. Ensuite, X ? (R)) = {0} * En remplaçant ? par ? v et en utilisant la proposition 6.1.12, on obtient, pp.52-52

. Si-u-i-=-u-j, Le cas o` u u i = u 2 est symétrique) On a alors 3 cas

?. Soit-w and ?. , Alors [? ij ] 2 = V ect(u 1 , w) et donc

S. Card, on peut supposer, quittè a réordonner, que: (u 1

]. F. Bibliographie-[-az, V. Guillén, and . Navarro-aznar, critère d'extension des foncteurs définis sur les schémas lisses, Publ. IHES, 2002.

]. F. Bi, C. Bihan, M. Mccrory, J. Franz, and . Van-hamel, Is every toric variety an M-variety ?, Manuscripta Math, vol.120, pp.217-232, 2006.

M. Brion, The structure of the polytope algebra, Tôhoku Math, J, vol.49, pp.1-32, 1997.

]. G. Bre and . Bredon, Topology and geometry, 1993.

]. V. Da and . Danilov, The geometry of toric varieties, Russian Math, Surveys, vol.33, issue.2, pp.97-154, 1978.

]. S. Fi and . Fischli, On toric varieties, 1992.

]. W. Fu and . Fulton, Introduction to toric varieties, 1993.

]. V. Ho and . Hower, A counterexample to the maximality of toric varieties, arXiv:alg- geom, p.611925, 2006.

V. Hower, Hodge spaces of real toric varieties, arXiv:alg-geom/0705, p.516, 2007.

]. A. Jor and . Jordan, Homology and cohomology of toric varieties, Konstanzer schriften in Mathematik und Informatik, 1998.

]. T. Oda and . Oda, Convex bodies and algebraic geometry, 1988.
DOI : 10.1007/978-3-642-72547-0

URL : http://gdz.sub.uni-goettingen.de/download/PPN37915000X/PPN37915000X___LOG_0001.pdf

]. C. Mc, A. Mccrory, and . Parusi´nskiparusi´nski, Weight filtration for real algebraic varieties

C. Mccrory and A. Parusi´nskiparusi´nski, Virtual Betti numbers of real algebraic varieties, Comptes Rendus Mathematique, vol.336, issue.9, pp.336-763, 2003.
DOI : 10.1016/S1631-073X(03)00168-7