A. E. Asarin, O. Bournez, T. Dang, and O. Maler, Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems, Part IV Implementation and Conclusion Bibliography Hybrid Systems: Computation and Control, pp.20-31, 2000.
DOI : 10.1007/3-540-46430-1_6

URL : https://hal.archives-ouvertes.fr/inria-00099316

A. [. Aubin and . Cellina, Differential Inclusions: Setvalued Maps and Viability Theory, 1984.

C. R. Alur, N. Courcoubetis, T. A. Halbwachs, P. Henzinger, X. Ho et al., The algorithmic analysis of hybrid systems, Theoretical Computer Science, vol.138, issue.1, pp.3-34, 1995.
DOI : 10.1016/0304-3975(94)00202-T

T. [. Asarin, A. Dang, and . Girard, Reachability Analysis of Nonlinear Systems Using Conservative Approximation, Hybrid Systems: Computation and Control, pp.20-35, 2003.
DOI : 10.1007/3-540-36580-X_5

T. [. Asarin, A. Dang, and . Girard, Hybridization methods for verification of non-linear systems, ECC-CDC'05 joint conference: Conference on Decision and Control CDC and European Control Conference ECC, 2005.

]. E. Adm01a, T. Asarin, O. Dang, and . Maler, d/dt: a tool for reachability analysis of continuous and hybrid systems, Nonlinear Control Systems NOLCOS, Invited session, 2001.

]. E. Adm01b, T. Asarin, O. Dang, T. Maler, O. Dang et al., d/dt: A verification tool for hybrid systems In Hybrid Systems: Computation and ControlConference on Decision and Control, Invited session " New Developments in Verification Tools for Hybrid Systems The d/dt tool for verification of hybrid systems, Computer Aided Verification, pp.365-370, 2001.

[. , A. Girard, and O. Maler, Efficient computation of reachable sets of linear time-invariant systems with inputs, Hybrid Systems : Computation and Control, pp.257-271, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00171555

]. J. Alb75 and . Albus, A new approach to manipulator control : The cerebellar model articulation controller (cmac), Transactions ASME, 1975.

O. [. Asarin, A. Maler, and . Pnueli, Reachability analysis of dynamical systems having piecewise-constant derivatives, Theoretical Computer Science, vol.138, issue.1, pp.35-66, 1991.
DOI : 10.1016/0304-3975(94)00228-B

R. Alur and G. J. Pappas, Incremental Search Methods for Reachability Analysis of Continuous and Hybrid Systems, LNCS, vol.2993, 2004.

]. R. Bar06 and . Barrio, Sensitivity analysis of odes/daes using the taylor series method, SIAM Journal on Scientific Computing, vol.27, issue.6, pp.1929-1947, 2006.

]. G. Bat06 and . Batt, Validation de modèles qualitatifs de réseaux de régulation génique : une méthode basée sur des techniques de vérication formelle, 2006.

M. [. Branicky, J. Curtiss, S. Levine, and . Morgan, Sampling-based reachability algorithms for control and verification of complex systems, Proc. Thirteenth Yale Workshop on Adaptive and Learning Systems, 2005.

S. [. Brenan, L. R. Campell, and . Petzold, Numerical Solution of Initial Value Problems in Ordinary Differential-Algebraic Equations, 1989.

]. R. Bibliography-[-bel57 and . Bellman, Dynamic Programming, 1957.

E. [. Bhatia and . Frazzoli, Resolution-complete safety falsification of continuous time systems, Proceedings of the 45th IEEE Conference on Decision and Control, 2006.
DOI : 10.1109/CDC.2006.377262

A. A. Bahl and . Linninger, Modeling of Continuous-Discrete Processes, HSCC, pp.387-402, 2001.
DOI : 10.1007/3-540-45351-2_32

I. Paul, C. Barton, and . Lee, Modeling, simulation, sensitivity analysis, and optimization of hybrid systems

. Bsd-+-01a-]-c, J. Belta, T. Schug, V. Dang, G. J. Kumar et al., Stability and reachability analysis of a hybrid model of luminescence in the marine bacterium vibrio fisheri, Proceedings of CDC, 2001.

. Bsd-+-01b-]-c, J. Belta, T. Schug, V. Dang, G. J. Kumar et al., Stability and reachability analysis of a hybrid model of luminescence in the marine bacterium vibrio fisheri, Proceedings of CDC, 2001.

F. [. Bemporad and . Torrisi, Inner and outter approximation of polytopes using hyper-rectangles, 2000.

F. [. Bemporad, M. Torrisi, and . Morari, Optimizationbased verification and stability characterization of piecewise affine and hybrid systems, Hybrid Systems: Computation and Control, pp.45-58, 2000.

B. [. Chutinan and . Krogh, Computing polyhedral approximations to flow pipes for dynamic systems, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), 2002.
DOI : 10.1109/CDC.1998.758642

]. T. Dan00 and . Dang, Vérification et Synthèse des Systèmes Hybrides, 2000.

T. Dang, T. Dang, A. Donze, and O. Maler, Reachability-based technique for idle speed control synthesis Verification of analog and mixed-signal circuits using hybrid systems techniques Donde and I.A. Hiskens. Shooting methods for locating grazing phenomena in hybrid systems, FMCAD'04 -Formal Methods for Computer Aided Design, pp.21-36671, 2004.

O. [. Dang and . Maler, Reachability analysis via face lifting, Hybrid Systems: Computation and Control, pp.96-109, 1998.
DOI : 10.1007/3-540-64358-3_34

T. Dang and T. Nahhal, Randomized simulation of hybrid systems, 2007.

K. Doya, Temporal difference learning in continuous time and space, Advances in Neural Information Processing Systems, pp.1073-1079

K. Doya, Reinforcement Learning in Continuous Time and Space, Neural Computation, vol.3, issue.1, pp.219-245, 2000.
DOI : 10.1109/9.580874

J. M. Esposito, V. Kumar, and G. J. Pappas, Accurate Event Detection for Simulating Hybrid Systems, In HSCC, pp.204-217, 2001.
DOI : 10.1007/3-540-45351-2_19

M. [. Feldmann and . Günther, The DAE-index in electric circuit simulation, Bibliography Proc. IMACS, Symposium on Mathematical Modelling, pp.695-702, 1994.

E. Georgios, A. Fainekos, G. J. Girard, and . Pappas, Temporal logic verification using simulation, FOR- MATS, pp.171-186, 2006.

[. Frehse, B. H. Krogh, R. A. Rutenbar, and O. Maler, Time Domain Verification of Oscillator Circuit Properties, Electronic Notes in Theoretical Computer Science, vol.153, issue.3, pp.9-22, 2006.
DOI : 10.1016/j.entcs.2006.02.019

[. Floberg, Symbolic Analysis in Analog Integrated Circuit Design, 1997.
DOI : 10.1007/978-1-4615-6211-5

E. Georgios, G. J. Fainekos, and . Pappas, Robustness of temporal logic specifications, FATES/RV, pp.178-192, 2006.

A. Rob, B. H. Rutenbar-goran-frehse, and . Krogh, Verifying analog oscillator circuits using forward/backward abstraction refinement, DATE 2006: Design, Automation and Test in Europe, 2006.

]. A. Gir05 and . Girard, Reachability of uncertain linear systems using zonotopes, Hybrid Systems : Computation and Control, pp.291-305, 2005.

]. A. Gir06 and . Girard, Analyse algorithmique des systèmes hybrides, 2006.

I. [. Greenstreet and . Mitchell, Integrating projections, Hybrid Systems: Computation and Control, pp.159-1740
DOI : 10.1007/3-540-64358-3_38

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.6135

]. M. Gm99a, I. Greenstreet, M. R. Mitchell, I. Greenstreet, and . Mitchell, Reachability analysis using polygonal projections Reachability analysis using polygonal projections, Hybrid Systems: Computation and Control Hybrid Systems: Computation and Control, pp.76-90, 1999.

A. Girard and G. J. Pappas, Verification Using Simulation, Hybrid Systems : Computation and Control, pp.272-286, 2006.
DOI : 10.1007/11730637_22

URL : https://hal.archives-ouvertes.fr/hal-00171538

]. M. Gre96 and . Greenstreet, Verifying safety properties of differential equations, Computer Aided Verification, CAV'96, pp.277-287, 1996.

S. [. Gouzé and . Tewfik, A class of piecewise linear differential equations arising in biological models, Dynamical Systems, vol.17, issue.4, 2001.
DOI : 10.1080/1468936021000041681

L. [. Hartong, E. Hedrich, and . Barke, On discrete modelling and model checking for nonlinear analog systems, Computer Aided Verification, 2002.

]. I. His05 and . Hiskens, Non-uniqueness in reverse time of hybrid system trajectories, Hybrid Systems : Computation and Control, pp.257-271, 2005.

[. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 1996.
DOI : 10.4171/owr/2006/14

URL : https://hal.archives-ouvertes.fr/hal-01403326

[. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations., volume 31 of Series in Comput, 2003.
DOI : 10.4171/owr/2006/14

URL : https://hal.archives-ouvertes.fr/hal-01403326

[. Hairer, S. Paul-norsett, and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, 1993.
DOI : 10.1007/978-3-662-12607-3

M. [. Hiskens and . Pai, Trajectory sensitivity analysis of hybrid systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.47, issue.2, pp.204-220, 2000.
DOI : 10.1109/81.828574

A. C. Hindmarsh, K. E. Grant, P. N. Brown, S. L. Lee, D. E. Shumaker et al., SUNDIALS, ACM Transactions on Mathematical Software, vol.31, issue.3, pp.31363-396, 2005.
DOI : 10.1145/1089014.1089020

S. [. Hirsch and . Smale, Differential Equations, Dynamical Systems and Linear Algebra, 1974.

[. Horváth and T. Szabó, Higher order cmac and its efficient hardware realization, NC, pp.72-78, 1998.

R. [. Hindmarsh and . Serban, User Documentation for cvodes v2, 2006.

[. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 1996.

[. Miller, I. , B. A. Box, E. C. Whitney, and J. M. Glynn, Design and implementation of a high speed cmac neural network, NIPS, pp.1022-1027, 1990.

A. Kolcz and N. M. Allinson, Basis function models of the CMAC network, Neural Networks, vol.12, issue.1, pp.107-126, 1999.
DOI : 10.1016/S0893-6080(98)00113-0

J. Kapinski, Verification and Synthesis of Hybrid Systems Using Proximity-Based Automata, 2004.

J. Kapinski, B. H. Krogh, O. Maler, and O. Stursberg, On systematic simulation of open continuous systems Bibliography [Kor05] A. Korotayev. A compact macromodel of world system evolution, HSCC, pp.283-29779, 2003.

W. [. Kocis and . Whiten, Computational investigations of low-discrepancy sequences, ACM Transactions on Mathematical Software, vol.23, issue.2, pp.266-294, 1997.
DOI : 10.1145/264029.264064

]. S. Lav06 and U. K. Lavalle, Planning Algorithms, 2006.

M. Steven, M. S. Lavalle, S. R. Branicky, and . Lindemann, On the relationship between classical grid search and probabilistic roadmaps, I. J. Robotic Res, vol.23, issue.78, pp.673-692, 2004.

A. [. Lindemann, S. M. Yershova, and . Lavalle, Incremental Grid Sampling Strategies in Robotics, Proceedings Workshop on Algorithmic Foundations of Robotics, pp.297-312, 2004.
DOI : 10.1007/10991541_22

E. [. Miller, F. H. An, M. J. Glanz, and . Carter, The design of cmac neural networks for control, Proceedings of the International Conference on Artificial Neural Networks ICANN'91, 1991.

]. I. Mit02 and . Mitchell, Application of level set methods to control and reachability problems in continuous and hybrid systems, 2002.

A. [. Munos and . Moore, Variable resolution discretization for high-accuracy solutions of optimal control problems, International Joint Conference on Artificial Intelligence, 1999.

R. Munos, A study of reinforcement learning in the continuous case by the means of viscosity solutions, Machine Learning, pp.265-299, 2000.

[. Park and P. I. Barton, State event location in differential-algebraic models, ACM Transactions on Modeling and Computer Simulation, vol.6, issue.2, pp.137-165, 1996.
DOI : 10.1145/232807.232809

]. A. Ran06 and . Rantzer, Relaxed dynamic programming in switching systems, IEE Proceedings -Control Theory and Applications, vol.153, issue.5, pp.567-574, 2006.

. S. Bibliography-[-sb98-]-r, A. G. Sutton, and . Barto, Reinforcement Learning: An Introduction, 1998.

P. [. Singer and . Barton, Bounding the Solutions of Parameter Dependent Nonlinear Ordinary Differential Equations, SIAM Journal on Scientific Computing, vol.27, issue.6, pp.2167-2182, 2006.
DOI : 10.1137/040604388

]. J. Set96 and . Sethian, Level Set Methods : Evolving Interfaces in Geometry, Fluid Mechanics, 1996.

I. [. Shampine, R. W. Gladwell, and . Brankin, Reliable solution of special event location problems for ODEs, ACM Transactions on Mathematical Software, vol.17, issue.1, pp.11-25, 1991.
DOI : 10.1145/103147.103149

F. William, S. Feehery, P. I. Galán, and . Barton, Parametric sensitivity functions for hybrid discrete/continuous systems, Applied Numerical Mathematics, vol.31, issue.1, pp.17-47, 1999.

A. [. Serban and . Hindmarsh, CVODES: The Sensitivity-Enabled ODE Solver in SUNDIALS, Volume 6: 5th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C, 1998.
DOI : 10.1115/DETC2005-85597

S. Richard, R. S. Sutton, and . Sutton, Learning to predict by the methods of temporal differences Generalization in reinforcement learning: Successful examples using sparse coarse coding, Machine Learning Advances in Neural Information Processing Systems 8, pp.9-44, 1988.

[. Tesauro, Temporal difference learning and TD-Gammon, Communications of the ACM, vol.38, issue.3, pp.58-68, 1995.
DOI : 10.1145/203330.203343

N. John, B. Tsitsiklis, and R. Van, An analysis of temporal-difference learning with function approximation, 1996.

K. Saurabh, R. A. Tiwary, and . Rutenbar, Scalable trajectory methods for on-demand analog macromodel extraction, DAC, pp.403-408, 2005.

N. John and . Tsitsiklis, On the convergence of optimistic policy iteration, Journal of Machine Learning Research, vol.3, pp.59-72, 2002.

K. Saurabh, P. K. Tiwary, R. A. Tiwary, and . Rutenbar, Generation of yield-aware pareto surfaces for hierarchical circuit design space exploration, DAC, pp.31-36, 2006.

N. John, B. Tsitsiklis, and R. Van, An analysis of temporal-difference learning with function approximation, IEEE Transactions on Automatic Control, vol.42, issue.5, pp.674-690, 1997.

[. Thomas, W. Miller, H. Filson, I. L. Glanz, and . Kraft, Application of a general learning algorithm to the control of robotic manipulators, Int. J. Rob. Res, vol.6, issue.2, pp.84-98, 1987.

]. A. Van-der-schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems, Lecture Notes in Control and Information Sciences, vol.251, 2000.
DOI : 10.1007/BFb0109998

]. T. Wic00 and . Wichmann, Computer aided generation of approximate DAE systems for symbolic analog circuit design, Proc. Annual Meeting GAMM, 2000.

R. [. Wichmann, W. Popp, L. Hartong, and . Hedrich, On the Simplification of Nonlinear DAE Systems in Analog Circuit Design, Computer Algebra in Scientific Computing, 1999.
DOI : 10.1007/978-3-642-60218-4_37