. Under hypothesis (3.3.1), for any go € W[_g/p’p(l“)
and g € W[l 1/p.p P(T) satisfying the compatibility condition

Vo € Biye-ngmy s (91, 80)r — (90, INAP)p = 0, (3.3.11)

problem (P°) has a solutionu € W," SP(RY), unique up to an element of Bp_i—ny),
with the estimate

inf ”’LL + qHWeO;’Z’(Ri’) < C <||gOHW1;_12/PvP(F) + ||g1||W[_12*1/P7P(1—~)) .

qEB2 o N/p]

Proof. Let K~2 denote the kernel of the operator associated to this problem. We
can observe that problem (P°) is equivalent to the formulation:

Q) Find u € Y/, (RY)/K~? such that for any v € W4€+2( M,
2 _
<u7 A U> (RN)XW HQ(R_I'Y) - <glv AU>F <907 aNAU>F>
where we have used the Green formula (3.3.9) of Lemma 3.3.2.

Now, let us solve problem (Q). For any f € Wgﬁz(Rf ) L Bja—¢—nyp), accord-
ing to Theorem 3.2.1, with m = 2, —¢ instead of ¢ and exchanging p and p’, the
problem

A% =f inRY,
(P*) cv=0 on I,
oyv=0 onTl,

admits a unique solution v € W. £+2( N)/Bpase—nyp, under hypothesis (3.3.1).
Moreover, v satisfies the estimate

HUH 4@3.2( )/ Biato—nypr

< C HfHWE’ZiQ(Rf)’

where C' denotes as usual a generic constant not depending on v and f. /Consider
the linear form 7' : f +—— (g1, Av)p — {go, OnAv)p defined on W2, (RY) L
Bio—i—n/p)- We have for any q € Bpyo—n/p]s

T = | {91, A0 + D) = {0, AW + )|
<C o+ allgry gy (190llyoon ey + 19l )
Thus
TN < C M0l oy s (190l 1m0y + Il vmnr )
< C W llyorpr gy (190l ey + Mot llyivimogey )

Hence T is continuous on WEﬁQ(RﬂY ) L Bjo—¢—ny/p), and according to Riesz rep-
resentation theorem, there exists a unique u € W,"5(RY)/Ba ¢y such that
T(f) = (u, £y, 0,1 R WO (RY)° This means that u is a solution to problem (Q)

and /C = B[Q_E_N/p} ]
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3.3.3 Intermediate boundary conditions

To be comprehensive and also for the Stokes system, it remains to solve (P°)
for the data gy € Wzljll/p’p(F) and g, € W, | L/pp P(T"). So, we fill the gap between
generalized solutions of Theorem 2.3.1 and very weak solutions of Theorem 3.3.4.
We could also call these solutions “very weak” and the ones of Theorem 3.3.4,
“very very weak”. ..

Theorem 3.3.5. Let ¢ € 7 such that

g¢{1,...,e—1} and 5¢{1,...,—£+1}. (33.12)

For any gy € VV1 1/p P(T) and g, € W,_{ P P(T) satisfying the compatibility con-
dition (3.3.11), problem (P°) has a solution u € W, B(RY), unique up to an
element of Big_¢—_nyp), with the estimate

inf ot alhyreyy < C (Iollyvmny + 101y -yor ) -

9€EB2 o N/p]

Remark 3.3.6. We can give a very quick proof of this result by interpolation
between the previous case and the regular case, i.e. gg € VV2 pp (') and ¢; €

W, PP(I'). But the problem with this reasoning is that we must combine
the critical values of hypotheses (2.3.1) and (3.3.1), and then we obtain two
supplementary values with respect to (3.3.12). Thus we shall give a direct proof
similar to the singular case, with however some new arguments. &

For any ¢ € Z, we introduce the space
Y, P (RY) = {ve W2ARY); A%vew.h (R}
It’s a reflexive Banach space equipped with it’s natural norm:
2
||U||1/£{vlp(ngﬁ) = ||U”W,}j(Rf) +[|A UHW&;’J(Rf)'

We also define the subspace of YZ’lp (RY)
Y (RY) = {v e WhNRY); A% e WO 1(R§)},

Lemma 3.3.7. Let ¢ € Z. Under hypothesis (3.3.12), the space D(@) is dense
in Y, P (RY).
Proof. Let P be an extension operator mapping W;;I{(Rf ) into Wélﬁ (RM). For

any continuous linear form 7" € (Yl’p (]RN ))/ there exists a unique pair (uy, us) €
W (RY) x WO, (RY) such that for any v € Y, P(RY),

<T7 U> <U1,PU>W (RN)XW1 p(RN) + /RN U2 AQde'
+
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Moreover, since T depends only on v and not on the restriction of Pv to RY, the

support of u; is contained in @

Thanks to the Hahn-Banach theorem, it suffices to show that any 7" which
vanishes on D(RY) is actually zero on Yz’lp (RY). Indeed for any ¥ € D(RY), we
have

<U1,\Ij> + <2~L2,A2\Ij> = <U1,P77Z1> +/

uy A*1p da = 0,
RN

+

where 15 is the extension by 0 of uy to RY and ¢ = \I"Rf- It follows that

A27:L2 = —U in RN.
Thus we have A%q, € W__éljr’{/(RN ). Since 1y € Wg’f_, 27_1(Rﬂ\: ), we also have
A2y L P[%ie_ N/ Now, thanks to Theorem 2.2.6, we can deduce that under
hypothesis (3.3.12), we have G, € W*2  (RY). Tt follows that uy € I/(Ib/iﬁl(Rf)
By density of D(RY) in V?/:igrl(Rf ), there exists a sequence (¢ )ren C D(RY)
such that oy — ug in V([J/if;l(Rf) Thus for any v € Y, ;¥ (RY), we have

(T,v) = lim {<—A2g5k,Pv> +/ or A% dx}
RY

k—o0

= lim —/ UA2g0kdx+/ o A*vdx
k—o0 Rf R_‘j\_f

= 0.
Thus T' is identically zero. O
Lemma 3.3.8. Let { € Z. Under hypothesis (3.3.12), the mapping
70 : D(EY) — DR,
can be extended to a linear continuous mapping
1Y RY) — W (D),
and we have the following Green formula:
Vo € YEPRY), Vo € AT (RY),
<A2v, 90>W0,p

—_ 2 ° ’
O R x WO, (RY) <”’A¢>w};ﬁ(M>xw:;g; @y (3:3.13)

= = <6NU’ A()0>W[_11/PaP(F)Xwi/e;ilp/(l—x) .
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Proof. Since we always have the imbedding W3€+1(RN) — WOZ 2 L(REY), we
can write the following Green formula:

Yv € D(RY), V(,DEW 7R,

, . (3.3.14)
p A*vdx + Vuo.VApdr = — [ OyvApdx'.
RY RY r

This implies that

/ Onv Apda’
r

< Il 12l gy

For all g € Wlei{p p/(F), thanks to Lemma 1.3.1, there exists a lifting function
Yo € W3€+1(Rf) such that ¢g = dype = 0 on T’ and 9%y = g on T, satisfying
moreover

“SOOHWE’[’L(Rf) <C ”gHWi;i{P"P’(F)?

where C' is a constant not depending on ¢y and g. Then we have

‘/ g Onvda’
r

Therefore

< Mol pan, 190wy @y < € 10l 9l g

el yrrey < C ol pey)

Thus the linear mapping v, : v —— Oyv|p defined on D(@) is continuous for
the norm of YZ’IP (RY). Since D(R_f) is dense in YZ’IP (RY), 7 can be extended
by continuity to a mapping vy, € L'(YZ’IP(]Rf); W[_ll/p’p(f‘)).

By density of D(R_N) in Yel’lp (RY), we can generalize the formula (3.3.14) to
any v € Y, {"(RY). Furthermore, thanks to the of D(RY) in I/V1 P (RY), we have

for any v € I/V1 P (RY) and ¢ € Wfﬂl(Rf),

<V/U7 VASO> (RN) <U A g0> °1,p

WP ®RY)xw?, 4 W B RY ) xw =, ik (RN)

2+1

So we obtain the Green formula (3.3.13). O

Proof of Theorem 3.3.5. The first step is to reduce to zero the boundary condition
on u in Problem (P°). Let us consider the problem

(R%) Aw=0 inRY,
w=gyg onl.
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Thanks to (2.3.4), we know that Bpys—n/p) = HD-A[%,N/I,/} &) HN'/\/[?fN/p’P thus
the compatibility condition (3.3.11) on (P°) implies
Vr e A[%—N/p’]? <907 aNT> 1 1/p p(F)XW 1/P/7P/(F) = 07

241
which is the compatibility condition on (R°). Thus, according to Theorem 1.4.1,
problem (R°) admits a solution w € W,"%(RY) under hypothesis (3.3.12). It

follows that w € YZ’IP(RJJ\:), and thus yyw = by € W, /PP(T'). Let us set v =
u — w, then problem (P°) is equivalent to the following

A%y =0 in ]Rf, v=0 and Oyv=g¢; —hy; onI. (3.3.15)

Let K~! denote the kernel of the operator associated to this problem. We can
observe that Problem (3.3.15) is equivalent to the formulation:

© Find v € OM’(Rf)/IC such that for any ¢ € W‘g@rl( M,
(v, A%p) o = (91 — i, Ap)y.,

Wl (R x W2 z+1( )

where we have used the Green formula (3.3.13) of Lemma 3.3.8.

Now, let us solve Problem (Q). For any f € W_}lﬁ/ (RY) L Bp—i—nyp), ac-
cording to Theorem 3.2.1, with m = 1, —/ instead of ¢ and exchanging p and p/,
the problem

A’z =f in ]Rf ,
(P*) ¢2=0 on I,
Onz=0 onT,

admits a unique solution z € W31£+1( ¥)/Biae—nyp, under hypothesis (3.3.12).
Moreover, v satisfies the estimate

/ < — / .

||z“WE’éil(Rﬁ)/B[Q-&-Z—N/p’] s C Hf”szzlﬁ RY)
Consider the linear form 7' :  f +— (g1 — hy, Az)p. We can show that it is
continuous on W €1+;; (RY) L Bj—¢—nyp. Then, according to the Riesz repre-

sentation theorem, there exists a unique v € I/(I)/;’_pl (RY)/Bpo—¢—nyp such that
T(f) = (v, f> i @y v.- This means that v is a solution to Problem
LR )< W2 E RY)

(Q) and K~ Bz—e—N/p] ]

3.4 Other boundary conditions

The last part of this chapter is devoted to the biharmonic equation with other
kinds of boundary conditions. These results will be useful in the next chapters
concerning the Stokes problem with different types of boundary conditions.
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I. Conditions on v and Au

The biharmonic equation with boundary conditions on u and Au

A’y =f in Rf,
(@ qu=g0 onl,
Au=g; onl.

Theorem 3.4.1. Let { € Z. Under hypothesis (2.3.1), for any f € W, "P(RY),
go € We?’_l/p’p(F) and g, € ng_l/p’p(F) satisfying the compatibility condition

2
Vo € AR

<fa @)ngl,p(Rﬁ)XVi’/&Zp’(Rf) - <91, 8N90>r - <907 aNASD>F =0,

(3.4.1)

problem (Q) admits a solution u € WZS”’(RJJ\:), unique up to an element of
Aéig_N/p}, with the estimate

inf ||U+Q||W37P(RN) <
qe‘A[%Q—Z—N/p] ’ i

C (HfHWe_l’p(]Rf) + Hgouwg’*l/ﬂp(l—w) + HngW;*l/Pyp(F)) .

The kernel

We must characterize the kernel of the operator
(A%,70,704) : Wes’p(Rf) - We_l’p(R% X Wf?)_l/p’p(r) X Wzl_l/p’p(F)

Since % ¢ {1,...,—(}, we know that Pz_s_n/,) C W,P(RY). Let u be a function
of this kernel and set

(2’ zy) = {u(xl’xm if zy >0,

—u(2', —zyn) if xy <O.

Thus we have @ € §'(RY) and we show that A%a = 0 in RY. We can deduce
that u, and consequently u, is a polynomial. By identification in the half-space
ry < 0, we obtain that u is odd with respect to x. Conversely it is clear that
any polynomial u odd with respect to xy verifies u = Au = 0 on I'. Furthermore
u € WP(RY) implies that its degree is at the most [3 — ¢ — N/p|. So we have
characterized this kernel as the space of biharmonic polynomials, odd with respect
to z, of degree smaller than or equal to [3—¢— N/p|. We denote it by A[Aging/p}.
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The compatibility condition

Problem (Q) admits a solution u in W;*?(RY) only if the condition (3.4.1) is sat-
isfied, where (g1, Ong) and (go, OnAg)y respectively denote the duality brackets
<gl7 aN@)wll—l/P,P(F)XW:;/P’,P’(F) a‘nd <g07 aNAgO)Wf_l/p’p(F)XW:Z_l/p/’p/(F)'

Note that if ¢ < 0, then A[Alig_ Ny = {0} and thus there is no compatibility

condition. Let us now remark that if ¢ € A[Alig_ N/p]» then ¢ € Wzﬁl(]Rf ) and
thus Oneplp € lej{p’p (T) — W:él/p’p (T'). But we also have p € W/, (RY)

and thus OyAp € Wlﬁép/’p/(l“) < W_27'7"P(). This gives a sense to (3.4.1).

As in the previous chapter, for the generalized solutions, in Lemma 2.3.7, we can
verify that these imbeddings hold under hypothesis (2.3.1) for ¢ > 1 and we can
prove in a similar fashion the necessity of condition (3.4.1).

Proof of Theorem 3.4.1

Let us first consider the Dirichlet problem
Av=f ian, v=g; onl,

which admits a solution v € ng’p (RLY), if the following compatibility condition
is satisfied (see Theorem 1.4.1):

/

V9 € AR N (L) — (g1, On0)p = 0. (3.4.2)

-1, o1,
W, PR xw 2P (RY)

Then, we must solve the second Dirichlet problem
Au=wv ian, u=go onl,

which admits a solution u € ng’p (RZY), if the following compatibility condition
is satisfied (see Theorem 1.4.2):

vy € A[AflﬂffN/p/]’ (v, ¢>Wel’p(Rf)><W__el’p/(Rf) — (90, On)p = 0. (3.4.3)

Now, let us show that the compatibility condition (3.4.1) of problem (@) implies
the conditions (3.4.2) and (3.4.3). Condition (3.4.1) must be satisfied for any
pE Aﬁie_N/pqa thus for any 9 € A[Al-i-Z—N/p’]? and then it is reduced to

<f7 19>W[1”’(Rﬁ)><v?/l_f/([&f) - <g17 aN79>F = O,
i.e. precisely the condition (3.4.2). Now, note that by (3.4.1), v satisfies

2
Vo € Aty

<AU, (P>W[_l’p(Rf)XVf/1_’gp/(R_‘A_’) - <U7 aNS0>F - <90, aNASO>F = 0
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It remains to write for such a ¢, the Green formula
<AU7 ¢>W[_1’p(R$)XIX/1¥Zp/(R$) = <U7 A¢>W;"“(R§)XW:ZLP/(R$) _'_ </U7 8N¢>F 9
to deduce the condition
A2
Vo € ANy (0 A@Wgﬁp(M)ij’"(M) — {90, On )y = 0.

If we finally remark that any ¢ € .A[A_ L+e—Nyp) Can be written ¢ = Ay with
Y E A[Alié_N/p,}, we exactly find the condition (3.4.3).

Remark 3.4.2. Problem (Q) is ill-posed for f € W[Q’p(Rf). However, if f =0,
we can consider less regular boundary conditions gy and g . &

Regularity of solutions to Problem (Q)

To complete Theorem 3.4.1, we can give a result for different types of data.

Theorem 3.4.3. Let ¢ € Z and m > 1 be two integers and assume that

N N
?¢{1,...,€+1} and Ei{l,...,—ﬁ—m}. (3.4.4)

For any f € W,ZL;KLP(Rf), go € W:nnif_l/p’p(F) and g1 € Wnn;rgl_l/p’p(F) sat-
isfying the compatibility condition (3.4.1), problem (Q) admits a solution u €

ng}p(Rf), unique up to an element of A[ASiffN/p}’ with the estimate
inf “U+Q|‘Wm+3,P(RN) <
9€AR o /i) me

C (1w oqay + ollgmss-simn ey + Ngnllym-simngry ) -

It can be readily checked that the kernel is unchanged under the hypothesis
% ¢ {1,...,—¢ —m}. We also keep the compatibility condition (3.4.1) and the
proof of the existence of a solution is similar to that employed for Theorem 3.4.1
by means of Theorem 1.4.2 for the two Dirichlet problems.

II. Conditions on Jyu and OyAu
The biharmonic equation with boundary conditions on dyu and OyAu
Ay = f in RY,
(R) {Ovu=gp onT,
ONAu=g¢g; onl.
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Theorem 3.4.4. Let ¢ € 7 and assume that

N N
?gé{l,...,ﬁ} and Eg’é{l,...,—é—i—l}. (3.4.5)

For any f € WOP(RY), go € W VPP(T) and go € W, /PP(T) satisfying the
compatibility condition

2
VSO € '/V’[KA—N/p’b <fa SO)W?’p(Rﬁ)XWEf’(RiY) + <91> Q0>F + <907 A90>F = O’ (346)

problem (R) admits a solution u € Wy2(RY), unique up to an element of
N’[fff—N/p}J with the estimate

inf ||U+Q||W3vP(RN) <
GENE o n B

C (I o wqayy + 1901y a-srmr ey + 1911l -vmney ) -

The kernel

We must characterize the kernel of the operator
(A% 7,7 A) : WERRY) — WP (RY) x WPP(D) x W {7 (T),
Let u be a function of this kernel and set

a(z',xy) = {u(x’,:cN) sty 20,

u(z',—xy) sizy <0,

Here again, @ € S'(RY) and we show that A%G = 0 in RY. We can deduce
that @, and consequently u, is a polynomial. By identification in the half-space
ry < 0, we obtain that u is even with respect to xy. Conversely it is clear
that any polynomial u even with respect to xy verifies Oyu = OyAu = 0 on T
Furthermore u € W,"%(RY) implies that its degree is at the most [4 — ¢ — N/p).
So we have characterized this kernel as the space of biharmonic polynomials, even
with respect to xy, of degree smaller than or equal to [4 — ¢ — N/p]. We denote
it by A[[ﬁZ*N/p]'

The compatibility condition

Problem (R) admits a solution u in Wff{(Rf ) only if the compatibility condition
(3.4.6) is satisfied, where (g1, p) and (go, Ap) respectively denote the duality

braCketS <gl7 SO> Wlill/P,p(F)XWizi{PlyP’(F) and <gOa A(10>W22—11/P,P(F)XW:ZIJ:ll/PCP’ (F) .

The arguments are exactly the same as in the other cases.
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Proof of Theorem 3.4.4

We solve this case in the same way that the precedent, but this time by two
successive Neumann problems.

Av=f ian, Onvv=g; onl,

which admits a solution v € W;ﬂi(Rf ), if the following compatibility condition
is satisfied (see Theorem 1.4.3):

V0 € Nt s yonayywop @y T (91 9)e = 0. (3.4.7)

Then
Au=wv in ]Rf, Oyu =go on T,

which admits a solution u € Wf_’ﬁ’(Rf ), if the following compatibility condition
is satisfied (see Theorem 1.4.4):

Y €N senm (0 s myyav iy @y T 90 0)r = 0. (3.4.8)

—0+1
Here again the compatibility condition (3.4.6) of problem (R) implies the condi-
tions (3.4.7) and (3.4.8). On the one hand condition (3.4.6) must be satisfied for
any 0 € Nig* |, and that gives (3.4.7).
On the other hand if we introduce the equations Av = f in RY and dyv = ¢;
on I', in condition (3.4.6); with the Green formula

<AU7 90>W[_117P(Rf)><wiﬁ_’l(ﬂ§$) = <Ua A<’0>W21L1{(R$)XW:ZI_;_ZII(R1) - <8Nva 90>F )

and the remark that any ¢ € '/\/’[§2+€—N/p’} can be written ¥ = Ay with ¢ €
/\/'[EAfN/p,}, then we obtain (3.4.8).

Regularity of solutions to Problem (R)

To complete Theorem 3.4.4, we can give a result for different types of data.

Theorem 3.4.5. Let { € 7Z and m € N. Under hypothesis (1.4.6), for any
f e WrhIRY), g € ngﬁfl/p’p(f‘) and g1 € W;@nigl*l/p’p(lﬂ) satisfying the
compatibility condition (3.4.6), problem (R) admits a solution u € W;::f’p(Rf),
unique up to an element of./\/'[ffefN/p], with the estimate

ot et alygeey <
[4—e—N/p]
C <HfHW:nn_’FIZ(Ri’) + HgOHW::ifil/p’p(F) + HngWT’n"I;*l/P,P(F)) .

It can be readily checked that the kernel is unchanged under the hypothesis
% ¢ {1,...,—C —m}. We also keep the compatibility condition (3.4.6) and the
proof for the existence is similar to that employed in Theorem 3.4.4 by means of
Theorem 1.4.4 for the two Neumann problems.
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III. Conditions on Au and dyAu

Consider now the problem
A’y = f in Rf, Au= gy and OyAu=g¢g; onl.

Let us first note that these boundary conditions do not satisfy the complementing
condition by Agmon-Douglis-Nirenberg (see [2]). Thus this problem is ill-posed.
Indeed, if we set v = Au, we obtain

Av = f in]Rf, v=g9 and Oyv=g¢g; onl,

i.e. a Laplace equation with both Dirichlet and Neumann boundary conditions.






Chapitre 4

The Stokes system with Dirichlet
boundary conditions

4.1 Introduction

The purpose of this chapter is the resolution of the Stokes system with nonhomo-
geneous Dirichlet boundary conditions. In the sequel, we will denote it by (Sp)
(for Stokes system with Dirichlet conditions):

—Au+Vr =f inRY,
(Sp) divu =h inRY,
u =g onl=RN"1

with data and solutions which live in weighted Sobolev spaces, expressing at the
same time their regularity and their behavior at infinity. We will naturally base
on the previously established results on the harmonic and biharmonic operators.
We will also concentrate on the basic weights because they are the most usual
and they avoid the question of the kernel for this operator and symmetricaly the
compatibility condition for the data. In the next chapter, we will complete these
results for the other types of weights in this class of spaces.

Among the first works on the Stokes problem in the half-space, we can cite
Cattabriga. In [24], he appeals to the potential theory to explicitly get the velocity
and pressure fields. For the homogeneous problem (f = 0 and h = 0), for
instance, he shows that if g € LP(I') and the semi-norm |g|W(1)_1/p,p(F) < 00, then
Vu € LP(RY) and 7w € LP(RY).

Similar results are given by Farwig-Sohr (see [28]) and Galdi (see [30]), who
also have chosen the setting of homogeneous Sobolev spaces. On the other
hand, Maz’ya-Plamenevskii-Stupyalis (see [38]), work within the suitable setting
of weighted Sobolev spaces and consider different sorts of boundary conditions.
However, their results are limited to the dimension 3 and to the Hilbertian frame-
work in which they give generalized and strong solutions. This is also the case

61
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of Boulmezaoud (see [21]), who only gives strong solutions. Otherwise, always in
dimension 3, by Fourier analysis techniques, Tanaka considers the case of very reg-
ular data, corresponding to velocities which belong to W;"+3’2(Ri), with m > 0
(see [43]).

Let us also quote, for the evolution Stokes or Navier-Stokes problems, Fujigaki-
Miyakawa (see [29]), who are interested in the behaviour in ¢ — 4o00; Borchers-
Miyakawa (see [19]) and Kozono (see [35]), for the L¥-Decay property; Ukai (see
[44]), for the LP-L? estimates and Giga (see [31]), for the estimates in Hardy
spaces.

4.2 The Stokes system in the whole space

Here again, this study requires to extend some problems in the half-space to the
whole space. On the Stokes problem in R¥,

(S): —~Au+Vr=f and divu=h inRY,

let us recall the fundamental results on which we are based in the sequel. First,
for any k € Z, we introduce the space

Se={(A\, p) €EPrxPpry; divaA=0, —AX+Vu=0}.
Concerning the generalized solutions, we have the following result:
Theorem 4.2.1 (Alliot-Amrouche [3]). Let ¢ € Z and assume that

N/p'¢{1,....4} and N/p¢{l,...,—(}.

For any (f, g) € (W;l’p(RN) X Wgo’p(RN)) L Spite—nypy, problem (S) admits a
solution (u, 7) € WP(RY) x W)P(RN), unique up to an element of Sy—o—nyy),
with the estimate

At (I + Al ogany + 17+ il rgamy )

< O (Iflw;nm, + gl ) -
We also have the following result for more regular data:

Theorem 4.2.2 (Alliot-Amrouche [3]). Let £ € Z and m > 1 be two integers and
assume that

N/p¢{1,....4+1} and N/p¢{l,...,—(—m}.
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For any (f, g) € (WZ:jp(RN) x WiiB(RYN)) L Spse—nyw), problem (S) ad-

mits a solution (u, ©) € Wit P(RV) x WE(RN), unique up to an element of

Sji—e—nyp), With the estimate

eh (I + Mywpzre, + 17+ alwzzam)
<0 (Hfﬂwjg;;’p(w) + HgHW,’n"f;(RN)> :

Note that if we suppose £ = 0, then S;_n/y) = Pp-nyp) X {0} and the
orthogonality condition (f, g) L Su—n/p) is equivalent to f L Pp_nyp-

4.3 Singular boundary conditions

The way we will take to solve the Stokes system is based on the existence of very
weak solutions to homogeneous problems with singular boundary conditions. The
first one is the biharmonic problem: find u € Welﬁ(]Rﬂ\: ) solution to the problem

(P) : A%u =0 ian, u=go and Oyu=g¢g; on [,

where gy € W,—'/"?(T') and g, € W,_"/"?(T) are given. This question has been
solved in the previous chapter by Theorem 3.3.5 (the intermediate boundary
conditions).

Remark 4.3.1. In this chapter, we will particularly interested in the case ¢ = 1.
In this case, the compatibility condition (3.3.11) of Theorem 3.3.5 concerns the
polynomials in Bjs_n/y). For the arguments to come about the compatibility
conditions, let us recall that if N > p', then Bz_n/y) = {0} and if N < p/, then
Bis—njp) = By = Ra?,. O

We will also need a result of this type about the Neumann problem for the
Laplacian: find u € W,"5(RY) satisfying the problem

Q) : Au=0 inRY, Oyu=g onT,

where g € W, 5 /PP(T).

Theorem 4.3.2 (Amrouche [8]). Let ¢ € Z and assume that

N/ ¢{1,....4—2} and N/p¢{l,...,—(+2}. (4.3.1)
For any g € W[};” PP(TY) satisfying the compatibility condition

Vg& E '/\/[KA—N/])/P <g, S0>Wz—_12—1/p,p(F)XW271/p’,p’(F) - O, (432)

—042
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problem (Q) admits a solution u € WOP(RN), unique up to an element of
NG 1wy with the estimate

v gnf Hu"‘qHW[O;g(Rﬁ) < C”gHW[_l;l/”’p(F)'
[2—¢—N/p]

With the same arguments as for Theorem 4.3.2, we can prove an intermediate
result for this problem:

Theorem 4.3.3. Let ¢ € Z and assume that
N/p¢{l,....4—1} and N/pe¢{l,...,—(+1}. (4.3.3)

1/p,p

For any g € W, [P"P(T) satisfying the compatibility condition (4.3.2), problem

(Q) admits a solution u € W;ﬁ(Rf), unique up to an element of N’[Q—K—N/pp
with the estimate

inf |lu+ q”W}f{(Rﬂ\_’) < C ||g||W£111/p,p(F)-

[2—£—N/p]

geENE

Now, we will establish a similar result about the Dirichlet problem for the
Laplacian with very singular boundary conditions: find u € W[fép (Rﬂ\rf ) satisfying
the problem

(R) : Au=0 inRY, wu=g onT,

where g € W, /PP(ID).

Theorem 4.3.4. Let { € Z. Under hypothesis (4.3.1), for any g € W, 1=1/pp (1)
satisfying the compatibility condition

A
VQO € A[1+E*N/p’]7 <g; 8N(F)) 1 1/p, P(r )szziép’,p’(l—\) - 07 (434)

problem (R) admits a solution u € W, 5P(RY), unique up to an element of
.A1 Ny With the estimate

inf  futglly-yrgyy < Cllgly g,

A
IS4G ey

Firstly, we must give a meaning to traces for a special class of distributions.
We introduce the spaces

o= (e WS RY): Av e WIAERD))
Yo (RY) = {v e W53 (RY); Ave Wit (RY)}.

They are reflexive Banach spaces equipped with their natural norms:

||U||Yg(RN = ||U||W*1»P(RN + ”AU”WO”’(RN)?
[Vllys, @) = N0l 4@y + 1AV]Iwor @y
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Lemma 4.3.5. Let ¢ € Z. Under hypothesis (4.3.1), the space D(R_f) is dense
in Yo (RY) and in Y, 1(RY).

Proof. For every continuous linear form 1" € (Y}(Rf ))/, there exists a unique pair
(f,9)ew £+2(]RN) WB’EP_II(RJX), such that

—L0+2

VU e YE(Rf)’ < > <f U> °1,p (Rﬁ)XWZiIéP(Rﬁ) + /RN gAU dl' (435)
+

Thanks to the Hahn-Banach theorem, it suffices to show that any 7" which van-
ishes on D(RN ) is actually zero on YZ(RN ). Let us suppose that 7= 0 on D(RN ),
thus on D(RY). Then we can deduce from (4.3.5) that

f+Ag=0 ian,

hence we have Ag € W HQ(Rf). Let f € Wi’g’iQ(RN) and § € WO (RV)
be respectlvely the extensions by 0 of f and g to RY. Thanks to (4.3.5), it is
clear that f + Ag = 0 in RY, and thus Ag € W HQ(RN). Now, thanks to the
isomorphism results for the Laplace operator in RY (see [6]), we can deduce that
JgE W?”;iQ(]RN ), under hypothesis (4.3.1). Since g is an extension by 0, it follows

that g € W HQ(RN). Then, by density of D(RY) in W HQ(Rf), there exists

a sequence (¢)ken C D(RY) such that ¢ — g in W Z+2(Rﬂ). Thus, for any
v € Y,(RY), we have

<T7 'U) — <_Aga >Vi)/1 e;;+2( {,Y)XWZilép(RN) <ga A'U) 03;7+2( f)XWéiSZ’p(Rf)

:;}550{< R R e e I M)xW;}g”(M)}

Zig2 —i42

= lim {—/ gokAvdl‘-i-/
k—o00 RQ’ RN

or Av dx}
N

i.e. T is identically zero.
For the density of D (Rf ) in Yy (R_]X ), the only difference in the proof concerns

the logarithmic factors in the weights, with ¢ € Wg’ﬁ 17_1(Rf ). O
Thanks to this density lemma, we can prove the following result of traces:

Lemma 4.3.6. Let { € Z. Under hypothesis (4.5.1), the trace mapping Yo :
D(Rﬂf) — D(RNY), can be extended to a linear continuous mapping

%0 Yi(RY) — W, PE)af NP E (e 0 1,
(resp. vo : Yo, 1 (RY) — W, CUPPy N e {0—1,0, 0+ 1}).
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Moreover, we have the following Green formula
Vo € Y (RY), Vo € Wf’e%(Rf) such that p = Ap =0 on T,

B0 st m ~ O APy oy ,en (436)

= <U7 8N()0>We—712—1/p, p(F)XWEZiép/7 p’ (F)

(resp. the Green formula for v € Ye,1(Rﬁ), where the first term of the left-hand

side is replaced by (Av, (p>Wgo+”f,1(Rf)xwf’g’fl,_1(Rf) )

Proof. Firstly, let us remark that for any ¢ € WEﬁQ(Rf ), the boundary condition
¢ = Ap = 0on T is equivalent to ¢ = 9%p = 0 on I'. Moreover, if N/p' ¢
{¢ -1, ¢, ¢+ 1}, we have the imbedding WEﬁQ(Rf) — WEQ’L(RJJ\:). So we can
write the following Green formula:

Yo € D(@), Yo € WE’Z_’;Q(Rf) such that o = Ap=0on T,

/ @Avdx—/ vAgodx:/vaNgodx'.
RY RY r

Since A = 0 on I', we have the identity

(4.3.7)

/RN vApdr = (v, AS0>W:12’P(Rf)xvf/1_’fLQ(R§) )

4
+

This implies

<U78N¢>W[_12*1/P7P(F)szziéplypl(lﬂ) < ||U||YZ(Rf) ||90||Wie1jr/2(]gf)

By Lemma 1.3.1, for any u € WE;iép/’p/(F), there exists a lifting function ¢ €

Wﬁ’zﬁz(Rf) such that ¢ = 0, dyp = p and 9% = 0 on T, satisfying
el < a2z oy

where C' is a constant not depending on ¢ and p. Then we can deduce that
”fVOUHV[/[_lgl/pvp(F) < C HUHYZ(R_‘A_’)-

Thus the linear mapping vy : v —— v|p defined on D(@) is continuous for
the norm of Y,(RY). Since D(@) is dense in Y;(RY), 7o can be extended by
continuity to a mapping still called v € L(Yo(RY); W, e (T)). Moreover,
we also can deduce the formula (4.3.6) from (4.3.7) by density of D(]R_f) in
Yy (RY). To finish, note that if N/p' € {¢ —1, ¢, £+ 1}, we only have the imbed-
ding WfﬁQ(]Rf ) — Wg’f_/ 17_1(Rf ), hence the necessity to introduce the space
Y;,1(RY) and the corresponding Green formula with logarithmic factors for these
three critical values. O
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Proof of Theorem 4.3.4. We can observe that solve problem (R) is equivalent to
find u € Y,(RY) if N/p' ¢ {¢ —1,0,0+1} (resp. u € Y, (RY) if N/p' €
{¢—1,¢, 0+1}), satisfying

YORS W?’HQ(Rf) such that v = Av =0 on I,
<U, AU) = <ga aNU>

LPRY )XW L RY)

(4.3.8)

—1-1 2—1/p’,p’ .
s /P, P(F)XW7Z+QP P (F)

Indeed the direct implication is straightforward. Conversely, if u satisfies
(4.3.8) then we have for any ¢ € D(RY),

<AU, 90> —3 P <U A@) —1 P = 07

[¢] /
(RY)x W™ FaRY) S PRY)x WL, (RY)

thus Au =0 in Rﬂy . Moreover, by the Green formula (4.3.6), we have

Yo € W3£+2(]RN) such that v = Av=0on T,

<guaN'U> 1 1/p, p(F)sz 1/p ? (1) = <u’aNU)W[jQ—l/W’(F)xwfﬁél"’p'(r)'

By Lemma 1.3.1, for any p € Wzgjép p/(F) there exists v € W3€+2(Rf) such
that v =0, dyv = pu, 0%v =0 on I'. Consequently,

<U -9 M> WL 1/p, p(F)xWQZjé"/"’/(F) =0,

i.e. u—g=0onTI. Thus u satisﬁes (R).
Furthermore, for any f € W e +2( ML A[1 =N/ according to Theorem
1.4.2, we know that there exists a unique v € W3£+2(RN)/A[1H N/ Such that

Av=f ian, v=20 on T,
with the estimate

v 3, p/ < C 1,p’
H ||W—1£*-2(R1)/A[A1+£—N/p/] ~ Hf”w_zl_’m(ﬂgy)a
where C' denotes a generic constant not depending on v and f. Now, let us

consider the linear form 7 : f +—— — <g,8Nv> 11755 ()21 defined on
42

W Z+2(RN) 1 A[1 ¢—nyp- Thanks to (4.3.4), we have for any g € A[Al—l-Z—N/p’]?

’Tf‘ = <g7 8]\7(1} + q)> —1 1/p, p(F)XW2 1/p’,p’ (F)

42

C ||g||We:12—1/P7P(p) HU + qHWE’ZiQ(Rf)

NN

C HgHWe:lQ_l/p’p(F) HUH (RN)/A[:; N/p']

N

C ||9||Wé:12*1/1’»?(r) Hf”Wi’/iQ(M)'
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Thus we have shown that T is continuous on W 20 +2(Rf ) L A[1 —nyp and
then, according to Riesz representation theorem, there exists a unique u €

W, 11”(RN)/A[1 ¢ nyp Such that Tf = (u, f> So we have

—1, p(RN)XW Z+2(RN)
(4.3.8) and u is the unique solution to problem (R) O

Similarly to the Neumann problem, we can give an intermediate result:

Theorem 4.3.7. Let { € Z. Under hypothesis (4.5.3), for any g € W,_{ 1/p, ()
satisfying the compatibility condition (4.5.4), problem (R) admits a solutzon u €
WP (RY), unique up to an element of ARy nyps with the estimate

quﬁinef o I+ q”w,_?;q(Rf) < Clglly —1/pp(py:
—E=N/Pp

4.4 Generalized solutions to the Stokes system

We will establish a first result about the generalized solutions to (Sp) in the
homogeneous case. The following proposition is quite natural and we can find
similar results in the literature although not expressed in weighted Sobolev spaces
(see e.g. Farwig-Sohr [28], Galdi [30], Cattabriga [24]). Moreover, we take up
some ideas in [28] and we considerably simplify the proof.

Proposition 4.4.1. For any g € W~ YPP(TY, the Stokes problem

~Au+Vr=0 in RY, (4.4.1)
divu =0 in RY, (4.4.2)
u=g on I, (4.4.3)

has a unique solution (u, ) € WyP(RY) x LP(RY), with the estimate
HUHWé*P(Rﬁ) + HWHLP(Rf) < C HQHW(l)fl/p,p(F)- (4.4.4)

Proof. (i) Firstly, we will show that system (4.4.1)—(4.4.3) can be reduced to three
problems on the fundamental operators A? and A.
Applying the operator div to the first equation (4.4.1), we obtain

Ar=0 inRY. (4.4.5)
Now, applying the operator A to the same equation (4.4.1), we deduce

A’u=0 inRY. (4.4.6)
From the boundary condition (4.4.3), we take out

uy =gy onl, (4.4.7)
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. . : N-1
and moreover div' u’ = div' g’ on I, where div'u' =", d;u;.

Since divu = 0 in ]Rf , we also have divu = 0 on I'; then we can write
Onuy +div'u’ = 0 on T, hence

Oyuy = —div'g” onT, (4.4.8)
Combining (4.4.6), (4.4.7) and (4.4.8), we get the following biharmonic problem
(P) : A%uy =0 in ]Rf, uy = gy and Oyuy = —div' g’ onT.

Then, combining (4.4.5) with the trace on T' of the N** component in the equa-
tions (4.4.1), we obtain the following Neumann problem

(@) : Ar=0 inRY, Oym=Auy onT.

Lastly, if we consider the N — 1 first components of the equations (4.4.1) and
(4.4.3), we can write the following Dirichlet problem

(R) : Au'=V'm inRY, 4 =g onl.

(ii) Now, we will solve these three problems.

Step 1: Problem (P). Since g € W, /"?(T'), we have gy € W, "/»?(I)
and div' g’ € W, "P(T"). So (P) is an homogeneous biharmonic problem with
singular boundary conditions, and we can apply Theorem 3.3.5 provided the
compatibility condition (3.3.11) is fulfilled. If 1 — N/p" < 0, then By_n/p = {0}
and the condition vanishes. If 1 — N/p’ > 0, then B_n/y = Ra% and this
condition is equivalent to

A o
<le g, 1>W0—1/P,P(F)XW3/Z)1P’(F) =0. (449)

Since D(RY~1) is dense in Wol/ PP l(I‘), we know that there exists a sequence
(o)ken € DRY1Y such that ¢y, — 1 in Wy/”? (), hence we can deduce
(div' g, 1) = — lim g Vopdd = 0.

—1/p, 1/p,p’
WO /P,P(F)XWO/p P (F) koo RN-1

Thus the orthogonality condition is fulfilled and problem (P) has a unique solu-
tion uy € W, P(RY), satisfying
C (g lys-simoy + 148 gl e )

gy <
< C ”gHWé—l/p,p(F)- (4410)

Step 2: Problem (Q). Since A?uy =0 in RY, we have Auy € Y5(RY) and also

Auy € Yy 1(RY), hence Auy|r € Wo_l_l/p’p(l") by Lemma 4.3.6. Then we can
apply Theorem 4.3.2, provided the compatibility condition (4.3.2) is fulfilled, i.e.

A
\V/(p e '/\/'[Q—N/p’]’ <AUN7 SO>WO*1*1/P7P(F)XWOQ*I/P/;P/(F) - 0
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Knowing that ./\/'[é ~/p) © P1, an argument similar to that of the condition (4.4.9)
in Step 1 gives us this relation. We can conclude that problem (@) has a unique
solution 7 € LP(RY), satisfying

H77||LP(M) < C ||AUNHWO—1—1/p,p(F)
< ClAunllyeyy = Cl[Aunlly1rry)

Step 3: Problem (R). By Step 2, we have V'w € ng’p(Rf)N_l and moreover
N-1
g € Wol_l/p’p(F) . Since A[AlfN/p,] = {0}, according to Theorem 1.4.1, we

know that problem (R) has a unique solution w’ € W, *(RY )Nﬁl, satisfying

N

Hu,||W011P(R$)N71 O <||vlﬁ||WO—1aP(Rf)N71 + Hg,||W01*1/PaP(F)N71>

< € (Imhuogey) + 18" ya s y5)
< Cgllywi-vmn(ry: (4.4.12)
(iii) In order, we have found uy, 7 and «’, which satisfy (4.4.3) and partially

satisfy (4.4.1), i.e.
~Au' +V'r=0 inRY.

It remains to show they satisfy (4.4.2) and the N component of (4.4.1), i.e.
—AUN+0N7T =0 in Rﬁ

Consider such a pair (u, 7) satisfying problems (P), (@) and (R). From the first
equations of (P) and (@), we obtain

A(AUN — 8]\[7() = AzuN =0 in Rﬁ

Thanks to the boundary condition of (@)), we can deduce that the distribution
Auy — Oyt € Wy BP (RY) satisfies the following Dirichlet problem

A(Auy —Oym) =0 in Rf, Auy —Oym =0 onI.

Then, according to Theorem 4.3.4, we necessarily have Auy — dym = 0 in ]Rf .
Thus (u, 7) completely satisfies (4.4.1).

Now, applying the operator div to (4.4.1), we get —Adivu + Ar =0 in RY,
and by the main equation of (Q), i.e. (4.4.5), we obtain Adive = 0 in RY.
Moreover, from the boundary condition in (R), we get div'u/ = div'g’ on T.
Then, with the boundary condition in (P), we can write

divu = div'u' + Oyuy = div'g' —div'g’ =0 onT.
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So, we have
Adivu =0 ian, divu=0 onT,

with dive € LP(RY) and then by Theorem 4.3.7, we can deduce that divu = 0
in RY, i.e. (4.4.2) is satisfied.

(iv) Finally, let us remark that the uniqueness of (u, 7) is a consequence of the
uniqueness of the solutions to problems (P), (@) and (R). Moreover, the estimate

(4.4.4) is a consequence of the estimates (4.4.10), (4.4.11) and (4.4.12). O

Now, we can solve the complete problem (Sp). For this, we will show that it
can be reduced to an homogeneous problem, solved by Proposition 4.4.1.

Theorem 4.4.2. For any f € W "*(RY), h e LP(RY) and g € W "/PP(I),
problem (Sp) admits a unique solution (u, ) € WyP(RY) x LP(RY), and there
exists a constant C' such that

lellwrr @y + 17wy <
C (1w sy + WAl + 8]y vy ) - (4413)
Proof. Firstly, let us write f = divF, where F = (F;)1<i<n € Lp(Rf)N
estimate

, with the

HFHLP(Rf)N < C HfHW(;l’p(]Rf);

and let us respectively denote by F = (F;)1<icy € LP(RY)" and h € LP(RY) the
extensions by 0 of F and h to RY. By Theorem 4.2.1, we know that there exists
(@, ©) € Wy P(RN) x LP(RY) solution to the problem

(S) : —Au+Vi=divF and diva=h inR",

provided the condition divF L Ph-nyp is fulfilled. If 1 - N/p" < 0, we obviously
have Ppn_ny/y) = {0}, thus the condition vanishes. If 1 — N/p’ > 0, then we have
P~/ = RY and this condition is equivalent to

Vi=1,... N, <divE,1> =0
Wy B P(RN)x Wy P (RY)

This is exactly the same argument as for the condition (4.4.9) in the previ-
ous proof. Thus the orthogonality condition is fulfilled, hence the existence of
(@, 7) € WiP(RY) x LP(RN) solution to problem (S), satisfying

HaHWé’p(RN) + H7~THLP(RN) <C (H diVFHWO—I’P(RN) + ”hHLP(RN))

s¢ (”fHWal’p(Rm + ||h||Lp(Rg)) : (4.4.14)
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Consequently, we can reduce the system (Sp) to the homogeneous problem
(S%) - ~Av+ V9 =0 and divo=0 inRY, v=g" onT,

where we have set g* = g — a|r € W(lfl/p’p(lﬁ). Now, thanks to Proposition
4.4.1, we know that (S*) admits a unique solution (v, ) € Wy P(RY) x LP(RY),
satisfying

||v”Wé’p(Rf)—{_Hﬁ“LP(Rf) <0 ||gﬁ||W(1],1/p,p(F)

< C (Hf”Wal,p(Rﬁ) + HhHLP(Rf) + ||g||W(1)—l/p,p(F)> . (4415)

Then, (w, ) = (v + @lgy, I+ 7lgy) € WyP(RY) x LP(RY) is solution to (Sp)
and the estimate (4.4.13) is a consequence of the estimates (4.4.14) and (4.4.15).

Finally, the uniqueness of the solution to (Sp) is a straightforward consequence
of Proposition 4.4.1. O

Remark 4.4.3. In a forthcoming work, we will show that under hypotheses of
Theorem 4.4.2 and if besides f € Wy (RY), h € LI(RY) and g € W~/ 4(T),
for any real number ¢ > 1, then the solution (w, 7) given by Theorem 4.4.2
verifies moreover (u, 7) € Wy 4(RY) x LI(RY). %

4.5 Strong solutions & regularity for the Stokes
system

In this section, we are interested in the existence of strong solutions (and then
to regular solutions, see Corollaries 4.5.5 and 4.5.7), i.e. of solutions (u, 7) €
WP (RY) x WiH(RY). Here, we limit ourselves to the two cases ¢ = 0 or
¢ = —1. Note that in the case £ = 0, we have WP?(RY) < W P(RY) and
WP(RY) < LP(RY). The proposition and theorem which follow show that the
generalized solution of Theorem 4.4.2, with a stronger hypothesis on the data, is
in fact a strong solution.

Proposition 4.5.1. Assume that % + 1. For any g € W2YPP(T), the Stokes
problem ({.4.1)~(4.4.3) has a unique solution (u, ) € WTP(RY) x WP(RY),
with the estimate

||'U'||W§vp(Rf) + ||7T||W11vP(M) < C ||9’|W§—1/p,p(r).

Proof. The arguments for the estimate are unchanged with respect to the proof
of Proposition 4.4.1. For the surjectivity and the uniqueness, note that we al-
ways have the imbedding W /7?(T') — W, "P?(I'). By Proposition 4.4.1,
we can deduce that problem (4.4.1)—(4.4.3) admits a unique solution (u, 7) €
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Wé’p(Rf) x LP(RY), satisfying the estimate (4.4.4). Then, it suffices to go back
to the proof of Proposition 4.4.1 and to use the established results about prob-
lems (P), (Q) and (R), to show that in fact (u, 7) € WPP(RY) x WP(RY).
In order, for problem (P), according to Lemma 2.3.9, we find uy € Wf’p(Rf);
for problem (@), thanks to Theorem 4.3.3, we find 7 € W,"” (RY); for problem
(R), according to Theorem 1.4.2, we find v’ € Wf’p(]Rf)Nfl. Note that for these
three results, the condition N/p" # 1 is always necessary. O]

Now, we can study the strong solutions for the complete problem (Sp). As for
the generalized solutions, we will show that it is equivalent to an homogeneous
problem, solved by Proposition 4.5.1. The following theorem was established in
the case N = 3, p = 2, by Maz’ya-Plamenevskii-Stupyalis (see [38]).

Theorem 4.5.2. Assume that &y # 1. For any f € WOPRY), h e WP(RY)

andg € Wf_l/p’p(F), problem (Sp) admits a unique solution (w, m) which belongs
to WTP(RY) x WHP(RY), with the estimate

HUHW%P(M) + HWHWlLP(M) S

C (”fHW(f”’(M) + HhHWf*T'(M) + HgHW?””(FJ ’

Proof. Here again, the arguments for the estimate are unchanged with respect
to the proof of Theorem 4.4.2. For the surjectivity and the uniqueness, note
that the imbedding W{"*(RY) — Wy "?(RY) holds if N/p’ # 1. Moreover, we
have W"P(RY) — LP(RY) and Wi~ '/PP(T) — W, "/»P(T"). Thus, thanks to
Theorem 4.4.2, we know that problem (Sp) admits a unique solution (u, w) €
WP(RY) x LP(RY), satisfying the estimate (4.4.13). To show that (u, 7) €
WHPRY) x WP(RY), we want to find an extension f of f to RV, such that
the orthogonality condition for the extended problem to the whole space (S)
holds. To this end, we still can write f = divF. Indeed, if N/p’ # 1, for any
f € W)P(RY), the Dirichlet problem

Aw=f ian, w=0 onl,

admits a unique solution w € W?’p(Rf), according to Theorem 1.4.2. So, if

we consider F = Vw € W}’p(Rﬂf)N7 we have f = divF. Now, it suffices to
go back to the proof of Theorem 4.4.2. Here again, we know that there exists
a continuous linear extension operator from W,"?(RY) to W"?(RY), so we get
f =divF € WYP(RY) and h € W,"(RY), hence the extended problem (S),
which has, by Theorem 4.2.2, a solution (&, 7) € WTP(RY) x W,"?(RN). Then,
we obtain the equivalent problem (S%) with g € W2 /P?(I') and this problem
is solved by Proposition 4.5.1. O]
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Remark 4.5.3. To give a variant to this proof, we also can consider the extension

f e WPP(RV) of f to RN defined by:

. B f(@, zn) if xty >0,
a0

and h € W,"P(RN) an extension of & to RN. Then by Theorem 4.2.2, there exists
(m, ) solution to the problem

(S) : —Au+Vi=f and divi=h in RY,

provided the orthogonality condition j~: L Pp_nyp is fulfilled. Here again, if
1 — N/p' < 0 this condition vanishes and if 1 — N/p’ > 0, we have

Vi=1,...,N, fi(@, xy)de = 0.

RN
Thus the orthogonality condition holds. The rest of the proof is identical. &

Remark 4.5.4. Similarly to Remark 4.4.3, we could show that under hypothe-
ses of Theorem 4.5.2 and if moreover f € WUPURY), h € WHYRY) and
g € W2?9(T) with an arbitrary real number ¢ > 1, then the solution (u, 7)
given by Theorem 4.4.2 verify, besides, (u, 7) € W3 4(RY) x W 9(RY). %

We will now establish a global regularity result of solutions to the Stokes
system (Sp), which includes the case of strong solutions and which rests on
Theorem 4.4.2 and a regularity argument.

Corollary 4.5.5. Let m € N and assume that g # 14 m > 1. For any

feWnr b @®RY) he Wrr(RY) and g € WITVPP(T)  problem (Sp) admits
a unique solution (u, w) € WIHTHP(RY) x Wmp(RY), with the estimate

el ey + Il reyy <
C (IF lwg—sogesy + 1llwgorey + 19l gmervmnge ) -

Proof. Since we have W=LP(RY) s Wy BP(RY), WmP(RY) < LP(RY) and
Wt =1P Py o WP P(1), thanks to Theorem 4.4.2, we know that problem
(Sp) admits a unique solution (u, 7) € Wy?(RY) x LP(RY). We will show by
induction that

(f. h, g) € Wi bP(RY) x WinP(RY) x Wikt =lpe(r)

4.5.1
= (u, 7) € WIHLP(RY) x WP(RY). ( )

For m =0, (4.5.1) is true. Assume that (4.5.1) is true for 0, 1, ..., m and suppose
that (f, h, g) € WImE(RY) x WrHP(RY) x Wzif_l/p’p(F). Let us prove
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that (u, ) € WiIPP(RY) x Wil P(RY). Since WiBA(RY) — Wb P(RY),
WEEP(RY) o Wmer(RY) and WH2YPP(0) o Wit VPP we know that
(u, ) € WHLP(RY) x WmP(RY) thanks to the induction hypothesis. Now,
for any ¢ € {1,..., N — 1}, we have

N -1 1

2 1
% 0 % %

Thus, —A(0du) + V(e dim) € Wi P(RY). Moreover,
i 1
div(pOu) = 5 x Oyu + 00;h.

Thus, div(edu) € W-P(RY). We also have yo(0du) = o' diou = 0/ dig €
WmH=1/P (T So, by induction hypothesis, we can deduce that
Vie{l,...,N—1}, (i, dir) € Wi P(RY) x Wirh(RY),

It remains to prove that (Oyu, Oxm) € Wil P(RY) x WA (RY). For that, let
us observe that for any i € {1,..., N — 1}, we have

0;0nu = OnO;u € szl (Rf),
8]2\/71,1 = —A/Ui + O — fz c W:jﬁ (Rf),
a?VuN = Oyh — Oy div' o’ c Wgﬁ (Rf),
8N7r = fN + AU,N € W::_’ﬁ (Rf)

Hence, V(Oyu) € szl(Rf)N and knowing that dyu € W P(RY), we can
deduce that Oyu € Wit P(RY), according to definition (1.2.1). Consequently,
we have Vu € Wﬂi}’p(Rf)N. Likewise, we have Vr € W7 (RY). Finally, we
can conclude that (u, 7) € WIPP(RY) x WHHP(RY). O

Now, we examine the basic case { = —1, corresponding to f € LP(RY). More
precisely, we have the following result, corresponding to Theorem 4.5.2:

Theorem 4.5.6. For any f € LP(RY), h € WyP(RY) and g € Wi "/»P(I),
problem (Sp) admits a solution (u, ) € WP(RY)x Wy P(RY), unique if N > p,
unique up to an element of (Rzy)N=1 x {0} x R if N < p, with the following
estimate if N < p (eliminate (A, p) if N > p):

(NM)E(RJ»’II\JI)l]fV*lx{O}XR <Hu + AHWﬁ’p(M) +lm+ MHW&”’(M)) S

C (Il + Il vy + g lyyzorvmr) ) -
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Proof. The idea is to go back to the proof of Theorem 4.4.2 and we will throw light
on the modifications. In contrast to Theorem 4.5.2, the extension f of f is of no
importance because there is no orthogonality condition for the extended problem
(S) (see Theorem 4.2.2). Then, we get the reduced problem (S*). Now, to solve
(%), this is the proof of Proposition 4.4.1. Problem (P) yields a unique uy €
WP (RY), problem (Q) gives 7 € W, P(RY) unique up to an element of MlA— N/l
and (R) yields u’ € Wg’p(]Rf)Nfl unique up to an element of (A[%_N/p])N_l. The
point (iii) of the proof is identical for all N and p (the kernels of the two Dirichlet
problems are always reduced to zero). The last point concerns the kernel of the
operator associated to this problem. If N > p, it is clearly reduced to zero and if
N < p, we have .A[%_N/p] =Rzy and '/\/’[IA—N/p} = Pu-n = R. O

Thanks to the corresponding imbeddings, we can give a regularity result with
the same proof as Corollary 4.5.5.

Corollary 4.5.7. Let m € N. For any f € WP(RY), h € Wnthr(RY) and
g € WY problem (Sp) admits a solution (u, ) € WT2P(RY) x
WmtLp(RY), unique if N > p, unique up to an element of (Ray)¥ ' x {0} x R
if N < p, with the following estimate if N < p (eliminate (X, u) if N > p):

(A,M)E(Rx}vl}]f\;—lx{o}xﬂ{ <||u + )‘HWWQ”’(M) +m+ MHW&"“”’(M)) S

C <||f||Wm,p(M) + Pl gy + ||g|lwg+2—1/w(p)) :

4.6 Very weak solutions to the Stokes system

The aim of this section is to study the Stokes problem with singular data on
the boundary. At first, we must give a meaning to singular data for the Stokes
problem in the half-space. More precisely, we want to show that a boundary
condition of the form g € W;fl/p 'P(T") is meaningful. In mind of this paper,

we limit ourselves to the two cases £ = 0 or £ = 1, i.e. to g € Wj/p’p(f‘)
corresponding to a solution (u, 7) € W2P(RY) x W-"?(RY), or g € W, /PP ()
corresponding to (u, ) € LP(RY) x W, "P(RY). In that way, for every ¢ € Z,
we introduce the space

M (RY) = {u e W7 (RY); u=0 and dive=0 on F} .
Lemma 4.6.1. For any { € Z, we have the identity

M (RY) = {u e W (RY); =0 and Oyuy =0 on r} (4.6.1)
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and the range space of the linear mapping v : M (RY) — Wlf/fﬁl(f‘), that is

the trace of the normal derivative, is
Zu(T) = {w e WYPP(T): wy =0 on r} . (4.6.2)

Proof. Let u € Wz_fjrl(Rf) such that w = 0 on I'. Then divu = Oyuy on I’
and the identity (4.6.1) holds.

Moreover, it is clear that Zm v, C Z,(I'). Conversely, given w € Z,(I"), by
Lemma 1.3.1, there exists u € WQ_fjrl(Rf) such that w = 0 and Oyu = w on I'.

Since wy =0 on I, we have w € M,(RY) and w € Zm . O

For any open subset (2 of R, we also define the space

{ve WH'(Q); dive e WHZ () i X £¢,

p

WLpl d ,Q = ’ ’
-t (divi ) {veW!) (Q); dive e WHE ()} if 5 =4

which is a reflexive Banach space for the norm

[0l oy + iV ol o i A2,

’o = . .
W (div; Q) [ ||v||W17,£/71(Q) + [| div vlf, if g =/

o ,
LR

and the following subspace of Wl_f ,(div; REY)
{ve W RY); dive e WHEL,(RY)} it 5 £ ¢,

{ve W' (RY); dive € W2 (RY)} if ¥ =

p

X, (RY) =

Before continuing, let us give the reason of this slightly complicated definition.
This is the necessity of the imbedding M (RY) — X, (RY); well, if N/p' = ¢, we
do not have W2 (RY) — W12 (RY), but only W2, (RY) — Wi’é’ (R

Lemma 4.6.2. For any ( € Z, the space D(RY) is dense in X ,(RY).
Proof. Let v € X,(RY) and v the extension by 0 of v to RY, then we have

v € W&f/(div; RM).
We begin to apply the cut off functions ¢y, defined on RY for any k£ € N, by

k

on(e) = {° (m
1

>, if |z > 1,

, otherwise,

where ¢ € C*([0, oo[) is such that

o(t)=0,ift€[0,1); 0<o(t) <1, ifte[l,2; o) =1, ift>2.
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Let us recall Lemma 7.1 in [5], which is the essential argument for the sequel:
For all z € RV, such that |z| € [e?, ¢*] with k& > 2, and for all u € NV, we

have the estimate
Cu

Q|H| lg Q’

0" pi(x)] < (4.6.3)

where ¢, is a constant independent of £.
We can deduce that

- - -~ . 1,p
OV = Uy, T 0 in Wy (R™)

and
div(¢,9) = ¢pdivo + 9 Vo — dive in WhE(RY).

Let us notice that the estimate (4.6.3) is optimal to show the convergence to zero
of the term v - V¢ in Wiﬁl(RN).

Now, for any real number 6 > 0 and x € RY | we set vy ¢(x) = vi(z — Oey).
Then vy g € W&f,(div; RY) and supp ¥y, ¢ is compact in Rf, moreover

L. - . 1.0 1.
élm Vo =, in WP (div; RY).
—0 ’

Consequently, for any real number £ > 0 small enough, p. * vy,9 € D(RY) and

. . . ~ ~ . 1.0 .
lim lim lim p. * 99 =0 in W57 (div; RY),
e—0 0—0 k—oo ’

where p. is a mollifier. O
Let X (RY) be the dual space of X ,(RY), we introduce the spaces:
Ty(RY) = {v e WA (RY): Ave X|(RY)}.
T ,(RY) ={veT(RY); divo=0 inR}},
which are reflexive Banach spaces for the norm
||'U||T4(Rf) = ||U||W23’1(R§) + ||AUHX;(M),

where || - || x(&Y) denotes the dual norm of the space X J(RY).

Lemma 4.6.3. Let ¢ € 7. Under hypothesis (4.3.3), the space ’D(Rf) is dense

Proof. For every continuous linear form z € (Tg(IRf ))/, there exists a unique
pair (f, g) € W%Zl(Rf) x X (RY), such that

Vv € TZ(RJI)a (z,v) = Jrvde+ <A’Uag>X2(R$)><Xg(Rﬁ) : (4.6.4)

N
R+
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Thanks to the Hahn-Banach theorem, it suffices to show that any z which van-
ishes on ’D(Rf ) is actually zero on T,(RY). Let us suppose that z = 0 on

’D(@), thus on D(RY). Then we can deduce from (4.6.4) that

f+Ag=0 inRY,
}}ence we /have Ag € W%Zl(le), gec WE{(Rf) and divg € V?/iéil(Rf) Let
feW?l (RY)and g € W5/ (RY) be respectively the extensions by 0 of f and
g to RY. From (4.6.4), we get f +Ag =0 in RY, and thus Ag € W(i’fjrl(RN).

Now, according to the isomorphism results for A in RY (see [6]), we can deduce
that g € W%’Zl(RN ), under hypothesis (4.3.3). Since g is an extension by 0, it
follows that g € W%Zl(Rf ). Then, by density of D(RY) in W%’ﬁl(Rf ), there

exists a sequence (¢;)ren C D(RY) such that ¢, — g in W%ZI(RJD. Thus, for
any v € T, (RY), we have

<Z,U> = — /RN v - Ag dz + <Avvg>X2(]Ri’)><Xg(Rf)
+

= kh_{l(f)lo {— /Rf v Apy,dz + (Av, S%)D/(M)xD(M)}

=0,

i.e. z is identically zero. O]

We also can show that, under hypothesis (4.3.3), {'v € ’D(@); dive = 0} is

dense in Ty ,(RY). To study the traces of functions which belong to T, ,(RY),
we set

0, ST 0, .
WO (div: RY) = {ve Wg_pl(Rf)7 dive € Wgo PRY)}if T #L
¢ T {ve WA (RY); divaWg?’lp(Rf)} if%z ;
and their normal trace are described in the following lemma:
Lemma 4.6.4. Let { € 7. The linear mapping
Yew : P(RY) — DRN)
v — UN‘Fa
that is the normal trace, can be extended to a linear continuous mapping
. —1/p,
Yoy * WP (divs RY) — WP (D),
Moreover, we have the Green formula:

Yo e WOP(div; RY), Vo e WhE (RY),

/RN (O VSO dx + /RN ®Y divvodr = — <UNa SO)Wg_ll/p’p(F)le/p’p,(F) .
+ +

—l41

(4.6.5)
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Proof. Let us remember that the assumption N/p" # ¢ is also necessary to have
the imbedding W, +1(Rf ) — W% (RY), which is underlying in the second term
of the Green formula. Now, if N/p’ = ¢, this imbedding fails, but in that case
we have W' +1(Rf ) — W 7 (RY). That is the reason for the definition of the
space WP (div; RY).

Here again, we can show by truncation and regularization that D (@) is dense

in both spaces WP (div; RY) and WP (div; RY) as in Lemma 4.6.2. Note that
the estimate (4.6.3) is optimal for the second space.

(i) Assume that N/p' # (. Let v € D(RY) and ¢ € D(RY), then formula
(4.6.5) obviously holds. Since D(]RN ) is dense in W f_’H(RN ) and the mapping

1 , /
o : WHEL(RY) — WP (T)
@ — @lr

is continuous, formula (4.6.5) holds for every v € ’D(@) and ¢ € Wiﬁl(Rf ).

By Lemma 1.3.1, for every u € Wlﬁf (), there exists ¢ € W7 (RY) such that
¢ =ponI', with HSDHWLL(R% < C HuHWi/ﬁlp " Consequently,

<UNa M>Wlill/p’p(F)><Wi2i’f,(F)‘ < C HUHW%p(div;Rf) HMHWi/ei’fl(F)
Thus
||UN’|We:11/PvP(F) <C HUHW%p(div;Rf)'

Hence we can deduce that the linear mapping 7., is continuous for the norm of
WP (div; RY). Since D(RY) is dense in WP (div; RY), the mapping 7., can
be extended by continuity to 7., € L (Wo’p (div; RY); W, /7P (F)> and formula
(4.6.5) holds for all v € WP(div; RY) and ¢ € W2 (RY).

(ii) The same arguments hold if N/p" = /. O

It follows that the functions v from T’ ,(RY) are such their normal trace vy

belongs to W[_ll/ PP(T). Furthermore, for any v € D(@) we have the following
Green formula:

Vi € M (RY), / Av~godx:/ v-AgodaH—/v-@Ncpdx'.
RY RY r

Let us now observe that the dual space Z(T") of Z,(T") can be identified with the
space

and moreover that Oy sweeps Z,(I') when ¢ sweeps M,(RY). Thus, thanks
to the density of ’D(Rf ) in Tg(Rf ), we can prove that the tangential trace of
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functions from T, ,(RY) belongs to W,_/""?(T). So, their complete trace belongs
to W, /PP(I') and we have

Vo € M,(RY), Vv e T, (RY),
(A0, 0) xxx, = (0, 8P o oy + (0 ONP) g1 gy -

—041

(4.6.6)

We now can solve the homogeneous Stokes problem with singular boundary con-
ditions. We will give separately the results for £ = 0 and ¢ = 1. The proofs
are quite similar and we will just detail the first case. The following proposi-
tion and corollary yield the existence of very weak solutions when the data are
singular, so extending Proposition 4.4.1. Note that Wy '?(RY) «— W*F(RY) and

Wo VPP(D) — WD) if N #£p.

Proposition 4.6.5. Assume that & o # 1. Forany g € W_ VPP(TY such that

gy = 0, the Stokes problem (4.4.1)-(4.4.3) has a unique solutwn (u, ) €
W%f(Rf) x W_PP(RY), with the estimate

||UHW(}{’(M) + ||7THW:§”’(M) < C HgHWZ}/”’p(F)'

Proof. (i) We will first show that if the pair (u, 1) € W2P(RY) x W "P(RY)
satisfies (4.4.1) and (4.4.2), then we have u € T ,(RY) and thus the boundary
condition (4.4.3) makes sense. With this aim, thanks to Lemma 4.6.2, observe
that if 7 € W-"?(RY), then we have Vrr € X (RY) and

IVl xyyy < C liwlly -1 ey,

So, we have Au € X(RY) and the trace you € w_l/Pr(r),
(ii) Let us show that the problem (4.4.1)—(4.4.3) with gy = 0 is equivalent to
the variational formulation: Find (u, 7) € WP(RY) x W_"?(RY) such that

Yo € My(RY), Vo e W7 (RY),

(u, —Av + V1) o, 0 (@) WO (RY) T (m, divv)

Wb PRY ) xw i (RY) (4.6.7)

= <g7 8NU>W:1/p7p(F)XW1/p’p (F) .

(a) Let (u, ) be a solution to (4.4.1)—(4.4.3) with gy = 0; then the Green
formula (4.6.6) yields for all v € My(RY),

(AU + VT,v) 5, 5, = — (U, Av>W(ilp(Rf)XW?,p/(R$) _

— v) — (m,divw 04 .
<978N >W,1/p’p(F)><Wi/p’p/(F) < ) >W:11’p(Rf)xW}’p(Rf)
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Moreover, using the density of the functions of 'D(@) with divergence zero in
T, -(RY), we obtain for all ¥ € W,"* (RY),
(s VDo pmpyewsy ) = = (VD) oy )
- <UN7 19>w:11/P7P(F)XW11/P7P/(F) = 0

So we show that (u, 7) satisfies the variational formulation (4.6.7).
(b) Conversely, if (u, 7) € WPP(RY) x W "P(RY) satisfies the variational
formulation (4.6.7), then taking v = 0, we have for any ¥ € D(RY),

(u, Vﬁ>D’(Rf)XD(Rf) = (—div uﬂ%@f(Rf)@(M) =0,
hence dive = 0 in RY. We can deduce that w € W>?(div; RY) and thus
un|p € W_/PP(T). Then, we can write for any ¥ € Wll’p/(Rf),

(u, V) = 0.

WP @)W &) = SN Dy tmn gy o’y

Therefore, by the traces lemma (Lemma 1.3.1), we have for any ¢ € D(I),
(up, @)D,(F)XD(F) = 0, hence uy = 0 on I'. In addition, taking ¥ = 0 in (4.6.7),
we have for any v € D(RY),

(U, =AV) pry)xp@y) — (T AV V) oy xpmy) = 0,

thus (—Aw + V7, 0) p gypey) = 0, i-e. —AutVr =0in RY. We deduce that
u € Ty, ,(RY) and taking ¢ = 0 in (4.6.7), we finally get for any v € My(RY),

(u, Oyv)

W:i/np(l—\)xwi/%p/(r) = <97 aN”>w:}/P,P(F)XW}/Z),P/(F) )

where Oyv sweeps Zy(I'); hence u’' = g’ on I'. So, we have shown that (u, 7) is
a solution to problem (4.4.1)—(4.4.3).
(iii) Let us solve problem (4.6.7). According to Theorem 4.5.2, we know that

if % # 1, for all f € W?’p/(Rf) and ¢ € I/f/i’p/(Rf), there exists a unique
(v, ) € Mo(RY) x W (RY) solution to

—Av+Vi=Ff and divvo=¢p ian, v=0 onl,
with the estimate
||’U|Iw%P'(Rf) + ||19||W11P'(RJI) <C <||f||W(1)P'(RJ+V) + ||90||W11P/(R]¥)> .
Then
<ga8NIU>W:}/1>,p(F)XW}/p,p’(F)‘ < C HgHW:%/”’p(F)H/UHWIZ’?’I(]Rﬁ)

< Cliglsier (1Fllyor + Iellynr ) -
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In other words, we can say that the linear mapping
T: (f7 §0) — <g7 aN”)

is continuous on W' (RY) x V[/1 24 (RY), and according to the Riesz represen-
tation theorem, there exists a unique (u, 7) € W2P(RY) x W_"?(RY) which is

the dual space of W7 (RY)x V[/'1 24 (RY), such that

V(f, ) € WP RY)x WP (RY),
Tt 0) = (w, f>W(l’f’(Rf)XW?”’ @yt (m, _¢>W:5’P(Rﬁ)xv?/}’P/(Rf)’
i.e. the pair (u, m) satisfies (4.6.7). O
We now can drop the hypothesis gy = 0.

Theorem 4.6.6. Assume that ¥ o # 1. Forany g € W_4 /P, "P(T), the Stokes
problem (4.4.1)-(4.4.3) has a umque solution (u, 7) € W(ip(Rf) x W-P(RY),

with the estimate
||uHW°_vf(M) + HWHW_}“’(M) < C Hg”W:}/”’P(F)'

Proof. According to Theorem 4.3.3, we know that if % # 1, then there exists

v e WhP (RY) unique up to an element of ./\f[ﬁ_ wyp Solution to the following
Neumann problem:

AYp=0 inRY, Oy =gy onT.
Let us set w = V¢ and g* = g — yow. Then w € T ,(RY) and
[wllzy@y) = lwllwopeyy < Cllglly-100p)-

Furthermore, g* satisfies the hypotheses of Proposition 4.6.5, hence the existence
of a unique pair (z, 7) which satisfies

—Az+Vr=0 and divz =0 ian, z=g" onl.

Then the pair (z 4w, 7) is the required solution. The uniqueness of this solution
is a straightforward consequence of Proposition 4.6.5. Il

Here is the corresponding results for the case ¢ = 1.

Proposition 4.6.7. For any g € W /P?(T) such that gy =0, and g’ L RN~
if N < p/, the Stokes problem (4.4.1)-(4.4.3) has a unique solution (u, w) €
LP(RY) x Wy VP(RY), with the estimate

luallzoeyy + I lhonyy < C gl simnge.
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Proof. The two differences from the weight £ = 0 are the absence of critical value
(the reason is that here, the dual problem solved by Theorem 4.5.6 has no critical
value), and the orthogonality condition in the case N < p’ (which corresponds by
duality to the non-zero kernel in Theorem 4.5.6 if N < p). The rest of the proof
is similar. O

Theorem 4.6.8. For any g € Wal/p’p(f‘) such thatg L RN if N < p/, the Stokes
problem (4.4.1)~(4.4.3) has a unique solution (u, 7) € LP(RY)x Wy "P(RY), with
the estimate

||u||LP(M) + ”ﬂ-“WO*l’p(Rf) < C ||g||W51/p¢p(F).

Remark 4.6.9. Let p > 1 be a real number. If p < N and r = Np/(N — p),
then we have Wy~ “/P?(I') — Wy "/""('). Indeed, by Theorem 1.4.4, for every
g € Wy /PP(I), there exists u € W2P(RY) such that

Au =0 in]RiV, Ovu=g¢g onl.

On the other hand, since the imbedding Wi'*(RY) < W, "(RY) holds, we deduce
that v = Vu € L'(RY) and dive = 0 € W)"(RY), i.e. v € W)P(div; RY).
Moreover, as 1’ # N, according to Lemma 4.6.4, we get 7., v = Onulr = g €
W, "/""(T). Consequently, if g € W "/PP(I') — W /""(T'), Proposition 4.4.1
and Theorem 4.6.8 respectively yield the unique solutions (u, 7) € Wy?(RY) x
LP(RY) and (v, ¥) € L"(RY) x W, ""(RY), which are identical thanks to the
Sobolev imbeddings Wy'?(RY) — L"(RY) and LP(RY) — W, " (RY). &



Chapitre 5

Behaviour at infinity in the
Stokes system

5.1 Introduction

This chapter is the continuation of the previous one in which we only dealt with
the basic weights. Here, we are interested in a whole scale of weights. This lead
us to be interested in the kernel of the operator associated to this problem and
symmetricaly in the compatibility condition for the data. The main results of
Chapter 4 will be naturally included in this one, but we will not discuss again
these particular cases. We will also base on the previously established results on
the harmonic and biharmonic operators.

5.2 Characterization of the kernel for the Stokes
operator

In this section, we will give two characterizations of this kernel, and we will ob-
serve that it does not depend on the regularity according to the Sobolev imbed-
dings. Let ¢ € Z and m € N and let us denote by K" the kernel of the Stokes
operator, i.e.
K7 = {(u, m) € WRTP(RY) < WRtH(REY);
—Au+ V7 =0 and divu:Oian, u:OonF}
and for any k € Z, introduce the following polynomial space
SP={(\ ) e PR X PR;
—AX+Vp=0and divA=0inR}, A=0onT}.

The first characterization uses the reflection principle. As preliminary result, we
will show how to get a reflection principle for the Stokes system from those of

85
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harmonic and biharmonic functions. Let us notice that R. Farwig gives these
formulas in [27], but without the method to get them. Let us especially quote
R.J. Duffin, who first established in [26] the continuation formula of biharmonic
functions in the three dimensional case and then analogous formulas for the Stokes
flow equations. Lastly, A. Huber extended in [34] this principle to polyharmonic
functions.

Lemma 5.2.1. Let (u, m) € D'(RY) x D'(RY) satisfying
~Au+Vr=0 and divu=0 inRY, (R)

then (u, T) € CP(RY) x C*(RY). In addition, if w =0 on T, then there exists
an extension (w, 7) € D'(RY) x D'(RY) of (u, 7) satisfying

~Au+Vi=0 and diva=0 inR"Y, (3)
which s given by

(2, zy) = (—u +2zy Vuy + 23 V'7) (2, —zn),
(*) ’IIN(.T/,.CEN) = —uN—Q:UNﬁNuN—:c?\,an)(x’,—xN),
(2, xy) = 7r—2xN8N7T—48NuN)(x’,—xN),

for any (2, xn) € RN. Moreover, this extension is unique.

Proof. (1) Applying the divergence operator to the first equation in (X), we obtain
Am =0 in RY. Since 7 € D'(RY), we can deduce that 7 € C*(RY) by Weyl’s
lemma (see e.g. Dautray-Lions [25], vol. 2, p 327, Proposition 1).

Likewise, applying the harmonic operator to the first equation in (R), we get
A’y = 0 in RY. Since u € D'(RY), we still deduce (using two times the same
Proposition) that u € C*(RY).

(2) For the uniqueness, let us consider (@1, 711) and (@9, ) in D'(RY) x
D'(RY), which both extend (u, 7) and satisfy (3). Let us set U = @, — u; and
II = 7y — 7. Then A2U = 0 in RY and thanks to the Proposition quoted before,
we can also deduce that U is analytic in RY. Since U = 0 in RY, the continuation
analytic principle implies that in fact U = 0 in RY. The same argument holds
for II.

(3) Now, let us assume the existence of an extension (@, 7) € D'(RY)xD'(RY)
of (u, m) satisfying (3), and let us show the formulas (x).

(i) With the same arguments as in point (1), we can see that (@, 7) €
C®(RYN) x C>*(RY). In addition, we have w = 0 and divae = 0 on I', thus
Onty = 0 on I'. So, uy satisfies the following biharmonic problem

A%uy =0 in Rf and wuy =0yuy =0 onT.

From the continuation formula of biharmonic functions (2.3.3) and replacing Auy
by On7, we immediately get the formula (x) for uy.
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(i) Let us set 7 = 2ty —ay 7 in RY and r = ﬂRf' Then, it is easy to see
that A7 =0 in RY and 7 = 0 on I, hence

Ar =0 ian, r=0 onT,
Thus, by the Schwarz reflection principle, we necessary have
(2, zy) = —r(a,—zyn) if 2y <O0.
Since 7 = 27Uy — xy 7 in RY, we can write, for any zn < 0,

ey 7( an) = [2(—uny — 22n Oyun — 23 OnT) 4+ (2uy + zy m)] (2, —zy),

= ( — 4y Oyuy — 2253 ONT + TN W)(I/, —IyN).

Hence, dividing by xy, we get the formula (%) for 7.
(iii) Lastly, we also must have Aa' = V'7 in RY. Thus, for any xy > 0,

AU (2, —xn) = VT2, —xn),
= (V/ﬂ' + 223]\[ 8NVI7T — 48NV/UN) (.%’/,.CEN),
=A(—u —2ay Vuy + 23 V'7) (2, zy).

Let us introduce the function @/ (z/,zy) = @'(2/,—zy) in RY. Then, we can
express the previous equality by

A(ﬁ; +u' + 22y Viuy — 2% V’W) =0 in Rf.
Moreover, we have ('&’* +u' 4+ 2zy Viuy — 2% V’ﬂ)(x’, 0) = 0; and
On ('&; +u' + 22y Viuy — 2% V'ﬂ) («',0)
= (— ont' + Oyu' +2V'uy)(2',0) = 0.
Thus, @, = —u' — 2zy V'uy + 2% V'7 in RY. That is, for any xn > 0,
w'(2, —an) = (—u = 22y Vuy + 23, V') (2, 2y).

So, replacing zy by —zy, we get the formula (x) for w’.

(4) Conversely, to show that the extension (@, 7) defined by the formulas (x)
belongs to C*(RY) x C*(RY) and satisfies (3), we refer to the proof by Duffin
in [26]. It is very easy to see that in RY and the only serious difficulty is the
argument at the boundary. ]

Now, we can give the first characterization of the Stokes kernel.
Lemma 5.2.2. Let { € Z and m € N.
(i) If N/p ¢ {1,...,—C—m}, then K" = S[ll)féfN/p]'
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(i) If NJpe{l,...,—C —m}, then K,"" = SZfN/p.

Proof. Let (u, ) € K;”". Using a weak formulation for the extension given by
formulas (%), we can show that in fact 7 and @ are respectively harmonic and
biharmonic tempered distributions in RY, thus polynomials. Moreover, according
to (1.2.5), the highest degree of the polynomials contained in WTTLLP (RY), is
given by

p

- X if ¥ +0e{je; j<o},
1= [1—6—%} otherwise,

1.e. precisely the conditions of the statement. O

We can be more specific about polynomials which build up this kernel. The
idea of this characterization is due to T.Z. Boulmezaoud (see [21]). We give it with
a completely different proof, based on the kernels of the Dirichlet and Neumann
problems for the Laplacian and the one of the biharmonic problem with Dirichlet
boundary conditions in the half-space.

Concerning the kernel of the biharmonic operator (A2, vq,7;) in W;L”:Z’p (RY),
we showed in Lemma 2.3.4 that it is characterized for any ¢ € Z and m € N,

under hypothesis N/p ¢ {1,...,—¢ —m}, by:
Bo—e-nm) = WD AL oy & TINNE -y

Moreover, thanks to the study of the very weak solutions for the singular bound-
ary conditions in Section 3.3, we extended these results to the two supplementary
cases m € {—2, —1}.

We now can give the second characterization of the Stokes kernel in RY:

Lemma 5.2.3. Let ¢ € Z, m € N and assume that N/p ¢ {1,...,—¢—m}. Then

(u, ™) € KF = S[Il)—E—N/p] if and only if there exists ¢ € A[Al,e,N/p] such that
U =@ — V(HD diV/ QOI + HNﬁNgoN), (521)
m=—dive. (5.2.2)

Proof. Given (u, ) € K", then we also have divu = 0 on I' and thus Oyuy = 0
on I'. Moreover A = 0 in RY and thus A?uy = 0in RY. So we get the following
biharmonic problem

A%uy =0 in ]Rf and wuy =0yvuy =0 onl.

Hence uy € Bp—¢—nyp and there exists (7, s) € A[A—I—K—N/p] X ./\f[fl_f_N/p] such
that unN = HDT + HNS.

According to the properties of the operators I and Ily, (2.3.5) and (2.3.6),
we can deduce that Oym = Auy =r + s in Rﬂ\rf and thus 7 satisfies

Ar =0 ian and Oym=s onl.
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Then, there exists ¥ € /\/'[ész/p] (see Theorems 1.4.3 and 1.4.4), such that
=9+ Ks inRY, (5.2.3)

where Ks(z) = [V s(z', t) dt.
So, we have Auy =r+s=0ym =0n¢ + s in Rf, thus » = dyv. Hence,

uy = Hpony +1lys in Rf. (5.2.4)
From (5.2.3), we get for every i € {1,..., N — 1},

Aui = O;TT = aﬂﬂ + @Ks S '/\/[él—ﬁ—N/p] S¥) A[A_l_g_N/p]

Then, w; = u; — lNn0;0 — I p0; K s satisfies
Aw; =0 ian and w; =0 onl.

Hence thg existence of ¢; € A[Alfff N/l (see Theorems 1.4.1 and 1.4.2), such that
w; = P4, L.€.

Thereby, writing ¢’ = (¢1,...,pN_1), We get
div'u' = TIyA"p + I A'Ks + div' ¢
= —TINO3 — TIpOY K s + div' ¢
1 1

= —éfNan — 5 ($NONKS—KS) +diV/QOI
1 1
= —ExNan b (xn s — Ks) +div' ¢

In addition, by (5.2.4), we have

8NuN = aNHDan + aNHNS

1 1 N
:—ﬁNan“‘E ($NS+/ S(x/, t)dt)
0

2
1 1
= §$N3N¢+§ (xn s+ Ks).
Since diva = 0, we can deduce that div'¢’ = —Ks and thus (5.2.3) can be
rewritten as T = ¢ — div’ ¢o’. Now, if we set oy (x) = — [V ¢ (2', t) dt, then we

have ¢ = —0ypyn and py € A[Alfng/p]. So, we obtain m = —div ¢, i.e. (5.2.2),

with ¢ = (¢', on) € AR nyp)-
Coming back to the velocity field, we get for every i € {1,..., N — 1},

u; = p; — OllyOnpn — Oillp div' . (5.2.5)
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Likewise, for the normal component, (5.2.4) yields

uy = —1lpdxeon + HyonKs

1 1
= 3 (goN—xNaNSON) +§INKS
1 1 )
:SON—§9€N3N<PN—§<PN—§SCN div' ¢’

= oy — OnIINOnpNn — OnIIp div ¢

So, combining this with (5.2.5), we get u = ¢ — V(IIyOnpn + lpdiv' ¢'), i.c.
the statement (5.2.1).
Conversely, we can readily verify that such a pair (u, m) belongs to I,"*. O

5.3 Generalized solutions

In this section, we will establish the central result on the generalized solutions to
the Stokes system in the half-space, with Theorem 5.3.2. We will be interested
in the existence of a solution (u, 7) € Wé’p(]Rf) X Wf’p(]Rf) to (Sp), for data
fe W, PRY), h e WP(RY) and g € W, /"P(I'). To avoid troubles with
the compatibility conditions, we will start with the study of the negative weights.
For this, as for the weight ¢ = 0 in Chapter 4, we will adapt a method used
by Farwig-Sohr in [28]. Then, we get back the positive weights by a duality
argument, and the compatibility condition naturally comes from the kernel of
the dual case.

First, we will establish the result for the homogeneous problem in the case of
negative weights:

Lemma 5.3.1. Let ¢ be a negative integer and assume that N/p ¢ {1,...,—(}.
For any g € W;fl/p’p(lﬁ), the homogeneous Stokes problem

~Au+Vr=0 in RY, (5.3.1)

divu =0 in RY, (5.3.2)

u=g on T, (5.3.3)

has a solution (u, 7) € WpPRY) x W)P(RY), unique up to an element of
S[lfféfN/p], with the estimate

inf (et Aoy + I+ sy ) < C gl g,

N IESE oy

Proof. The operator associated to this problem is clearly continuous, moreover its
kernel is known. If we show that it is surjective, then the final estimate will be a
straightforward consequence of the Banach Theorem. So, we only must prove the
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existence of a solution (u, 7). The first point of this proof is strictely identical to
the one of the proof of Theorem 4.4.1, but we recall it for the convenience of the
reader. However, the arguments in the sequel are slightly different and we can see
here the importance of the assumption that ¢ is negative. In spite of the required
adaptations, this reasoning appears as a universal method for the solution to the
Stokes system in the half-space, even for the other types of boundary conditions,
as we will see in the next chapter.

(i) Firstly, we will show that system (5.3.1)—(5.3.3) can be reduced to a set of
three problems on the fundamental operators A? and A.

Applying the operator div to the first equation (5.3.1), we obtain

Ar=0 inRY. (5.3.4)
Now, applying the operator A to the same equation (5.3.1), we deduce

A’u=0 inRY. (5.3.5)
From the boundary condition (5.3.3), we take out

uy =gy onl (5.3.6)

. : . N-1
and moreover div' u’ = div' g’ on I, where div'u' =", d;u;.

Since divu = 0 in Rﬁ , we also have divu = 0 on I'; then we can write

Onyuy +div'u’ = 0 on T, hence
Oyuy = —div'g”  onT. (5.3.7)
Combining (5.3.5), (5.3.6) and (5.3.7), we get the following biharmonic problem
(P): A’uy =0 inRY, wuy =gy and Oyuny = —div'g’ onT.

Then, combining (5.3.4) with the trace on T' of the N** component in the equa-
tions (5.3.1), we obtain the following Neumann problem

(@Q) : Ar=0 In Rf, Oyt = Auy on I

Lastly, if we consider the N — 1 first components of the equations (5.3.1) and
(5.3.3), we can write the following Dirichlet problem

(R) : Au'=V'mr nRY, 4 =g onl.

(i) Next, we will solve these three problems.

Step 1: Problem (P). Since g € W, /P?(I), we have gy € W, "/P"(I)
and div'g’ € W, /"P(I'), so (P) is an homogeneous biharmonic problem with
singular boundary conditions. Since ¢ < 0, according to Theorem 3.3.5, we know
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that problem (P) has a solution uy € W,"? (RY), unique up to an element of
Bii—e-nyp)-

Step 2: Problem (Q). Since A?uy = 0 in RY, according to an appropriate
trace result with Lemma 4.3.6, we can deduce that Auy|r € Wg_l_l/p’p(F). As
¢ < 0, according to Theorem 4.3.2, we know that problem (@) has a solution
TE Wf’p(Rf), unique up to an element of '/\/’[éZ—N/p]'

Step 3: Problem (R). Thanks to the previous result, we can deduce that

_ N-1
V'm € W[l’p(Rf)N " and moreover g’ € W, YPP(0)" . Since £ < 0, according
to Theorem 1.4.1, we know that problem (R) has a solution u’ € Wzl’p(]Rf)N_l,
. A N-1
unique up to an element of (Af_, /)

(iii) In order, we have found uy, 7 and ', non-unique, which satisfy (5.3.3)

and partially satisfy (5.3.1), more precisely such that

—Au +V'mr=0 in Rf.

It remains to show we can choose them satisfying (5.3.2) and the N** component
of (5.3.1), i.e.
—Auy +0ym=0 in Rf.

Consider such a pair (u, 7) satisfying problems (P), (@) and (R). From the first
equations of (P) and (), we obtain

A(AUN — aNW) = AzuN =0 in Rﬁ

Thanks to the boundary condition of (@)), we can deduce that the distribution
Auy — Oym € W[l’p (Rf ) satisfies the Dirichlet problem

A(Auy —Oym) =0 in Rf, Auy —Oym =0 onTI.

Then, according to Theorem 4.3.4, we have Auy — Oym = p € A[AAJ?N/M.
Moreover, we can write p = Allpu, with lIpp = q¢ € Bji—¢—nyp. So, setting
uy = un — ¢, this time we get Auy — Oym = 0 in Rf, and besides u} is still
solution to problem (P).

Note that 7 is unchanged with u},, because Ag=p=0on T

Thus, if we set u* = (¢, u}), the pair (u*, ) completely satisfies (5.3.1).

Next, as A7 = 0 in Rf , we also have Adivu* = 0 in RJX . Moreover, from
the boundary condition in (R), we obtain div'u’ = div' g’ on I'. Then, with the
boundary condition in (P), we can write

divu* = div'u' + dyuy =div'g' —div'g’' =0 onT.
So, we have divu* € W,"? (RY), which satisfies the Dirichlet problem

Adivu* =0 ian, divu*=0 onT.
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Then, according to Theorem 4.3.7, we have divu* = v € A[AJ?N/M. If we take
for instance r(x) = foxl v(t, xa,...,xN)dt, we have v = Oyr and thus v = divr,
with 7 = (r, 0,...,0). Setting u' = u* — r, we get diva! = 0 in RY and,
as r € A[Al_g_ N/ We still have uJ{ = uy — r solution to the first component of

the equations (5.3.1) and (5.3.3). Consequently, the pair (u', 7) now completely
satisfies the problem (5.3.1)—(5.3.3). O

Now, we can give the general result:

Theorem 5.3.2. Let ¢ € Z and assume that
N/p' ¢ {1,....4} and N/pé¢{1,...,—(}. (5.3.8)

For any f € W, "P(RY), h € W)P(RY) and g € W;_l/p’p(F), satisfying the
compatibility condition

\V/QO € A[Al—f—é—N/p’}v <.f - Vha 90>

+ <d1V f, HD diV/ (,D/ + HN(?ngN)

° +
Wb PRY)x WP (RY)

-~ (5.3.9)

-2,p Ny 2 P (PN
w, (R+)XW—Z (R+)

49, INPlyyr-1mn g 115 1y = O

problem (Sp) admits a solution (u, ) € W;’p(Rf) X Wfo’p(Rﬂf), unique up to
an element of S[lf_z_zv/p}: and there exists a constant C' such that

inf  (llut Moy + 17+ llpory ) <

N IESE oy

C (Hf”w;lvP(Rf) + ||h||W£°vP(R§) + ||g||wéfl/p,p(r)) .
Proof. (i) First, we still assume that ¢ < 0.
We write f = divF, where F = (F;)1<i<n € Wg’p(Rf)N, with the estimate
||F||W27P(R$)N < C ||f||W;1*P(R{¥)-
Let us respectively denote by F = (F;)1<icn € W?’p(RN)N and h € W,)P(RN)

the extensions by 0 of F and h to RY. By Theorem 4.2.1, we know that there
exists (@, 7) € Wy P(RY) x W)P(RN) solution to the problem

(S) : —A@+Vi=divF and divai=h inR".

Consequently, we can reduce the system (Sp) to the homogeneous problem

S —Av+V9=0 and divoe=0 nRY, v=g* onT,
+
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where we have set gf = g — @t|r € W, /PP(T'). Next, thanks to Lemma 5.3.1,
we know that (S*) admits a solution (v, ¥) € WyP(RY) x W)P(RY). Then,
(w, ) = (v + Ulpy, ¥+ 7lgy) € W P(RY) x W) P(RY) is solution to (Sp).

(ii) We now assume that ¢ > 0.

We will reason by duality from the case ¢ < 0. So, we have established that,
under hypothesis (5.3.8), the Stokes operator

T: (WyPRY) x vaP(M))/s[ff_g_N/p] — W,V P(RY) x W P(RY)
(u, ™) — (—Au + Vr, —divu)

is an isomorphism for any integer ¢ < 0 and real number p > 1. Thus, replacing
p by p' and —/¢ by ¢, we deduce that its adjoint operator

T Wﬁ”’(Rf) X W£07P(Rf) - (Wz_l’p(Rf) X WEOVP(RJJ\:)) = S[?—&—Z—N/p’]

is an isomorphism for any integer ¢ > 0 and real number p > 1, always under
hypothesis (5.3.8). Moreover, by a density argument, we can readily show that

T*(v, V) = (—Av + V¥, —divw).

So, we have proved that for any ¢ > 0, problem (Sp) with g = 0 admits a unique
solution provided (f, h) L S[?M_N/p,].
Now, it remains to show that the general problem (Sp) can be reduced to
the particular case with g = 0, by means of a lifting function; and then that the
orthogonality condition on the lifted problem is equivalent to the compatibility
condition (5.3.9).
First, by Lemma 1.3.1, there exists a lifting function u, € Wy? (RY) of g,

i.e. ug = g on I', such that

||ug||W;P(Rf) < C ||g||W2*1/p,p(F)-

Set v = u — uy, then problem (Sp) is equivalent to the following, with homoge-
neous boundary conditions:

—Av+Vr = f+ Au, in RY,
(S™) divv =h—dive, nRY,
v =0 on I'.

So, provided (f + Au,, —h +divu,) L S[?M_N/p,}, we know that (S*) admits a
unique solution. This condition is written in the following way:

V(Av :u) < S[[l)—i-Z—N/p’}’ <fv }‘> + <Au97 }‘> - <h’ M> + <diV Ug, M> = 0.
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Moreover, we have the Green formula

Wb PRY) x W (RY)

(Aug, A) o = / u, - AXdz + (g, ONA)p
RY
= / u, - AXdz + (g', ONN ),
RY

because OyAny = 0 on I, according to the definition of the kernel. Next, we have
another Green formula

(div u,, u)WS,p(Rﬁ)XWO,p/(RN) = — /RN u, - Vudr — (gn, p)r-
+

—o By

Finally, since —AAX + Vu = 0, we have

/ug-A)\dx—/ uy - Vypdr =0,
RY RY

then we get a first formulation for this compatibility condition:

V(A p) € S[ll)HfN/p’]? (. A) = (h, ) +(g', OnN)p — (gn, p)r = 0.

Now, according to the characterization (5.2.1)—(5.2.2), we can replace each pair
(A, 1) € S[lersz/p,] by (¢ —V(Ipdiv' ¢’ +1IxyOnen), — dive), where ¢ belongs
to A[AHK_N/p,]. Then we have

<.f7 )\>W;1P(R1)X‘X/£;/(Rf) = <f7 (P> - <f7 V(HD diV, QO/ + HN&NSON» )

= (f, o) + (div f, pdiv' ' + TIxInen)

because (IIp div' ¢’ 4+ Hydyen)|p = 0. Likewise,
<h, IU>W(2aP(R£)XW(laEP’(R$) = <h'7 —div ‘P>W2ap(]R{f)><W(l’f/(R$’)
— <Vh, ‘p>We_l’p(R$)><V%/l_’epl(R$) .

Moreover, we can remark that on the one hand © = —9dypy on I' and on the
other hand, according to (2.3.5) and (2.3.6), we have OyA' = Oy¢’ on T, hence
the equivalent formulation:

VCP S A[AlJrng/p/],
(f = Vh, @) + (div f, Hp div' @' + TIxdnen) + (g, Ine)p = 0,

i.e. the compatibility condition (5.3.9). O
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5.4 Strong solutions and regularity

In this section, we are interested in the existence of strong solutions, i.e. of
solutions (u, m) € W51 (RY) x W, 2(RY); and more generaly, in the regularity
of solutions to the Stokes system (Sp) according to the data.

Theorem 5.4.1. Let £ € Z and m > 1 be two integers and assume that

N/p ¢ {1,....04+1} and N/pg{l,...,—(—m}. (5.4.1)
For any f € Wi P(RY), h € WEH(RY) and g € sz:;*l/p’p(f‘), satisfy-

ing the compatibility condition (5.3.9), problem (Sp) admits a solution (u, m) €
W P(RY) < WIHE(RY), unique up to an element OfS[’?_Z_N/p], and there exists
a constant C such that

inf <‘|“+)‘”W212”’<M> + ||7r—|—#HW$Z,?;f2(R£)> <

N ESE_ o

C (1w sy + vz + gl mes-mng, )

We have already proved this result for ¢ = 0 and ¢ = —1 in the previous
chapter (see Corollaries 4.5.5 and 4.5.7). We will use similar arguments for the
other negative weights, with the aim of minimizing the set of critical values,
thanks to the known results on the harmonic and biharmonic operators in the
half-space. Then, for the positive weights, we will use a regularity argument to
avoid the compatibility conditions which would naturally appear in the auxiliary
problems with the previous method.

At first, we adapt Lemma 5.3.1 and its proof for more regular data.

Lemma 5.4.2. Let { < —2 and m > 1 be two integers and assume that

N/p ¢ {1,...,—0 —m}. (5.4.2)
For any g € Wzi;_l/p’p(F), the Stokes problem (5.3.1)-(5.3.3) has a solution
(u, 7) € Wt P(RY) x WIE(RY), unique up to an element of SE_ oy with
the corresponding estimate.

Proof. Point (i) is clearly unchanged with respect to the proof of Lemma 5.3.1.

. m+1-1/p,p
Since g € W,

pothesis (5.4.2), problem (P) has a solution uy € W'/ P(RY), unique up to an

m—+/
element of Bjy_y—n/y. Hence Auy|r € W;n;;q/ PP(T), and then under hypothesis
(5.4.2), problem (Q) has a solution = € W,"(RY), unique up to an element of

M%Z_N/p] (see Theorem 4.3.3, for m = 1; and Theorem 1.4.4, for m > 2). Hence
Vit e Wmfl’p(]Rf)N_l and then under hypothesis (5.4.2), problem (R) has a
m+1,p

m-+L
solution w’ € W'/ "*(RY )N_l, unique up to an element of (.A[Al_f_ N/p])Nfl (see
Theorem 1.4.2). Likewise, point (iii) is unchanged with respect to the proof of
Lemma 5.3.1. O

(I'), according to Lemma 2.3.10, we know that under hy-
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Proof of Theorem 5.4.1. (i) Assume that ¢ < —2. The proof is quite similar to
the one of Theorem 5.3.2. Here again, the only question is the surjectivity of the
Stokes operator for such data. For that, we must simply replace Theorem 4.2.1
by Theorem 4.2.2 and Lemma 5.3.1 by Lemma 5.4.2 in the proof of the existence
of a solution for negative weights in Theorem 5.3.2.

(ii) Assume that ¢ > 0. We simply extend the regularity argument used in
Chapter 4 (see Corollaries 4.5.5 and 4.5.7) for the cases £ = 0 and ¢ = —1. Now,
the hypothesis (5.4.1) is reduced to

N/p ¢ {1,....0+1}. (5.4.3)

Since N/p’ # (+1, we have the imbedding W, P (RY) — W, "P(RY), moreover,

WBH(RY) — W) P(RY) and W;n:el_l/p’p(f‘) — W, PP() hold. So, thanks to

Theorem 5.3.2, we know that problem (Sp) admits a unique solution (u, 7) €
W PRY) x W)P(RY). We will show by induction that

(F. h. g) € Wi P(RY) < WRR(RY) < WM H(T)

= (u, m) € WL P(RY) x WHA(RY).

For m = 0, (5.4.4) is true. Now assume that (5.4.4) is true for 0,1,...,m

and suppose that (f, h, g) € WP, (RY) x WIHER(RY) x Wit /me(),

Let us prove that (u, 7) € Wik (RY) x W LE(RY). Since we also have

the imbeddings W5, (RY) — W:nn;gl,p(Ri/)? Wﬁfeﬂ’i(Rf) — W h(RY) and
WYZL:EJ:/ PPTY) — WnT:el_l/ PP(T), according to the induction hypothesis, we can
deduce that the solution (u, 1) € W7'TP(RY) x W™E(RY). Now, for any

m~+L m~+L
ie{l,...,N — 1}, we have

(5.4.4)

2 N -1 1 1
= 00, f + —2.Vou+ <—+—3) Oiu + — x O;.
0 0 Y Y

Thus, —A(0du) + V(edir) € W P(RY). Moreover,

1
div(od;u) = — x O;u + 0 O;h.
0

Thus, div(pdu) € WH(RY). We also have yo(0du) = o dinou = ¢ d;g €

m+4
anli;_l/p’p(F). So, by induction hypothesis, we can deduce that

Vie{l,....,N—1}, (O, o) € Wit B(RY) x Wb, (RY).
It remains to prove that (yu, dym) € WP (RY) x WP (RY). For that,

m4£+1 m+£+1
let us observe that for any i € {1,..., N — 1}, we have
6128]\[’11, = 8N8Iiu € anfz_i_l(RN_]iY),
812\7/“1 = —Au; + 8171' /_ fi < W%-’&-E—&-l (R+)7
8NuN = 8Nh — aN div’ o’ c Wm_’~_12+1(Rf),
Ot = fn+ Auy € Wi (RY)
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Hence, V(Oyu) € Wﬁfgﬂ(Rf)N and knowing that dyu € WP (RY), we can

m4-£
deduce that Oyu € WZEJQ (RY), according to definition (1.2.1). Consequently,
we have Vu € WZ]Ljfl (RY )N. Likewise, Vr € WP, (RY) and finally, we can
conclude that (u, ) € W22 (RY) x Wi L (RY). O

5.5 Very weak solutions

The aim of this section is to study the homogeneous Stokes system (5.3.1)—(5.3.3)
with singular data on the boundary. In Section 4.6, we gave a meaning to singular
data for the Stokes problem in the half-space. More precisely, we showed that a
boundary condition u = g € W;_ll/p "P(T) is meaningful. Next, we solved problem
(5.3.1)=(5.3.3) in the two cases £ = 0 or ¢ = 1. Here again, we will extend
these results to the other weights, introducing the question of the kernel and, by
duality, the compatibility condition in the proof. However, let us notice that we
introduced and proved some preliminary definitions and properties in Section 4.6
with a view to the general case, i.e. for all £ € Z. So we will directly use them
in the proof of the following result which generalizes Theorems 4.6.6 and 4.6.8.
Here again the reasoning is quite similar.

Theorem 5.5.1. Let ¢ € Z and assume that
N/p¢{l,....4—1} and N/pe¢{l,...,—(+1}. (5.5.1)
For any g € W;jl/p’p(F), satisfying the compatibility condition

A
VLP € A[l-‘re—N/p’]? <g7 aNSO>W;_ll/PaP(F)le_/gllf’(F) = 07 (552)
problem (5.8.1)-(5.8.3) admits a solution (u, 7) € WyF(RY) x W, LP(RY),
unique up to an element of S[ll)fffN/pP and there exists a constant C such that

(A,me«i'sré’f,gw/ | (Hu  Allwos @y + lIm + “”WL?‘?(R%) < Clglw, ey
Proof. Step 1: we assume that gy = 0.

(i) Let us first show that if the pair (u, 7) € WB (RY) x W, [ P(RY) satisfies
(5.3.1) and (5.3.2), then we have u € T ,(RY) and thus the boundary condition
(5.3.3) makes sense. With this aim, by means of the density of D(RY ) in X ,(RY),

observe that if 7 € W,_?(RY), then we have Vr € X(RY) and

V7|l x; @) < C ||7T||W1_,111”’(Rf)’

So, we have Au € X(RY) and the trace you € W;jl/p’p(F).
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(ii) Now, let us show that the problem (5.3.1)—(5.3.3) with gy = 0 is equivalent
to the variational formulation: Find (u, 7) € W)? (RY) x WP (RY) such that

Yo € My(RY), V9 e WL (RY),

(u, —Av + V) — (m,div v)

WP (RN ) x W Z+1(RN) Y p(RN)X‘j’,l_,Zrl(Rf) (5,5,3)

<97 an> _1/1’ P( )XWI/ZZ;ZT (F) .
Indeed, let (u, 7) be a solution to (5.3.1)-(5.3.3) with gy = 0; by means of the
Green formula (4.6.6), we get for all v € M ,(RY),

(—Au + V?ﬂU)x;sz == <“7A”>W3ﬁ(m MxWo L ®RY)

— v) — (m,divo 0 =0.
<g76N >Wz_11/P»P(F)XW1_/;1f’(F) < ’ >Wg 11P(RN)><W17’;11(R_,JY) O

Moreover, using the density of the functions of D(@) with divergence zero in
Ty ,(RY), we obtain for all ¥ € W e+1(R]4Y)>

(u, V1) — (divu, ), 0.7 (R

WOP )XWOP RN

T RY) T )x WO (®RY) T

- </U/N, 19>W2111/P,P(F)XW1/2{7#11’/(F) = O

So we show that (u, 7) satisfies the variational formulation (5.5.3). Conversely,
we readily prove that if (u, 7) € W% (RY) x W, P(RY) satisfies the variational
formulation (5.5.3), then (w, 7) is a solution to problem (5.3.1)—(5.3.3).

(iii) Next, let us solve problem (5.5.3). By Theorem 5.4.1, we know that under

hypothesis (5.5.1), for all (f, h) € W% fH(RN)x W e+1(RN) L 87 4 nyp» there
exists a unique (v, ¥) € M(RY) x W e+1(RN)/81+£ N/ Solution to

~Av+VYd=f and divv=h inRY, v=0 onT,
with the estimate

(0, Dl ey C (1 lwoyr gy + Ml n, )

Consider the linear form 7' : (f, h) — (g, aN’U>W;_1{p*P(F)xwl/P'P'(r) defined on

Ze41
W(ifﬂ(RN)x W ZH(]Rf) L S 4 nypy- According to (5.5.2), we have for any
pE A[H@,N/p/], or equivalently, for any (A, p) € 8[117+€_N/p,],

(RY)xw P

g+1(RN)/SD

i [1+£-N/p']

|T(f7 h)| = < aaN(v + 90)>W;_1{P1P(F)XW1/P»P/(F)

—Ll+1

< C ||9’\W;j1/PvP(r) lv + ‘P|’W3ﬁl(M)'
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Thus

T(Fs )< C Nl oy 10, D)y oy

N
FaRY)/SE [1+¢—N/p']

S Clglwprm (”f”W‘l’fil(M) * ”h”Wiz‘il(M)) ‘

. . 0,p
In other words, T is continuous on W2l (RY)x e é+1(RN) L 8P iy and
according to the Riesz representation theorem, we can deduce that there exists
a unique (u, 7) € W2 (RY) x W, % p(RN)/S[1 ¢—nNyp) Which is the dual space of

WO f+1(RN)X W e+1(RN) L Sl — N/ Such that

V(F, h) € WORLRY) < WhL (RY),
T(f, h) = {u, f> W R (RY)x W z+1( ) +{m _h> (RN)XW £+1(RN) ’

N
i.e. the pair (u, m) satisfies (5.5.3) and the kernel of this operator is S[?—Z—N/p]'
Step 2: we now can drop the hypothesis gy = 0.
For any g € W, 1/p’
that under hypothesis (5.5.1), there exists 1 € W;_*{(Rf ) unique up to an element
of ./\/'[g_ —N/p]> solution to the following Neumann problem:

"(T) L N npp according to Theorem 4.3.3, we know

Ay =0 ian, OnY =gy onT.

Besides, we immediately notice that the orthogonality condition g L /\/'[KA_ N/p] 18
equivalent to the compatibility condition (5.5.2). Now, let us set w = Vi and
g* =g —Yw. Then w € T, ,(RY), with the estimate

HwHTg(Rf) = Hw“w‘;’j’l(R% <C HQHW;_ll/p,p(F).

Furthermore, g* is such that g} = 0, hence the existence of a unique pair (z, )
which satisfies

—Az+Vr=0 and divz =0 ian, u=g" onl.

Then the pair (z + w, 7) is a solution to problem (5.3.1)—(5.3.3). O



Chapitre 6

The Stokes system with Navier
boundary conditions

6.1 Introduction

The motion of a viscous incompressible fluid is described by the Navier-Stokes
equations, which are non-linear. The Stokes system is a linear approximation of
this model, available for slow motions. In the two previous chapters, we studied
this system in a half-space with the classical Dirichlet boundary conditions, which
correspond to an adhesion, or non-slip, condition of the fluid on the wall. But
recent developments in microfluidic and nanofluidic technologies have renewed
interest in the influence of surface roughness on the slip behavior of viscous fluids
(see Priezjev and Troian, [41]). This issue have been subjected to discussion for
over two centuries by many distinguished scientists who developed the founda-
tions of fluid mechanics, including Bernoulli, Coulomb, Navier, Couette, Poisson,
Stokes. There are two basic boundary conditions: Dirichlet boundary conditions
(non-slip boundary conditions) and slip boundary conditions (Navier condition).
It is intuitively clear that slip boundary conditions is much closer to the observed
reality than non-slip boundary conditions whenever the rate of flow is sufficiently
strong (turbulent regimes). However, there has been a common believe that
even if the Navier slip conditions were correct, the corresponding slip length is
likely to be small to influence the motion of macroscopic fluids. Recently, numer-
ous experiments and simulations as well as theoretical studies have shown that
the classical non-slip assumption can fail when the walls are sufficiently smooth.
Strictly speaking, the slip length characterizing the contact between a fluid and
a solid wall in relative motion is influenced by many different factors, among
which the intrinsic affinity and commensurability between the liquid and solid
molecular size as well as the macroscopic surface roughness caused by imper-
fections and tiny asperities play a significant role. The aim of this chapter is
to investigate the Stokes problem with this type of slip boundary conditions in

101
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weighted Sobolev spaces. These type of boundary conditions was recently studied
by Babin, Mahalov, Nicolaenko (see [14, 15, 16]) and by Bellout, Neustupa, Penel
(see [18, 40]).

For the stokes problem in a domain  of RY,

—Au+Vr=Ff and divu=~h in €,

there are several possibilities of boundary conditions.
The classical homogeneous Dirichlet (non-slip) conditions:

when 0f2 is a fixed wall. This condition was suggested by Stokes in 1845.
The Navier (slip) conditions:

u-nly,=0, (7 -n) +ku=0,

where 7 is the viscous stress tensor. For the incompressible isotropic fluid the
viscous stress tensor has a form

ZJ(U) = —(Sijﬂ' + 2V€ij;

. Ou
where e;;(u) = 3 (27“; 81;1 ).
Another boundary conditions (in the three dimensional case) we can find in

the literature can be expressed by the equations

curlu xn = 0,
u-n = 0.

In the half space the Navier conditions with £ = 0 and previous boundary
conditions have the same form and can be written in

uy =0, Oyu' =0 onT.

We would like to mention generalized impermeability boundary conditions,
which we can find in the work of Bellout, Neustupa and Penel [18, 40].

u-nl,, =0, curlu-n|,,=0, curl’u-n|,, =0

on the fixed wall 0.

In this chapter, we will consider the Stokes system with nonhomogeneous
Navier boundary conditions. We will denote it by (Sy) (for Stokes system with
Navier conditions):

(SN){—AU+V7T:f and divu=h inRY,

uy =gy and OJyu' =g onT,
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6.2 Generalized solutions

We will first establish the result about the generalized solutions to (Sy) in the
homogeneous case. The method is similar to the one employed for the Dirichlet
conditions, but the auxiliary problems and the arguments for their resolution are
appreciably different.

Homogeneous case

Here, we assume that f =0 and h = 0.

N-1
Proposition 6.2.1. For any gy € Wy /»?(T) and g € W, "/»?(I) such

that g’ L RN=1 if N < p/, the Stokes problem

~Au+Vr=0 in RY, (6.2.1)
divu =0 in RY, (6.2.2)

UN = gn on T, (6.2.3)

oyu' =g’ on I, (6.2.4)

has a solution (u, ) € WyP(RY) x LP(RY), unique if N > p, unique up to an
element of RN=1 x {0}2 if N < p, with the estimate

XER}{I&{O} e + XHW%’p(Rﬁ) * HW”LP(R%

< C <H9N||W01‘1/P*p(r) + ||9/HW(;1/p,p(F)N—1>

if N < p, and the same without x if N > p.
Remark 6.2.2. Before giving the proof, let us notice that this problem is not
standard. Indeed, we find the velocity field w in Wy?(RY) with a boundary

N-1

condition Oyu’ = g’ € Wy /PP(T')" for its tangential components.
It is possible because A%y = 0 in RY and thus u; € Y}'P(RY) (see page 50).
Hence, by Lemma 3.3.8, the trace of Oyu; have a sense in Wo_l/p’p(F). &

Proof. (i) Firstly, we reduce system (6.2.1)—(6.2.4) to three problems on the fun-
damental operators A% and A.

According to (6.2.2) and applying the operators div and A to (6.2.1), we get
both A =0 and A%u = 0 in RY.

From the boundary condition (6.2.3), we take out

Vie{l,2,..., N -1}, Otuy = gy onT.
In addition, from (6.2.4), we take out

Oyuy = On(Oyuy) = On(—div'u') = —div'g" onT,
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hence, the boundary condition
Auy = ANgy —divig’ onT,

where A’ = Z;V:_ll 8]2. So, we get the following biharmonic problem

(B) : A%uy =0 in Rf, uy = gy and Auy = A'gy —div'g’ onT.
Moreover, we have two Neumann problems

(N1) : Ar=0 inRY, Oym=Auy onT,
: v =V'r nRY, Oyu' =g onT.
(N2) Au'=V'r mRY, oyu' =g onT

(ii) Now, we will solve these three problems.
Step 1: We deal with problem (B). Denoting zy = Auy, we can split our
problem in the following two Dirichlet problems:

Azy =0 in Rf, v =Agy —divig’ onT,

Auy = zn inRﬁ, uy =gy on I

Concerning (6.2.5), we notice that A'gy — div' g’ € Wy '"Y/PP(T), then we
can apply Theorem 4.3.4 with ¢ = 2, provided condition (4.3.4) is satisfied, i.e.
in the present case

A / s _
Yo € A[S—N/p’}7 (A'gy —div' g ,aN(p)Woflfl/p,p(F)XWQQ*l/p/,p/(F) =0.

According to the degre of polynomials in A[%_ N/pl]’ this condition boils down to

g L (Pu- N/p/])N_l, which is precisely the assumption of Proposition 6.2.1. Thus
problem (6.2.5) has a unique solution zy € W, "?(RY).

Concerning (6.2.6), we can apply Theorem 1.4.1 with ¢ = 0 and without any
condition since .A[Alf ~/p] = 10}. Thus problem (6.2.6) has a unique solution
un € Wol’pGRf)

Step 2: We study now problem (N1). Since Auy € W, "P(RY), it is nec-
essary to check that the trace yoAuy has meaning. From definitions of Y,(RY)
and Yy 1(RY) in Section 4.3, since Auy € W, "?(Q) and A?uy = 0, it follows
that Auy € Yo(RY) and Auy € Y 1(RY). Then, according to Lemma 4.3.6,
we have Auy € Wo_l_l/p’p(l"). Now we can apply Theorem 4.3.2, provided the
compatibility condition (4.3.2) is satisfied, i.e. in the present case

Vo € Ny, (Dun, P11/ w1/ # oy = 0-

But, according to the degre of polynomials in ./\/'[g_ N/p)s 1t 1S clear that in fact

this condition vanishes. It implies the existence of a unique solution 7 € LP(RY)
to problem (N1).
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Step 3: Finally, we are dealing with problem (N2). We split it in two parts:
Av' =V'm inRY, Oyv' =0 onT, (6.2.7)

and
Az'=0 inRY, dyz'=g onT. (6.2.8)

To solve (6.2.7), we introduce the auxiliary problem
Aw=7m inRY, Oyw=0 onT. (6.2.9)

Since we have m € LP(RY), we can apply Theorem 1.4.4 which yields a solution

w e WOZ’p(Rf), unique up to an element of ./\/'[Q_N/p], to problem (6.2.9). Next, it

: : : N-1
suffices to put v = V'w to obtain a solution (non-unique) v’ € Wy'?(RY)" " to

problem (6.2.7).

For problem (6.2.8), with g’ € Wofl/p’p(F)Nil, we must use Theorem 4.3.3.
The compatibility condition is written in this case: g’ L (Pp— N/p/])N_l. Thus it
is realized by the assumption of Proposition 6.2.1. So, this problem has a solution
2 e Wy R )N

Then, it is clear that the function «' = v + 2’ € W, "?(RY
problem (N2).

(iii) Conversely, it is necessary to show that from uy, 7, u’, we get a solution
(u, m) of the original problem (6.2.1)-(6.2.4).

From previous it is clear that

, unique up to an element of (Pj_nyp|
N-1, .
) " is solution to

—Au'+V'm = 0 in RY,

un = gn on F:
ovu' = ¢ on I'.
It remains to prove that
—Auy +9Oym =0 in RY (6.2.10)

and finally, the relation (6.2.2).
For (6.2.10), thanks to the first equations of (B) and (N1), we get

A(Auy — Oym) = A’uy =0 in Rf.

With the boundary condition of (N1), it follows that Auy — Oy7 satisfies the
problem
A(Auy — dym) =0 in Rf, Auy —Oym =0 on .

Since Auy — Oym € Wy Lp (Rf ), Theorem 4.3.4 shows that we necessarily have
Auy — Oym =0 in Rf.
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For (6.2.2), the boundary condition of (N2) implies dy div'u/ = div' g’ on T
Besides, from the boundary conditions of (B), we get d%uy = —div' g’ on T.
Then we have

Ondivu = Oy div' v’ + 0juy =div g’ —div'g'=0 onT.
So, div u satisfies the problem
Adivu=0 inRY, dydivu=0 onT.
Since divu € LP(RY), thanks to Theorem 4.3.2, we get divu = 0 in RY.
(iv) Concerning the uniqueness question, we have notice that uy and = are

unique. Let v’ = (u;)1<i<v—1 and u), = (uf)1<i<y—1 be solutions to (N2), then

Alu; —uf) = 0 inRY,
On(u;—uf) = 0 onT,

where u; —u; € VVO1 P(RY). Thus, according to Theorem 1.4.3, we can deduce
that u; —u; € /\f[?_ N/p)- It remains to remark that /\/'[?_ N/p = R if N < p, and

Finally, the estimate of Proposition 6.2.1 is a straightforward consequence of
the Banach Theorem. O

Nonhomogeneous case
Now, we can deal with the complete problem.

Theorem 6.2.3. Assume that 3 # 1. For any f € WOPRY), h € WHP(RY),

N-1
gy € WTYPP(TY and g € Wy PP(D), satisfying the following compatibility
condition if N < p':

Vi € {1, o e ey N — 1}, /Rf fz dz = <gz’7 1>W0—1/p,p(F)XW01/p,p/(F) ) (6211)

problem (Sy) admits a solution (u, ) € WyP(RY) x LP(RY), unique if N > p,
unique up to an element of RN=1 x {0}2 if N < p, with the estimate

xeRzivI_lﬁx{O} e + X”Wé’p(Rf) + ”WHLP(R%
< C (”f”w(l]p(Rg) + ||h||W11’p(Rf) + ||gN||W371/p,p(1—\) + ||g’||WO—1/p7p(F)N71>

if N < p, and the same without x if N > p.
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Proof. We can give a proof quite similar to the one of the nonhomogeneous case
for the Stokes system with Dirichlet boundary conditions, by extension of the data
f and h to the whole space (see Section 4.4). But another way is to combine this
result with the homogeneous case for the Stokes system with Navier boundary
conditions. We will follow this one.

Firstly, we introduce the auxiliary problem

—Az+Vnp = f inRY,

divz = h nRY, (6.2.12)
z = 0 onl.

With the assumption g # 1, according to Theorem 4.5.2, we know that problem
(6.2.12) admits a unique solution (2, 7) € WTPRY) x W"P(RY). Thus we
can deduce that dyz'|; € Wllfl/p’p(F)N_l. In addition, we can notice that we
have the imbeddings WP (RY) < Wy P(RY) and W,"?(RY) < LP(RY) without
condition, whereas we have Wll_l/p’p(F) — Wo_l/p’p(F) only if % # 1.

Indeed, we can break it down into

1-1/p, , , —1/p,
WP = WHHD) and - WEE) < Wy PR,
The first one holds without condition and, by duality, the second one is equivalent
to Wy/P¥(T') — W7 (), which holds if 221 £ 1 e & 41, .
So, (2, n) € WEP(RY) x LP(RY) and above all v,2" € W, /PP()", which
allows us to consider the second auxiliary problem

—Av+Vi¥=0 and divv=0 ian, (6.2.13)
vy =gy and Oyv' =g —0nz’ onl, -
N-1
where g’ —On2/|p =g — 12 € WO_I/p’p(F) . Then, we can apply Proposition
6.2.1, which yields (v, ¥) € WyP(RY) x LP(RY) solution to (6.2.13), provided
the orthogonality condition
/ N-1 Pl —

Vo' € R , (g Mz, Y >ng/”’p(F)N—1XW&/p’p/(F)NA 0 (6.2.14)
is satisfied if N < p’. Now, we must write this condition by only means of data.
It suffices to notice that we have for all ¢ € RV~ x {0},

f-gadx:/ (—Az+Vn) - pdr
RY RY

/ /
= z, @ N-1 N-1
<’71 ? >‘1[70_1/Pap(11) X‘)Vol/p’pl(r) ’

to deduce that the condition (6.2.14) is written

,17

Vo' e RV foede=(g" &) 1,
0

N-1 1 / N
Ri\_] (F) X WO /P» P (F)
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that is, more simply, the compatibility condition (6.2.11).

Then, the pair (u, 7) = (v + 2, ¥ + 1) which belongs to W ?(RY) x LP(RY)
is a solution to (Sy).

Finally, the uniqueness of solutions to (Sy) is a straightforward consequence
of Proposition 6.2.1. O

Remark 6.2.4. With these boundary conditions, it is not reasonable to consider
data (f, h) which belong to Wy "?(RY) x LP(RY). Indeed, with such data we
get a solution to problem (6.2.12) in the space Wy'?(RY) for the velocity field 2
and we cannot give a sense to the trace of dyz’ in that case. This limitation is
not due to the method employed here, but we find the same situation as in the
Neumann problem for the Laplacian in RY (see Theorem 1.4.3). &

6.3 Strong solutions and regularity

In this section, we are interested in the existence of strong solutions, i.e. of
solutions (u, ) € WTP(RY) x W"P(RY), and next to get a general regularity
result. We start with the homogeneous problem.

Proposition 6.3.1. Assume that g # 1. For any gy € Wf_l/p’p(f‘) and g' €
N-1
Wll_l/p’p(F) such that g' L RN=1 of N < p', problem (6.2.1)-(6.2.4) admits

a solution (u, ) € WP(RY) x WHP(RY), unique if N > p, unique up to an
element of RN=1 x {0}2 if N < p, with the estimate

i o 1t Xllwar @ + Tl ey

s ¢ (“gN”Wf‘”“’(r) + |’9/wa‘1/“’(r>N’l>
if N < p, and the same without x if N > p.

Proof. We have seen before that W, /"P(T) — W, /P2(T') if g # 1. Moreover,

we have the imbedding W~ /7?(I') — Wy~ "/»?(I') without condition.

Then, from Proposition 6.2.1, we can deduce that problem (6.2.1)—(6.2.4)
admits a solution (u, 7) € WyP(RY) x LP(RY). Now, it suffices to go back to
the proof of Proposition 6.2.1 and to use the established results about problems
(B), (N1) and (N2), to show that in fact (u, 1) € WTP(RY) x W P(RY).

In order, for problem (B), according to Theorem 4.3.7, we find zy € Wlo’p(Rf)
solution to the first problem (6.2.5), with the assumption g’ L (Pp— N/pq)Nfl; and
according to Theorem 1.4.2, we find uy € WP (R%) solution to the second prob-
lem (6.2.6). For problem (N1), thanks to Theorem 4.3.3, we find 7 € W,"?(RY).
For problem (N2), according to Theorem 1.4.2, we find u’ € Wf’p(Rf)Nfl. Note
that for all these results, the condition N/p" # 1 is always necessary. O
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We now can give the result in the nonhomogeneous case.

Theorem 6.3.2. Assume that ﬁ #1. For any f € WPP(RY), h € WPP(RY),

N-1
gy € Wi~ e, p(F) andg' € W~ l/p P(T) , satisfying the compatibility condition
(6.2.11) if N < p/, problem (Sy) has a solution (u, ) € WPP(RY) x W"P(RY),
unique if N > p, unique up to an element of RN=1 x {0}2 if N < p, with the
estimate

e o 1t Xl + Il ey

< C <||‘f||W?p(Rf) + ||h||W11p(Rﬁ) + ||gN||W12—1/p,p(F) + ||g/HW11—1/p7p(F)N*1>
if N < p, and the same without x if N > p.

Proof. The proof of Theorem 6.2.3 work in this case. It suffices to take the strong
result for Stokes system with Dirichlet boundary conditions, i.e. Theorem 4.5.2,
to solve (6.2.12); and Proposition 6.3.1 to solve (6.2.13). O

Corollary 6.3.3. Let m > 1 be an integer and assume that N £ 1. Forany f €
N-1

Wb (RY), hoe WrP(RY), gy € W' TVPP(D) and g € Wi TVPP(ID)
satisfying the compatibility condition (6.2.11) if N < p/, problem (Sy) admits a
solution (u, ) € WIHLP(RY) x WmP(RY), unique if N > p, unique up to an
element of RN=1 x {0}2 if N < p, with the estimate

et oy 12 T Xl + Irllwzrery <

m

<||f||Wm 1, p(Rﬁ) + ”h”WT"nnap(Rf) + ||gNHW77y7Ll+171/PxP(F) + ”g/HWTYrILL—l/PyP(F)N71>
if N < p, and the same without x if N > p.

Proof. Here again, we can refer to the proof of the regularity result for Stokes
system with Dirichlet boundary conditions, that is Corollary 4.5.5 on page 74.
The only change in the proof is about traces of the tangential components of the

N-1
velocity field. However, assuming that g’ € VVmJr1 Yp.p (T') , since o = ¢
and 710 = 0, then we have (0 diu) = o du’ = ¢ 8,g' € W™ Y/PP(T), which
allows us to apply the induction hypothesis. O

Remark 6.3.4. Another way to prove Corollary 6.3.3, is to resume the method
of Section 6.2, using the regularity results for harmonic, biharmonic and Stokes
(with Dirichlet boundary conditions) problems in the half-space. %
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6.4 Very weak solutions
The aim of this section is to study the homogeneous problem (6.2.1)—(6.2.4):

—Au+Vr=0 and divu=0 inRY,
uy =gy and OJyu' =g onT,

with singular data on the boundary, that is more precisely with

N-1

g eW TP and gy € WPH(D),

The outline of the reasoning is the same as in the case of Dirichlet conditions
(Section 4.6), but we must write an adapted Green formula for the variational
formulation and thus find the good spaces with appropriate densities. We will
give the complete proof, points already seen at Section 4.6 excepted. Here again,
we will establish these preliminary definitions and properties with a view to the
general case, i.e. for all ¢ € Z.

For every ¢ € Z, we introduce

M,(RY) = {uEW EH(RJI); uy =0, Oyu' =0 and dive =0 on F},

as a subspace of Wi’ﬁl(Rf ), equipped with the inherited norm. We also define
the space

{ve W' (RY); divo e W M(RN)} it & ¢ {¢, 0+1},

XZ(RJI): 0,9/ N N e N
{vew2l, (RY); d1vv€W€+1(R+)} if 7 e{l, (41}

which is a reflexive Banach space for the norm

[0l oy gy + 140l ) i3 {6 0+ 1),

H””Xm:[uvu R LS N X CY R )L

WO 0 (]R 1 10 RN)

and the following subspace of X ,(RY)

{ve W (RY); dive e W M(RN)} it &% ¢ {(, (41},

X, (RY) =
" {ve W‘ig’_lj_l(RN) dive € WhL(RY)} if ¥ e {e, 0+ 1}

Finally, let us we denote by X(RY) the dual space of X, (RY).

Lemma 6.4.1. For any { € Z, the space D(RY) is dense in X, (RY).
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Proof. For every continuous linear form J € X Z(Rf ), there exists a unique pair

(f, g) € WOE(RY) x W, 5P(RY), such that

Yoe X RY), (Jv)= [ f vde+t (g dive)

N
R+

(6.4.1)

Wi PRY) W, (RY)

Thanks to Hahn-Banach theorem, it suffices to show that any J which vanishes

on D(RY) is actually zero on X, (RY). Let us suppose that J = 0 on D(RY).
Then we can deduce from (6.4.1) that

f-Vg=0 iR},

hence we have Vg € W5 (RY). Then, we can deduce that g € W,;5(RY). Now,
it is a standard density argument which allows us to see from (6.4.1) that J is
identically zero. O

Next, we introduce the two spaces:
T,(RY) ={v e W5 (RY); Ave X,(R))},
T,o( RN ={veTy(RY); divv=0 inR}},
which are reflexive Banach spaces for the norm
e L [y

where || - || x;(zy) denotes the dual norm of the space X J(RY).

We now can give the essential lemma, both to give a sense to the traces in
our singular problem, and for the duality reasoning on which is based the main
result.

Lemma 6.4.2. Let { € 7Z and assume that
N/p¢{1,....4—1} and N/p¢{l,...,—0+1}. (6.4.2)
The linear mapping
(Yew» 1) : D(RY) — DRY)
v — (vnp, On?'p),
can be extended to a linear continuous mapping
(e 1)+ T (RY) — WYPP(E) s (WP ()

In addition, we have the Green formula:

Vo € Ty ,(RY), Ve e M(RY),

(B0 8]y, my) (O APl W mnywt ey T (6.4.3)

—41

<8N'U ¥ > 1 1/p, P(F) 1+1/1P,Z7/(F) + <UN7 8N()0N> 1/17 P(F)XWiéleP ) .
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Proof. (i) We start with the normal trace, that is the linear mapping

Yen : D(RY) — DRNY)

UV +H— UN‘F,
Let us consider the space

o, Y | (V€ WEARD): dive € WOR(RY)L it &2
¢ T {ve WPRRY); dive e WPRY)} if & =
which is a reflexive Banach space equipped with its natural norm

- [HUHWMW"div””w&w it AL
w, (diV;R+) -

HUHW?Lpl(Rf) + || diVUHWZ()!,lp(R_j'\_I) lf ﬂ, = g

As in Lemma 4.6.2, we can show by truncation and regularization that ’D(Rﬂf )
is dense in W'?(div; RY).

Moreover, by density of D(@) in Wi’e’il(Rf ), we have

Yo € D(RY), Vpe W 7 (RY),

/ v-Vedr +/ gpdivvdx:—/w\updx',
RY RY r

/UNgoda:’
r

Let u € ng’f,(F). By Lemma 1.3.1, there exists ¢ € Wiﬁl(Rf) such that

¥ = pon I with ||S0||W1Z€L,1(Rf) < C ||M||Wi/gi11)/(r) COHSunthly,

/vNudx'
r

||UN||W£:11/P,:D(F) < C ||v||W2’p(div;Rﬁ)' (644)

hence

< ”UHW;}P(div;Rf) HSOHW}/L(R%'

< C HUHW}P(div;M) ””HWiQf’;f’/(F)’

and thus

Hence we can deduce that 7., is continuous for the norm of Wy*(div; RY) and,
since ’D(@) is dense in Wg’p (div; RY), the mapping 7., can be extended by
continuity to e, € E(Wg’p (div; RY); W, /PP (F)) That obviously answers to
the question of normal trace for the functions in T, ,(RY), since we have in this

space the inequality ”’U”W%p(div;Rf) < vllz,@y)-
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(ii) Next, we are interested in the trace of normal derivative of tangential
components, that is the linear mapping

v, : DRY) — DRYHM!

v — ONV'|p,
Firstly, the density of ’D(@) in Wz_’fil(Rf ), yields the following Green formula:
Vo € D(RY), Ve e M (RY),

/ Afv-godx:/ v-Agodas—/8Nv’-cp’dx’+/vN0ngNdx’.
RY RY r r

According to (6.4.4), we can deduce the following estimate:

/ONU’ ' da’
r

/ N—-1 ’
Let p/ € Wji{p’p (T) . By Lemma 1.3.1, there exists ¢ € W/ (RY) such

that ¢ = (', 0) and Oy = (0, —div' p/) on T' — so we have divp = 0 on T’ and
N ; /
thus ¢ € M,(RY) —, with ||(P||W2_’£p/ ®Y) < Cp HWiZ{p,p/(F). Consequently,

+1
/8Nv’ ' da’!
r

HaN'U/HW[_lfl/p,P(F) < C H'v“Te(Rf)'

(6.4.5)

< C 0l 1ol

< Cvllr,@y) ||N/||Wji{p,p/(r),

and thus

Hence we can deduce that the linear mapping v; is continuous for the norm of
T&U(Rf). In addition, we can show that the space {v € ’D(@); dive = 0} is
dense in Ty ,(RY). Therefore, the mapping 7] can be extended by continuity to
7€ £(Teo(RY); W),

To finish this proof, we also can deduce the formula (6.4.3) from (6.4.5) by
that last density. O]

We now can solve the homogeneous problem (6.2.1)—(6.2.4) with singular data
on the boundary. We will do it in two times. The first step is to consider
gnv = 0, next we will remove this assumption. Here, we are only interested
in the case ¢ = 0 and then hypothesis (6.4.2) is reduced to N # p. Let us
notice that with this hypothesis, we have the imbeddings W, ? RY) — wor (RY)
and W, PP(I) — WZ»P(I), in addition W, /"P(T') — W_;"P?(I') holds
without condition. It allows us to link the very weak solutions of this section to
the generalized solutions of Proposition 6.2.1.



114 CHAPITRE 6. STOKES SYSTEM WITH NAVIER CONDITIONS

Proposition 6.4.3. Assume that % # 1. For any g’ € I/V__ll_l/p’p(l“)]\L1 such
that g L RN~ 4f N < p/, the Stokes problem (6.2.1)-(6.2.4) with g = 0 admits
a solution (u, 7) € WOP(RY) x W-P(RY), unique if N > p, unique up to an
element of RN=1 x {0}2 if N < p, with the estimate

. /
XEszr,l{x{O} Ju + XHWO_’f(Rf) + ||7THW__11’p(R$) < Clg ”W:f*l/’)’p(F)N_1

if N < p, and the same without x if N > p.

Proof. (i) Given a pair (u, 7) € W2P(RY) x W_?(RY) which satisfies (6.2.1)
and (6.2.2), then we have u € T ,(RY) and thus the boundary conditions (6.2.3)
and (6.2.4) makes sense. Indeed, observe that if 7 € W~}

for any ¢ € D(RY),

P(RY), we can write

(Vr, 90>'D’(Rf)xp(m\_f) = —(m,div 90>D/(Rj\_’)xD(R§_’) :
Consider the linear form:

J i r— —(m,div ¢>w:f*’<M>xv°v%’”<M> ’

defined on D(RY). Thanks to Lemma 6.4.1, we can extend .J by density to
X o(R%Y); moreover, we have:

[Tl < lImll-sr@yy lellxomy)-
Hence J is continuous on Xo(RY) and by the Riesz representation theorem,
we can deduce that Vr € X{(RY). In addition, we have the following Green
formula:

VSO S XO(RJI)a

(V. ) (6.4.6)

= — {(m, div _
X)(RY)x Xo(RY) (. "°>W_f”’<M>xv°v}””(M)’

with the estimate
||V7T||X6(R§) < ||7T||W:11’p(Rf)‘

Since Vrr € X((RY), we also have Au € X((RY), hence u € T ,(RY), and thus

we have both the trace yyuy € Wj/p’p(F) and the trace v u' € Wj_l/p’p(F).
(ii) Let us show that the problem (6.2.1)—(6.2.4) with gy = 0 is equivalent to
the variational formulation: Find (u, 7) € W2P(RY) x W_"?(RY) such that

Yo € My(RY), Vi e W (RY),

<'U;, —A'U + vrl?)Wg’f(Rf)XW%p/(Rf) - <7T7 diV,U>W_—11,P(R£)XV?/}aP/(R$) (647)

S A
- <g ,U >W:}_l/p’p(F)XW1+1/p’p/(F) .
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(a) Let (u, m) be a solution to (6.2.1)-(6.2.4) with gy = 0; then the Green
formulas (6.4.3) and (6.4.6) yield for all v € My(RY),

(—Au+ Vr,v) (1, AV) o0 )t ) T

[}
Xo(RY)x Xo(RY) +

/ / .
V) — (m,divo o = 0.
TGV Dyttt ) T AT AV O gy = O

Moreover, using the density of the functions of D(Rf ) with divergence zero in
Ty, ,(RY), we obtain for all ¥ € W (RY),

- <uN7 19>w:11/P7P(F)XW11/PaP/(F) = 0

So we show that (u, ) satisfies the variational formulation (6.4.7).
(b) Conversely, if (u, 7) € W2P(RY) x W_P(RY) satisfies the variational
formulation (6.4.7), then taking v = 0, we have for any ¥ € D(RY),

(u, VwD/(Rf)xD(M) = {- divuva’(Rf)XD(Rf) =0,

hence dive = 0 in RY. We can deduce that u € W%f (div; RY) and thus
un|p € W_/PP(I"). Then, we can write for any 0 € W% (RY),

<u7 V19>W(1’1’7(R§)><W(1)"JI(R§) = <uNa 19>w:11/P»P(F)XW11/P7PI(F) = 0.

Therefore, by the traces lemma (Lemma 1.3.1), we have for any ¢ € Wll/p’p/(F),
(UN,©) o —1/p,p pp . = 0, hence uy = 0 on I'. In addition, taking 9 = 0 in
WP ) xw /PP (1)

(6.4.7), we have for any v € D(RY),

(u, —AU>D/(M)xD(M) — (m, div ”>D/(R$)xD(R$) =0,
thus (—Au + Vr, U>D/(Rﬁ)xD(Rﬁ) =0, i.e. —Au+Vr =0inRY. We deduce that
u € Ty ,(RY) and taking ¢ = 0 in (6.4.7), we finally get for any v € M(RY),

;o PN,
<8Nu 7’0 >W:171/p’p(F)XW1+1/p’pl(F) - <g 71) >W:ifl/%P(F)XW1+1/P7P/(F) .

Moreover, as we saw at point (ii) in the proof of Lemma 6.4.2 on page 113, for

/ 1+1/p, 0 (V1 : N / / .

all p' € W, ('), there exists v € My(RY) such that v’ = ' on I

consequently Oyu’ = g’ on I'. So, we have shown that (w, 7) is a solution to
problem (6.2.1)—(6.2.4).

(iii) Let us solve problem (6.4.7). According to Theorem 6.3.2, we know that

if ¥ 21, for all £ € WP (RY) L (Puony)" ™" x {0}) and ¢ € WhY(RY),
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there exists a unique (v, ¥) € (Mo(RY) x Wll’p,(]Rf))/(('P[l_N/p/])Nfl x {0}?)
solution to

~Av+ VY= f and divo=¢ inRY,

vy=0 and Oyv'=0 onT,

with the estimate

inf o+ Xl gy, + 1l

_ RN
XE(Pp /)Y x40 ®e)

C (IF Ny gy + 10y ay ) -
Now, consider the linear form

T: (f7 90) — = <g/7 vl>W:1*1/PvP(F)XW}+1/P,P’(F) )

defined on (WOP(]RN)X WIP(RN)) L ((P[l_N/p])N—l < {0}2). Since g L
(7)[ fN/p})N* , we have for any x’ € (73[171\[/[),})N717

_ ;o /
|T(f’ S0>| - ‘<g7 v + X >W:i*1/PvP(F)XwiJrl/PvP/(F)‘

/
S Clolwer @y v rxioy 19wy

/
< C (IF oy, + 1€lyirgy) 19 ly1-ms .
Hence T is continuous on (WO 14 (RY)x I/I/'1 4 (RY)) L ((P[l,N/p})Nfl x {0}?),

and according to the Riesz representation theorem, we know that there exists a
unique (u, 1) € (W2P(RY) x Wﬁl’p(RN))/((P[l_N/p])N_l x {0}?) — which is

the dual space of (W?’p/(RN) I/V1 24 (RY)) L (Pa_wy)™ " x {0}?) —, such
that

Y(f. ) € (WY RY)x WP (RY)) L ((Puowy)™ ™ x {012),
T(F, @) = W Fhwopearyewer' @) T 0 =Py mpn it )

i.e. the pair (u, 7) satisfies (6.4.7). O
We now can drop the hypothesis gy = 0.

N 1-1/p,p ¥ L
Theorem 6.4.4. Assume that = # 1. For any g' € W (T) such that
g LRYN"Lif N <y, and gy € W 1/pp( '), the Stokes problem (6.2.1)-(6.2.4)
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admits a solution (u, ) € WOP(RY) x W_P(RY), unique if N > p, unique up
to an element of RN=1 x {0}2 if N < p, with the estimate

XeR]iVQfX{O} Ju + XHW@{’(}M) + ||7T||W__11’p(R_I~\_’)

< € (lotyimmy + Iy o)

if N < p, and the same without x if N > p.

Proof. According to Theorem 4.3.3, we know that if % # 1, then there exists

Y e WhP (RY) unique up to an element of /\f[ﬁ_ nyp) Solution to the following
Neumann problem:

Ay =0 ian, OnY =gy onT.

Let us set w = V¢ and g, = g’ — Oyw’ on I'. Then we have w € T ,(RY),
N-1
hence g. € W, /PP(I')" ", with the estimate

HwHTO(M) = Hwngf(M) <C HgNHij/”’p(r)'

Moreover, g, satisfies the orthogonality condition of Proposition 6.4.3, hence the
existence of a pair (z, 1) € W2P(RY) x W "?(RY) which satisfies

~Az+Vr=0 and divz=0 inRY,

2y =0 and dyz' =g, onT.

Then the pair (u, 7) = (2 + w, ) is the required solution. The uniqueness of
this solution is a straightforward consequence of Proposition 6.4.3. O






Chapitre 7

A generalized Stokes system

7.1 Introduction
In this chapter we are interested in the study of systems of Stokes type

—vAu—pVdivu+Vr =f  inRY,

. Am+dive =h in RY,
(SN) U — T
N gy Onlt,
ovu' =g onT,

where the constants v, p and A satisfy the assumptions v > 0, A > 0 and
w~+ v > 0. First, we can remark that the elasticity term —pVdivu in the
first equation vanishes by using the second equation in order to substitute div w.
However, the calculations made under the assumption p # 0 will be useful in
studying some problems related to compressible fluids.

Naturally, it is also possible to see the classical Stokes system as the limit
case A = 0 of this generalized problem. This point of view can be interesting in
numerical approximation (see H. Beirado da Veiga, [17]).

Since the previous chapter was dedicated to the classical Stokes system with
Navier condition, in the present one, we will assume that A # 0. Besides, we will
use both the method elaborated in the previous chapters and the specificity of
this system — particularly for the very weak solutions —.

7.2 The generalized Stokes system in RY

As usual, our method requires the extension of problems given in the half-space
to the whole space. Then a necessary step is to consider the corresponding Stokes
system in RY:

(59) —vAu —pVdivu+Vr =f inRY,
Am+dive =h in RV,

119
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In this section, we adapt to this case, with minor modifications, the arguments
used by Alliot-Amrouche in [3] for the classical Stokes system.
Let us denote by T' the corresponding operator:

T:(u,7)— (—vAu —puVdivu + Vr, —A7 —divu).

7.2.1 Existence and uniqueness results

We assume that (f, h) = (0, 0) and we first consider the operator 7" defined on
the space of tempered distributions 8’ (RY) x S'(RY). Using the second equation
in order to substitute —A7 for divu in the first equation, we get

—vAu+ (1+Ap)Va=0 inR"Y.

Applying the divergence operator to this equation, we obtain Aw = 0 in R¥.
Finally, applying the Laplacian to the same equation, we find A?u = 0 in R¥".
So, m and wu are respectively tempered harmonic and biharmonic distributions,
thus polynomials. Consequently, the kernel of T is quite similar to the kernel of
the classical Stokes operator: for any k£ € 7Z, we introduce the space

S = {(X7 q) € P x Py Ag+divx =0, —yAx—#Vdjvijvq:O}’

and we have the following uniqueness result:

Lemma 7.2.1. Let ¢ € Z, m € N and assume that N/p ¢ {1,...,—¢—m}, then
the kernel of T defined on Wty P(RY) x WH(RY) is the space St Ny

Now, we are interested in the question of existence of solutions. Let (u, m) €
S'(RY) x §'(RM) be a pair solution to problem (S¢). The second equation of
(S€) allows us to substitute h — Aw for div u in the first equation, then taking the
divergence of this one, we get

(14+ A (v +p)) A = div f + (v + p) Ah. (7.2.1)
Besides, for the velocity field, we have
vAu = (14+ ) Vo — f — uVh. (7.2.2)

Thus, as for the classical Stokes system in RY, it suffices to solve these two
Poisson’s equations. Indeed, if (v, 7) verifies (7.2.1)—(7.2.2), then we get

—vAv —puV(h—=A7)+Vr=f inS'RY), (7.2.3)

Adivvo=A(h— A7) in S'(RY), (7.2.4)

and thus, dive — h+ A7 = ¢, where ¢ is a harmonic polynomial. So we can use
the following lemma proved in [3]:

Lemma 7.2.2. For any k € N, P2 = div (’PkAH).

Therefore ¢ = divx, where x € Py, and the pair (v — x, 7) satisfies the
initial problem (S°¢).
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7.2.2 Generalized solutions

Theorem 7.2.3. Let ¢ € Z and assume that

N/p' ¢ {1,....4y and N/pé¢{1,...,—(}. (7.2.5)

For any (f, h) € (W, "P(RY) x W)P(RN)) L S{i 41— nyp)» Problem (5¢) admits a
solution (u, ) € W P(RN) x W)P(RN), unique up to an element of SN/
with the estimate

inf ( u + ) + |7+ 7 )
sl et xwrrn +m + dlhp sy

< O (Iflwrmqamy + Illosceny ) -

Proof. We proceed in three steps. First we solve the case ¢ = 0, then we consider
the negative weights to avoid troubles with the compatibility conditions and last,
we obtain the solutions for positive weights by a duality argument.

(i) The Stokes operator

T: (WyP(RY) x LP(RY)) /S8 — (W P(RY) x LP(RY)) L Shi_ /]

is an isomorphism.

The operator T is clearly continuous, moreover 7' is injective by Lemma 7.2.1,
then by the Banach Theorem, it remains to show that it is surjective. Let us
consider a pair (f, h) € (Wy " P(RY) L Ppi_nypy) x LP(RY), then div f belongs
to Wy >P(RN). Moreover, for any ¢ € P/, We have

<d1V f? %0>WO—27P(RN)XW027PI(RN) = <f7 VCID>WO—LP(RN)XWOLP/(RN) - 07

i.e. divf € Wy >P(RN) L Pia—nyp) and the same argument holds for Ah. Then,
according to the isomorphism! (2.2.2) with ¢ = 0, there exists 7 € LP(RY)
solution to (7.2.1). Furthermore, for any ¢ € Wol’p/(]RN), 1<i<N,

(O, w>Wo_1’p(RN)><Wol’p/(RN) = = {7, 0) Loy )

That implies 0;7 L R if N/p’ < 1, and the same argument holds for d;h. Thus,
according to the isomorphism (2.2.12) with m = 0, there exists u € Wy ”(RN)
solution to (7.2.2). In addition, as we have seen above, divu — h + A7 is a
harmonic polynomial. Since it belongs to LP(RY), it is actually zero. So (u, )
verifies T'(u, ) = (f, —h), which proves the surjectivity of T

(ii) For any ¢ < 0, the Stokes operator

T (WyPRY) x WP (RY)) [SA_y i — Wi P (RY) x WP (RY)

1Let us recall that the isomorphisms for the Laplacian are established in [5] and [6].
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is an isomorphism.

It is the same reasoning to solve the two Poisson’s equations (7.2.1) and (7.2.2),
but using this time successively the isomorphisms (2.2.2), and (2.2.9) with ¢
instead of 1+ ¢. Then, modifying these solutions with a polynomial constructed
by means of Lemma 7.2.2, we finally get a solution to (S5¢).

(iii) For any ¢ > 0, the adjoint operator of T’

T WpPRY) x WPP(RY) — (W, P(RY) x WPP(RY)) L Sio- /]

is an isomorphism.
We get it by duality, replacing —¢ by ¢ and p’ by p. In addition, by a density
argument, we show that

T* (v, V) = (—vAv — uVdive + Vi, —AJ — div ).

1.e. T is selfadjoint and the proof is complete. O

7.2.3 Regularity of solutions

Theorem 7.2.4. Let { € Z and m > 1 be two integers and assume that
N/p¢{1l,....0+1} and N/p¢{l,...,—C—m}. (7.2.6)

For any (f, h) € (Wi pP(RYN) x WH(RN)) L Sfie-nyy)s Problem (5¢) ad-

mits a solution (w, 7) € WTLP(RN) x WE(RN), unique up to an element of

m—+£ m—+~
SﬁféfN/p]’ with the estimate

inf (u+ m+1, + |7+ ™m, >
el et Xl I+ dllwzey)

< C (I lwnpony + lallwzizen ) -

+2

Proof. For the negative weights, it is the same reasoning as for the generalized
solutions, but using the regularity results for the Laplacian: (2.2.10) if £ < —2,
or (2.2.13) if £ = —1, to solve (7.2.1); and (2.2.7) to solve (7.2.2). However, the
case N = p' for { = —1 and m > 2 is a critical value of the isomorphism (2.2.13),
then it require the use of a critical result on the Laplace operator to solve (7.2.1).
According to [6], the following Laplace operator is an isomorphism

A WP RY) [ Paongy — X P P(RY) LR

7.2.7
if N=p, m>1, ( )
where the family of spaces X is defined as follows: for any m € Z, ¢ € N,
X (RN) = {u e WP(RY): YA e NV, 0 < A\ <0,
(7.2.8)

e WP (RNY: 4 e Wm“’p(RN)},

loc
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and its dual space is denoted by X" ~“? (RM).
So, replacing m by m — 1 in (7.2.7), we get the isomorphism

A WRh(RY)/Puong — XpZtPRY) LRGN =p', m > 2,

which precisely fills the gap of isomorphism (2.2.13) for this critical value.

In addition, we can show that X" PP(RY) = W7 2P(RN) n W, "P(RN).
Since f € W7 P(RY), we have divf € W/ 7P(RY), and thanks to the
imbedding W~ "?(RY) «— LP(RY), we also have div f € W; "?(RV), hence
div f € X7“2P(RN). In the same way, we have Ag € X"~ >P(RN), and thus we
are able to solve (7.2.1). The rest of the proof is quite similar.

For ¢ > 0, contrary to the generalized solutions, the duality reasoning fails,
however we can use a regularity argument similar to the one of Section 5.4 for
the classical system. We will develop it for the problem in the half-space. O

7.3 Generalized solutions in Rﬁ

Where we come back to the half-space and to start, we are interested in the
homogeneous problem.

i3 1-1/p,p ' ~1/p,p V1
Proposition 7.3.1. For any gy € W, (') and g’ € W, (I such
that g L RN=1 if N < p/, the Stokes problem

—vAu — pVdivu+Vr =0 in RY, (7.3.1)
AT 4 divu = 0 in RY, (7.3.2)

Uy = gy onT, (7.3.3)

oyu' = ¢’ on I, (7.3.4)

has a solution (u, 7) € Wé’p(Rﬂf) x LP(RY), unique if N > p, unique up to an
element of RN=1 x {0}% if N < p, with the estimate

XeRJiVIEx{O} Jw + X”Wé’p(Rf) + ||7T||LP(M)

< (lawlhg-vnny + 1/l vm o)

if N < p, and the same without x if N > p.

Proof. First, let us notice a particular case, which is naturally included in this
result, but which requires a particular treatment. Indeed, if Ay = —1, we simply
get a Dirichlet problem for the Laplacian on the normal component of the velocity
field uy and a Neumann problem on its tangential components w’. Then, applying
Theorems 1.4.1 and 1.4.3, respectively for uy and u’, we find the orthogonality
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condition and the kernel of our statement. Moreover, we directly find the pressure
from the velocity field thanks to the second equation. In the sequel of the proof,
we will assume that A p # —1.

(i) Reduction of system (7.3.1)—(7.3.4).

As for the question of the uniqueness in the whole space, we deduce from
(7.3.1) and (7.3.2) that we have both A7 = 0 and A%u =0 in RY.

Then, we have A*uy =0 in RY and uy = gy on I

Now, let us extract another boundary condition on Auy from this system.
From (7.3.2), we get

AOnT +Oydivu =0 in RY, (7.3.5)
that we substitute in the N** component of (7.3.1), to obtain
AvAuy + (1+Ap)dydive =0 in RY.
We can deduce that

AvAuy + (14+ Ap) (div g + 0xun) =0 onT,
AvAuy + (14 Ap) (div g’ + Auy — A'uy) =0  on T,
(IT+A(p+v)Auy + (1+Ap) (div'g' —A'gy) =0 onT,

hence,
I+ Ap
“ T

About the pressure, looking again at the N** component of (7.3.1), with (7.3.5),
we have

Auy (A'gy —div'g’) onT.

Onm =vAuy — Apdyt  in RY,

hence (since Ay # —1),

ONT = Auy onlT.

v
14+ Au
Finally, from (7.3.2), we also get

AV'7r+Vdivu=0 inRY,

that we substitute in the tangential components of (7.3.1), to obtain

1+ A )
Au' = a V't in Rf.
v
Let us denote by k1 and ko the two constants k, = 1+1)\+(2iy) and kg = ﬁ So,

we have found the following three problems

(B) : A%uy =0 in Rf, uy =gy and Auy = k; (A'gy — div'g’) on T.
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(N1): Ar =0 ian, ONT = Ko Auy on T,
1

(N2): Au'=—=V'mr nRY, Oyu' =g onT.
Ra

(ii) Solution of these three problems.

Since k; and ko are non-zero constants, it is clear that these problems have
exactly the same form as those of Section 6.2 for the classical Stokes system.
Therefore, we find uy € Wy ?(RY), 7 € L?(RY) and ' € Wol’p(Rf)N_l with the
same orthogonality condition on g’, and the uniqueness of uy and 7.

(iii) Conversely, to show that solving (B), (V1) and (N2), we get a solution
(u, m) to the original problem (7.3.1)—(7.3.4), we must make a few calculations.

The first equation of (N2) is written

—vAu +(1+Ap)Vr=0 inRY. (7.3.6)
Thanks to the first equations of (B) and (N1), we get
A(—vAuy+(1+Ap)oym) =0 inRY.
In addition, the boundary condition of (N1) can be written
—vAuy+(1+Ap)Oyr =0 onl.

Since —v Auy + (1 + Ap) vt € Wy "P(RY), according to Theorem 4.3.4, we
necessarily have
—vAuy + (1+Ap)Oyr =0 inRY. (7.3.7)

The boundary condition of (N2) implies dy div'w’ = div' g’ on T'. Besides,
the boundary conditions of (B) yield

% Auy — A'gy =—div'g" onT,
3]2\,;1\1—#)\/@2 Auy = —div'g’ onT,
hence, with the boundary condition of (N1),
OFuny + A0ym = —div'g’ onT.

We can deduce

Ondivu = Oy div' v’ +0%uy onT,

=div g —div'g' —AOym  onT,

that is
ON(AT+divu) =0 onl.
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Moreover, from (7.3.6) and (7.3.7), we obtain div(—r Au) = 0 in RY, hence
AT +divu) =0 in RY.

Since Am + divu € LP(RY), by Theorem 4.3.2, we get Am + divu = 0 in RY,
that is the equation (7.3.2). Finally, substituting this last relation in (7.3.6) and
(7.3.7), we find the first equation (7.3.1) of our system.

(iv) Concerning the uniqueness — up to the constants, if N < p — for the
tangential components of the velocity field ', we can still use the same argument
as for the classical Stokes system (see Section 6.2). O

We now can deal with the nonhomogeneous problem.

Theorem 7.3.2. Assume that 3; # 1. For any f € WPP(RY), h € WHP(RY),

N-1
gN € Wol_l/p’p(F) and g’ € Wo_l/p’p(F) , satisfying the following compatibility
condition if N < p':

Vi € {1, T 1}, . fide =v <gi, 1>WO—1/p,p(F)><WOl/p,p/(F) ) (738)
+
problem (S%) admits a solution (u, ) € WyP(RY) x LP(RY), unique if N > p,
unique up to an element of RN=1 x {0}? if N < p, with the estimate

xemgfggx{O} e + XHWé’p(Rﬁ) * ”WH“’UM)

< C (Il + gy + low lga-vinsgey + 17y )
if N < p, and the same without x if N > p.

Proof. First, let us remark that the case A = —1 is naturally included in this

result. Indeed, the condition (7.3.8) is necessary to solve the Neumann problem

for the tangential components of the velocity field by means of Theorem 1.4.3.
In the general case, we introduce the Dirichlet problem

Aw=f in]Rf, w=0 onl.

According to Theorem 1.4.2, it admits a unique solution w € W?>” (RY). So, if we
consider F = (F;)1<icnv = Vw € W%’p(Rf)N, we have f = divF. Knowing that
there exists a continuous linear extension operator from W,"?(RY) to W, "?(RV),
we get f = divF € WP(RN), h € WP(RN), and the extended problem

i > ] z 7 - f ] N
{ vAz — pVdivz+ Vi —l{ in R, (7.3.9)

An+divz in RV,
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According to Theorem 7.2.4 with £ = 0 and m = 1, under hypothesis % # 1,
problem (7.3.9) admits a solution (2, 7) € W1 P(RY) x W"P(RY), provided the
condition f L P[l_N/p/L is fulﬁl}ed — indeed, SﬁfN/p,} = Pu_nyy X {0} —. But,
thanks to the relation f = div[F, we can see that this condition is always fulfilled.

Let us note z = 2|y € W22(RY) and n = 7|,y € W,"?(RY), then we have
RY 1R RY 1 R

N—-1
(z,1) € WEP(RY) x LP(RY), yozy € Wy /PP(D) and 12" € W, /P2(D0)

and we can introduce the auxiliary problem

—vAv —uVdivo+VI9=0 and AJ+dive=0 in RY,

UN = gN — ZN and 8N’U/ = g/ — aNZ/ on F (7310)

N-1
where gy — zy|p € Wy /PP(T) and g’ — Oy 2| € Wy /PP(T)" . Then, we can
apply Proposition 7.3.1, which yields (v, ¥) € WP(RY) x LP(RY) solution to
problem (7.3.10), provided the orthogonality condition

N-1
v‘Pl € R ’ <g/ - fylz/7 (P/>W071/P7P(1-)N71XWO1/Z77P/(F)N_1 = 0 (7311)
is satisfied if N < p’. Now, to write this condition by only means of data of the
initial problem, it suffices to notice that we have for all ¢ € RN~ x {0},

f-cpdx:/ (—vAz—puVdivz+Vn) - pdx
RY RY

=V <71z/7 90/>W071/pm -t

—_ N
@™ T Wl

hence we deduce that the condition (7.3.11) is written

V' € RV froede=v{g. &) ..

N-—1 1/p, p! N-1
RY W, ™ xwy/PP(r)

)

that is, the compatibility condition (7.3.8).

Then, the pair (u, 7) = (v + 2z, ¥ + 1) which belongs to W?(RY) x LP(RY)
is a solution to (S%).

Finally, the uniqueness of solutions to (S%) is a straightforward consequence
of Proposition 7.3.1. O

7.4 Strong solutions and regularity
In this section, we are interested in the existence of strong solutions, i.e. of

solutions (u, 7) € WTP(RY) x W P(RY), and next to get a general regularity
result. We start with the homogeneous problem.
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Proposition 7.4.1. Assume that % + 1. For any gy € WP VPP(T) and g’ €

N-1
Wllfl/p’p(f‘) such that g' L RN=L if N < p', problem (7.5.1)-(7.3.4) admits
a solution (u, 7) € WiP(RY) x WHP(RY), unique if N > p, unique up to an
element of RN1 x {0}? if N < p, with the estimate

xekfivrﬁx{o} lu + XHW?”’(RQ) + HWHW}P(RQ)

g C <H9N”W12*1/Pyp(l—‘) + Hgluwllfl/pyp(r)N—l)
if N < p, and the same without x if N > p.

Proof. We have the imbeddings W7 /P?(T') — W, "»?(T") and, since % # 1,

Wi PI(T) < Wy P,

Then, from Proposition 7.3.1, we can deduce that problem (7.3.1)—(7.3.4)
admits a solution (u, ) € WyP(RY) x LP(RY). Now, it suffices to go back to
the proof of Proposition 7.3.1 and to use the established results about problems
(B), (N1) and (N2), to show that in fact (u, 7) € WPP(RY) x W)P(RY). O

We now can give the result in the nonhomogeneous case.

Theorem 7.4.2. Assume that 3y # 1. For any f € WOPRY), h € WHPRY),
N-1

gn € Wffl/p’p(lﬂ) and g' € Wllfl/p’p(l“) , satisfying the compatibility condition

(7.8.8) if N < p/, problem (S%) has a solution (u, 7) € WiP(RY) x W"P(RY),

unique if N > p, unique up to an element of RVt x {0}? if N < p, with the

estimate

XeR}v{le{o} I + Xllw2 @y + 7l gy

< C (I flwaroqany + Welhruyy + Nowlla-smey + 181127
if N < p, and the same without x if N > p.

Proof. The proof of Theorem 7.3.2 work in this case. It suffices to take the strong
result for generalized Stokes system in RY, i.e. Theorem 7.2.4, to solve (7.3.9);
and Proposition 7.4.1 to solve (7.3.10). O

To finish, here is the corresponding regularity result.

Corollary 7.4.3. Let m > 1 be an integer and assume that g # 1. Forany f €
N-1

WP (RY), e WiP(RY), gy € W™ 7YPP(D) and g' € Wi TPP(T)
satisfying the compatibility condition (7.3.8) if N < p', problem (S%) admits a
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solution (u, ) € WIHLP(RY) x WmP(RY), unique if N > p, unique up to an
element of RN=1 x {0}2 if N < p, with the estimate

XeRzivIEX{O} [ + X||Wm+1vP(R{g) + 7w r@yy <

¢ (”fHWﬁ*l’P(Rﬁ) + ||h||W7T,7P(Rf) + ||gNHW:n"'+1—1/p’P(F) + ”g/HWnﬂ;—l/p,p(r)N*1>
if N <p, and the same without x if N > p.

Proof. The simplest way is to resume the proof of Theorem 7.3.2. First, we solve
the extended problem (7.3.9) by means of Theorem 7.2.4 for any integer m > 1;
next, for the homogeneous problem (7.3.10), we can use the regularity results on
the biharmonic and harmonic problems in the half-space to solve the auxiliary
problems (B), (N1) and (N2), following the method employed in the proof of
Proposition 7.3.1. O

7.5 Very weak solutions

Influence of the parameter )\, the problem from another point of view

As we remarked at the begining of the chapter, if A = 0, we find the classical

Stokes system which was the subject of the previous chapter. Now, if A # 0, we

can totally uncouple the velocity field from the pressure in the main equation.
First, in the whole space, the system (5¢) is clearly equivalent to

(8) —vAu— (p+3)Vdivue =f—3Vh in RY,
T =3(h—divue) inRY.

Denoting by A the operator —v A — (u + %) V div, we can rewrite the main
equation more simply

Au=TF inRY, (7.5.1)

where F' = f—% Vh. Let us still notice that if A y = —1, the operator A is nothing
else but the Laplacian. Hence, solving (S¢) is equivalent to solve (7.5.1) — indeed,
knowing the velocity field, we immediately get the pressure m —, moreover, the
kernel of A is the velocity field’s part, uncoupled from the pressure, in the kernel
of T. So, we could express the results on system (S¢), that is Theorems 7.2.3 and
7.2.4, in terms adapted to equation (7.5.1).

Next, in the half-space, we also can formulate the problem (S%) by means of
equation (7.5.1) combined with the boundary conditions, i.e.

Au =F in RY,
uy =gy onl, (7.5.2)
ovu' =¢' on I'.
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Here again, we could give a version adapted to problem (7.5.2) for all the results

n (S%). Conversely, in this section, we will use the form (7.5.2) to study the
case of singular boundary conditions in the homogeneous problem. For that, we
need some preliminary results.

Traces and Green formula
For any ¢ € Z, let us introduce the spaces

UARY) = {v € WL (RY): 4o € WEA(RD).
Uni(RY) = {0 e WA RY); Ave W2 (RY)} .

They are reflexive Banach spaces equipped with their natural norms:

||'U||UZ(IR{$) = ||'U||W2;P1(RN + HA’UHWO”’(RN)»

ol s = Iollwes @y, + 140lwes g

Lemma 7.5.1. Let { € Z and assume that
N/p¢{l,....4—1} and N/pe¢{l,...,—(+1}. (7.5.3)
The space ’D(@) is dense in U (RY) and in Uy 1(RY).

Proof. We give the proof for U 1(RY), but it is similar for the space U (RY).
For every continuous linear form z € (Ug,l(Rf ))/, there exists a unique pair
(f, g) € W?Zl(Rf) X W%fll’_l(Rf), such that

vo € Uy (RY), (z,v) = f-vde +/ g-Avdz. (7.5.4)
RY RY

According to the Hahn-Banach theorem, it suffices to show that any z which
vanishes on ’D(Rf ) is actually zero on Uy ;(RY). Let us suppose that z = 0 on

’D(R_f), thus on D(RY). Then we can deduce from (7.5.4) that
f+Ag=0 in Rf ,

hence we have Ag € W z+1(RN) Let f € W HI(RN) and g € W%fil’_l(RN)
be respectively the extensions by 0 of f and g to RY. Thanks to (7.5.4), it is
clear that f + Ag = 0 in RY, and thus Ag € W 7 +1(RN ). Hence, according to
theorem 7.2.4 — for equation (7.5.1) —, we can deduce that g € W? EH(RN),
under hypothesw (7.5.3). Since g is an extension by 0, it follows that we have

g € w @H(Rf). Then, by density of D(RY) in W Hl(Rf), there exists a
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sequence (@y),cy C P(RY) such that ¢, — g in Wz_fjrl(Rf) Thus we have, for
any v € Uy 1(RY),

(z,v>:—/ Ag-vdx—{—/ g-Avdr
Y

RY
= lim —/ Agok-vdx+/ @ - Avdx
k—o0 Rf Ri\_]
=0,
i.e. z is identically zero. O]

Thanks to this density lemma, we can prove the following result of traces:
Lemma 7.5.2. Let { € Z with (7.5.3).
(i) If N/p' & {{, { + 1}, then the mapping
(Gew: 1) : D(RY) — DR
v — (un]p, Onv'lp),
can be extended to a linear continuous mapping
(e 1) Uea(RY) — WPP() s (W, 0P() ™
In addition, we have the Green formula
Vo € Uy(RY), Vo € Wiﬁrl(Rf) such that (pn, Ong') =0 on T,
(Av, o)y,

/ — (v A /
e RY) X W2 RY) (v, SO)W?L’Q(M)XWWH(M)

— VUV <'UN, 8N¢N>W£111/P,P(F)XWizi{P/vpl(F) + (755)
ro
+v (Onv, >W;j1*1/P’P(F)xwii/lpl'p/(F) o
1 .
— (,u + X) <UN7 div 90>W711/p,p(r)xwlfl/p’,p’(r‘) .

l— —4+1

(i) If N/p' € {¢, ( + 1}, the same result holds with U, 1(RY) instead of
U (RY) and where (Av, ¢) remplace the first term in the

Green formula.

Proof. (i) Case N/p' ¢ {¢, { + 1}.
So, we have the imbedding WE’Zi(Rf ) — WO 1. _1(RY), hence the following
Green formula:

Yo € ’D(@), Ve € W%Zl(Rf) such that (¢n, Ovg’) =0 on T,

~Avdx—/ v-Apdr =
/MLP v ¥ (7.5.6)

1
—V/vNﬁngNdx’+l//0Nv’-¢’dx’— (M+X)/UN div e da’.
r r r

0, p N 0, p’ N
Wi (RO XW2m,  (RY)
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In particular, if o € W? Hl(Rf) is such that ¢ = 0 and Oy’ = 0 on I', we have

A
S TE ATy 1l @) el p @)

/ UN aNQON diEl
r

Let g € Wlej{p p/(F). By Lemma 1.3.1, there exists a lifting function ¢ €
w? e+1(RN) such that ¢ = 0, Oy’ = 0 and Oypn = g on I, satisfying moreover

1wy gy, < C lolyroson oy

where C' is a constant not depending on ¢ and g. Then we can deduce that

/UNgdx’
r

lowlly-smrey < C ol ayy

< C ||'U||U,Z(JR§) ||9||W:+1{php/(r),

and thus

Hence we can deduce that 7., : v — vy|p defined on ’D(R_f) is continuous for
the norm of U,(RY). Since ’D(Rf) is dense in U,(RY), the mapping 7., can be
extended by continuity to 7., € £(Ug1(RY); W[ll/p’p(lﬂ)).

To define the trace v; on U,(RY), we consider now ¢ € w? Hl(Rf) such
that pn =0, dve’ = 0 and vOney + (1 + 5) dive =0 on I. Then, we have

/8Nv’ ' da’
r

;N1
Let g’ € W%i{p P(T) . By Lemma 1.3.1, there exists a lifting function ¢ €

W2—5+1(Rf) such that ¢’ = g, oy =0, One’ = 0 and Iypn = —k; div g’ on T,
14\
[ESY (Hiy):

< 5 vy, @y HSOHWQ_’;;(M)'

where Kk, = satisfying moreover
el @y < Clallye e,

where C' is a constant not depending on ¢ and g’. Then we can deduce that
/ onv' - g'da’
r
<

HUIHWF}:IUPW(F) < C HUHUZ(Rf)'

< C ollugay, 19z

and thus

Hence we can deduce that 7 : v — Onyv'| defined on D(@) is continuous for

the norm of U,(RY). Since ’D(@) is dense in Uy(RY), the mapping 7| can be
N—
extended by continuity to v € L£L(U(RY); W, Ypp (T 1).
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To finish, we also can deduce the formula (7.5.5) from (7.5.6) by density of
D(RY) in Uy(RY).

(ii) Case N/p' € {l, ¢+ 1}.

Then the imbedding WE’ZZ_’;I(Rf ) — Wg’f_, (RY) fails, and we only have
WE’gl(Rf ) — ngi’ 1,71(R—]¥ ). To avoid these two supplementary critical val-
ues with respect to hypothesis (7.5.3), the idea is to define the space Uy 1(RY)
with a logarithmic factor in the weight to replace the first term in the Green

formula (7.5.6) by the duality pairing (Av, cp)Wg,fLI(Rﬁ)xwgﬂlﬁlmﬁ). The proof

is identical. O

Homogeneous problem with singular boundary conditions

Our purpose is now to solve the homogeneous problem (7.3.1)(7.3.4):

—vAu—puVdivu+Vr=0 and Ar+divu=0 inRY,
uy =gy and Oyu =g’ on I,

with singular data on the boundary, that is more precisely with gy € W~} /p:p (I

i N-1
and g € W "YPP(I)" . Naturally, we will use the formulation

Au=0 inRY,

7.5.7
uy =gy and Oyu' =g onT, ( )

that is the homogeneous version of problem (7.5.2), for system (7.3.1)—(7.3.4).
As usual for the singular problems, the main tool is the Green formula (7.5.5),
established in Lemma 7.5.2, which allows us to get the variational formulation of
problem (7.5.2); then we can argue by duality to solve it.

N-1
Theorem 7.5.3. Assume that % £ 1. For any g’ € W_,~V/PP(T) such that

g LRN"Lif N <y, and gy € W:ll/p’p(F), the Stokes problem (7.3.1)-(7.3.4)
admits a solution (u, ) € WOP(RY) x W_P(RY), unique if N > p, unique up
to an element of RN~ x {0}2 if N < p, with the estimate

XGRJ%’I—Iﬁx{O} Ju+ X”W(l’f(]Rf) + ||7T||Wj11’P(R$)

< C <||9N||W:11/p,p(r) + ||g'||W7_11_1/p7p(F)N71>

if N < p, and the same without x if N > p.

Proof. Step 1: We assume that gy = 0.
(i) We can observe that problem (7.5.7) with gy = 0 is equivalent to the
following variational formulation: find u € Uy(RY) — Uy 1 (RY) if g =1
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satisfying
Yv € W?’p/(Rf) such that (vy, Oyv') =0 on T, (75.8)
_ ro 0.
(, AV) o yyewt @) = VAVt w1 )

Indeed the direct implication is straightforward. Conversely, if u satisfies (7.5.8),
then we have for any ¢ € D(RY),

(A, Py ewn @) = (W AL o pay et ey = 0

thus Au = 0 in RY. Moreover, by the Green formula (7.5.5), we have

Yo € W%’p,(Rf) such that (vy, Oyv') =0 on T,

rod _
v <g , U >Wiiil/p’p(F)XW?il/p/‘p/(F) = -V <uN7 8NUN>W:11/P,P(F)lelfl/p’yp’(r) +

+v (Oyu',v')

W:}fl/p’p(F)XWffl/p/’p/(F)

~(pt ) G, divo)

W:ll/PaP(F)lelfl/P,vpl(r) .

By Lemma 1.3.1, for any ¢ € Wllfl/p/’p,(f‘), there exists v € W2 (RY) such that
v =0, Oyv' =0 and dyvy = ( on I'. Consequently,

<U’N7 C>W:11/PvP(F)lelfl/Plvpl(F) = 07

_ ’o N—-1
i.e. uy =0 on . Likewise, for any ¢’ € W, 1/e'p (I') , there exists v €

w2 (RY) such that v' = ¢’, vy = 0 and dyv’ = 0 on I'. Consequently,

Y, PNV,
<8N'u’ ) C >W:}_l/p’p(F)XW?_l/pl’pl(F) - <g 7C >W:}_1/pap(F)XW?_l/p/7pl(F) )

i.e. Oyu' =g onT.
(ii) Now, let us solve problem (7.5.8). According to Theorem 7.4.2 — adapted
to problem (7.5.2) —, we know that if ¥ # 1, for all f € WP(RY) L

((P[lfN/p])Nfl x{0}), there exists a unique v € wr RY)/ ((P[l,N/pq)Nfl x{0})
solution to

Av=f ian,

vy =0 and Oyv' =0 onT,
with the estimate

inf v+ o < C o .
xe(Pqu/p'l)N_lx{O}H XHW?Z)(]M) N HfHW(l)p(Rﬁ)
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Now, consider the linear form

. - I
J . f 4 <g , U >W:iil/p’p(F)XWiJrl/p’p,(F) )

defined on Wi (RY) L ((Pu-nzy)" ™" % {0}). Since g L (Pu-wp)™ ", we
! N-1
have for any x’' € (P[lfN/p,}) ’

’Jf| = ‘(g U + X> _1 1/p, P(F)XW}-Fl/P’P/(F)‘

/
S Clolwer @ =txo 19 lwo o)

< C H‘fHW(l)’p (Rf) Hg HW:}*UP»P(F)-

Hence J is continuous on W?’p/(Rf) 1 ((P[l_N/p})N_l x {0}), and thanks to
the Riesz representation theorem, we can deduce that there exists a unique u €
WOPRY)/(Pa_nye)™ " % {0}), such that

Ve WOPRY) L ((Puowy)™ ' x {0}),
Jf < f> OPRNXWOP(RN)7

i.e. u satisfies (7.5.8).
Step 2: The general case (where we drop the hypothesis gy = 0).
According to Theorem 4.3.3, we know that if % # 1, then there exists ¢ €

whe (RY) unique up to an element of ./\/'[QA_ Nyp) Solution to the following Neumann
problem:
AY =0 in Rf, OnY =gy onT.
Let us set w = Vi and g/, = ¢’ — Oyw’ on I'. Then we have Aw = 0, hence
N-1
w € Ug(RY) — Up(RY) if ¥ =1 and g, € W "/PP(I)" ', with the
estimate
Jewloyey = lwllwopmyy < C lanlly-smsg

Moreover, g/, satisfies the orthogonality condition of Theorem 7.5.3, hence the
existence of z € WP(RY) which satisfies

Az =0 in]Rf,
2y =0 and dyz' =g, onT.

Then u = z + w € W2P(RY) is the required solution. O
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