I. Nicolas, Nanotubes de carbone : systèmes pour la limitation optique, Thèse de Doctorat, 2004.

B. Park, J. W. Shim, H. J. Choi, and Y. W. Park, Anomalous thermoelectric power of the alkali metal doped and the pyrolyzed fullerene, Synthetic Metals, vol.56, issue.2-3, p.3258, 1993.
DOI : 10.1016/0379-6779(93)90112-A

M. T. Yin and M. L. Et-cohen, Will Diamond Transform under Megabar Pressures?, Physical Review Letters, vol.50, issue.25, p.2006, 1983.
DOI : 10.1103/PhysRevLett.50.2006

H. W. Kroto, J. R. Heath, S. C. O-'brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature, vol.196, issue.6042, p.162, 1985.
DOI : 10.1038/318162a0

W. Ruland, A. K. Schaper, H. Hou, and A. Et-greiner, Multi-wall carbon nanotubes with uniform chirality: evidence for scroll structures, Carbon, vol.41, issue.3, p.423, 2003.
DOI : 10.1016/S0008-6223(02)00342-1

S. Iijima and T. Et-ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, p.603, 1993.
DOI : 10.1038/363603a0

N. Hamada, S. Sawada, and A. Et-oshiyama, New one-dimensional conductors: Graphitic microtubules, Physical Review Letters, vol.68, issue.10, p.1579, 1992.
DOI : 10.1103/PhysRevLett.68.1579

B. I. Dunlap, Connecting carbon tubules, Physical Review B, vol.46, issue.3, p.1933, 1992.
DOI : 10.1103/PhysRevB.46.1933

R. Saito, G. Dresselhaus, and M. S. Et-dresselhaus, Physical Properties of Carbon Nanotubes, 1998.
DOI : 10.1142/p080

P. M. Ajayan and T. W. Ebbesen, Nanometre-size tubes of carbon, Reports on Progress in Physics, vol.60, issue.10, pp.1025-1062, 1997.
DOI : 10.1088/0034-4885/60/10/001

W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou et al., Large-Scale Synthesis of Aligned Carbon Nanotubes, Science, vol.274, issue.5293, p.1701, 1996.
DOI : 10.1126/science.274.5293.1701

H. Dai, A. G. Rinsler, P. Nikolaev, A. Thess, D. T. Colbert et al., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chemical Physics Letters, vol.260, issue.3-4, pp.471-475, 1996.
DOI : 10.1016/0009-2614(96)00862-7

L. Jean-sébastien, Etude des propriétés optiques des nanotubes de carbone, Thèse de Doctorat, 2003.

W. K. Maser, M. Noz, E. Benito, A. M. Martínez, M. T. De-la-fuente et al., Production of high-density single-walled nanotube material by a simple laser-ablation method, Chemical Physics Letters, vol.292, issue.4-6, pp.587-593, 1998.
DOI : 10.1016/S0009-2614(98)00776-3

J. P. Lu, Elastic Properties of Carbon Nanotubes and Nanoropes, Physical Review Letters, vol.79, issue.7, p.1297, 1997.
DOI : 10.1103/PhysRevLett.79.1297

T. Scheibel, Spider silks : recombinant synthesis, assembly, spinning, and engineerind of synthetic proteins, Microbial Cell Factories, p.14, 2004.

B. I. Yakobson, C. J. Brabec, and J. Bernholc, Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response, Physical Review Letters, vol.76, issue.14, p.2511, 1996.
DOI : 10.1103/PhysRevLett.76.2511

A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. Treacy, Young???s modulus of single-walled nanotubes, Physical Review B, vol.58, issue.20, p.14013, 1998.
DOI : 10.1103/PhysRevB.58.14013

M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruo, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Physical Review Letters, vol.84, issue.24, p.5552, 2000.
DOI : 10.1103/PhysRevLett.84.5552

P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea et al., Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Applied Surface Science, vol.141, issue.3-4, p.201, 1999.
DOI : 10.1016/S0169-4332(98)00506-6

D. Sébastien, Nanotribologie par Microscopie de Force Atomique (AFM) sur des nanotubes de carbone, Thèse de Doctorat, 2001.

R. Saito, M. Fujita, G. Dresselhaus, and D. M. , Electronic structure of chiral graphene tubules, Applied Physics Letters, vol.60, issue.18, p.2204, 1992.
DOI : 10.1063/1.107080

J. E. Fischer, H. Dai, A. Thess, R. Lee, N. M. Hanjani et al., Metallic resistivity in crystalline ropes of single-wall carbon nanotubes, Physical Review B, vol.55, issue.8, pp.4921-4924, 1997.
DOI : 10.1103/PhysRevB.55.R4921

J. P. Salvetat, G. A. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik et al., Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes, Physical Review Letters, vol.82, issue.5, p.944, 1999.
DOI : 10.1103/PhysRevLett.82.944

A. Kis, G. Csanyi, J. P. Salvetat, T. N. Lee, E. Couteau et al., Reinforcement of single-walled carbon nanotube bundles by intertube bridging, Nature Materials, vol.3, issue.3, pp.153-157, 2004.
DOI : 10.1038/nmat1076

T. D. Yuzvinsky, W. Mickelson, S. Aloni, G. E. Begtrup, A. Kis et al., Shrinking a Carbon Nanotube, Nano Letters, vol.6, issue.12, pp.2718-2722, 2006.
DOI : 10.1021/nl061671j

T. Schmidt, R. Martel, R. L. Sandstrom, and P. Avouris, Current-induced local oxidation of metal films: Mechanism and quantum-size effects, Applied Physics Letters, vol.73, issue.15, p.2173, 1998.
DOI : 10.1063/1.122413

P. G. Collins, M. Hersam, M. Arnold, R. Martel, and P. Avouris, Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes, Physical Review Letters, vol.86, issue.14, p.3128, 2001.
DOI : 10.1103/PhysRevLett.86.3128

P. G. Collins, M. S. Arnold, and P. Avouris, Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown, Science, vol.292, issue.5517, p.706, 2001.
DOI : 10.1126/science.1058782

J. P. Salvetat, S. Bhattacharyya, and R. B. Pipes, Progress on Mechanics of Carbon Nanotubes and Derived Materials, Journal of Nanoscience and Nanotechnology, vol.6, issue.7, pp.1857-1882, 2006.
DOI : 10.1166/jnn.2006.305

J. P. Salvetat, Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes, Physical Review Letters, vol.82, issue.5, pp.944-947, 1999.
DOI : 10.1103/PhysRevLett.82.944

M. M. Treacy, T. W. Ebbesen, and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, vol.381, issue.6584, pp.678-680, 1996.
DOI : 10.1038/381678a0

Z. L. Wang, P. Poncharal, and W. A. De-heer, Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM, Journal of Physics and Chemistry of Solids, vol.61, issue.7, pp.1025-1030, 2000.
DOI : 10.1016/S0022-3697(99)00350-9

M. F. Yu, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, vol.287, issue.5453, pp.637-640, 2000.
DOI : 10.1126/science.287.5453.637

W. Kang, A study on carbon nanotube bridge as a electromechanical memory device, Physica E: Low-dimensional Systems and Nanostructures, vol.27, issue.3, pp.332-340, 2005.
DOI : 10.1016/j.physe.2004.12.009

. Fennimore, Rotational actuators based on carbon nanotubes, Nature, vol.424, issue.6947, pp.408-410, 2003.
DOI : 10.1038/nature01823

C. Ke, Feedback controlled nanocantilever device, Applied Physics Letters, vol.85, issue.4, pp.681-683, 2004.
DOI : 10.1063/1.1767606

. Lu, Nanotube micro-opto-mechanical systems, Nanotechnology, vol.18, issue.6, p.65501, 2007.
DOI : 10.1088/0957-4484/18/6/065501

K. Andreas, Mechanical Properties of Mesoscopic Objects, Thèse de Doctorat, Faculté des Sciences de base, 2003.

L. D. Landau and E. M. Lifchitz, Théorie de l'Élasticité, Physique Théorique, p.2, 1990.

P. Jérôme, Modélisations et Exprimentations en Microscopie à Force Atomique Dynamique en Ultra Vide, Thèse de Doctorat, 2005.

J. P. Aimé, R. Boisgard, L. Nony, and G. Couturier, Nonlinear Dynamic Behavior of an Oscillating Tip-Microlever System and Contrast at the Atomic Scale, Physical Review Letters, vol.82, issue.17, pp.3388-3391, 1999.
DOI : 10.1103/PhysRevLett.82.3388

N. Laurent, Analyse de la microscopie de force dynamique : application à l'étude de l'ADN, Thèse de Doctorat, 2000.

J. Israelachvili, Intermolecular & Surface Forces, 1992.

L. Landau and E. M. Lifchitz, Electrodynamique des milieux continus, tome VII, 1969.

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, Effect of contact deformations on the adhesion of particles, Journal of Colloid and Interface Science, vol.53, issue.2, pp.314-326, 1975.
DOI : 10.1016/0021-9797(75)90018-1

K. L. Johnson, K. Kendall, and A. D. Roberts, Surface Energy and the Contact of Elastic Solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.324, issue.1558, pp.301-313, 1971.
DOI : 10.1098/rspa.1971.0141

M. Pascal, Etude par AFM dynamique d'ADN sur des surfaces et des nanostructures chimiquement modiées, Thèse de Doctorat, 2004.

L. Nony, R. Boisgard, and J. P. Aimé, Nonlinear dynamical properties of an oscillating tip???cantilever system in the tapping mode, The Journal of Chemical Physics, vol.111, issue.4, p.1615, 1999.
DOI : 10.1063/1.479422

URL : https://hal.archives-ouvertes.fr/hal-00011145

T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, cantilevers for enhanced force microscope sensitivity, Journal of Applied Physics, vol.69, issue.2, pp.668-673, 1991.
DOI : 10.1063/1.347347

F. J. Giessibl, Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy, Science, vol.267, issue.5194, p.28, 1995.
DOI : 10.1126/science.267.5194.68

C. V. Nguyen, K. J. Chao, R. M. Stevens, L. Delzeit, A. Cassel et al., Carbon nanotube tip probes: stability and lateral resolution in scanning probe microscopy and application to surface science in semiconductors, Nanotechnology, vol.12, issue.3, p.363, 2001.
DOI : 10.1088/0957-4484/12/3/326

E. Yenilmez, Q. Wang, R. J. Chen, D. Wang, and H. Dai, Wafer scale production of carbon nanotube scanning probe tips for atomic force microscopy, Applied Physics Letters, vol.80, issue.12, p.2225, 2002.
DOI : 10.1063/1.1464227

J. S. Bunch, T. N. Rhodin, and P. L. Mceuen, Noncontact-AFM imaging of molecular surfaces using single-wall carbon nanotube technology, Nanotechnology, vol.15, issue.2, pp.76-78, 2004.
DOI : 10.1088/0957-4484/15/2/016

L. Marty, V. Bouchiat, C. Naud, M. Chaumont, T. Fournier et al., Schottky Barriers and Coulomb Blockade in Self-Assembled Carbon Nanotube FETs, Nano Letters, vol.3, issue.8, p.1115, 2003.
DOI : 10.1021/nl0342848

A. Iaia, L. Marty, C. Naud, V. Bouchiat, A. Loiseau et al., Oriented growth of suspended single wall carbon nanotube by Hot Filament CVD, Thin Solid Films, vol.501, issue.1-2, p.221, 2006.
DOI : 10.1016/j.tsf.2005.07.289

M. C. Strus, A. Raman, C. S. Han, and C. V. Nguyen, Imaging artefacts in atomic force microscopy with carbon nanotube tips, Nanotechnology, vol.16, issue.11, pp.2482-2492, 2005.
DOI : 10.1088/0957-4484/16/11/003

A. Kutana, K. P. Giapis, J. Y. Chen, and C. Collier, Amplitude Response of Single-Wall Carbon Nanotube Probes during Tapping Mode Atomic Force Microscopy:?? Modeling and Experiment, Nano Letters, vol.6, issue.8, p.1669, 2006.
DOI : 10.1021/nl060831o

A. J. Austin, C. V. Nguyen, and Q. Ngo, Electrical conduction of carbon nanotube atomic force microscopy tips: Applications in nanofabrication, Journal of Applied Physics, vol.99, issue.11, p.114304, 2006.
DOI : 10.1063/1.2195123

R. Boisgard, D. Michel, J. P. Aimé, and . Surf, Hysteresis generated by attractive interaction: oscillating behavior of a vibrating tip???microlever system near a surface, Surface Science, vol.401, issue.2, pp.199-205, 1998.
DOI : 10.1016/S0039-6028(97)01079-0

D. Dietzel, M. Faucher, A. Iaia, J. P. Aimé, S. Marsaudon et al., Analysis of mechanical properties of single wall carbon nanotubes fixed at a tip apex by atomic force microscopy, Nanotechnology, vol.16, issue.3, pp.73-78, 2004.
DOI : 10.1088/0957-4484/16/3/014

U. Dürig, Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy, Applied Physics Letters, vol.75, issue.3, p.433, 1999.
DOI : 10.1063/1.124399

T. R. Rodriguez and R. Garcia, Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: Comparison between continuous and point-mass models, Applied Physics Letters, vol.80, issue.9, p.1646, 2002.
DOI : 10.1063/1.1456543

D. Dietzel, S. Marsaudon, J. P. Aimé, C. V. Nguyen, and G. Couturier, Mechanical properties of a carbon nanotube fixed at a tip apex: A frequency-modulated atomic force microscopy study, Physical Review B, vol.72, issue.3, p.35445, 2005.
DOI : 10.1103/PhysRevB.72.035445

F. Giessibl, Forces and frequency shifts in atomic-resolution dynamic-force microscopy, Physical Review B, vol.56, issue.24, p.16010, 1997.
DOI : 10.1103/PhysRevB.56.16010

R. Garcia and R. Pérez, Dynamic atomic force microscopy methods, Surface Science Reports, vol.47, issue.6-8, p.197, 2002.
DOI : 10.1016/S0167-5729(02)00077-8

F. Dubourg, J. P. Aimé, S. Marsaudon, G. Couturier, and R. Boisgard, Probing the relationship between the scales of space and time in an entangled polymer network with an oscillating nanotip, Journal of Physics: Condensed Matter, vol.15, issue.36, p.6167, 2003.
DOI : 10.1088/0953-8984/15/36/307

R. Boisgard, J. P. Aimé, and G. Couturier, Analysis of mechanisms inducing damping in dynamic force microscopy: surface viscoelastic behavior and stochastic resonance process, Applied Surface Science, vol.188, issue.3-4, pp.363-371, 2002.
DOI : 10.1016/S0169-4332(01)00951-5

J. H. Hafner, C. L. Cheung, T. H. Oosterkamp, and C. M. Lieber, High-Yield Assembly of Individual Single-Walled Carbon Nanotube Tips for Scanning Probe Microscopies, The Journal of Physical Chemistry B, vol.105, issue.4, pp.743-746, 2001.
DOI : 10.1021/jp003948o

R. Stevens, C. Nguyen, A. Cassel, L. Delzeit, M. Meyyappan et al., Improved fabrication approach for carbon nanotube probe devices, Applied Physics Letters, vol.77, issue.21, pp.3453-3455, 2000.
DOI : 10.1063/1.1328046

H. Nishijima, S. Kamo, S. Akita, Y. Nakayama, K. I. Hohmura et al., Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid, Applied Physics Letters, vol.74, issue.26, pp.4061-4063, 1999.
DOI : 10.1063/1.123261

J. Martinez, T. D. Yusvinsky, A. M. Fennimore, A. Zettl, R. Garcia et al., Length control and sharpening of atomic force microscope carbon nanotube tips assisted by an electron beam, Nanotechnology, vol.16, issue.11, pp.2493-2496, 2005.
DOI : 10.1088/0957-4484/16/11/004

C. L. Cheung, J. H. Hafner, and C. M. Lieber, Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging, Proceedings of the National Academy of Sciences, vol.97, issue.8, pp.3809-3813, 2000.
DOI : 10.1073/pnas.050498597

H. J. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy, Nature, vol.384, issue.6605, pp.147-150, 1996.
DOI : 10.1038/384147a0

A. J. Austin, C. V. Nguyen, and Q. Ngo, Electrical conduction of carbon nanotube atomic force microscopy tips: Applications in nanofabrication, Journal of Applied Physics, vol.99, issue.11, p.114304, 2006.
DOI : 10.1063/1.2195123

P. G. Collins, M. S. Arnold, and A. Ph, Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown, Science, vol.292, issue.5517, pp.706-709, 2001.
DOI : 10.1126/science.1058782

P. G. Collins, M. Hersam, M. Arnold, R. Martel, and P. Avouris, Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes, Physical Review Letters, vol.86, issue.14, p.3128, 2001.
DOI : 10.1103/PhysRevLett.86.3128

C. V. Nguyen, C. So, R. M. Stevens, Y. Li, . Sarrazin-ph et al., High Lateral Resolution Imaging with Sharpened Tip of Multi-Walled Carbon Nanotube Scanning Probe, The Journal of Physical Chemistry B, vol.108, issue.9, pp.2816-2821, 2004.
DOI : 10.1021/jp0361529

A. Kis, G. Csanyi, J. P. Salvetat, T. N. Lee, E. Couteau et al., Reinforcement of single-walled carbon nanotube bundles by intertube bridging, Nature Materials, vol.3, issue.3, pp.153-157, 2004.
DOI : 10.1038/nmat1076

L. Marty, V. Bouchiat, C. Naud, M. Chaumont, T. Fournier et al., Schottky Barriers and Coulomb Blockade in Self-Assembled Carbon Nanotube FETs, Nano Letters, vol.3, issue.8, p.1115, 2003.
DOI : 10.1021/nl0342848

A. M. Bonnot, B. Mathis, and S. Moulin, Investigation of the growth kinetics of low pressure diamond films by in situ elastic scattering of light and reflectivity, Applied Physics Letters, vol.63, issue.13, p.1754, 1993.
DOI : 10.1063/1.110704

L. Marty, A. Iaia, M. Faucher, V. Bouchiat, C. Naud et al., Self-assembled single wall carbon nanotube field effect transistors and AFM tips prepared by hot filament assisted CVD, Thin Solid Films, vol.501, issue.1-2, p.299, 2006.
DOI : 10.1016/j.tsf.2005.07.218

M. Kociak, K. Suenaga, K. Hirahara, Y. Saito, T. Nakahira et al., Linking Chiral Indices and Transport Properties of Double-Walled Carbon Nanotubes, Physical Review Letters, vol.89, issue.15, p.155501, 2002.
DOI : 10.1103/PhysRevLett.89.155501

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, 1998.
DOI : 10.1142/p080

H. Kataura, Y. Kumazawa, I. Maniwa, I. Umezu, S. Suzuki et al., Optical properties of single-wall carbon nanotubes, Synthetic Metals, vol.103, issue.1-3, p.2555, 1999.
DOI : 10.1016/S0379-6779(98)00278-1

B. C. Park, K. Y. Yung, W. Y. Song, O. B. Ahn, and S. J. , Bending of a Carbon Nanotube in Vacuum Using a Focused Ion Beam, Advanced Materials, vol.35, issue.1, pp.95-98, 2006.
DOI : 10.1002/adma.200501223

T. D. Yuzvinsky, W. Mickelson, S. Aloni, G. E. Begtrup, A. Kis et al., Shrinking a Carbon Nanotube, Nano Letters, vol.6, issue.12, pp.2718-2722, 2006.
DOI : 10.1021/nl061671j

R. M. Stevens, C. V. Nguyen, and M. Meyyapan, Carbon Nanotube Scanning Probe for Imaging in Aqueous Environment, IEEE Transactions on Nanobioscience, vol.3, issue.1, pp.56-60, 2004.
DOI : 10.1109/TNB.2004.824275

G. Couturier, R. Boisgard, D. Dietzel, and J. P. Aimé, Damping and instability in non-contact atomic force microscopy: the contribution of the instrument, Nanotechnology, vol.16, issue.8, pp.1346-1353, 2005.
DOI : 10.1088/0957-4484/16/8/061

F. Dubourg, J. P. Aimé, S. Marsaudon, G. Couturier, and R. Boisgard, Probing the relationship between the scales of space and time in an entangled polymer network with an oscillating nanotip, Journal of Physics: Condensed Matter, vol.15, issue.36, p.6167, 2003.
DOI : 10.1088/0953-8984/15/36/307

D. Dietzel, S. Marsaudon, J. P. Aimé, C. V. Nguyen, and G. Couturier, Mechanical properties of a carbon nanotube fixed at a tip apex: A frequency-modulated atomic force microscopy study, Physical Review B, vol.72, issue.3, p.35445, 2005.
DOI : 10.1103/PhysRevB.72.035445

L. Nony, R. Boisgard, and J. P. Aimé, Nonlinear dynamical properties of an oscillating tip???cantilever system in the tapping mode, The Journal of Chemical Physics, vol.111, issue.4, p.1615, 1999.
DOI : 10.1063/1.479422

URL : https://hal.archives-ouvertes.fr/hal-00011145

D. Dietzel, M. Faucher, A. Iaia, J. P. Aimé, S. Marsaudon et al., Analysis of mechanical properties of single wall carbon nanotubes fixed at a tip apex by atomic force microscopy, Nanotechnology, vol.16, issue.3, pp.73-78, 2004.
DOI : 10.1088/0957-4484/16/3/014

F. Giessibl, Forces and frequency shifts in atomic-resolution dynamic-force microscopy, Physical Review B, vol.56, issue.24, p.16010, 1997.
DOI : 10.1103/PhysRevB.56.16010

. Hölscherh, A. Schwarz, W. Allers, U. D. Schwarz, and R. Wiesendanger, Quantitative analysis of dynamic-force-spectroscopy data on graphite(0001) in the contact and noncontact regimes, Physical Review B, vol.61, issue.19, p.12678, 2000.
DOI : 10.1103/PhysRevB.61.12678

U. Dürig, Extracting interaction forces and complementary observables in dynamic probe microscopy, Applied Physics Letters, vol.76, issue.9, p.1203, 2000.
DOI : 10.1063/1.125983

J. N. Israelachvili, Intermolecular and surface forces Academic press, 1992.

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, Effect of contact deformations on the adhesion of particles, Journal of Colloid and Interface Science, vol.53, issue.2, pp.314-326, 1975.
DOI : 10.1016/0021-9797(75)90018-1

R. Garcia and R. Pérez, Dynamic atomic force microscopy methods, Surface Science Reports, vol.47, issue.6-8, p.197, 2002.
DOI : 10.1016/S0167-5729(02)00077-8

J. P. Aimé, R. Boisgard, L. Nony, and G. Couturier, Nonlinear Dynamic Behavior of an Oscillating Tip-Microlever System and Contrast at the Atomic Scale, Physical Review Letters, vol.82, issue.17, p.3388, 1999.
DOI : 10.1103/PhysRevLett.82.3388

J. S. Bunch, T. N. Rhodin, and P. L. Mceuen, Noncontact-AFM imaging of molecular surfaces using single-wall carbon nanotube technology, Nanotechnology, vol.15, issue.2, pp.76-78, 2004.
DOI : 10.1088/0957-4484/15/2/016

A. T. Woolley, C. Guillemette, C. L. Cheung, D. E. Housman, and C. M. Lieber, Direct haplotyping of kilobase-size DNA using carbon nanotube probes, Nature Biotechnology, vol.120, issue.7, pp.760-763, 2000.
DOI : 10.1038/77760

C. V. Nguyen, K. J. Chao, R. M. Stevens, L. Delzeit, A. Cassel et al., Carbon nanotube tip probes: stability and lateral resolution in scanning probe microscopy and application to surface science in semiconductors, Nanotechnology, vol.12, issue.3, p.363, 2001.
DOI : 10.1088/0957-4484/12/3/326

S. Akita, H. Nishijima, and Y. Nakayama, Influence of stiffness of carbon-nanotube probes in atomic force microscopy, Journal of Physics D: Applied Physics, vol.33, issue.21, pp.2673-2677, 2000.
DOI : 10.1088/0022-3727/33/21/301

A. Kutana, K. P. Giapis, J. Y. Chen, and C. Collier, Amplitude Response of Single-Wall Carbon Nanotube Probes during Tapping Mode Atomic Force Microscopy:?? Modeling and Experiment, Nano Letters, vol.6, issue.8, p.1669, 2006.
DOI : 10.1021/nl060831o

S. D. Solares, Y. Matsuda, and W. A. Goddard, Influence of the Carbon Nanotube Probe Tilt Angle on the Effective Probe Stiffness and Image Quality in Tapping-Mode Atomic Force Microscopy, The Journal of Physical Chemistry B, vol.109, issue.35, pp.16658-16664, 2005.
DOI : 10.1021/jp052758g

R. Anne-sophie, Technologies microsystèmes avancées pour le fonctionnement de dispositifs en milieu liquide et les applications nanométriques, Thèse de Doctorat, 2006.

A. Iaia, L. Marty, C. Naud, V. Bouchiat, A. Loiseau et al., Oriented growth of suspended single wall carbon nanotube by Hot Filament CVD, Thin Solid Films, vol.501, issue.1-2, p.221, 2006.
DOI : 10.1016/j.tsf.2005.07.289

I. Obataya, C. Nakamura, S. W. Han, N. Nakamura, and J. Miyake, Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy, Biosensors and Bioelectronics, vol.20, issue.8, p.1652, 2005.
DOI : 10.1016/j.bios.2004.07.020

S. W. Han, C. Nakamura, I. Obataya, N. Nakamura, and J. Miyake, A molecular delivery system by using AFM and nanoneedle, Biosensors and Bioelectronics, vol.20, issue.10, p.2120, 2005.
DOI : 10.1016/j.bios.2004.08.023

F. Dubourg, J. P. Aimé, S. Marsaudon, G. Couturier, and R. Boisgard, Probing the relationship between the scales of space and time in an entangled polymer network with an oscillating nanotip, Journal of Physics: Condensed Matter, vol.15, issue.36, p.6167, 2003.
DOI : 10.1088/0953-8984/15/36/307

R. Boisgard, J. P. Aimé, and G. Couturier, Surface mechanical instabilities and dissipation under the action of an oscillating tip, Surface Science, vol.511, issue.1-3, p.171, 2002.
DOI : 10.1016/S0039-6028(02)01436-X

P. Mélinon, A. Hannour, B. Prével, L. Bardotti, E. Bernstein et al., Functionalizing surfaces with arrays of clusters: role of the defects, Journal of Crystal Growth, vol.275, issue.1-2, p.317, 2005.
DOI : 10.1016/j.jcrysgro.2004.10.162

Y. F. Dufrêne, Direct Characterization of the Physicochemical Properties of Fungal Spores Using Functionalized AFM Probes, Biophysical Journal, vol.78, issue.6, pp.3286-3291, 2000.
DOI : 10.1016/S0006-3495(00)76864-0

Z. Wang, R. Lévy, D. G. Fernig, and M. Brust, The Peptide Route to Multifunctional Gold Nanoparticles, Bioconjugate Chemistry, vol.16, issue.3, pp.497-500, 2005.
DOI : 10.1021/bc050047f

R. Lévy, T. K. Nguyen, R. C. Doty, I. Hussain, R. J. Nichols et al., Rational and Combinatorial Design of Peptide Capping Ligands for Gold Nanoparticles, Journal of the American Chemical Society, vol.126, issue.32, pp.10076-10084, 2004.
DOI : 10.1021/ja0487269

F. Brochard, Spreading of liquid drops on thin cylinders: The ??????manchon/droplet?????? transition, The Journal of Chemical Physics, vol.84, issue.8, pp.4664-4672, 1986.
DOI : 10.1063/1.449993

J. E. Sader, Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope, Journal of Applied Physics, vol.84, issue.1, p.64, 1998.
DOI : 10.1063/1.368002

A. Maali, C. Hurth, R. Boisgard, C. Jai, T. Cohen-bouhacina et al., Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids, Journal of Applied Physics, vol.97, issue.7, p.74907, 2005.
DOI : 10.1063/1.1873060

K. Hisatake, S. Tanaka, and Y. Aizama, Evaporation rate of water in a vessel, Journal of Applied Physics, vol.73, issue.11, pp.7395-7401, 1993.
DOI : 10.1063/1.354031

C. N. Peiss, Evaporation of small water drops maintained at constant volume, Journal of Applied Physics, vol.65, issue.12, pp.5235-5237, 1989.
DOI : 10.1063/1.343165

B. Panchapakesan, S. Lu, K. Sivakumar, K. Teker, G. Cesarone et al., Single-Wall Carbon Nanotube Nanobomb Agents for Killing Breast Cancer Cells, NanoBiotechnology, vol.1, issue.2, p.133, 2005.
DOI : 10.1385/NBT:1:2:133

J. L. Kulp, K. Shiba, and J. S. Evans, Probing the Conformational Features of a Phage Display Polypeptide Sequence Directed against Single-Walled Carbon Nanohorn Surfaces, Langmuir, vol.21, issue.25, pp.11907-11914, 2005.
DOI : 10.1021/la050961x

C. Bernard, J. P. Aimé, S. Marsaudon, R. Lévy, A. M. Bonnot et al., Drying nano particles solution on an oscillating tip at an air liquid interface: what we can learn, what we can do, Nanoscale Research Letters, vol.77, issue.11, pp.309-318, 2007.
DOI : 10.1007/s11671-007-9065-5

URL : https://hal.archives-ouvertes.fr/hal-00351739

R. M. Stevens, C. V. Nguyen, and M. Meyyappan, Carbon Nanotube Scanning Probe for Imaging in Aqueous Environment, IEEE Transactions on Nanobioscience, vol.3, issue.1, pp.56-60, 2004.
DOI : 10.1109/TNB.2004.824275

L. Landau, E. Lifchitz, . Mécanique-des-fluides, and . Mir, Moscou (1971) dispose d'une grande profondeur de champ en comparaison avec le microscope optique (dans la gamme des grossissements où une telle comparaison peut bien entendu être faite) Le MEB est désormais un matériel assez courant malgré son coût relativement élevé. Il s'avère très ecace pour la détection de défauts tels que les trous, les ssures

C. Microscopie-Électronique-À-balayage-et-microanalyse and M. Perrin, directeur du Centre de microscopie électronique à balayage et microanalyse (CMEBA, Université de Rennes I), cours disponible sur Internet à l'adresse http

R. Nm, 5 kV) : 5 nm Résolution à 20 pA (à 30 kV) : 300 nm Résolution (à 30 kV) : 1.1 nm

. Dans-une-enceinte-sous-vide-relativement-poussé, les atomes (ionisés ou non) en mouvement ont des libres parcours moyens qui sont de l'ordre de grandeur de ladite enceinte. S'ils sont ionisés, nous imaginons aisément qu'à l'aide d'un champ électrique ou magnétique il est possible de leur conférer une trajectoire contrôlée et une accélération telle qu'ils percuteront les surfaces vers lesquelles on les dirige avec une énergie susante pour

. Le, FIB est également un instrument permettant de faire de l'imagerie

. Le-dépôt-de-matière-va-Être-important, De plus, en diminuant la température de l'échantillon, il est possible d

. B. Fig, 4 Redimensionnement d'un levier AFM par FIB an d'être utilisé en milieu liquide

. B. Fig, 5 Pointe AFM usinée par FIB an d'en faire une nano-aiguille beaucoup plus elée

F. Le and . Également-Être-utilisé-pour-déposer-des-matériaux, Nous parlons alors de déposition induite par faisceau d'ions (IBID pour Ion Beam Induced Deposition) Il s'agit d'un dépôt chimique en phase vapeur assisté par FIB qui se produit lorsqu'un gaz comme l'hexacarbonyle de tungstène (W(CO) 6 )

. Le, FIB est souvent utilisé dans l'industrie des semi-conducteurs pour réparer ou modier un dispositif semi-conducteur. Par exemple, dans un circuit intégré

. Le, FIB peut également être utilisé pour la découpe d'échantillons biologiques

. Le, FIB comme outil de manipulation d'objet Le système Omniprobe permet de faire des transferts d'échantillons à l'aide de petites soudures en tungstène entre la nano-aiguille et l'échantillon à déplacer. Les diérentes étapes de cette manipulation (représentées sur la gure B.6) sont les suivantes

F. Le, . Donc-un-instrument-très, and . Complet, C'est à la fois un outil de préparation d'échantillons (TEM, pointes AFM), un outil de fabrication (circuits intégrés, dépôt, usinage, gravure sélective), et un outil avec des accessoires très utiles (Omniprobe)

M. Utlaut, Focused Ion Beams in Hanbook of Charged Particle Optics, 1997.

A. Maali, T. Cohen-bouhacina, C. Jai, C. Hurth, R. Boisgard et al., Reduction of the cantilever hydrodynamic damping near a surface by ion-beam milling, Journal of Applied Physics, vol.99, issue.2, pp.24908-24909, 2006.
DOI : 10.1063/1.2163996