Etude expérimentale de l’équilibre mécanique d’un milieu granulaire: exemples du silo et du tas de sable
Loïc Vanel

To cite this version:

HAL Id: tel-00258084
https://tel.archives-ouvertes.fr/tel-00258084
Submitted on 21 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THESE DE DOCTORAT DE L’UNIVERSITE PARIS 6

Spécialité :
Physique des Liquides

Présentée par :
Loïc VANEL

Pour obtenir le grade de :
DOCTEUR de L’UNIVERSITE PARIS 6

Sujet de la thèse :
Etude expérimentale de l’équilibre mécanique d’un milieu granulaire :
exemples du silo et du tas de sable

Soutenance le 30 juin 1999 devant le jury composé de :

M. J.-P. BOUCHAUD Examiner
Mme E. CHARLAIX Rapporteur
M. E. CLEMENT Directeur de thèse
M. P.-G. DE GENNES Examiner
M. F. RADJAI Rapporteur
M. D. SALIN Examiner
Remerciements

Je tiens avant tout à remercier Eric Clément qui m’a remarquablement encadré depuis mes débuts au Laboratoire des Milieux Désordonnés et Hétérogènes (LMDH) lors de mon stage de DEA jusqu’à la fin de cette thèse, et avec qui j’ai eu beaucoup de plaisir à travailler. Sa passion pour la recherche, son dynamisme et son intérêt pour mon travail m’ont beaucoup apporté et m’ont appris à ne jamais baisser la tête face aux inévitables et nombreuses difficultés que la recherche fait surgir.

Je voudrais aussi remercier vivement Jacques Duran qui m’a souvent fait partager sa curiosité scientifique et qui a bien voulu m’associer à ses travaux de modélisation des chaînes de forces dans un milieu granulaire.

Tout au long de cette thèse, j’ai été amené à travailler en collaboration avec Jean-Philippe Bouchaud et Philippe Claudin. L’élan qu’ils ont apporté à nos travaux de recherche est inestimable. J’ai également bénéficié de discussions fructueuses avec Michael Cates et Joachim Wittmer.

Je tiens à remercier Robert Behringer qui m’a accueilli pendant une semaine dans son laboratoire à l’université de Duke afin de m’initier à une technique de mesure de forces dans un milieu granulaire basée sur une méthode capacitée. Une partie de mon travail sur les tas de sable a été effectuée avec l’aide de Daniel Howell lors de mon séjour à l’université de Duke, puis lors d’un séjour d’une semaine de Daniel Howell au LMDH.

Je dois également remercier Anthony Rosato qui m’a accueilli pendant un an et demi au New Jersey Institute of Technology pour y effectuer mes obligations militaires sous forme de coopération scientifique. Les travaux poursuivis pendant cette période ne font pas partie de mon travail de thèse proprement dit, mais m’ont permis de compléter ma formation à la recherche ainsi que d’apprendre à mieux maîtriser une langue désormais indispensable à la communication scientifique.

Je tiens à remercier Elisabeth Charlaix et Farhang Radjai d’avoir accepté d’être rapporteur de ma thèse. Je suis également profondément reconnaissant envers Jean-Philippe Bouchaud, Pierre-Gilles de Gennes et Dominique Salin d’avoir accepté de faire partie du jury de cette thèse.

Je remercie vivement José Lanuza, Michel Lemal, Patrick Lepe, Jacques Servais, et Dédé pour leur soutien technique et pour leur inventivité. Sans eux, les différents montages expérimentaux que j’ai utilisés n’auraient pas vu le jour.

Je suis également reconnaissant envers tous les membres du LMDH qui à un moment ou à un autre ont contribué à faire avancer cette thèse. Je dois remercier tout particulièrement Evelyne Kalb pour avoir trouvé le temps de relire attentivement ma thèse.
Table des matières

Remerciements i

1 Chaînes de forces dans un milieu granulaire 1
 1.1 Observations expérimentales 1
 1.2 Modèles discrets de chaînes de forces 2
 1.3 Un modèle continu de chaînes de forces : Le modèle OSL 5
 1.4 Objectif de la thèse ... 7

2 Mesures de pression dans un silo 9
 2.1 Introduction .. 9
 2.2 Présentation générale de l'expérience 10
 2.2.1 Mesure de la pression au fond d'un silo 11
 2.2.2 Le milieu granulaire 13
 2.2.3 Méthodes de remplissage 13
 2.2.4 Mesure de la densité moyenne 14
 2.3 Problèmes liés à la mesure de force 14
 2.3.1 Indétermination et propriétés hystérétiques de la mesure 14
 2.3.2 Rôle de la température 15
 2.3.3 Rôle du remplissage : problème de la hauteur de chute 17
 2.4 Procédures de mesure de la masse apparente 19
 2.4.1 Descente quasistatique du piston 19
 2.4.2 Compaction du milieu granulaire par vibrations 25
 2.4.3 Diagramme masse apparente-densité 27
 2.5 Structure interne de l'empilement granulaire 28
 2.5.1 Description de l'expérience 29
 2.5.2 Mesure de la densité locale 34
 2.5.3 Résultats ... 35
 2.5.4 Signification de la densité granulaire moyenne 37
 2.6 Saturation de la pression avec la hauteur 38
 2.6.1 Modèle de "Janssen" 38
 2.6.2 Étude expérimentale de la saturation 40
 2.6.3 Ecart au modèle de Janssen : le modèle M_0 42
 2.6.4 Interprétation qualitative du paramètre M_0 (ou λ_0) . 47
 2.6.5 Courbe de saturation dans le modèle OSL 49
 2.6.6 Effet d'une surcharge 51
 2.6.7 Interprétation qualitative du diagramme masse apparente-densité 55
 2.7 Fluctuations ... 57
 2.7.1 Forme de la distribution 57
 2.7.2 Evolution de la largeur de la distribution 61
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Distributions de pression sous un tas de sable</td>
<td>67</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>67</td>
</tr>
<tr>
<td>3.2</td>
<td>Présentation générale de l'expérience</td>
<td>69</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Principe de l'expérience</td>
<td>69</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Problème de la rigidité du plateau</td>
<td>70</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Le milieu granulaire</td>
<td>71</td>
</tr>
<tr>
<td>3.3</td>
<td>Le capteur de pression</td>
<td>71</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Description</td>
<td>72</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Calibration</td>
<td>74</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Comportement en présence de grains</td>
<td>76</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Effet perturbatif de la dilatation thermique</td>
<td>76</td>
</tr>
<tr>
<td>3.4</td>
<td>Méthodes de construction</td>
<td>76</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Le tas conique</td>
<td>76</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Le prisme triangulaire ou "wedge"</td>
<td>83</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Autres méthodes de construction</td>
<td>84</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Dimensions des tas obtenus</td>
<td>86</td>
</tr>
<tr>
<td>3.5</td>
<td>Profils de pression</td>
<td>88</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Le tas conique</td>
<td>88</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Le prisme triangulaire</td>
<td>91</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Autres profils de pression mesurés</td>
<td>91</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Ordre de grandeur des fluctuations</td>
<td>93</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Consistance des profils de pression</td>
<td>93</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Effet de la taille du capteur</td>
<td>97</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Mise à l'échelle des profils de pression avec les dimensions du tas</td>
<td>98</td>
</tr>
<tr>
<td>3.6</td>
<td>Prédictions théoriques et expériences</td>
<td>100</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Présentation de quelques modèles</td>
<td>100</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Comparaison avec les données expérimentales</td>
<td>102</td>
</tr>
<tr>
<td>3.7</td>
<td>Discussion et conclusion</td>
<td>108</td>
</tr>
</tbody>
</table>

4 Un modèle d'arche | 111 |
4.1	Introduction	111
4.2	Observations	111
4.2.1	Cellule bidimensionnelle	111
4.2.2	Expériences dans un tube cylindrique avec de la sépiolite	112
4.3	Modèle "joet"	113
4.4	Modèle d'arche hystérétique	114
4.5	Discussion et conclusion	117

Conclusion | 119 |

Publications principales et preprints | 123 |
Chapitre 1

Chaînes de forces dans un milieu granulaire

Nous allons présenter dans ce chapitre le cadre scientifique dans lequel se situe cette thèse. Nous allons beaucoup parler des chaînes de forces que l'on peut observer dans un milieu granulaire. Nous évoquerons quelques modèles discrets de milieux granulaires qui sont capables de reproduire la phénoménologie de ces chaînes de forces. Nous insisterons ensuite sur une modélisation continue de ces chaînes de forces, qui sera utilisée à de nombreuses reprises par la suite. Nous discuterons alors des points importants qui ont motivé nos travaux.

1.1 Observations expérimentales

La répartition des contraintes dans un milieu granulaire est très hétérogène. Une manière de visualiser ces contraintes est d'utiliser des grains photoélastiques placés entre deux polariseurs croisés. Sous l'effet de contraintes, le milieu granulaire devient biréfringent et on voit alors apparaître un réseau entrelacé de lignes lumineuses. Plus la lumière est intense, plus les forces correspondantes sont grandes. Ces lignes matérialisent la présence de "chaînes de forces" dans le milieu granulaire. La figure 1.1 montre les chaînes que l'on peut obtenir en cisailant un milieu granulaire dans une cellule de Couette bidimensionnelle. La figure 1.2 montre les chaînes que l'on peut obtenir en construisant un tas bidimensionnel à partir d'un point source. Ce type de structure a été observé pour la première fois par Dantu [16], mais Travers et al. [79, 80] ont été parmi les premiers à donner une description plus quantitative de ces chaînes de forces. Ce n'est que récemment que l'on a cherché à étudier l'influence de ces structures sur le comportement dynamique du milieu granulaire. Ces chaînes de forces semblent être à l'origine de larges fluctuations des contraintes lorsque l'on cisaille le milieu granulaire (Howell et al. [30], Miller et al. [51]) ou lorsque l'on pousse sur le milieu granulaire (Kolb et al. [39], Ngadi et al. [55]). Elles sont aussi probablement responsables de la propagation anormale du son dans un milieu granulaire (Liu et al. [44]).

Comment se distribuent les forces à l'échelle du grain? Liu et al. [45] ainsi que Mueth et al. [53] ont étudié les forces qu'exerce le milieu granulaire sur les parois d'un récipient en mesurant la trace laissée par les grains sur une feuille de papier carbone. Ils ont observé une distribution très large des forces de forme exponentielle (voir figure 1.3). Cela signifie que les fluctuations de forces sont de l'ordre de grandeur de la force moyenne. C'est une situation assez inhabituelle en physique qui a conduit certains auteurs à dire que le milieu granulaire est dans un état critique (S. Roux et al. [68, 69]). Très récemment, Tsoungui et
al. [84] ont déterminé la distribution des forces de contact entre particules à partir d’une mesure directe des aires de contact. Pour visualiser les aires de contact, ils recouvrent leurs particules initialement blanches d’une poudre de craie rouge. Les zones de contact restent blanches et la mesure de l’aire de contact permet de remonter à la force par une méthode de calibration. Tsoungui et al. trouvent aussi une distribution de forces exponentielle. Il faut enfin citer Baxter [5] qui détermine la distribution des forces de cisaillement entre particules en mesurant l’intensité lumineuse des chaînes de force obtenues dans un empilement bidimensionnel de fibres optiques photoélastiques (voir figure 1.4). De nouveau, Baxter trouve que la distribution des forces est de forme exponentielle. Il semble donc y avoir un assez large consensus sur la forme de la distribution des forces.

1.2 Modèles discrets de chaînes de forces

Pour essayer de comprendre les mécanismes qui sont à l’origine des chaînes de forces, une approche possible est de modéliser le milieu granulaire en décrivant les interactions à l’échelle du grain. On parlera alors de modèle discret du milieu granulaire. Parmi eux, les modèles de sphères dures sont particulièrement riches d’enseignements. Ouaguenoumi et al. [58, 59] se sont intéressés à un empilement bidimensionnel de disques légèrement
FIG. 1.3: Distribution de probabilité des forces à l'échelle du grain. Le système étudié est un cylindre contenant un milieu granulaire qui est comprimé entre deux pistons. Les deux graphes permettent de comparer la distribution des forces sur les parois latérales et sur les pistons. (d'après Mueth et al.)

FIG. 1.4: Chaînes de forces dans un empilement bidimensionnel constitué de fibres optiques photoélastiques. L'intensité lumineuse reflète l'intensité du cisaillement local (photo d’après Baxter [5]).
Fig. 1.5: Réseau de forces obtenus avec un modèle de disques non frottants et très peu polydisperses. Le milieu granulaire est ici soumis à une compression isotrope (d’après Ouaguenoumi et al.).

Fig. 1.6: Réseau de forces obtenu avec un modèle de billes frottantes et fortement polydisperses. Le milieu granulaire est ici soumis à un cisaillement macroscopique. Ce réseau présente une plus grande similitude avec les expériences que le réseau de la figure 1.5 (d’après Radjai et al.).
polydisperses et non frottants qui sont amenés progressivement en contact. Lorsque l’on représente les forces de contacts à l’aide d’un trait d’épaisseur proportionnelle à l’intensité de la force, on obtient alors une visualisation des chaînes de forces qui rappelle les expériences de visualisation expérimentales (voir figure 1.5). De plus, la distribution de probabilité des forces de contacts est proche d’une exponentielle. Cette approche montre qu’un faible désordre géométrique est suffisant à engendrer un désordre important des forces de contact. Radjai et al. [63] utilisent une modélisation plus réaliste d’un milieu granulaire qui prend en compte la friction entre les grains par une méthode de dynamique des contacts (J. J. Moreau [52]). Cette méthode prend en compte à la fois la polydispersité des grains et l’aspect indéterminé des forces de friction. Le réseau de forces obtenu (voir figure 1.6) a une plus grande similitude avec les expériences que le réseau de forces de la figure 1.5. Radjai trouve également une forme de distribution qui ressemble beaucoup à celle observée expérimentalement, excepté pour les faibles forces. Apparemment, la forme de la distribution dépend peu de la friction interne qui influe principalement sur la valeur de la force moyenne (Bastolla et al. [4]).

Quelle est l'orientation de ces forces ? Le tenseur des contraintes associé à un tel réseau de force est très anisotrope. Si on s’intéresse au tenseur de fable qui caractérise l’orientation moyenne des contacts entre grains, on s’aperçoit que celui-ci est aussi très anisotrope, mais les axes principaux de ce tenseur ne coïncident pas forcément avec les axes principaux du tenseur des contraintes. En analysant plus en détail ses simulations, Radjai [64, 65] remarque aussi que l’on peut décomposer le réseau de forces en deux sous-réseaux. D’une part, un réseau qui porte des forces inférieures à la force moyenne et qui est un réseau isotrope. D’autre part, un réseau qui porte les forces supérieures à la force moyenne et qui est un réseau très anisotrope. Dans les simulations de Radjai, l’anisotropie du réseau "fort" est liée à l’application d’un cisaillement. C’est principalement ce réseau fort que l’on peut observer sur les photos des figures 1.1, 1.2 et 1.4.

1.3 Un modèle continu de chaînes de forces : Le modèle OSL

![Diagram](image)

Fig. 1.7: La direction de la chaîne de force ou voûte \(\mathbf{m} \) est donnée par l’angle \(\tau \). L’angle \(\psi \) représente l’angle de friction effectif des voûtes. L’axe \(z \) donne la direction de la gravité.

Le modèle OSL (Oriented Stress Linearity) a été introduit par Bouchaud, Cates, Claudin et Wittmer [6, 89] pour rendre compte de l’observation de chaînes de forces dans un milieu granulaire. Ce modèle est basé sur une description continue du milieu où les contraintes sont représentées par un tenseur que l’on notera \(\sigma_{ij} \). Pour un système bidimentionnel...
mensionnel, l’équilibre des forces dans un milieu granulaire simplement soumis à l’action de la gravité peut s’écrire :

\[\begin{align*}
\partial_z \sigma_{zz} + \partial_x \sigma_{xz} &= \rho g \\
\partial_z \sigma_{zx} + \partial_x \sigma_{xx} &= 0
\end{align*} \] \hfill (1.1)

\[\sigma_{xx} = \sigma_{zz} \] \hfill (1.3)

où l’axe z est la verticale, \(\rho \) est la densité du milieu granulaire et \(g \) est la gravité. Pour assurer l’équilibre des moments, il faut d’autre part que :

\[\sigma_{xx} = \sigma_{zz} \] \hfill (1.3)

Nous avons donc un système de trois équations à quatre inconnues et l’équilibre est donc indéterminé. Si on décrivait le milieu granulaire comme un solide élastique, l’indétermination serait levée en prenant en compte les déformations des grains et en écrivant une relation entre contraintes et déformations comme, par exemple, la loi de Hooke. Nous allons voir que l’approche du modèle OSL est différente puisqu’elle néglige le rôle de la déformation des grains. En fait, les résultats obtenus à l’aide de modèles discrets de sphères dures encouragent à avancer dans cette voie.

L’idée du modèle OSL est d’introduire une relation entre les contraintes qui permette de prendre en compte l’existence de chaînes de forces. Les chaînes de forces observées expérimentalement sont bien sur très inhomogènes pour pouvoir être complètement décrites par un modèle de milieu continu, mais le modèle OSL essaie simplement de représenter le comportement moyen de ces chaînes de forces. Supposons que l’on ait une chaîne de force, que l’on appellera aussi "voie", dont la direction est portée par le vecteur \(\mathbf{m} \), et appelons \(\mathbf{n} \) le vecteur normal à la voie. Le vecteur \(\mathbf{m} \) fait un angle \(\tau \) par rapport à la verticale comme indiqué sur la figure 1.7. La relation fondamentale du modèle OSL peut s’écrire :

\[\sigma_{nm} = \sigma_{nn} \tan \psi \] \hfill (1.4)

Par sa forme, cette relation ressemble énormément à la condition de glissement de Coulomb : \(\sigma_{nm} = \sigma_{nn} \tan \phi \), où \(\phi \) est l’angle de friction interne du milieu granulaire. Cependant, dans la relation (1.4), l’angle \(\psi \) a une valeur quelconque qui dans tous les cas doit être inférieure à \(\phi \) pour des raisons de stabilité. Nous verrons en fait qu’il existe un critère de stabilité plus strict qui limite encore le domaine de variation de \(\psi \) (ainsi que celui de \(\tau \)). Physiquement, la relation (1.4) signifie que les voies frottent entre elles avec un angle de friction effectif \(\psi \). En première approximation, on suppose que ces voies sont en moyenne des lignes droites (\(\tau = \text{Cte} \)) et que le coefficient de frottement entre ces voies est également constant (\(\psi = \text{Cte} \)). La relation (1.4) peut aussi s’écrire dans le système de coordonnées \((x, z) \) :

\[\sigma_{xx} = \eta \sigma_{zz} + \mu \sigma_{zx} \] \hfill (1.5)

où les paramètres \(\eta \) et \(\mu \) vérifient :

\[\eta = -\tan \tau \tan (\tau - \psi - \pi/2) \]
\[\mu = \tan \tau + \tan (\tau - \psi - \pi/2) \]

Lorsqu’on associe la relation (1.5) aux équations d’équilibre (1.1), (1.2) et (1.3), on trouve que chacune des contraintes \(\sigma_{ij} \) est solution de l’équation d’ondes :

\[(\partial_z + c_+ \partial_x) (\partial_z + c_- \partial_x) \sigma_{ij} = 0 \]
où l’axe z joue le rôle du temps. Cette équation d’ondes est de type hyperbolique. En chaque point, il existe deux directions, appelées caractéristiques, le long desquelles les équations prennent une forme propagative particulièrement simple. Les caractéristiques donnent alors les directions de propagation des contraintes. Leur direction est définie par les relations $x - c_+ z = \text{Cte}$ et $x - c_- z = \text{Cte}$, où c_+ et c_- sont les "vitesses de propagation" :

$$
c_+ = \tan \tau \quad c_- = \tan (\tau - \psi - \pi/2)
$$

Ces vitesses représentent la tangente de l’angle que fait chaque caractéristique avec la verticale. On remarque que la direction définie par c_+ correspond à l’angle τ. La direction de propagation c_+ est donc confondue avec celle de la voûte. La seconde direction fait par contre un angle $\tau - \psi - \pi/2$ avec la verticale. Les vitesses c_+ et c_- peuvent aussi s’écrire :

$$
c_{\pm} = \frac{1}{2} \left(\mu \pm \sqrt{\mu^2 + 4\eta} \right)
$$

(1.6)

Au cours de cette thèse, nous reviendrons plus en détail sur les prédictions de ce modèle dans deux géométries : la géométrie d’un tas de sable et celle d’un silo. Les résultats de nos expériences seront souvent confrontés au modèle OSL. Il va de soi qu’une telle étude n’aurait pas été possible sans une étroite collaboration avec P. Claudin, J.-P. Bouchaud, M. Cates et J. Wittmer.

1.4 Objectif de la thèse

Le propos de cette thèse est de comprendre dans quelle mesure il est important de prendre en compte l’existence de chaînes de forces pour décrire l’équilibre d’un milieu granulaire dans des configurations aussi simples qu’un tas de sable ou un silo. Nous n’avons pas chercher à faire le lien entre l’observation directe de ces chaînes de forces et la mesure de grandeurs physiques macroscopiques. Une telle approche apporterait sans aucun doute des informations précieuses, mais elle suppose que l’on ait déjà une bonne compréhension des propriétés d’équilibre du milieu granulaire à l’échelle macroscopique. Il apparaît que les caractéristiques générales de l’équilibre d’un tas de sable sont encore mal établies, et surtout très controversées. L’équilibre d’un milieu granulaire dans un silo est assez bien compris qualitativement, mais de nombreuses expériences montrent qu’il est difficile d’obtenir des informations quantitatives reproductibles sur cet équilibre. Il n’est pas rare que les contraintes varient du simple au double dans des conditions expérimentales apparentem identiques. Il nous est donc apparu important avant toute chose de chercher à mieux décrire les propriétés d’équilibre macroscopiques d’un milieu granulaire. La complexité de l’équilibre d’un milieu granulaire est liée à un désordre géométrique pratiquement inévitable et à l’indétermination des forces de friction. Il est clair qu’il doit exister des liens entre la structure des chaînes de forces et les différentes configurations d’équilibre dans lequel peut se trouver un milieu granulaire. Pour mieux comprendre ces liens, il est important de pouvoir contrôler la préparation du milieu granulaire dans un état donné. La plupart des modèles montrent en effet que la manière dont les grains sont empilés contrôle non seulement le réseau des contacts entre grains mais aussi la répartition des contraintes. Un autre aspect important est l’existence de fluctuations larges des contraintes. À l’échelle des grains, la forme de la distribution de probabilité des forces est assez bien établie. On peut se demander comment régressent les fluctuations lorsque l’on s’intéresse maintenant à des contraintes moyennées sur un ensemble de grains. La question fondamentale liée
au comportement des fluctuations est de comprendre jusqu'à quelle échelle les chaînes de forces continuent à jouer un rôle significatif dans l'équilibre du milieu granulaire.

Le chapitre 2 présente une étude expérimentale de la pression moyenne en bas d’un silo, que nous appellerons aussi colonne granulaire. Nous discuterons des problèmes spécifiques que pose la mesure de cette pression. Nous verrons comment l'état d'équilibre de la colonne dépend de la préparation de la colonne de grains et comment cet état d'équilibre est relié à la structure interne de l'empilement. Nous étudierons en détail la dépendance de la pression avec la hauteur de grains dans le silo et nous verrons quels sont les modèles qui décrivent le mieux les comportements observés. Nous nous intéresserons également aux fluctuations intrinsèques de la pression.

Le chapitre 3 présente une étude expérimentale de la distribution de pression sous un tas de sable. Nous décrirons le capteur de pression que nous avons mis au point au laboratoire. Nous montrerons l'importance du mode de construction d’un tas sur la répartition de la pression. Nous verrons que les résultats sont conséquents avec la description continue des chaînes de forces proposée par le modèle OSL.

Le chapitre 4 présente une étude à la fois expérimentale et théorique de la formation de chaînes de forces suffisamment solides pour former une arche, au sens architectural du terme. Cette étude sera l’occasion de discuter plus en détail des couplages qui existent entre la mobilisation des forces de friction et les déformations aussi bien du milieu granulaire que des parois en contact avec le milieu granulaire.
Chapitre 2
Mesures de pression dans un silo

2.1 Introduction

Lorsqu'on remplit un récipient d'eau, il est bien connu que la pression au fond du récipient est proportionnelle à la hauteur d'eau. Lorsqu'on fait la même expérience avec un milieu granulaire, on constate que la pression n'augmente pas indéfiniment mais finit par atteindre une valeur asymptotique limite. Ce phénomène décrit pour la première fois par Roberts en 1884 [67] et modelisé par Janssen en 1895 [35] met en évidence le rôle important joué par les forces de friction entre le milieu granulaire et les parois du récipient qui "écrasant" une partie du poids des grains. Si la pression au fond du récipient atteint une valeur limite, cela signifie qu’une partie très importante du poids est encaissée directement par les parois latérales. Si l’on n’y prend garde, les conséquences sur la stabilité des silos peuvent être désastreuses (voir figure 2.1). S’il peut paraître surprenant que de tels accidents se produisent encore de nos jours, il est tout aussi surprenant de constater que le modèle le plus utilisé pour prévoir les performances mécaniques d’un silo reste le modèle de Janssen datant de plus d’un siècle! (voir par exemple Schwab et al. [73] ou Thompson et al. [76]). Entre autres, la répartition des pressions dans un silo est un problème récurrent du génie agricole. Une difficulté importante de ce type d’étude est l’existence de fluctuations de pression importantes et en général non contrôlées. Certains auteurs rapportent des observations montrant des fluctuations de l’ordre de 100% [8]! D’autres observent une grande dépendance des résultats selon la méthode de remplissage [36]. Mais, il n’y a en fait aucune étude claire qui permette d’expliquer les fluctuations observées. La comparaison avec des modèles théoriques est alors très difficile et donne souvent des résultats contradictoires (Lenczner [41, 42]).

Pour le physicien, l’état d’équilibre d’un milieu granulaire dans un silo est une situation pour laquelle se pose avec force le problème fondamental de l’indétermination des forces de friction. Il est clair dès le départ que la manière dont les forces de friction sont mobilisées avec les parois est une source très importante de fluctuations. C’est pour cela que nous chercherons tout d’abord à nous placer dans une situation où la friction avec les parois est contrôlée. Il demeure que la friction entre les grains est une source de complexité importante pour la description de l’état d’équilibre d’un milieu granulaire. Des études de plus en plus nombreuses, expérimentales et théoriques, se sont attachées à décrire la structure d’un empilement et des forces de contact à l’échelle des grains. On a désormais une vision assez claire des propriétés statistiques des forces de contacts, mais on sait relativement peu de choses sur les propriétés des forces moyennes lorsqu’on passe à une échelle macroscopique. La plupart des concepts qui émergent actuellement en physique des matériaux granulaires ont tendance à remettre en cause la description continue classique
de la mécanique des sols. On trouve ainsi la notion de voûtes, longues chaînes de grains qui contribuent très fortement à l’anisotropie et à l’hétérogénéité des forces. On trouve également la notion de texture qui fait référence à la structure géométrique particulière du réseau des contacts entre grains dans un empiètement.

Notre étude de la pression moyenne exercée au fond d’un silo fait partie d’un vaste projet dont l’objet est de déterminer dans quelle mesure on doit tenir compte des aspects microscopiques (distribution de forces, géométrie des contacts) et mésoscopiques (chaînes de forces, voûtes) pour comprendre le comportement macroscopique de la matière granulaire. Au stade actuel de nos travaux, nous en sommes encore à essayer de comprendre les observations les plus simples que l’on peut faire dans un silo à grain. Pour des raisons bien compréhensibles, notre silo n’est qu’un modèle très réduit d’un véritable silo et le plus souvent, nous parlerons plutôt de colonne granulaire. Dans ce chapitre, nous commencerons par donner une description générale du montage expérimental. Nous discuterons les problèmes que posent la mesure de forces dans un milieu granulaire et nous montrerons comment des procédures de mesure bien définies permettent d’obtenir des résultats reproductibles. Nous montrerons un aperçu de la multiplicité des états d’équilibre que l’on peut obtenir et nous essaierons de montrer comment ceux-ci sont reliés à l’histoire et à la géométrie de l’empilement. Nous étudierons ensuite en détail le phénomène de saturation de la pression et nous montrerons que la notion de voûtes permet de comprendre en grande partie nos observations. Nous donnerons enfin quelques éléments d’étude pour décrire les fluctuations résiduelles de la pression mesurée.

2.2 Présentation générale de l’expérience

Dans cette partie, nous allons indiquer quelques caractéristiques générales de l’expérience. Nous commencerons par présenter le montage qui nous a permis de mesurer la pression au fond d’un silo. Nous décrirons ensuite comment nous avons rempli le silo et comment
nous avons mesuré la densité moyenne de la colonne granulaire ainsi obtenue.

2.2.1 Mesure de la pression au fond d’un silo

![Image of silo and measurement setup]

Fig. 2.2: Photo du dispositif de mesure de pression dans un silo.

On peut voir figure 2.2 une photo du montage employé dont nous avons également représenté un schéma de principe figure 2.3. Les parois latérales du silo sont formées par un cylindre métallique de rayon intérieur \(R \) et le fond du silo est un piston métallique. Le piston repose sur l’extrémité d’une poutre encastrée qui constitue le capteur de force d’une balance électronique. La déformation élastique de la poutre est mesurée à l’aide de jauges de contraintes montées en pont de façon à compenser la dérive en température des jauges. Une carte d’acquisition électronique donne la force détectée par la poutre en unité de masse avec une précision \(\Delta m = 0.1 \text{g} \). Nous parlerons souvent de *masse apparente* \(M_a \) pour
Fig. 2.3: Schéma du montage expérimental permettant d'obtenir des mesures reproductibles de la pression en bas d’un silo.
differencier la masse mesurée par la balance de la masse totale M de grains dans le silo. La poutre possède une raideur effective $K = 2.10^4 \text{Nm}^{-1}$. Cette valeur est suffisamment élevée pour que la surface du piston puisse être considérée comme horizontale dans le domaine de force mesuré. De plus, le diamètre du piston est légèrement inférieur au diamètre intérieur du cylindre de façon à éviter tout frottement avec les parois. L’ensemble balance+piston est monté sur une platine de translation qui permet un déplacement vertical du piston à l’intérieur du cylindre. Nous verrons toute l’importance de ce déplacement pour pouvoir obtenir des mesures reproductibles. Dans la majeure partie de notre étude, le déplacement est appliqué manuellement et son amplitude est mesurée à l’aide d’une vis micrométrique. Par la suite, afin d’avoir accès à des détails plus fins des phénomènes observés, nous avons construit un déplacement vertical automatisé à l’aide d’un moteur pas à pas et d’un émeteur. Dans ce dernier cas, il a été nécessaire de procéder à une calibration du déplacement car la relation entre déplacement et nombre de tours du moteur est non-linaire.

2.2.2 Le milieu granulaire

Le milieu granulaire que nous étudions est essentiellement non cohésif et sec. La plupart des résultats que nous discuterons dans ce chapitre ont été obtenus avec des billes de verre monodisperses à 10% près. Pour tester la généralité de nos observations, nous avons cependant fait quelques essais avec d’autres matériaux tels que des billes en acier polydisperses, des grains de quartz très anguleux ou du sable. Deux propriétés importantes de ces matériaux sont leur angle de friction interne ainsi que le coefficient de friction avec les parois du silo. L’angle de friction interne mesure la résistance du milieu granulaire au cisaillement. Pour obtenir une estimation de l’angle de friction interne, nous avons mesuré l’angle d’avalanche du milieu granulaire, c’est à dire l’angle maximum de stabilité d’une couche de grains initialement horizontale que l’on incline progressivement. L’angle de friction aux parois est mesuré sur un morceau plan constitué du même matériau que les parois du silo.

2.2.3 Méthodes de remplissage

Il est connu que suivant la façon dont on remplit un récipient la densité de l’empi lement granulaire sera plus ou moins importante et plus ou moins homogène. Pour un milieu granulaire constitué de particules sphériques, l’expérience montre que la fraction volumique occupée par les grains dans un empilement aléatoire varie typiquement entre 0,59 et 0,65 (Brown et Richards [8]). Notons que ces valeurs sont intermédiaires entre la fraction volumique d’un empilement régulier de type cubique (0,52) et celle d’un empilement de type hexagonal (0,74). Il nous a paru important de prendre en compte la densité car elle donne une information sur la structure de l’empilement. En particulier, nous avons cherché à préparer la colonne de grains avec différentes densités.

Nous avons utilisé principalement deux méthodes de remplissage (voir figure 2.4). La méthode n°1 consiste à verser les grains à partir d’un entonnoir depuis le sommet du silo. Dans ce cas, les grains tombent avec une énergie cinétique importante qui a tendance à tasser l’empilement. La densité obtenue est proche de la densité maximale d’un empilement aléatoire. Dans la méthode n°2, un tube intermédiaire est introduit dans le silo et déposé sur le piston. Après avoir rempli le tube de grains, on le soulève lentement pour que les grains s’écoulent doucement dans le silo. La densité obtenue est cette fois proche de la densité minimale d’un empilement aléatoire.
2.2.4 Mesure de la densité moyenne

On peut déterminer simplement la densité moyenne du milieu granulaire en mesurant la hauteur H de grains dans le cylindre. Si à un instant donné, la position du piston par rapport au cylindre est connue, il suffit de suivre le déplacement du piston à l’aide de la vis micrométrique pour connaître ses positions ultérieures. La position de la surface supérieure de la colonne de grains par rapport au sommet du cylindre est détectée à l’aide d’une sonde numérique avec une précision de 0,01mm (voir figure 2.2). Pour éviter que la sonde ne s’enfonce dans le milieu granulaire, on ajoute un disque fin de carton dont la masse varie de 0,3g pour la colonne de diamètre $D = 38$mm à 1,2g pour la colonne de diamètre $D = 82$mm. Connaissant la masse M de grains qui remplissent la colonne, on en déduit la densité granulaire moyenne : $\rho = M/\pi R^2 H$. On définit alors la fraction volumique occupé par les grains $\nu = \rho/\rho_b$ où ρ_b est la densité propre des grains.\footnote{La densité propre des grains peut-être mesurée très simplement en recouvrant une masse de grains donnée avec de l’eau jusqu’à remplir un volume connu. Connaissant la masse d’eau ajoutée et la densité de l’eau, on en déduit la densité des grains avec une bonne précision.}

2.3 Problèmes liés à la mesure de force

2.3.1 Indétermination et propriétés hystérétiques de la mesure

Considérons l’équilibre d’une masse couplée à un ressort sur un plan horizontal. En l’absence de force de friction avec le plan, l’équilibre de la masse est déterminé sans ambiguïté par la position du ressort au repos. A partir du moment où on autorise la masse à frotter, l’état d’équilibre est alors indéterminé car la force de friction entre la masse et le
plan est elle-même indéterminée. Il suffit que la force exercée par le ressort sur la masse soit inférieure au seuil de glissement pour qu’il y ait équilibre. Un tel système possède donc tout un ensemble de positions d’équilibre possibles dont la sélection dépend de la manière dont la masse et le ressort ont été disposés l’un par rapport à l’autre. Lorsqu’on cherche à mesurer des forces dans un milieu granulaire, on se trouve précisément dans une situation où sont coupés l’équilibre d’un ressort (le capteur de force) et une masse frottante (le milieu granulaire dans son ensemble). Remarquons au passage que le milieu granulaire proprement dit peut être vu comme un système où il existe à chaque contact entre grains un couplage entre friction et elasticité des grains. Ainsi, l’état d’équilibre d’un milieu granulaire dans un silo dépend à la fois de la façon dont les grains sont empilés les uns par rapport aux autres et aussi de la manière dont cet ensemble de grains frottent avec les parois du silo. Ces deux aspects ne sont d’ailleurs probablement pas indépendants. Avant tout chose, nous avons choisi de séparer les problèmes liés à la mobilisation de la friction avec les parois du silo et ceux liés à la mobilisation de la friction interne au milieu granulaire. Pour cela, nous avons cherché à obtenir une situation telle que la friction avec les parois est complètement mobilisée. Le rôle premier de la platine de translation verticale sur laquelle sont montés le capteur de force et le piston est précisément de laisser glisser le milieu granulaire à l’intérieur du silo pour mobiliser la friction. Les forces de friction aux parois s’opposent alors à la gravité.

Un autre aspect important est la sensibilité de la mesure à une perturbation externe. A cause du couplage entre le capteur de force et l’état de frottement du milieu granulaire, toute perturbation est susceptible de modifier l’état d’équilibre du système couplé et donc la mesure. La réponse du capteur de force à une perturbation est donc en général hystérétique. Si le capteur de force est très raide, une perturbation d’intensité donnée entraînera une faible déformation du capteur et le milieu granulaire ne sera donc soumis qu’à de faibles réarrangements. De plus, comme le capteur est très raide, il suffira ensuite d’un faible déplacement du piston pour mobiliser à nouveau les forces de friction aux parois. On peut alors espérer que le milieu granulaire retrouvera un état physique proche de celui dans lequel il se trouvait avant perturbation. Si le capteur de force est très mou, une perturbation de même intensité que précédemment entraînera une déformation importante du capteur et pourra donc provoquer d’important réarrangements au sein du milieu granulaire. Après déplacement du capteur pour mobiliser la friction aux parois, le milieu granulaire a peu de chance de se retrouver dans un état voisin de celui dans lequel il se trouvait avant perturbation. Comme il est impossible de s’affranchir complètement des sources de perturbation de la mesure, nous avons tout intérêt à nous placer dans une situation où l’effet de la perturbation sur le milieu granulaire sera minimal et nous avons donc intérêt à choisir un capteur aussi raide que possible. Enfin, il faut noter que la procédure qui consiste à mobiliser la friction aux parois permet à priori de compenser les effets dus à la réponse hystérétique du capteur.

Nous allons maintenant discuter plus en détail l’effet de deux sources inhérentes de perturbation de la mesure. Nous allons voir d’une part l’influence des variations de température et d’autre part les effets liés à la dynamique du remplissage.

2.3.2 Rôle de la température

Les effets de dilatation des différentes parties du montage peuvent introduire un déplacement relatif du piston par rapport aux parois du cylindre. Nous avons vérifié cet effet en plaçant le piston en butée avec les parois du cylindre (voir figure 2.5). On mesure alors un couplage d’environ $15^\circ C^{-1}$ correspondant pour le ressort de la balance à une déformation...
Fig. 2.5: Effet de dilatation différentielle lorsque la balance est en butée contre le cylindre.

Fig. 2.6: Effet de la dilatation différentielle lorsque le silo est rempli de grains. Le milieu granulaire est alors à l'interface entre la balance et le cylindre.
de 7,5µm°C⁻¹. Une telle déformation est bien de l’ordre de grandeur des effets dus à la dilatation des métaux. Si le couplage avec la mesure est aussi important c’est parce que, pour des raisons que nous avons expliquées précédemment, le capteur de force possède une raideur élevée. Lorsque le silo est rempli de grains, le couplage avec la température continue à jouer un rôle important. Le milieu granulaire est alors à l’interface entre la balance et le cylinder. On a représenté figure 2.6 une courbe typique montrant la variation de la masse apparente en fonction de la température. On mesure un couplage d’environ 13g°C⁻¹ qui est du même ordre de grandeur que le couplage obtenu dans l’expérience sans milieu granulaire. On voit par contre apparaître un cycle d’hystérésis dont le sens de parcours est indiqué par les flèches, mais cet effet ne semble pas être spécifiquement dû au milieu granulaire. En effet, en regardant plus attentivement la figure 2.5 au point de rebroussement à la température T = 19.8°C, on s’aperçoit qu’en l’absence de milieu granulaire il existe aussi un phénomène d’hystérésis. De plus, le sens de parcours du cycle hystérétique est le même dans les deux cas. L’hystérésis est cependant plus forte en présence du milieu granulaire. Il est probable que le frottement est à l’origine de l’hystérésis observée, mais nous n’avons pas trouvé d’explication simple pour expliquer le sens de parcours du cycle.

Pour limiter les perturbations dues aux dérives de température, nous avions dans un premier temps utilisé une enceinte isolante de façon à stabiliser la température (voir figure 2.3). Nous avons ensuite choisi des matériaux avec un coefficient de dilatation aussi faible que possible (par exemple, du fer-nickel). En fait, nous nous sommes aperçus que les variations de température sont lentes et qu’il suffit d’effectuer la mesure pendant un temps court (de l’ordre de quelques minutes) pour s’affranchir du problème. De plus, nous verrons qu’entre chaque mesure le milieu granulaire est soumis à une perturbation qui entraîne un renouvellement des contacts entre grains. Nous pensons que l’effet de cette perturbation est largement dominant par rapport aux effets de dilatation.

2.3.3 Rôle du remplissage : problème de la hauteur de chute

![Diagramme de la masse apparente en fonction de la hauteur de chute](image)

Fig. 2.7: Effet de la hauteur de chute des grains sur la masse apparente lors du remplissage. Le graphe principal montre l’adéquation surprenante entre les mesures et un calcul d’ordre de grandeur de la force d’impact d’une bille sur le capteur de force. La figure insérée montre la mise à l’échelle des données déduite du modèle.

Lorsque l’on remplit le silo en laissant tomber les grains de différentes hauteurs à partir
d’un entonnoir, on constate que la masse apparente est d’autant plus grande que la hauteur de chute est importante (voir figure 2.7). C’est une conséquence immédiate des propriétés hystérétiques de la mesure. Au moment du choc avec le piston (qui, rappelons-le, repose sur une poutre déformable), l’énergie cinétique des grains est transformée en énergie élastique de la poutre dont une partie ne peut être libérée par la suite car le frottement entre le milieu granulaire et les parois du silo s’y oppose. Nous allons maintenant déterminer l’énergie cinétique de chute des grains et vérifier si cela est suffisant pour expliquer nos mesures.

Soit E_c l’énergie cinétique d’une bille de masse m arrivant sur le piston. Cette énergie est égale à l’énergie potentielle de la bille qui sort de l’entonnoir avec une vitesse nulle : $E_c = mgh$. Si on suppose que la bille subit une collision inélastique (c’est en général le cas dès que le piston est recouvert d’une couche de billes), l’énergie cinétique est entièrement transformée en énergie élastique de déformation de la poutre, et on a alors l’égalité : $\frac{1}{2}Kx^2 = E_c$ où K et x sont la raideur effective et la compression de la poutre. On peut en déduire la force d’impact ressentie par la balance en unité de masse :

$$M_a = \frac{Kx}{g} = \frac{\sqrt{2E_cK}}{g} = \sqrt{\frac{2mhK}{g}}$$

En exprimant la masse m de la bille en fonction de son diamètre d et de sa densité ρ_0, on trouve alors :

$$M_a = \sqrt{\frac{\pi \rho_0 d^3 h K}{3g}} \quad (2.1)$$

Sur la figure, nous avons tracé les valeurs prises par M_a en fonction de h sachant que $\rho_0 = 2000$kg/m3, $K = 2.10^4$N/m$^{-1}$ et $g = 9.81$ms$^{-2}$. De façon tout à fait étonnante, les points expérimentaux et les points calculés se superposent ! Cela signifie que la masse apparente mesurée après remplissage est entièrement déterminée par l’énergie cinétique de déposition du milieu granulaire. Bien sur nous n’avons calculé qu’une force instantanée, mais tout se passe comme si le flot continu de billes remplissant le silo entretenait cette force jusqu’à ce que la hauteur de grains dans le silo soit telle que le piston est bloqué. Notons que le raisonnement ne peut marcher que si le poids des grains est négligeable devant la force d’impact des grains sur le piston. Cela suppose en particulier que la masse apparente due à l’effet dynamique du remplissage est supérieure à la masse de saturation dans le silo. Nous verrons que c’est effectivement le cas, puisque la masse de saturation mesurée est typiquement de 40g pour le silo et le type de grains considérés.

Qu’y a-t-il de si étonnant dans notre interprétation ? Une vision plus classique du problème aurait consisté à écrire la pression dynamique appliquée sur le capteur sous la forme : $P \propto \rho v^2 \propto Qv$ où Q et v sont le débit massique et la vitesse des grains arrivant sur le piston. Pour un écoulement dominé par des effets inertiels, le débit massique à la sortie de l’entonnoir est contrôlé par le diamètre d’ouverture de l’entonnoir D et la taille des grains d suivant la relation : $Q \propto (D - \alpha d)^{5/2}$, où $\alpha = 1.5$ pour des particules sphériques (voir Nedderman [54]). Ainsi, le débit massique est sensiblement plus rapide pour des petites billes que des grosses billes. Comme la vitesse de collision des billes est essentiellement indépendante de leur diamètre, on s’attend donc à ce que la pression dynamique diminue sensiblement lorsque le diamètre des billes augmente. Or, nos mesures montrent que c’est l’effet inverse qui se produit. En fait, l’expression dynamique de la pression $P \propto \rho v^2$ suppose que l’on peut faire une moyenne statistique sur un grand nombre de collisions. Si la durée entre deux collisions sur une paroi est trop grande par rapport au temps de réponse élastique de cette paroi (dans notre cas, c’est le temps de réponse de la poutre), ce sont les collisions individuelles qui dominent et déterminent la force exercée sur la paroi.
L'effet dynamique du remplissage que nous avons observé est susceptible de diminuer lorsque l'on augmente la taille du silo pour une taille de grains donnée. En effet, la force d'impact d'un grain sur le piston ne dépend pas de la largeur du silo alors que le poids de la colonne granulaire sur le piston augmente avec la largeur du silo. Cependant, nous avons eu connaissance récemment d'une expérience effectuée par Huang et Savage [31] qui observent l'influence du mode de remplissage sur la pression dans un silo. Les auteurs constatent qu'en déchargeant d'un coup des bassines remplies de grains la pression mesurée est beaucoup plus élevée qu'en versant les grains en fine pluie. De notre point de vue, cette expérience est un exemple frappant montrant que les effets dynamiques de remplissage que nous avons décrits existent aussi dans des silos de grande taille à partir du moment où le débit massique des grains est suffisamment grand.

2.4 Procédures de mesure de la masse apparente

Nous allons voir qu'il est possible de s'affranchir des problèmes liés au comportement hystérétique de la mesure, comme le couplage avec la température ou l'influence de la dynamique du remplissage. Le principe est simple. Grâce à l'élévateur, il est possible de déplacer vers le bas le système balance-piston de manière à libérer l'énergie élastique stockée par la balance. Le système perd alors la mémoire de la dynamique du remplissage ainsi que de la compression éventuelle qui pourrait résulter de la dilatation inhomogène des différentes parties du montage. Le déplacement est effectué à vitesse très lente (typiquement 20μm.s⁻¹) pour réduire au maximum les problèmes liés à la dynamique du système. En outre, le fait de descendre le piston permet au milieu granulaire de glisser sous l'effet de la gravité le long des parois du silo. Au cours de la descente du piston, on voit le sommet de la colonne de grains descendre, ce qui signifie que le glissement s'effectue sur toute la hauteur de la colonne de grains. On s'attend alors à ce que partout la friction aux parois soit complètement mobilisée et dirigée vers le haut. Ce dernier point est particulièrement important car la plupart des modèles supposent que la friction est complètement mobilisée. De plus, contrairement aux expériences réalisées par le passé, nous nous plaçons dans une situation où la friction avec les parois est bien contrôlée. C'est grâce à cette procédure élémentaire que nous avons pu obtenir une grande reproductibilité des mesures.

Nous allons maintenant détailler deux procédures de mesure différentes qui nous ont permis de mieux comprendre les liens qui existent entre la structure du milieu granulaire et son état d'équilibre.

2.4.1 Descente quasistatique du piston

Nous nous sommes aperçus qu'une descente progressive et lente du piston entraîne une évolution de la masse apparente. Pour que cet effet soit visible, il faut que le déplacement global du piston soit suffisamment grand. Pour suivre l'évolution de la masse apparente en fonction du déplacement, nous avons appliqué au piston une succession de déplacements élémentaires et mesuré la masse apparente après chacun de ces déplacements. Nous allons préciser dans quelles conditions nous avons mesuré la masse apparente au cours de cette descente. Nous montrerons ensuite les courbes de variation de la masse apparente en fonction du déplacement et discuterons de la mise à l'échelle de ces courbes avec les dimensions du silo et la taille des billes. Enfin, nous montrerons que les variations de la masse apparente s'accompagnent d'une variation de la densité moyenne de la colonne granulaire.
Méthode de mesure

On applique au piston un déplacement vertical dirigé vers le bas avec une vitesse typique de $20\mu m s^{-1}$. Après un déplacement d’amplitude donnée (typiquement $20\mu m$), on arrête le mouvement du piston et on laisse le système relaxer. La figure 2.8 montre l’évolution de la masse apparente au cours d’un tel processus. Lorsque l’on met le piston en mouvement (étape {1} de la figure 2.8), la masse apparente décroît brusquement. Nous pensons que l’accélération communiquée au piston pour le mettre en mouvement produit un effet dynamique de décompression du ressort de la balance qui explique la diminution de masse apparente. Après l’arrêt du piston, un effet dynamique inverse se produit et la masse apparente croît brusquement jusqu’à une nouvelle valeur à partir de laquelle un processus de relaxation lente du milieu granulaire se produit (étape {2}). Après quelques dizaines de secondes, la masse apparente se stabilise et l’on mesure la valeur de masse apparente ainsi obtenue (étape {3}).

Il serait intéressant d’étudier plus en détail ce processus de relaxation lente qui correspond probablement à une réorganisation lente de la structure du milieu granulaire. Dans nos expériences, l’amplitude de la relaxation est relativement faible. Elle est typiquement de l’ordre de $1g$ ce qui signifie que le ressort de la balance se décomprime de $0.5\mu m$. Pour se décomprimer, le ressort va pousser vers le haut sur le milieu granulaire si bien que l’on pourrait penser que les forces de friction ne sont plus entièrement mobilisées à la paroi près du piston. Si c’était le cas, on devrait observer une augmentation de la masse apparente. Or, la décompression du ressort signifie que l’on a une diminution de la masse apparente. On voit donc qu’il existe un couplage assez subtil entre l’équilibre du milieu granulaire et celui du ressort de la balance. Quoiqu’il en soit, l’amplitude de la relaxation est suffisamment petite pour que l’erreur commise sur la mesure de la masse apparente soit inférieure à 2%. En revanche, des relaxations d’amplitude comparable à la masse apparente mesurée ont été observées à l’université de Marm-la-Vallée [46]. L’expérience est similaire à la nôtre, mais le principe de la balance utilisée est telle que le plateau de la balance est maintenu à une position fixe. Cette contrainte implique que la mesure se fait par une succession de déplacements du plateau vers le bas lorsqu’une force est appliquée puis vers le haut pour rétablir la position du plateau. Il est possible que cette méthode de mesure particulière soit à l’origine de la relaxation géante observée. On peut également se demander si le phénomène de relaxation que l’on observe a un rapport avec la relaxation de "creeping" observée par Heslot et al. [25] lors d’une étude sur la friction solide. Ces auteurs remarquent en effet qu’une masse que l’on amène proche de son seuil statique de glissement et qu’on laisse ensuite au repos présente un mouvement résiduel dont l’effet tend à diminuer la force de frottement. Cet effet est toutefois inverse dans notre expérience puisque la friction a plutôt tendance à augmenter lors de la relaxation.

Courbe de dérive de la masse apparente

La figure 2.9 montre la variation de la masse apparente en fonction du déplacement pour un silo de diamètre $D = 38mm$ rempli avec $300g$ de billes de verre de diamètre $d = 2mm$. Dans cet exemple, la hauteur de grains dans le silo est suffisante pour que la masse apparente mesurée corresponde à la valeur de saturation. Sur la figure 2.9, nous avons tracé cinq courbes représentant cinq expériences complètement indépendantes mais effectuées dans les mêmes conditions (même méthode de remplissage, même vitesse et même incrément de déplacement). La superposition des courbes indique la très bonne reproductibilité de cette expérience. On constate une augmentation progressive de la masse apparente au cours de la descente du piston. Cette variation globale de la masse apparente est accompagnée de
fluctuations dont nous étudions plus en détail la statistique (voir paragraphe 2.7). Nous avons également vérifié que cette dérive de la masse apparente est indépendante du pas choisi pour déplacer le piston. Curieusement, il apparaît dans tous les cas un pic de très grande amplitude après un déplacement d’environ 8mm. Nous n’avons pas d’explications permettant de comprendre ce pic. Notons simplement qu’avant le pic, la masse apparente fluctue autour d’une valeur moyenne constante et que la masse apparente commence à augmenter après l’apparition du pic. D’autre part, la masse apparente semble tendre vers un état stationnaire.

Mise à l’échelle de la courbe de dérive

Comment se met à l’échelle le signal de dérive lorsque l’on change la taille du silo ou la taille des billes ? Pour répondre à cette question, nous nous limitons au cas d’un silo rempli avec suffisamment de grains pour que l’on ait atteint la saturation de la masse apparente. Dans le modèle de Janssen (voir paragraphe 2.6.1), la masse de saturation (ou masse infinie) peut s’écrire : \(\dot{M}_\infty = \rho \pi \frac{D^3}{4} \lambda \) où \(\rho \) est la densité du milieu granulaire et \(\lambda \) est une longueur caractéristique proportionnelle au diamètre du silo \(D \). Le modèle de Janssen prédit donc que la masse infinie varie comme \(D^3 \). Ainsi, une façon naturelle de normaliser les valeurs de masse apparente correspondant à des diamètres de silos différents est de déterminer le rapport : \(4 \dot{M}_\infty / \rho \pi D^3 = \lambda / D \). Dans cette formule, le choix de la densité granulaire n’est pas très important. Cependant, pour obtenir un ordre de grandeur raisonnable de \(\lambda / D \), nous prendrons une valeur typique : \(\rho = 1.6 \text{gcm}^{-3} \), identique pour toutes les colonnes. Sur la figure 2.10, nous avons tracé \(\lambda / D \) en fonction du déplacement normalisé \(z / D \) pour un diamètre de billes \(d = 1.5 \text{mm} \) et deux diamètres de silo différents : \(D = 38 \text{mm} \) et \(D = 82 \text{mm} \). Nous avons également tracé la courbe de dérive déterminée en moyennant les cinq courbes de la figure 2.9 pour lesquelles \(d = 2 \text{mm} \) et \(D = 38 \text{mm} \). Malgré les différences
Fig. 2.9: Dérive de la masse apparente au cours de la descente du piston.

Fig. 2.10: Mises à l'échelle des courbes de dérives obtenues pour des diamètres de silos $D = 38\text{mm}$ et $D = 82\text{mm}$, et des billes de diamètre $d = 1.5\text{mm}$ et $d = 2\text{mm}$.
Fig. 2.11: Masse apparente en fonction du déplacement pour des billes de diamètres grandissant. Le changement de comportement observé sur ces courbes est probablement un effet de taille finie.

en taille de billes et de silos, on constate que ces trois courbes se superposent. Nous voyons donc que le phénomène de dérive de la masse apparente peut se généraliser à des silos de taille supérieure et que l’amplitude de la dérive est contrôlée par la valeur relative du déplacement du piston par rapport au diamètre du silo.

La superposition des courbes sur la figure 2.10 indique que le phénomène de dérive ne dépend pas de la taille relative des grains par rapport au diamètre du silo. Cela semble exact tant que la taille des billes par rapport au diamètre du silo est suffisamment petite. En effet, lorsque l’on augmente le diamètre des billes tout en gardant le diamètre du silo constant, on s’aperçoit que la dérive finit par disparaître. C’est ce que l’on peut voir sur la figure 2.11 où l’on a représenté les courbes obtenues pour un silo de diamètre $D = 38\text{mm}$ et des billes de diamètre $d = 2\text{mm}$, $d = 4\text{mm}$ et $d = 8\text{mm}$. Nous possédons d’autres données que nous n’avons pas représentées pour plus de lisibilité. La dérive de masse apparente pour des billes de diamètre $d = 4\text{mm}$ se produit sur une distance sensiblement plus petite et avec une amplitude plus faible que pour des billes de diamètre $d = 2\text{mm}$, mais les courbes sont qualitativement semblables. Lorsque $d = 8\text{mm}$, l’aspect du signal est très différent et le phénomène de dérive n’est plus du tout visible. On observe alors un niveau de fluctuations très important qui est de l’ordre de grandeur de la dérive observée dans les cas précédents. On remarque au passage que l’amplitude des fluctuations augmente avec la taille des billes. Ce point précis sera discuté plus en détail par la suite. Il est probable que le changement de comportement observé lorsqu’on augmente la taille des billes est un effet de taille finie du système.

Masse apparente et densité moyenne

Nous avons mesuré simultanément la masse apparente et la densité moyenne du milieu granulaire au cours de la descente du piston. L’expérience que nous allons décrire a été faite avec des billes de diamètre $d = 2\text{mm}$ et un silo de diamètre $D = 38\text{mm}$. La masse apparente est mesurée après un déplacement du piston de 0.125mm qui correspond à $1/16\text{ème}$ de la taille d’une bille. Pour la mesure de densité moyenne, nous utilisons une sonde qui
Fig. 2.12: Courbes d'évolution de la masse apparente et de la densité au cours de la descente du piston. La figure (a) correspond à un silo rempli avec une densité initiale forte; la masse apparente est indiquée pour deux expériences indépendantes (trait continu fin et épais) et la densité ν est en pointillé. La figure (b) correspond à un silo rempli avec une densité initiale faible.
permet de repérer la position du sommet de la colonne. C'est une méthode délicate car
la manipulation de la sonde perturbe mécaniquement le montage. D'une part, il faut
éviter que la sonde ne tasse le milieu granulaire. D'autre part, le moindre choc au cours
de cette mesure aura une influence importante sur la mesure de force. Nous effectuerons
donc toujours la mesure de densité après la mesure de force. La figure 2.12 montre les
résultats obtenus pour un silo rempli avec 300g de billes. Cela correspond à une hauteur
de remplissage $H \approx 8R$. Nous avons utilisé les deux méthodes de remplissage décrite au
paragraphe 2.2.3 pour changer la densité moyenne initiale de la colonne granulaire. Les
figure 2.12a et 2.12b correspondent respectivement à une colonne granulaire compacte
et peu compacte. Dans les deux cas, on constate que la masse apparente dérive comme
nous l’avons déjà décrit auparavant. On constate également que la densité moyenne de la
colonne évolue au cours de la descente du piston. La densité moyenne diminue lorsque la
colonne est initialement très compacte et augmente lorsque la colonne est initialement peu
compacte. De plus, la densité finale et la masse apparente finale obtenues dans les deux
situations sont assez proches. Ainsi, la descente du piston a pour effet de préparer le milieu
granulaire dans un état particulier de densité et de contrainte, et cela indépendamment de
l'état initial dans lequel se trouvaient les grains. Ce type de comportement rappelle les
expériences classiques de cisaillement d’un milieu granulaire (Brown et Richards [8]). En
effet, les observations montrent qu’un cisaillement continu amène le milieu granulaire vers
un état de densité et de contraintes indépendant de l’état de densité initial. Cet état est
souvent appelé "état critique" chez les mécaniciens des sols, mais la signification du terme
"critique" n’est pas celle habituellement reconnue par le physicien. Dans notre expérience,
il est vraisemblable que le cisaillement induit par le glissement de la colonne granulaire à
l’intérieur du silo lors de la descente du piston est à l’origine des variations observées.

2.4.2 Compaction du milieu granulaire par vibrations

Nous venons de voir qu’il existe une relation particulière entre la masse apparente et la
densité du milieu granulaire au cours de la descente du piston. Nous allons voir maintenant
celui que se passe en utilisant une méthode de compaction par vibration pour changer la
densité.

Méthode de mesure

La colonne granulaire est préparée initialement dans un état peu compact en utilisant la
méthode de remplissage n°2 (voir 2.2.3). Pour augmenter la densité du milieu granulaire, on
donne ensuite des petits coups sur les parois du silo. Chaque coup entraîne la propagation
de l'onde de vibration qui se transmet à la fois au milieu granulaire et aux différentes
parties du montage. Sur la figure 2.13, on peut voir qu’après un choc sur les parois du
silo (étape {1}) la masse augmente brusquement. Cette augmentation a deux origines
principales. Le choc entraîne une vibration de tout le montage et en particulier du capteur
de force de la balance. La vibration peut provoquer une compression du capteur de force
qui entraîne un déplacement du piston vers le bas et un glissement de la colonne de grains.
Le capteur de force reste en général bloqué dans sa nouvelle position car la force nécessaire
pour déplacer la colonne de grains vers le haut augmente exponentiellement avec la hauteur
de grains à déplacer. Il est aussi possible que le choc sur les parois du silo entraîne une
rupture des contacts entre les billes et les parois qui annule momentanément les forces de
friction. La balance mesure alors un poids de grains beaucoup plus important, mais pour
les mêmes raisons que précédemment, le capteur de la balance ne peut retrouver sa position
initiale lorsque les billes entrent à nouveau en contact avec les parois. Pour permettre au
capteur de la balance de libérer l'énergie élastique stockée pendant le choc, on descend progressivement le piston (étape \{2\} de la figure 2.13). Pendant la descente du piston, la masse apparente décroît rapidement. On peut vérifier aisément que la variation de poids apparent au cours de la descente du piston divisé par le déplacement du piston est du même ordre de grandeur que la constante de raideur du capteur de force. L'effet principal de ce déplacement est donc bien de permettre la décompression du capteur de force. Le mouvement du piston est arrêté lorsque la décroissance rapide de la masse apparente est terminée. On mesure alors la masse apparente obtenue (étape \{3\} de la figure 2.13). Sur la figure 2.13, on peut également remarquer que le niveau atteint par la masse apparente est à peu près indépendant de l'amplitude du choc. On voit très bien à travers cet exemple toute l'importance de pouvoir déplacer le capteur de force.

Masse apparente et densité moyenne

Après un certain nombre de coups donnés sur les parois du silo, on constate une dérive des valeurs de la masse apparente mesurées par la méthode décrite dans le paragraphe précédent. Cet effet est clairement relié au processus de compaction de la colonne granulaire. Pour suivre la compaction, nous avons mesuré la densité moyenne après chaque mesure de masse apparente. La figure 2.14 montre la variation de la masse apparente en fonction de la fraction volumique pour deux expériences indépendantes. On constate que la masse apparente diminue progressivement lorsque l'on augmente la densité. Ainsi, l'écrantage des forces par les parois du silo est d'autant plus important que le milieu granulaire est compact. En d'autres termes, la force de friction globale du milieu granulaire avec les parois augmente avec la densité. Ce type de comportement rappelle les expériences récentes de Horwarth et al. [28]. Ces auteurs observent en effet que la force d'extraction
d’un bâton enfoui dans du sable augmente très fortement avec le degré de compaction.

2.4.3 Diagramme masse apparente-densité

Pour mieux visualiser les différences entre la procédure de descente simple du piston et la procédure de compaction par vibration, nous avons regroupé sur un même diagramme les valeurs de la masse apparente en fonction de la fraction solide volumique pour une colonne de hauteur donnée. Le diagramme obtenu pour un silo de diamètre $D = 38$ mm rempli avec 300 g de billes de verre de diamètre $d = 2$ mm est montré figure 2.15. Globalement, les variations de la masse apparente sont de 50% tandis que les variations de la fraction solide sont seulement de 7%. On constate que pour une densité de la colonne donnée, la masse apparente peut avoir des valeurs très différentes selon le chemin suivi. En particulier, les valeurs de masse apparente observées dans les expériences de descente simple (courbe [2] et [3] sur la figure 2.15) sont systématiquement plus élevées que les valeurs mesurées dans une expérience de compaction par vibration. Il n’est donc pas suffisant de spécifier la densité moyenne du milieu granulaire pour connaître son état d’équilibre. De plus, les courbes [2] et [3] semblent se rejoindre pour une fraction solide $\nu_0 \approx 0,593$ et une masse apparente $M_a \approx 85$ g. Le cisaillement avec les parois induit par la descente du piston semble être à l’origine de cette divergence vers un état unique. Dans le cas de la compaction par vibration (courbe [1]), on constate que partant d’un état initial identique à celui de la courbe [3], le milieu granulaire atteint un état proche de l’état initial de la courbe [2]. Or, l’état initial des courbes [2] et [3] est tel qu’aucun cisaillement n’a encore été appliqué au milieu granulaire. Cela suggère que le long de tout le chemin décrit par la courbe [1], le milieu granulaire n’est pas cisailé. Ce résultat n’est pas a priori évident car la méthode employée pour mesurer la masse apparente dans une expérience de compaction par vibration fait intervenir un déplacement du piston à chaque mesure. En fait, il semble que l’influence de la vibration sur l’état de l’empiètement granulaire a un effet dominant par rapport au cisaillement. Cela peut être dû au fait que le déplacement appliqué au piston
est trop petit pour voir apparaître des effets de cisaillement, ou que la vibration détruit la structure initiée par le cisaillement.

2.5 Structure interne de l’empilement granulaire

Nous avons vu que l’état d’équilibre d’un milieu granulaire évolue sous l’effet de sollicitations mécaniques extérieures (déplacement du piston, vibration des parois du silo). Nous avons également observé que ce changement d’état d’équilibre s’accompagne d’une modification de la densité moyenne du milieu granulaire. La densité moyenne n’est toutefois pas un paramètre discriminant comme nous avons pu le voir sur le diagramme force-densité précédent. L’interprétation qualitative de ce diagramme suggère que lors de la descente du piston le milieu granulaire est déformé sous l’effet d’un cisaillement avec les parois du silo. Si cette interprétation est juste, on devrait pouvoir observer dans le milieu granulaire des bandes de cisaillement près des parois du silo. Dans le cas où le milieu granulaire est soumis à des vibrations successives d’une descente du piston de faible amplitude, l’effet de la vibration est dominé par rapport à l’effet du cisaillement. Il est alors probable que le milieu granulaire reste relativement homogène en densité. Pour tester la validité de ces hypothèses, nous avons entrepris d’étudier la structure interne de l’empilement granulaire. Pour cela, nous avons mis au point une technique qui consiste à figer la structure du milieu granulaire à l’aide d’une colle pour pouvoir effectuer des coupes et obtenir ainsi une visualisation directe de la structure interne. Nous allons maintenant décrire plus en détail la procédure que nous avons suivie. A partir des coupes, nous essaierons de caractériser la structure de l’empilement par des mesures de densité locale et nous discuterons les résultats obtenus.
2.5.1 Description de l’expérience

Fig. 2.16: Photo du montage employé pour réaliser l’invasion du milieu granulaire avec de la colle et figer ainsi la structure de l’empilement.

La figure 2.16 montre une photo du montage expérimental utilisé pour figer la structure du milieu granulaire. On dispose d’un tube cylindrique de diamètre intérieur $D = 33.5\text{mm}$ et d’un piston de même diamètre qui forment un silo. Pour faciliter la coupe, nous avons choisi d’utiliser un cylindre et un piston en altuglas. Le piston est fixé sur une plate-forme à crémaillère qui permet un mouvement vertical du piston à l’intérieur du tube de façon similaire au montage permettant de mesurer la pression en bas d’un silo. Le tube est fixé le long de la paroi intérieure d’un second tube en altuglas de même longueur mais de plus grand diamètre (70mm) et dont le fond est fermé par une plaque en altuglas. La plaque en altuglas est percée d’un trou permettant d’introduire le piston dans le petit tube intérieur pour former le fond du silo. L’ensemble est rigidement fixé en position verticale sur un support. La partie basse du tube intérieur possède une série de fentes hautes de 1cm et suffisamment fines pour permettre le passage de la colle mais pas celui des billes. Pour la préparation de la colonne granulaire, nous avons ensuite procédé de deux manières distinctes. Dans un cas, le piston est initialement en position haute et le silo est rempli de billes de verre (diamètre $d = 1.5\text{mm}$) à l’aide d’un entonnoir. Cette méthode de remplissage permet d’obtenir un empilement assez compact. Le piston est ensuite descendu lentement jusqu’à ce qu’il affleure avec la plaque en altuglas, laissant à découvert les fentes creusées dans les parois du tube intérieur. Dans un autre cas, le silo est rempli de grains après avoir déjà positionné le piston de façon à ce qu’il affleure avec la plaque laissant à découvert les fentes. On utilise dans ce cas une méthode de remplissage qui produit un empilement peu compact. L’empilement est ensuite compacté par vibration de façon à ce que sa densité moyenne finale soit égale à la densité moyenne finale obtenue dans le cas précédent. Ces deux modes de préparation de la colonne ont pour but de reproduire les effets sur le milieu granulaire des deux procédures de mesure de la pression que nous avons employées (voir paragraphe 2.4). Une fois la colonne de grains préparée, on dépose sur sa surface un bouchon qui est maintenu en place à l’aide de quelques points de colle. Le bouchon permet un confinement du milieu granulaire pour éviter que le passage de la colle ne provoque un
réarrangement important de l'empilement. Il n'est pas exclu que des réarrangements de billes se produisent à un niveau local mais ceux-ci ont probablement peu d'influence sur la structure globale de l'empilement. La colle est ensuite versée dans l'espace laissé libre entre le gros tube et le tube contenant le milieu granulaire. Sous l'effet de la gravité qui crée un gradient de pression, la colle s'infiltra lentement par le bas du silo et remonte dans la colonne granulaire à vitesse constante (le gradient de pression est à peu près constant car le niveau de colle dans le gros tube varie peu et l'on retrouve donc la loi de Darcy). Il faut pratiquement deux heures pour que la colle remplisse les 16cm de hauteur de la colonne granulaire. Nous avons utilisé une colle époxy qui est teintée en noir afin d'obtenir un meilleur contraste avec les billes en verre translucides. Après avoir laisser sécher la colle 48 heures, il est possible d'effectuer des coupes à l'aide d'une scie à diamant.

Fig. 2.17: Coupe verticale d'une colonne granulaire montrant la structure de l'empilement après une descente du piston égale à deux fois le diamètre de la colonne. L'image de gauche est une photo de la coupe brute et l'image de droite est la même image après binarisation.
FIG. 2.18: Coupe verticale d'une colonne granulaire montrant la structure de l'empilement après vibration. L'image de gauche est une photo de la coupe brute et l'image de droite est la même image après binarisation.
Fig. 2.19: Evolution de la fraction solide avec la hauteur pour une colonne granulaire cisallée. La ligne horizontale en pointillée indique la fraction solide moyenne. À une distance d'environ 50 mm, on voit apparaître une cassure qui sépare une zone moins dense près du piston d'une zone plus dense loin du piston. La présence de cette cassure est peut-être une signature d'un processus de décompaction par blocs.

Fig. 2.20: Evolution de la fraction solide avec la hauteur pour une colonne granulaire soumise à des vibrations. La fraction solide est assez peu dépendante de la hauteur. La ligne horizontale en pointillée indique la fraction solide moyenne.
Fig. 2.21: Dépendance radiale de la fraction solide linéique moyennée sur toute la hauteur d'une colonne de grains cisailée. Les oscillations de grande amplitude près des parois signifient que la structure y est très ordonnée.

Fig. 2.22: Dépendance radiale de la fraction solide linéique moyennée sur toute la hauteur d'une colonne de grains vibré. L'amplitude moindre des oscillations près des parois par rapport au cas d'une colonne cisailée indique l'existence d'un ordre moins important.
Fig. 2.23: Courbes filtrées montrant la dépendance radiale de la fraction solide dans le cas d’une colonne cisillée et d’une colonne vibrée (non cisillée). Dans le cas de la colonne cisillée, on voit clairement apparaître les bandes de cisaillement près des parois. Pour la colonne vibrée, on remarque une dissymétrie et un aspect oscillant de la courbe. Dans ce cas, il est probablement nécessaire de faire une moyenne sur un ensemble de réalisations pour obtenir un profil de densité moyen représentatif.

2.5.2 Mesure de la densité locale

A partir d’une coupe du milieu granulaire, on peut déterminer la fraction solide linéique ou surfacique occupée par les billes. Si l’on effectue une coupe dans un milieu qui possède une symétrie de translation et que cette coupe ne brise pas cette symétrie, on s’attend à ce que la fraction surfacique mesurée soit équivalente à la fraction volumique (à condition toutefois que la répartition des billes soit suffisamment aléatoire et sinon, que l’on moyenne les résultats obtenus sur un grand nombre de coupes). Il est donc a priori naturel de faire des coupes horizontales de la colonne granulaire pour faire des mesures de fraction solide. Cela présente cependant un inconvénient pratique important. En effet, pour étudier la dépendance radiale de la fraction solide, il va falloir faire une moyenne de la fraction solide sur une surface annulaire. Or, tous les traitements d’image à notre disposition ne permettent de mesurer la fraction solide que selon des droites. De plus, pour que l’aire sur laquelle on moyenne la fraction solide ne soit pas dépendante de la position radiale, il faudrait réduire la largeur de l’anneau au fur et à mesure que l’on s’éloigne de l’axe du silo. Dans une approche préliminaire, nous avons donc choisi de faire des coupes verticales passant par l’axe du silo. Par la suite, nous préciserons un peu les limitations de ce choix.

Nous allons décrire en détail comment nous avons mesuré la densité locale à partir d’une coupe du milieu granulaire. On peut obtenir une image numérique de la coupe de bonne qualité en utilisant un scanner. Pour pouvoir ensuite mesurer directement la densité granulaire à l’aide d’un traitement d’images, nous avons cherché à binariser l’image numérique. Cette opération s’est avérée difficile à automatiser, en particulier parce qu’il est difficile de détecter les contours de billes qui pour la plupart sont en contact les unes avec les autres. Nous avons donc dû réduire nos ambitions et appliquer une méthode
plus rudimentaire. A partir d’une image de la coupe en contraste inversé, nous avons fait une photocopie agrandie sur laquelle chaque bille a été noircie manuellement à l’aide d’un feutre 2. La photocopie est ensuite passée au scanner et l’image obtenue peut être assez facilement binarisée en choisissant un seuil d’intensité lumineuse adéquat. Dans cette image binaire, les billes sont noires et les vides sont blancs. Le traitement d’image permet de mesurer le pourcentage de pixels noir le long d’une ligne droite qui est directement égal à la fraction solide linéique des grains. Pour déterminer la dépendance radiale de la fraction solide, la direction des lignes de mesure est choisie parallèle à l’axe du silo. Pour mesurer le dépendance de la fraction solide avec la hauteur, les lignes de mesure sont choisies perpendiculaires à l’axe du silo.

2.5.3 Résultats

Les figures 2.17 et 2.18 montrent les coupes verticales obtenues respectivement pour une colonne granulaire cisailée et une colonne vibrée. L’image de gauche est une photo brute de cette coupe et l’image de droite est la photo après traitement d’image sur laquelle sont mesurés les profils de densité.

Les figures 2.19 et 2.20 montrent la dépendance de la fraction solide avec la hauteur respectivement pour une colonne granulaire cisailée et une colonne vibrée. C’est une fraction solide surfacique mesurée sur une bande de largeur égale au diamètre du silo et de hauteur équivalent à 6 diamètres de billes. Cette bande est déplacée sur toute la hauteur de la colonne de façon à obtenir un profil de fraction solide. La différence importante observée entre la fraction solide moyenne de la figure 2.19 et celle de la figure 2.20 ne correspond pas à la réalité physique puisque ces colonnes sont préparées avec une densité moyenne proche. En fait, on remarque assez clairement que l’image binarisée de la colonne vibrée fait apparaître plus de vides que l’image d’origine. Il semble donc que dans ce cas la densité soit sous-estimée. Ainsi, il est d’autant plus surprenant de mesurer une fraction solide proche de 0,7 dans le cas de la colonne cisailée 3 alors que la fraction solide volumique mesurée par la méthode habituelle (voir paragraphe 2.2.4) est d’environ 0,6. Il est possible que cette différence soit due à la discrétisation importante du système. On peut en effet montrer que la représentativité d’une mesure surfacique par rapport à la quantité volumique recherchée devient mauvaise quand la taille de l’échantillon étudié devient

2C’est Alexis Lesage, stagiaire du DEA de Physique des Solides pendant 6 semaines au laboratoire, qui a eu le mérite d’accomplir cette tâche fastidieuse.

3Pour être exact, la fraction solide volumique moyenne ν_{vol} est reliée à la fraction solide linéique radiale $\nu(r)$ par la formule d’intégration suivante :

$$\nu_{\text{vol}} = \int_0^R \frac{2 \nu(r) r dr}{R^2}$$

et, mis à part le cas particulier où $\nu(r)$ est une constante, cette formule donne une valeur de la fraction solide moyenne différente de celle que l’on peut estimer directement à partir de la fraction solide moyenne d’une coupe. En particulier, la fraction solide linéique estimée selon une direction perpendiculaire à l’axe du silo (c’est le cas du profil de densité en fonction de la hauteur) est différente de la fraction solide volumique réelle. Cependant, il est facile de vérifier à partir des profils de densité radiale que l’écart entre la densité moyenne volumique estimée à l’aide de l’équation (2.2) et la densité moyenne surfacique mesurée sur une coupe est de l’ordre de 1 à 2%. Cet écart est donc trop faible pour expliquer la différence notable entre la densité volumique moyenne réelle ($\nu \approx 0.6$) et la densité surfacique moyenne mesurée directement sur les coupes (de $\nu = 0.66$ à $\nu = 0.73$). Une origine possible des erreurs commises est le manque de précision de la méthode qui consiste à redessiner les billes à la main. Avec un trait de largeur 0,2mm et un diamètre de billes de 3mm après agrandissement de l’image, l’erreur commise sur la surface occupée par un grain peut être de l’ordre de 20%.
trop petite par rapport à la taille des billes (voir par exemple Auvinet et al. [2]). Par la suite, nous allons surtout nous intéresser aux variations relatives de la fraction solide et nous espérons qu’elles sont représentatives des variations des grandeurs volumiques, au moins qualitativement. Comment varie la fraction solide avec la hauteur ? Dans le cas de la colonne vibrée, la fraction solide varie assez peu avec la hauteur. La fraction solide a cependant tendance à être plus importante en bas du silo. Cet effet, s’il existe réellement, semble indiquer que la compaction par vibration commence par le bas de la colonne pour se propager vers le haut. Une autre cause possible est l’influence du mode de remplissage sur la densité de l’empilement. Dans le cas de la colonne cisailée, les variations de la fraction solide avec la hauteur sont beaucoup moins régulières. Globalement, il y a une décroissance de la fraction solide depuis le sommet de la colonne jusqu’au piston. De plus, le profil de fraction solide présente une rupture assez franche à environ 50 mm du piston avec un saut d’environ 10% en fraction solide. Cette rupture sépare une zone moins dense près du piston, d’une zone plus dense loin du piston. On constate que la hauteur de la zone moins dense est comparable au diamètre de la colonne. Il est assez naturel de penser qu’au cours de la descente le retrait du piston par rapport au milieu granulaire favorise la décompaction. Conclure que cette décompaction ne se fait sentir qu’à proximité du piston est cependant un peu prématuré. Il faudrait regarder plus en détail les mouvements du milieu granulaire pour comprendre l’existence d’une rupture dans le profil de fraction solide. Vu à l’œil lorsque l’on descend le piston lentement, il semble que les mouvements de la colonne de grains se font de façon saccadée, par ouverture et fermeture d’une zone de fracture faisant apparaître et disparaître des blocs. Il est possible que le profil de densité obtenu figure 2.19 corresponde à la position particulière à un instant donné d’une zone de fracture séparant la colonne en deux blocs. Un tel processus quasistatique de décompaction serait l’analogue de la décompaction discontinue observée dans la dynamique de chute libre d’un milieu granulaire dense ([19]). D’autre part, dans l’hypothèse où se produirait un processus de décompaction par blocs, on peut comprendre qu’à cause de l’effet d’écramage du poids un bloc se détachera d’autant plus facilement de la partie supérieure de la colonne que ce bloc est petit. Ainsi, l’observation du saut de fraction solide dans la partie basse de la colonne n’est peut-être pas fortuite.

Les figures 2.21 et 2.22 montrent la dépendance radiale de la fraction solide respective-ment pour une colonne cisailée et pour une colonne vibrée. Un fait remarquable commun aux deux figures est l’existence d’oscillations régulières de la fraction solide près des parois dont l’amplitude décroît en s’éloignant des parois. Ces oscillations sont la signature d’un ordre important de l’empilement près des parois qui s’estompe vers l’intérieur du silo. On remarque cependant que l’amplitude des oscillations est souvent plus importante pour une colonne cisailée que pour une colonne vibrée. L’ordre est donc un peu moins fort dans le cas d’une colonne vibrée. En regardant de plus près les photos 2.17 et 2.18, on s’aperçoit effectivement que les billes ont tendance à s’ordonner en s’alignant le long des parois. L’existence d’un ordre aux parois est très intéressant car on peut penser que le réseau de contacts particuliers correspondant à la structure ordonnée des billes a une influence importante sur la propagation des forces. Par exemple, dans le cas d’un empilement bidimensionnel de billes en réseau triangulaire, Duran et al. [18] ont montré que suivant l’orientation du réseau le coefficient de Janssen \(^4\) effectif change. En particulier, si le réseau triangulaire est positionné de façon à ce que les chaînes de billes en contact soient verticales (ce réseau est dit dual dans la référence [18]), le coefficient de Janssen effectif est quasi nul. Dans nos expériences, la tendance à former des chaînes verticales

\(^4\)Le coefficient de Janssen est défini comme le rapport entre la pression horizontale et la pression verticale. Plus il est grand, plus grand est l’écramage du poids par les parois du silo (voir aussi paragraphe 2.6.1).
lorsque le milieu est cisaillé a peut-être un effet similaire sur le coefficient de Janssen. Sur
les figures 2.21 et 2.22, nous avons estimé que la périodicité moyenne des oscillations est
l ≈ 0.85d, où d est le diamètre des billes. A titre de comparaison, la distance séparant
deux rangées de billes verticales dans un empilement bidimensionnel compact de billes
est l = \frac{2}{\sqrt{3}}d ≈ 0.866d. Malheureusement, les propriétés géométriques d’un empilement
bidimensionnel et tridimensionnel sont très différentes et la mesure de la périodicité des
oscillations sur une coupe n’est donc pas une information suffisante pour en déduire la
structure complète de l’empilement tridimensionnel.

Sur les figures 2.21 et 2.22, les variations globales de la fraction solide ne sont pas
très visibles. Cela vient du fait que la fraction solide a été mesurée sur une bande de
largeur très inférieure au diamètre des billes. Pour mieux voir ces variations, nous avons
moyenné la fraction solide sur une bande de largeur égale à trois tailles de billes. La
figure 2.23 regroupe les profils lissés ainsi obtenus. Dans le cas de la colonne cisaillée, la
densité est à peu près constante au centre du silo mais diminue nettement à l’approche
des parois. Cette diminution de la fraction solide se produit sur une largeur d’environ 4
ou 5 diamètres de billes. L’apparition d’une zone de faible densité près des parois peut
être interprétée comme le résultat d’un effet de dilatance dû au cisaillement et constitue
cet qui on appellerait une bande de cisaillement. Pouliquen [61] a observé le même type
de comportement dans une géométrie bidimensionnelle en appliquant une déformation
quasi-stationnaire au milieu granulaire suivant une procédure semblable à la nôtre. Il voit alors
des bandes de cisaillement dont la largeur correspond à environ 10 grains. Dans le cas de la
colonne vibrée, la fraction solide semble oscilltr autour d’une valeur moyenne. Cependant,
nous comprenons mal la dissymétrie du profil obtenu et l’amplitude relativement grande
des oscillations résiduelles. Peut-être est-il nécessaire de faire une moyenne sur un ensemble
de réalisations pour obtenir un profil de densité qui soit plus représentatif.

2.5.4 Signification de la densité granulaire moyenne

Nous avons observé que la variation de densité moyenne dans les expériences de cisaille-
ment a tendance à décroître lorsque le diamètre du silo augmente. Malgré cela, nous avons
vu que la dérive de la masse apparente se met bien à l’échelle avec les dimensions du silo.
En fait, nous avons vu que la variation de densité se produisait essentiellement dans les bandes
de cisaillement et en bas de la colonne de grains. A priori, si l’effet de décompaction est réellement localisé en bas de la colonne, la taille de la zone décompactée devrait se mettre
à l’échelle avec le diamètre du silo. C’est par exemple ce qu’il se passerait si cette zone
décompactée était liée à la formation de rouleaux de convection ⁵. On s’attendrait alors
cet que la variation de densité moyenne se fasse dans les mêmes proportions quelle que
soit la taille du silo. Or, ce n’est pas le cas. Comment peut-on alors expliquer que la va-
ration de densité moyenne chute rapidement pour les colonnes de grand diamètre ? Il a
été observé par de nombreux auteurs (voir Pouliquen et al. [61] et références incluses) que
la largeur des bandes de cisaillement est pratiquement indépendante des dimensions du
récipient et dépend uniquement de la taille des billes. Typiquement, des largeurs comprises
entre 5 et 15 billes sont rapportées dans la littérature. Dans notre expérience, on s’attend
donc à ce que la fraction du milieu granulaire soumis au cisaillement soit en proportion
relative de plus en plus petite lorsque le diamètre du silo augmente. L’incidence sur la

⁵La formation de rouleaux de convection est observée au sommet d’une colonne granulaire de faible
hauteur que l’on pousse avec un piston. Elle est provoquée par le cisaillement entre le milieu granulaire et
les parois. Par contre, la formation de rouleaux en bas de la colonne lors de la descente du piston n’est que
pure hypothèse. Cependant, ce type de rouleaux de convection est effectivement observé lorsque le milieu
granulaire est vibré dans un récipient adéquat (Knight et al. [38]).
densité moyenne des bandes de cisaillement est alors moindre dans un grand silo que dans un petit silo. Nous avons eu la chance de faire nos premières expériences sur des silos de petite taille si bien que la densité moyenne variait assez nettement sous l’influence du cisaillement. Sans cela, le diagramme masse apparente-fraction volumique que nous avons décrit au paragraphe 2.4.3 aurait été beaucoup plus difficile à tracer. Il est également important de noter que l’effet de dérive dû au cisaillement se produit également dans un milieu granulaire beaucoup plus hétérogène tel que le sable, bien que là aussi il soit difficile de mesurer l’effet du cisaillement directement sur la densité moyenne.

2.6 Saturation de la pression avec la hauteur

Nous avons vu précédemment que la pression mesurée en bas d’un silo est très sensible à l’histoire de l’empilement granulaire. Nous allons maintenant étudier le phénomène de saturation de la pression avec la hauteur de grains dans le silo. Nous allons tout d’abord présenter le modèle de Janssen qui permet de comprendre qualitativement le phénomène de saturation, puis nous décrirons les résultats de nos expériences. Nous verrons qu’une meilleure description du phénomène de saturation est obtenue à l’aide du modèle OSL dont la nature hyperbolique conduit à une notion de propagation de forces.

2.6.1 Modèle de ”Janssen”

On doit à Janssen (1895) [35] un modèle décrivant le phénomène de saturation de la pression dans un silo qui, malgré sa simplicité et ses incohérences, est encore utilisé de nos jours pour l’étude et la conception des silos (Schwab et al. (1994)[73], Thompson et al. (1996)[76]). Dans la géométrie d’un silo cylindrique (voir figure 2.24), Janssen décrit l’équilibre d’une couche de grains horizontale située à une profondeur z, d’épaisseur dz, et de section \(S = \pi R^2 \). La couche est soumise à son propre poids, à une pression verticale différentielle de la part du milieu granulaire environnant, et à une force de friction avec les parois du silo qui s’oppose au poids de la couche. Si on suppose que la pression est uniforme sur toute section horizontale, l’équilibre de la couche de grains s’écrit alors :

\[
-\sigma_{zz} (z + dz) S dz + \sigma_{zz} (z) S dz - \sigma_{rz} 2\pi Rdz + \rho g S dz = 0
\]
où ρ est la densité effective du milieu granulaire et g la gravité. Pour résoudre le problème, Janssen fait encore deux hypothèses. La première suppose que la pression horizontale est proportionnelle à la pression verticale avec un coefficient constant K :

$$\sigma_{rt} = K \sigma_{zz}$$

et la deuxième que la friction est entièrement mobilisée à la paroi avec un coefficient de friction μ_w :

$$\sigma_{rt} = \mu_w \sigma_{rt}$$

Ces deux hypothèses permettent d’exprimer le cisaillement en fonction de la pression verticale et en passant à la limite d’une couche d’épaisseur infinitésimale, l’équation d’équilibre devient :

$$\frac{d\sigma_{zz}}{dz} + \frac{\sigma_{zz}}{\lambda} = \rho g$$ \hspace{1cm} (2.3)

où $\lambda = \frac{R}{2 \mu_w K}$ est une longueur caractéristique du problème. Remarquons que malgré l’introduction de deux paramètres μ_w et K, seul le produit des deux intervient et au bout du compte le modèle ne possède en fait qu’un seul paramètre ajustable. L’intégration de l’équation (2.3) sachant que la surface du silo est libre ($\sigma_{zz}(0) = 0$) conduit à une saturation exponentielle de la pression avec la profondeur :

$$\sigma_{zz} = \rho g \lambda \left[1 - \exp \left(-\frac{z}{\lambda} \right) \right]$$

La profondeur typique à laquelle la pression sature est donnée par λ que l’on appellera désormais longueur d’écran. En pratique, λ est de l’ordre de grandeur du diamètre du silo. Dans le cas où une surpression σ_s est appliquée à la surface, la solution devient :

$$\sigma_{zz} = \rho g \lambda \left[1 - \exp \left(-\frac{z}{\lambda} \right) \right] + \sigma_s \exp \left(-\frac{z}{\lambda} \right)$$

Suivant la valeur de la surpression par rapport à la pression de saturation, la pression va saturer en suivant une exponentielle croissante ou décroissante. Dans le cas particulier où $\sigma_s = \rho g \lambda$, la pression est alors constante et égale à la pression de saturation.

On peut récrire la solution du modèle de Janssen en faisant intervenir la masse totale de grains dans le silo $M = \rho \pi R^2 z$, la masse apparente en bas du silo $M_a = \pi R^2 \sigma_{zz} / g$ et la masse de saturation ou masse infinie $M_{\infty} = \rho \pi R^2 \lambda$. La solution la plus générale en présence d’une surcharge $M_s = \pi R^2 \sigma_s / g$ se met alors sous la forme :

$$M_a = M_{\infty} \left[1 - \exp \left(-\frac{M}{M_{\infty}} \right) \right] + M_s \exp \left(-\frac{M}{M_{\infty}} \right)$$ \hspace{1cm} (2.4)

Nous allons maintenant discuter des limites du modèle de Janssen. Tout d’abord, pour des raisons de symétrie, le cisaillement σ_{rt} doit être nul au centre du silo. Comme par hypothèse les contraintes sont supposées uniformes sur toute section horizontale, on peut en déduire que le cisaillement est nul à la paroi et donc que la pression ne peut pas être écrantée. En outre, puisque le cisaillement est nul, les contraintes verticales et horizontales sont alors des contraintes principales. En particulier, si les forces de friction internes au milieu granulaire sont à la limite de glissement partout (c’est l’hypothèse du modèle rigide-plastique décrit au chapitre 3), le paramètre K peut alors s’exprimer simplement en fonction de l’angle de friction interne ϕ. C’est une approche qui a été largement poursuivie par le passé mais que nous ne détaillons pas ici car elle repose sur une incohérence du modèle de Janssen. Si la pression ne peut pas être considérée comme uniforme, il est toutefois possible de transposer l’analyse de Janssen en l’appliquant à la pression moyennée sur
une section horizontale et en supposant qu’il existe un rapport constant entre la pression verticale à la paroi et la pression verticale au centre (c’est l’analyse de Walker décrite par Nedderman [51]). Cette dernière approche peut sembler raisonnable à partir du moment où les variations de la pression avec la hauteur sont lentes, c’est à dire lorsque la longueur d’écran λ est très supérieure au diamètre du silo. Anticipons un peu en précisant que dans nos expériences la longueur d’écran est au contraire environ égale au diamètre du silo.

Une autre hypothèse du modèle concerne la mobilisation de la friction à la paroi. En principe, la force de frottement peut prendre n’importe quelle valeur en dessous du seuil de glissement. Afin de mieux contrôler la friction, le montage que nous avons utilisé permet de laisser les grains s’écouler dans le sens de la gravité de façon à mobiliser la friction complètement. C’est du moins ce que l’on espère car on pourrait très bien imaginer que les frustrations de rotation entre grains imposent une condition de frottement particulière à la paroi. On pourrait aussi imaginer que la mobilisation de la friction dépend de la hauteur. C’est par exemple la vision d’Evesque et de Gennes [23] qui prennent en compte l’écrasement de la colonne de grains sous son propre poids, la friction étant progressivement mobilisée depuis le bas de la colonne jusqu’en haut. Mais c’est aussi ce que suggèrent les expériences de Tüzün et al. [85] qui trouvent pour différents types de milieu granulaire (dont des billes de verre) une dépendance non linéaire de la force de friction en fonction de la force de contact normale. Leur analyse montre que le coefficient de friction effectif diminue avec l’intensité de la force de contact normale si bien que dans la géométrie du silo on peut s’attendre à un frottement moins important en bas du silo. Malgré la similitude de ce résultat avec le modèle d’Evesque et de Gennes [23], l’effet produit sur la saturation de la pression est en fait inverse car pour une faible hauteur de remplissage Evesque et de Gennes prédissent un coefficient de friction effectif nul alors que Tüzün, Adams et Briscoe [85] prédisent un coefficient de friction effectif maximum. Par la suite, nous verrons que l’on peut très bien comprendre nos résultats en considérant une mobilisation de la friction complète et un coefficient de friction constant sur toute la hauteur de la colonne de grains.

2.6.2 Étude expérimentale de la saturation

Forme de la courbe de saturation

Pour étudier le phénomène de saturation de la pression, nous avons choisi de nous placer dans une situation pour laquelle la densité du milieu granulaire est la plus homogène possible. Nous avons vu en étudiant la structure interne d’une colonne granulaire que la méthode de compaction par vibration donne une répartition des billes assez homogène aussi bien verticalement que radialement. Du moins, la répartition des billes est beaucoup plus homogène que dans une expérience de descente du piston où la colonne granulaire est cisailée. A partir d’une expérience de compaction par vibration, on obtient une courbe donnant la masse apparente en fonction de la fraction volumique. On peut obtenir tout un ensemble de courbes du même type en faisant varier la quantité de grains dans le silo. Pour déterminer une courbe de variation de la masse apparente en fonction de la masse de grains dans le silo, nous nous sommes placés à une fraction solide moyenne \(\nu \) donnée et pour chaque valeur \(M \) de masse contenue dans le silo, nous avons moyenné les valeurs de la masse apparente dans un intervalle de fraction volumique \([\nu - \Delta \nu, \nu + \Delta \nu]\) où \(\Delta \nu = 0.005 \). La figure 2.25 montre une courbe de saturation typique obtenue pour une fraction volumique \(\nu = 0.585 \pm 0.005 \) avec un silo de diamètre \(D = 38 \text{mm} \) et des billes de verre de diamètre \(d = 2 \text{mm} \). Chaque point de cette courbe a été obtenu à partir d’une expérience de compaction par vibration à l’issue de laquelle le silo est vidé et rempli à nouveau avec la quantité de grains désirée. Les différentes expériences permettant d’obtenir
une courbe de saturation de la masse apparente sont donc indépendantes les unes des autres. De plus, chaque point étant une moyenne, nous avons indiqué des barres d’erreur qui correspondent à l’écart type sur cette moyenne. On observe bien une saturation de la masse apparente avec la quantité de grains versée dans le silo. La ligne droite en pointillé montre ce que donnerait un comportement purement hydrostatique, c’est-à-dire la masse que l’on mesurerait s’il n’y avait aucun écrantage du poids des grains. Nous montrons également sur cette figure ce que prédit le modèle de Janssen. Si on ajuste au mieux le modèle aux quatre premiers points correspondant à une faible hauteur de grains dans le silo, le modèle prédit une masse de saturation qui est beaucoup trop grande (voir courbe en pointillé). A l’inverse, si on ajuste au mieux le modèle sur les quatre derniers points pour lesquels la masse apparente a atteint la saturation, le modèle sous-estime la valeur de la masse apparente pour les faibles hauteurs de remplissage (voir courbe en trait plein).

Mise à l’échelle de la courbe de saturation

Nous nous sommes demandé si la différence observée entre la courbe de saturation expérimentale et la courbe de Janssen pouvait être due à la taille relativement faible du diamètre du silo par rapport au diamètre des billes. Pour répondre à cette question, nous avons déterminé les courbes de saturation pour des silos de diamètre $D = 38\, \text{mm}$, $D = 56\, \text{mm}$ et $D = 82\, \text{mm}$. Les billes de verre utilisées ont un diamètre $d = 1.5\, \text{mm}$. Pour pouvoir comparer les courbes correspondant aux trois tailles de silo, il est naturel de normaliser la masse apparente M_a en la divisant par la masse infinie M_∞. La normalisation de la masse versée M est moins immédiate. Si on s’inspire du modèle de Janssen, il est naturel de diviser M par la masse infinie M_∞. En effet, le modèle de Janssen peut s’écrire sous la forme : $M_a/M_\infty = f (M/M_\infty)$ où $f = 1 - e^{-x}$. C’est le choix que nous avons fait pour normaliser M dans nos expériences. On constate que les données obtenues à partir des trois différents silos se regroupent assez bien (voir figure 2.26). En particulier, même pour le silo de plus grand diamètre, on voit clairement qu’avant la saturation les points
expérimentaux sont systématiquement au dessus de la courbe de Janssen et ont tendance à suivre la courbe hydrostatique plus longtemps. La forme de la courbe de saturation que nous observons semble donc assez générale.

2.6.3 Écart au modèle de Janssen : le modèle M_0

Pour mieux rendre compte de la forme expérimentale de la courbe de saturation, nous proposons une approche phénoménologique basée sur le modèle de Janssen. Comparant la courbe de Janssen en trait plein et les données expérimentales de la figure 2.25, nous faisons le constat suivant : les points expérimentaux pour des faibles hauteurs de grains dans le silo suivent plus longtemps la courbe hydrostatique que le modèle de Janssen. Par exemple, si l’on s’intéresse au point obtenu pour une masse $M = 10$g, on mesure une masse apparente $M_a = 9.9 \pm 0.1$g alors que le modèle de Janssen prédit $M_a = 9.15$g. Pour rendre compte de cet effet hydrostatique prononcé, nous introduisons une zone de taille finie en bas de la colonne dont le comportement est purement hydrostatique. Au niveau le plus élémentaire, on peut décrire cette zone comme une couche horizontale de masse M_0, et l’on continuera à décrire le reste de la colonne de masse $M - M_0$ en utilisant le modèle de Janssen. La masse apparente s’exprime alors à partir des équations suivantes :

$$
\begin{align*}
\text{si } M \leq M_0 & : M_a = M \\
\text{si } M > M_0 & : M_a = M_0 + (M_\infty - M_0) \left[1 - \exp \left(- \frac{M - M_0}{M_\infty - M_0} \right) \right]
\end{align*}
$$

Il est important de noter que ces équations définissent un modèle pour lequel il y a non seulement continuité de la masse apparente M_a en $M = M_0$, mais aussi continuité de la dérivée dM_a/dM en $M = M_0$. A titre d’exemple, la figure 2.27 montre le meilleur ajustement des équations (2.5) aux données expérimentales de la figure 2.25. Dans ce cas précis, les paramètres du modèle sont : $M_0 = 13.4$g et $M_\infty = 53$g. On constate que la
courbe prédite par le "modèle \(M_0 \)" permet une meilleure description de l’expérience que la courbe de Janssen.

Evolution des paramètres \(M_0 \) et \(M_\infty \) en fonction de la densité

Nous avons vu que la masse apparente décroît avec la densité lors d’une expérience de compaction par vibration. Il est donc clair que les courbes de saturation vont dépendre de la densité considérée. Pour caractériser cette dépendance, nous avons ajusté le modèle \(M_0 \) sur un ensemble de courbes de saturation correspondant à des densités différentes. La figure 2.28 montre la dépendance des paramètres \(M_0 \) et \(M_\infty \) en fonction de la fraction volumique \(\nu \). La forte décroissance de \(M_\infty \) avec \(\nu \) traduit simplement le fait que la masse apparente décroît avec la densité dans une expérience de compaction par vibration. Par contre, le paramètre \(M_0 \) varie peu avec \(\nu \), même s’il semble décroître légèrement lorsque \(\nu \) augmente. Globalement, le paramètre \(M_\infty \) varie d’environ 20% alors que le paramètre \(M_0 \) ne varie que de 5%.

En fait, la connaissance des paramètres \(M_\infty \) et \(M_0 \) donne accès à deux dimensions caractéristiques : la longueur d’écran \(\lambda = M_\infty/\rho \pi R^2 \) et la hauteur de la zone hydrostatique \(\lambda_0 = M_0/\rho \pi R^2 \). Nous avons représenté figure 2.29 les dimensions caractéristiques normalisées \(\lambda_0/R \) et \(\lambda/R \) en fonction de la densité. On voit ainsi que l’épaisseur de la couche hydrostatique est relativement faible.

Coefficient de Janssen effectif

A partir des valeurs obtenues pour \(\lambda \), on peut déterminer un coefficient de Janssen effectif \(K = R/2\mu_w \). Sachant que le coefficient de friction mesuré par une méthode indépendante est \(\mu_w = 0.4 \pm 0.02 \), on obtient les valeurs de \(K \) en fonction de la fraction volumique (figure 2.30). Ce résultat montre que le coefficient \(K \) ne peut être simplement relié au coefficient de friction interne du milieu granulaire, comme c’est le cas dans la
Fig. 2.28: Evolution des paramètres du modèle M_0 en fonction de la fraction solide moyenne de la colonne granulaire (diamètre de la colonne $D = 38\text{mm}$ et diamètre des billes $d = 2\text{mm}$).
Fig. 2.29: Longueur d’écran λ et hauteur de la couche hydrostatique λ_0 déterminées à partir des paramètres de modèle M_0.

Fig. 2.30: Variation du coefficient de Janssen effectif K en fonction de la fraction volumique ν. La courbe passant par les points expérimentaux est simplement un guide pour le regard.
plupart des modèles. En fait K est véritablement un paramètre qui reflète l’histoire du matériau puisqu’il dépend de la manière dont les grains sont empilés. Nous verrons que l’augmentation du paramètre K avec la densité dans les expériences de compaction par vibration peut être utilisée pour comprendre les expériences de cisaillement de la colonne granulaire. Une manière alternative de déterminer le coefficient K aurait été de mesurer directement le rapport entre la contrainte horizontale et la contrainte verticale appliquée sur une couche de grains de faible hauteur à l’aide d’un oedomètre. Contrairement aux tests oedométriques classiques effectués sur une cellule de compression triaxiale déformable (Evesque [22]), Ting et al. [78] utilisent un "consolidomètre", c’est à dire une cellule de compression triaxiale avec des parois latérales rigides. En étudiant un milieu granulaire constitué d’un mélange de Kaolin ⁶ et d’eau, Ting et al. [78] observent alors une augmentation du coefficient K avec la fraction solide d’environ 50%. La similitude de ce résultat avec nos propres observations est d’autant plus remarquable que le milieu granulaire étudié par Ting et al. est humide et constitué de grains considérablement plus petits que nos billes de verre. La variation du paramètre K avec la fraction volumique semble donc être une caractéristique assez générale des milieux granulaires.

Mise à l’échelle des paramètres λ_0 et λ

![Graphique](image)

Fig. 2.31: Le rapport des deux longueurs caractéristiques λ_0/λ dépend très peu de la densité, de la taille des billes et du diamètre du silo. On remarque cependant que le point correspondant au silo de plus grand diamètre est en dehors de la tendance générale.

Comment évoluent les paramètres du modèle M_0 lorsque l’on change la taille du silo ? Sur la figure 2.31, on voit que le rapport λ_0/λ est à peu près constant et indépendant de la densité pour des silos et des billes de différentes tailles. Cependant, le point obtenu pour le silo de plus gros diamètre ($D = 82$mm) s’écarte assez nettement de la tendance générale. Pour mieux comprendre ce qu’il se passe, il faut regarder explicitement la variation de λ et λ_0 avec la taille du silo.

La figure 2.32 montre que λ varie à peu près proportionnellement au rayon R du silo. En fait, la comparaison des valeurs de λ obtenues dans les trois silos n’a réellement de sens sur

⁶Kaolin : Silicate d’alumine hydraté, argile blanche résultant de l’altération des feldspaths en climat chaud et humide, utilisée notamment dans la fabrication de la porcelaine, de la faïence fine, de certains vernis, et comme excipient.
que si la densité de la colonne granulaire est la même dans les trois cas. Il se trouve que la fraction volumique occupée par les grains dans le grand silo est \(\nu \approx 0.595 \) tandis que dans les deux autres silos on a \(\nu \approx 0.62 \). Comme \(K \) est une fonction croissante de la densité, on s’attend à ce que la valeur de \(K \) soit plus petite dans le grand silo que dans les autres silos. Pour éliminer la dépendance de \(\lambda \) avec \(K \), nous allons par analogie avec le modèle de Janssen nous intéresser à la variation du produit \(\lambda K \) en fonction de \(R \). Pour déterminer \(K \), on a fait l’hypothèse que la relation entre \(K \) et la fraction volumique \(\nu \) obtenue pour un silo de diamètre \(D = 38 \text{mm} \) (figure 2.30) peut se généraliser aux autres tailles de silo. Nous avons représenté sur la figure 2.32 les valeurs de \(\lambda K \) ainsi obtenues. On constate que tenir compte de la dépendance de \(K \) avec la densité permet une assez nette amélioration de l’alignement des points. Nous montrons ainsi expérimentalement que la longueur d’écran \(\lambda \) est proportionnelle au rayon du silo \(R \) lorsque la valeur du coefficient \(K \) est constante. Notons que le coefficient de friction n’intervient pas dans notre analyse parce que les silos sont constitués du même matériau.

\[
\begin{align*}
\lambda \text{ (cm)} & \quad \lambda K \text{ (cm)} \\
0 & \quad 0 \\
1 & \quad 1 \\
2 & \quad 2 \\
3 & \quad 3 \\
4 & \quad 4 \\
5 & \quad 5 \\
6 & \quad 6 \\
7 & \quad 7 \\
8 & \quad 8
\end{align*}
\]

Fig. 2.32: La longueur d’écran \(\lambda \) varie à peu près linéairement avec le rayon du silo (symboles carrés). En fait, si l’on tient compte de l’influence de la densité sur le paramètre \(K \), on s’aperçoit que le comportement linéaire est encore meilleur (symboles ronds).

La figure 2.33 montre comment varie la hauteur de la couche hydrostatique \(\lambda_0 \) en fonction du rayon du silo \(R \). On constate que la mise à l’échelle de \(\lambda_0 \) n’est pas claire. Il est possible qu’il existe une transition de comportement entre des silos de petite taille pour lesquels \(\lambda_0 \) est proportionnel à \(R \), et des silos de grande taille pour lesquels \(\lambda_0 \) est constant. Des études complémentaires sur des silos de plus petite taille et surtout de plus grande taille sont nécessaires pour clarifier la situation. Le fait que \(\lambda_0 \) semble saturer lorsque le rayon du silo augmente explique pourquoi nous observons sur la figure 2.31 une diminution du rapport \(\lambda_0/\lambda \) pour le grand silo.

2.6.4 Interprétation qualitative du paramètre \(M_0 \) (ou \(\lambda_0 \))

Un défaut de mobilisation de la friction ?

Il existe dans la littérature plusieurs approches théoriques qui permettent de donner un sens au paramètre \(M_0 \). Revenons tout d’abord sur le modèle d’Evesque et de Gennes [23]
Fig. 2.33: Hauteur caractéristique de la couche hydrostatique en fonction du rayon du silo. Il est possible qu'il existe une transition de comportement entre des silos de petite taille pour lesquels \(\lambda_0 \) est proportionnel à \(R \), et des silos de grande taille pour lesquels \(\lambda_0 \) est constant.

que nous avons déjà évoqué au paragraphe 2.6.1. Ces auteurs discutent de la mobilisation des forces de friction lorsque l'on tient compte de la déformation de la colonne granulaire sous son propre poids. Pour que la friction soit complètement mobilisée, il faut que le déplacement relatif des grains par rapport aux parois dépasse une longueur d'ancrage \(\Delta \) qui est de l'ordre d'un micron. Cette longueur est liée à la taille des aspérités microscopiques présentes sur les faces en contact et responsables de la friction solide. Le modèle prédit l'existence d'une hauteur \(H^* \) telle que la friction n'est pas du tout mobilisée pour toute colonne granulaire de hauteur \(H < H^* \). Cette hauteur caractéristique peut s'écritre : \(H^* = \sqrt{\Delta \lambda_y} \) où \(\lambda_y \) est une longueur qui caractérise la compression élastique du milieu granulaire sous l'effet de la gravité. La longueur \(\lambda_y \) a pour expression : \(\lambda_y = \frac{(E + \frac{4}{3}G)}{\rho g} \) où \(E \) et \(G \) sont le module d'Young et le module de cisaillement du milieu granulaire, tandis que \(\rho \) et \(g \) sont la densité du milieu granulaire et l'intensité de la gravité. Avec \(\Delta = 1\mu m \), les auteurs estiment que \(H^* \) est de l'ordre du centimètre. Pour obtenir une telle valeur, il faut choisir un module d'Young \(E \approx 0.1GPa \). Clairement, cette valeur du module d'Young est beaucoup plus faible que le module d'Young propre des grains. Par exemple, pour des billes de verre, les tables donnent un module d'Young typique \(E \approx 50GPa \) et un module de cisaillement \(G \approx 20GPa \). Avec ces valeurs, on trouverait \(H^* \approx 2m \) et il serait donc impossible dans ces conditions d'observer l'écrantage du poids des billes dans un silo de laboratoire ! Pour obtenir une valeur raisonnable de \(H^* \), il faudrait supposer que les propriétés élastiques du milieu granulaire pris dans son ensemble sont très différentes des propriétés élastiques individuelles des grains. Des mesures faites sur le terrain ou dans des laboratoires du module d'Young d'un milieu granulaire semble montrer que c'est le cas (voir par exemple Savage [70]). Mais alors, comment peut-on concevoir le passage de billes individuellement rigides à un milieu granulaire globalement "mou" et se comportant comme un solide élastique ? De notre point de vue, la réponse à cette question est loin d'être claire. Rappelons d'autre part qu'étant donnée la procédure expérimentale qui permet un glissement de la colonne granulaire à l'intérieur du silo, il est fort probable que la friction soit complètement mobilisée partout. Nous pensons donc que le modèle d'Evesque et de Gennes ne peut donner une explication réaliste de nos mesures sur des colonnes de petite
Un effet de la propagation des forces ?

On peut comprendre qualitativement l’existence d’une zone hydrostatique en bas du silo si l’on admet que les forces dans un milieu granulaire se propagent selon des directions de propagation bien déterminées. L’interprétation est la suivante. On peut imaginer qu’il existe près du fond du silo des grains dont le poids est transporté selon des directions de propagation qui n’atteignent pas les parois du silo, mais directement le fond. Dans ce cas, une partie du poids de la colonne n’est pas écrêtée par les parois et on s’attend donc à ce que la courbe de saturation expérimentale suive plus longtemps la courbe hydrostatique que la courbe de Janssen. On pourrait donc être tenté de dire que le poids est moins écrêté dans nos expériences que dans le modèle de Janssen. En fait c’est faux puisque expérience et modèle ont la même valeur asymptotique. Il serait plus exact de dire que pour les colonnes de faibles hauteurs le poids a tendance à être moins écrêté que ce qui est prédit par le modèle de Janssen, mais a tendance à être plus écrêté pour les colonnes de hauteurs importantes. On sent bien que cette formulation est maladroite et n’explique pas ce qui se passe physiquement. Nous allons maintenant voir que l’on peut décrire la majeure partie de nos résultats à partir d’une modélisation théorique de la propagation des forces dans un milieu granulaire.

2.6.5 Courbe de saturation dans le modèle OSL

La notion intuitive de propagation des forces a été introduite de manière tout à fait séduisante dans un modèle proposé par Bouchaud, Cates, Claudin et Wittmer. Nous ne rappellerons pas tous les détails de ce modèle que nous avons déjà exposés au chapitre ???. Nous allons simplement expliquer comment il s’applique au cas d’une colonne granulaire.

![Graphique](image)

Fig. 2.34: Ajustement du modèle BCC (protect\(\mu = 0\)), du modèle OSL et du modèle de Janssen aux données expérimentales (diamètre du silo \(D = 38\)mm, diamètre des billes \(d = 2\)mm et fraction volumique \(\nu\)). On constate que le modèle BCC et OSL ont un comportement plus hydrostatique qui corrige l’écart entre le modèle de Janssen et les valeurs mesurées.

En deux dimensions, l’équation centrale du modèle OSL peut s’écrire :

\[
\sigma_{xx} = \eta \sigma_{zz} + \mu \sigma_{xz}
\]
où l’axe \(z \) est la direction verticale descendante et l’axe \(x \) est la direction horizontale. Rappelons que les deux paramètres \(\eta \) et \(\mu \) caractérisent la manière dont se propagent les forces \(^7\). Pour résoudre les équations d’équilibre du milieu granulaire dans un silo, il faut aussi préciser les conditions aux limites. D’une part, toutes les contraintes s’annulent à la surface libre de la colonne granulaire. D’autre part, la friction est supposée complètement mobilisée sur les parois du silo ce qui se traduit par une relation de la forme :

\[
\sigma_{xx} = \tan \phi_w \sigma_{zz},
\]

où \(\phi_w \) est l’angle de frottement entre le milieu granulaire et les parois. La valeur de l’angle \(\phi_w \) a été mesurée expérimentalement : \(\phi_w = 22 \pm 1^\circ \). Ajoutons qu’il n’y pas besoin de spécifier de conditions aux limites particulières sur le fond du silo. Ceci provient de la nature hyperbolique de la solution du modèle. D’autre part, les solutions obtenues ne sont valables que si elles vérifient le critère de stabilité de Mohr-Coulomb. Ce critère assure que les forces de friction interne au milieu granulaire ne dépassent nulle part la limite de glissement. L’angle de friction interne \(\phi \) est choisi égal à l’angle d’avalanche du milieu granulaire. Pour les billes de verre utilisées dans nos expériences, nous avons mesuré : \(\phi = 25 \pm 1^\circ \).

P. Claudin a ajusté à nos données expérimentales la version à trois dimensions du modèle OSL. Pour cela, il n’a pas simplement cherché à passer au plus près des points de mesure, mais a aussi tenu compte des barres d’erreur. Nous verrons cependant que les barres d’erreur correspondent en fait à des fluctuations intrinsèques du système, et qu’il ne faut pas que ce soit correct d’en tenir compte comme des barres d’erreur sur la mesure. La quantité minimisée lors de l’ajustement des données est l’écart quadratique moyen entre la valeur mesurée \(M_i^a \) et la valeur théorique \(M_{i,t}^a \) pondérée par la taille des barres d’erreur \(\Delta M_i^a \) :

\[
E = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{M_i^a - M_{i,t}^a}{\Delta M_i^a} \right)^2
\]

La figure 2.34 donne un exemple d’ajustement du modèle OSL et du modèle BCC (\(\mu = 0 \)) à des données expérimentales (ici pour un silo de diamètre \(D = 38 \text{mm} \), des billes de diamètre \(d = 2 \text{mm} \) et une fraction volumique \(\nu = 0.59 \)). Nous avons aussi tracé la courbe de Janssen dont la masse de saturation correspond à celle du modèle BCC. On remarque que l’asymptote des courbes ne correspond pas bien à l’asymptote des points de mesure. Ceci est simplement un effet dû à la pondération de l’écart quadratique par la taille des barres d’erreur. Les points de l’asymptote ayant les plus grandes barres d’erreur sont défavorisés par rapport aux autres. On constate que les courbes BCC et OSL ont un départ plus hydrostatique que la courbe de Janssen et correspondent mieux aux expériences. Ce résultat confirme l’interprétation intuitive selon laquelle le comportement hydrostatique prononcé observé dans les expériences peut être associé à un effet de propagation des forces. Dans le modèle de Janssen, la pression à une profondeur \(z \) est écrétée à cette même profondeur \(z \). Dans le modèle OSL, la pression se propage vers le bas avec une certaine direction par rapport à la verticale avant d’atteindre les parois du silo qui absorbent alors une partie de la pression. L’écrétage ne peut donc se faire sentir pleinement si la hauteur de la colonne n’est pas suffisamment haute. Un autre détail intéressant est la valeur positive du paramètre \(\mu \) obtenue pour la courbe OSL. Cette valeur positive est en effet consistante avec le sens de glissement aux parois du milieu granulaire lorsque l’on mobilise les forces de friction. On remarque cependant qu’il n’y a pas une grande différence entre les courbes OSL et BCC. En fait, dans le cas du silo, il n’est pas vraiment possible de faire le lien entre la valeur des paramètres du modèle et l’histoire de l’empilement comme on peut le

\(^7\) Attention, ne pas confondre le paramètre \(\mu \) du modèle OSL et le coefficient de friction avec les parois \(\mu_w \).

faire pour un tas de sable (voir chapitre 3).

Remarque sur les modèles de milieu granulaire en réseau

Les modèles de propagation de forces sur réseau donnent des résultats similaires au modèle OSL. On peut citer par exemple le SAM (Scalar Arching Model) également développé par Claudin et al. [13] et qui décrit bien non seulement la forme de la courbe de saturation, mais aussi l'amplitude des fluctuations de la masse apparente en fonction de la masse versée. On peut également citer le modèle de Socolar [74] qui prédit un écart au modèle de Janssen semblable à celui observé dans nos expériences. Cependant, ces modèles sont essentiellement bidimensionnels et ne permettent pas une comparaison quantitative avec nos expériences.

2.6.6 Effet d'une surcharge

Lorsque l'on ajoute une surcharge au sommet de la colonne granulaire, le modèle OSL prédit que dans certains cas la saturation de la masse apparente en fonction de la masse versée n'est pas monotone. Nous avons voulu vérifier si cette prédiction étonnante du modèle OSL est réaliste. Nous allons expliquer comment nous avons procédé pour obtenir les courbes de saturation en présence d'une surcharge. Nous verrons ensuite les limites de notre modèle M_0 qui n'est pas suffisant pour décrire correctement les résultats obtenus. Nous confronterons alors nos résultats aux prédictions du modèle OSL.

Description de l'expérience et résultats

![Graphique](image.png)

Fig. 2.35: Evolution de la masse apparente en fonction du nombre de pas lors de la descente du piston. On mesure la valeur moyenne de la masse apparente lorsque le signal se stabilise.

Le cylindre est rempli de grains à l'aide d'un entonnoir. La densité de la colonne de grains ainsi obtenue est plutôt élevée. On dépose ensuite une surcharge au sommet de la colonne de grains en faisant attention à ce que celui-ci ne frotte pas avec les parois du cylindre. La partie de la surcharge en contact avec les grains est un disque de diamètre légèrement inférieur au diamètre intérieur du cylindre. Le piston est ensuite déplacé vers
le bas par d’environ 10μm avec une pause de 20s entre chaque pas pour laisser le système relaxer. La pression est mesurée à la fin de la pause avant que le piston ne se déplace à nouveau. Une courbe typique du signal de pression en fonction du déplacement du piston est représentée figure 2.35. Le départ de la courbe montre une décroissance de la pression qui correspond à la perte d’énergie élastique stockée dans le ressort de la balance au moment du remplissage. C’est le même effet que nous avons déjà décrit à propos de l’expérience de vibration de la colonne 8. La pression se stabilise ensuite autour d’une valeur moyenne que l’on mesure. On recommence plusieurs fois cette opération en faisant varier la hauteur de grains dans le cylindre. Notons que le déplacement total du piston (inférieur à 1mm) est trop petit pour que l’on puisse observer une dérive de la masse apparente sous l’effet du cisaillement ou une variation significative de la densité moyenne. D’autre part, nous avons vérifié que la méthode de remplissage employée permet d’obtenir une densité moyenne qui ne dépend pas de la hauteur de grains dans le silo. Pour une masse de surcharge donnée, on obtient ainsi une courbe donnant la variation de la masse apparente en fonction de la masse de grains versée. La figure 2.36 montre les résultats obtenus sans surcharge et pour des surcharges de masse $M_S = 16.5\, g$, $30.5\, g$, $45.6\, g$, $65\, g$ et $88.7\, g$. On observe que la pression ne varie pas de façon monotone comme le suggère la solution du modèle de Janssen. En particulier, pour $M_S = 45.6\, g$, on voit clairement que la pression augmente puis diminue de nouveau avant d’atteindre la valeur asymptotique. Cet effet est visible également dans une moindre mesure pour $M_S = 65\, g$.

8Il existe cependant une différence notable. On peut remarquer que la décroissance rapide de la masse apparente est interrompue par un "plateau". Cet effet est observé à chaque fois que le piston est déplacé juste après le remplissage du silo. Pourrait-il s’agir d’un effet associé à la mise en mouvement progressive de la colonne de grains qui n’a encore jamais glissé à l’intérieur du silo, l’information se propageant à pression constante ? La réponse n’est pas claire. La largeur du plateau ($\sim 0.1\, \text{mm}$) semble indépendante de la hauteur de grains dans le silo, et sa valeur n’est pas reproductible. Il serait intéressant cependant de voir si cet effet dépend de la taille des billes.
Prédictions du modèle M_0

Dans le cadre du modèle M_0, on pouvait s’attendre à la présence d’une oscillation puisque la colonne de grains est supposée hydrostatique tant que la masse de grains versée est plus petite que M_0. Si on ajoute une surcharge M_S, le modèle M_0 se généralise simplement en écrivant que :

- Pour $M \leq M_0$:
 \[M_a = M + M_s \]

- Pour $M > M_0$:
 \[M_a = M_0 + (M_\infty - M_0) \left(1 - \exp \left(-\frac{M - M_0}{M_\infty - M_0} \right) \right) + M_S \exp \left(-\frac{M - M_0}{M_\infty - M_0} \right) \]

ce qui peut encore s’écrire :

\[M_a = M_\infty + (M_0 + M_S - M_\infty) \exp \left(-\frac{M - M_0}{M_\infty - M_0} \right) \]

On voit ainsi que selon le signe de $M_0 + M_S - M_\infty$, l’asymptote est atteinte par valeur supérieure ou par valeur inférieure. En particulier, si $M_0 + M_S - M_\infty > 0$, la masse apparente atteint l’asymptote en décroissant. Combinée avec la première partie du modèle pour $M \leq M_0$ qui est croissante, cela nous donne une évolution non monotone de la masse apparente. Pour les données de la figure 2.36, les paramètres du modèle sont $M_0 = 11.7$g et $M_\infty = 47.4$g. Ainsi, dès que $M_S > M_\infty - M_0 = 35.7$g, le modèle M_0 prédit un comportement non monotone. Sur les courbes expérimentales de la figure 2.36, l’apparition du comportement non monotone se produit entre 30.5g et 45.6g, ce qui est consistant avec le modèle. Par contre, le modèle M_0 prédit une pente hydrostatique à l’origine, alors que sur les données expérimentales cette pente diminue lorsque la masse de la surcharge augmente. De plus, l’accord global entre les données expérimentales et le modèle est d’autant moins bon que la masse de la surcharge est élevée. On voit ainsi que l’hypothèse consistant à introduire une zone hydrostatique est à peu près correcte lorsqu’il n’y a pas de surcharge, mais cette hypothèse est de moins en moins juste lorsque la masse de la surcharge augmente. D’autre part, dès que $M_S \neq 0$, le modèle M_0 prédit un raccordement avec une rupture de pente entre la zone hydrostatique et la zone de Janssen ce qui est un comportement assez peu physique. En fait, le modèle M_0 est une approximation trop grossière pour décrire correctement la colonne granulaire. Nous allons voir dans le prochain paragraphe que l’on peut faire une analyse beaucoup plus fine des données expérimentales à l’aide du modèle OSL.

Prédictions du modèle OSL

Nous avons déjà vu auparavant que le modèle OSL permet d’ajuster la courbe de saturation sans surcharge beaucoup mieux que le modèle de Janssen. Les paramètres du modèle η et μ obtenus en ajustant la courbe de saturation sans surcharge peuvent être ensuite utilisés pour déterminer les courbes de saturation avec surcharge. On produit ainsi un ensemble de solutions qui ne dépendent que de la façon dont la pression sature en l’absence de surcharge. Une comparaison des données expérimentales et des courbes théoriques montre qu’il existe un assez bon accord entre les deux (figure 2.37). Le comportement non-monotone observé lorsque $M_S = 45.6$g est en particulier bien reproduit. C’est d’autant plus remarquable que les paramètres du modèle ne sont ajustés que sur une seule courbe. Le modèle prédit une succession d’oscillations qui vont en s’amortissant à
Fig. 2.37: Comparaison des données expérimentales avec les prédictions du modèle OSL pour différentes valeurs de surcharge M_s. Quelques courbes de Janssen sont tracées à titre indicatif.

Fig. 2.38: Regroupement des données indiquant avec une assez bonne approximation une dépendance linéaire de la masse apparente en fonction de la masse de la surcharge.
l’approche de la valeur de pression asymptotique. Par contre, nos expériences ne mettent en évidence qu’une seule oscillation. Il faut toutefois remarquer que le niveau de bruit de nos expériences est trop grand pour pouvoir conclure à l’existence ou non d’oscillations secondaires. Il faut remarquer que les oscillations prédites par le modèle OSL sont directement liées à la nature propagative des forces. C’est un effet qui existe aussi avec le modèle IFE (Horne et Nedderman [27, 54]) qui est de nature hyperbolique comme le modèle OSL. P. Claudin a cependant montré que les prédictions du modèle IFE sont quantitativement très mauvaises [13].

D’autre part, la linéarité du modèle OSL permet de séparer la contribution due à la surcharge de la contribution due à la gravité, à partir du moment où les paramètres η et μ ont été fixés. La masse apparente peut alors s’écrit :

$$M_a = M_\infty f \left(\frac{M}{M_\infty} \right) + M_S f_S \left(\frac{M}{M_\infty} \right)$$

où la fonction $f (x)$ définit la forme de la courbe de saturation sans surcharge et $f_S (x)$ définit la contribution de la surcharge à la masse apparente. Le modèle de Janssen vérifie également cette relation avec $f (x) = 1 - e^{-x}$ et $f_S = e^{-x}$, ainsi que le modèle M_0 directement issu du modèle de Janssen. A partir des données expérimentales, on peut déterminer pour chaque valeur de surcharge l’écart normalisé à la courbe sans surcharge $f_S = (M_a - M_\infty f) / M_S$ en fonction de M. Comme le montre la figure 2.38, l’ensemble des points expérimentaux se regroupent alors sur une courbe décroissante. De plus, cette courbe expérimentale est assez bien reproduite par la fonction f_S déterminée à partir du modèle OSL. À titre indicatif, nous avons également ajusté les données avec une exponentielle décroissante e^{-x} où $x = M/M_\infty$, qui est la forme prédite par le modèle de Janssen. Le meilleur ajustement de la courbe exponentielle donne $M_\infty = 57.5$g et le résultat obtenu semble tout aussi satisfaisant que la courbe prédite par le modèle OSL. Cependant, la valeur trouvée pour M_∞ par cette méthode est nettement supérieure à la masse de saturation observée sur les courbes ($M_\infty = 47.4$g), ce qui montre une nouvelle fois les limites du modèle de Janssen.

2.6.7 Interprétation qualitative du diagramme masse apparente-densité

En s’inspirant du modèle OSL, on peut proposer une interprétation qualitative du diagramme masse apparente-densité que nous avons présenté au paragraphe 2.4.3. Pour cela, nous allons limiter notre raisonnement au cas où $\eta \neq 0$ et $\mu = 0$ (c’est le modèle BCC). Dans ce cas, l’angle φ que fait la direction de propagation des forces avec la verticale vérifie : $\tan \varphi = \sqrt{K}$. D’autre part, il se trouve que le modèle BCC prédit la même masse de saturation que le modèle de Janssen si l’on choisit $K = \eta[6]$. On peut donc en fait écrire : $\tan \varphi = \sqrt{K}$. Dans le cas des expériences de compaction par vibration, nous avons observé qu’on pouvait déterminer un coefficient de Janssen effectif qui est une fonction croissante de la densité moyenne. Comme la densité est à peu près homogène dans toute la colonne, nous allons supposer que l’on peut généraliser ce résultat en disant que K est en réalité une fonction croissante de la densité locale. Dans les expériences de cisaillement de la colonne, nous avons vu que la densité est assez inhomogène : elle est d’une part plus faible près des parois qu’au centre et d’autre part plus faible en bas qu’en haut de la colonne. On peut s’attendre alors à ce que K varie de même et soit plus faible près des parois qu’au centre, et aussi plus faible en bas qu’en haut de la colonne. Puisque $\tan \varphi = \sqrt{K}$,

9Nous avons discuté au paragraphe 2.5.4 le fait que la décompaction en hauteur de la colonne n’est probablement pas à l’origine de la dérive de pression observée au cours de la descente du piston. Nous
FIG. 2.39: Dans le modèle BCC (modèle OSL avec \(\mu = 0 \)), la direction \(\phi \) de propagation des forces est reliée au coefficient de Janssen \(K \). La généralisation de la dépendance expérimentale du coefficient \(K \) avec la densité conduit alors à une déviation des directions de propagation. Dans une expérience de compaction par vibration (figure (a)), la densité \(\nu \) est relativement homogène et les directions de propagation sont des lignes droites. Dans une expérience cisailée, on peut séparer deux effets : la densité est plus faible près des parois et les directions de propagation sont alors déviées vers la verticale (figure (b) : "effet mirage"); la densité est plus faible en bas qu’en haut de la colonne et les directions de propagation sont également déviées vers la verticale (figure (c) : "réfraction"). La longueur d’écran effective (et donc la masse apparente) est alors plus grande dans les cas (b) et (c) que dans le cas (a).
on en déduit que l’angle φ des directions de propagation va changer en fonction de la position radiale et de la position verticale. Pour mieux comprendre ce qu’il se passe, nous allons considérer séparément les variations radiales et verticales. On a représenté schématiquement sur la figure 2.39 ce qu’il peut se produire lorsqu’on suit la propagation des forces depuis le centre du silo. Lorsque la densité ν est constante, K est constant et l’angle φ de propagation est donc constant. Dans ce cas, les directions de propagation des forces sont des lignes droites (voir (a) figure 2.39). Avant d’atteindre le fond du silo, ces lignes de propagation sont reflétées plusieurs fois sur les parois, leur transmettant à chaque réflexion une partie du poids qu’elles transportent. Dans une situation où la densité diminue près des parois, K fait de même ainsi que l’angle φ de propagation. Dans ce cas, la propagation des forces va se faire suivant une ligne courbe qui se rapproche de plus en plus de la verticale (voir (b) figure 2.39). Par analogie avec la propagation des rayons lumineux, on peut dire qu’il se produit un effet "mirage" de la propagation des forces. Les forces se propagent alors sur une plus grande hauteur avant d’atteindre les parois où une partie du poids est absorbée et en arrivant en bas de la colonne, il y aura eu globalement moins de réflexions aux parois. On s’attend à ce que l’écrantage soit moins fort que dans la situation (a), et on s’attend donc à trouver une masse apparente plus élevée. Dans une situation où la colonne est séparée en une zone dense en haut et une zone peu dense en bas ($\nu_2 > \nu_1$), K et donc φ diminuent à l’interface entre les deux zones et il va se produire une réfraction de la direction de propagation des forces (voir (c) figure 2.39). Comme φ diminue, la direction de propagation se rapproche de la verticale ce qui a de nouveau pour effet de diminuer l’écrantage effectif du poids. On voit ainsi que la dépendance radiale et verticale de la densité dans une colonne cisaillée conduisent toutes les deux à une augmentation de la masse apparente, ce qui est en accord qualitatif avec les observations expérimentales. Cette interprétation qualitative reste-t-elle valable lorsque l’on compare une colonne cisaillée et une colonne vibrée de même densité ? Clairement, pour assurer la même densité moyenne, il faut que certaines zones de la colonne cisaillée soient plus denses que la colonne vibrée. Cette contrainte supplémentaire rend l’analyse plus délicate. Notre connaissance des profils de densité et de la dépendance de K avec la densité n’est pas suffisamment précise pour pouvoir répondre à cette question. D’autre part, P. Claudin a vérifié qu’il existe effectivement un effet mirage lorsqu’on résout le modèle BCC avec un paramètre η qui décroît en fonction de la distance au centre du silo [13]. Si le modèle prédit un effet qualitativement correct, il semble cependant que l’effet est quantitativement trop faible pour pouvoir réellement expliquer les observations expérimentales.

2.7 Fluctuations

Nous allons nous intéresser plus en détail aux fluctuations de la masse apparente. Nous proposerons tout d’abord une méthode qui permet de se faire une idée de la distribution de ces fluctuations et de leur taille caractéristique. Nous regarderons ensuite comment cette taille de fluctuation varie lorsque l’on change la taille des billes ou lorsque l’on fait varier la hauteur de grains dans le silo.

2.7.1 Forme de la distribution

L’étude des fluctuations d’un signal est simple lorsque l’on a affaire à un signal stationnaire. Ce n’est en général pas le cas dans nos expériences puisque la masse apparente

traitons tout de même cette situation ici pour montrer qu’elle n’est pas en contradiction avec les effets observés.
Fig. 2.40: Courbe de dérive typique lorsque le piston descend progressivement. Cet exemple correspond à un silo de diamètre $D = 38\text{mm}$ rempli de billes de diamètre $d = 6\text{mm}$.

dérive au cours des différentes procédures de mesures que nous avons employées. Plutôt que de déterminer les fluctuations par rapport à un état stationnaire, on peut aussi faire une moyenne d’ensemble du signal de dérive et étudier les fluctuations autour du signal de dérive moyen. Cette approche est sans doute meilleure, mais à présent nous ne possédons pas suffisamment de données pour proposer une analyse significative des fluctuations. Nous avons donc choisi une autre approche. Pour caractériser l’amplitude des fluctuations, nous nous sommes intéressé à la statistique des écarts entre deux mesures successives. Si on note $M_a(n)$ la n-ième mesure de masse apparente, l’écart entre deux mesures successives s’écrit : $\Delta M_a(n) = M_a(n+1) - M_a(n)$. Nous ferons intervenir également la masse apparente moyenne entre deux points successifs : $M_a = \frac{1}{2}[M_a(n+1) + M_a(n)]$. Prenons par exemple le signal représenté figure 2.40. Nous avons représenté figure 2.41a les valeurs de $\Delta M_a(n)$ obtenues à partir de ce signal en fonction de M_a. On remarque que la dispersion des points augmente lorsque la masse apparente augmente. Si on trace maintenant le rapport $\Delta = \Delta M_a/M_a$ en fonction de M_a (figure 2.41b), la dispersion est beaucoup plus homogène. Nous voyons ainsi que la taille des fluctuations pour une colonne de hauteur donnée est approximativement proportionnelle à la masse apparente. Sur la figure 2.42, nous avons tracé la distribution de probabilité (non normalisée) des valeurs prises par Δ. Cette distribution est très proche d’une gaussienne (voir courbe en échelle linéaire) avec cependant une légère dissymétrie pour les valeurs de Δ positives dont le signe correspond à une augmentation de masse apparente (voir courbe en échelle logarithmique). La forme de la distribution pour les Δ positifs est en fait proche d’une exponentielle (voir ligne droite pointillée). Ce résultat semble très général car nous l’avons observé pour toutes les distributions calculées suivant la procédure que nous venons de décrire. En fait, il est possible que cette légère dissymétrie de la distribution soit liée à la dérive du signal. En effet, il faut bien qu’en moyenne la contribution des fluctuations de signe positif dominent les fluctuations de signe négatif pour qu’au bout du compte la masse apparente augmente. Lorsqu’on calcule la valeur moyenne de la distribution, on trouve que $\langle \Delta \rangle = 2.10^{-1}$. Or, la distri-
Fig. 2.41: Ecart non normalisé entre deux mesures successives (figure a) et écart normalisé par la valeur moyenne locale (figure b) déterminés à partir des données de la figure 2.40. On remarque que la dispersion des écarts non normalisés a tendance à augmenter avec la valeur moyenne locale. Après normalisation des écarts, la dispersion des points est beaucoup plus homogène.
Fig. 2.42: Distribution de probabilité des écarts normalisés entre deux mesures successives de la masse apparente. La distribution semble proche d'une courbe gaussienne (graphe en échelle linéaire), mais s'en écarte sensiblement pour les écarts positifs (graphe en échelle logarithmique).
bution comporte environ \(n_0 = 3000 \) points si bien que l’effet cumulé de cette fluctuation moyenne non nulle est : \(n_0 \langle \Delta \rangle = n_0 \left(\frac{\Delta M_a}{M_a} \right) = 0.6 \). La valeur moyenne de la masse apparente pour l’ensemble du signal est : \(\langle M_a \rangle = 60g \). En remarquant que \(\left(\frac{\Delta M_a}{M_a} \right) \approx \frac{\Delta M_a}{M_a} \) (sur les données que nous discutons, cette approximation grossière est vérifiée à 15% près), on trouve \(n_0 \langle \Delta M_a \rangle = 36g \), ce qui est bien l’ordre de grandeur de la dérive du signal. Notons cependant que la valeur de \(\langle \Delta \rangle \) est suffisamment faible devant la largeur de la distribution pour considérer en première approximation que la distribution est centrée autour d’une moyenne nulle. Pour estimer la largeur de la distribution, nous avons ajusté la distribution expérimentale à l’aide d’une distribution de probabilité gaussienne centrée en zéro de la forme :

\[
P(\Delta) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{\Delta^2}{2\sigma^2} \right)
\]

où \(\sigma = \sqrt{\langle \Delta^2 \rangle} \) est l’écart type de la distribution gaussienne. Pour la distribution de la figure, on trouve \(\sigma = 4.4 \times 10^{-2} \), ce qui signifie que dans ce cas, les fluctuations de la masse apparente sont de l’ordre de 4.4%. Il est à noter qu’une distribution de probabilité gaussienne de type normale (telle que la valeur de l’écart type est choisie égale à l’écart type de la distribution expérimentale) aurait donné une valeur sensiblement plus élevée : \(\sigma = 5.5 \times 10^{-2} \). C’est une autre façon de dire que la forme de la distribution n’est pas tout à fait gaussienne. Comment se fait la dérive du point de vue des fluctuations ? Est-ce parce que statistiquement il y a plus d’événements avec un signe positif qu’avec un signe négatif, ou la dérive se fait-elle parce qu’il se produit de grands événements, même rares ? La forme de la distribution nous incite à penser que la dernière interprétation pourrait être la bonne. Remarquons aussi que nous sommes loin de trouver une distribution des fluctuations qui suive une loi de puissance comme le prédit le SAM (Scalar Arching Model) de Claudin et al. [14]. Nous reviendrons un peu plus en détail sur le SAM dans une situation où les prédictions du modèle sont qualitativement proches de nos observations.

2.7.2 Évolution de la largeur de la distribution

Effet de la taille des billes

Nous nous intéressons ici à l’effet de la taille des billes sur l’amplitude des fluctuations. On s’attend d’un point de vue statistique à ce que la taille caractéristique des fluctuations diminue lorsque l’on augmente le nombre de grains en contact avec le fond du silo, c’est à dire lorsqu’on diminue la taille des billes pour un diamètre de silo donné. Pour nous concentrer principalement sur l’influence de la taille des grains, nous choisirons la hauteur de remplissage dans le silo de façon à ce que l’on ait largement atteint la saturation de la masse apparente. Nous discuterons l’influence de la hauteur de remplissage dans le paragraphe suivant. En pratique, nous remplissons le silo toujours à la même hauteur avec un milieu granulaire constitué de billes monodisperses dont le diamètre est compris entre \(d = 1.5\text{mm} \) et \(d = 8\text{mm} \) pour un silo de diamètre \(D = 38\text{mm} \). Nous avons également étudié le cas d’un silo de diamètre \(D = 82\text{mm} \) avec des billes de diamètre \(d = 1.5\text{mm} \). Dans ce dernier cas, le rapport entre la hauteur de remplissage et le diamètre du silo est identique au cas précédent. Cette mise à l’échelle de la hauteur de remplissage découle directement de la mise à l’échelle de la masse de saturation avec le diamètre du silo (voir paragraphe 2.6.2).

La figure 2.43 montre la dépendance de l’écart type des fluctuations \(\sigma \) avec le rapport du diamètre des billes sur le diamètre du silo \(d/D \). Les valeurs de \(\sigma \) ont été déterminées en suivant la procédure décrite précédemment. En premier lieu, on constate que les points
se regroupent autour d'une droite. Pour comprendre qualitativement cette variation, on peut raisonner en considérant la répartition statistique des forces appliquées par les billes en contact avec le fond du silo. Supposons que l'on ait \(N \) billes en contact avec une paroi et que la bille de numéro \(i \) applique une force \(p_i \) sur la paroi. La force totale exercée sur la paroi est alors: \(F = \sum_{i=1}^{N} p_i \). Si l'on suppose que chaque force \(p_i \) est statistiquement indépendante des autres forces et si la probabilité \(w(p_i) \) pour qu'une bille porte une force \(p_i \) est une fonction rapidement décroissante de \(p_i \), la distribution de probabilité \(P(F) \) tend lorsque \(N \) devient grand vers une distribution gaussienne pour laquelle il existe une relation particulière entre les valeurs moyennes de \(F \) et de \(p \) : \(\langle F \rangle = N \langle p \rangle \) et également entre l'écart quadratique moyen de \(F \) et de \(p \) : \(\langle \delta F^2 \rangle = N \langle \delta p^2 \rangle \). C'est le fameux théorème de la limite centrale. Pour un milieu granulaire, l'hypothèse de décroissance rapide de la probabilité \(w(p_i) \) est raisonnable. En effet, des études expérimentales de la distribution des forces à l'échelle du grain ont montré que la probabilité \(w(p_i) \) est en générale de forme exponentielle (Liu et al. [45], Mueth et al. [53], Tsoungui et al. [83]). Par contre, l'hypothèse d'indépendance statistique est moins évidente, mais nous l'admettrons pour l'instant. On s'attend alors à une régression classique des fluctuations de la forme:

\[
\frac{\sqrt{\langle \delta F^2 \rangle}}{\langle F \rangle} = \frac{1}{\sqrt{N}} \frac{\sqrt{\langle \delta p^2 \rangle}}{\langle p \rangle}
\]

où \(\frac{\sqrt{\langle \delta p^2 \rangle}}{\langle p \rangle} \) est un rapport constant qui dépend de la forme précise de la probabilité de distribution des forces pour un grain individuel. Dans un milieu granulaire, ce rapport est proche de l'unité car les fluctuations sont de l'ordre de grandeur de la force moyenne pour une distribution de forces à l'échelle du grain de type exponentiel \(^{10}\). D'où: \(\frac{\sqrt{\langle \delta F^2 \rangle}}{\langle F \rangle} \approx \frac{1}{\sqrt{N}} \). Le nombre de billes qui peuvent recouvrir le fond du silo est typiquement égal au

\(^{10}\)Le rapport est strictement égal à l'unité pour une probabilité de distribution exponentielle de la forme...
rapport de la section du silo sur la section d’une bille : \(N = \frac{D^2}{\pi} \) (en réalité un peu moins si l’on tient compte de la fraction de surface réellement occupée par les grains).

On s’attend donc à trouver : \(\sqrt{\frac{\langle \delta x^2 \rangle}{\langle x \rangle}} \approx \frac{d}{D} \). C’est bien le type de comportement que l’on observe sur la figure 2.43 pour les valeurs de \(\sigma \) qui, rappelons-le, représentent l’écart type des fluctuations normalisées par la masse apparente moyenne locale. Si on ajuste maintenant les données de la figure 2.43 avec une droite, on trouve \(\sigma = \sigma_0 + \alpha \frac{d}{D} \) où \(\sigma_0 = 4.8 \times 10^{-2} \) et \(\alpha \approx 0.25 \). Ainsi, nous trouvons une valeur de \(\alpha \) environ quatre fois plus petite que la valeur attendue. D’où vient cette différence ? Si l’on avait tenu compte de la fraction de surface réellement occupée par les grains (\(\nu \approx 0.6 \)), l’effet aurait été encore plus marqué puisque \(\frac{1}{\sqrt{N}} = \frac{1}{\sqrt{\nu}} \frac{d}{D} \). Si on considère que notre estimation de la taille des fluctuations n’est pas très précise, on peut toutefois vérifier que l’ordre de grandeur est correct, par exemple en moyennant directement les valeurs de la masse apparente sur une portion de signal à peu près stationnaire. L’écart type obtenu de cette manière ne diffère que de 15% par rapport à l’écart type selon le méthode que nous avons décrite.

C’est insuffisant pour expliquer l’écart observé sur la valeur de \(\alpha \). Le sens que l’on peut donner à cette faible valeur de \(\alpha \) n’est pas complètement clair. D’un côté, cela pourrait signifier que la distribution des forces à l’échelle d’un grain est moins large que celle qui est généralement observée dans les milieux granulaires. D’un autre côté, notre raisonnement basé sur une hypothèse d’indépendance statistique des forces individuelles est peut-être trop grossier pour espérer tirer une estimation numérique valable des fluctuations à une échelle macroscopique. Ajoutons également que le nombre de grains mis en jeu (entre 20 et 3000) est peut-être insuffisant pour que l’on puisse appliquer avec confiance le théorème de la limite centrale.

Il y a cependant une autre interprétation possible. On peut en effet se poser la question suivante : A-t-on le droit de considérer que les mesures successives lors de la descente du piston sont complètement indépendantes ? Autrement dit, est-ce que le pas du déplacement appliqué au piston est suffisamment grand pour que l’on puisse considérer que deux mesures successives correspondent à deux configurations du milieu granulaire complètement indépendantes ? Si le pas est trop petit pour modifier la structure du milieu granulaire, deux mesures successives donneront pratiquement la même valeur et la taille de fluctuations estimée à partir de leur différence sera petite. On va alors obtenir une échelle de fluctuation en moyenne plus petite. Cependant un tel effet ne devrait pas être important lorsque l’on détermine l’échelle de fluctuation directement en mesurant l’écart type de la valeur moyenne. On voit ainsi que la situation est loin d’être claire. Dans ces conditions, on peut se demander quelle est la signification de la taille de fluctuation non nulle \(\sigma_0 \) obtenue par extrapolation linéaire de \(\sigma \) lorsque \(d/D = 0 \). A priori, la valeur non nulle de \(\sigma_0 \) indique que les fluctuations régissent de façon anormale. Cette possibilité mériterait une étude expérimentale beaucoup plus approfondie afin d’approcher le plus possible la limite \(d/D = 0 \). Nous envisageons de mesurer la taille des fluctuations dans un silo beaucoup plus grand et avec des billes beaucoup plus petites.

Influence de la hauteur de grains dans le silo

Nous allons discuter maintenant de la variation de l’échelle des fluctuations de la masse apparente lorsque la hauteur de la colonne granulaire augmente. Précisons tout de suite que la méthode que nous avons utilisée pour mesurer la taille des fluctuations est différente de celle exposée précédemment. La taille des fluctuations que nous mesurons ici est direc-

\[P(x) = \tau \exp(-\tau x). \] Cette distribution donne en effet \(\langle x \rangle = 1/\tau \) et \(\langle \delta x^2 \rangle = 1/\tau^2 \). Dans les expériences de Mueth et al. [53], on peut estimer que \(\sqrt{\langle \delta p^2 \rangle} / \langle p \rangle \approx 0.78 \).
tement égale à l'écart type de la valeur moyenne de la masse apparente. Chaque valeur moyenne est obtenue à partir de typiquement 20 mesures successives lors de la descente du piston. Nous nous sommes limités à ce petit nombre de mesures de façon à ce que la masse apparente puisse être considérée comme localement stationnaire. D’autre part, nous sommes dans des conditions où la densité de la colonne granulaire est approximativement indépendante de la hauteur considérée. Pour une hauteur de remplissage donnée, nous avons effectué 5 remplissages indépendants et pour chacun de ces remplissages nous obtenons une mesure de la taille des fluctuations de la masse apparente lorsque l’on descend le piston. La figure 2.44 montre comment varie la taille des fluctuations en fonction de la masse apparente. Contrairement à ce que l’on aurait pu naïvement attendre, on constate que l’écart type de la valeur moyenne (la taille de fluctuation) ne varie pas linéairement avec la valeur moyenne (la masse apparente). En fait, on peut montrer très simplement que la taille des fluctuations de la masse apparente est contrôlée par une taille caractéristique de fluctuation de la longueur d’écran $\Delta \lambda / \lambda$ indépendante de la quantité de grains contenue dans le silo. Quelle est l’effet d’une telle fluctuation sur la masse apparente ? Pour simplifier, nous allons supposer que le modèle de Janssen est une approximation suffisante pour décrire le comportement de la masse apparente. D’après l’expression de la masse de saturation, on a évidemment : $\Delta M_\infty / M_\infty = \Delta \lambda / \lambda$. A partir de la solution du modèle de Janssen, on trouve que : $\Delta M_\alpha = [1 - (1 + M/M_\infty) \exp (-M/M_\infty)] \Delta M_\infty$. De manière équivalente, on peut écrire cette expression uniquement en fonction de M_α et M_∞ :

$$\Delta M_\alpha = \left[\frac{M_\alpha}{M_\infty} \ln \left(1 - \frac{M_\alpha}{M_\infty}\right) + \frac{M_\alpha}{M_\infty}\right] \Delta M_\infty$$ (2.6)

Pour les données de la figure 2.44, on mesure une masse de saturation $M_\infty = 48$g (voir encart). En choisissant comme taille caractéristique de fluctuation de la masse de saturation $\Delta M_\infty = 1.5$g, l’équation (2.6) permet de déterminer la variation de ΔM_α en fonction de M_α (voir courbe en trait plein de la figure 2.44). On constate que ce modèle reproduit assez bien la tendance expérimentale. La dispersion des points expérimentaux est cependant trop forte pour pouvoir pousser l’analyse plus loin.
Comment peut-on comprendre que les fluctuations de la masse apparente soient en fait déterminées par une taille de fluctuation de la longueur d'écran indépendante de la hauteur de la colonne granulaire ? La réponse à cette question n'est pas simple. L'analyse de Janssen montre que la longueur d'écran fait intervenir le produit du coefficient de friction μ_w avec les parois du silo et du coefficient K de redirection des contraintes vers les parois. Il est donc difficile de dire si les fluctuations proviennent d'un problème de mobilisation de la friction aux parois ou s'il s'agit d'une fluctuation de la structure de l'empilement granulaire autour d'une valeur de K. Dans l'exemple précédent, nous avons vu que $\Delta\lambda/\lambda \approx 0.03$. Nous avons mesuré ce même rapport non plus pour des billes de verre mais pour des grains de quartz de forme très anguleuse. On trouve alors : $\Delta\lambda/\lambda \approx 0.1$, c'est à dire environ trois fois la taille des fluctuations observées avec des billes de verre. Quelle est la différence entre billes de verre et grains de quartz ? Les billes de verre ont un angle de friction interne (angle d'avalanche) $\phi \approx 25 \pm 1^\circ$ et un angle de frottement avec les parois : $\phi_w \approx 22 \pm 1^\circ$. Les grains de quartz ont un angle de friction interne $\phi \approx 41 \pm 1^\circ$ et un angle de frottement avec les parois : $\phi_w \approx 23 \pm 1^\circ$. Les deux types de grains ont donc un coefficient de friction avec les parois pratiquement identique mais un angle de friction interne très différent. Or, un milieu granulaire a potentiellement d'autant plus de possibilités d'équilibre que le coefficient de friction interne est grand et on peut donc s'attendre à ce que les forces internes soient d'autant plus fluctuantes. Nous pensons donc que les fluctuations de la longueur d'écran reflètent les fluctuations de la structure de l'empilement granulaire plutôt que les fluctuations de mobilisation de la friction. Si c'est le cas, la fluctuation de la longueur d'écran est alors liée à une fluctuation du coefficient de Janssen K plutôt qu'une fluctuation du coefficient de friction μ_w. Dans le cadre du modèle BCC ($\mu = 0$), cette fluctuation de K s'interprète alors comme une fluctuation de la direction de propagation des forces. C'est une interprétation assez séduisante qui permet de faire le lien avec les observations expérimentales où l'on voit que les chemins de force sont loin d'être des lignes droites. Il serait d'ailleurs très intéressant d'étudier plus en détail les réseaux de forces observés expérimentalement pour voir s'il émerge en moyenne des directions privilégiées et étudier l'amplitude du bruit autour de ces directions. De façon tout à fait remarquable, D. Howell [86] montre dans le cas d'un tas de sable que de telles directions semblent exister et correspondre à la vision intuitive des effets de voutes qui sont à la base du modèle OSL. D'autre part, P. Claudin [13] a montré que le SAM (Scalar Arching Model) permet d'obtenir une évolution de la taille des fluctuations en fonction de la masse apparente qualitativement proche de nos observations. Adapté du q-modèle de Liu et al. [15, 45], le SAM est un modèle de milieu granulaire sur réseau qui favorise la formation de longues chaînes de forces par un processus d'avalanche statique, selon le terme employé par les auteurs. Ce modèle possède une grande sensibilité au choix des conditions initiales qui peut entraîner un réarrangement dramatique de la configuration des chaînes de force. Nous retrouvons donc la même idée selon laquelle les fluctuations de la masse apparente sont liées à une fluctuation des chaînes de forces.

2.8 Conclusion

La mesure de la pression moyenne au fond d'un silo est délicate car la friction introduit naturellement un couplage fort entre l'état d'équilibre du capteur et celui du milieu granulaire. Sous l'effet d'une perturbation mécanique, le comportement du capteur est alors hystérétique si bien que toute perturbation modifie la mesure. Lors du remplissage d'un silo, la valeur mesurée est directement liée à l'énergie cinétique de déposition des grains. Lorsque le silo est soumis à des variations de température, les effets de dilatation entraînent
une dérive de la mesure. La moindre vibration provoque une augmentation brusque de la
valeur mesurée. Tous ces effets peuvent être maîtrisés si le capteur a la possibilité de se
déplacer verticalement. Le déplacement du capteur (ou du piston) permet de préparer le
milieu granulaire de façon à mobiliser la friction sur les parois du silo, et permet de libérer
l'énergie élastique d'origine dynamique stockée dans le capteur. En suivant cette méthode,
il semble que la mesure de pression reflète alors les aspects spécifiquement granulaires de
l'équilibre. Suivant que le milieu granulaire est cisailé ou simplement vibré, des valeurs
complètement différentes de la pression sont observées même si la densité moyenne est
identique. En fait, l'observation d'une coupe effectuée dans la colonne granulaire montre
que pour une même densité moyenne, la structure interne est différente lorsque le milieu
granulaire est cisailé ou vibré. Ainsi, l'état d'équilibre du milieu granulaire dépend de son
histoire. D'autre part, le comportement observé lors de la saturation de la pression avec
la hauteur s'explique très bien à partir d'un modèle de propagation de forces tel que le
modèle OSL. En particulier, le modèle reproduit remarquablement la variation non mono-
tone de la pression en présence d'une surcharge. L'échelle des fluctuations de la pression
le long de la courbe de saturation semble directement reliée à une échelle de fluctuation
de la longueur d'écran. Cette fluctuation semble liée à des propriétés internes du milieu
granulaire et peut s'interpréter comme une fluctuation de la direction de propagation des
forces. Enfin, une estimation de l'ordre de grandeur des fluctuations de pression à partir de
la distribution de probabilité des forces à l'échelle d'un grain donne une dépendance avec
la taille des grains qui est qualitativement correcte mais pas quantitativement. Une étude
plus approfondie des fluctuations permettrait peut-être de mieux comprendre comment se
fait le passage du comportement à l'échelle d'un grain au comportement global du milieu
granulaire.
Chapitre 3

Distributions de pression sous un tas de sable

3.1 Introduction

L'étude de la distribution de pression sous un tas de sable est un sujet assez ancien. En 1920-21, les expériences de Hummel et Finnan [32] montraient que la distribution de pression verticale sous un tas de sable conique présente un minimum local de pression très marqué à la verticale du sommet du tas, tandis que ce minimum est à peine visible pour un tas en forme de prisme triangulaire, plus simplement dénommé "wedge" selon le terme anglo-saxon \(^1\). Le tas conique et le wedge étaient tous les deux formés à partir d'un entonnoir de faible ouverture, les grains s'écoulant par un trou circulaire pour le cône et par une fente pour le wedge. Plus récemment, Jotaki et Moriyama, en 1979 [37] ainsi que Šmid et Novosad en 1981 [87, 88] ont observé un minimum de pression au centre d'un tas de sable conique construit aussi à partir d'un entonnoir. C'est également le cas des expériences de Brockbank en 1997 [7], avec cependant une restriction puisque le minimum de pression n'est observé que pour certains types de grains. En ce qui concerne les résultats sur le wedge, on peut encore citer les expériences de l'école australienne de génie mécanique dont celles de Parry en 1954, Trollope et al. en 1956 [82] ou Lee et Herrington en 1971 [40]. Lee et Herrington ont testé trois modes de construction sans observer de différences notables entre les profils de pression du wedge qui présentent tous un maximum de pression au centre. Ils ont également étudié l'influence d'une déformation du support sur le profil de pression. Bien que la procédure ne soit pas clairement décrite, il semble que Lee et Herrington préparent un tas sur un support horizontal, puis forcent la partie centrale du support à se déplacer vers le haut ou vers le bas d'environ 2,5 mm de façon à creuser ou à bomber la surface. Ils ont remarqué une diminution de la pression au centre dans tous les cas, et dans le cas d'une surface creusée, la pression au centre devient un minimum local. L'effet de la déformation du support fut également observé par Trollope en 1956 [82], mais le détail de ces mesures n'est pas facilement accessible [81]. Citons enfin les expériences de Cantelaube en 1997 [9] réalisées avec un empilement bidimensionnel de billes construit couche par couche sur un support en polymère photo-élastique. Malgré une dispersion des mesures importante, il semble qu'il y ait un minimum de pression au centre de l'empilement.

Il existe également des mesures faites sur des matériaux granulaires plutôt cohésifs et humides que nous citons pour mémoire. Penman [60] fait référence aux expériences de

\(^1\)Dans la suite, nous employerons indifféremment le mot "wedge" et le mot prisme.
Taylor réalisées en 1941 sur un barrage de retenue d’eau dont la composition granulaire est très inhomogène. La partie centrale du barrage est constitué d’argile et de vase, tandis que les bords sont constitués de sable et de graviers. Dans cette géométrie similaire à celle du wedge, Taylor observe un minimum de pression très marqué au centre du barrage.

La question de l’existence d’un minimum de pression ou "trou" de pression a suscité de nombreux travaux théoriques. Un calcul élémentaire montre que pour un empilement régulier de billes non frottantes la pression est uniforme aussi bien pour un tas bidimensionnel (Hong [26]) que tridimensionnel (Oron et al. [57]). Sur un tas bidimensionnel, Huntley montre que ce résultat reste valide en ajoutant dans l’empilement une répartition de lacunes uniforme [33] et observe que prendre en compte l’elasticité des grains n’est pas suffisant pour observer l’apparition d’un minimum de pression significatif [34]. Toujours pour des billes non frottantes, les simulations de Luding [47] montrent qu’il est possible d’observer aussi bien un minimum qu’un maximum de pression si l’on brise la régularité des contacts entre billes, par exemple en modifiant l’espacement des billes en bas de l’empilement ou en utilisant des billes polydisperse (voir également Liffman et al. [43]). De même, en introduisant une probabilité de rupture des contacts dans un empilement régulier de billes (Hemmingsson [24]) ou en déformant élastiquement l’empilement pour provoquer l’ouverture de contacts (Oron et al. [56]), on peut obtenir un minimum de pression. La plus ou moins grande régularité du réseau des contacts entre billes joue donc un rôle important sur la répartition des contraintes. Le réseau de forces correspondant est alors très inhomogène (Luding [47], Ouaguenoumi et Roux [59]) et présente de nombreuses similitudes avec les expériences de visualisations des forces dans des matériaux granulaires photoélastiques (Dantu [17], Travers et al. [80], Ammi et al. [1], Howell et al. [29]). Si l’empilement est maintenant constitué de billes frottantes tout en conservant un réseau de contacts régulier, Eloy et Clément [21] ont montré que l’indétermination des forces de friction suffit à rendre le réseau des forces désordonné et que la distribution de pression sous le tas évolue en fonction du degré de mobilisation et de l’orientation des forces de friction. Le désordre des forces dans un milieu granulaire a donc une origine double : d’une part un désordre du réseau des contacts et d’autre part un désordre des forces de friction. A fortiori, la combinaison des deux types de désordres produit aussi un réseau de forces désordonné (Radjai et al. [63]) et éventuellement un minimum de pression au centre d’un tas (Bagster et al. [3], Matuttis [49]). Radjai et al. [65] ont également observé dans leurs simulations que le réseau des forces peut se décomposer en deux sous-réseaux, dont l’un supporte les forces les plus élevées et présente une forte anisotropie tandis que l’autre supporte les forces les plus faibles et est essentiellement isotope. D’autre part, il existe des liens étroits entre l’anisotropie du tenseur des contraintes et la structure du réseau des contacts (Luding [47], Radjai et al. [65]). C’est précisément par l’introduction d’une forme d’anisotropie dans la propagation des contraintes que certains modèles proposent d’expliquer l’existence d’un minimum de pression (Trollope : voir Savage [70], Edwards et Mounfield [20], Wittmer et al. [89]). Ces modèles donnent un cadre théorique à l’idée intuitive que le minimum de pression est dû à la formation de voûtes ou d’arches qui rejettent le poids des grains sur les bords du tas.

Ainsi, du point de vue théorique, il apparaît que la répartition des contraintes dans un tas de sable peut dépendre fortement de la manière dont les grains se touchent et frottent entre eux. Il n’est donc pas a priori choquant que les mesures de distributions de pression sous un tas de sable aient pu conduire à des résultats très différents dans le passé puisque tout milieu granulaire réel est essentiellement polydisperse et frottant. Il n’existe pourtant aucune étude expérimentale qui montre clairement que la répartition des contraintes dans un tas peut dépendre, par exemple, du mode de construction de ce tas. Lee et Herrington
[40] se sont intéressés à ce problème pour un tas en forme de prisme triangulaire, mais sans succès. Le seul effet qui a été clairement mis en évidence est le rôle de la rigidité du support sur l'apparition du minimum de pression dans le cas d’un wedge. À l'inverse du wedge, presque toutes les mesures effectuées sur un tas conique montrent qu'il existe un minimum de pression. De plus, lorsqu'il n'y a pas de minimum comme dans les expériences de Brockbank [7], ce n'est pas dû à la nature du support mais plutôt au choix de certains types de matériaux granulaires et peut-être aussi aux dimensions relativement réduites du tas par rapport à la taille des grains.

Afin de mieux comprendre les propriétés d’équilibre d’un milieu granulaire, nous avons donc entrepris une nouvelle étude de la distribution des contraintes sous un tas de sable. Nous allons décrire tout d’abord le montage expérimental qui nous a permis de mesurer la pression sous un tas. Nous parlerons plus en détail du capteur de pression que nous avons construit tout spécialement au laboratoire. Nous décrirons les différents modes de construction et géométries de tas que nous avons employés. Les distributions de pression obtenues seront ensuite confrontées à des prédictions théoriques. Nous insisterons plus particulièrement sur le modèle proposé récemment par Bouchaud, Cates, Claudin et Wittmer [89] qui introduit une relation macroscopique entre les contraintes dans un milieu granulaire et donne une vision intéressante de l’effet de voûtes dans un tas de sable.

3.2 Présentation générale de l’expérience

![Diagram](image.png)

Fig. 3.1: Pour mesurer la pression sous le tas de sable, on insère des capteurs dans un plateau.

3.2.1 Principe de l'expérience

Les tas de sable sont construits sur un plateau horizontal suivant une procédure qui sera décrite au paragraphe 3.4. Pour mesurer un profil de pression, nous avons utilisé un
capteur de pression en partie construit au laboratoire et que nous décrivons plus en détail au paragraphe 3.3. Le plateau comporte une série de trous cylindriques pour positionner le capteur qui est inséré de façon à affleurer la surface du plateau. Une expérience idéale consisterait à utiliser une série de capteurs positionnés sur toute la largeur du tas afin d’obtenir directement un profil de pression (figure 3.1). C’était l’objectif initial mais malheureusement le coût relativement important du capteur que nous avons utilisé nous a conduit à ne mesurer la pression qu’en un point donné à la base du tas, les autres trous étant alors bouchés avec un cylindre plein de même matériau que le plateau. C’est évidemment un inconvénient pratique puisque le temps nécessaire pour réaliser un profil de pression peut devenir assez important. Les distributions de pression que nous obtenons correspondent donc à autant de tas différents qu’il y a de valeurs de pression mesurées. En quelque sorte, nous faisons une moyenne d’ensemble à partir de réalisations entièrement indépendantes. Typiquement, dix mesures indépendantes sont réalisées afin d’obtenir la valeur de la pression en un point donné du tas. De cette façon, on obtient aussi une information sur les fluctuations de pression dans un tas de sable. Notons qu’en pratique, un profil de pression pour lequel la pression est mesurée en une dizaine de positions différentes nécessite la réalisation d’une centaine de tas.

3.2.2 Problème de la rigidité du plateau

Nous avons utilisé un plateau horizontal en laiton ou en duralumin de 13 à 15mm d’épaisseur. La forme du plateau dépend de la forme des tas que l’on veut obtenir ainsi que des méthodes de construction employées (voir Paragraphe 3.4). Cependant, le choix de l’épaisseur du plateau n’est pas anodin. Certains auteurs (Lee et al.[40], Trollope et al.[82]) ont en effet remarqué que la flexion du plateau sous l’effet du poids du tas peut entraîner la formation d’un minimum de pression au centre du tas. Très récemment, Savage [70] a décrit la solution d’un modèle élasto-plastique (voir paragraphe 3.6.1) appliqué à la géométrie du wedge et résolu par la méthode des éléments finis. Si \(H \) est la hauteur du tas et \(\delta \) la déflexion maximum du plateau, Savage constate que lorsque \(\delta/H = 2.5 \times 10^{-3} \), la pression est maximum au centre du tas, mais si la déflexion augmente jusqu’à \(\delta/H = 5 \times 10^{-3} \) il apparaît un minimum de pression. Dans les expériences que nous décrivons, les tas ont une hauteur typique \(H = 8 \)cm. A quelle déflexion du plateau peut-on s’attendre ? Prenons les dimensions d’un tas de sable typique dont le rayon est \(\rho = 13 \)cm. La pression maximale typique observée sous ce tas est de l’ordre de \(10^3 \)Pa. Considérons le cas le moins favorable où une pression uniforme \(P = 10^3 \)Pa serait appliquée sur toute la surface du plateau en contact avec le tas. D’après les formules classiques de déformation élastique des plaques [77], la déflexion maximale au centre d’un plateau simplement posé sur les bords est alors :

\[
\delta = \frac{3 (1 - \nu^2) P \rho^4}{4 E e^3} \left(\frac{3 + \nu R^2}{1 + \nu} \ln \frac{\rho}{R} - \frac{7 + 3 \nu}{4 (1 + \nu)} \right)
\]

(3.1)

où \(E \) et \(\nu \) sont le module élastique et le coefficient de Poisson du plateau, \(R \) et \(e \) sont le rayon et l’épaisseur du plateau. Parmi les différents plateaux utilisés, celui dont les dimensions sont les plus défavorables a un rayon \(R = 26 \)cm, une épaisseur \(e = 15 \)mm, ainsi que des constantes élastiques \(E = 70 \)GPa et \(\nu = 0.3 \). En appliquant la relation (3.1), on trouve \(\delta = 6.5 \mu \)m et donc, \(\delta/H \approx 8 \times 10^{-5} \). On voit ainsi que nous sommes pratiquement deux ordres de grandeur en dessous de la limite nécessaire pour observer un effet de la déformation du plateau sur l’équilibre du tas de sable. S’il s’avère que les profils de pressions mesurés expérimentalement présentent un minimum au centre, il sera donc fort improbable que celui-ci puisse être attribué à une déformation exagérée du plateau.
3.2.3 Le milieu granulaire

![Image](image.jpg)

Fig. 3.2: Photographie des grains de sable utilisés dans nos expériences. Le quadrillage en arrière plan a un maillage de 5mm.

Outre la rigidité du plateau, plusieurs paramètres physiques peuvent influencer la forme des profils de pression. Tout d’abord, les forces mises en jeu dans un tas de sable sont dépendantes de la nature des contacts entre les grains qui fait intervenir la géométrie du grain, sa rugosité, les propriétés physico-chimiques du matériau. Rappelons que nous ne discutons dans cette thèse que le cas de grains secs et essentiellement non-cohésifs. De même, la nature des contacts entre grains et plateau joue un rôle très important sur l’équilibre du tas puisque le tas ne pourrait pas tenir en équilibre en l’absence de friction avec le plateau. Par exemple, lorsque l’on essaie de construire un tas avec des billes que l’on verse à partir d’un entonnoir, on s’aperçoit qu’au lieu de s’écouler en avalanches les grains s’enfoncent au centre du tas tout en repoussant vers l’extérieur le reste de l’empilement. Entre autres, on voit que les billes se trouvant à la périphérie du tas roulent au lieu de conserver la position à laquelle elles se sont arrêtées précédemment. Le tas final obtenu est très plat et le sommet très arrondi. Si l’on augmente la friction avec le plateau, par exemple en recouvrant le plateau d’une couche compacte de billes, la pente du tas final augmente mais cela n’est pas suffisant pour voir se former des avalanches. Plutôt que de changer la rugosité du plateau, nous avons gardé le plateau lisse et utilisé du sable à la place de billes. Les grains de sable sont de formes plutôt arrondies mais irrégulières. La taille caractéristique de ces grains est répartie autour d’une moyenne de 1.2mm avec un écart type de 0.4mm. On a obtenu cette distribution par analyse de la photographie dont on voit un aperçu figure 3.2. En outre, les propriétés physiques du sable (friction et forme) sont telles que l’on arrive à fabriquer un tas dont la croissance se fait essentiellement par un mécanisme d’avalanches.

3.3 Le capteur de pression

3.3.1 Introduction

L’élément de base du capteur de pression que nous allons décrire est une membrane qui se déforme sous l’effet d’une pression. La connaissance de la déformation de la membrane permet de remonter à la mesure de pression par une méthode de calibration. Le
choix de la rigidité de la membrane est important et est conditionné en partie par le fait qu'un matériau granulaire sec est un milieu "fragile". En effet, le déplacement d'un grain peut suffire à provoquer des réarrangements importants dans l'empilement. L'exemple typique est bien sûr le déclenchement d'une avalanche à la suite d'une petite perturbation, mais on peut très bien imaginer que des événements tout aussi dramatiques puissent se produire plus en profondeur dans le milieu granulaire. Il est donc prudent de réduire au maximum l'amplitude de déformation du capteur si l'on veut éviter que la mesure ne perturbe trop fortement l'équilibre du milieu granulaire. À ce caractère fragile du milieu granulaire s'ajoute la tendance des grains à créer des voûtes. Ce type de structure peut être favorisé par une déformation globale trop importante du support comme semblent le montrer les expériences de Trollope[81] ou celles de Lee et Herington [40]. En effet, ces auteurs observent l'apparition d'un minimum de pression au centre d'un wedge (tas en forme de prisme triangulaire) lorsque l'on diminue la rigidité du support. Trollope et Burman [82] ont également proposé un modèle dit "clastic" qui prédit l'apparition d'un minimum de pression lié à la rigidité du support. Cependant, si le problème de la rigidité globale du support a été assez étudié, l'influence de la rigidité du capteur est mal connue de part le caractère local de la déformation qu'il introduit. C'est une des raisons qui nous ont poussés à concevoir un capteur dont la rigidité puisse être modifiée simplement en changeant l'épaisseur de la membrane.

La déformation de la membrane peut être mesurée par différentes méthodes. Au cours de cette thèse, nous avons testé deux techniques de mesure : une première basée sur une méthode optique et une deuxième sur une méthode capacitive. Nous ne discuterons ici que la méthode capacitive qui a donné les meilleurs résultats. La raison principale qui nous a conduit à construire nous-mêmes un capteur de pression provient de la difficulté à mesurer de faibles pressions tout en assurant une déformation minimale du capteur aux pressions plus élevées. Tous les capteurs de pression que nous avons trouvés dans le commerce ne remplissaient malheureusement pas les critères nécessaires.

Fig. 3.3: Schéma du capteur de pression.

3.3.2 Description

Un schéma du capteur de pression est représenté sur la figure 3.3. On dispose d'un corps cylindrique en bronze servant de support sur lequel on vient fixer une membrane métallique ainsi qu'un détecteur de déplacement capacitif. La membrane est formée d'une feuille de chrysocale d'épaisseur bien déterminée et soudée de telle façon à recouvrir un
trou circulaire de diamètre $D = 11.3\text{mm}$. Juste avant d’être soudée, la feuille de chrysocale a été légèrement chauffée. Ainsi, lors du refroidissement, la membrane se tend et on obtient une surface bien plane. L’aire de la membrane est très proche de 1cm^2 et son épaisseur peut être choisie parmi trois valeurs : 0.02mm, 0.05mm et 0.1mm.

Nous avons mesuré la déformation de la membrane à l’aide d’un détecteur de déplacement capacitif Micro Epsilon modèle S600. Un schéma du détecteur est représenté figure 3.4. Celui-ci est composé d’un condensateur à symétrie cylindrique dont l’armature centrale est un disque de rayon $\rho \approx 2.5\text{mm}$ et l’armature extérieure coaxiale est un tube cylindrique d’environ 1mm d’épaisseur. L’ensemble est placé dans un boîtier relié à la masse et forme un condensateur de capacité fixe. Lorsque l’on approche une cible métallique près de la surface du condensateur, il apparaît des capacités parasites entre la cible et les armatures du condensateur. Bien sûr, la variation de capacité induite par la présence de la cible dépend de la distance à laquelle la cible se trouve. Une électronique de très grande précision Micro Epsilon Série 610 mesure la variation de capacité par une méthode de pont oscillant à 20kHz et transforme cette variation en un signal de tension U inversement proportionnel à la capacité C entre l’armature centrale et la cible. Dans le cas d’une cible métallique plane parallèle à l’armature centrale, il se trouve que cette capacité est quasiment celle d’un condensateur plan idéal tel que : $C = \frac{\varepsilon S}{\epsilon}$, où ε est la permittivité de l’air, S est la surface de l’armature centrale, et ϵ est la distance de la cible à l’armature centrale. Par conséquent, le signal de tension U délivré par l’électronique est directement proportionnel à la distance ϵ. Le détecteur permet de mesurer des déplacements entre 0 et 0.2mm, avec une résolution inférieure à 40nm. Le signal de tension U correspondant varie entre 0 et 10V si bien que la relation entre l’épaisseur ϵ et la tension U s’écrit simplement : $\epsilon = \alpha U$, avec $\alpha = 2.10^{-3}\text{m.V}^{-1}$. En pratique, le détecteur est positionné de façon à obtenir un signal d’environ 3V lorsqu’aucune pression n’est appliquée à la membrane. Cela signifie que la membrane se trouve à une distance d’environ 60μm du détecteur.

Dans notre montage, le rôle de la cible est joué par une membrane qui ne se déforme pas de façon uniforme. Le détecteur va donc mesurer la capacité d’un condensateur d’épaisseur variable. En supposant une symétrie cylindrique, la membrane se déforme selon un profil $w(r)$, où r est la distance au centre de la membrane. Soit e_o la distance séparant la membrane non déformée du détecteur. L’épaisseur du condensateur à la distance r s’écrit
alors : $e(r) = e_o - w(r)$. En première approximation, la capacité totale du condensateur de rayon ρ peut être calculée comme la somme des capacités de condensateurs en parallèle de surface $dS = 2\pi r dr$ et d’épaisseur $e(r)$:

$$C_{\text{eff}} = \int_0^\rho \frac{\varepsilon 2\pi r dr}{e_o - w(r)} \quad (3.2)$$

d’où, pour le cas d’un condensateur plan idéal, correspond à une épaisseur équivalente :

$$e_{\text{eff}} = \frac{\varepsilon \pi \rho^2}{C_{\text{eff}}} \quad (3.3)$$

Lorsque l’on mesure le signal de tension U, on mesure donc aussi e_{eff}. Nous verrons dans la suite que la connaissance de e_{eff} permet de tester la validité des résultats lors de la calibration du capteur de pression.

3.3.3 Calibration

![Diagram](image_url)

Fig. 3.5: Courbe de calibration du capteur de pression pour une membrane d’épaisseur $e = 0.1\text{mm}$.

Méthode et résultats

La procédure de calibration consiste à appliquer une pression connue sur la membrane du capteur, puis à mesurer le signal de tension délivré par le détecteur capacitif. On peut par exemple appliquer une pression hydrostatique. Pour cela, nous avons rempli d’eau un tube en altuglas de 4cm de diamètre dont une extrémité est recouverte d’une feuille de cellulophane. La feuille de cellulophane forme ainsi une fine membrane qui permet d’assurer l’étanchéité du montage ainsi qu’un bon contact avec le capteur. Il faut toutefois faire attention à ne pas tendre la membrane de trop afin qu’elle reste le plus souple possible. Pour mesurer la pression d’eau, il suffit de connaître la hauteur d’eau dans le tube. Plutôt que de mesurer directement le niveau d’eau, on a choisi de mesurer la masse d’eau versée dans le tube. Sachant que la masse est connue à 0.1g près, et que le diamètre du tube peut
être connu à 0.1mm, on en déduit la hauteur d’eau avec une précision meilleure que 1% pour toute hauteur supérieure à 10mm. La figure 3.5 montre l’évolution de la pression en fonction de la variation du signal de tension par rapport à la tension de référence à pression nulle. La courbe obtenue est très bien approchée par une droite de coefficient directeur \(\beta = 2 \pm 0.01 \times 10^6 \text{PaV}^{-1} \). Par la suite, la courbe de calibration sera utilisée pour vérifier si les profils de pression sont en accord avec la quantité de grains versée. Pour donner un ordre de grandeur de la déformation du capteur, on peut calculer la variation d’épaisseur effective sachant que \(\Delta e_{\text{eff}} = \alpha \Delta U \). Lors de la mesure de profils de pression sous un tas de sable, nous avons obtenu une pression maximale typique \(P = 10^3 \text{Pa} \). A cette pression, le détecteur capacitif mesure une déformation moyenne de la membrane \(\Delta e_{\text{eff}} = 1 \mu \text{m} \), ce qui représente donc la déformation maximale du capteur dans nos expériences.

Prédictions de la théorie élastique

La théorie élastique nous permet d’estimer le profil de déformation de la membrane. Connaissant ce profil de déformation, il est ensuite possible de déterminer la capacité effective à l’aide de l’équation (3.2) et d’en déduire l’épaisseur effective \(e_{\text{eff}} \). Nous allons conduire ce calcul de façon à tester si les résultats de la calibration sont réalisistes.

Prenons une membrane circulaire de diamètre \(2R \) et d’épaisseur \(h \) (voir figure 3.4). Les propriétés élastiques de la membrane sont caractérisées par un module élastique \(E \) et un coefficient de Poisson \(\nu \). Le bord de cette membrane est fixé rigidement au support, ce qui signifie que le déplacement est nul en \(r = R \). Supposons qu’une pression uniforme \(P \) est appliquée sur la membrane. La théorie élastique [77] prédit alors que la déflexion de la membrane est maximale en \(r = 0 \) et est donnée par la relation :

\[
w_m = \frac{3(1 - \nu^2)PR^4}{16Eh^3} \quad (3.4)
\]

Nous avons utilisé une membrane en chrysocal dont les caractéristiques sont les suivantes : \(R = 5.65 \text{mm} \), \(h = 0.1 \text{mm} \), \(E = 130 \text{GPa} \) et \(\nu = 0.3 \). Pour une pression typique \(P = 10^3 \text{Pa} \), la relation (3.4) prédit une déflexion maximum : \(w_m = 1.34 \mu \text{m} \). Cette valeur est bien du mème ordre de grandeur que la déformation moyenne de la membrane mesurée expérimentalement (voir ci-dessus). On peut cependant raffiner un peu l’analyse en calculant explicitement \(e_{\text{eff}} \) à partir du profil de déformation théorique de la membrane.

Le profil de déformation de la membrane peut s’écritre [77] :

\[
w (r) = w_m \left(1 - \frac{r^2}{R^2} \right)^2
\]

En remplaçant cette expression dans la relation (3.2) et après un peu de calcul, on trouve :

\[
C_{\text{eff}} = \frac{\varepsilon \pi R^2}{2\sqrt{e_o w_m}} \ln \left[\frac{e_o - w_m + (w_m + \sqrt{e_o w_m}) \frac{r^2}{R^2}}{e_o - w_m + (w_m - \sqrt{e_o w_m}) \frac{r^2}{R^2}} \right]
\]

Pour \(e_o = 60 \mu \text{m} \), \(w_m = 1.34 \mu \text{m} \), \(\rho = 2.5 \text{mm} \), \(R = 5.65 \text{mm} \) et \(\varepsilon = 8.85 \times 10^{-12} \text{Fm}^{-1} \), on trouve \(C_{\text{eff}} = 2.95 \text{pF} \) et par conséquent \(e_{\text{eff}} = 58.9 \mu \text{m} \). La déformation moyenne du capteur est donc : \(\Delta e_{\text{eff}} = 1.1 \mu \text{m} \), en assez bon accord avec la valeur expérimentale.

En conclusion, nous avons vérifié que notre capteur de pression est linéaire dans la zone de mesure qui nous intéresse. Nous avons aussi vérifié que le capteur donne des mesures en accord avec les prédictions de la théorie élastique des membranes.
3.3.4 Comportement en présence de grains

Pour des grains de diamètre typique $d = 1.2\text{mm}$, on peut s’attendre à un nombre de contacts par unité de surface avec le capteur : $N \simeq 70\text{cm}^{-2}$, ce qui pour une surface de 1cm^{2} représente un carré de 8 à 9 grains de côté. C’est aussi le nombre typique de grains en contact avec la membrane dont la surface a justement une aire de 1cm^{2}. Est-ce suffisant pour pouvoir assimiler l’ensemble des forces exercées par les grains sur le capteur à une pression ? Peut-on considérer cette pression comme uniforme ? Enfin, quelle est l’importance du moyennage des forces et de leurs fluctuations ? Toutes ces questions sont assez délicates à traiter. Nous n’avons malheureusement pas eu le temps de faire varier systématiquement la taille des grains pour étudier la régression des fluctuations. On peut toutefois remarquer que le nombre de contacts mis en jeu dans nos expériences est relativement grand, et l’on verra que les fluctuations de la mesure de pression dans ces conditions ne dépassent guère 10%. Cependant, nous verrons aussi qu’il existe un écart d’environ 10% entre le coefficient de calibration obtenu en appliquant une pression hydrostatique et le coefficient de calibration que l’on peut déduire des profils de pressions dont l’intégration doit redonner le poids total des grains. On peut penser que l’origine de cet écart peut venir d’un effet de taille finie dû à un nombre de contacts insuffisants avec la membrane du capteur de pression. Précisons tout de suite que cet écart est systématique et reproductible pour tous les profils de pressions que nous avons mesuré.

3.3.5 Effet perturbatif de la dilatation thermique

Comme dans les expériences du silo, il est difficile de suivre l’évolution des forces dans un tas de sable à des temps longs. Cela est dû en partie à l’existence d’un effet parasite de dilatation thermique du capteur. Si la dilatation thermique joue un rôle important, c’est parce que l’on a choisi un capteur le plus rigide possible de façon à perturber le moins possible l’état d’équilibre du milieu granulaire (voir paragraphe 3.3). En effet, l’échelle de déformation du capteur dans nos expériences (typiquement $1\mu\text{m}$) peut alors devenir comparable à la déformation de la membrane métallique dont le coefficient de dilatation thermique est de l’ordre de 10^{-5}C^{-1}. Il faut ajouter à cet effet la dérive thermique propre du détecteur de déplacement capacitif et de son électronique qui ne sont pas négligeables. La connaissance exacte de tous ces effets thermiques est assez délicate et n’est au fond pas vraiment nécessaire dans le cadre de nos expériences. Le temps qu’il faut pour faire une mesure est en effet beaucoup plus court que l’échelle de temps typique des variations de température qui est de l’ordre d’une heure.

3.4 Méthodes de construction

Nous avons cherché à étudier expérimentalement l’influence de la géométrie du tas, et surtout l’influence de la méthode de construction sur le profil de pression. Nous allons à présent détailler les diverses méthodes de construction que nous avons utilisées.

3.4.1 Le tas conique

Construction à partir d’un point source

Une première façon de construire un tas, et sans aucun doute la plus élémentaire, consiste à verser des grains sur une surface. Si les grains s’écoulent par un petit orifice, on obtient généralement un tas de forme conique qui s’est formé par avalanches successives.
Fig. 3.6: Le montage permettant de réaliser un tas conique par avalanches comprend : un plateau de 52cm de diamètre à la surface duquel on peut faire affleurer un capteur de pression ; un réservoir à embouchure conique (diamètre 11.7mm) monté sur une crémaillère.
Fig. 3.7: Représentation schématique de la stratification d'un tas construit à partir d'un point source.

Fig. 3.8: Forme du tas construit en avalanches à partir d'un petit orifice.
Fig. 3.9: Dépôt en couches horizontales lorsque le plateau est beaucoup plus étendu que le tamis.

Fig. 3.10: Représentation schématique de la stratification d'un tas construit à partir d'un tamis de faible diamètre par rapport aux dimensions du plateau. On peut penser qu'une partie non négligeable du tas a été formé par un mécanisme d'avalanches.
On dira que le tas est fabriqué à partir d’un "point source". Le dispositif expérimental que nous avons utilisé est représenté sur la figure 3.6. Il comporte un réservoir cylindrique à embouchure conique (diamètre d’ouverture 11.7 mm) monté sur une crémailleire qui permet un déplacement vertical. Initialement, l’embouchure du réservoir est en contact avec un plateau métallique de 15 mm d’épaisseur et 52 cm de diamètre sur lequel les grains vont être déposés. Grâce à la crémailleire, il est possible de soulever le réservoir pour que les grains s’écoulent tout en gardant l’embouchure du réservoir à proximité du sommet du tas au fur et à mesure qu’il se construit. Cela permet d’une part d’obtenir un empilement de densité plus homogène (voir par exemple Standish et al. [75]) ainsi que de réduire l’énergie cinétique des grains susceptible d’endommager la structure et la forme du tas. La croissance du tas se fait par une succession d’avalanches. Lorsqu’une avalanche se produit, seule une faible épaisseur de grains à la surface du tas est mise en mouvement (voir par exemple [48]). Cette caractéristique du phénomène d’avalanche est particulièrement visible lors de la formation d’un prisme triangulaire (voir Paragraphe 3.4.2). Au cours du temps, les coulées d’avalanche semblent former des strates qui se superposent les unes sur les autres, ce que l’on a représenté schématiquement sur la figure 3.7. L’allure du tas final est montré figure 3.8.

Construction par dépôt en couches

Une deuxième façon de construire un tas consiste à déposer les grains en couches horizontales. Pour arriver à ce résultat, on peut utiliser un tamis cylindrique qui permet de créer une pluie à peu près uniforme sur toute la largeur du tamis. Initialement, le tamis est positionné en contact avec le plateau. On remplit le tamis de grains, puis on le soulève à l’aide de la crémailleire. Pour comprendre ce qu’il se passe, il suffit d’imaginer que des couches de grains horizontales se déposent les unes sur les autres. Le bord extérieur d’une couche de grains qui vient en recouvrir une autre est instable et il se produit des avalanches jusqu’à ce que l’angle de repos du tas soit atteint. Si les dimensions du plateau
Fig. 3.12: Montage permettant d'obtenir un tas à partir d'une pluie répartie sur toute la surface du plateau.
Fig. 3.13: Dépot en pluie avec un tamis qui recouvre entièrement la surface du plateau.

Fig. 3.14: Forme du tas construit par dépôt en couches sur un plateau circulaire de diamètre inférieur à celui du tamis.
sont beaucoup plus grandes que celles du tamis, on va obtenir un tas dont une partie centrale a été déposée en couches, mais inévitablement, la partie externe s’est formée par avalanches. On obtient donc un tas “hybride”, mélange de grains déposés en couches horizontales et de grains déposés par avalanches (voir figures 3.9 et 3.10). Pour s’approcher du cas idéal d’un tas entièrement constitué de grains déposés en couches horizontales (voir schéma figure 3.11), nous avons utilisé un plateau circulaire de diamètre identique à celui du tamis (voir figure 3.12). Les grains emmenés par une avalanche ne sont plus arrêtés par le plateau et aboutissent dans le vide (voir figure 3.13). Tandis que le tas croît en hauteur, la fraction de grains qui se stabilisent diminue et la fraction de grains emportés dans une avalanche augmente. On finit par obtenir un tas conique sur lequel aucun grain ne peut plus être ajouté sans provoquer une avalanche. Le tas obtenu en utilisant un plateau et un tamis de 26cm de diamètre est montré sur la figure 3.14. Il est à noter que pour construire un tas conique entier et non tronqué, il faut disposer d’une quantité de grains au moins trois fois plus importante que celle contenue dans le tas final. Cela est dû au fait que les grains doivent remplir le tamis cylindrique jusqu’à une hauteur au moins égale à celle du tas final. Afin d’économiser du sable, il pourrait paraître judicieux de remplir le tamis de façon à former un tas conique à travers lequel on pourra ensuite faire traverser la grille du tamis. Malheureusement, cette méthode ne fonctionne absolument pas. Dès que l’on commence à soulever l’ensemble, le tas privé de fondation s’effondre sur lui-même, la surface libre devenant pratiquement horizontale. En quelque sorte, le tas devient fluide.

3.4.2 Le prisme triangulaire ou ”wedge”

Des méthodes de construction similaires peuvent être utilisées pour fabriquer un tas en forme de prisme triangulaire ou ”wedge” si l’on adopte le terme anglo-saxon. A la différence du tas conique qui possède une symétrie de révolution, le wedge ne possède que deux plans de symétrie verticaux, l’un passant par la crête et l’autre coupant le tas en deux perpendiculairement à la crête. Le wedge a donc une symétrie proche d’un tas bidimensionnel.

Construction à partir d’une ligne source

Pour construire un wedge à partir d’une ligne source, on va laisser les grains s’écouler à travers la fente d’un réservoir trapézoïdal (voir figures 3.15 et 3.16). La fente fait 20cm de long et 11.7mm de large. Elle est positionnée perpendiculairement à deux parois verticales en altuglas distantes de 20.5cm et de 15mm d’épaisseur. Les parois permettent d’éviter la formation d’une partie de tas conique aux deux extrémités de la fente. Nous verrons cependant que les parois peuvent influer sur les mesures de façon non négligeable. Le plateau rectangulaire fait 20.5cm de large, 26cm de long et 13mm d’épaisseur. Comme pour la construction du tas conique, le réservoir peut être déplacé verticalement et la fente maintenue la plus proche possible de la crête du wedge. La croissance du tas se fait essentiellement par un mécanisme d’avalanches. Le tas obtenu est montré figure 3.17.

Construction par dépôt en couches horizontales

Pour construire un wedge en couches horizontales, on utilise le plateau rectangulaire flanqué de deux parois verticales ainsi qu’un tamis rectangulaire suffisamment grand pour couvrir toute la surface du plateau (voir figure 3.18). Initialement, le tamis est posé sur le plateau. Le tamis est ensuite rempli de grains en quantité suffisante, puis lentement le tamis est soulevé à l’aide de la crémaillère. Les grains s’écoulent en pluie à travers le
tamis et s’arrêtent sur la couche de grains précédente sauf sur les bords de la couche où se produisent des avalanches. Comme pour le tas conique, la plupart des grains emportés dans une avalanche débouchent dans le vide et ne contribuent donc pas au tas final. Le tas obtenu est représenté figure 3.19.

3.4.3 Autres méthodes de construction

Le demi-tas

Nous appelons demi-tas un tas construit en déposant les grains le plus près possible d’une paroi verticale. On peut procéder ainsi pour fabriquer un demi-cône ou un demi-wedge. Ce type de géométrie est potentiellement intéressant parce qu’il fait intervenir l’influence de la friction avec les parois sur la forme du profil de pression. C’est également un type de géométrie suffisamment simple pour pouvoir tester des predictions théoriques. Les résultats que nous présenterons pour le demi-tas sont issus d’une expérience préliminaire pour laquelle aucune attention particulière n’a été apportée à la rigidité de la paroi.

Tas conique construit à partir d’un demi-tas conique

Nous avons essayé de construire un tas conique à partir d’un demi-cône en retirant la paroi verticale. Si l’on procède ainsi, le tas obtenu ressemble plus à une dune en forme de croissant qu’à un tas conique. Par contre, on peut obtenir un tas à peu près conique en utilisant la paroi intérieure d’un cylindre. Le mode opératoire est le suivant. On dispose d’un cylindre en verre de diamètre \(D = 20 \text{ cm} \) (parois d’épaisseur \(e = 1 \text{ cm} \)) que l’on pose sur le plateau. Les grains sont ensuite versés à partir d’un entonnoir le plus près possible de la paroi. De cette manière, les grains s’écoulent dans le cylindre par avalanches successives. Le cylindre est ensuite retiré aussi rapidement que possible en le soulevant verticalement. La partie du tas qui s’appuyait auparavant sur la paroi s’effondre brutalement, tandis que
Fig. 3.16: Montage permettant de fabriquer un prisme triangulaire par avalanches à partir d’une fente d’ouverture 11.7mm.
la partie du tas opposée conserve le même aspect extérieur. On obtient alors un tas de forme conique légèrement dissymétrique dont le rayon est sensiblement plus grand du côté qui s’est effondré (de ce côté, la pente du tas est alors légèrement plus faible).

3.4.4 Dimensions des tas obtenus

Le tableau 3.1 montre les dimensions des différents tas obtenus. L’angle de repos ϕ est estimé à partir du rayon R et de la hauteur H du tas en supposant vérifiée la relation : $\tan \phi = \frac{H}{R}$. En fait, ce n’est pas la meilleure façon de déterminer l’angle de repos. En effet, la méthode de construction avec point source ou ligne source produit des tas dont le sommet est sensiblement écrété et l’angle de repos est donc sous-estimé. Par contre, ce n’est pas réellement un problème pour les tas construits avec un tamis dont le sommet est très pointu. Une autre façon de déterminer l’angle de repos consiste à mesurer directement la pente à partir de photographies des tas. On trouve alors des mesures consistantes pour tous les tas avec une valeur de l’angle de repos $\phi = 33 \pm 0.5^\circ$.

<table>
<thead>
<tr>
<th>Tas</th>
<th>Rayon ou 1/2 largeur (cm)</th>
<th>Hauteur (cm)</th>
<th>Angle de repos apparent (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cône (point source)</td>
<td>13.25 ± 0.25</td>
<td>7.5 ± 0.25</td>
<td>29.5 ± 1.5</td>
</tr>
<tr>
<td>Cône (couches)</td>
<td>13 ± 0.1</td>
<td>8.3 ± 0.2</td>
<td>32.5 ± 0.5</td>
</tr>
<tr>
<td>Wedge (ligne source)</td>
<td>11 ± 0.3</td>
<td>6.5 ± 0.2</td>
<td>30.5 ± 1.5</td>
</tr>
<tr>
<td>Wedge (couches)</td>
<td>13 ± 0.1</td>
<td>8.4 ± 0.2</td>
<td>33 ± 0.5</td>
</tr>
<tr>
<td>Demi-cône</td>
<td>17 ± 0.25</td>
<td>10 ± 0.25</td>
<td>30.5 ± 1</td>
</tr>
<tr>
<td>Cône dissymétrique...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...côté effondré</td>
<td>14.5 ± 0.25</td>
<td>7 ± 0.2</td>
<td>26 ± 1</td>
</tr>
<tr>
<td>...côté opposé</td>
<td>13.5 ± 0.25</td>
<td>7 ± 0.2</td>
<td>27.5 ± 1</td>
</tr>
</tbody>
</table>

Tab. 3.1: Dimensions des différents tas obtenus

Fig. 3.17: Forme du prisme triangulaire construit en avalanches à partir d’une fente.
Fig. 3.18: Montage permettant d’obtenir un tas en forme de prisme triangulaire par dépôt en couches horizontales.
3.5 Profils de pression

Nous allons maintenant présenter les profils de pression obtenus lorsque l’on change la géométrie du tas ou lorsque l’on change le mode de construction comme nous l’avons décrit au paragraphe 3.4.

3.5.1 Le tas conique

Tas construit en avalanches à partir d’un point source

La figure 3.20a montre l’ensemble des mesures de pression obtenues lorsque l’on fabrique un tas conique à partir d’un point source. A partir de ces données, on peut obtenir un profil de pression moyen (figure 3.20b) dont les barres d’erreurs correspondent à l’écart type de la pression moyenne. On voit clairement apparaître aussi bien sur la figure 3.20a que 3.20 b un minimum de pression au centre du tas. Nous avons choisi de mesurer l’amplitude du minimum de pression comme l’écart entre la pression au centre et la pression maximale. Sur le profil de la figure 3.20b, l’amplitude du minimum de pression correspond à 45% de la pression maximale. Le maximum de pression se produit à une distance du centre égale à environ 1/3 du rayon du tas.

Tas construit par dépôt en couches horizontales

Nous présentons maintenant les résultats pour un tas construit en couches horizontales. Sur la figure 3.21a, nous avons tracé l’ensemble des pressions mesurées en fonction de la distance au centre du tas. On peut remarquer une dispersion des points relativement faible. La figure 3.21b montre le profil de pression moyen où les barres d’erreur correspondent toujours à l’écart type de la pression moyenne. On voit clairement qu’il n’y a pas de minimum de pression au centre du tas. Au contraire, il y a globalement une légère augmentation de la pression lorsque l’on s’approche du centre du tas. On obtient donc un profil avec une légère bosse.
Fig. 3.20: Mesures de pression pour un tas construit à partir d’un point source : (a) mesures brutes ; (b) profil de pression moyen. La dispersion relative des points est de l’ordre de 20%.
Fig. 3.21: Mesures de pression pour un tas conique construit par dépôt des grains en couches horizontales : (a) mesures brutes ; (b) profil de pression moyen. La dispersion relative des points est de l'ordre de 20\%.
3.5.2 Le prisme triangulaire

Tas construit en avalanches à partir d’un point source

La figure 3.22 montre le profil de pression moyen obtenu pour un tas en forme de prisme triangulaire construit à partir d’un ligne source. En comparaison avec le profil obtenu pour un cône construit à partir d’un point source, le minimum de pression est beaucoup moins marqué. L’écart entre la valeur de la pression au centre et la pression maximale correspond à 13% de la pression maximale. L’amplitude du minimum de pression pour le prisme triangulaire est donc environ quatre fois plus petit que pour le tas conique. Cette différence notable entre le comportement du tas conique et celui du prisme triangulaire demeure pour l’instant inexpliquée. À notre connaissance, seuls Matuttis et al. [50] ont tenté d’expliquer la différence entre le minimum du cône et celui du prisme triangulaire. Le maximum de pression est situé à une distance du centre égale à environ 1/4 du rayon du tas.

Tas construit par dépôt en couches horizontales

La figure 3.23 montre le profil de pression obtenu lorsque l’on construit un prisme triangulaire en déposant des couches horizontales de grains. De même que pour le tas conique, cette méthode de construction fait disparaître très clairement le minimum de pression au centre du tas.

3.5.3 Autres profils de pression mesurés

Le demi-cône

Les mesures de pression sont faites le long d’un rayon orienté perpendiculairement à la paroi verticale. Nous nous sommes pour l’instant limité à ce profil, mais nous pourrions...
Fig. 3.23: Profil de pression moyen pour un prisme triangulaire construit selon la méthode de dépôt en couches horizontales.

Fig. 3.24: Profil de pression pour un demi-cône. La position est repérée par rapport à la paroi mais, à cause de la taille finie du point source, la position du sommet du tas est en réalité décalée d'environ 0.6mm.
aussi mesurer le profil de pression le long de la paroi qui est probablement différent car la présence de la paroi brise la symétrie du tas conique et introduit une condition aux limites nouvelle. La figure montre le profil obtenu. On voit qu'il y a toujours un minimum de pression, mais ce minimum est sensiblement moins prononcé que dans le cas du cône. C'est un résultat contradictoire car l'effet attendu d'une paroi est un écrantage du poids et l'on voit qu'il se produit l'effet inverse. Il se peut que la brisure de symétrie introduite par la paroi ait un effet prépondérant sur l'effet d'écrantage. D'une certaine façon, le demi-tas en perdant la symétrie de révolution se rapproche de la symétrie du prisme triangulaire pour lequel on a observé un minimum de pression très peu marqué. Ces commentaires sont toutefois à prendre avec précautions. Une étude plus précise du rôle joué par la paroi (propriétés de friction, rigidité) est nécessaire.

Le cône dissymétrique

Nous nous intéressons maintenant au cas d'un tas conique construit à partir d'un demi-tas (voir paragraphe 3.4.3). La figure 3.25 montre deux profils de pression. La figure 3.25(a) montre le profil de pression sous le demi-tas à la fin du remplissage, juste avant de retirer le cylindre. La paroi du cylindre sur laquelle s'appuie le tas se trouve à l'abscisse \(x = -7 \text{cm} \). Ce profil présente un minimum de pression près de la paroi, à l'endroit où les grains sont versés. C'est un résultat tout à fait en accord avec les profils de pression déjà observés pour le tas conique fabriqué à partir d'un point source et le demi-tas conique. Après avoir retiré le cylindre, on obtient le profil de pression de la figure 3.25(b). Ce profil est légèrement dissymétrique, mais le minimum de pression a clairement disparu. Pour toute une partie du tas \((x \gtrsim 7 \text{cm})\), la pression n'a pas été modifiée par rapport au profil de la figure 3.25(a). Pour \(x \gtrsim -6 \text{cm} \), on mesure maintenant une pression par suite de l'effondrement du tas. Pour une abscisse comprise entre \(-6 \text{cm}\) et 7cm, la pression a sensiblement diminué mais la forme du profil est qualitativement la même que sur la figure 3.25(a). En particulier, le maximum de pression est toujours localisé au même endroit. Il semble donc que le tas a conservé une certaine mémoire de son état précédent.

3.5.4 Ordre de grandeur des fluctuations

Pour avoir une idée de l'ordre de grandeur des fluctuations, il est intéressant de tracer la valeur relative des fluctuations de pression \(\frac{\Delta P}{P} \) en fonction de l'éloignement au centre du tas pour chaque profil de pression. La figure 3.26 montre que la dispersion relative des mesures de pression est à peu près constante quels que soient la forme du tas, le mode de construction ou la position du capteur de pression. Cependant, près des bords du tas, la dispersion relative a tendance à diverger principalement parce que la pression devient comparable à la précision de la mesure. Nous avons d'ailleurs omis sur la figure 3.26 la valeur de la dispersion relative lorsque \(r/R = 1 \) qui est pratiquement égale à 1.

3.5.5 Consistance des profils de pression

A partir du profil de pression moyen, on peut déterminer la force verticale totale que le tas exerce sur le plateau. Pour faire ce calcul, on admettra que le capteur de pression n’est sensible qu’à la pression verticale (la possibilité d’un couplage avec le cisaillement est négligeable au premier ordre étant données les très faibles déformations du capteur). Nous allons donner les formules utilisées pour intégrer les profils de pression, et présenter également un procédé de normalisation des profils qui sera utile pour la comparaison des profils avec les prédictions de différents modèles (voir paragraphe 3.6.1). Nous vérifierons
Fig. 3.25: Profils de pression obtenus avec la méthode de construction d’un cône dissymétrique : (a) profil avant de retirer le cylindre : il y a un minimum de pression sous le sommet du tas à l’endroit où sont versés les grains (x ≈ -6mm) ; (b) profil après avoir retiré le cylindre : la pression est alors maximale sous le sommet du tas nouvellement formé (x ≈ 0).
ensuite si la masse du tas déduite des profils de pression est égale à la masse du tas connue par pesée.

Intégration et normalisation des profils de pression

Prisme triangulaire On considère un tas en forme de prisme triangulaire. Une section triangulaire du tas perpendiculairement à la ligne de crête possède une hauteur H et une base de largeur $2R$. La ligne de crête est de longueur L. Soit $P(x)$ le profil de pression verticale sous le tas. L’intégration du profil de pression sur toute la base du tas doit être égale au poids total du tas. Cette condition se traduit par l’équation :

$$ L \int_{-R}^{R} P \, dx = Mg $$

(3.5)

Si l’on suppose que la densité du tas ρ est à peu près uniforme, la masse M peut s’écrire : $M = \rho RLH$. En choisissant comme variables réduites, $\bar{P} = \frac{P}{\rho g H}$ et $\bar{x} = \frac{x}{R}$, cette intégrale s’écrit simplement :

$$ \int_{0}^{1} 2\bar{P} \, d\bar{x} = 1 $$

(3.6)

Le calcul des variables adimensionnées \bar{x} et \bar{P} nécessite a priori la connaissance du rayon R, de la hauteur H et de la densité ρ. Cependant, connaissant R, on peut en déduire le facteur de normalisation de la pression P grâce à l’intégrale de normalisation (3.6). On s’affranchit ainsi du problème délicat de la mesure de densité pour un tas. En effet, la densité d’un matériau granulaire peut varier assez sensiblement (de l’ordre de 10%) suivant la façon dont les grains sont empilés.
Tas conique Soit un tas conique de hauteur H et de rayon R. La somme des pressions exercées sur le plateau par le tas en équilibre doit être égale au poids total du tas. Cela se traduit par la loi de conservation suivante :

$$\int_0^R 2\pi r P \, dr = Mg \quad (3.7)$$

En supposant que la densité du tas est uniforme, la masse M peut s'écrire $M = \frac{1}{3} \rho \pi R^2 H$, où ρ est la densité du milieu granulaire supposée constante. En choisissant comme variables réduites, $\frac{P}{\rho g H}$ et $\frac{r}{R}$, cette intégrale s'écrit simplement :

$$\int_0^1 6P \, dl = 1 \quad (3.8)$$

Comme dans le cas du wedge, on pourra utiliser cette intégrale pour normaliser la pression dans les profils de tas coniques.

Masse pesée et masse déduite des profils de pression

La masse des tas de sable est déterminée de deux façons indépendantes. Tout d’abord, la masse de grains utilisée est pesée à l’aide d’une balance. D’autre part, on peut calculer la masse en intégrant le profil de pression à l’aide des équations (3.5) ou (3.7). Le tableau 3.2 récapitule les résultats obtenus pour différents tas. Le facteur de calibration utilisé pour convertir la tension mesurée en pression est : $\beta = 2.2 \times 10^3 \text{PaV}^{-1}$. Il y a un écart de 10% par rapport au coefficient de calibration mesuré de façon indépendante par la méthode décrite au paragraphe 3.3.3. Cette nouvelle valeur du coefficient est choisie de telle sorte que l’intégrale du profil de pression pour le cône construit à partir d’un point source corresponde bien au poids total des grains contenu dans le tas. On voit que l’on obtient ainsi un très bon accord entre la masse de grains versée et la masse estimée à partir des profils de pression sauf dans deux cas : celui du prisme triangulaire formé en pluie, et celui du demi-tas conique. Le point commun de ces deux tas est l’existence d’une paroi qui participe à l’équilibre du tas. Nous avons jusqu’à présent négligé l’influence de cette paroi. Or, il est tout à fait possible qu’une partie du poids soit écranée par les parois 3. Il faut également remarquer que dans le cas du demi-cône, nous avons fait l’hypothèse que le profil de pression est le même perpendiculairement à la paroi ou le long de la paroi. Cette hypothèse n’est pas forcément valide pour des raisons de symétrie, et il faudrait mesurer directement le profil de pression le long de la paroi pour avoir une meilleure idée de l’erreur commise.

Nous allons maintenant donner une estimation du poids écranté lorsqu’on tient compte de la friction entre les grains et les parois latérales. Prendons le cas le plus simple, celui du prisme triangulaire. Une façon simple de faire le calcul consiste à découper le tas en sections verticales de hauteur $H \, (r)$ et de largeur $2L$ perpendiculairement aux parois. Faisons l’hypothèse que la pression sous chaque section est uniforme. Si les parois n’étaient pas frottantes, on mesurait une pression $P_0(r)$. Toujours en l’absence de friction avec les parois, supposons maintenant que dans chaque section verticale la pression varie linéairement avec la hauteur, c’est à dire que : $P_0(r, z) = P_0(r) \frac{z}{H(r)}$. Cette hypothèse est assez grossière,

3Curieusement, le profil de pression du prisme fabriqué à partir d’une ligne source ne présente pas la même anomalie. Ce prisme a été obtenu avec des parois latérales beaucoup moins épaisse que dans le cas du wedge fabriqué en couches. Nous présenterons au chapitre 4 un modèle de voûtes qui montre que l’écrantage peut naturellement dépendre de l’élasticité des parois. Le lien avec le cas présent n’est cependant pas évident.
<table>
<thead>
<tr>
<th>Type de tas</th>
<th>Masse pesée (kg)</th>
<th>Masse intégrée (kg)</th>
<th>Ecart (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cône (point source)</td>
<td>2.5 ± 0.001</td>
<td>2.493</td>
<td>-0.28</td>
</tr>
<tr>
<td>Cône (couches)</td>
<td>2.48 ± 0.01</td>
<td>2.435</td>
<td>-1.62</td>
</tr>
<tr>
<td>Prisme (ligne source) (L = 0,195m)</td>
<td>2.5 ± 0.001</td>
<td>2.506</td>
<td>+0.25</td>
</tr>
<tr>
<td>Prisme (couches) (L = 0,205m)</td>
<td>3.83 ± 0.03</td>
<td>3.519</td>
<td>-8</td>
</tr>
<tr>
<td>Demi-tas conique</td>
<td>2.5 ± 0.001</td>
<td>2.379</td>
<td>-4.8</td>
</tr>
<tr>
<td>Tas disymétrique</td>
<td>2.5 ± 0.001</td>
<td>2.464</td>
<td>-1.44</td>
</tr>
<tr>
<td>Cone (point source et grains de quartz)</td>
<td>1 ± 0.001</td>
<td>0.991</td>
<td>-0.92</td>
</tr>
</tbody>
</table>

Tab. 3.2: Comparaison entre la masse réelle du tas et la masse calculée partir des profils de pression

mais va nous permettre d’appliquer à chaque section l’analyse de Janssen [35] (voir chapitre 2 paragraphe). Soit μ le coefficient de frottement avec les parois et K le rapport de la pression horizontale sur la pression verticale. La pression à une profondeur z s’écrit alors :

\[P(r, z) = \frac{P_0(r)}{H(r)} \lambda \left[1 - \exp \left(-\frac{z}{\lambda}\right) \right] \]

ou \(\lambda = L/\mu K \) est la longueur d’écran. On peut aisément extraire \(P_0(r) \) de cette formule connaissant le profil du tas \(H(r) \), la pression mesurée \(P(H) \), la largeur du tas \(L \), ainsi que les valeurs de \(\mu \) et \(K \). Pour notre estimation, on a choisi \(K = 0.7 \) qui est une valeur typique pour un milieu granulaire sec peu dense et \(\mu = 0.4 \), ce qui revient à choisir \(\mu K \approx 0.3 \). Le profil de pression corrigé pour le prisme construit en couches est représenté sur la figure 3.27. La correction est d’autant plus grande que l’on est proche du centre du tas, mais l’allure qualitative du profil n’est pas modifiée. La masse du tas calculée à partir du profil de pression corrigé est alors : \(M = 3.806 \)g, c’est à dire un écart de seulement -0.64% par rapport à la masse réelle du tas ! Il semble donc bien que l’on ne puisse pas négliger un effet d’écrantage du poids par les parois dans notre expérience. Pour s’affranchir expérimentalement de l’effet d’écrantage, il faudrait par exemple diminuer le frottement avec les parois ou augmenter la longueur \(L \) du prisme. Augmenter la longueur du prisme impose de manipuler des quantités de grains qui peuvent devenir rapidement considérables. Nous n’avons pas pour l’instant essayé de diminuer le frottement grains/paroi.

3.5.6 Effet de la taille du capteur

Étant donné que le capteur de pression n’est pas ponctuel, la pression mesurée par le capteur est en réalité une convolution du signal de pression réelle et d’une fonction de réponse du capteur. Il faut être conscient que l’utilisation d’un capteur dont le diamètre serait trop grand par rapport aux dimensions du tas peut déformer les profils de pression. En particulier, le minimum de pression sera d’autant moins marqué que le diamètre du capteur est grand parce que la pression est moyennée sur toute la surface du capteur. C’est ce qu’il semble se passer pour les mesures de Jotaki et Moriyama [37]. En effet, ceux-ci réalisent des tas coniques dont le rayon varie entre 8 et 16cm pour un capteur de 2cm de diamètre et voient que l’amplitude relative du minimum de pression est d’autant plus grande que le tas est grand. Ce résultat n’est pas très surprenant étant donné la

\(^4\)Voir chapitre 2.
Fig. 3.27: Profil de pression mesuré et profil de pression corrigé. La correction ne change pas l’allure qualitative du profil.

dimension importante du capteur par rapport au rayon du tas. Cependant, Jotaki et Moriyama voient également que le maximum de pression se trouve toujours à peu près à la même distance absolue par rapport au centre que soit la taille du tas. Or, si la taille du capteur peut clairement avoir un effet sur la valeur maximale de la pression, elle a en revanche très peu d’influence sur la position du maximum de pression. Si les résultats de Jotaki et Moriyama sont exacts, cela signifie que le profil de pression ne se remet pas simplement à l’échelle avec les dimensions du tas. D’un point de vue théorique, les prédictions sont contradictoires. Dans des simulations de dynamique des contacts, Radjai [62] semble observer que la position du maximum de pression est contrôlée par le diamètre d’ouverture du réservoir. Par contre, Wittmer et al. [89] défendent l’idée selon laquelle les seules dimensions caractéristiques du problème sont les dimensions du tas. Il nous a donc paru important d’étudier plus en détail la mise à l’échelle du profil de pression.

3.5.7 Mise à l’échelle des profils de pression avec les dimensions du tas

Nous avons mesuré la pression sous un tas de sable conique construit à partir d’un point source en faisant varier progressivement la hauteur du tas entre 4,5 cm et 14 cm. Pour cela, on utilise le montage décrit au paragraphe 3.4.1. Le capteur de pression se trouve à une distance \(r \) de l’embouchure du réservoir qui est initialement en contact avec le plateau. Après avoir monté le réservoir d’une hauteur \(H \), il s’est formé un tas dont le sommet touche l’embouchure du réservoir et on note la pression \(P \) mesurée. Il est facile de vérifier que la pression résiduelle appliquée par les grains contenus dans le réservoir sur le sommet du tas a un effet négligeable. Nous l’avons fait en comparant la pression \(P \) mesurée sous des tas de mêmes dimensions lorsque le réservoir est encore rempli et lorsqu’il est complètement vide. On constate par exemple que remplir de grains un réservoir vide en contact avec le sommet d’un tas ne modifie pas du tout la mesure de pression. En fait, l’ouverture du réservoir est suffisamment petite pour que la majeure partie du poids des grains soit transmise aux parois par un effet de voûtes.
Angle de repos : $\phi = 33.5^\circ$

- $h = 4.5\text{cm}$
- $h = 5.5\text{cm}$
- $h = 6.5\text{cm}$
- $h = 7.5\text{cm}$
- $h = 8.5\text{cm}$
- $h = 9.5\text{cm}$
- $h = 10.5\text{cm}$
- $h = 11.5\text{cm}$
- $h = 12.5\text{cm}$
- $h = 13.5\text{cm}$
- $h = 14\text{cm}$

Fig. 3.28: Mise à l'échelle des mesures de pression pour un tas conique construit à partir d'un point source et de hauteur h variable.

Comme nous l'avons déjà vu, les variables naturelles pour adimensionner le profil de pression sous un tas de sable sont : $P = \frac{P}{\rho g h}$ et $r = \frac{r}{R}$. P et H sont directement mesurés. R est estimé à partir de H connaissant l'angle de repos du tas $\phi = 33.5^\circ$. Pour être exact, la hauteur du tas qu'il faut considérer pour estimer R est $H + \frac{d}{2} \tan \phi$, où d est le diamètre d'ouverture de l'embouchure du réservoir. La densité granulaire ρ est choisie constante quelle que soit la taille du tas, avec une valeur estimée : $\rho = 1.7\text{gcm}^{-3}$. On constate que toutes les mesures se regroupent sur une seule courbe (figure 3.28) pour des tas dont les dimensions sont jusqu'à trois fois plus grandes. Ce résultat nous montre que les expériences de Jotaki et Moriyama sont plutôt suspectes. Nous nous sommes aperçu récemment que, pour obtenir plus de résultats, leurs tas à partir d'un réservoir dont la hauteur est maintenue fixe. Pour faire un tas plus grand, ils changent la hauteur du réservoir et donc l'énergie potentielle de chute des grains. Or, dans le cadre d'une collaboration avec D. Howell et R. P. Behringer, nous avons observé que l'amplitude du minimum de pression est plus prononcé lorsque les grains sont versés depuis un réservoir fixe. Ce comportement expliquerait alors l'augmentation de l'amplitude minimum dans les expériences de Jotaki et Moriyama. D'autre part, les résultats que nous obtenons valide les hypothèses de mise à l'échelle introduite par Bouchaud, Cates, Claudin et Wittmer [89]. Leur argument repose sur le fait que si l'on considère les grains comme rigides, c'est-à-dire ayant une élasticité pratiquement infinie, la seule longueur caractéristique qui intervient dans un tas de sable est sa hauteur ou son rayon (la taille des grains n'est pas prise en compte par les auteurs car ils adoptent une modélisation continue du milieu granulaire). Il faut toutefois reconnaître que nos tas sont assez petits, même s'ils sont déjà plutôt grands pour une expérience de laboratoire. Il n'est pas exclu que des tas de dimensions très supérieures montrent un comportement différent, ne serait-ce que parce que l'intensité des contraintes augmentent avec les dimensions du tas et l'élasticité des grains peut alors ne plus être négligeable. De plus, l'augmentation des contraintes peut éventuellement provoquer un tassement du tas et donc modifier sa

5 Grâce à l'aide d'un traducteur providentiel qui connaît parfaitement le japonais....
3.6 Prédicitions théoriques et expériences

3.6.1 Présentation de quelques modèles

Les modèles que nous allons évoquer brièvement sont basés sur une description continue du milieu granulaire. Cela signifie que l'on peut définir un champ de contraintes et que ce champ obéit aux équations d'équilibre de la mécanique classique. La description complète de l'état de contrainte nécessite alors l'introduction de relations constitutives qui caractérisent certaines propriétés physiques du milieu granulaire.

D'autre part, pour un milieu granulaire sec et non cohésif, l'origine principale des forces tangentielles est l'existence de friction entre les grains couplée avec une résistance à la déformation qui selon le principe de dilatance de Reynolds [66] est liée à la géométrie des grains et de l'empilement. Il se trouve que les lois de Coulomb pour le frottement solide s'appliquent non seulement aux contacts individuels entre grains mais aussi à plus grande échelle lorsque deux couches de grains glissent l'une sur l'autre (voir Brown et Richards [8]). Si T est la force de friction et N la force normale au plan considéré, la loi de Coulomb s'écrit : $|T| \leq \tan \phi$, où ϕ est l'angle de friction intérieur, souvent assimilé à l'angle d'avalanche. L'expression de cette inégalité en faisant intervenir le tenseur des contraintes est alors appelée critère de Mohr-Coulomb. Pour un système bidimensionnel écrit en coordonnées (x, z), le critère de Mohr-Coulomb s'écrit :

$$(\sigma_{zz} - \sigma_{xx})^2 + 4\sigma_{zz}^2 \leq \sin^2 \phi (\sigma_{zz} + \sigma_{xx})^2$$

Toute solution d'un modèle prétendant décrire l'état d'équilibre d'un milieu granulaire doit vérifier cette inégalité en tout point, sans quoi il y aurait des zones instables. Le critère de Mohr-Coulomb est un critère de stabilité.

Modèles élastiques

La théorie élastique couple le champ de contrainte à un champ de déformation du matériau. En élasticité linéaire classique, champ de contrainte et champ de déformation sont reliés par la loi de Hooke. Notons qu'il n'est a priori pas du tout évident qu'un milieu granulaire puisse être considéré comme élastique car l'agencement des grains est tellement fragile qu'il peut suffire de forces très faibles pour que le milieu se déforme de manière irréversible. Il est d'ailleurs assez frappant de constater que le module d'Young employé pour décrire l'élasticité d'un milieu granulaire est environ trois ordres de grandeur en dessous du module d'Young des grains. Par exemple, Savage emploie pour ses simulations [70] un module d'Young $E = 100\text{MPa}$ qui est une valeur typique mesurée sur le terrain, et il précise même que pour des expériences de laboratoire avec du sable relativement peu compact le module d'Young vaut seulement de 1 à 10MPa alors que le module d'Young d'un grain de sable est typiquement $E = 50\text{GPa}$! Cela témoigne bien du caractère étrangement mou ou extrêmement "fragile" du milieu granulaire. Si on suppose malgré tout qu'il est possible de définir des propriétés élastiques telles qu'un module élastique et un coefficient de Poisson, l'application de la théorie élastique au cas précis du tas de sable conduit à une situation physiquement inacceptable. En effet, la solution élastique prédit que, près de la surface du tas, il existe une zone de taille finie où les contraintes ne vérifient plus le critère de stabilité de Mohr-Coulomb. Ainsi, dans le cadre d'un modèle élastique, le tas de sable est une géométrie instable qui va inévitablement se déformer plastiquement.
Modèle rigide-plastique

Une approche classique consiste à supposer que le milieu granulaire est en chaque point à la limite de glissement. En d’autres termes, le critère de Mohr-Coulomb est maintenant vérifié avec une égalité. On parle alors de modèle plastique parfait, de modèle rigide-plastique ou encore de modèle IPE (“Incipient Failure Everywhere”). L’étude complète du modèle et de ses conséquences constitue le point de départ de la théorie de l’état critique [72]. L’hypothèse de glissement en tout point conduit à une relation entre les contraintes qui, pour un système bidimensionnel décrit en coordonnées (x, z), peut s’écrire :

\[
\frac{\sigma_{xx}}{\sigma_{zz}} = \left(1 + 2 \tan^2 \phi \right) + \epsilon \frac{2}{\cos \phi} \sqrt{\tan^2 \phi - \left(\frac{\sigma_{xx}}{\sigma_{zz}}\right)^2}
\]

où \(\epsilon = \pm 1 \). Le signe de \(\epsilon \) est lié au sens de la force de friction dans le plan de glissement (voir par exemple Nederman [54]). Si la force de friction a tendance à s’opposer à l’effet de la gravité, le milieu granulaire est dans un état actif et \(\epsilon = -1 \). Si la force de friction a tendance à s’opposer à l’effet d’une compression horizontale, le milieu granulaire est dans un état passif et \(\epsilon = +1 \). Dans le cas d’un tas de sable qui n’est soumis qu’à son propre poids, on s’attend à ce qu’il soit décrit par la solution correspondant au cas actif. Nous verrons que dans ce cas le modèle plastique prédit un maximum de pression au centre du tas.

Certains auteurs se sont néanmoins intéressés à la solution passive qui n’existe que si l’on introduit une discontinuité de contrainte à l’interface entre deux zones plastiques. A l’interface, il doit y avoir continuité de la contrainte normale perpendiculaire à l’interface et de la contrainte de cisaillement. Par contre, la contrainte normale tangentielle à l’interface peut subir une discontinuité. Dans ce cas, la solution passive prédit un minimum de pression très marqué (voir Savage [70] et références incluses). Le choix de l’interface entre les deux zones plastiques se fait par une méthode d’essais et d’erreurs. Il n’y a donc en fait aucun critère objectif qui justifie la présence d’une surface de discontinuité.

Modèles élasto-plastiques

Un modèle élasto-plastique est une approche mixte qui associe un modèle élastique au modèle plastique évoqué précédemment. Nous avons déjà dit qu’il n’existe pas de solution purement élastique au problème du tas de sable. Cela est dû au fait que la solution élastique sort des limites définies par le critère de Mohr-Coulomb près de la surface du tas. Par contre, il est possible de trouver une solution telle que près de la surface le matériau suit une loi plastique, le reste du tas étant décrit par une loi élastique. Pour des raisons de compatibilité de la solution (la compatibilité assure la continuité du champ de déplacement à l’intérieur du matériau), la limite qui sépare la zone plastique de la zone élastique est un plan dans le cas d’un tas en forme de prisme triangulaire. Il est à noter de nouveau qu’il n’y a aucun critère objectif qui permette de déterminer a priori la position de ce plan. Une solution du modèle a été proposée par Cantelaube et al. [10, 11] dans la limite d’un milieu avec un grand module élastique. L’extension à trois dimensions des modèles élastoplastiques est cependant délicate.

Modèle OSL

Nous avons étroitement collaboré avec Philippe Claudin et Jean-Philippe Bouchaud pour tester l’aptitude du modèle OSL à décrire les profils de pression observés expérimentalement.
Pour une bonne compréhension de ce modèle, nous renvoyons le lecteur à la thèse de Philippe Claudin [13] ainsi qu’aux nombreux articles publiés sur ce sujet [6, 12, 89]. Nous allons toutefois rappeler quelques points clés du modèle. Le modèle OSL ("Oriented Stress Linearity") permet de résoudre les équations d’équilibre d’un matériau granulaire modélisé comme un milieu continu, mais sans faire intervenir le champ des déplacements contrai-

rement à l’approche classique de la théorie élastique. Le modèle OSL postule une relation
entre les contraintes pour fermer le système des équations d’équilibre. A deux dimensions, en coordonnées cartésiennes (x, z), la relation entre les contraintes peut s’écrire :

$$\sigma_{xx} = \eta\sigma_{zz} + \mu|\sigma_{xz}|$$

où z est la direction verticale descendante, η et μ étant des constantes. A trois dimensions, pour un système axisymétrique tel que le tas de sable ou le silo, certaines contraintes sont nulles par symétrie. En particulier, en coordonnées cylindriques (r, θ, z), on doit avoir $\sigma_{r\theta} = \sigma_{\theta r} = 0$ et $\sigma_{\theta z} = \sigma_{z\theta} = 0$. Deux relations sont alors nécessaires :

$$\sigma_{rr} = \eta\sigma_{zz} + \mu\sigma_{rz}$$

et

$$\sigma_{r\theta} = \sigma_{rr}$$

Cette dernière relation compte tenu de la symétrie du problème est équivalente à l’hypothèse de Haar-von Karman stipulant que $\sigma_{r\theta}$ doit être une contrainte principale et est donc égale à l’une des deux autres contraintes principales [54]. La (les) relation(s) constitutive(s) combinée(s) avec les équations d’équilibres conduisent à des équations de propagation d’ondes de type hyperbolique. Les directions de propagation obtenues (aussi appelées caractéristiques) sont sensées représenter les directions des chaînes de force ou voûtes dans le milieu granulaire. A deux dimensions, ces directions sont des droites dont l’inclinaison est la même dans tout le milieu à partir du moment où η et μ sont constants. Indiquons également que les caractéristiques sont en général distinctes des directions des axes principaux, ou des directions des plans de glissement s’il y en a. En outre, pour qu’une solution soit physiquement acceptable, les contraintes doivent vérifier le critère de stabilité de Mohr-Coulomb.

Dans le cas d’un tas de sable dont l’angle de repos correspond à l’angle d’avalanche ϕ, la condition de limite de glissement en surface impose une relation supplémentaire liant η, μ et ϕ :

$$\eta = \eta_0 \left(1 - \mu \tan \phi\right) \quad (3.9)$$

où on a posé :

$$\frac{1}{\eta_0} = 1 + 2\tan^2 \phi \quad (3.10)$$

Dans le cadre du modèle OSL, il n’y a donc qu’un seul paramètre libre pour un tas se trouvant à l’angle d’avalanche. En pratique, l’angle du tas après avalanche est tou-
jours légèrement plus petit que l’angle auquel se déclenche l’avalanche. On négligera cette différences souvent minime (de l’ordre de 1°) en choisissant comme paramètre du modèle OSL l’angle de repos du tas.

3.6.2 Comparaison avec les données expérimentales

Afin de comparer plus aisément les prédictions des modèles et les résultats de nos expériences, les profils de pression ont été normalisés en utilisant les intégrales (3.6) et (3.8). Nous nous sommes limités pour cette comparaison au modèle rigide-plastique et au
<table>
<thead>
<tr>
<th>Cône</th>
<th>η</th>
<th>μ</th>
<th>$E \times 10^{-2}$</th>
<th>$D \times 10^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>point source</td>
<td>0.88</td>
<td>-1.18</td>
<td>3.57</td>
<td>-0.38</td>
</tr>
<tr>
<td>couches</td>
<td>0.4</td>
<td>0.21</td>
<td>2.16</td>
<td>-1.47</td>
</tr>
<tr>
<td>Prisme</td>
<td>η</td>
<td>μ</td>
<td>$E \times 10^{-2}$</td>
<td>$D \times 10^{-2}$</td>
</tr>
<tr>
<td>ligne source</td>
<td>0.55</td>
<td>-0.19</td>
<td>2.44</td>
<td>0.28</td>
</tr>
<tr>
<td>couches</td>
<td>0.38</td>
<td>0.32</td>
<td>2.05</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

Tab. 3.3: Valeurs des paramètres du modèle OSL permettant le meilleur ajustement des données expérimentales ainsi que les valeurs de l’erreur quadratique moyen et algébrique correspondants.

Fig. 3.29: Ajustement du modèle OSL à trois dimensions au profil de pression du tas conique construit à partir d’un point source.
Fig. 3.30: Ajustement du modèle OSL à trois dimensions au profil de pression d’un tas conique construit par dépôt en couches horizontales. La courbe IFE à trois dimensions (modèle rigide-plastique) dans le cas actif est aussi représenté pour information.

Fig. 3.31: Ajustement du modèle OSL à deux dimensions au profil de pression d’un prisme triangulaire construit à partir d’un ligne source.
modèle OSL. En plus des courbes prédites par ces deux modèles, nous avons également tracé la courbe de pression hydrostatique obtenue en supposant que tout le poids des grains est transmis verticalement. La courbe de pression hydrostatique se confond alors avec la forme en coupe du tas.

La solution du modèle OSL à deux dimensions est utilisée pour décrire le profil du prisme triangulaire, tandis que la solution OSL à trois dimensions est utilisée pour le cône. L’ajustement du modèle aux données comportant N points se fait en minimisant l’écart quadratique moyen \(E \) entre la pression mesurée \(P_i \) et la pression théorique \(P_i^t \).

\[
E^2 = \frac{1}{N} \sum_{i=1}^{N} (P_i - P_i^t)^2
\]

On peut aussi calculer l’écart algébrique \(D \):

\[
D = \frac{1}{N} \sum_{i=1}^{N} (P_i - P_i^t)
\]

qui indique si les points expérimentaux sont plutôt répartis au-dessus ou en-dessous de la courbe OSL, la valeur \(D = 0 \) correspondant à une répartition homogène de part et d’autre de la courbe. Pour un angle de repos \(\phi = 33° \), le tableau 3.3 récapitule les valeurs des paramètres \(\eta \) et \(\mu \) obtenus en ajustant au mieux le modèle OSL aux données expérimentales par une méthode de moindres carrés. Nous donnons en fait une fourchette des valeurs possibles car le minimum de l’écart quadratique moyen \(E \) est assez mal défini. Le modèle rigide-plastique (IFE) ne nécessite pas d’ajustement puisqu’il est entièrement déterminé une fois connu l’angle de repos. Notons que les valeurs de l’angle de repos utilisées pour les courbes IFE (\(\phi = 32.6° \) pour le cône et \(\phi = 30° \) pour le prisme) ne sont pas idéales mais nous n’avions pas d’autres courbes à notre disposition. Nous observons que dans tous les cas, le modèle OSL arrive à reproduire assez bien la forme des profils de pression observés.
FIG. 3.33: Dans le modèle OSL, les contraintes se propagent selon des directions définies par c_+ et c_-. On a représenté les caractéristiques issues de la surface libre et arrivant en un point donné à la base du tas, avec ou sans réflexion sur l’axe OZ. En deux dimensions, la contrainte verticale peut s’exprimer à l’aide d’une formule unique en fonction de Z_+ et Z_-.
(voir figures 3.29, 3.30, 3.31 et 3.32). L’ajustement est cependant meilleur pour les profils de pression ayant un maximum au centre que pour les profils ayant un minimum. De plus, le maximum de pression pour la solution OSL est systématiquement décalé vers les bords du tas aussi bien pour le cône que pour le prisme triangulaire. La courbe IFE correspondant au cas actif du modèle rigide-plastique est montré dans les cas où il n’y a pas de minimum de pression au centre (voir figures 3.30 et 3.32). Même dans ces cas, la courbe IFE est plus éloignée des données expérimentales que le modèle OSL (cette remarque s’applique surtout à la solution obtenue pour le cône car l’angle de repos choisi est pratiquement le même pour les deux modèles). En regardant un peu plus attentivement les valeurs des paramètres η et μ dans le tableau 3.3, on constate qu’un profil de pression avec un minimum au centre du tas correspond à une valeur de μ négative et de surcroît d’autant plus grande en valeur absolue que l’amplitude du minimum de pression est importante. A l’inverse, un profil de pression plus plat et ayant un léger maximum de pression au centre correspond à une valeur de μ positive et relativement petite. Comme μ intervient sur la composante de cisaillement dans la relation OSL, il est tentant de conclure qu’une valeur de μ négative est la signature d’un mécanisme d’avalanches, et une valeur de μ positive et proche de zero est plutôt le signe que les avalanches ne jouent pas un rôle important.\(^6\) En fait, bien que cette interprétation qualitative soit en accord avec le mode de construction adopté dans les expériences, le rôle réel du paramètre μ dans le modèle est un peu plus subtil. Pour mieux comprendre ce qu’il se passe, il faut se plonger plus en détail dans la résolution du modèle. Les directions de propagation (ou caractéristiques) que nous avons déjà évoqués plus haut (paragraphe 3.6.1) sont reliées aux paramètres du modèle η et μ. Si c_+ et c_- sont les tangentes des directions de propagation définies par rapport à la direction verticale, on obtient les relations suivantes :

$$c_\pm = \frac{1}{2} \left(\mu \pm \sqrt{\mu^2 + 4\eta} \right)$$ \hspace{1cm} (3.11)

Par convention, la caractéristique $+$ est dirigée vers l’extérieur du tas et la caractéristique $-$ vers l’intérieur. Cela se traduit dans l’équation (3.11) par le fait que c_+ est toujours positive et c_- est toujours négative. Un point important est que la direction de propagation la plus proche de la verticale a tendance à transporter la plus grosse partie du poids. En effet, si on considère la solution pour un tas de sable en deux dimensions (ou toute autre géométrie à partir du moment où il n’y a pas l’influence d’une paroi comme dans le silo et qu’il existe une surface libre), la contrainte verticale en bas du tas peut se mettre sous la forme :

$$\sigma_{zz} = \rho g \left[\frac{Z_- + \frac{k_1}{c_+} Z_+}{1 + \frac{k_1}{c_+}} \right]$$ \hspace{1cm} (3.12)

où Z_- (respectivement Z_+) est la hauteur parcourue depuis la surface libre par la caractéristique arrivant en bas du tas selon la direction $-$ (respectivement $+$), et ceci en incluant la hauteur parcourue avant et après une réflexion éventuelle de la caractéristique au centre du tas (le principe de réflexion des caractéristiques est très bien expliqué dans la thèse de P. Claudin [13]). Les deux situations possibles dans le cas du tas sont montrées figure 3.33. L’équation (3.12) nous montre que la solution OSL revient à faire une moyenne pondérée de la pression hydrostatique associée à chaque caractéristique. On voit que suivant les valeurs du rapport $\frac{k_1}{c_+}$, un rôle plus ou moins important est donné à la direction

\(^6\)Pour être plus précis, si l’on fait croître un tas par avalanches en supposant que la condition de glissement à la surface du tas impose une fois pour toute la direction des axes principaux, les paramètres du modèle OSL sont alors $\eta = 1$ et $\mu = -2 \tan \phi$. Un tel mécanisme donne bien une valeur de μ négative. Ce cas particulier du modèle OSL porte aussi le nom de modèle FPA (Fixed Principal Axis).
+. Ainsi, lorsque \(\mu < 0 \), on a \(|v_-| > c_+\) d’après l’équation (3.11), ce qui signifie que la composante du poids transmise vers l’extérieur du tas est privilégiée par rapport à la composante transmise vers l’intérieur. C’est effectivement l’image intuitive que l’on peut avoir d’un effet de voûte dans le tas de sable. Lorsque \(\mu = 0 \) (donc \(|v_-| = c_+\)), les deux directions sont équivalentes et le poids se transmet de façon symétrique vers l’intérieur du tas et vers l’extérieur. La pression au centre du tas est alors uniforme. Enfin, le cas \(\mu > 0 \) (\(|v_-| < c_+\)) revient à privilégier la composante du poids transmise vers l’intérieur du tas de sorte que le maximum de pression se trouve maintenant au centre du tas.

Expérimentalement, le tas construit par écoulement des grains en avalanches (figures 3.29 et 3.31) est bien représenté par un modèle OSL où \(\mu \) est négatif. Dans ce cas, les avalanches s’écoulent vers l’extérieur du tas et introduisent donc une dissymétrie naturelle dans le tas de sable. Cette dissymétrie est à rapprocher de la transmission dissymétrique du poids des grains dans le modèle OSL lorsque \(\mu < 0 \). Par contre, le tas construit à partir d’un tamis (figures 3.30 et 3.32) a un profil de pression qui correspond à une valeur de \(\mu \) positive. Dans ce cas, la direction principale de l’écoulement est verticale et n’introduit pas de dissymétrie particulière entre l’extérieur et l’intérieur du tas. Par analogie avec le cas précédent, on aurait pu s’attendre à ce que le modèle OSL avec \(\mu = 0 \) décrive bien cette situation puisque les caractéristiques sont alors symétriques par rapport à la verticale. En fait, du moins pour le cône, \(\mu \) est positif mais assez voisin de zéro si bien que l’analogie entre symétrie de l’écoulement et symétrie des caractéristiques n’est peut-être pas si mauvaise. Pour tester plus en profondeur cette analogie, il faudrait réussir à construire un tas qui donnerait une valeur de \(\mu \) positive encore plus élevée. On pourrait par exemple utiliser simultanément deux sources de façon à former deux tas qui tout en grandissant vont se rejoindre et finir par former un seul tas. De cette façon, les avalanches de grains qui se produisent entre les deux tas formeraient un flux de grains dirigé vers l’intérieur du tas final, du moins au début du processus. Pour que le sommet du tas ainsi construit ne soit pas tronqué, il faudrait en outre permettre aux sources de se rapprocher au fur et à mesure. C’est somme toute une expérience assez simple qui pourrait fournir des renseignements très utiles sur les relations profondes qui semblent exister entre le mode de construction d’un tas de sable et le modèle OSL.

3.7 Discussion et conclusion

En 1954, Parry (voir Savage [71]) jugea que les mesures de Hummel et Finnan [32] étaient suspectes parce qu’ils ont observé une hystérésis de la mesure après avoir dérangé la surface du tas. Nos observations montrent qu’il existe effectivement une hystérésis de la mesure, non pas parce que le capteur est défectueux, mais plutôt parce qu’il existe un couplage intrinsèque entre l’équilibre des grains et celui du capteur. Ce couplage est dû à la présence de forces de frictions qui autorisent le blocage des grains lorsqu’on pousse sur le milieu granulaire, de façon similaire à ce qui se passe dans un silo. Nous avons observé qu’un choc donné sur le plateau du tas provoque presque toujours une augmentation de la pression sur le capteur. On peut comprendre cela en se rappelant ce qu’il se passe dans un silo. Le choc provoque la vibration des différentes parties du montage, et en particulier de la membrane du capteur. Rien n’empêche la membrane de se déplacer en s’éloignant des grains. Par contre, lorsque la membrane essaye de se déplacer en poussant sur les grains, elle rencontre une résistance, sans doute parce qu’en plus du poids des grains, il faut vaincre les forces de friction et, selon le principe de dilatance de Reynolds [66], une résistance à la déformation due à la géométrie de l’empilement. Il semble en fait que, mis à part dans un petit nombre de travaux tels que ceux de Hummel et Finnan
[32], le problème lié à l’hystérésis de la mesure est complètement occulté. C’est pourtant un problème fondamental car il pose la question délicate suivante : comment peut-on mesurer des forces dans un milieu granulaire sans que ces forces soient dépendantes des propriétés physiques du capteur, et en premier lieu de ces propriétés élastiques ? Cette thèse nous a permis d’approfondir un peu cette question. Nous avons actuellement les moyens de tester le rôle perturbateur du capteur en changeant les propriétés élastiques de la membrane. Nous avons pu montrer que la répartition de pression sous un tas dépend du mode de déposition des grains sur le support. Cependant, il faut être conscient que la pression dynamique vue par le capteur lors des différents modes opératoires peut a priori jouer un rôle perturbateur sur la pression finale. En particulier, on pourrait imaginer que la disparition du minimum de pression dans un tas construit en couches est en fait due à une pression dynamique plus forte lorsque les grains coulent à travers le tamis que lorsqu’ils coulent par l’embouchure d’un entretoise (peut-être parce que dans une avalanche les grains arrivent par fines couches recouvrant progressivement le capteur alors que dans une pluie les grains recouvrent le capteur entièrement dès le départ). L’existence de cette pression dynamique est réelle, et nous avons pu l’observer à maintes reprises, en particulier sur la périphérie du tas. A cet endroit, la pression mesurée pendant que les grains coulent en pluie est alors plus élevée que la pression finale au repos (nous faisons ici référence au tas construit en couches horizontales). Toutefois, si la différence de forme entre les profils de pression pouvait s’expliquer par un phénomène d’hystérésis du capteur, on devrait observer un biais systématique des pressions mesurées. Or, nous avons vu qu’il existe un bon accord entre l’intégrale du profil de pression obtenu pour un tas conique construit à partir d’un point source et celui d’un tas conique construit avec un tamis. Nous pensons donc que dans le cadre de nos expériences l’hystérésis du capteur peut être négligée.

En conclusion, nous avons mesuré la distribution de pression sous un tas de sable en cherchant à limiter l’effet des déformations du plateau et de la membrane. Nous avons testé le rôle du mode de construction sur la forme du profil de pression. Lorsqu’un tas est construit en avalanches soit à partir d’un point source, soit à partir d’une ligne source, le profil de pression présente un minimum au centre du tas. L’amplitude de ce minimum est cependant bien moindre dans le cas du prisme triangulaire que dans le cas du cône. Lorsqu’un tas est construit en déposant des couches horizontales les unes sur les autres, le minimum de pression au centre du tas disparaît. Nous mettons ainsi en évidence le rôle important du mode de préparation du tas sur son équilibre final. Ces résultats peuvent s’interpréter dans le cadre du modèle OSL qui reproduit assez bien les profils de pression observés expérimentalement. De plus, les propriétés de symétrie de l’écoulement lors de la formation du tas semblent pouvoir être reliées à la symétrie des directions de propagation dans le modèle OSL. Une étude plus systématique des liens qui existent entre le mode de préparation du tas et les paramètres du modèle OSL correspondant aux profils de pression mesurés est nécessaire pour mieux comprendre ces propriétés. Dans une étude préliminaire, nous avons également observé qu’un tas pouvait garder une certaine mémoire de son état antérieur. C’est ce que nous avons vu en fabriquant un tas conique dont la pression est maximum au centre à partir d’un "demi-tas" qui présente un minimum de pression sous le sommet. La construction d’un demi-tas près d’une paroi nous a également montré une augmentation inattendue du minimum de pression qui demeure tout aussi inexplicable que le faible minimum observé pour le prisme triangulaire. On voit donc que nous sommes loin d’avoir entièrement compris comment se fait l’équilibre d’un tas de sable et que cela pose des questions fondamentales très intéressantes, tout au moins pour un physicien.
Chapitre 4

Un modèle d’arche

4.1 Introduction

Ce chapitre est consacré à la description d’une expérience qui met en évidence la formation d’arches\(^1\) lors de l’écoulement d’un milieu granulaire dans un tube. Ces arches sont en fait des lignes de fractures qui témoignent de la présence de chaînes de forces très fortes dans le milieu granulaire. Nous allons voir que l’existence de ces arches est fortement dépendante du mode de préparation de l’empilement granulaire. Nous décrirons alors un mécanisme de "durcissement" des arches obtenu en étudiant les positions d’équilibre d’une cellule élémentaire de trois billes frottant couplées avec un ressort. L’analyse prend en compte l’indétermination des forces de friction entre les billes, sachant que le ressort est une représentation simplifiée de la réponse élastique du milieu granulaire environnant ou des parois du récipient. Nous chercherons dans cette partie à présenter les principales étapes du modèle sans entrer dans tous les détails. Le lecteur désireux d’en savoir plus pourra se reporter à l’article complet qui se trouve à la fin de ce chapitre.

4.2 Observations

4.2.1 Cellule bidimensionnelle

Le montage que nous allons décrire ici est l’équivalent à deux dimensions du montage que nous avons utilisé pour étudier la pression dans une colonne granulaire. Considérons un empilement bidimensionnel de billes d’aluminium de diamètre \(d = 1.5\) mm maintenues entre deux plaques de verre verticales et distantes de \(1.6\) mm. Les billes sont retenues sur le côté par des parois latérales en plexiglas et reposent sur un piston que l’on peut faire coulisser entre les deux plaques. L’expérience consiste à appliquer une force sur l’empilement en poussant sur le piston avec une lame de ressort puis à relâcher cette force. Il arrive alors souvent que l’empilement granulaire puisse rester en équilibre seul, sans l’aide du piston que l’on a retiré de la cellule (voir figure 4.1). En bas de l’empilement, on voit une rangée horizontale de billes en contact les unes avec les autres et en contact avec les parois latérales. Cette rangée de billes forme une arche qui soutient l’empilement. Il suffit alors d’un faible choc pour détruire l’équilibre très instable de cette arche. Dans cette expérience, il est

\(^1\)Nous employons le terme "arches" pour désigner une surface de discontinuité des contraintes. Ce terme est équivalent à la notion de "voûte architecturale". Il est important de ne pas confondre ce terme avec la notion de chaînes de forces que les physiciens appellent de manière équivalentes "voûtes". Les "voûtes" désignent donc des chaînes des forces qui peuvent éventuellement former une "voûte architecturale" ou arche.
Fig. 4.1: Deux expériences de laboratoire montrant la formation d’arches ayant une longue durée de vie. (1) est le schéma d’une expérience dans une géométrie bidimensionnelle. (2) est le schéma d’une expérience dans un tube cylindrique. Les étapes (a), (b) et (c) sont décrites dans le texte.

Il est possible que les parois de verre contribuent à la stabilité de l’arche.

4.2.2 Expériences dans un tube cylindrique avec de la sépiolite

Pour cette expérience, on utilise un tube cylindrique de diamètre intérieur 65mm dont les extrémités sont obturées avec des bouchons en plastique enfoncés de manière à ce qu’ils ne dépassent pas du tube. Le milieu granulaire utilisé est de la sépiolite (silicate de magnésium hydraté $H_4MgSi_3O_{10}$) constituée de grains de formes très ir régulières et de dimensions comprises entre 0.2 et 6mm. Nous allons maintenant décrire en détail le mode opératoire.

1. On note A l’extrémité inférieure du tube et on remplit le tube par l’extrémité notée B jusqu’à une hauteur typique de 50cm (voir schéma (a) de la figure 4.1).

2. On retourne alors le tube jusqu’à ce que le milieu granulaire se mette à couler. On constate que les grains s’écoulent le long des parois en un flot continu. Cette situation correspond au schéma (c) de la figure 4.1.

3. L’extrémité inférieure du tube (maintenant l’extrémité B) est ensuite soumise à un choc vertical obtenu par collision contre une surface dure. Sous l’effet du choc, le milieu granulaire se compacte et réduit sa hauteur d’environ 1cm. Lorsque l’on retourne le tube, on observe alors un comportement nouveau. Au lieu de s’écouler en un flot continu, le milieu granulaire s’écoule par un processus de fragmentation en blocs, faisant apparaître temporairement des arches. Quelques fois, la durée de vie de l’arche est très grande si bien que l’écoulement est complètement bloqué. Ce processus est représenté par le schéma (b) de la figure 4.1.

4. Recommencons les étapes 1 et 2. Appliquons un choc en bas du tube (extrémité B) comme nous l’avons décrit à l’étape 3, mais ensuite, avant de retourner le tube,
donnons un choc vertical sur l’extrémité A. Par rapport à l’étape 3, la hauteur dans le tube est réduite d’un bon demi-centimètre supplémentaire. Lorsque l’on retourne le tube, le milieu granulaire s’écoule en un flot continu comme observé à l’étape 2.

5. Partons de nouveau de l’étape 2. Après avoir donné de nombreux coups sur les parois latérales du tube de façon à réduire la hauteur de grains d'environ 5cm, on retourne le tube et on constate que les grains s’écoulent en un flot continu.

Les expériences que nous venons de décrire sont très reproductibles. Elles montrent l’importance du mode de préparation du milieu granulaire sur les propriétés d’écoulement. En particulier, elles montrent que l’anisotropie de préparation du milieu granulaire joue un rôle important. On remarque aussi qu’il n’y a pas de relation directe entre la densité du milieu granulaire et le type d’écoulement. En effet, à l’étape 5, le milieu granulaire est très compact et on n’observe pourtant pas la formation d’arches.

Dans la suite, nous allons essayer de comprendre le mécanisme qui sous-tend la formation d’arches plus ou moins solides dans un milieu granulaire. À la base du modèle, on trouve un effet d’hystérésis lié à la mobilisation de la friction que nous allons illustrer à travers un modèle "jouet".

4.3 Modèle "jouet"

Fig. 4.2: Indétermination des positions d’équilibre pour un système ressort-masse. (a) : La masse est soumise à une force de réaction normale \(N \), une force de friction \(F \), une force élastique de la part du ressort \(R \) et à son propre poids. (b) : Succession des positions d’équilibres de la masse lorsque le plan est initialement incliné à \(\theta = 90^\circ \) (courbe en escaliers). La courbe passant par zéro donne les positions d’équilibre de la masse en l’absence de friction. Les deux autres courbes donnent les positions d’équilibre lorsque la friction est complètement mobilisée.

Considérons l’équilibre d’une masse frottante avec un ressort sur un plan inclinable (voir figure 4.2). Un tel système possède des propriétés hystérétiques que nous allons brièvement décrire. La compression du ressort sera notée \(x \), et l’angle d’inclinaison du plan \(\theta \).
Nous allons décrire ce qu’il se passe lorsque l’on diminue progressivement et lentement l’angle θ depuis la position $\theta = 90^\circ$ jusqu’à zéro. Initialement, la compression du ressort est maximale et la force de frottement avec le plan est nulle. Lorsque l’on diminue θ, la composante du poids vue par le ressort diminue, mais le ressort ne peut se décomposer que à cause de la mobilisation progressive de la friction entre la masse et le plan. Cette situation continue jusqu’à mobilisation complète de la friction ($\theta = \theta^*$). Au delà, la masse va se mettre à glisser vers le haut et le ressort se décomprime. Supposons alors que le coefficient de frottement dynamique est nul, mais que la masse est amortie par un frottement visqueux. Dans ce cas, la masse va atteindre une position d’équilibre telle que la force de friction s’annule (voir figure 4.2 (b)). Ainsi, la diminution de l’angle θ s’accompagne d’une succession de phases où la compression du ressort est constante et de phases d’ascension de la masse (diminution de x). Dans ce processus, chaque position d’équilibre est complètement déterminée par la position d’équilibre précédente. En quelque sorte, le ressort garde la mémoire des positions d’équilibre à chaque étape. Lorsque le plan a atteint la position horizontale $\theta = 0$, la masse peut se trouver n’importe où entre le point O et le point C indiqué sur le figure 4.2. Que se passe-t-il si maintenant on repart dans l’autre sens, c’est-à-dire si l’on augmente progressivement et lentement l’angle θ ? On va observer exactement le même type de comportement à une différence près : pour que la masse se mette à glisser, il va falloir mobiliser complètement la friction mais dans une direction opposée à ce qui se produisait lors de la descente. Pour atteindre la limite de glissement, la masse doit d’abord repasser par la position d’équilibre à friction nulle, puis renverser le sens de la force de friction. La succession des positions d’équilibre obtenues lorsque l’on augmente l’inclinaison du plan est alors complètement différente de celle obtenue précédemment. Sur la figure 4.2, la situation correspond au cas particulier où en réduisant θ, la masse arrive à la limite de glissement en $\theta = 0$. Dans ce cas, la masse repart de la position $x = 0$ lorsque l’on augmente θ.

On voit donc que le système couplé ressort-masse frottante possède naturellement un comportement hystérétique. Nous allons voir qu’il en est de même pour un milieu granulaire que l’on considère comme déformable.

4.4 Modèle d’arche hystérétique

Nous cherchons ici à décrire de manière simplifiée le couplage entre la mobilisation de la friction et la déformation dans un empilement de billes sphériques. Pour cela, nous allons nous intéresser à l’équilibre d’une bille A que l’on essaie d’insérer dans une rangée de billes horizontales en appuyant avec une force $2Q$ (voir figure 4.3). La bille A est en contact frottant avec les billes B et B' supposées rigides tandis que le reste de la rangée de billes peut se déformer élastiquement. Pour simplifier, nous nous limitons à une situation symétrique telle que la bille A se déplace uniquement verticalement et les billes B et B' se déplacent uniquement horizontalement. La réponse élastique des billes est modélisée par un ressort qui exerce une force F. Il est important de remarquer que F est une fonction purement géométrique qui dépend de l’angle de pénétration α (α est défini sur la figure 4.3). Les forces de contact T_A et N_A entre les billes A et B sont liées par l’équation suivante :

$$T_A = \varepsilon f N_A$$

où f est le coefficient de friction entre les billes, et $\varepsilon \in [-1, +1]$ est un paramètre qui définit le degré de mobilisation de la force de friction. Une relation similaire existe pour les forces de contact entre les billes A et B'. Si on ajoute à cela les équations d’équilibre
Fig. 4.3: Schéma du modèle. On suppose que le mouvement de la bille A est uniquement vertical, tandis que le mouvement des billes B et B' est uniquement horizontal.

des billes A, B et B', on peut alors montrer qu'il existe entre les forces F et Q la relation suivante :

$$F = Q \frac{1 - \varepsilon f \tan \alpha}{\tan \alpha + \varepsilon f}$$

(4.1)

Cette relation nous montre qu'il est possible d'augmenter (ou diminuer) la force Q tout en gardant une valeur de α fixe (F est alors également fixe) à condition que les forces de friction ne soient pas entièrement mobilisées, c'est à dire que $|\varepsilon| < 1$. Tant que cette condition est vérifiée, les forces de friction peuvent évoluer de manière à équilibrer les variations de la force Q. Lorsque les forces de friction atteignent la limite de glissement ($\varepsilon = 1$), on supposera comme dans le modèle "jouet" du paragraphe 4.3 que le système se rééquilibre vers un état où les forces de friction s'annulent. Dans ce cas, la valeur de l'angle α correspondant au nouvel état d'équilibre est déterminée par l'équation : $Q = F \tan \alpha$. Pour trouver α, il faut préciser la dépendance de F avec le paramètre géométrique α. On peut par exemple écrire : $F = F_{\text{max}} (2 \cos \alpha - 1)$ si l'on suppose une élasticité linéaire et que la force élastique est nulle lorsque les billes B et B' sont en contact 2. L'équation (4.1) peut alors s'écrire :

$$Q = F_{\text{max}} (2 \cos \alpha - 1) \frac{\tan \alpha + \varepsilon f}{1 - \varepsilon f \tan \alpha}$$

(4.2)

Nous avons représenté sur la figure 4.4 les variations de F et Q en fonction de α. Les valeurs d'équilibre possibles pour Q sont comprises entre la courbe $Q(\alpha)$ pour $\varepsilon = +1$ et $Q(\alpha)$ pour $\varepsilon = -1$. Le point L (respectivement U) est l'état d'équilibre limite lorsque l'on augmente (respectivement diminue) la charge Q sur la bille A.

Nous allons voir que la forme de la courbe $Q(\alpha)$ a un rapport avec le problème de stabilité des arches. Supposons pour commencer que les contacts sont non frottants (ε est identiquement nul). Pour tout le domaine de variation de α, F est une fonction monotone de α telle que $\partial_{\alpha} F < 0$. Par contre, Q est une fonction non monotone. Dans la zone où $\partial_{\alpha} Q < \frac{\tan \alpha + \varepsilon f}{1 - \varepsilon f \tan \alpha}$

2voir article pour une expression plus générale de F en fonction de α.
Fig. 4.4: Evolution des forces F et Q en fonction de l'angle de pénétration α. Les courbes $Q(\alpha)$ sont tracées dans le cas où la friction s'annule ($\varepsilon = 0$) et dans le cas où la friction est complètement mobilisée ($\varepsilon = \pm 1$).

0, une augmentation de la charge Q entraîne une augmentation de la force élastique F. Si l'on réduit la charge Q, la force élastique F tend à ramener l'angle de pénétration à son angle de pénétration initial. Le comportement du système est alors réversible. Par contre, si $\varepsilon = 0$, le système devient instable car Q est plus grand que toute valeur d'équilibre. Si l'on maintient cette force Q suffisamment longtemps, le système va tendre vers la position $\alpha = 0$ pour laquelle la force élastique est maximale. Lorsqu'on relâche la force Q, la bille A reste bloquée dans cette nouvelle position et le système a donc un comportement irréversible. En présence de friction, ce mécanisme d'instabilité va nous permettre d'interpréter le phénomène de "durcissement" des arches observé expérimentalement.

Considérons maintenant le cas général où les contacts sont frottants. Pour décrire l'évolution du système, nous allons nous placer dans un diagramme $F(Q)$ (voir figure 4.5) qui est l'analogue de la représentation $x(\theta)$ obtenue dans le modèle "jouet" du paragraphe 4.3. Partons d'un point d'équilibre S où la friction n'est pas mobilisée et augmentons la charge Q jusqu'à ce que l'on atteigne la limite de glissement au point A sur la courbe $\varepsilon = +1$. Le système relaxe alors jusqu'à une position d'équilibre où la friction n'est plus mobilisée. Ce processus se poursuit jusqu'au moment où l'on atteint le point P. Au point P, nous sommes à la limite de glissement mais il n'existe plus de positions stables à friction nulle pour la valeur de la charge Q appliquée. Le système est alors instable et comme nous l'avons décrit dans le cas sans force de frottement, l'angle de pénétration α va tendre vers zéro. En pratique, la dynamique de retour à l'équilibre est assez complexe, et on finit par atteindre un nouveau point d'équilibre E_2.

A partir du diagramme de la figure 4.5, nous pouvons maintenant préciser ce que nous avons appelé "durcissement" des arches. Pour simuler l'inversion de la gravité dans le système, on peut diminuer progressivement la charge Q jusqu'à ce que l'on obtienne une position d'équilibre où la charge Q est négative. Si le système est dans un état tel que
Fig. 4.5: Evolution de l'équilibre du système dans le plan \(F(Q) \). La courbe en escalier est un exemple de trajectoire typique. De gauche à droite, les trois courbes en trait plein correspondent aux états d'équilibre lorsque \(\varepsilon = -1, 0, +1 \).

\(F > F^\alpha_\text{apex}^{-1} \) (comme par exemple le point \(E_2 \)), la charge \(Q \) va diminuer à force \(F \) constante jusqu'à atteindre la courbe \(\varepsilon = -1 \) où le système relaxe en augmentant la force élastique \(F \). Après une série de relaxations et de plateaux de la force \(F \), on finit par atteindre des valeurs négatives de la force \(Q \). La valeur maximale \(Q_{\text{max}} = -f F_{\text{max}} \) est atteinte lorsque \(\alpha = 0 \) et \(\varepsilon = -1 \), c'est à dire lorsque la force de compression élastique est maximale. Dans ce cas, si \(F_{\text{max}} \) est suffisamment grand, les forces de friction entre la bille \(A \) et les billes \(B \) et \(B' \) peuvent permettre à la bille \(A \) de résister à l'inversion de la gravité. Nous avons donc fabriqué une arche, et nous avons vu que l'inversion de la gravité permet de consolider cette arche parce qu'elle permet une augmentation de la force élastique dans la chaîne de billes. Par contre, si le système est dans un état tel que \(F < F^\alpha_\text{apex}^{-1} \) (comme par exemple le point \(E_1 \)), la charge \(Q \) va diminuer à force \(F \) constante jusqu'à atteindre la courbe \(\varepsilon = -1 \) où le système relaxe de façon à réduire la force élastique \(F \). Après une série de relaxations et de plateaux de la force \(F \), on finit par atteindre l'état \(F = 0 \) lorsque \(Q = 0 \). Si la charge \(Q \) devient négative, la bille \(A \) va se détacher des billes \(B \) et \(B' \) puisque la force \(F \) est nulle et que les forces de friction entre la bille \(A \) et les billes \(B \) et \(B' \) sont par conséquent nulles. Dans ce cas, il ne peut y avoir formation d'une arche stable.

4.5 Discussion et conclusion

Il est possible qu'un tel mécanisme de "durcissement" des arches soit à l'origine de l'écoulement fragmentaire observé expérimentalement. On peut en effet imaginer que suivant la direction des chocs donnés sur le tube, les grains forment des chaînes qui sont plus ou moins comprimées. Si la compression de ces chaînes est suffisante, il se produit alors un durcissement des chaînes lorsqu'on retourne le tube, et le milieu granulaire s'écoule en formant des fragments. Si la compression des chaînes est moindre, les chaînes vont se décomprimer lorsqu'on retourne le tube, et le milieu granulaire va pouvoir s'écouler en un
flot continu.

Dans ce modèle nous avons considéré la déformation d’une chaîne de billes. On aurait pu tout aussi bien considérer la chaîne de billes comme rigide et prendre en compte les déformations des parois du récipient sans changer fondamentalement le mécanisme de "durcissement" des arches. On s'attend en fait à ce que la rigidité des parois joue un rôle aussi important, si ce n'est plus, que la rigidité des grains.

Le modèle que nous avons présenté simplifie à l'extrême le milieu granulaire. Il nous a cependant permis de comprendre qu'il peut exister dans un milieu granulaire un couplage subtil entre la géométrie de l’empilement et la mobilisation des forces de friction. Ce couplage peut se faire par l’intermédiaire des déformations élastiques des grains eux-mêmes ou des parois du récipient. Dans ce modèle, nous avons vu que les positions d'équilibre d'une bille avec ses voisines dépendent de l’histoire des positions d'équilibres antérieures. On perçoit alors toute la complexité que peut représenter l'équilibre d’un milieu granulaire. Ce modèle très simple présente également un mécanisme d’instabilité qui permet d’expliquer la présence d’arches plus ou moins solides dans un milieu granulaire. L’existence d’arches dépend alors des propriétés élastiques et de la friction du matériau granulaire, ainsi que de la rigidité du récipient.
Conclusion

La mesure de forces dans un milieu granulaire est un problème délicat. Nous avons montré qu’il existe par nature un couplage fort entre l’instrument de mesure, en général déformable, et la mobilisation des forces de friction à l’intérieur du milieu granulaire. En présence d’une perturbation, le comportement du capteur de force est alors hystérétique. Il existe également un couplage fort entre la mobilisation de la friction et la déformation des parois en contact avec le milieu granulaire. Nous avons vu qu’en minimisant les déformations du capteur et des parois, ainsi qu’en suivant un protocole de mesure bien précis, il est possible d’obtenir des mesures de pression reproductibles. Dans le cas d’une colonne granulaire, il est important de limiter l’indétermination des forces de friction aux parois pour pouvoir mettre en évidence des effets liés à la structure de l’empilement. Cette indétermination a été levée en autorisant un déplacement vertical du capteur de force de façon à mobiliser complètement la friction. Ce déplacement a permis aussi de s’affranchir des perturbations de la mesure liées aux variations de température ou à la dynamique de remplissage. Dans le cas d’un tas de sable, il est important de minimiser la hauteur de chute des grains pour éviter des perturbations liées à l’énergie cinétique de déposition des grains.

Nous nous sommes intéressés plus particulièrement aux liens qui pouvaient exister entre la structure de l’empilement granulaire et la répartition des contraintes. Dans le cas d’une colonne granulaire, nous avons essayé de caractériser la structure de l’empilement par des mesures de densité moyenne et de densité locale. Lorsque la colonne granulaire est cisaillée, nous avons mis en évidence l’existence de bandes de cisaillement et un phénomène de décompaction en bas de la colonne. Lorsque la colonne granulaire est vibrée, la densité est globalement plus homogène. Nous avons vu que la structure de l’empilement a une influence considérable sur la répartition des contraintes moyennes dans la colonne granulaire. Sous l’effet d’un cisaillement ou de vibrations, le milieu granulaire suit des chemins d’États d’équilibres reproductibles et il est possible d’obtenir des variations des contraintes moyennes de l’ordre de 100% pour une variation de densité moyenne de 10%. Dans le cas d’un tas de sable, nous avons étudié plus en détail la répartition des contraintes et nous avons montré qu’elles dépendent fortement du mode de construction du tas. Si l’on construit un tas par avalanches, la pression obtenue à la verticale du sommet du tas présente un minimum local, le fameux "trou" de pression du tas de sable, et ceci, aussi bien pour un tas de forme conique qu’un tas en forme de tente "canadienne". De plus, dans le cas du tas conique, le "trou" de pression se met à l’échelle avec les dimensions du tas, confirmant ainsi la validité des hypothèses d’échelles proposées par Bouchaud, Cates, Claudin et Wittmer. D’autre part, on peut clairement écarté l’hypothèse selon laquelle le "trou" de pression est dû à la déformation globale du support. En effet, si l’on construit un tas en superposant des couches de grains horizontales, le minimum de pression disparaît. On observe ainsi une grande diversité d’États d’équilibre aussi bien dans un tas de sable que dans une colonne granulaire, chacun de ces États d’équilibre pouvant être compris
comme la manifestation d’une structure particulière des chaînes de force.

Nous avons montré que la description continue des chaînes de forces proposée par le modèle OSL permet de reproduire qualitativement et quantitativement une grande partie de nos résultats. Dans ce modèle, les forces se propagent selon deux directions de propagation dont l’une est assimilée à la direction physique des chaînes de forces. L’ajustement du modèle OSL aux profils de pression observés sous un tas de sable nous a permis de mieux comprendre comment les paramètres du modèle sont reliés au mode de construction du tas. En particulier, il semble exister une correspondance entre les propriétés de symétrie de l’écoulement des grains et les propriétés de symétrie des directions de propagation des forces. Cette correspondance n’est cependant pas parfaite et mérite d’être étudiée de manière plus approfondie. D’autre part, il semble qu’il existe aussi des effets liés à la propagation des forces lorsque l’on s’intéresse à la pression moyenne dans une colonne granulaire. La forme de la courbe de saturation de la pression avec la hauteur incite à penser qu’il existe en bas de la colonne une zone où la pression est très faiblement écrantage. Nous avons alors émis l’hypothèse qu’il existait des chaînes de forces proches du fond de la colonne qui se propagent sans atteindre les parois et donc sans être écrantagees. De façon tout à fait remarquable, les chaînes de forces décrites par le modèle OSL produisent sur la courbe de saturation un effet semblable à celui observé expérimentalement. De plus, lorsque la colonne est surmontée d’une surcharge, nous avons observé que la courbe de saturation de la pression est parfois non monotone. Ce comportement non monotone peut aussi être attribué à l’existence d’une zone faiblement écrantagee en bas de la colonne et est remarquablement bien reproduit par le modèle OSL. De manière générale, les courbes de saturation de la pression sont bien reproduites par le modèle OSL quelle que soit la valeur de la surcharge. L’aptitude de modèles plus classiques de type élastique ou élastoplastique à décrire le comportement non monotone de la courbe de saturation reste à démontrer.

S’il est vrai que le modèle IFE, de nature hyperbolique comme le modèle OSL, arrive à reproduire qualitativement les comportements observés, ses prédictions quantitatives sont loin d’être correctes. Ajoutons enfin que l’on peut expliquer qualitativement pourquoi la pression en bas d’une colonne cisalée est plus grande que la pression en bas d’une colonne vibrée. En se basant sur le comportement de la colonne vibrée en fonction de la densité, nous avons imaginé que la direction de propagation des forces pouvait être une fonction de la densité locale. Il se produit alors dans la colonne cisalée un effet "mirage" de la propagation des forces qui a tendance à diminuer l’écrantage des forces en accord avec nos observations. Cependant, nous ne maîtrisons pas les aspects quantitatifs de cet effet "mirage".

Les mesures de pression que l’on obtient aussi bien dans une colonne granulaire que dans un tas de sable possède un niveau de fluctuations que nous avons essayé de comprendre. Nous avons vu que les fluctuations dans une colonne granulaire régressent lorsque l’on diminue la taille des billes. En se basant sur la distribution de probabilité des forces à l’échelle des grains, nous avons alors montré qu’un modèle classique de régression des fluctuations donne un résultat quantitativement différent de nos mesures. Nous ne comprenons pas encore bien les raisons de cette différence. Nous ne savons pas, par exemple, si les corrélations que les chaînes de forces introduisent dans le milieu granulaire peuvent expliquer nos résultats. D’autre part, la dépendance des fluctuations en fonction de la hauteur de la colonne granulaire peut s’interpréter comme une fluctuation de la longueur d’écrantage des forces. Dans le cadre du modèle OSL, cette fluctuation de la longueur d’écran s’interprète tout naturellement comme une fluctuation de la direction des chaînes de forces.

Dans cette thèse, nous avons également présenté un modèle géométrique d’arches qui
s’intéresse plus en détail aux effets liés à l’indétermination des forces de friction. Contrairement aux modèles de propagation de forces qui considèrent les grains comme essentiellement rigides, ce modèle montre que les déformations du milieu granulaire ou des parois en contact avec le milieu granulaire peuvent aussi avoir un rôle important dans la formation des arches. Ce modèle contient un mécanisme de durcissement des arches qui permet d’expliquer l’existence d’un mode d’écoulement fragmentaire lorsque l’on retourne un tube rempli de grains.

Une des questions fondamentales que nous avons évoquée dans cette thèse est la validité d’une approche théorique prenant en compte l’existence de chaînes de forces dans un milieu granulaire. La comparaison de nos résultats avec les prédictions du modèle OSL nous a montré qu’une telle approche peut avoir un sens. Une extension possible du modèle OSL pourrait être d’inclure une variable liée à la densité qui joue un rôle important dans nos expériences. Cependant, il existe de nombreux autres modèles plus "classiques" qui sont développés principalement par les mécaniciens des sols. Ces modèles considèrent pour la plupart le milieu granulaire comme élastique, et pour rendre compte des propriétés particulières du milieu granulaire, il s’agit souvent d’une élasticité non-linéaire et anisotrope. La complexité de ces modèles est telle\(^3\) qu’il est difficile de comprendre le sens physique des paramètres introduits et il est donc difficile de tester ces modèles sur nos expériences.

Pour différencier clairement le modèle OSL des modèles élastiques ou élastoplastiques, une expérience test serait de mesurer la réponse d’une couche de grains horizontale à une force locale appliquée verticalement sur sa surface. Les modèles élastiques, de nature elliptique, prédissent que la force se propage principalement à la verticale du point d’application. Par contre, le modèle OSL, de nature hyperbolique, prédit alors que la force ne se propage pas à la verticale du point d’application et se répartit sur une surface annulaire en bas de la couche. Nous sommes en train d’effectuer une telle expérience. Les premiers essais nous ont montré qu’il est très difficile d’appliquer une force sur une couche granulaire sans provoquer des réarrangements plastiques de la surface. Nous avons donc mis au point une technique qui permet de contrôler finement la force appliquée sur la couche de grains, et nous espérons obtenir bientôt des résultats.

\(^3\) Il n’est pas rare que ces modèles contiennent plus de 10 paramètres !
Publications principales et preprints

Travaux de thèse :

Travaux antérieurs à la thèse :
Bibliographie

RÉSUMÉ

Les forces de contact dans un milieu granulaire se répartissent de façon très inhomogène en un réseau de "chaînes de forces" qui supporte la plus grande partie des contraintes. Cette thèse a pour objet de mieux cerner l'importance des chaînes de forces dans la description des propriétés d'équilibre mécanique d'un milieu granulaire.

La mesure de forces dans un milieu granulaire est délicate à cause d'un couplage fondamental entre les déformations du capteur et la mobilisation des forces de friction entre grains ou entre grains et paroi. Un protocole de mesure bien défini permet cependant d'obtenir des résultats reproductibles et significatifs.

Nous nous sommes intéressés aux liens qui existent entre la structure de l'empilement granulaire et la répartition des contraintes. Sous l'effet d'un cisaillement ou de vibrations, l'équilibre d'une colonne granulaire dans un silo évolue considérablement ainsi que la structure de l'empilement comme le révèlent des mesures de densité moyenne et locale. Sous le sommet d'un tas de sable formé par écoulement des grains en avalanches, nous observons un minimum ou "trou" de pression, alors que la pression est maximum si les grains sont déposés en couches horizontales.

Les fluctuations résiduelles de la pression sont mesurées en fonction de la taille des grains ou de la hauteur de remplissage du silo.

La plupart de nos observations sont qualitativement et quantitativement bien reproduites par le modèle OSL dans lequel les contraintes se propagent selon deux directions dont l'une s'identifie à la direction moyenne des chaînes de forces. La notion de propagation de forces permet de comprendre la distribution de pression sous un tas ou la forme de la courbe de saturation de la pression dans un silo, y compris les oscillations de la pression en présence d'une surcharge.

Nous proposons aussi un modèle de durcissement d'arches qui permet d'expliquer l'existence d'un mode d'écoulement fragmentaire après renversement d'un tube rempli de grains.

Mots-clés : Matériau granulaire, Chaînes de forces-Voûtes, Fluctuations des contraintes, Silo, Tas de sable.

ABSTRACT

Experiments show that contact forces in a granular medium are very inhomogeneous and form a network of "force chains" bearing the major part of the stress. This thesis is aimed at understanding how important the force chains are in the description of the mechanical equilibrium properties of a granular material.

Measuring forces in a granular material is tricky due to a fundamental coupling between the sensor deformations and the mobilization of friction forces inside the granular material or at a boundary wall. However, it is possible to get reproducible and significative results when using a well-defined measurement procedure.

We have been interested in studying the links between the structure of the granular packing and the stress distribution. The equilibrium of a granular material in a silo is very sensitive to shearing or vibrations which also affect the structure of the packing as shown by local and average density measurements. Below the apex of a sandpile formed with avalanching grains, we observe a pressure minimum or "dip", but the pressure is a maximum when the grains are deposited in horizontal layers.

Residual pressure fluctuations have been measured as a function of the grain size or the filling height of the silo.

Most of our observations are qualitatively and quantitatively well-described by the OSL model where the stresses propagate along two directions, one of them corresponding to the mean direction of force chains. The idea of force propagation allows to understand the pressure distribution below a sandpile or the shape of the pressure saturation curve in a silo, including the pressure oscillations when there is a surcharge.

We also propose a model of arch hardening which explains the existence of a fragmentation flow mode when turning a tube filled with grains upside down.

Keywords : Granular matter, Force chains-Vaults, Stress fluctuations, Silo, Sandpile.