A. Ausloos and D. H. Berman, A Multivariate Weierstrass-Mandelbrot Function, Proc. Roy. Soc. Lond., volume A 400, pp.331-350, 1985.
DOI : 10.1098/rspa.1985.0083

J. Barral and B. B. Mandelbrot, Multifractal products of cylindrical pulses, Prob. Th. Rel. Fields, pp.409-430, 2002.

A. Benassi and J. Istas, Processus autosimilaires, Hermès Science, vol.2, pp.101-127, 2002.

G. Brown, G. Michon, and J. Peyrì-ere, On the multifractal analysis of measures, Journal of Statistical Physics, vol.59, issue.2, pp.775-790, 1992.
DOI : 10.1007/BF01055700

R. Cioczek-georges, B. B. Mandelbrot, G. Samorodnitsky, and M. S. Taqqu, Stable Fractal Sums of Pulses: The Cylindrical Case, Bernoulli, vol.1, issue.3, pp.201-216, 1995.
DOI : 10.2307/3318477

R. Cioczek-georges and B. B. Mandelbrot, A class of micropulses and antipersistent fractional Brownian motion, Stochastic Processes and their Applications, vol.60, issue.1, pp.1-18, 1995.
DOI : 10.1016/0304-4149(95)00046-1

R. Cioczek-georges and B. B. Mandelbrot, Alternative micropulses and fractional Brownian motion, Stochastic Processes and their Applications, vol.64, issue.2, pp.143-152, 1996.
DOI : 10.1016/S0304-4149(96)00089-0

S. Cohen, Champs localement autosimilaires, Hermès Science, vol.1, pp.107-139, 2002.

L. Comtet, Analyse combinatoire, tome I. Presses Univ. de France, 1970.

Y. Demichel and C. Tricot, Analysis of the fractal sum of pulses, Math. Proc. Camb, 2006.
DOI : 10.1017/S0305004106009418

Y. Demichel and K. J. Falconer, The Hausdorff dimension of pulse-sum graphs, Math. Proc. Camb, 2007.
DOI : 10.1017/S0305004106009418

B. Dubuc and C. Tricot, Variation d'une fonction et dimension de son graphe, C.R. Acad. Sci. Paris, pp.531-533, 1988.

K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications., Biometrics, vol.46, issue.3, 2003.
DOI : 10.2307/2532125

A. Fournier, D. Fussel, and L. Carpenter, Computer rendering of stochastic models, Communications of the ACM, vol.25, issue.6, pp.371-384, 1982.
DOI : 10.1145/358523.358553

G. H. Hardy, Weierstrass's non-differentiable function, In Trans. Amer. Math. Soc, vol.17, pp.301-325, 1916.

Y. Heurteaux, Weierstrass functions with random phases, Transactions of the American Mathematical Society, vol.355, issue.08, pp.3065-3077, 2003.
DOI : 10.1090/S0002-9947-03-03221-5

URL : https://hal.archives-ouvertes.fr/hal-00475594

B. R. Hunt, The Hausdorff dimension of graphs of Weierstrass functions, Proc. Amer, pp.791-800, 1998.

S. Jaffard, Multifractal formalism for functions (part. I et II), SIAM J. Math. Anal, vol.24, pp.944-970, 1997.

S. Jaffard, Méthodes d'ondelettes pour l'analyse multifractale de fonctions, Hermès Science, vol.1, pp.71-102, 2002.

J. P. Kahane, Some random series of functions, 1985.

K. Knoppvoir and E. W. Hobson, Ein Einfaches Verfarhen zur Bildung stetiger nirgends differenzierbarer Funktionen The theory of functions of a real variable, 3 ` emé edition, Math. Zeits, vol.2, pp.1-26, 1918.

J. , L. Véhel, and C. Tricot, Analyse fractale et multifractale en traitement des signaux, Hermès Science, vol.1, pp.19-70, 2002.

J. , L. Véhel, and J. Barral, Multifractal Analysis of a Class of Additive Processes with Correlated Non-Stationary Increments, Electronic Journal of Probability, vol.9, issue.0, pp.508-543, 2004.
DOI : 10.1214/EJP.v9-208

B. B. Mandelbrot, Introduction to fractal sums of pulses, Lévy Processes and Related Phenomena in Physics, Lectures Notes In Physics 450, pp.110-123, 1995.
DOI : 10.1007/3-540-59222-9_29

B. B. Mandelbrot, Fractal sums of pulses and a pratical challenge to the distinction between local and global dependance, Lévy Processes and Related Phenomena in Physics, Lectures Notes In Physics 621, pp.118-135, 2003.

M. Métivier, Notions fondamentales de la théorie des probabilités, 1972.

Y. Meyer, Ondelettes et opérateurs, 1990.

C. Nanopoulos and P. Nobélis, Regularite et proprietes limites des fonctions aleatoires, Lectures Notes In Mathematics, vol.649, pp.567-690, 1995.
DOI : 10.1007/BFb0064630

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 1994.

F. Roueff and J. L. Véhel, A regularization approach to fractional dimension estimation, Fractals'98, 1998.
URL : https://hal.archives-ouvertes.fr/inria-00593254

L. A. Shepp, Covering the circle with random ARCS, Israel Journal of Mathematics, vol.21, issue.3, pp.328-345, 1972.
DOI : 10.1007/BF02789327

T. Tagaki, A simple example of continuous function without derivative (voir The collected papers of Teiji Takagi, Proc. Phys, pp.176-177, 1903.

C. Tricot, Dimension fractale et spectre, J. de chimie physique, vol.3, pp.379-384, 1988.
DOI : 10.1051/rphysap:01988002302011100

C. Tricot, Function Norms and Fractal Dimension, SIAM Journal on Mathematical Analysis, vol.28, issue.1, pp.189-212, 1997.
DOI : 10.1137/S0036141094278791

C. Tricot, Courbes et dimension fractale, 1999.

C. Tricot, A model for rough surfaces, Composites Science and Technology, vol.63, issue.8, pp.1089-1096, 2003.
DOI : 10.1016/S0266-3538(03)00029-0

K. Weierstrass, On continuous functions of a real argument that do not have a well-defined differential quotient Mathematische werke, band II Mayer and Müller, pp.71-74