J. M. Kahn, Mobile Networking for Smart Dust, Conf. on Mobile Computing and Networking (MobiCom 99), 1999.

K. S. Pister, Smart Dust: Wireless Networks of Millimeter-Scale Sensor Nodes, Highlight Article, 1999.

V. Hsu, Wireless Communications for Smart Dust, 1998.

P. B. Chu, Optical Communication Using Micro Corner Cuber Reflectors, MEMS 97, pp.350-355, 1997.
DOI : 10.1109/memsys.1997.581852

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.2346

P. Smulders, Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions, IEEE Communications Magazine, vol.40, issue.1, pp.140-147, 2002.
DOI : 10.1109/35.978061

P. Smulders, 60 GHz radio: prospects and future directions

C. Koh, The Benefits of 60 GHz Unlicensed Wireless Communications

N. Guo, 60-GHz Millimeter-Wave Radio: Principle, Technology, and New Results, EURASIP Journal on Wireless Communications and Networking, vol.43, pp.10-115568253, 2007.
DOI : 10.1109/25.653072

URL : http://doi.org/10.1155/2007/68253

. Sadri, 802.15.3c Usage Model Document (UMD), Draft, 2006.

H. Daembkes, GaAs MMIC based components and front ends for millimetre wave communication and sensor systems, Proceedings of IEEE Microwave Systems Conference (NTC '95), pp.83-86, 1995.

[. I. Van-tuyl and R. L. , Unlicensed millimeter wave communications. A new opportunity for MMIC technology at 60 GHz, GaAs IC Symposium IEEE Gallium Arsenide Integrated Circuit Symposium. 18th Annual Technical Digest 1996, pp.3-5, 1996.
DOI : 10.1109/GAAS.1996.567624

M. Siddiqui, GaAs components for 60 GHz wireless communication applications, Proceedings of GaAs Mantech Conference, 2002.

S. E. Gunnarsson, Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology, IEEE Journal of Solid-State Circuits, vol.40, issue.11, pp.2174-2185, 2005.
DOI : 10.1109/JSSC.2005.857366

S. Reynolds, 60 GHz transmitter circuits in SiGe bipolar technology, IEEE International Solid- State Circuits Conference. Digest of Technical Papers, vol.1, pp.442-538, 2004.

C. H. Doan, Design of CMOS for 60 GHz applications, IEEE International Solid-State Circuits Conference. Digest of Technical Papers, vol.1, pp.440-538, 2004.

W. Winkler, 60 GHz transmitter circuits in SiGe:C BiCMOS technology, Proceedings of the 30th European Solid-State Circuits Conference, pp.83-86, 2004.

S. K. Reynolds, A 60-GHz superheterodyne downconversion mixer in silicon-germanium bipolar technology, IEEE Journal of Solid-State Circuits, vol.39, issue.11, pp.2065-2068, 2004.
DOI : 10.1109/JSSC.2004.835838

B. A. Floyd, SiGe bipolar transceiver circuits operating at 60 GHz, IEEE Journal of Solid-State Circuits, vol.40, issue.1, pp.156-167, 2005.
DOI : 10.1109/JSSC.2004.837250

S. Pinel, Low Cost 60 GHz Gb/s Radio Development, Progress in Electromagnetic Research Symposium, pp.483-484, 2006.
DOI : 10.2529/PIERS050830163108

S. K. Moore, Cheap chips for next wireless frontier, IEEE Spectrum, vol.43, issue.6, pp.12-13, 2006.
DOI : 10.1109/MSPEC.2006.1638035

B. A. Floyd, A 23.8-GHz SOI CMOS tuned amplifier, IEEE Transactions on Microwave Theory and Techniques, vol.50, issue.9, 2002.
DOI : 10.1109/TMTT.2002.802334

F. Ellinger, 26???42 GHz SOI CMOS Low Noise Amplifier, IEEE Journal of Solid-State Circuits, vol.39, issue.3, 2004.
DOI : 10.1109/JSSC.2003.822895

X. Guan, A 24-GHz CMOS Front-End, IEEE Journal of Solid-State Circuits, vol.39, issue.2, 2004.
DOI : 10.1109/JSSC.2003.821783

E. Sonmez, A single-chip 24 GHz receiver front-end using a commercially available SiGe HBT foundry process " , Dept. of Electron Devices and Circuits GAAS P-HEMT MMICS For K-to-KA Band Wireless Communication, High Frequency and Optical Semiconductor Division, Mitsubishi Electric Corporation Mizuhara, pp.4-5

Y. Mimino, High gain-density K-band P-HEMT LNA MMIC for LMDS and satellite communication, Proc. IEEE MTT-S Int. Microwave Symp, pp.17-20, 2000.

W. Winkler, 60 GHz Transmitter Circuits in SiGe:C BiCMOS Technology, Proceedings of the 30th European Solid-State Circuits Conference, pp.83-86, 2004.

O. Lundén, A 60-GHz LNA using commercially available PM HEMTs for intersatellite and mobile communications, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4)
DOI : 10.1109/MWSYM.1994.335302

M. Gordon, An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 dB Gain
DOI : 10.1109/esscir.2004.1356674

S. Voinigescu, A comparison of Si CMOS, SiGe BiCMOS, and InP HBT technologies for high-speed and millimeter-wave ICs, Digest of Papers. 2004 Topical Meeting onSilicon Monolithic Integrated Circuits in RF Systems, 2004.
DOI : 10.1109/SMIC.2004.1398180

Y. Li, 23GHz front-end circuits in SiGe BiCMOS technology, Radio Frequency Integrated Circuits (RFIC) Symposium, 2003 IEEE, pp.99-102, 2003.

G. Schuppener, A 23-GHz low-noise amplifier in SiGe heterojunction bipolar technology, 2001 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (IEEE Cat. No.01CH37173), 2001.
DOI : 10.1109/RFIC.2001.935670

K. W. Yu, K-Band Low-Noise Amplifiers Using 0.18 µm CMOS Technology, IEEE Microwave and Wireless Components Letters, vol.14, issue.3, 2004.

M. Siddiqui, GaAs Components for 60 GHz Wireless Communication Applications, Technical paper presented at GaAs Mantech Conference in, 2002.

K. Maruhashi, A 60-GHz-band monolithic HJFET LNA incorporating a diode-regulated self-bias circuit, IEEE Transactions on Microwave Theory and Techniques, vol.45, issue.12, 1997.
DOI : 10.1109/22.643828

B. Floyd, . J. Ibm-t, . Watson-research, Y. Center, and B. A. Floyd, V band and W band SiGe Bipolar Low Noise Amplifier and Voltage Controller Oscillator SiGe Bipolar Transmitter Circuits Operating at 60 GHz, IEEE Journal of Solid-State Circuits, vol.40, issue.1, 2005.
DOI : 10.1109/rfic.2004.1320601

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1031.1214

C. H. Doan, Design of CMOS for 60GHz Applications Digest of Technical Papers, [I.41] Ellinger F 60-GHz SOI CMOS traveling-wave amplifier with NF below 3, IEEE International Solid-State Circuits Conference, 2004.

R. Behzad, A 60-GHz CMOS Receiver Front-End, IEEE Journal of Solid-State Circuits, vol.41, issue.1, 2006.

C. Meliani, DC-92???GHz ultra-broadband high gain InP HEMT amplifier with 410???GHz gain-bandwidth product, Electronics Letters, vol.38, issue.20, pp.1175-1177, 2002.
DOI : 10.1049/el:20020846

R. Arensman, SiGe steps on the GaAs, EDN Magazine, vol.5, issue.1, 2005.

B. Razavi, Architectures and circuits for RF CMOS receivers, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143), pp.393-400, 1998.
DOI : 10.1109/CICC.1998.695005

C. Belkhiri, Un Nouveau Mélangeur à Haute Linéarité pour les Futurs Systèmes de Télécommunication, Journées Nationales Microondes, 2003.

E. Rampnoux, Analyse, conception et réalisation de filtres planaires millimétriques appliqués à la radiométrie spatiale, Thèse de l, 2003.

X. Guan, A 24-GHz CMOS Front-End, IEEE Journal of Solid-State Circuits, vol.39, issue.2, 2004.
DOI : 10.1109/JSSC.2003.821783

Y. Li, 23GHz Front-end Circuits in-SiGe BiCMOS Technology, IEEE 2003 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp.99-102, 2003.

S. Hackl, Low-noise, low-power monolithically integrated active 20 GHz mixer in SiGe technology, Electronics Letters, vol.37, issue.1, p.37, 2001.
DOI : 10.1049/el:20010034

M. Wurzer, 30 GHz active mixer in a Si/SiGe bipolar technology, 2000 Asia-Pacific Microwave Conference. Proceedings (Cat. No.00TH8522), 2000.
DOI : 10.1109/APMC.2000.925948

S. Hackl, 40 GHz monolithic integrated mixer in SiGe bipolar technology, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), pp.2-7, 2002.
DOI : 10.1109/MWSYM.2002.1011884

F. Gruson, 24 GHz differential SiGe-MMIC oscillator with integrated mixer, 2003 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2003. Digest of Papers., pp.9-11, 2003.
DOI : 10.1109/SMIC.2003.1196669

E. Sonmez, A single-chip 24 GHz receiver front-end using a commercially available SiGe HBT foundry process, 2002 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Papers (Cat. No.02CH37280), 2002.
DOI : 10.1109/RFIC.2002.1011946

K. Ohata, Sixty-GHz-band ultra-miniature monolithic T/R modules for multimedia wireless communication systems, IEEE Transactions on Microwave Theory and Techniques, vol.44, issue.12, pp.44-56, 1996.
DOI : 10.1109/22.554558

K. W. Chang, A W-band monolithic, singly balanced resistive mixer with low conversion loss, Microwave and Guided Wave Letters, p.9, 1994.
DOI : 10.1109/75.311514

S. K. Reynolds, A 60-GHz super heterodyne down conversion mixer in silicon-germanium bipolar technology, IEEE Journal of Solid-State Circuits, issue.11, p.39, 2004.

B. A. Floyd, SiGe Bipolar Transmitter Circuits Operating at 60 GHz, IEEE Journal of Solid-State Circuits, vol.40, issue.1, 2005.

S. Emami, A 60-GHz down-converting CMOS single-gate mixer, RFIC) Symposium, 2005. Digest of Papers. 2005 IEEE Radio Frequency integrated Circuits, pp.163-166, 2005.
DOI : 10.1109/RFIC.2005.1489619

B. M. Motlagh, Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology, IEEE Microwave and Wireless Components Letters, vol.16, issue.1, pp.25-27, 2006.
DOI : 10.1109/LMWC.2005.861354

C. H. Ivan, 60 GHz CMOS Down-conversion Mixer with Slow-Wave Matching Trnamission Lines, IEEE Solid-State Circuits Conference, pp.195-198, 2006.

W. Wa, Conception de circuits MMIC BiMOS SiGe appliqués à la synthèse de fréquence fractionnaire " thèse de l'Université Paul Sabatier -Toulouse III ? soutenue le 19, 2003.

A. Kipnis, Large-signal computer-aided analysis and design of silicon bipolar MMIC oscillators and self-oscillating mixers, IEEE Transactions on Microwave Theory and Techniques, vol.37, issue.3, pp.558-564, 1989.
DOI : 10.1109/22.21628

D. B. Leeson, A simple model of feedback oscillator noise spectrum, Proc. IEEE, pp.329-330, 1966.
DOI : 10.1109/PROC.1966.4682

T. Hajimiri, A general theory of phase noise in electrical oscillators, IEEE Journal of Solid-State Circuits, vol.33, issue.2, pp.179-193, 1998.
DOI : 10.1109/4.658619

S. Hackl, A 28-GHz monolithic integrated quadrature oscillator in SiGe bipolar technology, IEEE Journal of Solid-State Circuits, vol.38, issue.1, 2003.
DOI : 10.1109/JSSC.2002.806274

H. Li, Millimeter-Wave VCOs With Wide Tuning Range and Low Phase Noise, Fully Integrated in a SiGe Bipolar Production Technology 38-GHz low phase noise CPW monolithic VCOs implemented in manufacturable AlInAs?InGaAs HBT IC technology, Proc. IEEE GaAs IC Symp, pp.99-102, 2000.

H. M. Wang, A 50 GHz VCO in 0.25 µm CMOS, IEEE ISSCC Dig. Tech. Papers, pp.372-373, 2001.

M. Tiebout, A 1V 51GHz Fully-Integrated VCO in 0.12 µm CMOS, ISSCC, 2002.

H. Li, 47 GHz VCO with low phase noise fabricated in a SiGe bipolar production technology, IEEE Microwave and Wireless Components Letters, vol.12, issue.3, 2002.
DOI : 10.1109/7260.989857

. Wang, A 62 GHz monolithic InP-based HBT VCO, IEEE Microwave and Guided Wave Letters, vol.5, issue.11, 1995.

E. Sönmez, High Power Ultra Compact VCO with Active Reactance Concepts at 24 GHz » Dept. of Electron Devices and Circuits D-89069 Ulm, Germany [I.76] Lee et al. SiGe BICMOS 65 GHz BPSK Transmitter and 30 to 122 GHz LC Varactor VCOs With Up to 21% Tuning Range A 40 GHz VCO with 9 to 15% tuning range in 0, Symposium on VLSI Circuits, pp.13-15186, 2002.

B. A. Floyd, SiGe Bipolar Transmitter Circuits Operating at 60 GHz, IEEE Journal of Solid- State Circuits, vol.40, issue.1, 2005.

B. Piernas, A compact and low-phase-noise Ka-band pHEMT-based VCO, IEEE Transactions on Microwave Theory and Techniques, vol.51, issue.3, 2003.
DOI : 10.1109/TMTT.2003.808584

P. J. Garner, Ka-band and MMIC pHEMT-based VCO's with low phase-noise properties, IEEE Transactions on Microwave Theory and Techniques, vol.46, issue.10, 1998.
DOI : 10.1109/22.721161

K. Riepe, 35-40 GHz monolithic VCOs utilizing high-speed GaInP/GaAs HBTs, IEEE Microwave and Guided Wave Letters, vol.4, issue.8, pp.274-276, 1994.
DOI : 10.1109/75.311496

O. Lee, A 60-GHz Push-Push InGaP HBT VCO With Dynamic Frequency Divider, IEEE Microwave and Wireless Components Letters, vol.15, issue.10, 2005.

N. Schlumpf, Adaptation Dynamique de la Compression d'un Amplificateur RF pour des Signaux Modulés en Amplitude et en Phase, 2004.

A. Komijani, A 24GHz, +14.5dBm fully-integrated power amplifier in 0, CMOS " Custom Integrated Circuits Conference Proceedings of the IEEE, pp.3-6, 2004.

S. Reynolds, 60GHz transmitter circuits in SiGe bipolar technology, Solid-State Circuits Conference Digest of Technical Papers. ISSCC. 2004 IEEE International, pp.15-19, 2004.

F. Lam, 44-GHz high-efficiency InP-HEMT MMIC power amplifier " , Microwave and Guided Wave Letters, IEEE IEEE Microwave and Wireless Components Letters], issue.4 8, 1994.

K. Ohata, Sixty-GHz-band ultra-miniature monolithic T/R modules for multimedia wireless communication systems, IEEE Transactions on Microwave Theory and Techniques, vol.44, issue.12, pp.44-56, 1996.
DOI : 10.1109/22.554558

S. W. Chen, A 60-GHz high efficiency monolithic power amplifier using 0.1-?m PHEMT's, IEEE Microwave and Guided Wave Letters, issue.5 6, 1995.

M. K. Siddiqui, A high-power and high-efficiency monolithic power amplifier at 28 GHz for LMDS applications, Microwave Theory and Techniques, pp.46-58, 1998.
DOI : 10.1109/22.739201

R. Yarborough, Performance comparison of 1 watt Ka-band MMIC amplifiers using pseudomorphic HEMTs and ion-implanted MESFETs " , Microwave and Millimeter-Wave Monolithic Circuits Symposium, Digest of Papers, pp.16-18, 1996.

U. R. Pfeiffer, A 77 GHz SiGe power amplifier for potential applications in automotive radar systems, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers, pp.6-8, 2004.
DOI : 10.1109/RFIC.2004.1320535

B. A. Floyd, SiGe Bipolar Transmitter Circuits Operating at 60 GHz " , Solid-State Circuits, IEEE Journal, issue.1, p.40, 2005.

C. W. Pobanz, A High-Gain Monolithic D-Band InP HEMT Amplifier, IEEE Journal of Solid- State Circuits, vol.34, issue.9, 1999.

T. Ishikawa, GaAs P-HEMT MMICs for K-to-Ka band wireless communications, 1999 IEEE Emerging Technologies Symposium. Wireless Communications and Systems (IEEE Cat. No.99EX297), pp.12-13, 1999.
DOI : 10.1109/ETWCS.1999.897324

J. C. Chi, A 1-W high-efficiency Q-band MMIC power amplifier, Microwave and Guided Wave Letters, 1995.
DOI : 10.1109/75.382372

K. W. Kobayashi, A 0.5 watt-40% PAE InP double heterojunction bipolar transistor K-band MMIC power amplifier, Conference Proceedings. 2000 International Conference on Indium Phosphide and Related Materials (Cat. No.00CH37107), pp.14-18, 2000.
DOI : 10.1109/ICIPRM.2000.850279

URL : https://hal.archives-ouvertes.fr/hal-01242908

M. Micovic, Ka-band MMIC power amplifier in GaN HFET technology, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), pp.6-11, 2004.
DOI : 10.1109/MWSYM.2004.1338903

C. H. Doan, Millimeter-wave CMOS design, IEEE Journal of Solid-State Circuits, vol.40, issue.1, p.40, 2005.
DOI : 10.1109/JSSC.2004.837251

T. Yao, 60-GHz PA and LNA in 90-nm RF-CMOS, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006, pp.11-13, 2006.
DOI : 10.1109/RFIC.2006.1651107

G. Lévy, Le transmetteur RF évolue pour abaisser le coût du radiotéléphone, 2006.

H. M. Greenhouse, Design of Planar Rectangular Microelectronic Inductors, IEEE Transactions on Parts, Hybrids, and Packaging, vol.10, issue.2, 1974.
DOI : 10.1109/TPHP.1974.1134841

[. I. Niknejad and A. , Analysis, Design, and Optimisation of Spiral Inductors and Transformers for RF ICs, IEEE Journal of Solid-State Circuits, vol.33, issue.10, 1998.

A. Hajimiri, Design issues in CMOS differential LC oscillators, IEEE Journal of Solid-State Circuits, vol.34, issue.5, 1999.
DOI : 10.1109/4.760384

URL : http://authors.library.caltech.edu/4915/1/HAJieeejssc99b.pdf

L. R. John, A Low-Voltage 5,1 -5,8-GHz Image-Reject Downconverter RF IC, IEEE Journal of Solid-State Circuits, vol.35, pp.9-1320, 2000.

M. Gordon, Progress in Digital Integrated Electronics, pp.11-13, 1975.

Y. Taur, 25 nm CMOS design considerations, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217), pp.789-792, 1998.
DOI : 10.1109/IEDM.1998.746474

T. H. Ning, Why BiCMOS and SOI BiCMOS?, IBM Journal of Research and Development, vol.46, issue.2.3, 2002.
DOI : 10.1147/rd.462.0181

T. Ohguro, High performance RF characteristics of raised gate/source/drain CMOS with Co salicide, 1998 Symposium on VLSI Technology Digest of Technical Papers (Cat. No.98CH36216), pp.136-137, 1998.
DOI : 10.1109/VLSIT.1998.689231

Y. Taur, Fundamentals of Modern VLSI Devices, 1998.

C. Tinella, Etude de potentialités des technologies CMOS-SOI partiellement désertées pour les applications radiofréquences, thèse de l'INPG, 2003.

M. Belleville, Low power SOI design " , PATMOS 2001-International Workshop-Power and Timing Modeling , Optimization and Simulation, 2001.

F. Semiconductor, Understanding Latch-up in advanced CMOS Logic, 1999.

K. Bernstein, SOI circuit design concepts, IBM Microelectronics, 2001.

T. Ohguro, High-Performance Digital?Analog Mixed Devices on a Si Substrate with Resistivity beyond 1 k_-cm, IEDM Tech. Digest, pp.757-760, 2000.

D. Corson, Why all the buzz about SOI? Advanced passive devices for enhanced integrated RF circuit performance, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp.2-4, 2002.

A. Jeong-hoon, Integration of MIM capacitors with low-k/Cu process for 90 nm analog circuit applications, Proceedings of the IEEE 2003 International Interconnect Technology Conference (Cat. No.03TH8695), pp.2-4, 2003.
DOI : 10.1109/IITC.2003.1219749

R. Merrill, Optimization of high Q integrated inductors for multi-level metal CMOS, Proceedings of International Electron Devices Meeting, pp.983-986, 1995.
DOI : 10.1109/IEDM.1995.499381

P. Arcioni, An innovative modelization of loss mechanism in silicon integrated inductors, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.46, issue.12, pp.1453-1460, 1999.
DOI : 10.1109/82.809531

E. J. Dede, On the design of high frequency series resonant converters for induction heating applications, Proceedings of IECON '93, 19th Annual Conference of IEEE Industrial Electronics, pp.1303-1307, 1993.
DOI : 10.1109/IECON.1993.339255

J. Bourghartz, Status and trends of silicon RF technology, Microelectronics Reliability, vol.41, issue.1
DOI : 10.1016/S0026-2714(00)00198-0

J. N. Burghartz, High-Q inductors in standard silicon interconnect technology and its application to an integrated RF power amplifier, Proceedings of International Electron Devices Meeting, pp.1015-1017
DOI : 10.1109/IEDM.1995.499389

I. J. Bahl, Improved quality factor spiral inductors on GaAs substrates, IEEE Microwave and Guided Wave Letters, vol.9, issue.10, pp.398-400, 1999.
DOI : 10.1109/75.798028

M. Ugajin, A 1-V CMOS SOI Bluetooth RF Transmitter Using LC-Tuned and Transistor- Current-Source Folded Circuits, IEEE Journal of Solid-State Circuits, vol.39, issue.4, 2004.
DOI : 10.1109/jssc.2004.824703

B. Razavi, RF Microelectronics, 1997.

E. J. Churchill, A Demonstration of Lenz' Law?, American Journal of Physics, vol.39, issue.3, pp.285-287, 1971.
DOI : 10.1119/1.1986123

A. C. Reyes, Coplanar waveguides and microwave inductors on silicon substrates, IEEE Transactions on Microwave Theory and Techniques, vol.43, issue.9, pp.2016-2022, 1995.
DOI : 10.1109/22.414534

L. Lu, High-Q X-band and K-band micro machined spiral inductors for use in Si-based integrated circuits, Proc. Silicon Monolithic Integrated Circuits RF

S. Boret, Circuits intégrés monolithiques en technologie coplanaire pour des applications de réception jusque 110 GHz, Thèse de l'Université des Sciences et Technologies de Lille, 1999.

M. Raziat, Propagation modes and dispersion characteristics of coplanar waveguides, IEEE Transactions on Microwave Theory and Techniques, vol.38, issue.3, pp.245-251, 1990.
DOI : 10.1109/22.45333

A. Bracale, Caractérisation et modélisation des transistors MOS sur substrat SOI pour des applications micro-ondes, Thèse de l'Université Pierre et Marie Curie, 2001.

H. Hasegawa, Analysis of interconnection delay on very high-speed LSI/VLSI chips using an MIS microstrip line model, IEEE Transactions on Electron Devices, vol.31, issue.12, pp.1954-1960, 1984.
DOI : 10.1109/T-ED.1984.21825

T. Shibata, Characterization of MIS structure coplanar transmission lines for investigation of signal propagation in integrated circuits, IEEE Transactions on Microwave Theory and Techniques, vol.38, issue.7, pp.881-890, 1990.
DOI : 10.1109/22.55780

[. Ii and H. Hasegawa, Properties of microstrip line on Si?SiO2 system, MTT-19, pp.869-881, 1971.

S. Zaage, Characterization of the broad-band transmission behaviour of interconnections on silicon substrates, IEEE Trans. Comp., Hybrids, Manufact. Technol, vol.16, 1993.

Y. Noguchi, Analysis of characteristics of the coplanar waveguide with ground planes of finite extent, Trans. IECE., Japan, vol.58, issue.12, pp.679-680, 1975.

[. Ii and C. Veyres, Extensions of the application of conformal lapping techniques to coplanar lines with finite dimensions, Int. J. Electron, vol.48, issue.1, pp.47-56, 1980.

G. Ghione, Coplanar Waveguides for MMIC Applications: Effect of Upper Shielding, Conductor Backing, Finite-Extent Ground Planes, and Line-to-Line Coupling, IEEE Transactions on Microwave Theory and Techniques, vol.35, issue.3, pp.260-267, 1987.
DOI : 10.1109/TMTT.1987.1133637

[. Ii and . Chen-li, Characteristics of Coplanar Transmission Lines on Multilayer Substrates: Modelling and Experiments Coplanar waveguide circuits components and systems, IEEE Transactions on Microwave Theory and Techniques, vol.4516, issue.6, 1997.

[. Ii and . Gupta, Microstrip Lines and Slotlines house, Artech

W. J. Getsinger, Circuit Duals on Planar Transmission Media, MTT-S International Microwave Symposium Digest, pp.154-156, 1983.
DOI : 10.1109/MWSYM.1983.1130841

E. Munson, Conformal microstrip antennas and microstrip phased arrays, AP-22, pp.74-78, 1974.
DOI : 10.1109/TAP.1974.1140723

[. A. Ii.-20-]-d and . Huebner, An electrically small microstrip dipole planar array, Proc. Workshop on Printed Circuit Antenna Technology, pp.17-18, 1979.

[. Ii, I. Rana, and N. Alexopoulos, Current distribution and input impedance of printed dipoles, IEEE Trans. Antennas Propagation, vol.29, pp.99-105, 1981.

[. T. Ii.-22-]-y, D. Lo, W. F. Solomon, and . Richards, Theory and experiment on microstrip antennas, IEEE Trans. Antennas Propagation, pp.27-137, 1979.

[. N. Ii.-23-]-g and . Tsandoulas, Excitation of a grounded dielectric slab by a horizontal dipole, AP-17, pp.156-161, 1969.

A. Sommerfeld, Partial Differential, Equations in Physics An efficient approach for evaluating the Sommerfeld integrals encountered in the current element radiating over lossy ground, New York: Academic IEEE Trans. Antennas Propagation, pp.28-100, 1949.

[. Ii and D. M. Pozar, Considerations for Millimeter Wave Printed Antennas, IEEE Transactions on Antennas and Propagation, issue.5, 1983.

C. A. Balanis, Antenna Theory, Analysis and Design " . pp 453-455

[. Ii and J. T. Barr, A generalized vector network analyser calibration technique, 34th Automatic radio frequency techniques group conference digest, pp.51-60, 1989.

G. F. Engen, Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer, IEEE Transactions on Microwave Theory and Techniques, vol.27, issue.12, pp.12-987
DOI : 10.1109/TMTT.1979.1129778

D. M. Pozar, Microwave Engineering

C. Pavageau, Utilisation des technologies CMOS SOI 130nm pour des applications en gamme de fréquences millimétriques, Thèse de l'Université des Sciences et Technologies de Lille

J. Lescot, Modélisation et Caractérisation de Composants passifs intégrées sur Silicium pour applications Radiofréquence, Thèse de l'Institut National Polytechnique de Grenoble, 2000.

[. Ii and K. F. Lee, Circular Disk Microstrip Antenna with an Air Gap, IEEE Transactions on Antennas and Propagation, issue.8, p.32, 1984.

[. Ii and A. K. Verma, Static Capacitance of Some Multilayered Microstrip Capacitors, IEEE Transactions on Microwave Theory and Techniques, vol.43, issue.5, 1995.

[. Iii and R. W. King, ¨The electromagnetic field of a horizontal electric dipole in the presence of a three layer region¨, Journal of Applied Physics, issue.69, 1991.

N. G. Alexopoulos, Mutual impedance computation between printed dipoles, IEEE Transactions on Antennas and Propagation, vol.29, issue.1, p.29, 1981.
DOI : 10.1109/TAP.1981.1142531

C. A. Balanis, Antenna theory analysis and design, 2005.

T. Weiland, ¨A Discretization Method for The Solution of Maxwell's Equations for Six-Component- Fields¨, Electronics and Communications (AEU), vol.31, pp.166-170, 1977.

N. G. Alexopoulos, ¨Substrate Optimization for Integrated Circuit Antennas¨, IEEE Transactions on Microwave theory and techniques, issue.7, 1983.

N. K. Uzunoglu, Radiation properties of microstrip dipoles, IEEE Transactions on Antennas and Propagation, vol.27, issue.6, 1979.
DOI : 10.1109/TAP.1979.1142173

URL : http://dspace.lib.ntua.gr/handle/123456789/37315

P. B. Katehi, ¨On the Effect of Substrate Thickness and Permittivity on Printed Circuit Dipole Properties¨, IEEE Transactions on Antennas and Propagation, vol.31, issue.1, 1983.

D. M. Pozar, ¨Considerations for Millimetre wave Printed Antennas¨, IEEE Transactions on Antennas and Propagation, issue.5, p.31, 1983.
DOI : 10.1109/tap.1983.1143124

[. Iii and I. E. Rana, ¨Current Distribution and Input Impedance of Printed Dipoles¨, IEEE Transactions on Antennas and Propagation, vol.29, issue.1, 1981.

A. Buerkle, Compact slot and dielectric resonator antenna with dual-resonance, broadband characteristics, IEEE Transactions on Antennas and Propagation, vol.53, issue.3, 2005.
DOI : 10.1109/TAP.2004.842681

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.114.1187

[. Iii and G. Junker, Effect of aperture filling on slot-coupled dielectric resonator antennas operating in HEM11 mode Analysis of dielectric resonator antennas with emphasis on hemispherical structures, Electronics Letters IEEE Antennas and Propagation Magazine, vol.31, issue.36 2, pp.774-775, 1994.

[. Kajfez, Dielectric resonator antenna ? possible candidate for adaptive antenna arrays Tutorial on Dielectric Resonator Antenna Microstrip Antenna Technology, Proceedings of the IEEE, 1992 -ieeexplore.ieee.org [III.21] Sullwan P. L. et al. « " Analysis of an Aperture Coupled Microstrip Antenna, p.34, 1981.

Y. Fukuda, SOI-CMOS Device Technology, OKI Technical review, 2001.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1988.
DOI : 10.1007/BFb0048317

R. N. Simons, Coplanar waveguide circuits components and systems, 2001.
DOI : 10.1002/0471224758

[. Iii and . Gupta, Microstrip Lines and Slotlines house, Artech, p.375

W. J. Getsinger, Circuit Duals on Planar Transmission Media, MTT-S International Microwave Symposium Digest, pp.154-156, 1983.
DOI : 10.1109/MWSYM.1983.1130841

E. Munson, Conformal microstrip antennas and microstrip phased arrays, AP-22, pp.74-78, 1974.
DOI : 10.1109/TAP.1974.1140723

S. Tretyakov, Analytical Modelling In Applied Electromagnetics, Artech House, 2003.

S. Tretyakov, DYNAMIC MODEL OF ARTIFICIAL REACTIVE IMPEDANCE SURFACES, Journal of Electromagnetic Waves and Applications, vol.32, issue.2, pp.131-145, 2003.
DOI : 10.1163/156939303766975407

V. V. Yatsenko, Higher order impedance boundary conditions for sparse wire grids, IEEE Transactions on Antennas and Propagation, vol.48, issue.5, pp.720-7273236, 1984.
DOI : 10.1109/8.855490

A. Triantafyllou, L. De, . Fourier, and M. France, Etude, réalisation et caractérisation d'interconnexions radiofréquences pour les circuits intégrés silicium des générations à venir, Thèse Micro-ondes 2. Circuits passifsIII.39] Kraus J. D. et al., " Antennas, for all Applications, 1997.

N. Segura, On-wafer radiation pattern measurements of integrated antennas on standard BiCMOS and Glass processes for 40-80 GHz application, IEEE Int. Conference on Microelectronic Test Structures, vol.18, 2005.

Y. Kim, CPW-fed planar ultra wideband antenna having a frequency band notch function, Electronics Letters, vol.40, issue.7, pp.403-405, 2004.
DOI : 10.1049/el:20040302

K. Kim, Characteristics of integrated dipole antennas on bulk, SOI, and SOS substrates for wireless communication, Proceedings of the IEEE 1998 International Interconnect Technology Conference (Cat. No.98EX102), pp.21-23, 1998.
DOI : 10.1109/IITC.1998.704741

. Corson, Why all the buzz about SOI?

C. A. Balanis, Antenna theory analysis and design, 2005.

R. Esfandiari, Design of Interdigitated Capacitors and Their Application to Gallium Arsenide Monolithic Filters, IEEE Transactions on Microwave Theory and Techniques, vol.31, issue.1, pp.83-57, 1983.
DOI : 10.1109/TMTT.1983.1131429

M. Hamid, Equivalent circuit of dipole antenna of arbitrary length, IEEE Transactions on Antennas and Propagation, vol.45, issue.11, 1997.
DOI : 10.1109/8.650083

[. Iv and T. G. Tang, Equivalent Circuit of a Dipole Antenna Using Frequency-Independent Lumped Elements, IEEE Transactions on Antennas and Propagation, vol.41, issue.1, 1993.

J. Thaysen, A Wideband Balun -How does it Work?

H. Shuhao and R. C. Johnson, The Balun Family, Microwave Journal, Technical notes Antenna Engineering Handbook, vol.3014, pp.227-229, 1987.

[. Iv and Y. M. Li, Broadband coplanar waveguide-coplanar strip-fed spiral antenna, Electronic Letters, vol.30, pp.176-177, 1995.

J. Thaysen, Numerical and experimental investigation of a coplanar wave guide fed spiral antenna, IEEE the 24th QMS Antenna Symposium, 2000.

. Fukuda, SOI-CMOS Device Technology " , OKI Technical review, 2001.

S. T. Choi, 60-GHz transceiver module with coplanar ribbon bonded planar millimetre wave band pass filter, IEEE Microwave and Optical Technology Letters, vol.49, issue.5, 1212.
DOI : 10.1002/mop.22399

[. Iv and R. H. Cavalery, Characteristic Impedance of Integrated circuit Bond Wires, IEEE Transactions on Microwave Theory and Techniques, issue.9, 1986.

O. Petitjean, Etude des filières technologiques d'interconnexion entre puces et carte électriques et leur coût de fabrication, 1997.

L. Juhwan, RF characterization and modelling of various wire bond transitions, IEEE Transactions on Advanced Packaging, issue.4s, pp.28-772, 2005.

D. M. Pozar, Microwave Engineering, 1998.

N. Daniele, Etude d'un système de transmission radio courte portée à 60 GHz par étalement de spectre, Thèse de L'institut Nationale Polytechnique de Grenoble, 1995.

. Gao, A Modified PIFA with a Small Ground Plane, 2005 IEEE Antennas and Propagation Society International Symposium, pp.515-518, 2005.
DOI : 10.1109/APS.2005.1552060

K. Wong, Planar antennas for wireless communications, 2003.

M. Huynh, Ground plane effects on planar inverted-F antenna (PIFA) performance, IEE Proceedings - Microwaves, Antennas and Propagation, vol.150, issue.4, pp.209-213, 2003.
DOI : 10.1049/ip-map:20030551

URL : http://bura.brunel.ac.uk/bitstream/2438/5944/2/c2010_11_2_Hattan%28ISAP%20-%20Macao%20-%20China%29.pdf

H. T. Chen, PIFA with a meandered and folded patch for the dual-band mobile phone application On page(s), IEEE Transactions on Antennas and Propagation, issue.9, pp.51-2468, 2003.

K. F. Lee, Theory and experiment on microstrip patch antennas with shorting walls, Proc. Inst. Elect. Eng. Microwaves Antennas and Propagation, pp.521-525, 2000.
DOI : 10.1049/ip-map:20000793

P. Salonen, Single-Feed Dual-Band Planar Inverted-Antenna with U-Shaped Slot, IEEE Transactions on Antennas and Propagation, vol.48, issue.8, 2000.

J. C. Schwartzlow, A Folded Slot Antenna on Low Resistivity Si Substrate with a polyimide Interface Layer for Wireless Circuits, Topical Meeting on Silicon Monolithic Integrated Circuits in RF systems, 2001.

S. Montusclat, Silicon full integrated LNA, Filter and Antenna system beyond 40 GHz for MMW wireless communication links in advanced CMOS technologies, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006, 2006.
DOI : 10.1109/RFIC.2006.1651095

C. A. Hoer, Performance of a Dual Six-Port Automatic Network Analyzer, Microwave Theory and Techniques, pp.27-993, 1979.

R. Marks, Characteristic impedance determination using propagation constant measurement, IEEE Microwave and Guided Wave Letters, vol.1, issue.6, pp.141-143, 1991.
DOI : 10.1109/75.91092

T. Weller, Single and double folded-slot antennas on semi-infinite substrates, IEEE Transactions on Antennas and Propagation, vol.43, issue.12, pp.1423-1428, 1995.
DOI : 10.1109/8.475932

J. Papapolymerou, A folded-slot antenna on low resistivity Si substrate with a polyimide interface layer for wireless circuits " , Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Digest of Papers, pp.215-218, 2001.

H. S. Tsai, Multi-slot 50-?? antennas for quasi-optical circuits, IEEE Microwave and Guided Wave Letters, vol.5, issue.6, 1995.
DOI : 10.1109/75.386124

G. H. Huff, Frequency Reconfigurable CPW-Fed Hybrid Folded Slot/Slot Dipole Antenna, IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005., pp.574-577, 2005.
DOI : 10.1109/WCACEM.2005.1469653

S. K. Plothi, Computer-aided design of a CPW-fed slot antenna for MM-wave applications, International Journal of RF and Microwave Computer-Aided Engineering, vol.14, issue.1, pp.4-14, 2003.

M. Huchard, Caractérisation et conception d'antennes Isotropes miniatures pour objets communicants, Thèse de L'institut Nationale Polytechnique de Grenoble, 2007.

[. Iv and R. Bawer, The spiral Antenna, IRE International Convention Record, PI. T, pp.84-95, 1960.

. J. Bell, A low-profile Archimedean spiral antenna using an EBG ground plane, Antennas and Wireless Propagation Letters, pp.223-226, 2004.
DOI : 10.1109/LAWP.2004.835753

E. D. Caswell, Design and Analysis of Star Spiral with Application to Wideband Arrays with Variable Element Sizes, 2001.

[. Iv and E. Gschwendtner, Spiral antenna with external feeding for planar applications, IEEE AFRICON, vol.22, issue.28, pp.1011-1014, 1999.

E. Gschwendtner, Low-cost spiral antenna with dual-mode radiation pattern for integrated radio services, Millennium Conference on Antennas & Propagation AP2000, p.48, 2000.

M. N. Afsar, A new wideband cavity-backed spiral antenna, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229), pp.124-127, 2001.
DOI : 10.1109/APS.2001.959415

J. A. Kaiser, The Archimedean two-wire spiral antenna, IRE Transactions on Antennas and Propagation, vol.8, issue.3, pp.312-323, 1960.
DOI : 10.1109/TAP.1960.1144840

J. Thaysen, Characterization and Optimization of a Coplanar Waveguide Fed Logarithmic Spiral Antenna, Conference on Antennas and Propagation for Wireless Communications, 2000.

A. Siligaris, CPW and discontinuities modelling for circuit design up to 110 GHz in SOI CMOS technology, IEEE Radio Frequency Integrated Circuits Symposium, p.2007

C. Mounet, Design and modelling of mm-wave building blocks on SOI 65 nm, Workshop on Integrated Systems for mm-Wave Application, 2006.

C. Tinella, Etude des potentialités des technologies CMOS-SOI partiellement désertées pour les applications radiofréquences, Thèse de l'Institut Polytechnique de Grenoble, 2003.

G. Petit, Etude de structures radiofréquence en bande X sur technologies CMOS-SOS, Thèse de L'université Paris XI

C. Pavageau, Utilisation des technologies CMOS SOI 130nm pour des applications en gamme de fréquences millimétriques, Thèse de l'Université des Sciences et Technologies de Lille

C. Yacouba, Conception et fabrication de circuits intégrées monolithiques micro ondes pour radiocommunications, 1998.

[. Iv and X. Guan, A 24-GHz CMOS Front-End, IEEE Journal of Solid State Circuits, vol.39, issue.2, 2004.

E. Sonmez, A single-chip 24 GHz receiver front-end using a commercially available SiGe HBT foundry process, 2002 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Papers (Cat. No.02CH37280)
DOI : 10.1109/RFIC.2002.1011946

C. H. Doan, Millimeter-Wave CMOS Design 60-GHz PA and LNA in 90-nm RF-CMOS, IEEE JSSC IEEE RFIC Symposium, vol.4063, issue.1, pp.144-155, 2005.

X. Yang, Design of LNA at 2.4 GHz using 0.25 µm CMOS technology " Microwave and Optical Technology Letters, pp.270-275

M. Pelissier, LNA-antenna codesign for UWB systems, 2006 IEEE International Symposium on Circuits and Systems, 2006.
DOI : 10.1109/ISCAS.2006.1693682

Q. Xianming, A folded dipole antenna for RFID, IEEE Antennas and Propagation Society Symposium, 2004., pp.97-100, 2004.
DOI : 10.1109/APS.2004.1329562

C. W. Harrison, Folded dipoles and loops, IRE Transactions on Antennas and Propagation, vol.9, issue.2, pp.171-187, 1961.
DOI : 10.1109/TAP.1961.1144962

[. Iv and C. Buxton, The folded dipole: A self-balancing antenna " , Microwave and Optical Technology Letters, pp.155-160

P. V. Nikitin, Power reflection coefficient analysis for complex impedances in RFID tag design, IEEE Transactions on Microwave Theory and Techniques, vol.53, issue.9, 2005.
DOI : 10.1109/TMTT.2005.854191

K. Kurokawa, Power Waves and the Scattering Matrix, IEEE Transactions on Microwave Theory and Techniques, vol.13, issue.2, 1965.
DOI : 10.1109/TMTT.1965.1125964

U. Karthaus, Fully Integrated Passive UHF RFID Transponder IC with 16.7 µW Minimum RF Input Power, IEEE Journal of Solid State Circuits, vol.38, issue.10, 2003.

J. D. Kraus, Antennas for all application, 2002.

P. Pendant-la-thèse-conférences-internationales-et-nationales and M. H. Barakat, Smart Dust : La nouvelle technologie, JNRDM 2005,8eme journée du réseau doctoral en microélectronique

M. H. Barakat, 60GHz Interdigitated SOI integrated dipole antenna with a CPW balun, Mediterranean Microwave Symposium, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00147959

M. Barakat, Performance of a 0.13 μm SOI integrated 60 GHz dipole antenna, 2007 IEEE Antennas and Propagation International Symposium, pp.2526-2529, 2007.
DOI : 10.1109/APS.2007.4396048

URL : https://hal.archives-ouvertes.fr/hal-00196915

M. Barakat, 60 GHz Slot antenna integrated on SOI, Mobile Optical Wireless Week, pp.14-16, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00193483

M. Barakat, Antenne F inversée (IFA) millimétrique en technologie SOI Circularly Polarized Antenna on SOI for the 60 GHz Band, Journées nationale en Microondes JNM 2007 the Second European Conference on Antennas and Propagation EuCAP, pp.1-6, 2007.

M. Barakat, On the design of 60 GHz integrated antennas on 0.13 ?m SOI technology " , the IEEE SOI conference Design and Performance of 60 GHz Dipole Antenna Integrated on Silicon on Insulator, pp.117-118, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00193727

M. H. Barakat, Performance of 60 GHz double Slot Antenna integrated on SOI

M. Barakat, 60 GHz Interdigitated SOI integrated dipole antenna with a CPW balun Integrated Systems for mm-wave Applications, pp.20-21, 2006.

M. H. Barakat, Conception des Antennes intégrées à 60 GHz en technologie 0.13 µm SOI », GDR Ondes, 21-23 novembre, 2007.