Skip to Main content Skip to Navigation

Inversion of probabilistic models of structures using measured transfer functions

Abstract : The aim of this thesis is to develop a methodology for the experimental identification of probabilistic models for the dynamical behaviour of structures. The inversion of probabilistic structural models with minimal parameterization, introduced by Soize, from measured transfer functions is in particular considered. It is first shown that the classical methods of estimation from the theory of mathematical statistics, such as the method of maximum likelihood, are not well-adapted to formulate and solve this inverse problem. In particular, numerical difficulties and conceptual problems due to model misspecification are shown to prohibit the application of the classical methods. The inversion of probabilistic structural models is then formulated alternatively as the minimization, with respect to the parameters to be identified, of an objective function measuring a distance between the experimental data and the probabilistic model. Two principles of construction for the definition of this distance are proposed, based on either the loglikelihood function, or the relative entropy. The limitation of the distance to low-order marginal laws is demonstrated to allow to circumvent the aforementioned difficulties. The methodology is applied to examples featuring simulated data and to a civil and environmental engineering case history featuring real experimental data.
Complete list of metadatas

Cited literature [204 references]  Display  Hide  Download
Contributor : Arnst Maarten <>
Submitted on : Tuesday, February 5, 2008 - 12:19:53 AM
Last modification on : Wednesday, July 8, 2020 - 11:10:20 AM
Long-term archiving on: : Thursday, September 27, 2012 - 5:49:01 PM


  • HAL Id : tel-00238573, version 1



Maarten Arnst. Inversion of probabilistic models of structures using measured transfer functions. Mechanics []. Ecole Centrale Paris, 2007. English. ⟨tel-00238573⟩



Record views


Files downloads