R. Abgrall, H. Deconinck, and K. Sermeus, Status of Multidimensional Upwind Residual Distribution Schemes and Applications in Aeronautics, 2000.

R. Abgrall and P. L. Roe, High order fluctuation schemes on triangular meshes, Journal of Scientific Computing, vol.19, pp.1-3, 2003.

R. Abgrall and M. Mezine, Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow problems, Journal of Computational Physics, vol.188, issue.1, pp.16-55, 2003.
DOI : 10.1016/S0021-9991(03)00084-6

T. Barth, Numerical Methods for convservative Laws on Structured and Unstructured Meshes, VKI, Lecture Series, 2003.

P. Batten, C. Lambert, and D. M. Causon, POSITIVELY CONSERVATIVE HIGH-RESOLUTION CONVECTION SCHEMES FOR UNSTRUCTURED ELEMENTS, International Journal for Numerical Methods in Engineering, vol.28, issue.11, 1996.
DOI : 10.1002/(SICI)1097-0207(19960615)39:11<1821::AID-NME929>3.0.CO;2-E

C. Baudry, ContributionàContributionà la modélisation instationnaire et tridimensionnelle du comportement dynamique de l'arc dans une torche de projection plasma, 2003.

T. Buffard, Analyse de quelques méthodes de Volumes Finis non structurés pour la résolution deséquationdeséquation d'Euler, 1983.

T. Buffard and S. Clain, Multi-Slope MUSCL Methods for Unstructured Meshes, preprint, 2007.

C. Chainais-hillairet, Second-order Finite-volume Schemes for Non-linear Hyperbolic Equation : Error Estimate, Mathematical Methods in the Applied Sciences, 2000.

R. Courant, E. Isaacson, and M. Rees, On the solution of nonlinear hyperbolic differential equations by finite differences, Communications on Pure and Applied Mathematics, vol.29, issue.3, pp.243-255, 1952.
DOI : 10.1002/cpa.3160050303

P. H. Cournède, C. Debiez, and A. Dervieux, A Positive MUSCL Scheme for Triangulations, 1998.

F. Courty, D. Leservoisier, P. L. George, and A. Dervieux, Continuous metrics and mesh adaptation, Applied Numerical Mathematics, vol.56, issue.2, 2003.
DOI : 10.1016/j.apnum.2005.03.001

B. Desprès, An Explicit A Priori Estimate for a Finite Volume Approximation of Linear Advection on Non-Cartesian Grids, SIAM Journal on Numerical Analysis, vol.42, issue.2, 2004.
DOI : 10.1137/S0036142901394558

R. Eymard, T. Gallouet, and R. Herbin, Finite Volume Method, Handbook for Numerical Analysis, Ph. Ciarlet J.L. Lions eds, pp.715-1022, 2000.

E. Godlewsky and P. A. Raviart, Numerical approximation of hyperbolique convervation laws, 1996.

S. K. Godunov, A finite-difference method for the numerical computation and discontinuous solutions of the equations of fluid dynamics, Mat. Sb, vol.7, pp.271-306, 1959.

J. B. Goodman and R. J. Leveque, On the Accuracy of Stable Schemes for 2D Scalar Conservation Laws, Mathematics of Computation, vol.45, issue.171, 1985.
DOI : 10.2307/2008046

A. Harten, J. M. Hyman, and P. D. Lax, On finite-difference approximations and entropy conditions for shocks, Communications on Pure and Applied Mathematics, vol.6, issue.3, pp.297-322, 1976.
DOI : 10.1002/cpa.3160290305

A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Computationnal Physics, vol.49, 1983.

M. E. Hubbard, Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids, Journal of Computational Physics, vol.155, issue.1, 1999.
DOI : 10.1006/jcph.1999.6329

A. Jameson, Analysis and Design of Numerical Schemes for Gas Dynamics 1. Artificial Diffusion, Limiters and their Effect on Accuracy and Multigrid, 1994.

R. J. Leveque, Numerical Methods for Conservative Laws, 1992.

P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, vol.43, issue.2, pp.357-372, 1981.
DOI : 10.1016/0021-9991(81)90128-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.457.5978

P. L. Roe and J. Pike, Efficient construction and utilisation of Approximate Riemann Solutions, Computational Mathematics in Applied Sciences and Engenering, vol.VI, pp.499-518, 1984.

S. Spekreijse, Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws, Mathematics of Computation, vol.49, issue.179, 1987.
DOI : 10.1090/S0025-5718-1987-0890258-9

P. K. Sweby, High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws, SIAM Journal on Numerical Analysis, vol.21, issue.5, pp.995-1011, 1984.
DOI : 10.1137/0721062

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 1999.

R. Touzani, An Object Oriented Finite Element Toolkit, Proceedings of the FifthWorld Congress on Computational Mechanics (WCCM V), 2002.
URL : https://hal.archives-ouvertes.fr/hal-00088336

J. P. Trelles and J. V. Herbelein, Simulation Results of Arc Behavior in Different Plasma Spray Torches, Journal of Thermal Spray Technology, vol.15, issue.4
DOI : 10.1361/105996306X147252

B. Van-leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, Journal of Computational Physics, vol.32, issue.1, 1979.
DOI : 10.1016/0021-9991(79)90145-1

B. Van-leer, Upwind and High-Resolution Methods for Compressible Flow: From Donor Cell to Residual-Distribution Schemes, 16th AIAA Computational Fluid Dynamics Conference, pp.192-206, 2006.
DOI : 10.2514/6.2003-3559

C. Viozat, C. Held, K. Mer, and A. Dervieux, On vertex-centered unstructured finite-volume methods for stretched anisotropic triangulations, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.35-36, 1998.
DOI : 10.1016/S0045-7825(00)00345-5

URL : https://hal.archives-ouvertes.fr/inria-00073226

P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, vol.54, issue.1, pp.115-172, 1984.
DOI : 10.1016/0021-9991(84)90142-6

.. Etude-des-effets-thermiquesàthermiquesà-re-constant, 265 8.3.4 Vers une simulation d'une torchè a plasma, p.266

S. Abarbanel, D. Gottlieb, and J. S. Hesthaven, Non-Linear PML Equations for Time Dependent Electromagnetics in Three Dimensions, Journal of Scientific Computing, vol.27, issue.2-3, pp.125-137, 2006.
DOI : 10.1007/s10915-006-9072-1

C. Baudry, ContributionàContributionà la modélisation instationnaire et tridimensionnelle du comportement dynamique de l'arc dans une torche de projection plasma, 2003.

J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.
DOI : 10.1006/jcph.1994.1159

A. Biancherin, N. Lupoglazoff, G. Rahier, and F. Vuillot, Comprehensive 3D unsteady simulation of subsonic and supersonic hot jet flow-fields. Part 1 : aerodynamic analysis, 2002.

A. Biancherin, N. Lupoglazoff, G. Rahier, and F. Vuillot, Comprehensive 3D unsteady simulation of subsonic and supersonic hot jet flow-fields, 2002.

D. J. Bodony and S. K. Lele, Jet Noise Prediction of Cold and Hot Subsonic Jets Using Large-eddy Simulation, 10th AIAA/CEAS Aeroacoustics Conference, 2004.
DOI : 10.2514/6.2004-3022

D. J. Bodony, The Prediction and Understanding of jet noise, CTR Annual Research Briefs, pp.367-377, 2005.

D. J. Bodony, Analysis of sponge zones for computational fluid mechanics, Journal of Computational Physics, vol.212, issue.2, pp.681-702, 2006.
DOI : 10.1016/j.jcp.2005.07.014

B. J. Boersma, G. Brethouwer, and F. T. Nieuwstadt, A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet, Physics of Fluids, vol.10, issue.4, pp.899-909, 1997.
DOI : 10.1063/1.869626

B. J. Boersma and S. K. Lele, Large eddy simulation of compressible turbulent jets, CTR Annual Research Briefs, pp.365-377, 1999.

B. J. Boersma and A. Hilgers, Optimization of turbulent jet mixing, Fluid Dynamics Research, vol.29, pp.345-368, 2001.

B. J. Boersma, Numerical simulation of the noise generated by a low Mach number, low Reynolds number jet, Fluid Dynamics Research, vol.35, issue.6, pp.425-447, 2004.
DOI : 10.1016/j.fluiddyn.2004.10.003

B. J. Boersma, A staggered compact finite difference formulation for the compressible Navier???Stokes equations, Journal of Computational Physics, vol.208, issue.2, pp.675-690, 2005.
DOI : 10.1016/j.jcp.2005.03.004

C. Bogey and C. Bailly, Three-dimensional non-reflexive boundary conditions for acoustic simulations : far field formulation and validation cases, Acta Acustica United with Acustica, vol.88, pp.463-471, 2002.

C. Boguey and C. Bailly, Decrease of the Effective Reynolds Number with Eddy-Viscosity Subgrid-Scale Modeling, Technical Notes, AIAA Journal, vol.43, issue.2, 2005.

C. Bogey and C. Bailly, Effects of Inflow Conditions and Forcing on Subsonic Jet Flows and Noise., AIAA Journal, vol.43, issue.5, pp.1000-1007, 2005.
DOI : 10.2514/1.7465

C. Bogey and C. Bailly, Computation of a high Reynolds number jet and its radiated noise using large eddy simulation based on explicit filtering, Computers and Fluids, 2005.

C. Bogey and C. Bailly, Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model, International Journal of Heat and Fluid Flow, vol.27, issue.4, 2006.
DOI : 10.1016/j.ijheatfluidflow.2006.02.008

C. Bogey and C. Bailly, Investigation of downstream and sideline subsonic jet noise using Large Eddy Simulation, Theoretical and Computational Fluid Dynamics, vol.450, issue.1, pp.23-40, 2006.
DOI : 10.1007/s00162-005-0005-7

C. Bogey and C. Bailly, Large eddy simulations of transitional round jets: Influence of the Reynolds number on flow development and energy dissipation, Physics of Fluids, vol.18, issue.6, 2006.
DOI : 10.1063/1.2204060

URL : https://hal.archives-ouvertes.fr/hal-00274777

V. Clauzon, Travail de fin d'´ etude, 2004.

T. Colonius, Numerically Nonreflecting Boundary and Interface Conditions for Compressible Flow and Aeroacoustic Computations, AIAA Journal, vol.35, issue.7, pp.1126-1133, 1997.
DOI : 10.2514/2.235

T. Colonius, K. Mohseni, J. B. Freund, S. K. Lele, and P. Moin, Evaluation of noise radiation mechanisms in a turbulent jet, CTR Proceedings of the Summer Program, pp.159-167, 1998.

S. C. Crow and F. H. Champagne, Orderly structure in jet turbulence, Journal of Fluid Mechanics, vol.89, issue.03, pp.547-591, 1971.
DOI : 10.1088/0959-5309/47/4/314

I. Danaila and B. J. Boersma, Mode interaction in a forced homogeneous jet at low Reynolds numbers, CTR, Proceedings of the summer program, 1998.

T. Dubois, J. A. Domaradzki, and A. Honein, The subgrid-scale estimation model applied to large eddy simulations of compressible turbulence, Physic of Fluids, pp.1781-1801, 2002.

T. Dubois, F. Jauberteau, R. M. Temam-stein, E. De-borst, R. Hughes et al., Dynamic multilevel methods and turbulence , Encyclopedia of Computational Mechanics, pp.207-267, 2005.

P. Fauchais, M. F. Elchinger, and J. Aubreton, THERMODYNAMIC AND TRANSPORT PROPERTIES OF THERMAL PLASMAS, High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes), vol.4, issue.1, pp.21-42, 2000.
DOI : 10.1615/HighTempMatProc.v4.i1.20

C. A. Friehe, C. W. Van-atta, and C. H. Gibson, Jet turbulence : dissipation rate measurements and correlations, AGARD Turbulent Shear Flows, 1971.

D. V. Gaitonde and M. R. Visbal, Padé-Type Higher-Order Boundary Filters for the Navier-Stokes Equations, AIAA Journal, vol.38, issue.11, 2000.

M. Germano, U. Piomelli, P. Moin, and W. H. , Cabot A dynamic subgrid-scale eddy viscosity model, Physic of Fluids, 1991.

F. H. Harlow and J. E. Welch, Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface, Physics of Fluids, vol.8, issue.12, 1965.
DOI : 10.1063/1.1761178

A. Hilgers, Control and optimization of turbulent jet mixing, Center for Turbulence Research, Anual Research Briefs, 2000.

A. K. Hussain and K. B. Zaman, The ???preferred mode??? of the axisymmetric jet, Journal of Fluid Mechanics, vol.104, issue.-1, pp.39-71, 1981.
DOI : 10.1063/1.861739

J. Jiménez and C. Vasco, Approximate lateral boundary conditions for turbulent simulations , Center for Turbulence Research, Proceedings of the Summer Program, pp.399-412, 1998.

C. Kennedy, M. H. Carpenter, and R. M. Lewis, Low-storage, explicit Runge???Kutta schemes for the compressible Navier???Stokes equations, Applied Numerical Mathematics, vol.35, issue.3, pp.99-121, 1999.
DOI : 10.1016/S0168-9274(99)00141-5

J. W. Kim and D. J. Lee, Generalized Characteristic Boundary Conditions for Computational Aeroacoustics, AIAA Journal, vol.38, issue.11, 2000.

J. W. Kim and D. J. Lee, Generalized Characteristic Boundary Conditions for Computational Aeroacoustics, Part 2, AIAA Journal, vol.42, issue.1, pp.47-55, 2004.
DOI : 10.2514/1.9029

P. Koumoutsakos, J. Freund, and D. Parekh, Evolution strategies for parameter optimisation in jet flow control, CTR Proceedings of the Summer Program, pp.121-131, 1998.

M. Lee and W. C. Reynolds, Bifurcating and blooming jets, 1985.

S. K. Lele, Compact finite difference schemes with spectral-like resolution, Journal of Computational Physics, vol.103, issue.1, pp.16-42, 1992.
DOI : 10.1016/0021-9991(92)90324-R

P. Lew, G. A. Blaisdell, and A. S. Lyrintzis, Recent Progress of Hot Jet Aeroacoustics using 3-D Large-Eddy Simulation, 11th AIAA/CEAS Aeroacoustics Conference, 2005.
DOI : 10.2514/6.2005-3084

K. H. Luo and N. D. Sandham, Direct Numerical Simulation of Supersonic Jet Flow, Journal of Engineering Mathematics, vol.32, issue.2/3, pp.121-142, 1997.
DOI : 10.1023/A:1004244715140

K. H. Luo, Combustion effects on turbulence in a partially premixed supersonic diffusion flame, Combustion and Flame, vol.119, issue.4, pp.417-435, 1999.
DOI : 10.1016/S0010-2180(99)00074-7

K. Mahesh, P. Moin, and S. K. Lele, The interaction of a shock wave with a turbulent shear flow, 1996.

G. Mariaux and A. Vardelle, 3-D time-dependent modelling of the plasma spray process. Part 1: flow modelling, International Journal of Thermal Sciences, vol.44, issue.4, pp.357-366, 2004.
DOI : 10.1016/j.ijthermalsci.2004.07.006

K. Mohensi and T. Colonius, Numerical treatement of Polar coordinate songularity, J. Comput. Phys, vol.157, pp.787-795, 2000.

F. Nicoud and T. Poinsot, Boundary Conditions for Compressible Unsteady Flows

D. Parekh, A. Leonard, W. C. Reynolds, and M. G. , Bifurcating of round air jets by dual-mode acoustic excitation, pp.87-0164, 1987.

T. J. Poinsot and S. K. Lele, Boundary Conditions for direct Simulations of Compressible Viscous Flows, Journal of Computational Physics, issue.101, pp.104-129, 1991.

D. H. Rudy and J. C. Strikwerda, A nonreflecting outflow boundary condition for subsonic navier-stokes calculations, Journal of Computational Physics, vol.36, issue.1, pp.55-70, 1980.
DOI : 10.1016/0021-9991(80)90174-6

R. D. Sandberg, L. E. Jones, and N. D. Sandham, A zonal characteristic boundary condition for numerical simulations of aerodynamic sound, ECOMAS, 2006.

J. C. Schulze, P. J. Schmid, and J. L. Sesterhenn, Direct numerical simulation of a supersonic jet and its acoustic field, DEISA Extreme Computing Initiative, 2006.

L. K. Su, Measurements of the three-dimensional scalar dissipation rate field in gas-phase planar turbulent jets, 35th Aerospace Sciences Meeting and Exhibit, 1998.
DOI : 10.2514/6.1997-74

C. K. Tam and Z. Dong, RADIATION AND OUTFLOW BOUNDARY CONDITIONS FOR DIRECT COMPUTATION OF ACOUSTIC AND FLOW DISTURBANCES IN A NONUNIFORM MEAN FLOW, Journal of Computational Acoustics, vol.04, issue.02, pp.175-201, 1996.
DOI : 10.1142/S0218396X96000040

K. W. Thompson, Time dependent boundary conditions for hyperbolic systems, Journal of Computational Physics, vol.68, issue.1, pp.1-24, 1987.
DOI : 10.1016/0021-9991(87)90041-6

K. W. Thompson, Time-dependent boundary conditions for hyperbolic systems, II, Journal of Computational Physics, vol.89, issue.2, pp.439-461, 1990.
DOI : 10.1016/0021-9991(90)90152-Q

J. P. Trelles and J. V. Herbelein, Simulation Results of Arc Behavior in Different Plasma Spray Torches, Journal of Thermal Spray Technology, vol.15, issue.4
DOI : 10.1361/105996306X147252

A. Uzun, G. A. Blaisdell, and A. S. Lyrintzis, Recent Progress Towards a Large Eddy Simulation Code for Jet Aeroacoustics, 8th AIAA/CEAS Aeroacoustics Conference & Exhibit, 2002.
DOI : 10.2514/6.2002-2598

B. Vreman, B. Geurts, and H. Kuerten, Large-eddy simulation of the turbulent mixing layer, Journal of Fluid Mechanics, vol.339, pp.357-390, 1997.
DOI : 10.1017/S0022112097005429

F. M. White, Viscous Fluid Flow, 1991.

J. M. Wiltse and A. Glezer, Manipulation of free shear flows using piezoelectric actuators, Journal of Fluid Mechanics, vol.14, issue.-1, pp.261-283, 1993.
DOI : 10.1063/1.867007

C. S. Yoo, Y. Wang, A. Trouvé, and H. G. Im, Characteristic boundary conditions for direct simulations of turbulent counterflow flames, Combustion Theory and Modelling, 2005.

C. S. Yoo and H. G. Im, Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects, Combustion Theory and Modelling, 2006.

Y. Coudì-ere, J. P. Vila, and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.3, pp.493-516, 1999.
DOI : 10.1051/m2an:1999149

R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Ciarlet, pp.713-1020, 2000.

K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, M2AN, pp.1203-1249, 2005.

J. C. Schulze, P. J. Schmid, and J. L. Sesterhenn, Direct numerical simulation of a supersonic jet and its acoustic field, DEISA Extreme Computing Initiative, 2006.

K. Mahesh, P. Moin, and S. K. Lele, The interaction of a shock wave with a turbulent shear flow, 1996.

K. H. Luo, Combustion effects on turbulence in a partially premixed supersonic diffusion flame, Combustion and Flame, vol.119, issue.4, pp.417-435, 1999.
DOI : 10.1016/S0010-2180(99)00074-7

.. Semi-discrétisation, 34 1.2.2 Discrétisation totale, p.35

R. Au-point and Q. , 79 2.3.2 Propriétés de la reconstruction en Q ij, ., vol.87, p.88

.. Solveursàsolveursà-forte-viscosité-numérique, 124 4.3.1.1 La méthode de Lax-Friedrichs, p.126

2. Cas-pseudo, 159 5.3.2 Cas 3D -Comparaison maillage grossier contre maillage finCalcul sur maillage fin, Conclusion, p.167

3. Onde-de-pression-en, 167 5.4.2 Vent, p.168

T. Discrétisation-en, 239 7.4.3.1 Schéma de Runge-Kutta explicite d'ordre 3, p.242

.. Etude-des-effets-thermiquesàthermiquesà-re-constant, 265 8.3.4 Vers une simulation d'une torchè a plasma, p.266

.. Représentation-2d-d-'un-maillage-vérifiant, ou non (` a droite) la propriété (P 1 ), p.32

.. Représentation-2d-d-'un-maillage-vérifiant, ou non (` a droite) la propriété (P 2 ), p.33

Q. Densité-de-probabilité-de-b-i-b-j-/-b-i, gauche) et (1 ? µ ij )/µ ij (droite) pour un maillage 3D dans une géométrie simple (a), un maillage 2D (b) et un maillage 3D dans une géométrie complexe (c)

H. Comparaison-entre-les-solveurs, ? noir) et HLLC ( rouge), test 1, maillage M 90 , méthode d'ordre un. Densité (?), p.143

P. De-haut-en-bas,-e,-?, L. Hllc-tirets, and .. , ROE point-tirets, solution exacte trait plein, p.144

P. De-haut-en-bas,-e,-?, L. Hllc-tirets, and .. , ROE point-tirets, solution exacte trait plein, p.145

P. De-haut-en-bas,-e,-?, L. Hllc-tirets, and .. , ROE point-tirets, solution exacte trait plein, p.146

P. De-haut-en-bas,-e,-?, L. Hllc-tirets, and .. , ROE point-tirets, solution exacte trait plein, p.147

P. Pression, . Hllc-@bullet, R. Lf, and .. , Comparaison entre les différents solveurs, test 1, maillage M 90 , méthode d'ordre deux, p.156

1. Comparaison-entre-les-résultats, +. De-toro, 3. Les-nôtres-en, and . @bullet, Densité pour les tests 1 ` a 4. Solveur HLLC, méthode d'ordre un, 60 points par direction, p.157

2. Cas-test-de-la-marche-montante, C. Solveur-de-rusanov, and . 80%, Comparaison entre la méthode d'ordre un (a), du gradient (b) et multipente en Q ij (c) ` a t = 0, p.160

2. Cas-test-de-la-marche-montante, C. Solveur-de-rusanov, and . 80%, Comparaison entre la méthode d'ordre un (a), du gradient (b) et multipente en Q ij (c) ` a t = 1, p.161

2. Cas-test-de-la-marche-montante, C. Solveur-de-rusanov, and . 80%, Comparaison entre la méthode d'ordre un (a), du gradient (b) et multipente en Q ij (c) ` a t = 2, p.162

2. Cas-test-de-la-marche-montante, C. Solveur-de-rusanov, and . 80%, Comparaison entre la méthode d'ordre un (a), du gradient (b) et multipente en Q ij (c) ` a t = 3, p.163

2. Cas-test-de-la-marche-montante, C. Solveur-de-rusanov, and . 80%, Comparaison entre la méthode d'ordre un (a), du gradient (b) et multipente en Q ij (c) ` a t = 4, p.164

2. Cas-test-de-la-marche-montante and C. Solveur-de-rusanov, Comparaison entre la méthode d'ordre un (a), du gradient (b), multipentes Q ij (c) et multipentes M ij (d) ` a t = 4, p.166

3. Cas-test-de-la-marche-montante, H. Solveur, and M. , ordre un (haut), multipente en Q ij (bas), densitédensitéà t = 0,5, p.171

3. Cas-test-de-la-marche-montante, H. Solveur, and M. , ordre un (haut), multipente en Q ij (bas), densitédensitéà t = 1, p.172

3. Cas-test-de-la-marche-montante, H. Solveur, and M. , ordre un (haut), multipente en Q ij (bas), densitédensitéà t = 2, p.172

3. Cas-test-de-la-marche-montante, H. Solveur, and M. , ordre un (haut), multipente en Q ij (bas), densitédensitéà t = 3, p.173

3. Cas-test-de-la-marche-montante, H. Solveur, and M. , ordre un (haut), multipente en Q ij (bas), densitédensitéà t = 4, p.173

Q. Densité-de-probabilité-de-b-i-b-j-/-b-i, gauche) et (1 ? µ ij )/µ ij (droite) pour le maillage grossier (a), intermédiaire (b) et fin (c), p.187

.. Evolution-temporelle-de-la-température, vitesse axiale, (b) et pression (c) enregistrée par le premier capteur

.. Dépendance-de-?-*-avec-la-température, Données calculées (théorie des collisions) en trait plein et régression en loi puissance en pointillés, p.210

.. Dépendance-de-?-*-avec-la-température, Données calculées (théorie des collisions) en trait plein et régression en loi puissance en pointillés, p.210

J. Instabilité-de-type-kelvin-helmoltz-apparaissant-sur-le-bord-d-'un, Image extraite de [21], p.230

.. Profil-de-vitesse-imposé-en-entrée, Nombre de points de maillage présents dans la zone de cisaillement pour la configuration N, p.254

.. La-couleur-représente-la-température, vorticité instantanée pour la simulation S14, Re ? ? 3 400, p.288

.. L-'´-echelle-de-vorticité-est-nonlinéaire, pression (b) et norme de la vorticité (c) instantanées pour la simulation S16, St a = 0, Contours de température, p.291