T. A. Skotheim and J. R. Reynolds, Conjugated polymers: Theory, Synthesis, Properties and Characterization, 2007.

T. Baumgartner and R. Reau, Organophosphorus ??-Conjugated Materials, Chemical Reviews, vol.106, issue.11, pp.4681-4727, 2006.
DOI : 10.1021/cr040179m

URL : https://hal.archives-ouvertes.fr/hal-01090276

F. J. Hoeben, P. Jonkheijm, E. W. Meijer, and A. P. Schenning, About Supramolecular Assemblies of ??-Conjugated Systems, Chemical Reviews, vol.105, issue.4, pp.1491-1546, 2005.
DOI : 10.1021/cr030070z

U. H. Bunz, Poly(aryleneethynylene)s:?? Syntheses, Properties, Structures, and Applications, Chemical Reviews, vol.100, issue.4, pp.1605-1644, 2000.
DOI : 10.1021/cr990257j

P. F. Schwab, M. D. Levin, and J. Michl, Molecular Rods. 1. Simple Axial Rods, Chemical Reviews, vol.99, issue.7, pp.1863-1934, 1999.
DOI : 10.1021/cr970070x

J. F. Smalley, S. B. Sachs, C. E. Chidsey, S. P. Dudek, H. D. Sikes et al., Interfacial Electron-Transfer Kinetics of Ferrocene through Oligophenyleneethynylene Bridges Attached to Gold Electrodes as Constituents of Self-Assembled Monolayers:?? Observation of a Nonmonotonic Distance Dependence, Journal of the American Chemical Society, vol.126, issue.44, pp.14620-14630, 2004.
DOI : 10.1021/ja047458b

M. Biswas, P. Nguyen, T. B. Marder, and L. R. Khundkar, Unusual Size Dependence of Nonradiative Charge Recombination Rates in Acetylene-Bridged Compounds, The Journal of Physical Chemistry A, vol.101, issue.9, pp.1689-1695, 1997.
DOI : 10.1021/jp960851m

M. Levitus, K. Schmieder, H. Ricks, K. D. Shimizu, U. H. Bunz et al., Steps To Demarcate the Effects of Chromophore Aggregation and Planarization in Poly(phenyleneethynylene)s. 1. Rotationally Interrupted Conjugation in the Excited States of 1,4-Bis(phenylethynyl)benzene, Journal of the American Chemical Society, vol.123, issue.18, pp.4259-4265, 2001.
DOI : 10.1021/ja003959v

A. Beeby, K. Findlay, P. J. Low, and T. B. Marder, A Re-evaluation of the Photophysical Properties of 1,4-Bis(phenylethynyl)benzene:?? A Model for Poly(phenyleneethynylene), Journal of the American Chemical Society, vol.124, issue.28, pp.8280-8284, 2002.
DOI : 10.1021/ja025568h

J. A. Marsden, J. J. Miller, L. D. Shirtcliff, and M. M. Haley, Structure???Property Relationships of Donor/Acceptor-Functionalized Tetrakis(phenylethynyl)benzenes and Bis(dehydrobenzoannuleno)benzenes, Journal of the American Chemical Society, vol.127, issue.8, pp.2464-2476, 2005.
DOI : 10.1021/ja044175a

J. N. Wilson, M. Josowicz, Y. Wang, and U. H. Bunz, Cruciform pi-systems: hybrid phenylene-ethynylene phenylene-vinylene oligomers, Chem. Commun, pp.2962-2963, 2003.
DOI : 10.1039/b312156a

Y. Yamaguchi, T. Ochi, S. Miyamura, T. Tanaka, S. Kobayashi et al., Rigid Molecular Architectures That Comprise a 1,3,5-Trisubstituted Benzene Core and Three Oligoaryleneethynylene Arms:?? Light-Emitting Characteristics and ?? Conjugation between the Arms, Journal of the American Chemical Society, vol.128, issue.14, pp.4504-4505, 2006.
DOI : 10.1021/ja057751r

Y. Pan, M. Lu, Z. Peng, and J. S. Melinger, Synthesis and Optical Properties of Unsymmetrical Conjugated Dendrimers Focally Anchored with Perylenes in Different Geometries, The Journal of Organic Chemistry, vol.68, issue.18, pp.6952-6958, 2003.
DOI : 10.1021/jo0346858

B. Cornils, W. A. Herrmann, R. Metivier, R. Amengual, I. Leray et al., Applied Homogeneous Catalysis with Organometallic CompoundsNovel Fluorophores: Efficient Synthesis and Photophysical Properties, Org. Lett, vol.6, pp.739-742, 1996.

J. R. Lakowicz, L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman et al., Spectroscopie de fluorescenceExperimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 2. A Study of Conjugation DependencesUnusual Size Dependence of Nonradiative Charge Recombination Rates in Acetylene-Bridged CompoundsPhotoinduced Intramolecular Charge Separation of p-N,N-dimethylamino-p'cyano-diphenylacetylene in Polar SolventsIntramolecular Charge Transfer in 4-cyano-(40- methylthio)diphenylacetyleneRed-and Blue-Shifts in Oligo(1,4- phenyleneethynylene)s Having Terminal Donor-Acceptor SubstitutionsThe Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry, Ceries of Donoracceptor Molecules of the Form NH 2 (C 6 H 4 )(C?C) n (C 6 H 4 )NO 2 . Unusual Effects of varying n, pp.10643-10652, 1987.

A. E. Stiegman, E. Graham, K. J. Perry, L. R. Khundkar, L. Cheng et al., The electronic structure and second-order nonlinear optical properties of donor-acceptor acetylenes: a detailed investigation of structure-property relationships, Journal of the American Chemical Society, vol.113, issue.20, pp.7658-7666, 1991.
DOI : 10.1021/ja00020a030

L. R. Khundkar, A. E. Stiegman, and J. W. Perry, Solvent-tuned intramolecular charge-recombination rates in a conjugated donor-acceptor molecule, The Journal of Physical Chemistry, vol.94, issue.4, pp.1224-1226, 1990.
DOI : 10.1021/j100367a007

J. J. Wolff, F. Siegler, R. Matschiner, and R. Rwortmann, Optimized Two-Dimensional NLO Chromophores with a Threefold Symmetry Axis, Angewandte Chemie International Edition, vol.39, issue.8, pp.1436-1439, 2000.
DOI : 10.1002/(SICI)1521-3773(20000417)39:8<1436::AID-ANIE1436>3.0.CO;2-U

L. Porres, O. Mongin, C. Katan, M. Charlot, T. Pons et al., Enhanced Two-Photon Absorption with Novel Octupolar Propeller-Shaped Fluorophores Derived from Triphenylamine, Organic Letters, vol.6, issue.1, pp.47-50, 2004.
DOI : 10.1021/ol036041s

URL : https://hal.archives-ouvertes.fr/hal-01416756

W. J. Yang, C. H. Kim, M. Jeong, S. K. Lee, M. J. Piao et al., Synthesis and Two-Photon Absorption Properties of 9,10-Bis(arylethynyl)anthracene Derivatives, Chemistry of Materials, vol.16, issue.14, pp.2783-2789, 2004.
DOI : 10.1021/cm035032a

K. Sonogashira, Y. Tohda, and N. Hagihara, A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines, Tetrahedron Letters, vol.16, issue.50, pp.4467-4470, 1975.
DOI : 10.1016/S0040-4039(00)91094-3

A. J. Boydston, Y. Yin, and B. L. Pagenkopf, Synthesis and Electronic Properties of Donor???Acceptor ??-Conjugated Siloles, Journal of the American Chemical Society, vol.126, issue.12, pp.3724-3725, 2004.
DOI : 10.1021/ja049758z

R. Pohl and P. Anzenbacher, Complexes with Extended Conjugated Chromophores, Organic Letters, vol.5, issue.16, pp.2769-2772, 2003.
DOI : 10.1021/ol034693a

H. Gilman and L. Summers, Use of the Halogen???Metal Interconversion Reaction for the Preparation of an Aromatic Iodo Compound, Journal of the American Chemical Society, vol.72, issue.6, pp.2767-2768, 1950.
DOI : 10.1021/ja01162a508

P. J. Hajduk, G. Sheppard, D. G. Nettesheim, E. T. Olejniczak, S. B. Shuker et al., Discovery of Potent Nonpeptide Inhibitors of Stromelysin Using SAR by NMR, Journal of the American Chemical Society, vol.119, issue.25, pp.5818-5827, 1997.
DOI : 10.1021/ja9702778

P. Suppan, Invited review solvatochromic shifts: The influence of the medium on the energy of electronic states, Journal of Photochemistry and Photobiology A: Chemistry, vol.50, issue.3, pp.293-330, 1990.
DOI : 10.1016/1010-6030(90)87021-3

N. Mataga, Y. Kaifu, and M. Koizumi, The Solvent Effect on Fluorescence Spectrum, Change of Solute-Solvent Interaction during the Lifetime of Excited Solute Molecule, Bulletin of the Chemical Society of Japan, vol.28, issue.9, pp.690-691, 1955.
DOI : 10.1246/bcsj.28.690

C. Katan, F. Terenziani, O. Mongin, M. H. Werts, L. Porres et al., Effects of (Multi)branching of Dipolar Chromophores on Photophysical Properties and Two-Photon Absorption, The Journal of Physical Chemistry A, vol.109, issue.13, pp.3024-3037, 2005.
DOI : 10.1021/jp044193e

URL : https://hal.archives-ouvertes.fr/hal-00880434

M. Orchin and H. H. Jaffé, Symmetry Orbitals, and Spectra, p.271, 1971.

P. V. James, P. K. Sudeep, C. H. Suresh, and K. G. Thomas, -phenyleneethynylene)s:?? Effect of Alkoxy Substitution and Alkyne???Aryl Bond Rotations, The Journal of Physical Chemistry A, vol.110, issue.13, pp.4329-4337, 2006.
DOI : 10.1021/jp055184o

URL : https://hal.archives-ouvertes.fr/jpa-00209678

A. Beeby, K. Findlay, P. J. Low, and T. B. Marder, A Re-evaluation of the Photophysical Properties of 1,4-Bis(phenylethynyl)benzene:?? A Model for Poly(phenyleneethynylene), Journal of the American Chemical Society, vol.124, issue.28, pp.8280-8284, 2002.
DOI : 10.1021/ja025568h

Y. Hirata, T. Okada, and T. Nomoto, -Dimethylaminophenyl(phenyl)acetylene in Protic Solvents, The Journal of Physical Chemistry A, vol.102, issue.33, pp.6585-6589, 1998.
DOI : 10.1021/jp980991r

URL : https://hal.archives-ouvertes.fr/in2p3-00003094

T. Ho, A. Elangovan, H. Hsu, and S. Yang, -Dimethylaminophenylethynylarenes:?? Synthesis, Photophysical Properties, and Electrochemiluminescence, The Journal of Physical Chemistry B, vol.109, issue.18, pp.8626-8633, 2005.
DOI : 10.1021/jp0444518

URL : https://hal.archives-ouvertes.fr/jpa-00209608

H. S. Nalwa and S. E. Miyata, Nonlinear Optics of Organic Molecules and Polymers, Optical Engineering, vol.36, issue.9, 1997.
DOI : 10.1117/1.601490

J. J. Wolff and R. Wortmann, Organic Materials for Second-Order Non-Linear Optics, pp.121-217, 1999.
DOI : 10.1016/S0065-3160(08)60007-6

S. R. Marder, D. N. Beratan, and L. Cheng, Approaches for Optimizing the First Electronic Hyperpolarizability of Conjugated Organic Molecules, Science, vol.252, issue.5002, pp.103-106, 1991.
DOI : 10.1126/science.252.5002.103

G. M. Janini and A. H. Katrib, Determination of the dipole moment of polar compounds in nonpolar solvents, Journal of Chemical Education, vol.60, issue.12, pp.1087-1088, 1983.
DOI : 10.1021/ed060p1087

K. Chane-ching, M. Lequan, R. M. Lequan, C. Runser, M. Barzoukasb et al., Phosphine oxides as novel acceptor groups in molecules presenting non-linear optical properties, Journal of Materials Chemistry, vol.5, issue.4, pp.649-652, 1995.
DOI : 10.1039/jm9950500649

J. Zyss and J. L. Oudar, Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units, Physical Review A, vol.26, issue.4, pp.2028-2048, 1982.
DOI : 10.1103/PhysRevA.26.2028

J. L. Oudar, Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds, The Journal of Chemical Physics, vol.67, issue.2, pp.446-457, 1977.
DOI : 10.1063/1.434888

D. R. Kanis, M. A. Ratner, and T. J. Marks, Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects, Chemical Reviews, vol.94, issue.1, pp.195-242, 1994.
DOI : 10.1021/cr00025a007

L. Levy, Y. Sahoo, K. Kim, E. J. Bergey, and P. N. Prasad, Nanochemistry:?? Synthesis and Characterization of Multifunctional Nanoclinics for Biological Applications, Chemistry of Materials, vol.14, issue.9, pp.3715-3721, 2002.
DOI : 10.1021/cm0203013

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nature Biotechnology, vol.21, issue.11, pp.1369-1377, 2003.
DOI : 10.1038/nbt899

X. Rumi, S. R. Wu, J. W. Marder, and . Perry, Two-photon Polymerization Initiators for Three-dimensional Optical Data Storage and Microfabrication, Nature, vol.398, pp.51-54, 1999.

C. Le-droumague, O. Mongin, M. H. Werts, and M. Blanchard-desce, Towards ???smart??? multiphoton fluorophores: strongly solvatochromic probes for two-photon sensing of micropolarity, Chemical Communications, vol.124, issue.22, pp.2802-2804, 2005.
DOI : 10.1039/b502585k

A. Adronov, J. M. Frechet, G. S. He, K. Kim, S. Chung et al., Novel Two-Photon Absorbing Dendritic Structures, Chemistry of Materials, vol.12, issue.10, pp.2838-2841, 2000.
DOI : 10.1021/cm000586o

O. Mongin, L. Porres, L. Moreaux, J. Mertz, and M. Blanchard-desce, Synthesis and Photophysical Properties of New Conjugated Fluorophores Designed for Two-Photon-Excited Fluorescence, Organic Letters, vol.4, issue.5, pp.719-722, 2002.
DOI : 10.1021/ol017150e

B. Strehmel, S. Amthor, J. Schelter, and C. Lambert, Two-Photon Absorption of Bis[4-(N,N-diphenylamino)phenylethynyl]arenes, ChemPhysChem, vol.11, issue.5, pp.893-896, 2005.
DOI : 10.1002/cphc.200400538

W. H. Lee, H. Lee, J. A. Kim, J. H. Choi, M. Cho et al., Two-Photon Absorption and Nonlinear Optical Properties of Octupolar Molecules, Journal of the American Chemical Society, vol.123, issue.43, pp.10658-10667, 2001.
DOI : 10.1021/ja004226d

B. R. Cho, K. H. Son, S. H. Lee, Y. S. Song, Y. K. Lee et al., Two Photon Absorption Properties of 1,3,5-Tricyano-2,4,6-tris(styryl)benzene Derivatives, Journal of the American Chemical Society, vol.123, issue.41, pp.10039-10045, 2001.
DOI : 10.1021/ja010770q

F. Terenziani, C. L. Droumaguet, C. Katan, O. Mongin, and M. Blanchard-desce, Effect of Branching on Two-Photon Absorption in Triphenylbenzene Derivatives, ChemPhysChem, vol.17, issue.5, pp.723-734, 2007.
DOI : 10.1002/cphc.200600689

URL : https://hal.archives-ouvertes.fr/hal-00516956

A. Renzoni, F. Zino, E. Franchi, J. Munthe, I. Wangberg et al., Intercomparison of Methods for Sampling and Analysis of Atmospheric Mercury Species [3] O. MalmGold Mining as a Source of Mercury Exposure in the Brazilian AmazonThe Chemical Cylce and Bioaccumulation of MercuryDécret relatif aux eaux destinées à la consommation humaine à l'exclusion des eaux minérales naturellesGuidelines for Drinking-water Quality The Quality of Water Intended for Human Consumption, Mercury Levels along the Food Chain and Risk for Exposed PopulationsLiterature Survey of On-line Elemental Speciation in Aqueous Solutions, pp.68-72, 1991.

M. J. Warren, J. B. Cooper, S. P. Wood, and P. M. Shoolingin-jordan, Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase, Trends in Biochemical Sciences, vol.23, issue.6, pp.217-221, 1998.
DOI : 10.1016/S0968-0004(98)01219-5

P. Landrigan and A. C. Todd, Lead Poisoning, West. J. Med, vol.161, pp.153-159, 1994.

M. Bisson, R. Diderich, C. Hulot, J. P. Lefèvre, S. Lévêque et al., Cadmium et ses dérivés, INERIS, 2000.

T. Sorahan and R. J. Lancashire, Lung cancer mortality in a cohort of workers employed at a cadmium recovery plant in the United States: an analysis with detailed job histories., Occupational and Environmental Medicine, vol.54, issue.3, pp.194-201, 1997.
DOI : 10.1136/oem.54.3.194

D. M. West, F. J. Holler, and D. A. Skoog, Fundamentals of Analytical Chemistry, 1997.

F. Rouessac and A. Rouessac, Analyse chimique: Méthodes et Techniques Instrumentals Modernes, 1997.

A. P. De-silva, H. Q. Gunaratne-nimal, T. Gunnlaugsson, A. J. Huxley, C. P. Mccoy et al., Signaling Recognition Events with Fluorescent Sensors and Switches, Chemical Reviews, vol.97, issue.5, pp.1515-1556, 1997.
DOI : 10.1021/cr960386p

L. Prodi, F. Bolletta, M. Montalti, and N. Zaccheroni, Luminescent chemosensors for transition metal ions, Coordination Chemistry Reviews, vol.205, issue.1, pp.59-83, 2000.
DOI : 10.1016/S0010-8545(00)00242-3

A. M. Powe, K. A. Fletcher, N. N. St, M. Luce, S. Lowry et al., Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry, Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry, pp.4614-4634, 2004.
DOI : 10.1021/ac040095d

B. Valeur and I. Leray, Design principles of fluorescent molecular sensors for cation recognition, Coordination Chemistry Reviews, vol.205, issue.1, pp.3-40, 2000.
DOI : 10.1016/S0010-8545(00)00246-0

R. D. Hancock and A. E. Martell, Ligand design for selective complexation of metal ions in aqueous solution, Chemical Reviews, vol.89, issue.8, pp.1875-1914, 1989.
DOI : 10.1021/cr00098a011

R. G. Pearson, Hard and soft acids and bases, HSAB, part 1: Fundamental principles, Journal of Chemical Education, vol.45, issue.9, pp.581-587, 1968.
DOI : 10.1021/ed045p581

R. G. Pearson, Recent advances in the concept of hard and soft acids and bases, Journal of Chemical Education, vol.64, issue.7, pp.561-567, 1987.
DOI : 10.1021/ed064p561

D. R. Lide, Handbook of Chemistry and Physics, 2003.

A. W. Philip, M. K. Dean, and . Hughes, A 31 P Nuclear Resonance Spectroscopic Study of Complexes of Cadmium(II) with some Phosphine Oxides, Sulfides and Selenides, Can. J. Chem, vol.58, pp.180-190, 1980.

P. Pérez-lourido, J. Romero, J. A. García-vázquez, A. Sousa, Y. Zheng et al., Lead (II) Complexes with Phosphorythiolato and Thiophosphorylthiolato Ligands, J. Chem. Soc, pp.769-774, 2000.

F. Cadogan, P. Kane, M. A. Mckervey, and D. Diamond, Lead-Selective Electrodes Based on Calixarene Phosphine Oxide Derivatives, Analytical Chemistry, vol.71, issue.24, pp.5544-5550, 1999.
DOI : 10.1021/ac990303f

D. A. Wheatland, C. H. Clapp, and R. W. Waldron, Complexes of bridged diphosphinothioyl chelates, Inorganic Chemistry, vol.11, issue.10, pp.2340-2344, 1972.
DOI : 10.1021/ic50116a010

A. M. Bond, R. Colton, and J. Ebner, Multinuclear magnetic resonance (phosphorus-31, selenium-77, mercury-199) and electrochemical studies of nonlabile mercury(II) complexes with group 15/group 16 donor ligands, Inorganic Chemistry, vol.27, issue.10, pp.1697-1702, 1988.
DOI : 10.1021/ic00283a008

T. S. Lobana, R. Verma, A. Singh, M. Shikha, and A. Castineiras, Metal-phosphine chalcogenide interactions. Crystal structures of palladium(II)/mercury(II) complexes with 1,2-bis(diphenylthiophosphinyl)ethane containing seven-membered metallacyclic rings, Polyhedron, vol.21, issue.2, pp.205-209, 2002.
DOI : 10.1016/S0277-5387(01)00977-9

T. S. Lobana, M. K. Sandhu, and E. R. Tiekink, Synthesis and X-ray Crystal Structure of a Weak Molecular Adduct of Diphenylmercury(II) with 1,2- bis(diphenylphosphinothioyl)ethane, J. Chem. Soc. Dalton Trans, pp.1401-1403, 1988.

N. R. Cha, M. Y. Kim, Y. H. Kim, J. Choe, and S. Chang, New Hg 2+ -Selective Fluoroionophores Derived from p-tertbutylcalix[4]arene?azacrown ethers, J. Chem. Soc, pp.1193-1196, 2002.

A. Caballero, R. Martinez, V. Lloveras, I. Ratera, J. Vidal-gancedo et al., in Aqueous Environment Based on 1,4-Disubstituted Azines, Journal of the American Chemical Society, vol.127, issue.45, pp.15666-15667, 2005.
DOI : 10.1021/ja0545766

E. M. Nolan and S. J. Lippard, A ???Turn-On??? Fluorescent Sensor for the Selective Detection of Mercuric Ion in Aqueous Media, Journal of the American Chemical Society, vol.125, issue.47, pp.14270-14271, 2003.
DOI : 10.1021/ja037995g

I. Grabchev, J. M. Chovelon, and X. H. Qian, A polyamidoamine dendrimer with peripheral 1,8-naphthalimide groups capable of acting as a PET fluorescent sensor for metal cations, New Journal of Chemistry, vol.27, issue.2, pp.337-340, 2003.
DOI : 10.1039/b204727f

C. P. Kulatilleke, S. A. De-silva, and Y. Eliav, A coumarin based fluorescent photoinduced electron transfer cation sensor, Polyhedron, vol.25, issue.13, pp.2593-2596, 2006.
DOI : 10.1016/j.poly.2006.03.020

Q. He, E. W. Miller, A. P. Wong, and C. J. Chang, A Selective Fluorescent Sensor for Detecting Lead in Living Cells, Journal of the American Chemical Society, vol.128, issue.29, pp.9316-9317, 2006.
DOI : 10.1021/ja063029x

N. J. Youn and S. Chang, Dimethylcyclam based fluoroionophore having Hg2+- and Cd2+-selective signaling behaviors, Tetrahedron Letters, vol.46, issue.1, pp.125-129, 2005.
DOI : 10.1016/j.tetlet.2004.11.003

R. Bergonzi, L. Fabbrizzi, M. Licchelli, and C. Mangano, Molecular switches of fluorescence operating through metal centred redox couples, Coordination Chemistry Reviews, vol.170, issue.1, pp.31-46, 1998.
DOI : 10.1016/S0010-8545(98)00069-1

R. Metivier, I. Leray, and B. Valeur, Lead and Mercury Sensing by Calixarene-Based Fluoroionophores Bearing Two or Four Dansyl Fluorophores, Chemistry - A European Journal, vol.32, issue.186, pp.4480-4490, 2004.
DOI : 10.1002/chem.200400259

B. Valeur, Molecular Fluorescence. Principles and Applications, 2002.

J. Bourson, J. Pouget, and B. Valeur, Ion-responsive fluorescent compounds. 4. Effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers, The Journal of Physical Chemistry, vol.97, issue.17, pp.4552-4557, 1993.
DOI : 10.1021/j100119a050

A. B. Descalzo, R. Martinez-manez, R. Radeglia, K. Rurack, and J. Soto, -Responsive Probe, Operating above 500 nm, Journal of the American Chemical Society, vol.125, issue.12, pp.3418-3419, 2003.
DOI : 10.1021/ja0290779

URL : https://hal.archives-ouvertes.fr/hal-00111087

P. Plaza, I. Leray, P. Changenet-barret, M. M. Martin, and B. Valeur, Reversible Bulk Photorelease of Strontium Ion from a Crown Ether-Linked Merocyanine, ChemPhysChem, vol.3, issue.8, pp.668-674, 2002.
DOI : 10.1002/1439-7641(20020816)3:8<668::AID-CPHC668>3.0.CO;2-G

C. Chen and W. Huang, A Highly Selective Fluorescent Chemosensor for Lead Ions, Journal of the American Chemical Society, vol.124, issue.22, pp.6246-6247, 2002.
DOI : 10.1021/ja025710e

R. Metivier, I. Leray, and B. Valeur, A highly sensitive and selective fluorescent molecular sensor for Pb(ii) based on a calix[4]arene bearing four dansyl groups, Chemical Communications, vol.38, issue.8, pp.996-997, 2003.
DOI : 10.1039/b301323e

X. Peng, J. Du, F. Fan, J. Wang, Y. Wu et al., in Living Cells, Journal of the American Chemical Society, vol.129, issue.6, pp.1500-1501, 2007.
DOI : 10.1021/ja0643319

C. Lu, Z. Xu, J. Cui, R. Zhang, and X. Qian, Ratiometric and Highly Selective Fluorescent Sensor for Cadmium under Physiological pH Range:?? A New Strategy to Discriminate Cadmium from Zinc, The Journal of Organic Chemistry, vol.72, issue.9, pp.3554-3557, 2007.
DOI : 10.1021/jo070033y

B. Valeur, J. Pouget, J. Bourson, M. Kaschke, and N. P. Ernsting, Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding, The Journal of Physical Chemistry, vol.96, issue.16, pp.6545-6549, 1992.
DOI : 10.1021/j100195a008

A. Ono and H. Togashi, Highly Selective Oligonucleotide-Based Sensor for Mercury(II) in Aqueous Solutions, Angewandte Chemie International Edition, vol.43, issue.33, pp.4300-4302, 2004.
DOI : 10.1002/anie.200454172

S. H. Kim, K. C. Song, S. Ahn, Y. S. Kang, and S. Chang, Hg2+-selective fluoroionophoric behavior of pyrene appended diazatetrathia-crown ether, Tetrahedron Letters, vol.47, issue.4, pp.497-500, 2006.
DOI : 10.1016/j.tetlet.2005.11.060

J. S. Kim, M. G. Choi, K. C. Song, K. T. No, S. Ahn et al., Ions Based on Simple Molecular Motifs of Pyrene and Dioxaoctanediamide, Organic Letters, vol.9, issue.6, pp.1129-1132, 2007.
DOI : 10.1021/ol070143r

T. Hayashita, D. Qing, R. A. Bartsch, S. Elshani, R. E. Hanes et al., Highly selective recognition of lead ion in water by a podand fluoroionophore/??-cyclodextrin complex sensor, Chem. Commun., vol.75, issue.17, pp.2160-2161, 2003.
DOI : 10.1039/B305758E

H. J. Kim, J. H. Bok, J. Vicens, I. H. Suh, J. Ko et al., Luminescence behaviour of calix[4]arenes bearing an increasing number of appended-pyrenes, Tetrahedron Letters, vol.46, issue.50, pp.8765-8768, 2005.
DOI : 10.1016/j.tetlet.2005.10.026

L. Ma, Y. Liu, and Y. Wu, A Tryptophan-containing Fluoroionophore Sensor with High Sensitivity to and Selectivity for Lead Ion in Water, Chem. Commun, pp.2702-2704, 2006.

M. E. Huston, C. Engleman, and A. W. Czarnik, Chelatoselective fluorescence perturbation in anthrylazamacrocycle conjugate probes. Electrophilic aromatic cadmiation, Journal of the American Chemical Society, vol.112, issue.19, pp.7054-7056, 1990.
DOI : 10.1021/ja00175a046

M. Choi, M. Kim, K. D. Lee, K. Han, I. Yoon et al., A New Reverse PET Chemosensor and Its Chelatoselective Aromatic Cadmiation, Organic Letters, vol.3, issue.22, pp.3455-3457, 2001.
DOI : 10.1021/ol016400o

T. Gunnlaugsson, T. C. Lee, and R. Parkesh, Cd(II) Sensing in Water Using Novel Aromatic Iminodiacetate Based Fluorescent Chemosensors, Organic Letters, vol.5, issue.22, pp.4065-4068, 2003.
DOI : 10.1021/ol035484t

T. Gunnlaugsson, T. C. Lee, and R. Parkesh, Highly selective fluorescent chemosensors for cadmium in water, Tetrahedron, vol.60, issue.49, pp.11239-11249, 2004.
DOI : 10.1016/j.tet.2004.08.047

Y. Yang, K. Yook, and J. Tae, Ions in Aqueous Media, Journal of the American Chemical Society, vol.127, issue.48, pp.16760-16761, 2005.
DOI : 10.1021/ja054855t

K. C. Song, J. S. Kim, S. M. Park, K. Chung, S. Ahn et al., -Selective Chemodosimeter Derived from 8-Hydroxyquinoline, Organic Letters, vol.8, issue.16, pp.3413-3416, 2006.
DOI : 10.1021/ol060788b

URL : https://hal.archives-ouvertes.fr/hal-00857072

A. Klapars and S. L. Buchwald, Copper-Catalyzed Halogen Exchange in Aryl Halides:?? An Aromatic Finkelstein Reaction, Journal of the American Chemical Society, vol.124, issue.50, pp.14844-14845, 2002.
DOI : 10.1021/ja028865v

G. Bartoli, M. Bosco, L. Sambri, and E. Marcantoni, TiCl4 Mediated LiBH4 reduction of ??-ketophosphine oxides: a high stereoselective route to the synthesis of anti-??-hydroxyphosphine oxides, Tetrahedron Letters, vol.37, issue.41, pp.7421-7424, 1996.
DOI : 10.1016/0040-4039(96)01601-2

M. J. Snare, P. J. Thistlethwaite, and K. P. Ghiggino, Kinetic studies of intramolecular excimer formation in dipyrenylalkanes, Journal of the American Chemical Society, vol.105, issue.10, pp.3328-3332, 1983.
DOI : 10.1021/ja00348a060

K. A. Zachariasse, G. Duveneck, and R. Busse, ChemInform Abstract: INTRAMOLECULAR EXCIMER FORMATION WITH 1,3-DI(1-PYRENYL)PROPANE. DECAY PARAMETERS AND INFLUENCE OF VISCOSITY, Chemischer Informationsdienst, vol.106, issue.21, pp.1045-1051, 1984.
DOI : 10.1002/chin.198421055

A. Siemiarczuk and W. R. Ware, Fluorescence decay kinetics of 1,3-di(1-pyrenyl)propane reinvestigated, Chemical Physics Letters, vol.140, issue.3, pp.277-280, 1987.
DOI : 10.1016/0009-2614(87)80456-6

S. Akimoto, H. Nishizawa, T. Yamazaki, I. Yamazaki, Y. Hayashi et al., Excimer formation of cyanobiphenyls in calix[4]resorecinarene derivative probed by picosecond time-resolved fluorescence spectroscopy, Chemical Physics Letters, vol.276, issue.5-6, pp.405-410, 1997.
DOI : 10.1016/S0009-2614(97)00827-0

I. Leray, J. Habib-jiwan, C. Branger, J. Soumillion, and B. Valeur, Ion-responsive fluorescent compounds, Journal of Photochemistry and Photobiology A: Chemistry, vol.135, issue.2-3, pp.163-169, 2000.
DOI : 10.1016/S1010-6030(00)00285-9

S. J. Pond, O. Tsutsumi, M. Rumi, O. Kwon, E. Zojer et al., Metal-Ion Sensing Fluorophores with Large Two-Photon Absorption Cross Sections:?? Aza-Crown Ether Substituted Donor???Acceptor???Donor Distyrylbenzenes, Journal of the American Chemical Society, vol.126, issue.30, pp.9291-9306, 2004.
DOI : 10.1021/ja049013t

H. M. Kim, M. Y. Jeong, H. C. Ahn, S. J. Jeon, and B. R. Cho, Two-Photon Sensor for Metal Ions Derived from Azacrown Ether, The Journal of Organic Chemistry, vol.69, issue.17, pp.5749-5751, 2004.
DOI : 10.1021/jo049124a

H. C. Ahn, S. K. Yang, H. M. Kim, S. Li, S. Jeon et al., Molecular two-photon sensor for metal ions derived from bis(2-pyridyl)amine, Chemical Physics Letters, vol.410, issue.4-6, pp.312-315, 2005.
DOI : 10.1016/j.cplett.2005.05.063

J. S. Kim, H. J. Kim, H. M. Kim, S. H. Kim, J. W. Lee et al., Metal Ion Sensing Novel Calix[4]crown Fluoroionophore with a Two-Photon Absorption Property, The Journal of Organic Chemistry, vol.71, issue.21, pp.8016-8022, 2006.
DOI : 10.1021/jo0610098

R. Bozio, E. Cecchetto, G. Fabbrini, C. Ferrante, M. Maggini et al., One- and Two-Photon Absorption and Emission Properties of a Zn(II) Chemosensor, The Journal of Physical Chemistry A, vol.110, issue.20, pp.6459-6464, 2006.
DOI : 10.1021/jp057582x

S. E. Livingstone, Other sulfure-containing ligands, Comprehensive Coordination Chemistry, vol.2, pp.633-659, 1987.

E. W. Ainscough, H. A. Bergen, A. M. Brodie, and K. A. Brown, ) complex, J. Chem. Soc., Dalton Trans., issue.17, pp.1649-1656, 1976.
DOI : 10.1039/DT9760001649

M. G. King and G. P. Mcquillan, Metal halide complexes of triphenylphosphine sulphide and some related ligands, Journal of the Chemical Society A: Inorganic, Physical, Theoretical, pp.898-901, 1967.
DOI : 10.1039/j19670000898

N. M. Karayannis, C. M. Mikulski, and L. L. Pytleweski, Neutral organophosphorus chalcogenide-metal salt interactions: Addition and decomposition products, Inorganica Chimica Acta Reviews, vol.5, pp.69-105, 1971.
DOI : 10.1016/0073-8085(71)80013-X

S. H. Kim, J. S. Kim, S. M. Park, and S. Chang, -Selective ON???OFF Type Fluoroionophore Based upon Cyclam, Organic Letters, vol.8, issue.3, pp.371-374, 2006.
DOI : 10.1021/ol052282j

URL : https://hal.archives-ouvertes.fr/tel-00408687

X. Guo, X. Qian, and L. Jia, in Neutral Buffer Aqueous Solution, Journal of the American Chemical Society, vol.126, issue.8, pp.2272-2273, 2004.
DOI : 10.1021/ja037604y

E. Reichstein, Y. Shami, M. Ramjeesingh, and E. P. Diamandis, Laser-excited time-resolved solid-phase fluoroimmunoassays with the new europium chelate 4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid as label, Analytical Chemistry, vol.60, issue.10, pp.1069-1074, 1988.
DOI : 10.1021/ac00161a024

D. Parker, Luminescent lanthanide sensors for pH, pO2 and selected anions, Coordination Chemistry Reviews, vol.205, issue.1, pp.109-130, 2000.
DOI : 10.1016/S0010-8545(00)00241-1

O. Reany, T. Gunnlaugssonab, and D. Parker, Selective signalling of zinc ions by modulation of terbium luminescence, Chemical Communications, issue.6, pp.473-474, 2000.
DOI : 10.1039/b000283f

N. Sabbatini, M. Guardigli, and J. Lehn, Luminescent lanthanide complexes as photochemical supramolecular devices, Coordination Chemistry Reviews, vol.123, issue.1-2, pp.201-228, 1993.
DOI : 10.1016/0010-8545(93)85056-A

F. S. Richardson, Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems, Chemical Reviews, vol.82, issue.5, pp.541-552, 1982.
DOI : 10.1021/cr00051a004

S. I. Weissman, Intramolecular Energy Transfer The Fluorescence of Complexes of Europium, The Journal of Chemical Physics, vol.10, issue.4, pp.214-217, 1942.
DOI : 10.1063/1.1723709

R. E. Whan and G. A. Crosby, Luminescence studies of rare earth complexes: Benzoylacetonate and dibenzoylmethide chelates, Journal of Molecular Spectroscopy, vol.8, issue.1-6, pp.315-327, 1962.
DOI : 10.1016/0022-2852(62)90031-0

M. Kleinerman, Energy Migration in Lanthanide Chelates, The Journal of Chemical Physics, vol.51, issue.6, pp.2370-2381, 1969.
DOI : 10.1063/1.1672355

J. Kido and Y. Okamoto, Organo Lanthanide Metal Complexes for Electroluminescent Materials, Chemical Reviews, vol.102, issue.6, pp.2357-2368, 2002.
DOI : 10.1021/cr010448y

M. L. Bhaumik and M. A. Sayed, Mechanism and Rate of the Intramolecular Energy Transfer Process in Rare???Earth Chelates, The Journal of Chemical Physics, vol.42, issue.2, pp.787-788, 1965.
DOI : 10.1063/1.1696007

L. R. Melby, N. J. Rose, E. Abramson, and J. C. Caris, Synthesis and Fluorescence of Some Trivalent Lanthanide Complexes, Journal of the American Chemical Society, vol.86, issue.23, pp.5117-5125, 1964.
DOI : 10.1021/ja01077a015

J. Zhang, P. D. Badger, S. J. Geib, and . Petoud, Sensitization of Near-Infrared-Emitting Lanthanide Cations in Solution by Tropolonate Ligands, Angewandte Chemie International Edition, vol.2, issue.17, pp.2508-2512, 2005.
DOI : 10.1002/anie.200463081

R. V. Deun, P. Nockemann, P. Fias, K. V. Hecke, L. V. Meervelt et al., Visible light sensitisation of europium(iii) luminescence in a 9-hydroxyphenal-1-one complex, Chemical Communications, vol.8, issue.5, pp.590-592, 2005.
DOI : 10.1039/b414703k

N. Sabbatini, A. Mecati, M. Guardigli, V. Balzani, J. Lehn et al., Lanthanide luminescence in supramolecular species, Journal of Luminescence, vol.48, issue.49, pp.48-49, 1991.
DOI : 10.1016/0022-2313(91)90170-Z

L. Charbonniere, R. Ziessel, M. Guardigli, A. Roda, N. Sabbatini et al., Lanthanide Tags for Time-Resolved Luminescence Microscopy Displaying Improved Stability and Optical Properties, Journal of the American Chemical Society, vol.123, issue.10, pp.2436-2437, 2001.
DOI : 10.1021/ja003699h

A. Dadabhoy, S. Faunlker, and P. G. Sammes, Long wavelength sensitizers for europium(iii) luminescence based on acridone derivatives, Journal of the Chemical Society, Perkin Transactions 2, issue.2, pp.348-357, 2002.
DOI : 10.1039/b104541p

B. Coupez, C. Boehme, and G. Wipff, lanthanide cations: how strong is the bidentate effect? The role of ligand size and counterions investigated by quantum mechanics, Phys. Chem. Chem. Phys., vol.62, issue.304, pp.5716-5729, 2002.
DOI : 10.1039/B207177K

F. Arnaud-neu, V. Böhmer, J. F. Dozol, C. Grüttner, R. A. Jakobi et al., Calixarenes with diphenylphosphoryl acetamide functions at the upper rim. A new class of highly efficient extractants for lanthanides and actinides, J. Chem. Soc., Perkin Trans. 2, vol.64, issue.6, pp.1175-1182, 1996.
DOI : 10.1039/P29960001175

F. Arnaud-neu, J. K. Browne, D. Byrne, D. J. Marrs, M. A. Mckervey et al., Extraction and Complexation of Alkali, Alkaline Earth, and F-Element Cations by Calixaryl Phosphine Oxides, Chemistry - A European Journal, vol.5, issue.1, pp.175-186, 1999.
DOI : 10.1002/(SICI)1521-3765(19990104)5:1<175::AID-CHEM175>3.0.CO;2-P

S. Barboso, A. G. Carrera, S. E. Matthews, F. Arnaud-neu, V. Böhmer et al., Calix[4]arenes with CMPO functions at the narrow rim. Synthesis and extraction properties, Journal of the Chemical Society, Perkin Transactions 2, issue.4, pp.719-723, 1999.
DOI : 10.1039/a900210c

N. Sabhatini, M. Guardigli, F. Bolletta, I. Manet, and R. Ziessel, Luminescent Eu3+ and Tb3+ Complexes of a Branched Macrocyclic Ligand Incorporating 2,2???-Bipyridine in the Macrocycle and Phosphinate Esters in the Side Arms, Angewandte Chemie International Edition in English, vol.33, issue.14, pp.1501-1503, 1994.
DOI : 10.1002/anie.199415011

L. J. Charbonniere, R. Ziessel, M. Montalti, L. Prodi, N. Zaccheroni et al., Luminescent Lanthanide Complexes of a Bis-bipyridine-phosphine-oxide Ligand as Tools for Anion Detection, Journal of the American Chemical Society, vol.124, issue.26, pp.7779-7788, 2002.
DOI : 10.1021/ja0200847

M. Pietraszkiewicz, A. Klonkowski, K. Staniszewski, J. Karpiuk, and S. Bianketti, Novel phosphinoxide-bearing ligands and their photoluminescent complexes, Journal of Alloys and Compounds, vol.380, issue.1-2, pp.241-247, 2004.
DOI : 10.1016/j.jallcom.2004.03.051

Y. Hasegawa, M. Yarnarnuro, Y. Wada, N. Kanehisa, Y. Kai et al., Luminescent Polymer Containing the Eu(III) Complex Having Fast Radiation Rate and High Emission Quantum Efficiency, The Journal of Physical Chemistry A, vol.107, issue.11, pp.697-702, 2003.
DOI : 10.1021/jp022397u

H. Xin, F. Y. Li, M. Shi, Z. Q. Bian, and C. H. Huang, Efficient Electroluminescence from a New Terbium Complex, Journal of the American Chemical Society, vol.125, issue.24, pp.7166-7167, 2003.
DOI : 10.1021/ja034087a

A. M. Lees and A. W. Platt, Complexes of Lanthanide Nitrates with Bis(diphenylphosphino)methane Dioxide, Inorganic Chemistry, vol.42, issue.15, pp.4673-4679, 2003.
DOI : 10.1021/ic0342954

X. Gan, B. M. Rapko, E. N. Duesler, I. Binyamin, R. T. Paine et al., The synthesis and lanthanide coordination chemistry of 2,6-bis[(dicyclohexyl)phosphino-methyl]pyridine N,P,P???-trioxide, Polyhedron, vol.24, issue.4, pp.469-474, 2005.
DOI : 10.1016/j.poly.2004.08.027

S. W. Maggennis, S. Parsons, A. Corval, J. D. Woollins, and Z. Pikramenou, Imidodiphosphinate ligands as antenne units in luminescent lanhanide complexes, Chem. Commun, pp.61-62, 1999.

G. Mancino, A. J. Ferguson, A. Beeby, N. J. Long, and T. S. Jones, Ion in a Molecular Complex Using a Perfluorinated Imidodiphosphinate Sensitizing Ligand, Journal of the American Chemical Society, vol.127, issue.2, pp.524-525, 2005.
DOI : 10.1021/ja0441864

E. B. Van-der-tol, H. J. Ramesdonk, J. W. Verhoeven, F. J. Steemers, E. G. Kerver et al., Tetraazatriphenylenes as Extremely Efficient Antenna Chromophores for Luminescent Lanthanide Ions, Chemistry - A European Journal, vol.4, issue.11, pp.2315-2323, 1998.
DOI : 10.1002/(SICI)1521-3765(19981102)4:11<2315::AID-CHEM2315>3.0.CO;2-E

S. I. Klink, G. A. Hebbink, L. Grave, P. G. Oude-alink, F. C. Van-veggel et al., by a Polydentate Ligand and a Bidentate Antenna to Obtain Ternary Complexes with High Luminescence Quantum Yields, The Journal of Physical Chemistry A, vol.106, issue.15, pp.3681-3689, 2002.
DOI : 10.1021/jp012617o

URL : https://hal.archives-ouvertes.fr/hal-01206366

V. Vicinelli, P. Ceroni, M. Maestri, V. Balzani, M. Gorka et al., Luminescent Lanthanide Ions Hosted in a Fluorescent Polylysin Dendrimer. Antenna-Like Sensitization of Visible and Near-Infrared Emission, Journal of the American Chemical Society, vol.124, issue.22, pp.6461-6468, 2002.
DOI : 10.1021/ja017672p

S. Tobita, M. Arakawa, and I. Tanaka, The paramagnetic metal effect on the ligand localized S1 .apprx. .fwdarw. T1 intersystem crossing in the rare-earth-metal complexes with methyl salicylate, The Journal of Physical Chemistry, vol.89, issue.26, pp.5649-5654, 1985.
DOI : 10.1021/j100272a015

S. Tobita, M. Arakawa, and I. Tanaka, Electronic relaxation processes of rare earth chelates of benzoyltrifluoroacetone, The Journal of Physical Chemistry, vol.88, issue.13, pp.2697-2702, 1984.
DOI : 10.1021/j150657a006

G. A. Hebbink, S. I. Klink, L. Grave, P. G. Alink, and F. C. Van-veggel, Singlet Energy Transfer as the Main Pathway in the Sensitization of Near-Infrared Nd3+ Luminescence by Dansyl and Lissamine Dyes, ChemPhysChem, vol.97, issue.12, pp.1014-1018, 2002.
DOI : 10.1002/cphc.200290002

T. Yamada, S. Shinoda, and H. Tsukube, Anion sensing with luminescent lanthanide complexes of tris(2-pyridylmethyl)amines: Pronounced effects of lanthanide center and ligand chirality on anion selectivity and sensitivity, Chemical Communications, issue.11, pp.1218-1219, 2002.
DOI : 10.1039/b202822k

M. H. Werts, R. H. Woudenberg, P. G. Emmerink, R. Van-gassel, J. W. Hofstraat et al., A Near-Infrared Luminescent Label Based on YbIII Ions and Its Application in a Fluoroimmunoassay, Angewandte Chemie International Edition, vol.52, issue.24, pp.4542-4544, 2000.
DOI : 10.1002/1521-3773(20001215)39:24<4542::AID-ANIE4542>3.0.CO;2-C

URL : https://hal.archives-ouvertes.fr/hal-01207665

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada et al., Luminescence of Novel Neodymium Sulfonylaminate Complexes in Organic Media, Angewandte Chemie International Edition, vol.39, issue.2, pp.357-360, 2000.
DOI : 10.1002/(SICI)1521-3773(20000117)39:2<357::AID-ANIE357>3.0.CO;2-M

Y. Hasegawa, K. Murakoshi, Y. Wada, S. Yanagida, J. Kim et al., Enhancement of luminescence of Nd3+ complexes with deuterated hexafluoroacetylacetonato ligands in organic solvent, Chemical Physics Letters, vol.248, issue.1-2, pp.8-12, 1996.
DOI : 10.1016/0009-2614(95)01279-6

S. B. Meshkova, Z. M. Topilova, D. V. Bolshoy, S. V. Beltyukova, M. P. Tsvirko et al., Quantum Efficiency of the Luminescence of Ytterbium(III) ??-Diketonates, Acta Physica Polonica A, vol.95, issue.6, pp.983-990, 1999.
DOI : 10.12693/APhysPolA.95.983

R. F. Ziessel, U. G. , L. Charbonnière, I. D. , R. Scopelliti et al., NIR Lanthanide Luminescence by Energy Transfer from Appended Terpyridine???Boradiazaindacene Dyes, Chemistry - A European Journal, vol.8, issue.19, pp.5060-5067, 2006.
DOI : 10.1002/chem.200600124

D. Imbert, S. Comby, A. Chauvin, and J. G. Bünzli, Lanthanide 8-hydroxyquinoline-based podates with efficient emission in the NIR range, Chem. Commun., vol.95, issue.11, pp.1432-1434, 2005.
DOI : 10.1039/B416575F

C. Generale, (d, J = 9.9 Hz, 4 CH ar, 132.3 (d, J = 103.9 Hz

4. Hz, 54 (t, J = 15, Hz, 2H), 4.03 (t, J = 6.1 Hz), 4.15 (q, J = 7 Hz, 4H)

L. Minuti, A. Taticchi, A. Marrocchi, S. Landi, E. Gacs-baitz et al., Synthesis and structure of [2.2]paracyclophanes incorporating alkyne units in the extended linear chainMeasurement of photoluminescence quantum yields. ReviewNew coumarin dyes with rigidized structure for flashlamp-pumped dye lasersQuantim efficiency of the luminescence of ytterbium(III) ?diketonatesNonlinear least-squares fitting of multivariate absorption data, Tetrahedron Letters J. Phys. Chem. Optics CommunicationsSynthesis, Luminescence Quantum Yields, and Lifetimes of Trischelated Ruthenium (II) Mixed-ligand Complexes Including Bull. Chem. Soc. Jpn. Acta. Phys. Pol. A Anal. Chem, vol.46, issue.62, pp.5735-5737, 1971.

G. , I. Pittsburgh, P. Churchill, R. F. See, S. L. Randall et al., Structure of tri-ptolylphosphine oxide hemihydrate, P(p-C 6 H 4 CH 3 ) 3 O.1/2H 2 OStructure and non-linear optical properties of phosphine oxide derivatives, Gaussian Acta Crystallogr. Sect. C: Cryst. Struct. Commun. J. Mater. Chem, vol.98, issue.6, pp.345-347, 1993.

E. M. Graham, V. M. Miskowski, J. W. Perry, D. R. Coulter, A. E. Stiegman et al., Unusual structural distortions induced by charge-transfer interactions through conjugated molecules: crystal structures of NH2(C6H4)(C.tplbond.C)n(C6H4)NO2 (n = 0-3), Journal of the American Chemical Society, vol.111, issue.24, pp.8771-8779, 1989.
DOI : 10.1021/ja00206a001

S. L. Murov, I. Carmichael, and G. L. Hug, Handbook of Photochemistry, 1993.

A. Bautista-sanchez, A. Kasselouri, M. Desroches, J. Blais, P. Maillard et al., Photophysical properties of glucoconjugated chlorins and porphyrins and their associations with cyclodextrins, Journal of Photochemistry and Photobiology B: Biology, vol.81, issue.3, pp.154-162, 2005.
DOI : 10.1016/j.jphotobiol.2005.05.013

URL : https://hal.archives-ouvertes.fr/hal-00016449

. Diphenyl, Hydrogen peroxide (30 % solution, 1.7 mL) was slowly added to a solution of di- phenyl-[4-trimethylsilylethynyl)phenyl]phosphane (2 g, 5.58 mmol) in a mixture of dichloromethane (50 mL) and methanol (50 mL) The resulting mixture was stirred at room temperature for 2 h and was then quenched with aqueous Na 2 SO 3 solution and extracted with dichloromethane, The combined organic phases were dried (MgSO 4 ), filtered, and concentrated under reduced pressure to give a white solid, p.96

”. Ch, 25 ppm (s, 9 H; CH 3 ), H NMR (300 MHz C NMR (75 MHz, CHCl 3 ): 132.7 (C-P) P NMR (121 MHz, pp.139-147

”. T. Ch-ar, ”. Ch-ar, ”. Ch-ar, and C. H. Pda, g, 5.34 mmol) in a mixture of dichloromethane (40 mL) and methanol (60 mL) The resulting mixture was stirred at room temperature for 2 h, quenched with water, and then extracted with dichloromethane. The combined organic layers were dried (MgSO 4 ), filtered, and concentrated under reduced pressure to give a white solid (1.4 g, 85 %). M.p. 144 8C; 1 H NMR (300 MHz, CHCl 3 ): d = 7 (m, 10 H; H ar ), 7 (m, 4 H; H ar ), 3.20 ppm (s, 1 H; H C= CH ); 13 C NMR (75 MHz, CHCl 3 ): d = 133 mmol) were added to a solution, Diphenyl-(4-ethynylphenyl)phosphane oxide (2 d): Potassium carbonate (256 mg 82.6, 79.9 ppm (2 ” C, C=C); 31 P NMR (121 MHz, CDCl 3 ): d = 28.7 ppm; MS (CI, NH 3 ): C 20 H 15 H NMR (300 MHz, CHCl 3 ): d = 8, pp.69-76

. Chem and . J. Eur, KGaA, Weinheim www.chemeurj.org 9063 FULL PAPER Fluorescent Phosphane Oxides (m, 2 H; H 1ar ) H; H 6ar ), 3.05 ppm (s, 6 H; CH 3 ), 3ar , H 5ar ), 6.76 (d, J = 9.2 Hz C NMR (75 MHz, CHCl 3 ): d = 150.6 (C) ” C), pp.9056-906557, 2006.

D. Pda and C. H. , CuI (1.91 mg, 0.01 mmol)PPh 3 ) 4 (12 mg, 0.01 mmol) were added to a solution of 10 (145 mg, 0.33 mmol) and the phosphane oxide 2 d (100 mg, 0.33 mmol) in a mixture of toluene (15 mL) and triethylamine (4 mL) The resulting mixture was stirred at room temperature for 24 h at 50 8C, and was then allowed to cool to room temperature and concentrated under vacuum. The residue was purified by silica gel chromatography (dichloromethane/acetone 95:5) to give an orange solid (70 mg, pp.73-81

”. Hz, 06 ppm (s, 6 H; CH 3 ) CHCl 3 ): d = 150, C NMR (75 MHz 132.5 (2 ” CH ar, pp.131-137

. -. Diphenylpd, Compound 2 b was obtained by the same experimental procedure as used to prepare 3, starting from a solution of [4- (4-iodophenylethynyl)phenyl]-dimethylamine (6, 527 mg, 1.51 mmol) and the phosphane oxide 2 d (100 mg, 0.33 mmol) in a mixture of toluene (18 mL) and triethylamine (4 mL) with CuI (14 mg, 0.07 mmol) and, to afford a yellow solid (316 mg, 67 %). M.p

”. Ch, ”. Ch-ar, ”. Ch-ar, ”. C. , and C. C. , 66 (d, J = 9 Hz, 2 H; H ar ), 2.99 ppm (s, 6 H; CH 3 ); 13 C NMR (100 MHz, CHCl 3 ): d = 150, 8C; 1 H NMR (300 MHz ” C ar ) ” CH ar ), 131.3 (2 ” CH ar 40.3 ppm (2 ” CH 3 ); 31 P NMR (121 MHz, pp.70-77

P. C. Tris, Compound 1 b was prepared by the same experimental procedure as used to prepare 3, starting from a solution of [4-(4-iodophe- nylethynyl)phenyl]dimethylamine (6, 600 mg, 1.75 mmol) and tris-(4- ethynylphenyl)phosphane oxide (1 d, 121 mg, 0.35 mmol) in a mixture of toluene (20 mL) and triethylamine (4 mL) with CuI (16 mg, 0.07 mmol)PPh 3 ) 4 (44 mg, 0.035 mmol), to afford a yellow solid (261 mgs, 18 H; CH 3 ); 13 C NMR (100 MHz, CHCl 3 ): d = 150, ” CÀP), pp.246-248

C. H. Trispda, Compound 1 c was obtained by the same experimental procedure as used to prepare 3, starting from a solution of (4-iodophenyl)-dimethylamine (9, 500 mg, 2 mmol) and tris-(4-ethynylphenyl)phosphane oxide (1 d, 177 mg, 0.5 mmol) in a mixture of toluene (26 mL) and triethylamine (7 mL) with CuI (19 mg, 0.1 mmol) and mmol), to afford a yellow solid (110 mg, p.40

H. , ”. Ch-ar, ”. Ch, and C. R. , 99 ppm (s, 18 H; CH 3 ); 13 C NMR (75 MHz CHCl 3 ): d = 150, 40.3 ppm (6 ” CH 3 ); 31 P NMR (121 MHzM+H] + . [1] a) Nonlinear Optical Properties of Organic Molecules and Crystals Molecular Nonlinear Optics: Materials, Phenomena and Devices (Ed.: J. Zyss), pp.65-709, 1987.

B. Valeur and M. Fluorescence, Principles and Applications, 2002.

W. J. Yang, C. H. Kim, M. Y. Jeong, S. K. Lee, M. Y. Piao et al., Synthesis and Two-Photon Absorption Properties of 9,10-Bis(arylethynyl)anthracene Derivatives, Chemistry of Materials, vol.16, issue.14, pp.2783-2789, 2004.
DOI : 10.1021/cm035032a

O. O. Orazi, R. A. Corral, H. E. Bertorello, H. Gilman, and L. Summers, Iodinations with 1,3-Diiodo-5,5-dimethylhydantoin, The Journal of Organic Chemistry, vol.30, issue.4, pp.1101-1104, 1950.
DOI : 10.1021/jo01015a036

]. C. Katan, F. Terenziani, O. Mongin, M. H. Wertz, L. Porres et al., Effects of (Multi)branching of Dipolar Chromophores on Photophysical Properties and Two-Photon Absorption, The Journal of Physical Chemistry A, vol.109, issue.13, pp.3024-3037, 2005.
DOI : 10.1021/jp044193e

URL : https://hal.archives-ouvertes.fr/hal-00880434

Y. Mataga, M. Kaifu, and . Koizumi, The Solvent Effect on Fluorescence Spectrum, Change of Solute-Solvent Interaction during the Lifetime of Excited Solute Molecule, Bulletin of the Chemical Society of Japan, vol.28, issue.9, pp.690-691, 1955.
DOI : 10.1246/bcsj.28.690

P. Suppan and J. , Invited review solvatochromic shifts: The influence of the medium on the energy of electronic states, Journal of Photochemistry and Photobiology A: Chemistry, vol.50, issue.3, pp.293-330, 1990.
DOI : 10.1016/1010-6030(90)87021-3

Y. Hirata, T. Okada, and T. Nomoto, -Dimethylaminophenyl(phenyl)acetylene in Protic Solvents, The Journal of Physical Chemistry A, vol.102, issue.33, pp.6585-6589, 1998.
DOI : 10.1021/jp980991r

URL : https://hal.archives-ouvertes.fr/in2p3-00003094

J. J. Wolff, F. Siegler, R. Matschiner, and R. Wortmann, Optimierte zweidimensionale NLO-Chromophore mit dreiz??hliger Symmetrieachse, Angewandte Chemie, vol.1993, issue.8, pp.1494-1498, 2000.
DOI : 10.1002/(SICI)1521-3757(20000417)112:8<1494::AID-ANGE1494>3.0.CO;2-L

D. J. Williams, . Angew, and . Chem, Organische polymere und nichtpolymere Materialien mit guten nichtlinearen optischen Eigenschaften, Angewandte Chemie, vol.37, issue.9, pp.637-651, 1984.
DOI : 10.1002/ange.19840960905

D. R. Kanis, M. A. Ratner, and T. Marks, Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects, Chemical Reviews, vol.94, issue.1, pp.195-242, 1994.
DOI : 10.1021/cr00025a007

V. M. Graham, J. W. Miskowski, D. R. Perry, A. E. Coulter, W. P. Stiegman et al., Unusual structural distortions induced by charge-transfer interactions through conjugated molecules: crystal structures of NH2(C6H4)(C.tplbond.C)n(C6H4)NO2 (n = 0-3), Journal of the American Chemical Society, vol.111, issue.24, pp.8771-8779, 1989.
DOI : 10.1021/ja00206a001

G. A. Reynolds and K. H. Drexhage, New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers, Optics Communications, vol.13, issue.3, pp.222-225, 1975.
DOI : 10.1016/0030-4018(75)90085-1

I. Maltey, J. A. Delaire, K. Nakatani, P. Wang, X. Shi et al., Hyperpolarisability of (donor)2-acceptor???type molecules determined by EFISHG, Advanced Materials for Optics and Electronics, vol.6, issue.56, pp.233-238, 1996.
DOI : 10.1002/(SICI)1099-0712(199609)6:5/6<233::AID-AMO272>3.0.CO;2-1

E. A. Guggenheim, A proposed simplification in the procedure for computing electric dipole moments, Transactions of the Faraday Society, vol.45, pp.714-720, 1949.
DOI : 10.1039/tf9494500714

?. Laboratoire-de-synthèse-sélective-organique-et-produits-naturels, E. N. Hutchinson, T. C. Meema, K. M. Scoullos, G. H. Vonkeman et al., In Lead, Mecury, Cadnium and Arsenic in the EnVironment Makuch, Z. In Mercury, Cadmium, Lead: Handbook for Sustainable HeaVy Metals Policy and Regulation (EnVironment & Policy, J. Anal. Chem, vol.77, issue.1 31, pp.3737-3754, 1987.

D. Temes and T. A. , Guidelines for drinking-water quality World Health Organization: Geneva, Anal. Chem. Chem. ReV.. Chem. ReV. ORGANIC LETTERS, vol.77, issue.205, pp.3807-3838, 1997.

T. S. Lobana, M. K. Sandhu, E. R. Tiekink, T. Baumgartner, and R. Réau, (8) For a recent review on organophosphorus ?-conjugated materials, and references cited therein. (9) Hajduk, pp.205-209, 1988.

C. Colton, R. Ebner, and J. , This value was estimated by considering the electrochemical potential in the ground state, E ) 0.5 V, and the energy of the first excited state, Hoskins, B. F. Inorg. Chem, vol.449, issue.27, pp.27-37, 1988.

M. Ha-thi, Penhoat are respectively grateful to the Ministère de l'Education et de la Recherche and C.N.RS. for grants, 2004.