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« Je pense donc Je suis » 

René Descartes © 
 

Un jour, 

Un jour, bientôt peut-être, 

Un jour j'arracherai l'ancre qui tient mon navire loin des mers 

Avec la sorte de courage qu'il faut pour être rien et rien que rien. 

Je lâcherai ce qui paraissait m'être indissolublement proche. 

Je le trancherai, je le renverserai, je le romprai, je le ferai 

dégringoler. 

D'un coup dégorgeant ma misérable pudeur, mes misérables 

combinaisons et enchaînements "de fil en aiguille" 

Vide de l'abcès d'être quelqu'un, je boirai à nouveau l'espace 

nourricier. 

A coups de ridicule, de déchéances (qu'est-ce que la 

déchéance?), par éclatement. 

Par vide, par une totale dissipation-dérision-purgation, 

j'expulserai de moi la forme qu'on croyait si bien attachée, 

composée, coordonnée, assortie à mon entourage 

Et à mes semblables, si dignes, si dignes mes semblables. 

Réduit à une humilité de catastrophe, à un nivellement parfait 

comme après une immense trouille. 

Ramené au-dessous de toute mesure à mon rang réel, au rang 

infime que je ne sais quelle idée-ambition m'avait fait déserter. 

Anéanti quant à la hauteur, quant à l'estime. 

Perdu en un endroit lointain (ou même pas), sans nom, sans identité. 

CLOWN, abattant dans la risée, dans l'esclaffement, dans le grotesque, le sens que contre toute lumière je m'étais fait de mon importance. 

Je plongerai. 

Sans bourse dans l'infini-esprit sous-jacent ouvert à tous, ouvert moi-même à une nouvelle et incroyable rosée. 

A force d'être nul 

Et ras 

Et risible... 

Clown. 

Henri Michaux (L’espace du dedans, 1944).
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« Maintenant, je m'encrapule le plus possible. Pourquoi ? Je veux être poète, et je travaille à 
me rendre Voyant : vous ne comprendrez pas du tout, et je ne saurais presque vous expliquer. 
Il s'agit d'arriver à l'inconnu par le dérèglement de tous les sens. Les souffrances sont énormes, 
mais il faut être fort, être né poète, et je me suis reconnu poète. Ce n'est pas du tout ma faute. 
C'est faux de dire : Je pense : on devrait dire : On me pense. - Pardon du jeu de mots. - Je est 
un autre. Tant pis pour le bois qui se trouve violon, et nargue aux inconscients, qui ergotent 
sur ce qu'ils ignorent tout à fait ! 
Car Je est un autre. Si le cuivre s'éveille clairon, il n'y a rien de sa faute. Cela m'est évident: 
j'assiste à l'éclosion de ma pensée : je la regarde, je l'écoute : je lance un coup d'archet : la 
symphonie fait son remuement dans les profondeurs, ou vient d'un bond sur la scène. Si les 
vieux imbéciles n'avaient pas trouvé du Moi que la signification fausse, nous n'aurions pas à 
balayer ces millions de squelettes qui, depuis un temps infini, ! ont accumulé les produits de 
leur intelligence borgnesse, en s'en clamant les auteurs ! En Grèce, ai-je dit, vers et lyres 
rythment l'Action. Après, musique et rimes sont jeux, délassements. L'étude de ce passé 
charme les curieux : plusieurs s'éjouissent à renouveler ces antiquités : - c'est pour eux. 
L'intelligence universelle a toujours jeté ses idées, naturellement ; les hommes ramassaient 
une partie de ces fruits du cerveau : on agissait par, on en écrivait des livres : telle allait la 
marche, I'homme ne se travaillant pas, n'étant pas encore éveillé, ou pas encore dans la 
plénitude du grand songe. Des fonctionnaires, des écrivains : auteur, créateur, poète, cet 
homme n'a jamais existé ! La première étude de l'homme qui veut être poète est sa propre 
connaissance, entière ; il cherche son âme, il l'inspecte, Il la tente, I'apprend. Dès qu'il la sait, 
il doit la cultiver ; cela semble simple : en tout cerveau s'accomplit un développement naturel ; 
tant d'égoistes se proclament auteurs ; il en est bien d'autres qui s'attribuent leur progrès 
intellectuel ! - Mais il s'agit de faire l'âme monstrueuse : à l'instar des comprachicos, quoi ! 
Imaginez un homme s'implantant et se cultivant des verrues sur le visage. Je dis qu'il faut être 
voyant, se faire voyant. Le Poète se fait voyant par un long, immense et raisonné dérèglement 
de tous les sens. Toutes les formes d'amour, de souffrance, de folie ; il cherche lui-même, il 
épuise en lui tous les poisons, pour n'en garder que les quintessences. Ineffable torture où il a 
besoin de toute la foi, de toute la force surhumaine, où il devient entre tous le grand malade, le 
grand criminel, le grand maudit, - et le suprême Savant ! - Car il arrive à l'inconnu ! Puisqu'il 
a cultivé son âme, déjà riche, plus qu'aucun ! Il arrive à l'inconnu, et quand, affolé, il finirait 
par perdre l'intelligence de ses visions, il les a vues ! Qu'il crève dans son bondissement par 
les choses inouïes et innombrables : viendront d'autres horribles travailleurs ; ils 
commenceront par les horizons où l'autre s'est affaissé ! (...) 
Donc le poète est vraiment voleur de feu. Il est chargé de l'humanité, des animaux même ; il 
devra faire sentir, palper, écouter ses inventions ; si ce qu'il rapporte de là-bas a forme, il 
donne forme si c'est informe, il donne de l'informe. Trouver une langue ; - Du reste, toute 
parole étant idée, le temps d'un langage universel viendra ! Il faut être académicien, - plus 
mort qu'un fossile, - pour parfaire un dictionnaire, de quelque langue que ce soit. Des faibles 
se mettraient à penser sur la première lettre de l'alphabet, qui pourraient vite ruer dans la folie ! 
Cette langue sera de l'âme pour l'âme, résumant tout, parfums, sons, couleurs, de la pensée 
accrochant la pensée et tirant. Le poète définirait la quantité d'inconnu s"éveillant en son 
temps dans l'âme universelle : il donnerait plus - que la formule de sa pensée, que la notation 
de sa marche au Progrès ! Enormité devenant norme, absorbée par tous, il serait vraiment un 
multiplicateur de progrès ! Cet avenir sera matérialiste, vous le voyez ; - Toujours pleins du 
Nombre et de l'Harmonie ces poèmes seront fait pour rester. - Au fond, ce serait encore un 
peu la Poésie grecque. L'art éternel aurait ses fonctions ; comme les poètes sont des citoyens. 
La Poésie ne rythmera plus l'action : elle sera en avant. » 
Arthur Rimbaud, lettre du Voyant (à Paul Demeny, 15 mai 1871). 
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1. Abstract 

The coding of the environmental information by the brain is subject to intense debate at the 
level of its biological implementation (functional properties) as well as at the level of its 
reliability, efficiency and precision. This study is based on in-vivo intracellular recordings of 
responses of primary visual cortex neurons to stimuli of various complexity including natural 
scene animated by eye-movements. We show that functional selectivity are generated by 
cortical recurrence notably by the excitation/inhibition balance expressed through a large 
diversity of combinatory of synaptic input functional selectivity. In natural condition with 
eye-movement, the observed code is highly reliable, binary and temporal and cortical 
computation is removing input redundancies. Nonlinearity or gain controls, which biphasic 
temporal profile sculpts the cortical responses, increase the temporal precision and 
reproducibility of the code. We propose a sketch of a statistical model of adaptation and self-
organisation consisting in the maximisation of the mutual-information between the system 
and its environment. This model, based on a decomposition of entropy into ordered 
redundancy, is sufficient to account for some defining properties of living systems such as 
reliability, diversity/specialisation, and optimal or efficient coding.  
 
Key words 
Adaptation, cortex, reliability, nonlinearity, complexity, Receptive-field, neural assembly, 
efficient coding, perception, consciousness. 
 
Résumé 
Le codage de l’information environnementale par le cerveau est sujet à d’intenses débats tant 
au niveau de son implémentation biologique (propriété fonctionnelles) qu’au niveau de sa 
variabilité et de sa précision. Cette étude se base sur des enregistrements intracellulaires in-
vivo des réponses des neurones du cortex visuel primaire à des stimuli de complexité variable 
incluant des images naturelles animées par des mouvements oculaires. Nous montrons que les 
propriétés fonctionnelles sont générées par la récurrence corticale, notamment par la balance 
excitation/inhibition exprimée au travers d’une grande diversité de combinatoire de sélectivité 
fonctionnelle des entrées synaptiques. En condition naturelle avec mouvement des yeux, nous 
montrons que le code est reproductible, binaire/temporel et que l’analyse corticale se traduit 
par une réduction des redondances présentes dans les entrées. Les interactions ou contrôles de 
gain corticaux, dont le profile temporel biphasique sculpte temporellement les réponses 
corticales, augmentent la précision temporelle et la reproductibilité du code. Nous proposons 
une ébauche de modèle statistique général d’adaptation et d’auto-organisation consistant en la 
maximisation de l’information mutuelle entre le système et son environnement. Ce modèle, 
basé sur une décomposition microscopique de l’entropie en ordre de redondance, est suffisant 
pour rendre compte des propriétés singulières de l’organisation du vivant (incluant la 
cognition) tel que sa reproductibilité, sa diversité, et son optimalité (en terme de codage).  
 
Mots clefs 
Adaptation, cortex, reproductibilité, nonlinearité, complexité, Champ-récepteur, assemblées 
neuronales, codage efficace, perception, conscience. 
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2. Introduction 

 

Le cerveau, notamment le cortex, est souvent désigné comme le système à la fois le plus 
complexe et le plus intelligent ou le plus performant du monde, soulignant par ce biais 
l’impuissance de nos investigations expérimentales et de nos théories pour comprendre, 
expliquer, prédire ou reproduire son comportement. Ce point de vue encore présent malgré les 
avancées théoriques et empiriques récentes, est motivé par l’irrégularité, la diversité et la 
multiplicité combinatoire des structures (morphologies, phénotypes, connectivités), et des 
fonctions (variabilité des champs récepteurs (CRs), des interactions, faible pouvoir prédictif 
des CRs, présence d’un bruit gigantesque). En effet, la connaissance empirique actuelle des 
structures et des fonctions corticales se résume à des descriptions moyennes ou 
macroscopiques avec beaucoup de variabilité. Se pose donc naturellement la question du 
statut de ces variabilités : ces fluctuations ont-elles un sens, une fonction ou ne sont elles que 
du bruit ? Ou autrement formulé, est-il possible d’intégrer cette variabilité et diversité dans un 
paradigme théorique général ? Les théories actuelles et les principes physiologiques 
d’intégration neuronale et de plasticité énoncés et précisés depuis plus d’un siècle d’étude, ne 
suffisent-ils pas à expliquer dans son ensemble la dynamique corticale et la cognition ? 
J’essaierai de vous convaincre que les avancées de la science nous permettent aujourd’hui 
d’affirmer que le neo-cortex est bien compris, et que cette compréhension est basée sur des 
principes simples reprenant et généralisant les mécanismes neuronaux depuis longtemps bien 
connus. 
Plus généralement se dessine derrière ces questions la notion d’efficacité en science naturelle 
et en science physique. Les avancées de la biologie moderne ont montré à maintes reprises 
que les processus biologiques sont extrêmement efficaces, « fleuretant » avec les limites 
théoriques imposées par la physique. Anthropomorphiquement parlant, la science moderne, 
notamment grâce à l’avènement de la biologie, commence à reconnaître son statut de prolixe 
et optimal inventeur à la Nature. Mais nous ne sommes qu’au début de cette belle histoire ; 
histoire d’une science écologique des systèmes auto organisés dont l’avancement n’a jamais 
été aussi urgent compte tenu des besoins, des disparités et des gaspillages énergétiques 
actuels ; histoire dans laquelle je désirerai profondément inscrire ces travaux (à laquelle 
j’entends au moins essayer de participer). 
 
Dans cette thèse, j’essayerai de démontrer que cette complexité, intelligence ou optimalité 
ainsi que la diversité et « variabilité » des structure-fonctions sous-jacentes peuvent être 
comprises comme la résultante d’un simple processus se basant sur une formalisation du bruit 
et de la complexité (inspirée des théories algorithmiques, de l’information, et du codage 
optimal dans le cerveau). Ce processus, bien connu en théorie de l’apprentissage, n’est autre 
que la maximisation de l’information mutuelle entre le système et son environnement, et 
constitue formellement une théorie de l’adaptation. Ce principe d’optimalité se décompose en 
deux effets fondamentaux, l’augmentation de la reproductibilité (minimisation du bruit) et la 
réduction des redondances (qui génère la diversité et la spécialisation-individuation). Ce 
processus peut être assimilé à une théorie de la connaissance ou science cognitive et formalise 
la propagation-diffusion des connaissances. En élargissant au principe de maximisation 
d’entropie, il apparaît que ce processus auto organisationnel n’est autre que le second principe 
de la thermodynamique énoncé par Boltzmann puis Gibbs, généralisé aux systèmes hors 
équilibre et se résume à un processus dissipatif. Il se dessine donc ainsi une sorte de 
Thermodynamique de la connaissance, mais aussi des problèmes plus délicats sur le statut du 
sujet et de son environnement : il n’y aurait rien d’autre que de la dissipation, un bruit, une 
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musique, qui n’aurait fait que s’amplifier jusqu’à nous ? Dans ce paradigme, le cortex et ses 
activités cognitives, ne se différenciant pas de l’évolution ou de la dynamique d’autres 
structures adaptatives, acquièrent un statut intrinsèquement naturel et deviennent un objet 
d’étude privilégié de la complexité et de l’adaptation. J’essaierai de montrer par ailleurs, que 
ce paradigme souligne un rôle singulier de la physique statistique par rapport aux autres 
physiques quantiques et relativistes, permettant peut être de nouvelles extensions théoriques. 
Mais venons en aux expériences et aux résultats empiriques, fruit d’un travail d’équipe. Nos 
travaux sont basés sur des enregistrements intracellulaires des neurones du cortex visuel 
primaire (V1) effectués in-vivo chez le chat anesthésié et paralysé. Cette technique nous 
donne accès non seulement à la sortie supraliminaire (« spikante ») du neurone, mais aussi à 
ses entrées synaptiques excitatrices et inhibitrices (E/I). Combinée à des stimulations visuelles, 
elle nous permet de dresser la carte des fonctions « spikante » et sousliminaire excitatrice et 
inhibitrice ainsi que d’appréhender leur niveaux de corrélation et d’activité dans le réseau 
fonctionnel de la cellule, et leur reproductibilité. 
En première approche, nous nous sommes intéressés à l’organisation spatiotemporelle des 
CRs synaptiques excitateurs et surtout inhibiteurs par le biais de stimuli impulsionnels (petits 
carrés de contraste positif ou négatif présentés statiquement) et de barres orientées statiques. 
Aussi bien les champs excitateurs, que les champs inhibiteurs s’étendent isotropiquement sur 
une large portion du champ visuel, au-delà du Champ de décharge (CMD). Les CRs 
synaptiques des cellules Simples (au sens de Hubel et Wiesel) présentent une organisation 
sousliminaire complexe avec un large recouvrement spatial des zones ON (de réponse au 
contraste positif) et des zones OFF (de réponse au contraste négatif), mettant ainsi en 
évidence le rôle déterminant de l’intensité relative entre l’excitation et l’inhibition dans la 
structuration spatiale et temporelle du champ de décharge. Ainsi que pour les champs 
excitateurs, la latence des réponses inhibitrices augmente avec l’eccentricité du stimulus par 
rapport au centre du CR, avec une pente caractéristique de la propagation de la connectivité 
horizontale intracorticale. Ces CRs synaptiques illustrent l’existence d’une récurrence E/I 
intracorticale étendue, dont le rôle computationel ainsi que  dans les fonctions de sélectivité 
corticale constitue la suite de nos investigations expérimentales. 
La participation de la récurrence corticale, notamment inhibitrice, à la genèse de la sélectivité 
à l’orientation et à la direction, les deux principales sélectivités émergentes dans V1, est un 
sujet intense de controverse. L’étude approfondie de ces sélectivités au niveau sousliminaire 
montre que les neurones présentent une grande variété de combinatoires de sélectivité E/I, que 
la sélectivité « spikante » résulte de la balance entre les sélectivités de ces deux composantes. 
De manière générale, les sélectivités sousliminaire sont larges comparées à la sortie spikante, 
l’inhibition est corrélée avec une chute de variabilité au travers des essais dans la trajectoire 
du potentielle de membrane signant ainsi probablement un effet shuntant. Ces résultats 
montrent l’origine corticale prédominante de la sélectivité à l’orientation et à la direction et 
suggèrent une diversité de circuits fonctionnels sous-tendant ces sélectivités. 
Le champ d’intégration synaptique constitue un support probable pour les diverses 
interactions centre-pourtour jusqu’ici observées dans V1. Des expériences de psychophysique, 
conduites par l’équipe de Jean Lorenceau en collaboration avec nos travaux, montrent 
l’existence d’interactions latérales compatibles avec la propagation horizontale corticale. Ces 
interactions induisent une surestimation de la vitesse perçue pour des mouvements apparents 
de Gabors (patchs de luminance sinusoïdale atténuée par une Gaussienne) orientés colinéaires 
à grande vitesse. D’autre part, la sélectivité spatiale et orientationnelle, le rôle du contraste, 
ainsi que la nature facilitatrice ou suppressive des interactions centre-pourtour dans V1 reste 
sujet à débats. En reproduisant ce paradigme de mouvement apparent, nous avons montré 
l’existence d’interaction centre-pourtour sélective spatialement en moyenne pour l’axe 
colinéaire « Gestaltiste » des neurones de V1. Cependant, cette sélectivité spatiale présente 
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une large variabilité au travers des cellules. La stimulation du pourtour, en condition 
centripète (périphérie « silencieuse » stimulée avant le centre du CR) réduit la latence des 
réponses au centre seul par des mécanismes à la fois linéaires et nonlinéaires. Ces interactions 
dépendent du contraste et sont soit suppressives soit facilitatrices pour les conditions bas 
contraste dans le CR, et uniquement suppressives pour les conditions de haut contraste. 
Soulignant un peu plus leur origine intra-corticale horizontale, ces interactions centre pourtour 
sont sélectives à l’orientation du pourtour et non exprimées en condition centrifuge (centre du 
CR stimulé avant le pourtour).  
Quel impact peuvent avoir cette récurrence corticale et leurs nonlinéarités sous-jacentes sur le 
codage de l’information dans V1, notamment sur la précision et la variabilité des réponses ? 
Une analyse préliminaire  montre que quelque soit le type de stimulus utilisé (impulsionnel, 
barre en mouvement, mouvement apparent etc.) et pour au moins la partie de ces 
configurations recrutant le champ sousliminaire inhibiteur, la stimulation visuelle induit une 
diminution de la variabilité de la trajectoire du Vm au travers des essais. A l’opposé, le point 
de vue prédominant en neuroscience semble en faveur d’un rôle de la récurrence corticale 
dans la genèse de variabilité, bruit ou états corticaux spontanés, s’additionnant à la réponse 
visuelle. De nombreuses études montrent que la variabilité des réponses corticales est 
importante, d’amplitude égale ou supérieure à la moyenne de la réponse, définissant ainsi un 
comportement Poissonien, et ce indépendamment des caractéristiques du stimulus. Ce bruit 
impose que l’information du stimulus soit encodée dans la fréquence de décharge, et aussi une 
redondance de fonction et d’information entre neurones. Ce paradigme marque cependant une 
contradiction intuitive avec la théorie du codage optimal prenant ses racines dans les travaux 
de Barlow, qui préconisent que la redondance devrait être réduite de manière à utiliser 
optimalement la bande passante neuronale. En d’autres mots, le codage optimal énonce que le 
système nerveux devrait adapter ses processus et sa transmission d’information aux 
statistiques de son environnement naturel. Nous nous sommes donc demandés si en condition 
naturelle, le bruit ne pouvait pas être minimisé. Pour cela, nous avons construit une librairie 
de films de stimulation de complexité croissante allant du plus simple et « optimal », comme 
un réseau de luminance avec l’orientation du champ récepteur étudié et dérivant à la 
fréquence temporelle préférée, au bruit blanc dense, et incluant une image naturelle animée 
par une séquence de mouvement des yeux. Les résultats montrent que la reproductibilité du 
code neuronal est grande en condition naturelle et dépend de la complexité structurelle du 
stimulus. L’activité corticale présente des états dynamiques reproductibles reflétés au niveau 
du potentiel membrane et un code temporel binaire au niveau « spikant » en réponse au 
conditions naturelles. A l’inverse, les réponses au réseau dérivant présentent une très grande 
variabilité et un code fréquentiel. Le contraste entre les entrées synaptiques temporellement 
denses et très informatives avec la sortie très éparse pour la condition naturelle démontre que 
le processus corticale retire les redondances de ces entrées par la détection d’assemblées 
synchrones précises. Cette réduction à la fois des redondances et du bruit peut être modélisé, 
en introduisant une définition hiérarchique ordonnée des redondances, comme une 
conséquence directe du principe de maximisation de l’information mutuelle entre les entrées 
et la sortie corticale, offrant par ce biais une formalisation universelle de l’adaptation. La 
modulation du code, par la pertinence des statistiques à la fois transitoires et globales de 
l’input sensoriel, jouant sur la balance entre les états spontanés internes et les états contraints 
par l’environnement, correspond à la propriété auto-générative bien connue des réseaux 
récurrents. Du point de vue computationel, la dissipation des contraintes sensorielles par le 
cortex est interprétée comme le coût entropique à payer pour la formation de la mémoire ou 
plus généralement pour l’observation.  
Du point de vue fonctionnel, les nonlinéarités et contrôles de gain sont des candidats sérieux 
pour implémenter cette réduction de redondance et de bruit. Par ailleurs, les mouvements des 
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yeux très souvent oubliés dans les études des réponses aux stimuli naturels, semblent 
indispensables pour obtenir le code contraint observé précédemment. Ces mouvements 
imposant une dynamique stéréotypée au flux optique à la fois pendant les saccades et les 
fixations sont aussi indispensables à la perception visuelle. Aussi leur impact sur le codage de 
l’information dans V1 et leur possible liens aux nonlinearités corticales, a constitué le dernier 
sujet d’investigation expérimental de cette thèse. Pour cela, nous avons construit des stimuli 
représentants différents niveaux de simplification du flux optique et analyser les précédents 
stimuli du point de vue fonctionnel. Les résultats montrent que les mouvements des yeux 
recrutent optimalement des nonlinéarités qui augmentent la reproductibilité et la précision 
temporelle des réponses sous liminaires et « spikantes ». Dans les conditions reproduisant les 
mouvements des yeux, le pouvoir prédictif du CR linéaire classique est quasiment inexistant, 
soulignant par ce biais la prédominance des interactions corticales en conditions naturelles. 
L’effet de ces nonlinéarités se manifeste notamment dans l’augmentation du ratio signal sur 
bruit dans les hautes fréquences (Béta-Gamma). Cette sélectivité accrue pour les statistiques 
naturelles, qui est associée a un recrutement de l’inhibition avec retard de phase, est amplifiée 
par le seuil de décharge. Ces résultats suggèrent que les nonlinéarités de V1 sont adaptées aux 
mouvement des yeux, et qu’elles agissent comme des contraintes sur le code notamment en 
réduisant la variabilité et en augmentant la sélectivité des réponses, générant le code optimal 
précédemment observé. Aussi, nous suggérons que la caractérisation des fonctions et des 
sélectivité corticales doivent tenir compte de la reproductibilité et de la précision temporelle 
des réponses plutôt que la simple intégrale ou amplitude de la réponse. L’ensemble de ces 
résultats ainsi que la vaste littérature physique et computationnelle, ont bien entendu suggéré 
le modèle général de complexité et d’adaptation décrit en début d’introduction. 
 

 



 

 

16

3. Results 

3.1. Cortical Synaptic Receptive Fields: functional characterisation 

3.1.1. Introduction 

As a first approach, we studied the spatiotemporal organisation of excitatory and notably 

inhibitory synaptic Receptive Fields (RFs) using impulsional and oriented bars stimuli. Both 

excitatory, as shown by previous results of the lab (Bringuier & al, 1999, Chavane, 1999, 

Monier, 2002), and inhibitory synaptic RFs extended isotropicaly over a visual spatial region 

much broader than the spiking RFs (or “discharge field”). Synaptic RFs in simple cells 

presented a complex organisation with large overlap between the On and Off subregions, 

pointing out the crucial role of the relative spatiotemporal Excitatory-inhibitory strength (E/I 

balance) in the shaping of spiking Spatiotemporal RF (STRF). In the same way as found for 

Excitatory RFs, the latency of the inhibitory responses increases with the eccentricity of the 

stimulus location relative to the center of the spiking RF, with a slope characteristic of the 

propagation speed measured for horizontal connectivity. 

Those results demonstrate the existence and functional relevance of a widespread and 

important cortical E/I recurrence. A full article (Chavanne & al, 2000) integrating part of the 

data exposed in this section as well as psychophysical results from the team of Jean 

Lorenceau probing perceptual lateral interactions evoked by apparent motion at a speed 

corresponding to that of cortical horizontal propagation (Grinvald et al, 1994; Bringuier et al, 

1999), is presented in annex. 

3.1.2. Spatio-temporal profile of visually evoked excitatory and inhibitory input  

One hundred and sixty two cortical cells were recorded intracellularly with sharp electrodes 

for periods ranging from 30 to 615 min. The average resting membrane potential was -66.1 

mV (+/-5.9 mV), input resistance between 10 and 70 MΩ, and spike height between 35 and 

70 mV. In addition, twenty cells recorded using patch electrodes and whole-cell recording 

mode (Borg-Graham & al, 1998) were pooled with the sharp data base, leading to a total of 

182 cells. Responses to three types of visual stimulation were compared, each stimulus 

recruiting a different level of spatial and temporal summation. The simplest stimulus, ‘sparse 

noise’, was a contrast impulsion (approximating a Dirac input) (Ratliff, 1965), of small spatial 

extent (<0.5° of visual angle) and duration (33–50 ms), of variable polarity (light or dark), and 
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a random walk was used to visit all possible locations in the explored visual field for the two 

possible contrasts (light ON, dark OFF). The neural response to such stimuli can be 

considered as the ‘impulse-response’ of the retino-thalamo-cortical patway and the resulting 

2D-maps established for each contrast characterize the linear ON and OFF components of the 

spatial transfer function (figure 3.1.1: A1, B1, A3, B3). Since cortical cells are best activated 

by correctly oriented static stimuli (Hubel & Wiesel, 1962), the second stimulus type 

consisted of contrasted bars with optimal orientation and length. These bars were flashed in 

random positions across the width axis of the RF, in order to obtain a 1D-map of the receptive 

field (figure 3.1.1: C1, C3). Finally, in order to optimize the synergetic activation of synaptic 

inputs, we also used compact (for the discharge field) and annular (for exploration of the 

“silent” surround) gratings whose orientation and spatial frequency were adjusted to optimize 

the evoked firing frequency (figure 3.1.1: D1).  

Whatever the stimulus used and when the cell was initially at rest, significant depolarizing 

responses were evoked over regions much larger than the discharge field itself, unmasking in 

certain cells a very large responsive (at the subthreshold level) surround (D-field). For a given 

cell, the D-field size appeared to increase with spatial and temporal summation: on average, 

the equivalent diameter of the D-field was 2.5 times larger than that measured for the 

discharge field using sparse noise. This ratio increased to 3.3 for elongated bars and 5.6 for 

gratings. Whatever the stimulation protocol used to map the receptive field, we observed that 

the intensity of the response (measured by the peak or integral value) decreases as a function 

of the test stimulus eccentricity relative to the centre of the discharge field (figure 3.1.1: B1, 

C1, D1). In the case when a moderate depolarization of the membrane potential was imposed 

by an intracellularly injected current, the size of the discharge field increased, recruiting part 

or the totality of the previously measured subthreshold D-field.  

The spatial extent of the synaptic integration field and its organization into a sensitivity 

gradient decreasing from the discharge field centre (figure 3.1.1: A1) suggests that membrane 

potential fluctuations regulate the recruitment of inputs effective enough to trigger spike 

activity. This is generally achieved by preserving the compact aspect of the responsive zone 

expressed at the spike level. More rarely, ectopic discharge regions can be revealed, 

sometimes as far as 10 degrees from the principal discharge zone measured at rest. The spatial 

extent of the discharge field, hidden by this ‘iceberg’ effect, can thus be considered as a 

dynamic variable dependent on the internal polarization state of the neurone and:or on the 

tonic synaptic bombardment by the rest of the network. Moreover, we also demonstrated that 
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subthreshold peripheral responses are orientation selective and, since orientation is not 

strongly expressed at the retinal or geniculate level, one can assume that they are most likely 

of cortical origin. The dependency of the time-courses of synaptic responses on the stimulus 

location relative to the discharge field centre suggests an indirect activation schema, 

consisting first of a serial retinotopic projection onto the cortex that will then be relayed to 

another distal cortical locus by the horizontal connectivity.  

Our results show that, independently of the method used (figure 3.1.1, sparse noise B3, 

elongated bars C3, gratings (not illustrated)), the evoked latency of the subthreshold responses 

increases linearly with the stimulus eccentricity relative to the centre of the discharge field 

(delay of 10 to 50 ms for 3–10 degrees of eccentricity, in figure 3.1.1 A2). These latency 

increases are in agreement with the hypothesis of a spread of evoked action potentials 

travelling along intracortical axons across the cortical layer plane. We derived an estimate of 

the apparent speed of horizontal propagation by converting the distance separating two loci of 

stimulation in the visual field into the corresponding distance in the cortex between the focal 

zones of activation fired by the sole effect of the feedforward projection (Tusa & al, 1978). 

For this purpose, we used, for cat area 17, an average cortical magnification factor of 1 mm 

for 1 degrees in retinal space.  

Our results show that stimuli flashed in the ‘silent’ surround of a given recorded cell receptive 

field evoke subthreshold responses which are relayed with the same velocity by the horizontal 

intracortical network (given by the slope of the spatial latency basin in figure 3.1.1, B3, C3). 

The apparent speed of horizontal propagation (ASHP) deduced from our in vivo experiments, 

although varying among cells between 0.02 and 2 m·s-1, is in 75% of the cases lower than 0.4 

m·s-1, i.e. has a magnitude in the order of conduction speeds measured in vitro and in vivo 

along nonmyelinated horizontal axons (Hirsch & Gilbert, 1991, Moore & Nelson, 1998, 

Murakoshi & al, 1993, Nowak & Bullier, 1997). The value of the mode of the ASHP 

distribution remains at least one to two orders of magnitude lower than the conduction speeds 

reported for X- and Y-thalamo-cortical axons (8–40 m.s-1, Hoffmann & Stone, 1971). 
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Figure 3.1.1. Spatial sensitivity profiles and latency basins of visually evoked synaptic responses. Left panel: 
A1: Map of the subthreshold response strength in a cortical neuron (D-field). The normalized intensity of the 
synaptic depolarization evoked in each pixel is colour-coded. The discharge field is outlined by a dotted contour, 
and the dot indicates which pixel elicited the highest discharge rate. Horizontal scale bar, 2°. B1-C1-D1: The 
strength of the visually evoked depolarizing response is normalized relative to that observed at the location 
eliciting the maximal discharge (circle). Each individual profile represents for a given cell the change in 
response strength across the width or length of the RF, expressed as a function of the eccentricity of the test 
stimulus from the discharge field centre. These different profiles have been superimposed together on the same 
graph, each corresponding to a particular mapping protocol (B1, 2-D sparse noise (n=37); C1, flashed bars 
(n=21); D1, flashed (n=19) or moving (n=2) sinusoidal luminance gratings). The average discharge field extent 
is indicated by a thick horizontal segment. In the case of annular stimuli (D1), the abscissa corresponds to the 
distance between the centre of the discharge field and the inner radius of the annulus. Central panel: A2: The 
waterfall representations illustrate the spatio-temporal profile of subthreshold depolarizing responses in a given 
cell at rest (Vr=-70 mV in A2) and in another cell during spike inactivation (Vr=-40 mV in B2, Section 2). The 
integral depolarizing and hyperpolarizing waveforms are indicated by shaded areas. Oblique lines indicate the 
best fit using a bi-linear regression accounting for the latency basin of synaptic responses. Similar AHSP values 
(0.15 to 0.22 m.s-1) are derived from the slope measurements (in red) in the X-T plane for both dominant 
excitatory (A2) and dominant inhibitory (B2) subthreshold responses. Right panel: A3: Colour-coded latency 
basin map of depolarizing responses evoked on the visual field. Black pixels indicate the absence of significant 
changes in the onset slope of the postsynaptic response The response latency is expressed as the absolute 
difference, in milliseconds, relative to the latency observed in the discharge field centre (dot in A1-3). B3-C3-D3: 
Change in the latency of the subthreshold response expressed as a function of eccentricity relative to the 
discharge field centre (abscissa in degrees of visual angle). Each cell is represented on a continuous graph, in 
response to sparse noise (B3) or to flashed bars (C3). Each latency basin is fitted by two linear regressions, and 
the slope of each fit, given in degrees per milliseconds in the visual field, is converted into m/s in the cortical 
layer plane (see text). The distributions of apparent speed of horizontal propagation (in m.s-1), established for 
each stimuli class, are shown in D3. Discharge Field (E1, sparse noise map), D-field(E2, oriented bars), 
inhibitory field (F1: sparse noise map F2: oriented bars responses) and their respective latency profile (E3, F3) 
for another cell both recorded at rest (E1, E2,E3) and during spike inactivation (F1,F2,F3).  
 

Our latency analysis suggests that the information received at one point in the cortex through 

the serial feedforward afferents is then propagated radially by the horizontal connectivity to 

neighbouring regions of the visual cortex over a distance that may correspond to up to 10 

degrees of visual angle. Primary visual cortical neurons would thus have the capacity to 

combine information issued from different points of the visual field, in a spatiotemporal 

reference frame centred on the discharge field itself. This ability imposes precise constraints 

in time and in space on the efficacy of the summation process of elementary synaptic 

responses.  

The contextual influence originating from the ‘silent’ surround is not limited to the 

transmission of excitatory intracortical input. Similar analysis and detection methods have 

been applied to hyperpolarizing responses that were revealed when the membrane potential 

was artificially maintained at a depolarized level (around -30 mV), away from the reversal 

potentials for chloride (-70 mV) and potassium (-90 mV) inhibitory synaptic currents. The 

goal of this protocol was to increase the visibility of subtractive inhibition by increasing the 

driving force of GABAA and GABAB currents and decreasing the AMPA/NMDA excitatory 

currents, and at the same time suppressing spike activity by inactivation of fast Na+ 
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conductances. This method led to the same conclusion as for the excitatory events: a latency 

basin of hyperpolarizing events is observed, suggesting an intracortical propagation of 

inhibitory input with a velocity ranging between 0.1 to 0.3 m.s-1 (examples in figure 3.1.1: B2, 

F1, F2, F3). The only difference with the spatial basin of latency observed for depolarizing 

responses is that the earliest onset inhibition following visual input is on average obtained for 

a point in visual space which is displaced by 1 to 2 degrees from the centre of the excitatory 

discharge field, as exposed in the two example cells.  

Thus excitation and inhibition, although they may spatially overlap later in time, seem to take 

their origin in regions of the visual field which are spatially distinct. This result is reminiscent 

of extracellular observations made in layer VI cells in monkey V1 (Livingstone, 1998). Our 

electrophysiological data also agree with the recent description of a horizontal connectivity 

network of interneurons that can extend over several millimetres in the cortical layer plane, 

thus exerting suppressive influences over a cortical distance corresponding to several degrees 

of visual angle in retinal space (Kisvarday & al, 1997). 

3.1.3. Synaptic integration field complexity 

In the visual cortex, two major types of receptive field (RF) are classically defined, Simple 

and Complex, based partly on the degree of spatial overlap between ON and OFF spiking 

responses (Hubel and Wiesel, 1962; Dean & Tolhurst, 1983). Another criteria for simple and 

complex classification, more discriminative, consists in the comparison between the 

modulation amplitude with average response amplitude (Skottun & al, 1991). It is quantified 

by the ratio between the Fourier component of the preferred temporal frequency of the cell 

(F1) and its component zero (DC, average, F0). For this measure which quantifies the level 

of linearity of the response, simple cell are classically described as having a ratio F1/F0>1 

(“linear”), whereas complex cells classically present a ratio F1/F0<1. In order to compare the 

RF organisation at the spiking and membrane potential level and thus to clarify the 

mechanisms explaining Spiking RF emergence, we have measured both criteria on each Vm 

and spike components (Chavane & al, 1998). A similar study has been recently published 

(Mechler & Ringach, 2002, Priebe & al, 2004) and presents results which are very similar to 

the ones presented here. 

In a first approach, we will describe the overlapping of ON and OFF regions at the synaptic 

level and compare it to that seen at the spiking level. Sharp and patch electrodes have been 

used to record synaptic responses in response to optimally oriented light and/or dark bars 

flashed across the RF width (n = 70 cells, figure 3.1.2.1). A "discreteness" ratio (RD) was 
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applied both to the spike rate and subthreshold potentials. RD is defined as the absolute value 

of the difference between ON and OFF responses integrated over the stimulus duration, 

summed over all tested positions, and normalized by the sum of the absolute values of all 

responses. This ratio is bound between 1 (complete spatial segregation) and 0 (complete 

overlap of ON/OFF responses). We applied this measure both for the total integral of the 

responses and for the significant responses measured as the integral above a threshold 

calculated from the spontaneous activity (Z-score P<0.05). 
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Figure 3.1.2.1: Examples of a Complex-like organization of ON- and OFF- synaptic responses for two 
simple cells A & B). Sparse noise ON-OFF maps (ON Red - OFF blue color scale) for the discharge (A1, B1) 
and for the Depolarising Field(A2, B2) are presented in overlay with the position of the flashed bars stimuli 
used for further analysis (see other panels). The Peri-Stimulus-Time-Histogramms (PSTHs) of the spiking 
response (A3 and B3) and the PeriStimulus-Time-Waveforms (PSTWs) of the Vm response (A4 and B4) are 
ilustrated in response to the ON (500 ms) and OFF (bar removal) transitions of these stimuli. The integral of 
either the total or only the significant component of those responses and the associated discreteness ratio (see 
RD definition in the text) are quantified in A5, A6, B5 and B6. Cell A illustrates a complex Depolarising-field 
organisation whereas cell B a complex hyperpolarising-field organisation. 
 

 

 

 

On the basis of spike activity, discreteness is continuously distributed between 0 and 1, with 

RD larger for Simple RFs (figure 3.1.2.2). Discreteness derived from ON and OFF 

subthreshold response is about 70% that based on spike activity. When the depolarizing and 

hyperpolarizing parts of the responses are analyzed separately, hyperpolarizations are more 

spatially segregated (RD~0.5) than depolarizing responses (RD~0.3). A time-locked analysis 

of the evolution of the subthreshold discreteness shows a much richer dynamics that can be 

decomposed in two steps: most Simple cells start from a Complex-like state during the early 

part of the visual response and ON/OFF segregation increases during the later part of the 

response. Time-slice analysis of dominant and opponent responses indicate that both 

responses combine excitatory and inhibitory inputs. The dynamics of the discreteness ratio 

may thus provide detailed insights of the intracortical synaptic recurrence. 
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Figure 3.1.2.2: Population quantification of the spatial overlap of ON and OFF responses at the spiking (A), 
depolarising (B) and hyperpolarising (C) levels. The overlap extent is quantified by a discreteness ratio (see RD 
in text), a value of 1 indicating an absence of overlap whereas a value of 0 a complete superposition. This ratio 
is calculated both for the total response integral (A1, B1, C1) and for the integral restricted to the significant 
component only (A2, B2, C2). The depolarising responses are found more in overlap than the spiking responses, 
as shown by the correlation plot of their respective discreteness ratios (D1). 
 

In a second step, we quantified the modulation ratio F1//F0 of 13 cells recorded with sharp 

electrodes. The stimulation consisted in a full screen grating of sinusoidal luminance of 

optimal orientation and spatial frequency, drifting in the preferred direction at the optimal 

temporal frequency. The ratio between the F1 and F0 is quantified both at the spiking 

responses and membrane voltage (Vm) responses levels. On the 13 cells, 7 can be classified 

as simple and 8 as complex according to their spiking response F1/F0 ratio. In contrast, at the 

Vm synaptic level, this ratio decreases for most of the cells and some of the cells (4 of the 7 

simple cells) classified as Simple based on their spiking modulation are falling in the 

Complex class from their synaptic activity observation (figure 3.1.2.3). Only 3 cells present a 

Simple-like modulation of the synaptic input, whereas 10 are complex. Examples of a Simple 

cell and of a Complex cell modulation both at the spiking level (PSTH) and at the Vm level 

(PSTW) are presented in figure 3.1.2.3.  
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Figure 3.1.2.3: Spiking and Vm responses modulation in responses to optimal drifting grating and the 
quantification of the F1/F0 ratio. The spiking (PSTH) and Vm (PSTW) average responses are illustrated for 
two cells in A1. Note the strong DC component at the subthreshold level in both cells and the phase-independent  
transient firing at the stimulation onset. The top cell example is classified as Simple, whereas the bottom one as 
complex, according to the F1/F0 ratio of their spiking responses. The population quantification of the spiking 
and Vm responses F1/F0 ratio is presented in A2.  
 

Our conclusions are that Simple an Complex cells, at least from their input organisation, lies 

on a continuum. Those results confirm the observation of Mechler & Ringach (2002) and 

Priebe & al, (2004) of subthreshold Complexity. Regarding this collection of convergent 

empirical results, the hierarchical model of receptive field originally proposed by Hubel & 

Wiesel (1962), which posits a hierachical convergence of LGN cells to Simple cells and of 

Simple cells to Complex cells is no longer justifiable. Furthermore, those latter studies 

emphasized that the spike threshold nonlinearity is responsible of the difference between 

Simple and Complex RF organisation, which is partially true but not sufficient. We further 

point out that a single common synaptic connectivity scheme involving the 

Excitatory/inhibitory (E/I) balance, is accounting for RFs Simplicity and complexity 

organisation (figure 3.1.2.4). Combined with the excitatory and inhibitory large synaptic 

fields previously shown, it defines a generalised Simplex model which was originally 

proposed on the results that Hebbian supervised learning can balance V1 neuron responses 

from Simple-like to Complex-like (Shulz & al, 1999; Debanne et al, 1998). We propose that 

this balanced connectivity scheme between excitation and inhibition is modulated specifically 

for each cell (therefore lying on a continuum) and further segregated by the spike threshold 

nonlinearity.  
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Figure 3.1.2.4: Generic cortical connectivity scheme for Simple and Complex Receptive Fields, and synaptic 
integration field generation. The Hierarchical model of Receptive Fields convergence does not account for the 
complexity of subthreshold responses and therefore looses its relevance (A1). The ON (red) and OFF (blue) 
channels are traced across the successive feed-forward visual integrative steps from the Retina, LGN, to cortex. 
Recurrent cortical connections either excitatory (black) or inhibitory (green) are deduced from our empirical 
results. 
 

However, the convergent Hubel &Wiesel connectivity model is still supported by some recent 

results, which show that complex RF can be decomposed into a small number of Simple-like 

afferent units (Touryan & al, 2002, Touryan & al, 2005). The pertinence of those results can 
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be questioned, since they are based on the extraction of the second order covariance kernels 

imposing a biasing orthogonality on the subunit (Sharpee & al, 2006), and since the limited 

duration of their recorded data favours the detection of mostly “positive” excitatory subunits 

(Rust & al, 2005). In agreement with the model proposed here, a more sophisticated analysis 

mixing first and second order kernels and on larger data sample allowing the extraction of 

suppressive subunits have led to opposite results (Rust & al, 2005). The RFs, Simple as well 

as Complex according to this latest study, are composed of many significant subunits notably 

suppressive, presenting various types of spatiotemporal organisation (orientation, spatial 

frequency, phase etc…). However, such approaches only give a phenomenological description 

of the RF in term of multiple parallel filters which cannot be interpreted in terms of 

connectivity architecture or cortical machinery: the interpretative jump from functional 

suprathreshold RF subunits to physically defined afferent pathways has no direct reasonable 

foundation. At least, intracellular recordings of the membrane voltage input, and the 

identification of the excitatory and inhibitory spatiotemporal characteristics, allows an 

approximation of this functional/structural relation, and the result of our studies are 

incompatible with the classical functional convergence framework. 

 

In conclusion, cortical E/I recurrence is strongly involved in the genesis of the receptive fields 

spatiotemporal characteristics, independently of the Simple or Complex dichotomy. The 

participation of cortical local recurrence, notably inhibition, to the genesis of orientation and 

direction selectivity, two of the main features of V1 selectivity, remains a subject of 

controversy. The functional role of those synaptic subthreshold RFs, indicating a dense and 

widespread E/I cortical recurrence, in the orientation and direction cortical selectivity is 

investigated in the next chapter. 
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3.2. Orientation and direction selectivity of excitatory and inhibitory inputs 

in visual cortical neurons: a diversity of combinations produces spike 

tuning  

(published in Monier C, Chavane F, Baudot P, Graham LJ and Fregnac Y., Neuron. 2003, 20 

[37(4)]: 663-80.) 

 

Summary: This intracellular study investigates synaptic mechanisms of orientation and 

direction selectivity in cat area 17. Visually evoked inhibition was analyzed in 88 cells by 

detecting spike suppression, hyperpolarization and reduction of trial-to-trial variability of 

membrane potential. In twenty five of these cells, inhibition visibility was enhanced by 

depolarization and spike inactivation, and by direct measurement of synaptic conductances. 

We conclude that excitatory and inhibitory inputs share the tuning preference of spiking 

output in 60% of cases, whereas inhibition is tuned to a different orientation in 40% of cases. 

For this latter type of cells, conductance measurements showed that excitation shared either 

the preference of the spiking output or that of the inhibition. This diversity of input 

combinations may reflect inhomogeneities in functional intracortical connectivity regulated 

by correlation-based activity dependent processes. 

3.2.1. Introduction 

Brain computation, in the early visual system, is often considered as a hierarchical process 

where features extracted in a given sensory relay are not present in previous stages of 

integration. In particular, many response properties in visual cortex, such as orientation and 

directional selectivities, are not present at the preceding geniculate stage, and a classical 

problem is identifying the mechanisms and circuitry underlying these computations. In order 

to assess how much synaptic integration of the network activity at each neuron contributes to 

the genesis of cortical orientation and direction selectivity, it is necessary to provide reliable 

measurements of the input/output transfer function at the single cell level. In theory, a variety 

of combinations of excitatory and inhibitory input tuning can give rise to a given functional 

preference and tuning width in the spike response. Within this context an important issue is 

whether cross-oriented or null-direction intracortical inhibition is fundamental for stimulus 

selectivity, or rather only normalizes spike response tuning with respect to other features such 

as stimulus strength or contrast. After a long-standing debate, most recent models favor the 
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second possibility (see review in Ferster and Miller, 2000 and Douglas et al. 1999) largely 

because experimental support for the existence of inhibitory input in response to non-

preferred stimuli has been somewhat contradictory.  

The essence of the feedforward model, initially proposed by Hubel and Wiesel (1962), was 

that Simple cortical cells inherit their orientation preference from the anatomical convergence 

of thalamic inputs. In order to reproduce contrast invariance of orientation tuning (Sclar and 

Freeman 1982), this concept has been modified to include disynaptic intracortical inhibition 

acting in a so called “push-pull” manner (Troyer et al., 1998). This model predicts that the 

modulation of both excitatory and inhibitory input is largest for the preferred stimulus. 

However it is difficult to reconcile the apparent simplicity of feedforward schemas with the 

number and diversity of intracortical input sources impinging on cortical cells (Ahmed et al. 

1994). Consequently, models of orientation tuning have been proposed, that rely on recurrent 

excitatory connections to amplify the optimal component of broadly tuned and weak thalamic 

input (Douglas et al., 1995, Somers et al., 1995; Ben-Yishai et al., 1995). In this scheme, a 

typical postulate is that intracortical inhibition acts non-specifically to maintain the selectivity 

of individual neurons by balancing intracortical excitation at the columnar level.  

Nevertheless, a crucial role for inhibition has been indicated by pharmacological studies 

showing that GABAA antagonists can modify or eliminate both orientation and directional 

selectivity in cat primary visual cortex (Sillito, 1979; Sillito et al., 1980, Eysel and Shevelev, 

1994), although attempts to block GABAA receptors intracellularly appeared not to change the 

qualitative orientation preference of the cell (Nelson et al., 1994). In addition, disinhibition 

experiments give strong evidence for an inhibitory shaping of orientation and direction 

selectivity by neighboring or distant columns (Eysel et al., 1990; Crook et al., 1997). 

Furthermore, these disinhibitory effects seem to be correlated with the anatomy of the 

intracortical inhibitory network (Crook et al., 1998, Roerig et al, 1999; Buzas et al., 2001). 

Some models of orientation and direction selectivity, incorporating non-specific or non-

optimal inhibition, account partially for these different experimental results (Ferster & Koch 

1987, Wörgötter & Koch 1991, Adojarn et al., 1999, McLaughlin et al., 2000, Ruff et al., 

1987; Sabatini and Solari, 1999). However, currently available electrophysiological evidence 

supporting these models remains controversial. While intracellular recordings rather 

consistently show the presence of inhibition in response to the preferred orientation, as well as 

in some cases the direction opposite to the preferred one, no firm agreement has yet been 

reached concerning its presence for orientations outside the spike tuning range. Early 
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intracellular recordings (Benevento et al., 1972; Creuztfeldt et al., 1974; Innocenti and Fiore, 

1974) showed strong hyperpolarizations in response to stimuli in the null direction and, 

occasionally, to cross-orientated stimuli. Later studies confirmed that prominent 

hyperpolarizations could be evoked by stimuli with nonoptimal orientations (Volgushev et al., 

1993), depending of the laminar location of the cell (Martinez et al., 2002). However, other 

studies failed to reproduce these qualitative findings, reporting only iso-oriented 

hyperpolarisations (Ferster, 1986) or occasional hyperpolarizations for non-optimal 

orientations in some complex cells (Douglas et al., 1991).  

Detecting inhibitory input on the basis of evoked changes in membrane potential may prove 

to be difficult since the reversal potential of GABAA-controlled chloride channels is situated 

near the resting membrane potential of cortical neurons. This shunting inhibition may reduce 

the effect of concomitant excitation by evoking a large increase in input conductance while 

leaving the membrane potential relatively unaffected. Two strategies can be used to unmask 

this ‘silent’ inhibition: the first one is to depolarize the cell in current clamp, sufficiently to 

change the balance in the driving forces for inhibition vs. excitation. Using this method, 

Ferster (1986) reported that hyperpolarizing potentials recorded in the depolarized state had 

the same selectivity for orientation as depolarizing potentials.  

The second approach is to estimate conductance changes during visual stimulation. First 

attempts using sample-based methods did not succeed in showing changes of synaptic 

conductance whether the applied stimulus feature was a preferred or a non-preferred one 

(Douglas et al., 1988, Berman et al., 1991, Ferster and Jagaadesh, 1992, but see Bush and 

Sejnowski 1994). In spite of these negative reports, we previously applied an in vivo whole-

cell voltage clamping method to continuously track both the evoked conductance and the 

apparent synaptic reversal potential during visual responses of neurons in primary visual 

cortex. We demonstrated large transient shunting inhibition conductance increases for 

optimally oriented flashed stimuli (Borg-Graham et al, 1996, 1998). Using a similar method, 

but in current-clamp mode, a growing number of experimenters have since confirmed the 

presence of shunting inhibition in vivo (Hirsch et al., 1998; Anderson et al., 2000b). 

Furthermore, Anderson et al (2000b) reported that, for any given cell, the excitatory and 

inhibitory conductances had similar preferred orientations and tuning widths, highly 

correlated with that expressed by the firing tuning curve, whatever the laminar location of the 

post-synaptic cell.  
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Faced with the diversity of the experimental observations concerning the presence or not of 

inhibitory input evoked by non-preferred orientation or directions, we have re-addressed this 

issue with a quantitative comparative study combining several of the electrophysiological 

protocols mentioned above. Both sharp and patch electrodes were used in order to take 

advantage of complementary benefits provided by each technique applied in the same in vivo 

preparation. 

3.2.2. Results 

The approach we present here is to revisit, step-by-step, intracellular evidence for the 

presence of inhibitory input in non-preferred orientations/directions, and determine how the 

tunings of the excitatory and inhibitory inputs are related to that of the spiking output. Where 

possible, several complementary approaches were compared and combined in the same cell in 

order to compensate the limitations inherent to each method.  

One set of protocols was based on passive measurement of intracellular potentials under 

current clamp. As a first step, at the resting membrane potential, we measured the tunings of 

evoked increases and decreases in spiking rate. We then measured the tunings of the 

depolarizing and hyperpolarizing components of the subthreshold synaptic activity. We also 

measured the inverse of the trial-to-trial variability (1/σ of the stimulus-locked membrane 

potential waveform. Our hypothesis was that an increase in input conductance might produce 

a reduction in the trial-to-trial variabilityof the membrane potential trajectory independently 

of any change in the mean. Thus, an increase in 1/σ could signal the presence of shunting 

inhibition.  

Since the presence of hyperpolarization can be masked by concurrent excitation, specially in 

the preferred orientation or direction, another set of protocols was aimed at increasing the 

visibility of synaptic input and allowing the quantitative measurement of this input. First, the 

inhibitory drive was amplified and the excitatory drive reduced by depolarizing the 

postsynaptic membrane potential in current clamp, sufficiently to fully inactivate spike-related 

currents. This method reveals visually evoked inhibition as hyperpolarizations. In the second 

approach, limited to low-access resistance patch recordings, we measured the continuous 

dynamics of the total synaptic conductance input and the associated reversal potential during 

the visual stimulation. Decomposition methods were then applied to dissect out the respective 

tuning of excitatory and inhibitory conductances (see Methods).  
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Orientation and direction tuning curves were measured using moving bars whose direction of 

motion was perpendicular to orientation, and which were swept across the full extent of the 

subthreshold visual receptive field (Bringuier et al., 1999). To facilitate comparison between 

the various response components presented above, we used the same quantifications in all 

cases, based on the integral calculated over the entire duration of visual stimulation. Statistical 

significance was tested against the non-stimulated condition. The optimal direction (OD), the 

tuning width (HWHH) and the nonorientation selective part (“Base”) of each response 

component were estimated by fitting the response integral as a function of stimulus direction 

by two Gaussians forced to peak 180° apart. Importantly, the fit for each component was 

made independently of the other (see Discussion). Each response component was then 

classified into one of four categories depending on the comparison between its optimal 

direction and the preferred direction expressed by the spike response: "Iso-P" for angular 

difference ranging between [0°-30°], "Oblique" for differences between [30°-60°] or [120°-

150°], "Cross" for differences between [60°-120°], and "Iso-N" for differences between 

[150°-180°].  
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Figure 3.2.1: Measurements of visual activity, evoked from the resting state: This figure shows five examples of 
whole cell patch and sharp recordings, each row illustrating one cell. Each inset shows, from top to bottom, the 
time-course of evoked responses obtained at rest for the membrane potential (5 to 10 superimposed trials, 
truncated spikes), for spike counts (black: PSTH) and for subthreshold activity (depolarization in red (Dep); 
hyperpolarization in blue (Hyp)) for three particular stimulus directions (left, preferred direction (0°)); middle, 
cross-orientation [60°-120°, 240°-300°]; right, null-direction (180°)). The left column presents polar-plots of the 
different response components with their respective color codes. To facilitate comparisons in the polar plots of 
this and the subsequent figures, the direction eliciting the best spiking response was set to 0° for all cells, 
pointing to the right. For direct comparison, the tunings of the spike and depolarizing responses are overlaid on 
the same plot. Cross-oriented hyperpolarization and spike suppression are illustrated in cell 1 (Sharp, Simple 
RF; optimal directions (OD): Dep. 1°, Supp. 88° and Hyp. 81°). Concomitant hyperpolarisation and 1/σ 
components are illustrated in cell 2 (Patch, Complex RF; OD: Dep 0°, Hyp 80° and 1/ σ 90°) and cell 3 (Sharp, 
Simple RF; OD: Dep 5°, Hyp 0°, 1/ σ 6°). Reduction of trial-to-trial variability associated with depolarizing or 
null mean response is illustrated in cell 4, which had a bistable behaviour (Patch, Complex RF; OD: Dep 9° and 
1/ σ 79°) and cell 5: (Patch, Simple RF; OD: Dep 5° and 1/ σ 152°).  
 

The present study is based on the quantitative analysis of 88 cells recorded using sharp (n=39) 

and whole cell patch (n=49) electrodes, for which the receptive field (RF) was characterized 

by sparse noise mapping (51 simple (25 S1 and 26 S2-S3), 32 complex and 5 unclassified) 

and the orientation selectivity of subthreshold and spiking activity was measured in response 

to moving bars. The spontaneous activity and the peak firing rates for the preferred stimulus 

were higher for sharp than for patch recordings (spontaneous activity: 3.8±5 a.p./sec. (n= 39) 

vs. 0.3±0.5 a.p./sec (n=49), p < 0.01 and peak firing rate: 52±28 a.p./sec. (n=39) vs. 32±27 

a.p./sec (n= 49), p < 0.01). In about one quarter (20/88, 23%) of the cells, a clearly bimodal or 

two-state distribution of the spontaneous membrane potential was apparent in both patch and 

sharp recordings (see also Anderson et al, 2000a). 

3.2.2.1. Spike and depolarizing responses 

All cells presented a significant depolarizing response in at least one direction, with a mean 

peak depolarization amplitude for the optimal stimulus in the order of 10 mV (9.5±4.8 mV, 

n=88). The orientation tuning of depolarizing responses was, on average, significantly wider 

than that of spiking responses (HWHH: 46±13° vs. 30±9°, Base: 23±19% vs. 5.6±8%, p< 

0.01, n= 88). However, the improvement in orientation selectivity between the depolarizing 

and the spiking responses (mean of the difference in tuning width: 15±13°, n=88) was highly 

variable between cells (range for the difference: -10° to 60°, see example in Figures 1, 3 and 

4). As expected, the optimal direction derived from the subthreshold depolarizing response 

tuning and that expressed in the spike discharge tuning was similar for a large majority of 

cells (82% of Iso-P cases, shown in the red histogram (Dep.) of the left column in Figure 

3.2.2). Nevertheless, some cases were observed where the largest depolarization (measured by 

its integral value) was obtained for non-preferred orientations (11%) or null-directions (7%).  

 



 

 

37
 



 

 

38

Figure 3.2.2: Measurements of visual activity, evoked from the resting state: Population analysis. The left 
column presents, for each component, the distribution of the optimal direction (OD) relative to the spike 
preferred (set to 0°): Spike suppression (Spike Supp.), Depolarization (Dep), hyperpolarization (Hyp), inverse of 
trial-to-trial variability concomitant with a significant hyperpolarisation (1/σ and Hyp) and without significant 
hyperpolarisation (1/σ only). The right panel presents the averaged tuning curves of the various components for 
different sub-populations of cells defined on the basis of their optimal direction relative to the preferred 
direction: Iso-P, Cross- or Iso-N. Cells with a component that had an oblique preference are not included in the 
averaged polar plots. 

3.2.2.2. Suppression of spike discharge and hyperpolarizing responses 

In one quarter of the cells (23/88, 26%) for which background activity was high enough to 

detect periods of significant spike rate decrease, it was possible to establish the range of 

orientations or directions for which a suppression of background activity (integrated only over 

the periods where it is detected during the whole stimulus exploration) was induced by the 

visual stimulus (shaded tuning curves in left column, for cell 1 in Figure 3.2.1 and cell 6 in 

Figure 3). The overall distribution of the optimal direction derived from the spike suppression 

component shows dominance for cross-orientation preference (Cross: 11/23, 48%) and null 

direction (Iso-N: 6/23, 26%). The tuning width of the suppression was generally broader than 

that of the spike (HWHH: 48.1±20°; base: 15±12%, n=23).  

Significant hyperpolarizing responses from rest could be detected for at least one direction in 

half of the cells (42/88, 48%). The mean peak amplitude (calculated over a 25 ms period) of 

the hyperpolarization component was 3.7±1.8 mV (n=42). The probability of detecting 

evoked hyperpolarizations appeared to depend on the initial resting potential, since the 

average resting potential of cells with significant hyperpolarizing responses was more 

depolarized than that of the remaining cells (-64±4 mV (n = 42) vs. -69±6 mV (n=46), p < 

0,01). The hyperpolarizing component had a tuning width of 40±16° with a base component 

equal to 11±12% of the peak amplitude. The summary distribution (Hyp. in Figure 3.2.2) 

shows that the direction preference of the hyperpolarizing component differs from that 

expressed by the spike response. Almost two-thirds of the cells showed the optimal 

hyperpolarizing response for either cross-oriented (Cross: 18/42, 43%, see Figure 3.2.1, cells 

1 and 2) or oblique directions (Oblique: 9/42, 21%, see cell 6 Figure 3). The remaining third 

of the cells had dominant hyperpolarizing responses for either the preferred direction (Iso-P: 

9/42, 21%, see cell 3, Figure 3.2.1), or for the null direction (Iso-N: 6/42, 14% see cell 11 

Figure 3.2.4). Of the 23 cells with significant background spike activity, 14 showed both 

significant spike suppression and hyperpolarizing responses, with similar optimal direction 

preference (r2 = 0.77, p < 0.01, n = 14). Cells with a cross-oriented optimal hyperpolarizing 
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component were significantly less direction selective than cells with an iso-oriented optimal 

hyperpolarizing component (DI: 0.48±0.27 (n=18) vs. 0.75±0.24 (n=15), p < 0.01).  

3.2.2.3. Trial-to-trial variability of the membrane potential 

It was expected that the presence of a shunting inhibition might cause a significant reduction 

of trial-to-trial variability in the trajectory of the membrane potential independently of any 

significant hyperpolarization or depolarization during the visual response. We therefore 

calculated the inverse of the standard deviation of the membrane potential waveform 

synchronized with the stimulus onset (see Vm ± S.D. and 1/σ, green trace in cell 2 in Figure 

3.2.1) and compared this with the baseline level observed in the absence of visual stimuli.  

A majority of cells (52/88, 59%) showed a significant reduction of trial-to-trial variability 

during visual stimulation in a least one direction. The mean peak amplitude of the 1/σ 

component was 183 ± 67 % (n=52) and was observed at similar membrane potential values in 

different cells (-66,4 ± 4,4 mV (n=52)). These cells exhibited a significantly higher trial-to-

trial variability in their pre-trigger spontaneous membrane potential activity than the rest of 

the population (i.e., for 1/σ: 0,3±0,1 mV-1 (n=52) vs. 0,8±0,7 mV-1 (n=36), p< 0.01), 

suggesting that a certain fluctuation level in the synaptic background activity has to be present 

in order to detect a significant reduction in evoked variability.  

About half (24/52, 46%) of the cells that showed a significant reduction in trial-to-trial 

variability also showed significant evoked hyperpolarizations (see cells 2 and 3, Figure 3.2.1), 

and the orientation preferences of the two components were found to be correlated (r2 = 0,70; 

p<0.01 (n=24)). In spite of this similarity, and as summarized in the left column in Figure 

3.2.2 (see Hyp and 1/σ rows), the tuning width of the 1/σ component was, on average, larger 

than that of the hyperpolarizing component (HWHH: 50±18° vs. 41±19°; p<0.05 (n=24)). For 

the majority of these cells, the largest reduction of variability was evoked for non-preferred 

directions or orientations (Cross and Oblique: 20/24, 83%).  

We also recorded from cells in which a reduction in trial-to-trial variability during the visual 

response was seen without changes in membrane potential or with a concomitant 

depolarization of the mean membrane potential (Figure 3.2.1, cells 4 and 5). For these cells 

(28/52, 54%) the tuning width of the variability reduction effect was broad (HWHH: 61±19°, 

n=28), and the distribution of the direction preference derived from the 1/σ tuning curve (Fig 

2, 1/σ only) showed a strong peak for the null direction. For the cells that showed a two-state 

behaviour (15/28, 54%), visual stimuli tended to clamp the membrane potential in the up-state 
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independently of the stimulus direction, resulting in a significant reduction in trial-to-trial 

variability associated with a strong depolarization. However the strength of this variability 

reducing effect still depended on stimulus orientation (compare the up-state variability 

observed for the cross and the null-directions in cell 4 of Figure 3.2.1). 

3.2.2.4. Unmasked inhibition by spike-inactivated protocols 

The results presented above suggest the presence of inhibitory input for both preferred and 

non-preferred orientations. However, inhibition evoked by the preferred stimulus (i.e. that 

eliciting the strongest spike discharge) may be underestimated since it could be masked when 

concomitant excitation dominates and the cell fires. To address this possibility, as well as to 

improve the visibility of inhibitory inputs as hyperpolarizing events, we increased the 

inhibitory driving force by depolarizing the cell (Figure 3.2.3, see method panel) using 

intracellular injection sufficient to inactivate fast Na-channels and thus completely suppress 

spike activity. In this spike inactivated state, only hyperpolarizing responses were significant, 

giving a reliable indication that the holding potential was close to the reversal potential of 

excitatory input. This protocol was applied successfully and reversibly in nine cells, for which 

we could compare the tuning curves of the evoked hyperpolarizing responses observed in the 

spike-inactivated state (Inh: inhibitory component, in Figure 3.2.3), with the spike tuning 

curves established at rest (without current injection). Figure 3.2.3 illustrates five cells in 

which visually evoked spike and subthreshold responses were compared with the inhibitory 

response component. The main result is the striking diversity of the distribution of inhibitory 

input observed in different cells: one third of cells (3/9) had an inhibitory component with an 

optimal direction in the preferred direction, one third in the oblique- (1/9, see cell 6, Figure 

3.2.3)or cross- (2/9, see cell 7, Figure 3.2.3)orientation preference and one third (3/9) in the 

null-direction (see cells 8 and 9, Figure 3.2.3). The HWHH of the tuning curves of the 

inhibitory component measured in the spike-inactivated state was on average of 43±16° (n=9) 

with a base of 29±18%. The diversity in the respective tuning preferences of spike output and 

the inhibitory input revealed in the spike-inactivated state is further summarized in Figures 5 

and 6. The hyperpolarizations evoked in the spike inactivated state were larger in amplitude 

and duration than that seen at the resting state, when this latter component was detectable. For 

cell 6 in Figure 3.2.3, the amplified evoked hyperpolarizations exhibited the same oblique 

preference as the hyperpolarizations at rest and the suppression of the spike component, but 

with a wider tuning due to the unmasking of inhibition for both the preferred and null 

directions. Cells 7, 8 and 9 (Figure 3.2.3) showed only depolarizing components under the 
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control condition, whereas the presence of an inhibitory component was revealed in all 

directions under depolarizing current, with either a cross-oriented (cell 7) or null-direction 

preference (cells 8 and 9). The time course of the inhibitory component waveform reproduced 

precisely that observed for the reduction in membrane potential trial-to-trial variability at rest, 

giving further evidence that the decrease of variability indeed reflects a dominant inhibitory 

input. The two cases where the orientation preference of the hyperpolarizing components was 

not the same at rest and in the spike-inactivated state corresponded to a shift from cross- to 

isoreference, and from oblique- to cross-preference, suggesting no systematic bias in the 

revealed component relative to the spike-based preference. 
 

 

Figure 3.2.3: Inhibition revealed by spike-inactivated protocols: This figure presents four examples of sharp 
recordings for which a reversible spike-inactivated protocol was applied, each panel illustrating one cell. The 
method is summarized in the top inset. A depolarizing current was injected and its intensity level adjusted to 
inactivate spike initiation. The presence of IPSPs can be seen as hyperpolarizations in the membrane potential 
during current injection. The end of the trace illustrates the reversibility of the protocol. Inhibitory (Inh), 
hyperpolarization and spike suppression components with an oblique preference are illustrated in cell 6 (Sharp, 
Simple RF; OD: Dep. 3°, Supp. 46°, Hyp. 46° and Inh. 41°). Cross-oriented inhibitory components are 
illustrated in cell 7 (Patch, Complex RF; OD: Dep 2° and Inh 118°). Cell 8 illustrates the case of an inhibitory 
component in the Null direction (Sharp, Complex RF; OD: Dep 12° and Inh 161°). A similar finding was 
observed for cell 9, for which both the time course and orientation tuning of the inhibitory and 1/ σ components 
were highly correlated (Sharp, complex RF; OD: Dep 7°, 1/ σ 159° and Inh 177°). 
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3.2.2.5. Excitatory and inhibitory conductances 

The results obtained so far show that the tuning of inhibitory input can be unmasked and 

qualitatively studied in the spike-inactivated state. However these experiments do not provide 

a direct quantitative estimate of the excitatory and inhibitory tunings. The continuous measure 

of input conductance and the apparent reversal potential during the visual response advances 

one step closer towards the identification of the orientation or direction dependence of 

synaptic inputs (Borg-Graham et al., 1998, Borg-Graham, 2001). Voltage-clamp 

measurements of excitatory and inhibitory conductances and their orientation or direction 

tuning were successfully achieved with low access resistance for 12 cells (see example of VC 

recordings in cell 13, Figure 3.2.4). We also estimated conductance components in current-

clamp mode in 7 cells. Since similar results were obtained with both methods when tested on 

the same cells (n=3), data were pooled for further population analysis (16 cells and 19 

protocols in total).  

The relative increase in global peak conductance was similar, on average, for different 

populations of cells when evoked by moving stimuli or by flashed stimuli (110±60% (n=19) 

vs. 113±58%, (n=7)), and the range (35% to 270%) was equally variable among cells. The 

relative contribution of excitation and inhibition in the input tuning was examined using a 

three-term decomposition algorithm to extract one excitatory (AMPA) and two inhibitory 

synaptic components (GABAA and GABAB) of the evoked conductance change. Note that the 

possible implication of NMDA receptor activation was not taken into account by the 

decomposition model. Results show that in most cases the influence of the GABAB 

component was minor. The several examples shown in Figure 3.2.4, which illustrate only the 

AMPA and GABAA components of the conductance change, show a large diversity of tuning 

combinations for excitatory and inhibitory conductance increases.  

Establishing the relative strength of conductances by integrating synaptic input for each 

stimulus direction may give only a partial understanding of the effectiveness of the interaction 

between excitation and inhibition. An additional key feature in the genesis of functional 

preference is the temporal overlap of both types of inputs, which act out of phase, or in-phase. 

To explore these temporal relationships, the waveforms of the excitatory and inhibitory 

conductances were crosscorrelated for each direction of the stimulus, and a normalized 

correlation index at zero-time lag was used to quantify their temporal overlap (TO: 0% for 

antiphase, 100% for in-phase, see Methods).  
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Over the whole population, only three major types of interaction between excitatory and 

inhibitory tuning were found for both orientation and direction selectivity on the basis of their 

similarity (“Preferred”: P) or dissimilarity (“Non-Preferred”: NP) to the spike output 

preference, distinguishing between 1) those cells in which excitatory and inhibitory input 

were tuned for the preferred direction or orientation (P-P), 2) those where the excitatory input 

was tuned for the preferred stimulus but the inhibition was tuned for the non-preferred 

stimulus (P-NP) and, finally, 3) those where excitatory and inhibitory inputs were tuned for 

the non-preferred stimulus (NP-NP). These different combinations (among four theoretically 

possible) were associated with particular modes of temporal overlap between the excitatory 

and the inhibitory conductances. 
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Figure 3.2.4: Excitatory and inhibitory conductances: This figure presents four examples of whole cell patch 
recordings, where measures of excitatory and inhibitory conductances were made in VC and CC modes (cell 13), 
each panel illustrating one cell. Excitatory conductances are in red and inhibitory conductances in blue. Note 
that the scale of excitatory conductance is double that of the inhibitory conductance. The case of iso-oriented 
excitatory and inhibitory conductances is illustrated in cell 10 (Patch, Simple RF, OD: Dep 2°, Hyp 9°, Gexc 19°, 
Ginh 25°) and cell 11 (Patch, Simple RF, OD: Dep 2°, Hyp 169°, 1/ σ 172°, Gexc 180° and Ginh 179°). Both 
conductances were optimal in the preferred direction for cell 10 and in the null direction for the cell 11. Cell 12 
(Patch, Simple RF) illustrates the case of a cross-oriented inhibitory conductance with iso-oriented excitation 
(OD: Dep 10°, Hyp 8°, Gexc 6° and Ginh 75°). Cell 13 (Patch: Complex RF) illustrates the case where both 
excitatory and inhibitory conductances were cross-oriented (OD: Dep 146°, Hyp 114°, Gexc 108° and Ginh 
111°). The bottom insets give the normalized cross-correlation function between the excitatory and inhibitory 
conductance waveforms and the ordinate for a zero time delay is used to quantify the degree of temporal overlap 
(TO) between the two waveforms (see Methods). 
 

In terms of orientation selectivity (summary in table 3.2.1 and Figure 3.2.6), in about two 

thirds of the cells, both excitatory and inhibitory conductance tunings were biased towards the 

preferred orientation (P-P class: 10/16, 62%, see cells 10 and 11, Figure 3.2.4). The tuning 

widths of excitatory and inhibitory conductances were, on average, broader than that of the 

spike output but similar to that of the depolarization component (see table 3.2.1 and Figure 

3.2.6). On a cell-to-cell basis, however, the tuning widths of excitatory and inhibitory 

conductances were often different. The plot of the tuning width of excitation vs. that of 

inhibition shown in Figure 3.2.5, indeed illustrates that few data points lie on the diagonal and 

that no particular tendency is observed. The excitatory and inhibitory conductance tuning 

widths in cell 10 (Figure 3.2.4) showed poor selectivity but their temporal relationship (see 

cross-correlation graphs in Figure 3.2.4) was highly dependent on orientation (and direction): 

for the preferred direction both conductances were in anti-phase (temporal overlap (TO) index 

of 27%), whereas for the non-preferred orientations they were in-phase (TO of 77%). This 

observation seems to be the general case for cells of the type P-P (TO: 36±20% for preferred 

direction vs. 71±18% for non-preferred orientations, paired p < 0.01, n=12 (VC and CC 

recordings)).  

For one fifth of the studied population (P-NP class: 3/16, 19%, see cell 12, Figure 3.2.4), the 

excitatory input was iso-oriented and the inhibitory input was cross-oriented. The tuning 

width of inhibition was wider than for excitation, but both were wider than spike tuning (see 

table 3.2.1 and Figure 3.2.6). A much higher level of temporal overlap between excitatory and 

inhibitory conductances was found than for the previous class of cells (P-P), independently of 

the orientation of the stimulus (table 3.2.1).  

In the remaining cells (NP-NP class: 3/16, 19%, see cell 13, Figure 3.2.4) excitatory and 

inhibitory conductances shared the same orientation preference, either oblique (1/16) or cross-

oriented (2/16), distinct from the spike-based preference (see the diagonal of figure 3.2.5). For 
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these cells, the tuning width of excitatory and inhibitory orientation tuning was broad (see 

table 3.2.1). As in the previous class, the two conductances were in temporal overlap (see 

table 3.2.1). The orientation selectivity of spiking activity (output tuning) results mainly from 

the broader tuning of excitation (higher base value), that predominates over inhibition for 

orientations away from the initial input preference (see cell 13, Figure 3.2.4 and table 3.2.1a). 

In terms of direction selectivity, cells with an isooriented excitation and inhibition have a 

highly direction selective spike output (DI=0.76±0.25, n=10), whereas cells with non-

optimally tuned inhibition are much less direction selective. This applies for cells with only 

crossoriented inhibition (DI=0.2, n=3) and for cells where both excitation and inhibition are 

cross-oriented (DI=0.23±0.13, n= 3). For simplicity and because cells with iso-oriented 

excitatory and inhibitory conductances present a high direction selectivity compared to others, 

only these cells (Iso-P or Iso-N) were considered for the study of direction selectivity. A 

classification for direction selectivity similar to that established for orientation preference was 

observed (summary in table 3.2.1b and Figure 3.2.6). 

 

 
Table 3.2.1: Orientation & direction selectivity of excitatory and inhibitory conductances 1a: Orientation 
tuning: PO: preferred orientation; HWHH: half width at half height; Base: Basal fraction. TO: temporal 
overlap; DI: directional selectivity index; Gexc and Ginh: excitatory and inhibitory conductances. Dep: 
depolarizing component. Pref: spike-based preferred orientation. Non-Pref: oblique or cross-orientation. See 
text for further details. 1b: Direction tuning: This sub-table concerns the sub-population of cells where the 
optimal orientation for excitatory and inhibitory are iso-oriented (Iso-P and Iso-N). Pref: spike-based preferred 
direction. Non-Pref: Null direction. Same conventions as in Table 1. See text for further details. 
 

A majority of cells showed both excitation and inhibition tuned to the preferred direction (P-P 

class: 7/10, 70%). These cells had a depolarizing response and input conductances with a 

lower direction selectivity index than that of the spiking output (see table 2). The temporal 

overlap between excitatory and inhibitory conductances seems to play a important role for the 
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spiking direction selectivity, the TO index being significantly lower for the preferred direction 

than for the null direction (TO: 29 ± 20% vs. 61 ± 19%, p<0,01, see table 2).  

Two cells had excitatory conductances tuned to the preferred direction and inhibitory 

conductances tuned to the null direction (P-NP class: 2/10, 20%). The spiking and 

depolarization components were both moderately direction selective, whereas excitatory and 

inhibitory conductance inputs were not (see table 2). In contrast to the previous case, 

excitation and inhibition acted concomitantly and the temporal overlap between excitatory 

and inhibitory conductances was equally high for both directions (see table 2). In the last cell, 

both excitatory and inhibitory inputs peaked for the null direction (NP-NP class: 1/10, 10%). 

The same two processes (relative tuning and temporal overlap) can account for the spike 

output selectivity. First, inhibition was more tuned to the null direction than excitation, in 

such a way that excitation still evoked a depolarization for the preferred direction that was 

larger than that for the null direction (see table 2). Second, the temporal overlap between 

excitation and inhibition was much larger for the null (94%) than for the preferred direction 

(32%). In addition, a strong correlation was observed between the waveforms of the inverse 

of trial-to-trial variability and of the inhibitory input conductance (example in figure 3.2.4, 

cell 11: compare the green and blue traces). This correlation was also present in the polar 

plots for the two components. 

We have extracted from the current clamp and voltage clamp recordings various measures 

that reflect to different extents the range and relative dominance of excitatory and inhibitory 

inputs to a cell. It is thus possible to compare the selectivity of subthreshold depolarizing and 

hyperpolarizing components measured at rest, with the tuning of inhibitory and excitatory 

conductances.  
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Figure 3.2.5: Excitatory and inhibitory input tunings: population analysis. This figure compares the tuning 
characteristics (HWHH and OD) of excitation and inhibition, revealed by two different methods. In the scatter 
plots, circles represent cases where the excitatory and inhibitory conductance tunings were measured in VC (12 
cases), triangles the cases where these were measured in CC (7 cases). Squares represent cells where the 
inhibitory selectivity was explored with the spike inactivation protocol (9 cases). In these cases the tuning of the 
depolarizing component used to estimate that of excitatory input may partially mask the presence of excitatory 
input for non-preferred directions. TOP. Left, the tuning width (HWHH) of inhibition is compared with that of 
excitation on a cell-to-cell basis. The distribution of the tuning width for each component is represented along 
the corresponding coordinate axis. Right, the tuning width of inhibition is compared with that of the 
hyperpolarizing component (Hyp). BOTTOM. Similar plots of the optimal direction (OD) of inhibition versus 
that of excitation (left panel) or versus that of the hyperpolarizing component (right panel, Hyp). All direction  
preferences are expressed relative to that of the spike output. Filled red and blue symbols correspond 
respectively to the cases where excitatory or inhibitory orientation tuning was found statistically non-selective 
(index ratio lower than 0.10). 
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Nine cells in which input conductance dynamics were measured showed a significant 

hyperpolarizing response evoked at rest. The optimal orientation of the hyperpolarizing 

component was significantly correlated with that of the inhibitory conductance (r²=0,73; 

p<0.01 (n=12); see Figure 3.2.4). This suggests that the integral of the hyperpolarizing 

component, when detectable, gives a gross, but nevertheless reliable, estimation of the 

optimal orientation for the inhibitory input. The tuning width of the evoked hyperpolarizations 

was, on average, sharper than that of the inhibitory conductance (mean of the difference: 

8±10°). In contrast, the optimal orientation of the evoked depolarization was not significantly 

correlated with that measured for the excitatory conductance increase (r²=0.10; n.s.). This 

implies, as illustrated in some examples (Figure 3.2.4: cells 11 and 13) that the optimal 

orientation of the excitatory input cannot be predicted from the integral of the evoked 

depolarization.  

3.2.3. Discussion 

This study represents a quantitative investigation of the role of the balance between excitation 

and inhibition in the emergence of orientation and direction selectivity in cat primary visual 

cortex. On the basis of conductance measurements, we report three different schemes of 

interaction between excitation and inhibition that underlie the genesis of orientation and 

direction selectivity.  

For orientation selectivity, the P-P schema seems to be the most common. 62% of the cells, 

for which excitatory and inhibitory synaptic conductances were measured, fell in this category. 

With the spike inactivation method, we only have access to the selectivity of inhibition. 

However, as no NP-P cases were observed with conductance measurements, we can still 

classify cells with iso-oriented Inh component in the P-P schema (66% of cells). In contrast, 

the detection of significant evoked hyperpolarization or spike suppression for the preferred 

direction or orientation appear to be less sensitive indicators of the presence of iso-oriented 

inhibition, since these were noticeable in only a smaller proportion of cases (respectively 40% 

and 33% of the cells). This discrepancy could result from the fact that, in some cells, 

excitation and inhibition are in temporal overlap for the preferred stimulus: therefore their 

interaction will evoke a change in 1/σ without a hyperpolarization of the mean membrane 

potential (cell 5 in Figure 3.2.1). This interpretation is supported by the observation that 59% 

of cells that showed a significant decrease of trial-to-trial variability without significant 

hyperpolarization (Figure 3.2.2, 1/σ only) exhibited a 1/σ component tuned for the preferred 

orientation. In cells where both excitatory and inhibitory conductances were measured, 
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inhibitory tuning for non-preferred orientations was observed in 38% of cases (P-NP schema: 

19%, and NP-NP: 19%). For the spike-inactivation protocol, 33% of cells had an inhibitory 

component tuned to a non-preferred orientation, (P-NP or NP-NP schemas). The other 

response components, hyperpolarization, spike suppression and 1/σ (only), were tuned for 

non-preferred orientations, in respectively 60%, 66% and 41% of cells.  

In order to generalize our conclusions to the whole population of recorded cells, we 

extrapolated an estimate of the preferred orientation of the inhibitory input on the basis of the 

degree of correlation found between the different inhibitory-like components at rest (Hyp, 

Supp, 1/σ) and the inhibitory component in the spike-inactivated state (Inh) or the inhibitory 

conductance (Ginh) when measured. The global picture remained the same as that established 

from the more restricted sample of conductance measurement: 60% of cells showed 

isooriented inhibition and 40% of cells showed crossoriented inhibition.  

For direction selectivity, cells receiving a dominant inhibitory input, or showing an optimal 

hyperpolarizing response for non-preferred orientations were on average less direction 

selective than other cells (see Figures 2 and 6). Consequently, we considered only cells with 

an iso-oriented inhibitory-like component (i.e. either spike suppression, hyperpolarisation, or 

inhibitory component tuned to the preferred orientation). In a majority of these cells (70% on 

the basis of conductance measurement and 50% on the basis of the spike inactivation 

protocol), excitation and inhibition were tuned in the preferred direction (P-P schema). A 

comparable proportion of cells (60%) showed a hyperpolarizing component that was the 

largest for the preferred direction. In cells where synaptic conductances were measured, an 

inhibitory preference for the null direction was observed in 30% of cases (20% for P-NP and 

10% for NP-NP schemas). When using the spike inactivation protocol, 50% of the cells 

showed inhibition tuned to a direction opposite to that of the spike preference (P-NP or NP-

NP). In comparison 40% of cells exhibited a dominant hyperpolarization in the null direction. 

In summary, our results argue against a single canonical circuitry underlying the genesis of 

receptive field properties within primary visual cortex. In the literature, the presence of 

inhibition evoked by non-preferred stimuli has been a controversial issue, with contradictory 

conclusions reached by several teams using intracellular protocols. In fact, the diversity of 

combinations of excitatory and inhibitory inputs observed in our data does account for the 

wide range of observations that have been previously reported. Before proposing hypothetical 

scenarios of cortical organization, we will compare our findings with those established from 

previous works. 
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3.2.3.1. Spike and depolarization 

Similarly to two recent reports (Volgushev et al., 2000, Carandini and Ferster, 2000), we 

found that the tuning of depolarizing responses is, on average, wider than that of spike 

responses However, as previously reported (Volgushev et al., 2000), we observed that the 

average difference masks a large diversity in the improvement in selectivity between the 

depolarizing component and the spike output. No correlation was found between this 

improvement and either the absolute or the relative spike threshold, but cells classified as 

receiving cross-oriented inhibition showed a significantly smaller improvement than those 

receiving iso-oriented inhibition. We conclude that the diversity in the tuning improvement 

reflects more the diversity in the combination of inputs than postsynaptic intrinsic properties. 

3.2.3.2. Suppression and hyperpolarization 

The presence of cross-oriented suppression has already been demonstrated on the basis of 

extracellular recordings and stimulus interaction protocols (Bishop et al., 1973; DeAngelis et 

al., 1992; Ringach et al., 2002). Early intracellular studies in visual cortex (Benevento et al 

1972, Creutzfeldt et al., 1974; Innocenti et Fiore 1974), whose findings were later replicated 

(Volgushev et al., 1993, Martinez et al., 2002), gave qualitative reports of diversity in the 

orientation tuning of visually evoked depolarizations and hyperpolarizations. In the present 

study, we present a quantitative analysis of the orientation and direction preference of the 

hyperpolarizing component explored over a large cell population based on explicit criteria of 

statistical significance. In addition, for some cells we have been able to compare the 

respective tunings of the depolarizing and hyperpolarizing components with those of the 

evoked inhibitory and excitatory conductance changes, which are expected to represent the 

actual synaptic input more faithfully. We observed a significant correlation between the 

optimal orientation of the inhibitory conductance and that of the hyperpolarizing component 

when detectable at the resting state, suggesting that indeed some of the cells reported in 

previous works did receive a cross-oriented inhibition. 

3.2.3.3. Trial-to-trial variability of the membrane potential 

Although the trial-to-trial variability in the evoked response has been a focus of attention in 

many extracellular studies, it has been only rarely analyzed in intracellular studies. Our 

hypothesis, that the reduction of the trial-trial variability is produced by the presence of a 

strong input dominated by inhibition, has been addressed in this study in a variety of ways. In 

many cells, the 1/σ component in the membrane potential was found to be correlated with the 
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presence of a significant evoked spike suppression and hyperpolarization. In other cells where 

a variability decrease was found concomitantly with a mean depolarization evoked at rest, the 

presence of inhibition was revealed during spike inactivation protocols (see cell 10). 

Furthermore, in cells recorded in voltage clamp, a strong decrease of variability was found to 

be correlated with a strong increase of the inhibitory conductance component (see cell 15). 

The method used here takes into account the time course of the trial-to-trial variability 

stimulus locked waveform. It differs from the approach used previously by Anderson et al. 

(2000c) where the trial-to-trial variability was averaged over the stimulus presentation period 

and considered as “a noisy component varying little with contrast and orientation”. However, 

despite averaging, their data did show a modulation on the order of 30% between preferred 

and cross-orientations, which is compatible with our own observations. From our results, we 

conclude that it is necessary to take into account the temporal waveform of the trial-to-trial 

variability for each orientation or direction in order to predict correctly the temporal spiking 

pattern on the basis of the mean visual response with a fixed threshold for spike initiation. We 

suggest that the addition of a constant noise, as proposed in the model of Anderson et al. 

(2000c) can only be relevant at the conductance level: the visually evoked dynamics of the 

mean global conductance modulates the trial-to-trial membrane potential variability. The 

spiking responses evoked in vivo are extremely variable from trial to trial (Heggelund and 

Albus, 1978; Dean, 1981). Nevertheless, a recent study (Melcher et al., 1998) shows that this 

variability depends on the type of stimuli used: drifting edges (transient stimuli), but not 

gratings (steady-state stimuli), generate responses with reproducible stimulus-dependent 

changes in the temporal structure of the spike train (temporal coding). In agreement with this 

study, we observed, using transient stimuli, the presence of reproducible stimulus-dependent 

changes in the trajectory of membrane potential, which affect the temporal structure of the 

spike train. 

3.2.3.4. Unmasking inhibition by current injection 

One possible way to detect inhibition in vivo is to study the voltage dependence of the evoked 

response through current injection (Innocenti and Fiore, 1974). The use of depolarizing 

currents to enhance the visibility of inhibition was applied in the earlier work of Ferster (1986) 

and Sato et al. (1991). Both groups concluded on the basis of a limited sample that the evoked 

hyperpolarization during positive current injection and the evoked depolarization with no 

current shared the same orientation preference and selectivity without quantifying the tuning 

curves of the detected inhibition. The reference criterion used in the present study was to use a 
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current strong enough to produce the total inactivation of the action potential, thus abolishing 

contamination by spiking activity. At this current injection level, evoked depolarizations were 

suppressed and only hyperpolarizations could be detected. This indicates that the cell 

membrane potential was maintained close to the reversal potential of excitatory synapses, thus 

minoring a possible masking of inhibitory components by NMDA-dependent responses that 

may dominate at intermediate levels of depolarization. 

3.2.3.5. Excitatory and inhibitory conductance tuning 

The present data confirm our previous observation that visual stimulation evokes strong 

conductance increases (Borg-Graham et al., 1998). The relative change in peak conductance 

(around 110%) is similar to values found by Anderson et al (128%). We also observed that the 

maximal conductance increase was quite variable from cell to cell. Our method of 

conductance decomposition differs partly from that of Anderson et al. (2000b). We 

decomposed the conductance into three components, excitation, inhibition dominated by 

chloride conductance (reversal potential of -80 mV) and by potassium conductance (-95 mV) 

instead of two components with an intermediate value for the reversal potential of the 

inhibition (-85 mV in Anderson et al., 2000b). This method tends to avoid both 

underestimating the chloride conductance, and obtaining a negative value for the excitatory 

conductance. Moreover, we estimated the total synaptic conductance, both evoked and 

spontaneous, based on an estimation of the leak conductance, whereas Anderson et al (2000b) 

derived only the evoked synaptic conductance increase.  
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Figure 3.2.6: Diversity of combinations between excitatory and inhibitory input tunings. A. Averaged tunings 
of the excitatory and inhibitory inputs for cells grouped according to different schemes for orientation selectivity. 
Excitation-Inhibition: Preferred-Preferred (P-P), Preferred-Non Preferred (P-NP), Non preferred-Non 
preferred (NP-NP). The upper row of tuning curves is based on cells for which conductance measurements were 
made. In the lower row, tuning of the inhibition revealed in the spike-inactivated state can be compared with that 
of the depolarizing component observed at rest. B. Similar plots for the study of direction selectivity. Excitation-
Inhibition: P-P (Iso-PIso-P), P-NP (Iso-P-iso-N), NP-NP (Iso-N-Iso-N). 
 

This allowed us to detect significant changes in the balance between the excitatory and 

inhibitory conductances even with small absolute evoked conductance increases. Both the 

two-term decomposition method used by Anderson et al (2000b) and the three-term 
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decomposition method used here do not take into account possible non-linearities introduced 

by NMDA receptor activation. Nevertheless, taking into account numerous immuno-

anatomical reports suggesting that, in neocortical neurons, inhibitory synapses are located 

more proximal to the soma than excitatory synapses, it seems unlikely that NMDA 

conductances mask inhibitory conductances, although the reverse situation may be true. Using 

drifting gratings in conjunction with current clamp recordings, Anderson et al. (2000b) 

concluded on the basis of steady-state responses that conductance was invariably maximal for 

a stimulus of the preferred orientation. These authors also concluded that orientation 

preference and tuning width on a cell-by-cell basis were similar for both excitatory and 

inhibitory input conductances. One reason for these apparent discrepancies with the present 

findings may be linked to differences in the fitting methods. In Anderson et al (2000b), in 

order to minimize the number of parameters, the mean and modulation of the input 

conductance were fitted together, forcing them to peak at the same orientation with the same 

tuning width. However, it is apparent in some of their examples that this constraint can lead to 

poor fits and that the respective tunings of the modulation and of the mean are uncorrelated 

(see for instance Figure 10 in Anderson et al (2000b): in cells 1 and 6 the increases in mean 

conductance are clearly cross-oriented with the spike preference whereas the modulation of 

conductance is iso-oriented). Thus, in spite of the apparent opposition between the 

conclusions of Anderson et al. (2000b) and our own, diversity in conductance tuning seems 

equally present in both studies. Differences in fact concern more quantitative issues: 

Anderson et al (2000b) concluded that the orientation tuning width is narrow and identical for 

excitation and inhibition (HWHH: 22°) whereas we report here that the tunings of excitation 

and inhibition are larger and less selective (HWHH: 45°; base: 30%). We found also that the 

respective tuning widths of excitation and inhibition differ on a cell-to-cell basis (Figure 

3.2.5), although these values averaged across all cells are comparable. 

3.2.3.6. Principles for generating diversity 

In summary, we conclude that, depending on the recorded cell, orientation and direction 

selectivity stem from a variety of combinations of excitatory and inhibitory synaptic tuning. 

We discuss below the implications of these findings for theoretical issues regarding the 

computational role of the visual cortical network architecture. Our data suggest that various 

computational solutions could be implemented locally and might coexist in the same network. 

We propose simple local connectivity rules based on neighbourhood relationships that, 

applied to the whole network, could explain such diversity. 



 

 

57

Functional cortical maps of orientation selectivity present a high level of spatial heterogeneity 

with pinwheel loci exhibiting high spatial gradients in orientation preference, and iso-

orientation domains with low orientation gradients (Bonhoeffer et al., 1995). However, 

whatever their positions within this heterogeneous map, cells present a high level of 

orientation selectivity (Maldonado et al., 1997). If we consider that intracortical connectivity 

distribution is governed mainly by the distance between cortical sites (Das and Gilbert, 1999), 

cells located at the pinwheel centers (position B, Figure 3.2.7) should receive a much broader 

range of orientation tuned input than cells in the middle of iso-orientation domains (positions 

A, Figure 3.2.7). This will create a first source of diversity, between cells receiving mainly 

inputs tuned to the same orientation and cells receiving inputs from a wide range of distinct 

orientation domains. In addition, differences between excitatory and inhibitory input 

selectivities can arise from the different extents of the axonal and dendritic arborizations of 

excitatory and inhibitory neurons (Somers et al. 1995, McLaughlin et al., 2000).  

A second source of diversity in the cortical network could result from the shaping of 

intracortical connectivity by activity-dependent processes. Both theoretical models and 

experimental data suggest that correlated pre- and post-synaptic activities stabilize and 

strengthen the gain of excitatory connections and that uncorrelated activities reinforce 

inhibitory connections (review in Frégnac, 2002). Therefore cells with similar 

multidimensional functional preference (orientation, direction, phase and spatial frequency) 

will tend to excite each other reciprocally. In contrast, cells which differ in at least one of 

these functional preferences will inhibit each other. The final connectivity state stabilized in 

adult cortex will be the result of a local synaptic plasticity principle applied for various 

dimensions of the visual stimulus. It should be noted that in this correlation-based framework, 

the source of the anisotropy (thalamocortical vs. intracortical) cannot be identified since it 

will be propagated through synaptic changes distributed across the whole network.  
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Figure 3.2.7: Principles for generating diversity. Connectivity principles applied in different locations of the 
cortical orientation/direction maps. Upper row, Left panel: iso-oriented domain (A) and pinwheel centers (B). 
Upper row, right panel: iso-directional domain (A1) and demarcation line between two opposite iso-directional 
domains (A2). Excitatory cells are in red, inhibitory cells in blue and the target cell in gray. Lower row: the left 
panel illustrates connectivity rules based on the anatomy: the intracortical connectivity distribution is governed 
only by the distance between cortical sites. The extent of the axon (ax.) afferent to a given postsynaptic cortical 
cell is schematized by a disk. The right panel illustrates connectivity rules based on functional correlation, with 
respectively excitatory and inhibitory synapses connecting cells with similar or dissimilar receptive field 
properties. Receptive field properties are symbolized by an oriented ellipse for Orientation selectivity, by a 
Gabor patch for Spatial Phase and an arrow for Direction selectivity. See text for further details. The 
schematized direction map was derived from the orientation map kindly provided with the courtesy of F. 
Chavane and A. Grinvald, Weizmann Institute of Science. 
 

If we apply these hypothetical rules of plasticity to the orientation selectivity domain and the 

intracortical connectivity pattern defined previously, then cells located in the center of an iso-

orientation domain will receive iso-oriented excitation from cells sharing similar receptive 

field properties, and inhibitory input from iso-oriented cells which differ in their phase or 

spatial frequency selectivity (akin to the push-pull model). The same reasoning predicts that 

cells located near pinwheel centers will receive, in addition, inhibition from cells which differ 

in their orientation preference from the target cell (hence oblique and cross-oriented input). In 

comparison, the model of Troyer et al. (1998), based on correlation rules dependent on the 

spatial phase between subfields, only considers excitatory and inhibitory connections between 

cells which share the same orientation preference, and does not generalize the plasticity 

principle to the orientation domain. According to our generalized schema, inhibitory 
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connectivity between neurons from different orientation columns provides a simple solution 

that will produce contrast invariance for both excitatory and inhibitory neurons (see also 

Adjoran et al., 1999).  

For direction selectivity, the same reasoning can be applied. Optical maps established for 

direction preference show that iso-orientation domains appear divided into two contiguous 

regions exhibiting preferences for opposite directions (Shmuel et al., 1996; Kirsvarday et al., 

2001). Cells close to the separation line will receive inhibitory inputs tuned to the preferred 

direction, whereas cells away from this line will receive only iso-preference inhibition. If, as 

predicted by our organization principle, cells near pinwheel centers receive cross-oriented 

inhibition, our data suggest in addition that these cells have weak direction selectivity.  

This qualitative model, which accounts for part of our results, underscores sources of diversity. 

Restricting test stimulations to a spot or a contrast edge may significantly reduce the 

identification of visual signals that contribute, or have contributed in the past, to correlated 

activity in the cortical network. For example, center-surround experiments show the fact that 

at least some cells in the visual cortex respond maximally for cross-oriented bipartite stimuli, 

independently of the actual orientation of the stimulus (Sillito et al., 1995), in spite of the fact 

that they express normal orientation selectivity when tested with classical stimuli. This might 

explain our apparent paradoxical observation that some cells receive excitatory and inhibitory 

input for what we defined as non-optimal stimuli on the sole basis of a light bar stimulus. It 

may be that with different stimulus configurations or dimensions, the evoked synaptic input 

and the corresponding spike output might indeed share a similar specificity, with the 

connectivity obeying the same organization principle.  

The arguments that we have presented so far concern the dependency of the input distribution 

on the location of the cell in the orientation and direction selective network, as visualized by 

optical imaging of superficial layers. Another source of input variability may be linked with 

the laminar position of the cell within the depth of the cortical column. A recent study 

combining intracellular recordings and biocytin labelling reports that the tuning preference of 

the hyperpolarizing component is correlated with the laminar location of cells (Martinez et al., 

2002), inhibition being dominantly iso-oriented for granular and supragranular layers, and 

often exhibiting a cross-oriented preference in deep layers, most specifically in layer V. These 

authors conclude that this diversity in the inhibitory tuning seen across the cortical depth 

reflects hierarchical levels of integration in the serial flow of cortical processing. We propose 

here that the noticeable difference found between supragranular and granular layers on the 
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one hand and infragranular layers on the other hand could simply reflect a diversity in the 

input sampling in the laminar plane (Buzas et al., 2001; Kisvarday et al., 1994; Yousef et al., 

1999).  

In summary, the diversity of input combinations found across cells may reflect anatomical 

non-homogeneities in the lateral intracortical connectivity pattern. This diversity could result 

from topological irregularities in the lay-out of the orientation preference map and its 

functional impact may be up- and down-regulated by correlation-based activity-dependent 

processes. In favour of our view, several optical mapping experiments have shown that the 

position of the cell in the orientation map may influence the amplitude of the orientation 

change produced by a fixed orientation adaptation protocol (Dragoi et al., 2001; Schuett et al., 

2001). We propose here that these regional anisotropies in plasticity in the developing cortex, 

or adaptation in the adult cortex, in fact reflect the regional dominance of different 

computational schemas for the genesis of orientation preference. 

3.2.4. Experimental procedure 

Cells in the primary visual cortex of anaesthetized (Althesin) and paralyzed cats (for details 

on the surgical preparation, see Bringuier et al., 1997; 1999) were recorded intracellularly 

using an Axoclamp 2A amplifier. Sharp electrode recordings (39 cells) were performed in 

bridge mode with 55-90 MΩ glass pipettes filled with 2M potassium methyl sulfate and 4mM 

potassium chloride. The average resting membrane potential was -67.5 ± 5 mV. Whole-cell 

patch recordings (49 cells) were made with 3-5 MΩ glass patch electrodes filled with a 

solution containing 140 mM K-gluconate, 10 mM HEPES, 4 mM ATP, 4 mM MgCl2, 0.4 

mM GTP and 0.5 mM EGTA (KOH), with pH adjusted to 7.3 with KOH and the osmolarity 

adjusted to 285 mosM. The seal resistance in attached mode was always above 1GΩ. In whole 

cell mode, the average resting potential was -66.5 ± 6 mV. In voltage-clamp recordings, the 

access resistance was always lower than 40 MΩ. The estimate of access resistance was 

revised as necessary over the course of the experiment and, in some cases, off-line, by fitting 

the response to subthreshold hyperpolarizing current steps to the sum of two exponentials. A 

tip offset potential of 10 mV was subtracted from the voltage records off-line.  

Data processing and visual stimulation protocols were done using in-house software (Gérard 

Sadoc, Acquis1-Elphy, Biologic CNRS-UNIC/ANVAR). Three millimeter artificial pupils 

were used and appropriate corrective optical lenses were added. The receptive field of each 

cell was quantitatively characterized using a sparse noise mapping. Receptive fields were 
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classified as Simple or Complex using classical criteria on the space-time separation between 

On and Off responses, including subdivision into S1 and C1 complex types for unimodal 

receptive fields, according to the presence or absence of antagonist hyperpolarization. 

Orientation and direction tuning curves were measured with moving bars (direction of motion 

perpendicular to orientation) swept across the full extent of the subthreshold receptive field, 

and using random sequences of 8 or 12 directions (angular step: 45° and 30° respectively) 

repeated 10 times.  

For data analysis, we extracted the respective orientation and direction tuning curves of the 

following response components: spiking activity and spike suppression, membrane potential 

depolarization and hyperpolarization (without injection of current and during spike 

inactivation), trial-to-trial variability of the membrane potential and excitatory and inhibitory 

conductances. For the suprathreshold activity, PSTHs were computed with a 25 ms bin width, 

and the spike increase and spike suppression components were defined as the integral of firing 

rate, respectively above and below the mean pre-trigger background firing rate. For 

subthreshold activity, spike events were removed from the raw record and membrane 

potential was interpolated before and after each spike occurrence. The depolarizing and 

hyperpolarizing evoked components were defined on the basis of a quantitative amplitude 

selection criterion as the integral of voltage respectively above and below the mean 

depolarizing and hyperpolarizing fluctuations in the resting potential measured during 

spontaneous activity. Trial-to-trial variability was calculated as the inverse of the standard 

deviation (1/σ) of the time  course of the stimulus-locked membrane potential response over 

all stimulation trials. The 1/σ component was defined by the integral above the mean 

background value. The 1/σ waveform is expressed as the percentage of change from the 

spontaneous reference level. Measurement of enhanced hyperpolarizations were made in a 

sample of cells recorded with sharp electrodes while applying depolarizing current sufficient 

to fully inactivate Na+ spike currents. The quantification methods used in the spike-

inactivated state were the same as those applied from the resting state. To determine if 

responses calculated over the whole period of visual stimulation were significant, the mean of 

each component, defined by its integral normalized by the effective time during which its 

presence was detected (see above amplitude selection criterion), was compared with the 

normalized mean of this component during spontaneous activity, using a Student t-test. For 

polar plot measurements, the spontaneously expected component value was subtracted from 

the evoked component.  
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For whole cell patch-clamp recordings, the dynamics of the input conductance and its 

associated composite reversal potential were measured as described previously (Borg-Graham 

et al., 1998). In order to address the significance of the conductance measurement, a non-

parametric bootstrap method was used, similar to that applied by Anderson et al. (2000b). The 

conductance waveform was decomposed to give the sum of a leak conductance (Gleak) and a 

global synaptic conductance (Gsyn). Gleak was estimated as the lower boundary of the 

conductance waveform at rest and given by the threshold value corresponding to the 1% 

percentile of the cumulative distribution of conductance measures during spontaneous activity. 

The reversal potential Eleak was assumed to be in the order of –80 mV (Paré et al, 1998).  

The synaptic conductance term was further linearly decomposed into three conductance 

components corresponding to the activation of one type of excitatory synapse and two types 

of inhibitory synapses, each associated with known, fixed reversal potentials. The value of the 

reversal potential of GABAA receptor activation was measured by pharmacologically 

blocking other synaptic components in a slice preparation of rat visual cortex and estimated at 

–80 ± 3 mV (n=20) (Monier et al, in preparation). The other reversal potentials were fixed to 

0 mV for excitatory and –95 mV for potassium conductances (associated with GABAB 

receptors). We made the additional hypothesis that, depending on the actual value of the 

composite synaptic reversal potential, one or two out of three possible types of inputs 

contribute in a dominant manner to synaptic activation. Between 0 and -80 mV the synaptic 

conductance can be decomposed into excitatory and GABAA conductances, and between -80 

and -95 mV into GABAA and GABAB conductances. Above 0 mV and below -95 mV the 

synaptic conductance is thus equal respectively only to the excitatory or the potassium.  

Similarly to the other measured components of the visual response, the evoked excitatory and 

inhibitory conductance components are given by the integral of the excitatory and inhibitory 

conductances above their mean values, calculated during pre-trigger and spontaneous activity. 

In order to determine the phase relationship and the degree of temporal overlap between 

excitation and inhibition, a normalized crosscorrelation function was calculated between the 

two stimuluslocked excitatory and inhibitory conductance waveforms. An index 

representative of the temporal overlap (TO) is given by the cross-correlation "contrast" ratio, 

defined as the difference between the amplitude at time 0 and the amplitude at the peak of the 

cross-correlation function, divided by the difference between the maximum and the minimum 

of the cross correlation function.  
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The mean of each component during spontaneous activity was then subtracted from the visual 

evoked response. Orientation and direction tuning curves were calculated when response 

components, for at least one direction, passed a preset significance level (p<0.01) based on 

either paired t-tests or, in the case of conductance, on the bootstrap method. All components 

were averaged over the duration of the visual stimulation. Peak responses were calculated 

over a 25 ms bin. Direction tuning curves were fitted independently for each component by 

the sum of two Gaussians with the same width, whose peaks were 180° apart. The peak of the 

Gaussian determines the preferred (PD for spike output) or optimal direction (OD, for other 

components). The half-width of the tuning curve at half the height (HWHH) of the peak is 

given by the standard deviation of the Gaussian multiplied by (2.Ln2)². The direction 

selectivity index (DI), which is independent of the fitting procedure, was defined as the 

difference in the responses obtained with stimuli of preferred and opposite directions, divided 

by the sum of those responses.  

We also applied a spectral quantification method (S.D.O. analysis in Wörgötter and Eysel 

(1987)) which allows independent estimation of orientation and direction preferences and the 

computation of a selectivity index. An orientation index value of 0.1 or greater indicated that 

the circular distribution of the cell responses to moving stimuli was non-random (p < 0.005; 

Rayleigh test in Thompson et al, 1994; Zar, 1974). For tunings, a bootstrap method was 

applied to ensure that the standard deviation in the preferred orientation estimates ranged 

between 1 to 9° for the excitatory and inhibitory conductance components depending on the 

cell and its tuning selectivity, i.e. well below the discretization step used for orientation and 

direction distributions.  
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3.3. Center-surround interaction during apparent motion controls the 

timing of the responses and reveals a new motion direction selectivity in V1 

The synaptic integration field is likely to support the various center-surround interactions 

observed in V1 and to be the biophysical substate of some perceptual binding or 

psychophysical biases. Psychophysical results conducted in collaboration with Lorenceau’s 

team proves the existence of lateral perceptual interaction consistent with the intracortical 

propagation of visual activity relayed through the horizontal connectivity (Georges et al, 2002; 

Séries et al, 2002). This interaction are manifested in a perceptual speed overestimation for 

high speed apparent motions of collinear oriented Gabors configuration. On the physiological 

hand, the spatial and orientation selectivity of center-surround interactions, and even their 

facilitatory or suppressive nature, are still a matter of debate, and a diversity of results being 

reported.  

In this study, we have intracellularly recorded the subthreshold and spiking neurons responses 

of V1 cells to high speed apparent motion of Gabor elements, during sequential stimulation of 

the “silent” surround and the discharge field center of the Receptive Field (RF). Our results 

show an important center-surround interaction selective to the collinear and iso-oriented 

“Gestaltic” configurations. This facilitatory and suppressive interaction presented a contrast 

dependent and biphasic temporal profile, leading notably for high contrast center  to 

suppressive net effects, and to a drastic temporal reshaping of the center responses, shortening 

the latencies and duration of the synaptic responses.  

These interactions demonstrate a center-surround directional selectivity of the RF for high 

speed motion along the collinear axis of V1 cells. This effect is expressed notably in the 

temporal dynamic modulation of the responses. Such kind of dynamic nonlinearity is likely to 

support a preliminary form of temporal coding in V1. Those results suggest a new model of 

classical and non-classical RF considering a suppressive as well as a facilitatory surround 

modulation, both modulated in space and time. Thus, two forms of motion selectivity can be 

distinguished in V1, namely the preference for low speed stimuli across the width axis of the 

classical RF and the preference for high speed collinear stimuli along the orientation axis of 

the RF demonstrated here. These two processes operate respectively on short and long spatial 

integration scale. Moreover, the remarkable fit of the spatiotemporal statistics of saccadic and 

fixational eye-movements, and these motion integrative paths suggest a general visuo-

oculomotor model of multiscale and sequential analysis of the visual scene by V1. 
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3.3.1. Perceptual and cortical spatiotemporal interactions: the apparent motion 

paradigm 

One of the major problems tackled by electrophysiologists and psychophysicists in the last 

decade has been to understand which mechanisms, at the synaptic, cellular and network level, 

underlie the emergence of a global and coherent perception. Such perception necessarily 

arises from the activity spatial and temporal pattern of the myriad of cortical neurons 

composing a cortical area, and from the coherence of those patterns among those neurons 

(Von Der Malsburg, 1981, Singer 2001, Engel & Singer, 2001 for review). A simplifying 

classic working hypothesis is to consider that the emergence of a unified percept allowing, for 

example, to identify an object independently of its spatial position in the visual field (spatial 

invariance), implies the existence of a binding process which links distinct neurones analysing 

different positions in space. The combinations of ‘parts’ into a global perceptual entity also 

require that this spatial binding operates at the same time between cells simultaneously 

activated by each of the components of the ‘whole’. Similarly, global motion perception is 

experienced even if the physical stimulus sequence is a composition of static individual 

spatial events which individually do not coexist temporally. In that case, as already pointed 

out by the Gestalt school, the commonality of fate (or destiny) decides of the binding in time.  

The so-called perceptual “association field”, which has been extensively studied in humans, 

are usually defined by quantifying facilitatory or suppressive changes in the detectability of a 

central target when adding a contextual periphery (Field & al, 1993, Polat & Sagi, 1993, 

1994). The largest interaction effects between the target and the lateral masks are found when 

the stimuli are oriented and co-aligned, suggesting that ‘lateral’ connectivity in visual cortex 

may participate in establishing such facilitation. 

Numerous physiological studies support the view that the binding of visual contours into 

perceptually coherent objects involves long-range horizontal connections between V1 cortical 

neurons (Gilbert & Wiesel, 1989, Schmidt & al, 1997, Mallach & al, 1993, Yoshioka & al, 

1996). Accordingly, surround facilitation has been described for stimuli of orientation similar 

to preferred orientation of the cell presented in the end-zone of the RF (iso-oriented collinear 

condition, Chen & al, 2001, Nelson & Frost, 1985, Polat & al, 1998, Knierim & Van Essen, 

1992; Kapadia & al, 1995, Kapadia & al, 2000). These intra-cortical connections, best 

activated when the linked cells share similar orientation preference, may thus form the 

biological substrate of perceptual "association fields" (for review: Fitzpatrick, 2000, Series & 

al, 2004).  
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However, in contrast with this simple framework, a wide diversity of modulations effects and 

diversity of results have been reported in the literature. Most of center-surround interactions 

studies in V1 report that surround modulations are suppressive (end-stopping and side 

inhibition, length tuning), and present the same tuning characteristics as the center with less 

specificity (Series & al, 2004 for review, Cavanaugh & al, 2002, DeAngelis & al, 1994, 

Knierim & Van Essen, 1992, Levitt & Lund, 1997). Surround facilitation has been reported 

for cross-oriented surround conditions (Jones & al, 2002, Sillito & al, 1995). The amplitude 

and even the facilitatory or suppressive nature of those interactions appear to be dependent on 

the stimulus center contrast (Toth & al, 1996, Polat & al, 1998, Mizobe & al, 2001, Levitt & 

Lund, 1997).  

Surprisingly, very few studies have addressed the underlying temporal specificity and 

dynamics of the center-surround cortical interactions. In psychophysics also, the temporal 

dependence of the surround facilitation has only received little attention (Hess & al, 2001, 

Polat & Sagi, 2006). However, it is long known that a visual, auditory or tactile stimulus 

presented sequentially in neighbouring locations elicits a vivid perception of apparent motion 

or binding, even over broad “distance” of integration (Wertheimer, 1912, Burtt, 1917a, 1917b, 

Braddick, 1980). In the visual system, this perception is correlated with the activity of motion 

selective neurons in area MT that receive predominantly direct inputs from area V1 (Mikami 

& al, 1986, Newsome & al, 1989, Maunsell & Newsome, 1987).  

Classically, in primary visual cortex, where the first direction selective responses arise, the 

integration (both linear and nonlinear) of the visual motion is observed on small spatial 

distance (around 0.5° on average for the second order interaction, Pack & al, 2006), is 

selective for low speed (optimal frequency 2-6Hz, optimal velocity 2-20°/s, De Valois & al, 

1982, Movhson 1975, Pack & al, 2006), and is expressed in the axis perpendicular to the 

preferred orientation of the cell (parallel axis). Geisler & al (2001) have shown that V1 cells 

are direction selective for motion in the collinear axis of the RF and that this collinear motion 

detection is preferentially expressed for high speed motions (compared to the parallel axis), 

defining a gain control of a new type. However, their study, restricted to the classical RF, 

could not assess the involvement or not of center-surround interactions in this effect. 

A second important reason to address the temporal specificity and dynamics of the center-

surround cortical interactions is that, according to temporal characteristics of the synaptic 

fields described previously, the surround stimulation is likely to modulate the timing and 

temporal profile of the neuronal responses, with a dependency on the relative timing of the 
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stimulation in the center and the surround. Classical contrast gain controls have shown to have 

an important effect on the timing and latency of the responses and thus may sustain a basis of 

a temporal code (Gawne & al, 1996, Victor & Pupura, 1996, Mechler & al, 1998, Reich & al, 

2001) or derivated latency code (Thorpe & al, 2001). Thus, the surround stimulation may play 

a critical role in the timing of the neuronal responses, by imposing a temporal control on the 

gain of response.  

We conjectured that the spatiotemporal structure of V1 synaptic fields (cf. chapter 3.1), 

notably imposed by intra-cortical axons conduction properties, might influence the center-

surround interaction expression (figure 3.3.1.1), and in turn, the perception of motion by 

modulating the expression of a perceptual bias for a specific range of speed and for specific 

level of orientation invariance along the motion path.  

 

Figure 3.3.1.1: High speed apparent motion and its possible recruitment of horizontal cortical connectivity. 
This cartoon depicts the intra-cortical propagating waves of visually evoked spiking activity triggered by the 
sequential presentation of three Gabor patches on the retina. The respective orientations of those three stimuli 
are co-aligned with the motion axis of the ‘association pathway’, i.e. the orientation preference axis of the 
classical RF. The presentations of the Gabor patches are done sequentially (t1 then t2 then t3), and the inter-
stimulus interval (ISI=t3–t2=t2–t1) is adjusted so that the serial retino-thalamo-cortical feedforward input 
reaching the intracellularly recorded cell (red triangle) rides in phase the evoked ‘horizontal’ intracortical 
waves. The position of the ‘horizontal’ activity wave as a function of the time elapsed from the presentation of 
the first stimulus (t1) is colour-coded. 
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In collaboration with our research group, Lorenceau’s team explored the psychophysical 

effects of apparent motion. For this purpose, the stimulus used were Gabor patches namely 

oriented sinusoidal luminance gratings whose modulation is weighted by a bi-dimensional 

Gaussian function. The form, the spatial frequency and the anisotropy along the main 

orientation axis precisely reproduce the spatial sensitivity profiles of cortical discharge fields 

(Daugman, 1985, Jones & Palmer, 1987). The results show that the apparent speed of motion 

induced by a sequential presentation of Gabor patches in different positions of the visual field 

was estimated faster by the subject when the orientation of each Gabor patch was collinear to 

the axial direction linking the different positions than when they were orthogonal to the 

‘association’ pathway.  

 

 

Figure 3.3.1.2: High speed collinear apparent motion biased the perception of speed: Psychophysical results. 
A Space-time plots of the apparent motion sequences. A trial consisted of the successive presentation of two 
short apparent motion sequences of a vertical (left cartoon, reference Collinear Sequence) and a horizontal 
(right cartoon, comparison Parallel Sequence) Gabor patch moving along a vertical axis. In a 2-Interval 
Forced-Choice design, observers indicated which sequence appeared faster. B The speed of the parallel 
sequence eliciting a subjective equality (50% probability) in choice when compared with the reference sequence 
was measured for six different reference speed values, ranging from 4 to 96°.s-1. The ratio of both speeds 
(comparison:reference) quantifies the perceptual bias experienced for collinear contours. This effect peaks for 
an absolute reference speed of 64°.s-1, corresponding to an apparent intracortical ‘horizontal’ speed of 0.2 m.s-1. 
(Georges & al, 2002, Chavane & al, 2000). 
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This effect, summarized in figure 3.3.1.2 (see also paper in annex Chavane & al, 2000, and 

Georges & al, 2002), may be quantified by the ratio between the speed of the comparison 

‘parallel’ sequence over that of the ‘reference’ collinear sequence for which the subject 

reports equality in speed. The perceptual bias can be as strong as 3-fold, and its strength 

explains why observers find in more than 80–95% of cases that ‘parallel’ sequences are faster 

than ‘horizontal’ even if both composite stimuli have the same physical speed. The physical 

reference speed for which the effect is maximal corresponds to 64°.s-1 in the visual field, 

which would be equivalent for parafoveal tests to an apparent ASHP propagation speed of 0.2 

m.s-1 in man V1 cortex. Remarkably, and as predicted, this value extrapolated in human 

cortex is well within the range of those we measured electrophysiologically in cat area 17. If 

one assumes an average magnification factor in primary visual cortex of 1 mm in cat and 3 

mm in monkey for 1° of solid angle in parafoveal regions, the propagation of activity through 

horizontal connections corresponds to fast retinal motion ranging from 50 to 500°.s-1 in cat 

(Tusa & al, 1978) and 15 to 170°.s-1 in monkey (at an eccentricity of 2 to 4°, the cortical 

magnification factor in monkey V1 is 2.5-3.5 mm by degree of visual solid angle, Dow & al, 

1981). These speeds are strikingly similar to those for which we observed the largest effects 

in the psychophysical experiments, since the perceptual bias revealed in humans is best 

expressed at a speed of 64°.s-1. 

3.3.2. Center-surround apparent motion: protocol description 

In order to characterize at the synaptic level the orientation/direction motion center-surround 

interaction process that has been hypothesized in V1, we looked for possible 

electrophysiological correlates in cat area 17. The same contextual stimulus sequences as 

those used in the psychophysical experiments were applied in the "silent" surround of the 

discharge field of V1 cells, while postsynaptic responses to a test stimulus flashed in the 

center of the discharge field were recorded intracellularly.  

The receptive field was first measured quantitatively using a sparse noise of impulsion-like 

ON and OFF stimulation and classical stimulus/response correlation method. The resulting 

impulsional transfer function defines the Minimum Discharge Field (Barlow, 1967), or the 

first order kernel (exempt of any interaction), and its spatial extent is used to define the center 

stimulus position, length and width. The preferred orientation of the discharge field was 

established on the basis of the response tuning to light and dark bars moving at optimal 

velocity, thus defining the parallel axis (orthogonal to the orientation axis) and the collinear 

axis of the discharge field. Optimal Gabor patches were defined by applying variable phase, 
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spatial frequency and contrast tuning protocols in the MDF. We then flashed those optimal 

Gabor patches in the periphery in various sequences along collinear and parallel axes and 

looked at the modulatory effect such sequences could produce on the response to a test 

stimulus flashed within the MDF. The apparent motion direction selectivity, that we suspect 

to be constrained by the horizontal propagation, is studied along the orientation or width axis 

of the discharge field by applying randomly interleaved stimulation sequences moving away 

from the receptive field center ("centrifugal" condition), or from the "silent" surround to the 

center ("centripetal" condition). The orientation of the peripheral stimuli could be either that 

preferred by the cell in its discharge field or orthogonal to it, thus defining in the periphery of 

the recorded cell "iso-oriented" or "cross-oriented" sequences. In order to evoke a sizeable 

synaptic "horizontal" response the contextual flashed sequence was always presented at high 

contrast, whereas the test stimulus was flashed in the MDF either at low or high contrast 

(values depending on the contrast tuning curve of the cell, low contrast mean = 0.25, high 

contrast mean = 0.75) to assess the contrast dependency of the interaction. The distance 

between patches was set at 120% of the MDF length and the duration of presentation of each 

patch was 16 ms. The resulting apparent speed ranged from 175 to 500 °.s-1, and these values, 

when chartered in cortical space, fit with the speed of intracortical horizontal propagation 

measured in the cat (figure 3.3.2.1). 

 

 

Figure 3.3.2.1: Distribution of apparent motion speed used for our population of recorded cell (n =23). The 
average speed is 329°.s-1(+/- 101 Stddev). 

The impact of the association field stimulation is studied by comparing the response to the full 

apparent motion sequence (3 patches) i) to the response to the test center-only stimulus to 

reveal the overall modulatory effect of the surround ii) to the addition of the center alone and 

surround alone test stimuli to assess the strict nonlinear component of the surround interaction.  
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3.3.3. Excitatory effects of the apparent motion in the surround alone  

The use of an apparent motion stimulus was found to be an efficient way to recrute the so-

called “silent surround” responses. A first result on the "silent" surround stimulation effect is 

obtained by studying the characteristics of the responses to the sequence of the two Gabor 

patches apparent motion presented only in the surround while leaving the discharge field 

center unstimulated (figure 3.3.3.1). Such configuration usually triggered much stronger 

responses than those evoked by sparse noise impulsional stimuli, and often even lead to 

supraliminar response (59 % of the cases). A significant depolarising response was recorded 

in 66% (76% in collinear condition, 55% in parallel condition).  

 

 

 

Figure 3.3.3.1: Spatial selectivity of subthreshold responses to an apparent motion stimulus in the “silent” 
surround. A: A simple cell example of surround responses for apparent motion stimuli along the 4 polar axis, 
compared with impulsional stimuli responses (top ON and OFF PSTWs). The cell MDF is represented in the 
central picture (ON spiking responses in Red colour scale, OFF spiking responses in blue  colour scale), the 
significant depolarising field extent (z-score P<0.05 against spontaneous activity) is symbolized by the white 
contour, and the respective positions of the Gabor stimuli flashed in the surround are presented for sake of 
comparison. B: Quantification of the mean significant depolarising response averaged across all recorded cells,  
induced by the surround stimulation (purple: along the collinear axis, Blue: along the parallel axis) compared to 
the low contrast center alone stimulus condition (in Green). Responses are measured as the integral of the Vm 
average response above a significance threshold (z-score P<0.05 against spontaneous activity, see Methods). 
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Those surround supraliminar responses are attributable to nonlinear visual processes since the 

nearest peripheral Gabor was flashed at a distance (from center to center) of 120% of the 

maximal length of the MDF defined with impulsional stimuli, corresponding on average to a 

distance of 5.9 visual degrees. This general suprathreshold effect can be included in the broad 

class of receptive field dependencies on the stimulation context and is likely to be modelised 

by a classical power law nonlinearity, that determine the instantaneous discharge rate output 

in response to a linearly stimulus dependent input voltage (Albrecht and Geisler 1991; 

Albrecht and Hamilton 1982; Anzai et al. 1999; Carandini et al. 1997, 1999; Gardner et al. 

1999; Heeger 1992, 1993; Sclar et al. 1990).  

However this nonlinear effect is also present at the Vm level: most of the depolarizing 

response evoked by the peripheral sequence can be attributed to nonlinear processes since in 

most of the cases the nearest Gabor patch was flashed oustide the detectable significative 

depolarising field. This simple observation further stress the restriction to a phenomenal but 

not structural description of the Linear-NonLinear model (and other derived models): L-NL 

models formalise a global cortical computation covering and averaging a wide range of 

cortical mechanisms, of specialised neuronal nonlinearities. 

Consequently the resulting response map can be distinguished from the classical synaptic 

integration field and considered as an elementary form of the "association field" of the 

cortical unit. As described earlier, this association field extend far beyond the subthreshold 

map revealed by impulse-like stimuli, as illustrated here by the respective location of the 

Gabor patches and the subthreshold Depolarizing field of the cells illustrated in Figure 3.3.3.1 

A. 

Furthermore, this association field was found to be dependent on the directional axis, 

revealing a spatial selectivity and anisotropy not present in the MDF impulsional response 

(which presented a spatial length to width ratio of 1.2). Collinear peripheral stimuli evokes a 

depolarising response in average 2,6 times more important than in the parallel configurations. 

In most cases, one of the polar end-zones of the discharge field was inducing a stronger 

depolarizing response than the other in the same axis defining a surround associative 

directional selectivity. The index of polar axis selectivity we thus could calculate, was in 

average of 0.5 in the collinear axis of the cell (selectivity index = ((max-min)/max) for 

centripetal conditions). 

In summary, probing the "silent" surround with apparent motion stimuli pairs showed that the 

periphery elicit excitatory responses in most of the cases for all the cardinal directions of 
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motion, and that the nonlinear "association field" cortical mechanisms favor input collection 

along the collinear axis, resulting in the emergence of some form of motion direction 

selectivity for high speed stimuli. The more detailed analysis of center-surround responses 

that follows further emphasizes those preliminary results. 

3.3.4. Center-surround directional selectivity  

The first important effect of the apparent motion stimuli consisted in the spatial anisotropy 

revealed by the strength of the responses to center-surround apparent motion sequences. This 

effect is particularly apparent in the low contrast center condition, and is revealed by a simple 

comparison of the full apparent motion sequence with the center alone probe condition (figure 

3.3.4.1 A&B). Thus, we will restrain the analysis to those two levels of observation, before 

the next chapter investigation on nonlinearity and contrast dependency.  

 
Figure 3.3.4.1: Examples of apparent motion modulation of the center alone response (for the low contrast 
center  and centripetal condition). A & B: Example of center-surround apparent motion responses compared to 
the center alone condition in two simple cells. PSTWs (top) and PSTHs (bottom) of the full sequence responses 
axis are represented for the four apparent motion (purple: along the collinear axis, Blue: along the parallel axis) 
in superimposition with the response to the center alone stimulation (green). A cartoon of the apparent motion 
stimulus, MDF, and the depolarising field extent is illustrated with the same conventions as in figure 3.3.3.1. 
 

The full sequences of three Gabor patches, two being flashed in the "silent" surround and one 

in the discharge field center allowed us to quantify the impact of surround stimulation when 

combined to a center alone condition. We expressed the modulatory global effect of the 

surround stimulation as a gain measured by the ratio of the response to the full apparent 

motion sequence divided by the response to the center alone condition (figure 3.3.4.2 A). In 

both conditions, the responses are quantified by the integral of the evoked average PSTHs and 

PSTWs responses above a significant threshold determined by the spontaneous activity (z-
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score P<0.05). Surprisingly, most of the conditions either parallel or collinear, in most of the 

cell, elicited a facilitating effect. A facilitation by the surround stimulation could be observed 

at the depolarising response level in 84% of the tested conditions (respectively 95% for 

collinear and 69% for parallel conditions), and at the spiking response levels in 75% of cases, 

(respectively 84% for collinear and 66% for parallel conditions).  

 

 
Figure 3.3.4.2: Apparent motion modulation of the center alone response: directional and spatial selectivity 
(for the low contrast center conditions), Population analysis. A: principle of measure of apparent motion 
surround modulation ratio: The modulation by the surround apparent motion stimulation is defined by the ratio 
between the significant synaptic response (its integral value) evoked by the full sequence center+surround and 
that evoked by the center-alone stimulus. These ratios are computed for spike and subthreshold Vm fluctuations 
(Z-score against spontaneous activity P<0.05). B: Population analysis (n = 23) of the apparent motion 
modulation ratio. The length of the arrows is proportional to the mean ratio value averaged across the 
population of recorded cells. The green circle represent the center-alone response integral (or modulation ratio 
= 1). C Principle of measure of the center/surround phase relationship, both center-alone and surround-alone 
Vm responses are measured (cf. methods) and subtracted. D: Apparent motion surround modulation as a 
function of the center/surround phase plotted both for the centripetal and centrifugal conditions. On the right 
panels are presented the distribution histograms of the apparent motion surround modulation for collinear 
(purple) and parallel condition. 



 

 

75

This nearly ubiquitous surround effects present a directional selectivity for the collinear axis: 

surround stimulations in the collinear axis are evoking in most of the cells a much stronger 

facilitation effect on the center-alone response than in the parallel axis (figure 3.3.4.2 B). 91 

% of the cells presented this collinear bias in the depolarising response, 95 % in the spiking 

response (mean on the two directions of the axis). In the collinear axis, the apparent motion 

stimuli evoked a depolarising response on average 2.6 times more important and a spiking 

response 2 times more important, than in the parallel sequence condition. Furthermore, most 

of the cells presented a clear selectivity for one directional axis vs the opposite one. For 

example, the “directional-like” selectivity index we could measure for the collinear axis was 

of 0.3 for the depolarizing response and of 0.38 for the spiking response (meaning that the 

surround effect is about 1.5 times larger in the preferred collinear axis than in the non-

preferred collinear axis, figure 3.3.4.2 B).  

Although a significant difference in the distribution of the apparent surround modulation of 

the depolarizing and spiking responses is found between parallel and collinear conditions, no 

significant difference could be revealed when comparing the centripetal vs. centrifugal 

conditions. On average, centripetal depolarizing and spiking responses were respectively 1.1 

and 1.2 times larger than centrifugal responses (figure 3.3.4.2 B). A simple explanation to this 

apparently surprising result, taking into account the duration of the responses and the relation 

of phase between the surround-alone and the center-alone responses, will be given in the 

temporal analysis of the result in the following chapter. 

3.3.5. Selective control of the timing of the responses by the Surround  

In the previous analysis, we showed that with an apparent motion stimuli, the surround 

stimulation modulated the amplitude of the center alone response. A simple observation of the 

two examples in figure 3.3.3.1 shows that this surround modulation is expressed also crucially 

in the temporal profile or timing of the response. In this chapter, we will focus on the 

description of those temporal modulation and their dependency on the stimulus configuration 

(centripetal vs. centrifugal, collinear vs. parallel).  

Two main goals guided us to study the temporal characteristics of those effects:  

_ First of all, center-surround interactions may impose a specific temporal control of the gain 

of response, possibly sustaining both a temporal code, and the perceptual bias observed in 

psychophysics. The model elaborated by Series & al (2002) binding our electrophysiological 

results and the psychophysical results, relies critically on such temporal effects. It simulates 



 

 

76

the facilitatory effect of the collinear configuration by the orientation dependent recruitment 

of a slow wave of intra-cortical activity propagating through long-range horizontal 

connections. The phase advance in the firing of V1 neurons resulting from the optimization of 

the temporal overlap between horizontal and feed-forward activation is shown to bias the 

spatiotemporal correlation performed at a second stage by MT-like motion selective cells or 

Reichardt detector (1961). 

_ Secondly, as the amplitude of the global facilitation did not seem to express an important 

specificity on the temporal characteristics of the stimulation (cf. centripetal vs. centrifugal, 

figure 3.3.4.1.), we are expecting the temporal structure of the response and of the non-

linearity to do so. 

 

In order to characterize the relative timing of synaptic input depending on its origin, we used a 

method consisting in determining and subtracting the onset latency of the postsynaptic 

potentials evoked independently by the center alone and the surround-alone stimulation (see 

figure 3.3.4.2 C). The result of this latency subtraction will be referred in the rest of the text as 

the center/surround phase. The interest of such quantification is to give an objective measure 

which allows the direct comparison of the effects of different associative sequences realized 

for a given cell as well as across various cells.  
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Figure 3.3.5.1: Importance of the temporal order of the center-surround apparent motion on the timing of the 
surround facilitation and latency decrease of the center-alone response (low contrast center condition): 
Example of the same Simple cell as in figure 3.3.4.1. A, B, C & D : characterisation of the temporal profile of 
the Depolarising Field (A: reecptive field map) using classical static stimuli: sparse impulsional noise (B, 
Latency maps), elongated bars of optimal orientation flashed in various position along the parallel axis (C, ON 
and OFF PSTWs) and the latency quantification to their subthreshold responses (D). E and F illustrate 
respectively the Centripetal (E, see also figure 3.3.4.1) and Centrifugal (F) apparent motion responses with the 
same conventions as in figure 3.3.4.1. 

 

As the protocols involve surround responses which display a temporally constrained profile in 

latency basin, and also the time order of the sequential stimulation (centripetal & centrifugal), 

two parameters having potentially a crucial influence in the responses latency (figure 3.3.5.1), 

the recorded results explore a large range of phase relationship between the surround-alone 

responses and the center-alone responses. The global center/surround phase distribution 

shown in figure 3.3.5.2 C (bottom diagram) shows the full range of phase relationship from –

80 of phase lag to +35 ms of phase advance which have been applied. The analysis was 

restricted to instances where both latencies of surround-alone and center-alone responses 

could be determined (58%). As expected, a strong bias in the distribution was observed in 

favour of the surround phase advance for the centripetal sequences (orange distribution) and 

in favour of the surround delay for the centrifugal sequences (blue distribution). 
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The plot of the apparent motion surround modulation (as measured previously) in function of 

this center/surround phase (figure 3.3.4.2 D) allows us to explain the lack of difference 

observed previously between centripetal and centrifugal conditions. The peripheral gain effect 

appears to express a facilitatory effect (>1) for a wide time window of phase relationships, 

ranging from – 40 ms to + 40 ms, in which both centripetal and centrifugal conditions are 

highly represented. This large temporal window of center/surround coincidence showing a 

center-alone response facilitation by the surround stimulation can be related to both center and 

surround’s responses broad duration (mean center response duration: 100 ms, mean peripheral 

response duration: 130 ms). The temporal overlap between the center-alone and surround-

alone responses whatever their phase relationship is sufficient to induce on average a 

facilitation by the surround. However, the timing of this facilitation appears crucially 

dependent on their phase relationship, a latency decrease of the responses being only observed 

for centripetal condition (cf. example in figure 3.3.5.1 E vs. F), i.e. when the periphery is 

activated before the center. 

 

 

Figure 3.3.5.2: Population analysis of the surround modulation of the timing and latency of the center 
response as a function of the apparent motion centripetal (orange) or centrifugal (blue) conditions (n = 23). 
The average and distribution of the latency increase or reduction for the various conditions are presented in A 
and B respectively. C Top: Measure principle of the center/surround phase relationship, both center-alone and 
surround-alone Vm responses latency are measured (cf. methods) and subtracted. Bottom: Apparent motion’s 
surround modulation of the center-alone spiking latency as a function of the center/surround phase plotted both 
for the centripetal (orange) and centrifugal (blue) conditions. On the bottom panel is presented the distribution 
histograms of the center/surround phase for centripetal and centrifugal conditions. 
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We could test the validity of one of the key hypothesis of the model (Séries et al, 2002) 

explaining the psychophysical experiments with a modulation of the spiking latency of 

primary visual cortex cells, by subtracting the center-alone latency from the center/surround 

composite stimulation latency. The mean and the distribution of this difference are plotted in 

figure 3.3.5.2 A and 3.3.5.2 B. The striking result is that apparent motion sequences could 

induce significant phase advances, as large as 30 ms for the spiking response, only when they 

were properly timed (centripetal) and moving along the collinear axis. The latency reduction 

observed for the collinear axis during a centripetal stimulation was on average of 10.8 ms (+/- 

7.8 ms StdDev). In the other conditions, either centrifugal or centripetal along the parallel axis, 

no significant latency reduction could be seen. If a linear model (L-NL), or the more 

sophisticated interaction model proposed by Series & al (2002) appear to be corroborated by 

those results, they are not sufficient to explain the entire effect observed 

electrophysiologically. Indeed, the examination of the surround-alone depolarizing latencies 

reveals a bias for shorter latencies when the motion path is along the collinear axis. The 

depolarizing wave evoked by a collinear pair of stimuli flashed in a centripetal sequence  in 

the “silent” periphery was arriving on average 9 ms (+/- 5.2 ms SE) earlier than when the 

stimuli were oriented orthogonally to the width axis path (parallel condition). This effect was 

significant in 65% of the cells showing significant depolarizing centripetal peripheral 

response for parallel and collinear conditions. A first raw argument allow us to attribute, in 

the same way as seen before with the spatial anisotropy, this peripheral latency reduction 

specific of the collinear axis and the centripetal direction, to an associative facilitatory effect 

between the pair of peripheral stimuli: no anisotropy related to collinear axis could be found 

in the latency basin of the depolarizing field of the cells. The next analysis demonstrates the 

involvement of strong nonlinearities responsible for these effects. 

3.3.6. Contrast dependency of the surround modulation and Surround impact on 

the SNR 

Until now, we have focused our analysis on apparent motion responses with a low contrast in 

the center, which revealed a facilitatory effect of the surround on the amplitude and latency of 

the center response. The experimental litterature on center-surround interaction using static 

framework presents however conflicting reports concerning their contrast dependency: some 

studies showed that facilitatory effects for low contrast become suppressive for high contrast 

(Polat & al, 1998), whereas others found only suppression or facilitation even at high contrast 

(Kapadia & al, 1995). In our own experiments, when the apparent motion sequence is 
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presented with a high contrast in the center, the previously observed surround facilitation of 

the center response decreases drastically and even becomes suppressive in some cases as 

shown for an example cell in figure 3.3.6.1 A & B. We applied the same quantification of the 

apparent motion surround modulation ratio, which shows that the surround effect on the 

integral of the center response is very low (figure 3.3.6.1 C). A latency reduction could be 

observed but with a much lower amplitude than at low contrast, as shown by averaging 

PSTHs across cells (figure 3.3.6.1 D). These results can simply be explained by the fact that 

the high contrast stimulation saturated the response both in its amplitude and latency 

reduction. Note that as expected from Gwane & al (1996), the increase of the contrast of the 

Gabor-test stimulus has reduced the center-alone latency response by about 5ms.   

The response variability is classically considered as proportional and as important as the 

average responses, independently on the stimulation characteristics. Those observations will 

be reconsidered in detail in the next chapter of the thesis, and we propose here just a 

preliminary analysis introducing the effects of cortical interaction on noise and more 

pertinently on the signal to noise ratio. 

We thus wondered if the center-surround interactions could not solely affect the amplitude 

and time course of the synaptic responses but also their variability across trials. To do so, we 

applied a time frequency complex wavelet analysis on each trial and measured both the signal 

as the modulus of the average response vector and the noise as the average distance of the 

individual trial vectors to the average signal vector. As noise is classically considered as a 

multiplicative constant to the signal, we have only presented in the following study the 

relevant Signal to Noise ratio results. Furthermore, SNR measure is related to the information 

brought by the response about the stimulus and represents the part of the signal that is 

available for the next processing steps. This technique is detailed in the chapter 3.5, and the 

related results are analysed more in depth in the next part of the thesis. When applied to the 

apparent motion responses (figure 3.3.6.1 A & B), it shows that the concomitant stimulation 

of the surround amplifies the SNR of both the Spike and Vm responses in most conditions. At 

least even when the surround did not present any modulation on the average center response 

(figure 3.3.6.1 A 2nd column), the SNR could present an important amplification, pointing 

out the importance of the surround modulation on the variability of the response.  

An other important remark can be done from the simple comparison of the time-frequency 

SNR(Vm) and SNR(Spike) to their corresponding averaged PSTWs and PSTHs: the SNR 

increase only corresponds to the initial part of the response whereas latter response 
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depolarizing components are not associated with significant increase of the SNR. This result 

can be generalised to any type of flashed or impulsional stimuli (as revealed by further 

investigation): the initial component of the response is bringing more information about the 

stimulus whereas the latter component corresponds to less informative and more variable 

responses, presumably representing the relaxation phase of the network recurrency. 
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Figure 3.3.6.1: The contrast dependency of the apparent surround modulation of the amplitude and latency of 
the center response: example and population analysis (n = 23). Responses of the same simple cell as in 
figure3.3.4.1 and 3.3.5.1 to the centripetal apparent motion in the four cardinal axis of the cell at low contrast 
center (A) and high contrast center (B). The PSTHs, PSTWs and SNR(spike), SNR(Vm) time-frequency analysis 
of the pool of 20 trials per condition (see methods) are presented for all conditions. C: Population analysis (n = 
23) of the apparent motion surround modulation ratio for both low and high contrast center condition. The 
length of the arrows is proportional to the average ratio across the population. The green circle represent the 
center alone response integral (or modulation ratio = 1) and is normalised at the same value for spike and Vm 
at low contrast. D: Average latency reduction for low and high centre contrast condition: average PSTHs across 
cells for from top to bottom the preferred collinear axis, the preferred parallel axis, the non-preferred collinear 
axis, and the non-preferred parallel axis (bin = 5 ms). 

 

In order to reveal variations of SNR amplitude during the time course of V1 responses, we 

have compared the temporal profiles of the PSTHs and PSTWs, averaged across cells, 

respectively to the frequency-time patterns of SNR(spike) and SNR(Vm) (also averaged 

across cells (figure 3.3.6.2 A)). The energy of the SNR time-frequency spectra is more 

concentrated in the initial phase of the response than in the latter, as shown by the phase shift 

of the averaging of the matrices across frequencies (blue traces). We then wondered what was 

on average the effect of the surround on the time course and on the SNR of the center 

responses as a function of the contrast. We have therefore subtracted the various temporal 

responses (PSTWs, PSTHs, SNR(spike), SNR(Vm)) recorded for the full apparent motion 

sequence to the one obtained for the center-alone probe condition. We then have averaged 

these differences as well as the responses (PSTWs, PSTHs, SNR(spike), SNR(Vm)) across all 

conditions and cells, to obtain the surround average temporal modulation (figure 3.3.6.2 B). 

The four axis stimulation presented the same profile of modulation but with various amplitude 

depending on the cells and the conditions, justifying the global averaging. 
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Figure 3.3.6.2:The biphasic modulation of the center response by the surround facilitate the initial high SNR 
response and suppresses the late poorly informative (variable) response tail. A: SNR increases mostly during 
the initial phase of the Vm and spiking response. From top to bottom: cell averaged for the center only condition, 
PSTHs superimposed with  the integral across frequency of the SNR(spike), SNR(spike) superimposed with the 
PSTHs, PSTWs superimposed with  the integral across frequency of the SNR(Vm), and SNR(Vm) superimposed 
with the PSTWs. B: Surround average biphasic modulation of the center responses by the surround. The 
measures presented are the average across cells for all the centripetal conditions (for the four cardinal of axis). 
From top to bottom:   i) center-alone condition (Green) and apparent motion (Red) PSTHs,   ii) the average 
across cells of the difference between center-alone and apparent motion PSTHs expressed in z-score of the 
spontaneous activity,    iii) The average across cells of the difference between the apparent motion and the 
center alone SNR(spike) expressed in z-score of the spontaneous activity (calculated independently for each 
frequency). iv), vi) & vii) The same measures are presented at the membrane voltage level (for PSTWs). v) The 
averaged across condition PSTWs responses to center alone and apparent motion stimuli of one cell recorded in 
inactivated state (Vm =-43 mV), revealing the inhibitory response, is shown in the 5th row. 
 

The effect of the surround is biphasic with an initial facilitatory phase followed by a later 

suppressive effect. It is observed whatever the signal considered, either Vm or spikes, and this 

finding applies both to the average responses or their SNR. The contrast mainly shortens the 

initial facilitatory phase. In conclusion, surround stimulation is removing part of the late, low 

informative and noisy, component of the center alone response whereas it facilitates 

transiently the early high SNR phase of the response. Thus surround stimulation 

“concentrates” in time the information about the stimulus. We recorded the responses for one 

cell in the spike-inactivated state (cf. methods) where action potentials are suppressed and the 
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inhibitory inputs become identifiable by stimulus-locked hyperpolarizations amplified by the 

imposed change in driving force. The surround stimulation increases slightly the inhibition 

during the late suppressive phase, confirming the suspicion of its inhibitory origin. 

3.3.7. Center-surround nonlinear control of the timing and contrast dependency 

It is possible to assess the nonlinearity of the apparent motion center-surround interactions by 

considering the difference between the responses recorded to the full apparent motion 

sequence to the sum of the individual responses to the center and surround alone condition. 

Off course, as we previously emphasized in chapter 3.3.3 and 3.2, the individual responses are 

already themselves a result of a nonlinear mechanisms and process, but the present aim is to 

uncover the supplementary nonlinearity brought by the center-surround interaction.  

Thus we have directly added up either the Vm average waveforms (PSTWs) or the Spiking 

average responses (PSTHs) of the center-alone and surround-alone conditions in order to 

effectively obtain a linear predictor of the apparent motion response. We then applied the 

same measure of significance for the integral value of depolarising responses (z-score 

compared with mean spontaneous activity: p<0.001) both to the apparent motion response and 

to its linear predictor. The two resulting values were divided to obtain the global apparent 

motion nonlinear gain (we did not include in this study the stimulation conditions which were 

ineffective in evoking subthreshold responses). The same technique, but on each trial, was 

applied to obtain a linear predictor and the nonlinear component of the SNR time-frequency 

measure. We summed all trials corresponding to the center-alone condition with those 

corresponding to the surround-alone condition to obtain a pool of linear predictor trials, on 

which we could apply the same SNR time-frequency analysis. The global nonlinear SNR gain 

evoked by the apparent motion is then calculated by the ratio (real/predicted SNR) of the 

integral of the matrices values significantly different from the spontaneous activity 

(significant threshold calculated independently for each frequency z-score p>0.001).  
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Figure 3.3.7.1: Center-surround nonlinearity are globally suppressive at high contrast and increase the SNR 
of the response (for centripetal apparent motion conditions, n = 23). The nonlinear gain of the integral of the 
responses is plotted as a function of the nonlinear gain of the SNR responses, for the Vm (bottom panels) and the 
spiking responses (top panels) at high and low contrast. 

 

The resulting measures are presented in figure 3.3.7.1, where the response amplitude global 

integral nonlinear gain is plotted against the response SNR global integral nonlinear gain, for 

the voltage membrane and spiking response at high and low contrast. At low contrast, the 

apparent motion non-linear effect displays a large diversity of amplitude and sign, and 

demonstrates the existence of both globally facilitatory and suppressive nonlinear interactions 

depending on the stimulation condition and the cells. At high contrast, the apparent motion 

center-surround interaction was globally suppressive in the vast majority of conditions. 

Considering the SNR global integral nonlinear gain, the apparent motion has a facilitory 

effect in most of the cells both at low and high contrast although this increase is more 
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ubiquitous in this last condition. Moreover, no noticeable difference was observed between 

the collinear and the parallel axis of the cells using these global time average measures. These 

latter observations are reminiscent of the facilitation/suppression contrast dependency 

reported by Polat & al (1998) among others. However this previous work did not fit with our 

observation of a latency reduction observed also at high contrast. The global selectivity to the 

direction of the apparent motion previously reported suggested us that these averaged 

measures may occult a complex temporal effect and led us to investigate the precise time-

course of the nonlinearity. 

To reveal the time course of the amplitude and sign of the nonlinearity, we subtracted the 

linear predictor to the real response waveform observed in response to the full apparent 

motion sequence (figure 3.3.7.2). To reduce the non specific across-cell variability, we 

expressed for each cell this temporal nonlinear waveform in z-score values of its spontaneous 

activity and then averaged the normalized waveforms across cells (the raw waveforms were 

presenting the same behaviour but amplified).  

 

 

Figure 3.3.7.2: The biphasic temporal profile of the center-surround apparent motion nonlinearity, and its 
directional selectivity and modulation by the contrast (population analysis for the centripetal conditions, n = 
23). The temporal waveforms of the nonlinearity are calculated for each cell by subtracting the linear predictor 
(Center alone + surround alone responses) from the real response to the full apparent motion sequence, both at 
the spiking level (top panels) and at the Vm level (bottom panels). Here, we present the average z-score 
waveform (relative to the mean spontaneous activity). The temporal profile of the nonlinearity is given for the 
low contrast center (grey colour) and the high contrast center (red colour) conditions both for centripetal (A) 
and centrifugal (B) directions of apparent motion. 
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As expected, this analysis revealed that the center-surround interaction probed by the apparent 

motion presents a strong temporally biphasic effect (figure 3.3.7.2 A top panel), with an initial 

transient facilitation interrupted by a strong and long-lasting suppression observed also at the 

Vm level. This nonlinear temporal profile is modulated by the contrast : increasing the center 

contrast amplifies the biphasic behaviour of the waveform and increases its suppressive 

component. This nonlinearity is highly specific for the collinear axis of the cell and 

furthermore, seems specific of one of the two possible motion direction axis. This 

demonstrates a strong directional selectivity of the center-surround nonlinear interaction. In 

contrast, along the parallel axis, the apparent motion did not trigger detectable nonlinearity at 

the spiking level nor a long-lasting suppressive nonlinearity at the Vm level. Note also that 

this nonlinearity is selective to the centripetal direction of the apparent motion, since 

nonlinear effects are mostly absent in the centrifugal condition at the spiking level and 

expressed in a late and delayed suppressive phase at the Vm input level (figure 3.3.7.2 B). 

3.3.8. Orientation selectivity of the surround-alone response and of the apparent 

motion center-surround modulation effect 

In order to assess the dependency of the center-surround interaction on the local orientation 

cues shown in the surround we designed protocols of surround-only apparent motion and 

center-surround apparent motion for which the surround Gabors were flashed with an 

orientation orthogonal to the preferred orientation of the cell (Cross-oriented conditions). We 

then compared the recorded responses to those cross-oriented conditions to the previously 

described iso-oriented conditions (figure 3.3.8.1 A & B).  
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Figure 3.3.8.1: Orientation selectivity of the apparent motion responses in the surround-only and in the 
surround-center conditions: (population analysis for centripetal and low contrast center conditions, n = 13). A: 
Surround orientation selectivity: Responses to apparent motion restricted to the surround-only. The effect 
produced by Gabor elements whose local orientation is the preferred orientation of the cell (iso-oriented 
configuration, in blue) are compared with those produced by Gabor elements flashed with an orientation 
orthogonal to preferred orientation of the cell (cross-oriented configuration, in orange). The PSTWs of the 
responses are averaged across the 13 cells for which both conditions were applied. B: Same comparison but 
with the full center-surround apparent motion sequence. 

 

The surround-only condition reveal a preference for the iso-oriented condition, and this bias 

was seen best for one of the two collinear axis. A similar trend was found also in the 

responses to the full center-surround apparent motion sequences. These results further point 

out both the intra-cortical origin of the observed center-surround apparent motion effect. They 

also further demonstrate the selectivity of center-surround apparent motion effect for the 

“Gestaltic” iso-oriented collinear configuration, allowing to V1 neurons to detect selectively 

for one direction, high speed motions in the visual field respecting isofeature binding and 

spatiotemporal good continuity laws (similarity (for orientation), common fate and spatial 

good continuity (for motion)). 
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3.3.9. Conclusion 

3.3.9.1. Two cortical processes of motion detection 

Our results point out a remarkable correlation between the psychophysical and 

electrophysiological data which in turn both similarly conclude to a stage of motion 

integration dependent on the congruence of the motion axis with orientation detection. This 

step, probably preliminary to the disentanglement of motion from form attributes by higher 

cortical areas, seems to operate as early as in the primary visual cortex. This process operates 

for high speed slips on the retina, that induce for real motion strong motion streaks (Geisler, 

1999), and seems to be carried out by primary visual cortex in a functional way distinct from 

that engaged during the classical local form analysis. Indeed, depending on the absolute speed 

of oriented contours, area 17 cells in the cat show two distinct behaviours (figure 3.3.9.1):  

_ for directional apparent motion sequences as fast as 500°/sec, they respond selectively along 

the orientation or collinear axis of their receptive field, and this integrative process concerns 

long-range spatial interactions. 

_ for speeds which are two order of magnitude slower, V1 cells fire preferentially for iso-

oriented stimuli displaced along the width axis of the receptive field and code the motion 

component orthogonal to the orientation of the moving contours. This selectivity is expressed 

for short-range spatial interactions. 

 

  
 
Figure 3.3.9.1: Schematic representation of the two motion axis of direction selectivity in V1 neurons. Red 
arrow: long spatial range and high speed motion selectivity along the collinear axis of the cells. Yellow arrow: 
classical motion selectivity for short spatial range and low speed motion along the width (or “parallel”) axis of 
the cells. The minimal discharge field of a Simple cell (MDF) is represented with ON- and OFF-subregions 
respectively in red and blue (colour coded response scales). The spatial extent of the depolarizing subthreshold 
field is depicted by a white curve. 
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Our findings at the intracellular level partially corroborate the hypothesis made by Orban in 

the 90s who proposed in primary visual cortex an orthogonal shift of preferred motion axis for 

high velocity. The noticeable difference is that the stimulus used here is an optimally oriented 

Gabor patch whereas most previous reports (Worgötter & al, 1989, Crook, 1990, Crook & al 

1994) typically used a non-oriented spot which produce responses with a higher cut-off 

velocity than that observed for bars and contain equal Fourier component at each orientation.  

Our findings confirm Geisler’s team results (Geisler, 1999, Geisler & al, 2001) of the 

existence of specific motion mechanisms in the collinear axis of the RF and that this collinear 

motion detection is preferentially expressed for high speed motions. Our results further 

demonstrate the crucial involvement of center-surround interactions in this effect and its 

relevance for a speed range in fact much higher than that to which they limited their study (4-

8°/sec).  

Futhermore, our results find a strongly supportive correlate in a recent optical imaging study 

(Basole & al, 2003) showing that the highest activation domains coding for "slow" and "fast" 

motion flip from the isopreference representation to the complementary cross-oriented 

domain for a specific critical speed situated between the values used for our apparent motion 

sequences (equivalent to their “fast” motion condition) and those reported as the preferred 

velocity of V1 cells for oriented stimuli (“slow” motion condition). At slow speed, vertical 

motion activates horizontal columns whereas, above 20 °/sec, it activates vertically oriented 

columns. 

3.3.9.2.  Apparent motion and center-surround cortical integration: proposition of a 

spatiotemporal E/I balance model of cortical gain 

 

Physiologically, the biphasic temporal profile of the center-surround nonlinearity is 

reminiscent of Hirsch and Gilbert’s (1991) results who showed in-vitro that horizontal long 

range connectivity stimulation evoked a transient voltage-dependent (nonlinearly amplified) 

excitation probably mediated by AMPA like receptors interrupted/followed by disynaptic 

inhibition. 

The observed global nonlinear suppressive effect, emphasized for the high contrast condition, 

can be compared to the classically reported surround suppression. Our results point out that a 

global averaged suppression, classically measured by studies using gratings and harmonic 
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analysis of the response, can occult a temporal transient facilitation followed by consecutive 

important suppression.  

Classical phenomenological models of center-surround interaction consider that the receptive 

field can be modelled by two spatial Gaussian envelope input distributions, one excitatory and 

one inhibitory considered of larger width, either interacting linearly to form a modulatory 

pattern with a global shape reminiscent of a mexican hat (Sceniak & al, 1999, figure 3.3.9.1 A) 

or divisively (Cavanaugh & al, 2002, figure 3.3.9.1 B). The latest form of interaction is just a 

generalisation to the center-surround interaction of the standard model with divisive 

normalisation and represents the effect of a pool of unselective inhibitory cells recruited by 

the surround stimulation (Albrecht and Geisler 1991; Albrecht and Hamilton, 1982, Anzai et 

al. 1999; Carandini et al., 1997, 1999; Gardner et al., 1999, Heeger 1992, 1993, Sclar et al. 

1990). This model accounts only for suppressive surround effects and for the contrast 

dependency of the center-surround interaction by playing on the gain of the inhibitory 

Gaussian component (figure 3.3.9.1 B).  

Our results, showing transient surround facilitation even for high contrast imply that a more 

sophisticated center-surround model has to be considered. According to our results, the 

temporal profile of the center-surround nonlinearity is modulated by the contrast. Moreover 

the selectivity presented here originates from an anisotropy in space as well in time of the 

nonlinear receptive field. We propose, in addition to the spatial classical renormalisation 

model, center-surround interaction to involve also a balance between facilitation and 

suppression in space as well as in time, and that contrast play on this balance (figure 3.3.9.1 

D). The resulting model consider center and surround part of the receptive as a single 

component E/I, function of space and time. 

This new model can account for an average facilitatory surround interaction at low contrast, 

as exhibited by some of our recorded cells and as shown by Polat & al (1998). The resulting 

contrast response, attributable to the low contrast surround facilitation, presents the 

remarkable property to give rise to responses which are nearly contrast invariant (figure 

3.3.9.1 D bottom). It has to be noticed that this model can account for the latency reduction 

observed in our study. Moreover, the finding of a directional selectivity of the center-surround 

interactions requires another supplementary modification of the standard model consisting in 

a spatial anisotropy (a spatial shift between the excitatory and inhibitory Gaussians). This 

proposal generalise to the non-linear RF kernels the excitatory/inhibitory push-pull model 

(Troyer & al, 1998) which is consistent with hebbian network self-organisation and accounts 
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for contrast invariance of orientation selectivity. It is also consistent, at the linear kernel level, 

with the spatial shift in position observed between the depolarizing excitatory and the 

inhibitory subthreshold receptive fields (Chavanne, 1998). 

To account for both the linear (cf. for example chapter 3.3.3) and nonlinear center-surround 

effects we observed, we propose a complete model combining the two (Figure 3.3.9.1 D 

bottom model). To fully account all the properties of V1 cells for example the oriented gabor 

shape of the linear spiking RF, one has to consider not Gaussian but more specific 

spatiotemporal functions f(x,y,t). Considering this functional generalisation, this model 

appears in the direct spirit of the general Voltera-Wiener kernels decomposition, and further 

underlines the involvement of both intracortical excitation and inhibition in the neurons 

responses properties. More generally, we propose that the spatiotemporal anisotropies of the 

E/I balance both at the linear and non-linear level (association field) to generate the output 

neuron’s selectivity. Of course, one aim of such spatiotemporal E/I balance model is to try to 

be structurally as well as a phenomenologically relevant.  
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Figure 3.3.9.2: Classical phenomenological models of center-surround interaction (A & B) and a proposition 
of a generalised phenomenological and structural spatiotemporal model (C & D). Classical phenomenological 
models taken from the literature are presented in the top rows, and their implementations for low and high 
contrast are illustrated below. The resulting contrast gain function are depicted in the bottom rows (purple) and 
compared to the classical contrast function for the center-alone condition (black). A: The Difference of 
Gaussians (DoG) and B: the Ratio of Gaussians (RoG) models, proposed respectively by Sceniak et al (1999) 
and Cavanaugh et al (2002), consisting in a generalisation of the standard divisive normalisation model. In both 
cases, the model considers the excitatory Receptive Field and the suppressive surround-only as two overlapping 
Gaussians of different spatial extent and predict only suppressive effects by the surround at the level of the 
spiking response. Whereas the DoG model assumes that the center and surround mechanisms interact linearly, 
the RoG model posits that the influence of the surround is divisive and leads to a better fit of the contrast 
dependency of the center-surround interactions (Cavanaugh et al, 2002). The contrast modulates in both cases 
the suppressive Gain KS of the surround and thus the apparent extent of the MDF. C and D present our 
generalisation to the spatiotemporal domain, decomposed for illustrative purpose into spatial (C) and temporal 
(D) components. To account for the facilitatory effect of the surround observed, an excitatory function is 
ascribed to the surround. The resulting contrast dependency can be then described by a simple modulation of the 
Excitatory/Inhibitory balance as stressed by structurally realistic models (Stemmler, 1995, Somers & al, 1998). 
To account for the temporal modulation of the response by the center-surround interactions, notably the latency 
reduction (green arrow), this model is applied also in temporal domain with a phase delay (temporal anisotropy) 
of the inhibitory component. To explain both the linear and nonlinear observed effects of the surround 
stimulation, we propose a general linear-nonlinear spatiotemporal model, where each Excitatory and Inhibitory 
components can be considered as a specific function of X, Y, T, leading to a unified center and surround output 
selectivity genesis framework. 

 

An advantage of this type of model is that it can account for quite complex spatiotemporal 

properties of the RF and considers center and surround as a single component. One definite 

disadvantage if such a model is that it is hard to be applied and fitted to empirical data (at 

least, probably impossible on the small data sets imposed by intracellular recordings).  

Structurally realistic models of V1 including long range horizontal connections (Stemmler, 

1995, Somers & al 1998, Series & al, 2002), have shown that the contrast dependency of 

center-surround interactions can be modelled by various mechanisms playing asymmetrically 

on excitation or inhibition, and thus modulating the E/I balance. Similarly, our result, in 

agreement with those models, further underline the temporal dimension of the E/I balance, as 

more deeply investigated more in depth in the next chapters.  

Furthermore this observation of a temporally biphasic nonlinearity may explain partly the 

diversity of results concerning the suppressive or facilitatory nature of the center-surround 

interactions. Depending on the stimulation characteristics (static or dynamic such as drift or 

counter-phase), and the type of measure used to quantify the response (average integral over 

time or harmonic modulation, maximum amplitude) one can expect to find very different and 

even opposite conclusions. 

On conclusion, nonlinearities in V1, notably center-surround, are dynamic, they have an 

intrinsic temporal profile; and this profile is sustained notably by the intra-cortical 

connectivity characteristics. We further want to stress the crucial importance of ”time” in 
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cortical processing, a factor whose impact is too often neglected: cortical receptive fields, 

including the surround, are spatiotemporal functions or memories. 

3.3.9.3. Active sensing and the hypothesis of a visuo-oculomotor computation in V1  

One can ask legitimately when in natural viewing those high speed long range motion occur, 

or, in other terms, what kind of motion during natural viewing presents those peculiar 

spatiotemporal characteristics. Intuitively, natural environment present very rarely high speed 

motion. This intuition is further demonstrated by a spatio-temporal analysis of natural movies 

(Dong & Atick, 1995) showing that in the environment, motion is very rare and all the more 

rare so that the speed of the motion is high.  

These spatiotemporal statistics arising from the natural environment do not include the 

additional “perturbations” or motion in the sensory input flow imposed by the subject motor 

behaviour. In fact, as a general rule, the subject own motion and behaviour increase and 

reshape drastically the environmental statistics. This is particularly true for visual signal, for 

which notably the eye-movements drastically reshape the temporal statistics of the optic flow, 

as shown in next chapter. Considering the organism own motion, the eye-movement in our 

particular case, the high speed long spatial range motion used in our experience to probe 

center-surround apparent motion selectivity find a natural and obvious correspondence with 

the saccadic component of the eye-movement. More fundamentally, in the sensory-motor 

dependencies lies the only information available for a system to define a “self”, and those 

sensory-motor dependencies are sufficient to infer the dimensionality of the environment 

(Philipona & al, 2002). The idea that perception and system knowledge are based on the 

sensory-motor dependency extraction and production (O’Regan & Noë, 2001) may take its 

roots, according to our intuition, to the relativity principle in physic. 

First, saccades are highly frequent movement: they occur in average 3 times per second in 

Human (Harris, 1988) as well as in the Cat (Collewijn, 1977). Second, they are spatially long 

range (distribution mode 2°, distribution median 13° in the feely behaving cat, Collewijn, 

1977, figure 3.3.9.3) and high speed, ranging from few degrees per second up to 800°/s. The 

apparent motion speed values used in our empirical investigation fall approximately in those 

temporal and spatial characteristics of saccades (see figure 3.3.2.1 and chapter 3.3.2), leading 

us to propose that the center-surround interactions observed should be expressed during 

saccades.  
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Figure 3.3.9.3 : Saccade velocity as a function of its spatial amplitude (redrawn from Collewijn, 1977). The 
graph represents 200 individual saccade measurements in the freely behaving cat. The measures  take into 
account the head movement that classically accompanies the saccadic movement. Removing this head 
component gives slightly lower values Collewijn (1997). 
 

It is classically considered that the information of the visual environment is blurred by the 

saccadic motion, due notably to the integration time of the retinal neurons, leading to the idea 

that no information about the environment can be gained from at the time of the saccade The 

saccadic blurring is in reality a bit more complex, and may reveal much more information 

about the environment than previously expected. In fact, the motion blurring, which is also 

present for speeds lower than that reached during saccades and gives rise to the more general 

concept of motion streak effect (Geisler, 1999), only concerns the spatial frequencies which 

are not iso-oriented with the direction of the motion, as shown by Barlow & Olshausen (2004, 

figure 3.3.9.4). The faster the image motion is, the more selectively and precisely the 

spectrum of the iso-oriented components of the image will be extracted. We can thus propose 

that saccadic motions are selecting precisely some components of the visual information, 

those that are iso-oriented with the direction of the saccade, and erases all the other. This 

simple and low level observation may point to a more general conclusion on a possible role of 

eye-movements during perception: they reduce the dimensionality of the environment by 

extracting peculiar relevant features of the visual scene. 

This automatic selection may be of important physiological and psychophysical relevance, 

since the ballistic trajectories of saccadic eye-movements have been shown to be highly 

correlated with orientated features in the visual scene. In humans, during active identifications 

of faces, Yarbus noted that the oculomotor search pattern and the positions of the fixation 



 

 

97

anchor points formed the elementary skeleton of a perceptual sketch of the recognized object 

(Yarbus, 1967, figure 3.3.9.5 B). 

 

 

Figure 3.3.9.4: Saccades blur the visual image but streak the elements or contours presenting an orientation 
iso-oriented with the direction of the saccade. A: a rapid eye movement, probably saccadic given its following 
blurring. B: High speed motion streaks iso-oriented contours owing to temporal integration in the retina 
(Drawing from Christian Debarre, 2003). C : For moving images, the spatial power spectra is distorted by 
becoming steeper in the directional axis corresponding to the modulation of the retinal flow in the direction of 
motion. “The influence of motion on the effective power spectrum and appearance of an image, assuming that 
the whole image subtends a visual angle of 10x10 degrees and moves diagonally down and to the left at 2 
deg/sec. The top row shows the original static image, its 2–D spatial powerspectrum, and sections through this 
power spectrum along the two diagonals. The lower row shows the corresponding three figures for the moving 
image, obtained by attenuating the 2-D spatial Fourier Transform of the static image by factors derived from the 
contrast sensitivity measurements of Koenderink and van Doorn. The effect of motion on the power spectrum is 
brought out by the cross-sections (right pair of figures) along the diagonals in the direction of motion (red) and 
orthogonal to it (blue). Circles in the center pair and lines in the right-hand pair are drawn at 2 and 10 cy/deg to 
indicate the range where contrast sensitivity is high in the human visual system, and it will be seen that motion at 
2 deg/sec severely attenuates spatial frequencies in the upper part of this range” (from Barlow & Olshausen, 
2004). 

 

The correlation of the saccadic path with the image contours suggests that the selective 

blurring is used as a strategy by the visual system to analyse and explore spatiotemporally the 
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environmental scene. During such exploration, one can imagine the center-surround effects 

demonstrated here as being of a primordial importance, as illustrated by the figure 3.3.9.5 C.  

Moreover, the saccade induces a shrinkage of distances between stimuli, mostly in the 

direction corresponding to the saccadic path as well as an underestimation of temporal 

intervals between stimuli (Morrone & al, 1997, Kaiser & al, 2004, Morrone & al, 2005). In 

other words, the perception of time and distance during and around a saccade is compressed. 

It would not be a surprise for us if this compression was found to be related to the speed 

overestimation observed with apparent motion, and dependent on the orientation of the stimuli 

compared to the direction of the saccade. 

 

 

Figure 3.3.9.5: Active sensing in V1: the hypothesis of a visuo-oculomotor global and local sequential 
processing of the visual scene in V1. A: Eye-movement continuously explore the visual scene. The eye-
movement scanpath of a monkey is superimposed with the corresponding scene (taken from Rucci & al, 2003), 
the speed of the eye motion is depicted using a colour code varying from red (for low speeds) to yellow (for high 
speeds) colour. The oculomotor pattern corresponds roughly to alternance between fixational drifts and 
saccades respectively. Eye blinks are symbolised by the blue lines and an enlargement of a fixational period is 
given in the bottom right insert. Note the systematic directional shift of the scan-path following a saccade and 
corresponding to the drift fixational movement. B: The eye-movement scan-path is correlated with the image 
features, notably the contours (for the saccadic path in this image exploration) and to higher order relevant 
features (for the saccadic target and fixation regions in this exploration). The cartoon, taken from Yarbus (1967), 
presents the exploration oculomotor pattern of a Human observer (right panel) and the corresponding 
photography of the object to be recognized (left panel). C: Schematic representation of the model of visuo-
oculomotor processing in V1, sequentially integrating spatial long range and short range visual information. 
During saccadic high speed long range movement, V1 neurons integrate selectively the visual information iso-
oriented to the saccadic motion along their collinear axis by the mean of their spatiotemporal association field 
(cf. figure 3.3.94), whereas during fixation they integrate the visual information on low spatial scales and low 
speed across the dischharge field axis (corresponding to their classical direction selectivity). 



 

 

99

A more detailed observation of the eye-movement paths may help to go a step further in the 

though. Eyes never stop moving: even during the periods of fixation, a dynamic component in 

the visual flow remains due to the continuous scanning of the visual field with small 

involuntary stereotyped movements. Those fixational eye-movements can be decomposed in 3 

different categories according to very different kinetic characteristics: drifts, tremor and 

microsaccades (Martinez-Conde & al, 2004 for review). Each of these movements have been 

shown to evoke response in the primary visual cortex, and have been proposed to sustain 

distinct and various functions (microsaccade, Martinez-Conde & al, 2002, and drift: snodderly 

& al, 2001, tremor: hennig & al, 2002). These movements are critical to maintain perception 

(Coppola & Purves, 1996, Martinez-Conde & al, 2006) and contribute for an important part to 

the power content of the temporal spectrum of the retinal flow.  

Microsaccades present the same spatiotemporal characteristics as macrosaccades, and only 

differ by their non-voluntary origin, and their smaller average amplitude.  

Tremors are extremely small aperiodic movements at high frequency 40-100 Hz (typically of 

an amplitude equal to the photoreceptors distance, and to visual hyperacuity resolution). Their 

function may be related to a fine grain spatiotemporal visual sampling.  

Drifts are following temporally the saccade motion and are present during most of the fixation 

period (except during the rare microsaccades). They consist in a drift in space but also in the 

direction of the eye path, notably compared to the direction of the preceding saccade (figure 

3.3.9.5 A and C). Drifts are of particular interest since their spatiotemporal characteristics 

make them very likely to activate the classical motion selectivity in V1. They are movement 

of small spatial amplitude (1.21 ° +/- 0.63° in the cat (Olivier & al, 1993), to compare to the 

classical width of simple cell discharge zone: 1.1° +/-0.6° (Palmer & Davis, 1981) or to the 

spatial scale (0.5°) of second-order directional interaction (Pack & al, 2006). The drift mean 

speed (14.9 °/s, according to Olivier & al, 1993) is within the range of the preferred speed of 

cortical cells (mean 2.2°/s with responses up to 20°/s for simple cell (as further shown in 

natural context of stimulation the speed selectivity of simple cell is increased) and 18.8°/s for 

complex cell, Movshon, 1975). Drift speed fits also quite nicely with that deduced from the 

slant in the spatio-temporal receptive fields, meaning that such movement will activate 

cortical RFs mostly when executed across the width axis of cortical cells shall elicit 

approximately classical directional optimal response in V1. 

The remarkable fit between the spatiotemporal characteristics of the two main eye-movement 

components, saccades (including microsaccades) and drifts, and the two main direction 
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selectivity mechanisms occurring in V1 (width axis and orientation preference axis), lead us 

to propose a simple visuo-oculomotor model of V1 cortical processing and function. 

According to this model, V1 operates a sequential and multiscale (local short range and global 

long range) analysis of the visual scene thanks to the convolution of environmental features 

with the eye-movement ballistics. In more classical terms, we propose that V1 implements a 

visuo-occulomotor representation and analysis of the environment. 

Moreover, since the Superior Colliculus is one of the main V1 output target, and since 

microstimulation of V1 cells induce saccade that terminate in the RF location of the 

stimulated cell (Tehovnick & al, 2004, for review), V1 may be included in a first low-level 

sensory motor loop. As we will argue more in depth in the next chapter, this framework is 

intrinsically in agreement with the general idea that the cortical processing is adapted to the 

statistics of its extrinsic and recurrent inputs. According to the efficient coding hypothesis, RF 

functional properties and therefore connectivity in the network shall reflect the statistical bias 

in the visual input flow, which is strongly and predominantly sculptured by the eye-

movements. From this point of view, it is not a surprise to find that the two most important 

motion selectivity mechanisms observed in V1 are related to the omnipresent eye-movement 

dynamics. 

3.3.9.4. Center-surround interaction and cortical computation 

Interpreting our result from a computational point of view, the center-surround spatiotemporal 

nonlinearity can be interpreted as specifically detecting and amplifying temporally precisely 

coincident center and surround “horizontal” inputs (figure 3.3.7.2). It allows the neuron to 

behave has a directional selective detector for high speed collinear motion and to thus reduce 

the redundancy or correlations in the optic flow, according to our hypothesis imposed by 

saccadic like movement. Such kind of nonlinearity or gain control is likely, in this 

interpretative framework, to give a first primarily form of eye-movement invariance response 

as early as in V1. In agreement with the idea that redundancy reduction can account for visual 

response adaptation to eye-movements and removing, the thalamic model of efficient coding 

proposed by Dong (2004) reproduces saccadic-like suppression (without motor efferent signal) 

by triggering fast contrast adaptation. 

Furthermore, the temporally biphasic profile of the apparent motion nonlinearity constrains 

temporally the spiking response by imposing a transient facilitation. This time-dependent 

nonlinearity modifies the timing of the responses, notably by reducing spiking latency and is 
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likely to improve the spike timing precision and sparseness of the discharge. These points will 

be further emphasized in the next chapters of the thesis. 
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3.4. Interlude: “What is the other 85% of V1 doing?” vs. “In praise of 

artifice”  

This section aims at uncovering some basic ideas arising from the cortical physiology 

literature interpreted in the light of our previous results, and to further introduce the following 

chapters that will discuss the cortical code. We will notably argue in an intuitive way on how 

to define a function in “self”-organised biological systems, some cortical organisation 

principle such as specialisation and diversity already suggested by physiological results, and 

more generally about some trails that may allow a better understanding of cortical dynamic 

and function. 

In their reasonable but pessimistic critic of the actual knowledge of V1 functioning, 

Olshausen & Field (“What is the other 85% of V1 doing?”, 2005), five main problems on the 

current view of V1 are identified: 

 

- Biased sampling of neuron: only spontaneously active and visually responsive neuron are 

recorded by the experimentalist. This bias does not hold for intracellular recordings and blind 

impalement techniques, and, from our experience, not highly relevant for V1 neurons: the 

only visually non-responsive neurons we recorded where correlated with EEG deeply 

synchronized, and with bistable unflappable intracellular membrane potential dynamics, 

pointing out the cortical state irrelevancy to visual computation. At least, a selection of 

visually responsive neurons would only bias toward responses perceptually relevant states (a 

non visual cell in V1 is a glia, in fact, and even glia present Vm reponses).  

 

- Biased stimuli: most of the studies concerning V1 have been assessed using oversimplified 

and ecologically non-relevant stimuli such as sinusoidal luminance grating, that may fall 

outside the selectivity range of cortical nonlinear mechanisms. In fact, considering that the 

cortical system can be intrinsically nonlinear renders its investigation extremely difficult 

given the explosive number of combinatory to test. This point is still debated. As a response, 

Rust & Movshon (“in praise of artifice”, 2005), defending a much more optimistic point of 

view and a new sophisticated version of the standard model containing an undefined number 

of linear boxes rectified by nothing but 6 nonlinearities (Rust & al, 2005), claim that 

important part of V1 mechanisms has already been uncovered and that artificial stimuli is a 
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necessary simplification step toward functional investigation. A crucial outcome of such a 

debate resides in the capacity of V1 models not only to account for average selectivity or gain 

function but also and mainly in their capacity to predict precisely the real recorded responses 

(Bialek & al, 1991, Rieke & al, 1997). Unfortunately, the new standard model has not been 

tested against this real response prediction benchmark, and furthermore against responses 

recorded in responses to a natural stimulus. 

 

- The 3 next criticisms are directly linked to the latest. Biased theories: The authors argue 

about the irrelevance of simple and complex segregation and the purely Fourier view of the 

cortical function. Contextual dependency of the responses: this point is intrinsically 

included in the dimensionality and nonlinearity of the neuronal function. Ecological deviance: 

the author argue about the interest of not only the models successes but also and equally of the 

models failures.  

Here, we will preliminary propose, a supplementary bias, that may account and allow to 

quantify all the previous ones: the response variability. As shown in introduction, cortical 

responses variability, notably in V1, is considered to be huge. This noise account for about 

50% of the response and is either considered as an irreducible and computationally noxious 

component, or as reflecting “States of Mind” expressing the brain's autonomous internal 

context (Arieli, 2003, Fiser & al, 2004). One has to include and/or add to the 85% of the 

unknown V1 emphasized by Olshausen & Field, a minimum of 50% of noise. 

 

Figure 3.4.1: Visual stimulation decreases the trial-to-trial stimulus-locked variability in the Vm responses 
trajectory for all type of tested stimulus (impulse stimuli, oriented flashed bars, oriented moving bars, and 
apparent motion center-surround associative stimuli). A: spiking MDF and depolarising Field maps (left) 
compared to the 1/σ  map (right) obtained for one cell in response to impulse stimuli. Note the large spatial 
extent of the significant 1/σ  map. The superposition of ten individual Vm trial responses (black) to the ON 
stimulation of a predetermined pixel in the X-Y map and the temporal profiles of the average depolarization (red) 
and of the corresponding reduction in stimulus-locked variability (1/σ)  are presented in the right panel. B: Two 
examples, for two different cells, of ON and OFF responses to an optimally oriented bar. The trials Vm 
responses (black), their average (red) and 1/σ  waveforms (green) are presented.  C: The decrease of variability 
observed during responses to oriented moving bars, for two example cells (cells 2 and 4 of figure 3.2.1) 
illustrated in each row. Polar tuning curves of the spiking, depolarising, hyperpolarising and 1/σ  components 
are presented on the left, and their respective waveforms on the right. These waveforms correspond to responses 
to preferred (left), cross-oriented (middle) and non-preferred direction (right) are illustrated with the same 
conventions as in figure 3.2.1. D: A cell example of Vm variability decrease in response to center to surround 
apparent motion stimuli (red colour, cf. chapter3.3) and in response to the center alone control (grey colour). 
PSTHs (top panels), PSTWs (middle panels) and 1/σ  waveforms (bottom panels, green colour) are presented for 
the four cardinal axis of centripetal stimulation.  
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One striking result, which has been previously presented, lies in the increase of trial-to-trial 

reliability of the Vm trajectory evoked by visual stimulation. It is quantified by the measure of 

the inverse of the standard deviation of the Vm trial-to-trial trajectory. This effect, that we 

have preliminary observed for oriented flashed bars stimulus, and quantified in the oriented 

moving bar study of chapter 3.2 (Monier et al, 2003), can be generalised to the whole set of 

visual stimulation we’ve been testing as illustrated in figure 3.4.1. This variability decrease is 

present for a broad range of tested stimuli condition (where the experimenter varies its 

position, orientation, apparent motion axis), proving a general low selectivity of the effect. 

Moreover, in most of the cases, this variability decrease is predominantly observed for the 

conditions outside of the range of the output selectivity. This relation holds in the temporal 

domain: decreases of variability are observed before and/or after the bulk of the spiking 

response. This out-of-phase relationship between spiking responses and variability decrease 

corresponds to the well known correlation between the Vm variability and the discharge rate 

output for low dimensional stimuli (Carandini, 2004).  

Those results show that the variability decrease of Vm trajectories can be observed either 

during depolarising or hyperpolarising periods, and even in some cases without any net effect 

on the average amplitude of the Vm compared to spontaneous activity (cell 5 figure 3.2.1, cell 

11 figure 3.2.4), is signaling the presence of input. In conclusion, the observation of 

variability decrease probes the presence of inputs arising from from a very broad range of 

selectivity domains. These inputs arising from large and even very distant domains of 

selectivity are likely to sustain the cortical computation, and more complex and nonlinear 

process than classically admitted. 

A second general remark can be drawn from our previous results: inhibition is generally 

correlated with the Vm trial-to-trial variability decrease, and the relative balance between 

excitation and inhibition is controlling the spiking cell response expression and thus 

selectivity, both in the spatial and temporal domains.  

We could also generalise the observation of the correlation between inhibition and trial-to-

trial variability decrease for all the range of stimulus type we used (figure 3.4.2). Part of this 

correlation is likely to emerge from a simple cellular shunting effect. The visually induced 

increase of inhibitory conductances, (Borg-graham & al, 1998), but also excitatory 

conductances, decrease the impact on the voltage of the synaptic inputs leading to a more or 

less strong clamp of the membrane potential, and thus may reduce the amplitudes of the trial-

to-trial fluctuations as well as the amplitude of the averaged responses. A paper, reviewing the 
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importance of shunting inhibition in cortical processing notably in the orientation and 

direction V1 selectivities, is presented in annex (Fregnac & al, 2004).  

 

 
Figure 3.4.2: The decrease of the trial-to-trial variability in the Vm responses trajectory is correlated with the 
increase of the inhibition for most of the tested stimulus (impulse stimuli, oriented flashed bars, oriented 
moving bars). A: from left to right: spiking MDF, depolarising Field (both measured at rest), inhibitory field 
obtained during current-induced spike inactivation protocol and 1/σ  map (measured at rest) obtained in the 
same cell in response to impulse stimuli. Note the spatial overlap between the  extent of the significant 1/σ  map 
and the extent of the “inhibitory” field. B: ON and OFF responses to an optimally oriented flashed bar. The 
trials Vm responses (black), their average (red), the Vm average waveforms in the current-induced spike-
inactivated condition revealing inhibitory input (blue) and 1/σ  waveforms (green) are presented for one cell. 
Note the mirror profile and same time course for the blue and green signals. C: Example of correlation between 
the decrease of stimulus-locked variability and the increase of inhibition evoked by oriented moving bars (cell 9 
of figure 3.2.3). Tuning curves of the spiking, depolarising, inhibitory and 1/σ  components are presented on the 
left, and their corresponding waveforms responses on the right with the same convention as in figure 3.2.3. 
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A third remark concerns the functional diversity of excitatory and inhibitory input across cells. 

In chapter 3.2, we have shown using simple low dimensional stimuli that the broad functional 

diversity of excitatory and inhibitory inputs can lead to similar spiking output selectivity such 

as orientation and direction. As an introduction to the following chapters, we now ask whether 

this functional diversity of inputs could support a diversity of output spiking selectivity in the 

context of more complex and informative stimuli than the elementary one previously and 

classically used. 

 
 

Figure 3.4.3: Proposition of a principle of apparent functional diversification and specialisation in V1 with 
stimulus complexification A: the two opposite axis proposed to explain physiological results and cortical maps 
organisation: the number of neurons implied in the cortical representation is inversely proportional to the” 
information content” (or dimension/complexity) of the stimulus. B: The functional cortical maps Russian doll 
organisation : a spatial position is represented for the two eyes, all orientations are represented for each eye, 
the two directions are represented for each orientation. C: the various functional cortical maps observed by 
optical imaging in V1: from bottom to top: spatial retinotopic maps, ocular dominance bands, orientation and 
direction maps. D: Schematic illustration of the average broad synaptic input selectivity vs. the sharp spiking 
output selectivity of V1 neurons for the various classical selectivity dimensions. The respective tuning of the 
synaptic excitatory and inhibitory inputs and spiking output deduced from our results or extrapolated in the case 
of ocular dominance selectivity,. The abscissa represent the whole possible range of the explored dimension 
(space, orientation, etc…) and  the ordinate represents the mean amplitudes of excitatory, inhibitory and spiking 
responses averaged across cells, occulting the inter-neuronal diversity of E-I selectivity combinations presented 
in E (cf. chapter 3.1 & 3.2). 
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The physiological literature already provides some trails of answers to this question. First, in 

agreement with the “efficient coding” hypothesis, the stimulation of the “non-classical” RF 

surround with natural complex stimuli tends to increase the decorrelation between neurons 

when compared to the condition where the same stimuli are restricted to the classical RF 

center (Vinje & Gallant, 2001). Second, the relative organisation of the various cortical 

functional maps, visualized notably by optical imaging techniques, presents an obvious 

Russian doll interwovened structure, revealing a hierarchical increase in specialisation as a 

function of the stimulus complexity (cf. figure 3.4.3, complexity will be further defined).  

For simplicity we will not take into account the “time” dimension in the following intuitive 

reasoning. Starting with the simplest minimal spatial information (x,y), the V1 cortical map 

presents the well known retinotopic organisation: two neighbouring neurons respond for 

neighbouring visual regions. The spatial information can stem from the two eyes and 

specifying from which eye stem the visual information segregates the cortical representation 

into 2 distinct territories: the ocular bands: for each spatial position the two eye information is 

represented (figure 3.4.3 B & C). The orientation bias of the spatial information (and of the 

stimulus) can be specified, which in turn segregates each ocular band into orientation domains 

structured around pinwheels (Hubener & al, 1997): for each spatial position and each eye, all 

the orientations are represented (figure 3.4.3 B). Considering dynamic stimuli (and all stimuli 

are dynamic thanks to eye-movements) the direction of the oriented motion (and of the 

stimulus) can be specified, segregating “orientation domains” in two directional domains 

(Schmuel & al, 1996): the two directions of motion are represented for all orientations, for 

both eyes for each spatial position (figure 3.4.3 B). From this point of view the Russian doll 

functional organisation appear a bit trivial and this functional structure seems in some way to 

be imposed by the dimensionality of the explorative stimuli applied by the experimenter.  

Informally speaking, increasing the “information” present in the stimulus (we will further 

define more rigorously this information in term of redundancy), decreases the size of the 

responding cortical territory, and thus the number of activated cells (figure 3.4.3 A): In other 

very intuitive word; the more information the stimulus offers, the more selective the cortical 

response is, and the more specialised cortical territories appear. Of course, an interesting 

question would be to determine if any functional subterritories exist under the direction 

selectivity level. 
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These functional territories observed in optical imaging, even the smallest ones dedicated to 

directional selectivity, reflect the activity averaging of thousands of neurons. One important 

question is then to wonder if these neurons have all the same activity, function and relay the 

same information. It is known that neighbouring neurons can display various and even 

opposite spatial phases (DeAngelis & al, 1999). Reich & al (2001) assessed the question more 

precisely, and showed that pooling the responses of small population of neighbouring neurons 

leads to an important decrease of the information available when compared to the information 

carried by neurons individually.  

Our results shows two important principles potentially supporting a diversity and a further 

specialisation of function: 

- On average, the excitatory and inhibitory inputs are coming from a broad range of functional 

domains (space, orientation, direction etc…figure 3.4.3 D) 

- The organisation of those excitation and inhibition functional selectivity appears specific for 

each cell, offering the substrate for a diversity of higher-order associative computations 

combining those various domain of selectivity (figure 3.4.3 E). Indeed, using more complex 

stimuli combining various dimensions of the input, physiological studies have probed various 

interactions occurring in V1. The apparent motion center-surround interactions presented in 

the latest chapter is one example (spatial – orientation). Interactions between spatial and 

ocular information from which depth analysis arises, between orientations and ocular 

information, between direction (motion) and ocular information (depth) (Anzai & al, 2001), 

among others, have also been demonstrated. Since simple low dimensional stimulations evoke 

transient decrease of stimulus-locked variability in Vm trajectories for a broad range of 

conditions, one can also wonder what would be the variability of V1 responses to complex 

dynamic stimuli like those experienced during natural sensory-motor experience, presumably 

implicating additional interaction constraints as mentioned above. 
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3.5. Nature is the Code: reliable and efficient dissipation in V1 

(to be Submited,  Baudot, P., Marre, O., Levy, M. and Frégnac, Y.) 
 

‘If the eye were not sun-like, the sun’s light it would not see.’ Plotin, Goethe. 

Summary: The specificity of sensory network organization in living systems, achieved 

through evolution, development and short-term plasticity, can be viewed as an ultimate form 

of memory collection resulting from the adaptation to different scales of the environmental 

statistics. According to the metaphor of a global “fit between mind and world” (James, 1890), 

our sensory neural systems can be thought of as encoding a highly compressed version of the 

informational content of our natural environment. Here we show that the reliability of the 

neural code in adult primary visual cortex (V1) reflects in a mirror way the complexity and 

natural relevancy of the sensory input statistics. 

Using intracellular recordings in the anaesthetized mammal, we find that the activity evoked 

in V1 during exposure to natural scenes continuously updated by eye-movements, displays 

highly reproducible dynamical states at the subthreshold membrane potential (Vm) level and a 

temporal impulsional code at the spiking output level. In contrast, responses to simple 

artificial stimuli (“optimal” gratings) are highly unreliable, which supports the prevalence of 

rate coding for low-dimension or unknown stimuli. In natural-like conditions, the contrast 

between the temporally dense informative synaptic input and the sparse spiking output shows 

that cortical computation removes input redundancies by detecting transient precisely coactive 

assemblies.  

Introducing a statistical definition of complexity and ordered redundancies, we show that both 

noise and redundancy reduction observed in natural-like conditions are a direct consequence 

of the principle of mutual-information maximisation, suggesting a general framework for 

environmental adaptation. This modulation of the code by the relevancy of both the transient 

and global inputs statistics, expressed as a balance between externally imposed states and 

internal ongoing states, may correspond to the well known self-generative property of 

recurrent networks. From the computational point of view, the irreversible dissipation of the 

input constraints operated by the cortex is interpreted as the entropic cost to pay for observing 

and engramming (or forgetting) the information present in the environment. 
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3.5.1. Computational principles in visual processing 

Following the original impulse given by Attneave (1954) and Barlow (1961), the reduction of 

redundancy in the evoked neural activity pattern, also referred as sparsening, has been 

proposed as a computational principle in sensory processing (Atick & Redlich, 1992, Atick 

1992, Redlich, 1993, Olshausen & Field, 1996). Maximization of mutual information between 

sensory input and the response of a single neuron (Laughlin, 1981, Brenner & al, 2000) or of 

a perceptron network (Linsker, 1988) was demonstrated to be equivalent respectively to an 

adaptative process and to a Hebbian self-organizing principle which also results in a general 

decrease in response redundancy (Nadal & Parga, 1994, Bell & Sejnowski 1995, 1996). The 

adaptative processing of neural network, has been proposed to rely on a cascade of multiple 

temporal scale mechanisms (Fairhall & al, 2001, Fusi & al, 2005). Because of the reduction of 

the informational capacity of the visual channel from the retina to the thalamus, redundancy 

reduction appears necessary to preserve visual information, a prediction which has been 

confirmed experimentally (Dan & al 1996). At the cortical level, the concomitant stimulation 

of the receptive-field (RF) surround has been shown to increase the sparseness and efficiency 

of the code (Vinje & Gallant, 2000, 2002). However, the final impact on information 

representation in V1 remains yet to be understood, in view of the massive increase in the 

number of cortical neurons (161n3/2 in primate (Stevens, 2001)) when compared to that of 

thalamic input fibers. The prevailing view posits that the resulting gain in informational 

capacity allows averaging activity across large neuronal assemblies and the redundancy 

imposed by the overcompleteness gives to the cortical network some form of invariance 

relative to noise (Barlow, 2001, Doi & Lewicki 2004). Consistently with this theoretical 

schema, a high variability in evoked firing has been reported in primary visual cortical 

neurons, corresponding to a Poissonian or supra-Poissionan behaviour (variance ≥ mean) 

independently of the stimulus characteristics (Schiller & al, 1976, Heggelund & al, 1978, 

Arieli & al, 1996, Wiener & al, 2001, Britten & al, 1993, Buracas & al, 1998). This noisy 

behaviour appears as a computational nuisance since  information has to be integrated over 

time and averaged across highly redundant population of neurons with broad selectivity 

tuning (Georgopoulos 1994, Series & al, 2004), which implies a rate based code (Shalden & 

Newsome, 1998). Since the transfer function of neurons in-vitro is highly reliable under 

realistic current somatic injection (Mainen & Sejnowski 1995, Nowak & al, 1995), the origin 

of visual response variability has to be found in the cortical recurrence (or “shared” Noise 

(Deweese & Zador, 2004)). Recent electrophysiological and imaging studies have shown that 
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the spontaneous activity observed just prior to the stimulus can predict to a large extent the 

response variability, leading to an additive model of Signal and Noise(Arieli & al, 1996, 

Azouz & Gray, 1999) where evoked responses are linearly corrupted by spontaneous cortical 

ongoing states. This global internal Noise pattern is spatially and temporally organised into 

coherent activity waves spreading across the entire V1 (Tsodyks & al, 1999, Kenet & al, 

2003). 

3.5.2.  A change in perspective: from information transfer to computation of 

complexity  

This study, considering cortex and environment as complex dynamical systems, investigate 

the cortical processing as a diffusion process, by the estimation of the propagation and 

dissipation of the input fluctuations in the nervous system media. The working hypothesis of 

the present paper is that the code operating in V1 is in fact dynamically regulated by the ever 

changing input statistics, and that visual response reliability or noise, should be studied not 

only with elementary visual stimuli, as done most classically, but with ecologically relevant 

features. Indeed, the complexity of our natural visual world, and moreover of living systems, 

resides in its “aperiodic crystal” structure (Schrodinger, 1944), that makes it lie between 

“crystal”-like order and “smoke”-like disorder (Atlan, 1979) and which can be considered as a 

consequence of their global far from equilibrium state. This particularity, neither reflected in 

Algorithmic nor Shannonian information that quantifies randomness and uncertainty, is 

referred to as structural complexity, physical complexity (Adami & Cerf, 2000) sophistication 

(Atlan, 1979, Atlan & Koppel, 1990) or logical depth (Bennet 1985, 1988, cf. chapter 

3.5.12.3).  

In order to explore experimentally the contextual input-dependency of the neural code, we 

opted for intracellular recordings in the primary visual cortex in the anaesthetized cat and 

compared in the same cell the response reliability for different visual stimulation conditions. 

The interest of intracellular techniques is to give access not only to the spike output activity 

but also to the network-driven dynamics (monitored by the continuous fluctuations of the 

membrane potential, Vm) and the synchrony state of the effective functional assemblies in 

which the recorded cell is embedded (Bringuier & al, 1999, Monier & al, 2003). We took also 

advantage of the blockade of eye-movements in the paralysed preparation to externally 

impose reproducible changes in the retinal flow through a sequence of eye-movement 

simulation composed of virtual saccades, micro-saccades, drifts and tremor (cf. 
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supplementary information chapter 3.5.8). The resulting retinal image animation thus mimics 

in a realistic way the visual effect of natural eye-movement scanpaths recorded in the freely 

behaving animal (Collewijn, 1977 in cat; see also Rucci et al, 2003 in humans). For each 

recorded cell, we tailored a library of four visual stimuli of increasing informational 

complexity, consisting in the full field presentation, at a high screen refreshing rate (150Hz), 

of the following 10s movie clips: 1) a drifting grating (a point in the Fourier space) of optimal 

orientation direction spatial and temporal frequency, 2) the same optimized grating animated 

by a modeled eye-movement sequence, 3) a natural image animated by the same eye-

movement virtual path, 4) a binary dense white noise (high rate high definition) 

corresponding to the highest complexity condition.  

Global statistical cues of this structural complexity are given by scale invariance or 1/f 

spectrum property, already probed for natural scenes (Field, 1987, Ruderman & Bialek, 1994). 

In natural viewing conditions, eye-movements continuously reshape the spatiotemporal 

statistics falling on the retina and the temporal luminance profile feeding one pixel of the 

retina displays a 1/f spectrum (cf. supplementary information chapter 3.5.8), intermediate 

between the spectra of a drifting grating at a fixed temporal frequency (one peak spectrum) 

and of dense noise (flat). Moreover, most of the structural complexity of the visual input, 

relevant for perception, resides in the higher order statistics (or phase spectrum, Bell & 

Sejnowski, 1996) when considered globally, and in the spatial and temporal fluctuations or 

statistical non-stationarities of the signal when considered locally. At the time scale of a visual 

percept, the convolution of eye-movements dynamics with natural scenes imposes some more 

non-stationary to the input, i.e. a continuous update in the input autocorrelation function (cf. 

supplementary information chapter 3.5.8). 

In order to detect local transient correlations and the possible phase locking of response 

fluctuations between individual trials (reliability), a time-frequency wavelet analysis was 

applied to both the recorded Vm and spike trains. The resulting filtering through an array of 

complex Gabor wavelets ranging from 1 to 75 Hz provides a time-frequency-dependent 

measure of signal, noise and Signal-to-Noise Ratio (SNR, cf. supplementary information 

chapter 3.5.9). This time-frequency measure can be understood as the best local temporal 

multi-scale estimation of SNR, reflecting the mutual information between stimulus and 

response. When applied to spike train, SNR can also be considered as an extension of the 

measure of the temporal precision of spikes (Mainen & Sejnowski, 1995) at any precision 

scale (1-75 Hz roughly corresponds here to a temporal scale ranging from 6.6 to 500 ms) and 
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reflects both the absolute spike timing precision and the spike probability across trials. This 

frequency-time representation best illustrates the contrast (examplified in Figure 3.5.1 and the 

top left panel in Figure 3.5.2) between a classical “rate code”, whose SNR energy is found 

restricted to the low frequency domain, and a precise “spike timing code” where SNR remains 

highly significant in the high frequency band (hence the red peaks in the frequency-time plots 

shown in Figures 1 and 2).  
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Figure 3.5.1: Reliability and dynamic of the evoked Spiking and Vm responses as a function of 
visual input complexity. Responses of a Simple cell to 4 types of full screen stimulus animations: a, 
optimal sinusoidal luminance grating, drifting at 6 Hz; b, same grating animated by saccadic and 
fixational eye-movements; c, natural image animated by the same sequence of eye-movements; d, 
dense binary white noise. Panels represent 1 second of spontaneous activity followed by 7.5 seconds 
of evoked activity of (from top to bottom): i) raster of trials spike patterns ii) Post Stimulus Time 
Histogram (PSTH, 3 ms bin width, red); iii) time-frequency Signal to Noise Ratio (SNR) of the spiking 
responses (between 1 and 75 Hz); iv) superimposed trials (black) and average (red) Vm trajectories 
after spike removal; v) time-frequency SNR of the Vm responses. 
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3.5.3. Constrained dynamics in V1: low noise and temporal binary code  

Twenty-two cells were submitted to the four sets of stimulus conditions. Twelve of them, 

recorded long enough to apply the complete series of protocols, were used for the comparative 

quantitative analysis presented below. The dynamics observed either in the input membrane 

potential trajectory or the output spike train in response to the four classes of stimuli are 

illustrated in Figure 3.5.1 in the case of a Simple cell (F1/F0=1.26) and are representative of 

the mean behaviour observed at the population level (see additional illustrations of Signal, 

Noise and SNR in eight other cells, ranging from Simple to Complex, in supplementary 

information chapter 3.5.13 (in attached PDF file). The first result of our study (seen on all 22 

cells) is the repeated observation that response reproducibility across trials increased as the 

input statistics became closer to natural conditions of viewing. In the « natural-like » 

condition, spiking responses displayed a sparse precise spike timing code, allowing for most 

trials the replication of single spikes or sometime doublet or triplet unitary pattern events, 

which occurred at fixed dates during the time course of the movie. A second general 

observation in our data is that the more « natural-like » the input statistics became, the more 

transient the postsynaptic events were and the more temporally irregular the Vm dynamic 

regime was. 
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Figure 3.5.2: Reliability of spiking, Vm and electro-corticogram (ECoG) responses. a, comparison 
of time-expanded epochs of response of an other Simple cell and the simultaneously recorded ECoG 
(bottom), to an optimal grating drifting at 2 Hz (left) and to natural image with eye movements (right). 
Both epochs illustrate periods of strongest spike activation for the cell. From top to bottom: i) raster 
and frequency-time SNR analysis of the spiking response; ii) Vm trials waveforms and SNR analysis. 
iii) single trial example of ECoG activity and the ECoG time-frequency SNR analysis (2 seconds of 
spontaneous activity followed by 3 seconds of visual activation). b, Comparison of the mean (across 
cells) average SNR power between the various stimulus conditions. From top to bottom: SNR spectra 
for spiking and subthreshold Vm activity (n=12), and simultaneously recorded ECoG (n=10). Each 
bar below abscissa expresses the result of a Wilcoxon paired test when comparing two stimulus 
conditions for each frequency (color code for “A” minus “B”, white : “A” significantly higher than 
“B”; grey : “A” not significantly different from “B”; black : “A” significantly lower than “B”, with 
p<0.05). 

 

The increase in the informational bandwidth of evoked cortical activity with the level of 

complexity of the input is apparent at the population level of the recorded cells. For any given 

measurement variable related to neural activity (Vm, spike, EcoG), the population SNR 
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spectrum is obtained by integrating SNR values for each frequency channel over the whole 

movie duration and averaging the individual power spectra across cells (right panel in Figure 

3.5.2). The temporal frequency domain where the contextual input dependency was found to 

be the most striking lies in the beta/gamma range. The average spike-based SNR power 

measured for the « natural scene » condition, in spite of the strong dilution of the measure by 

the sparsening of the discharge, still presents a significant increase in the 10-30 Hz band when 

compared to the « drifting grating » condition. This increase extends, both for EcoG and for 

Vm dynamics, to all the upper range of investigated frequencies (10-75 Hz), i.e. well beyond 

the classical high cut-off frequency of the temporal frequency tuning (around 20 Hz). As a 

general rule, SNRs of Vm and spiking activity (upper panel in Figure 3.5.2), as well as for 

EcoG (bottom panel), are found maximal for the stimuli animated with the rich temporal 

dynamics of eye-movements (« natural scene » and « grating with eye-movements » 

conditions). The key effect, most apparent when one switches from the « grating » to the 

« natural scene» condition is that the increase in the Signal power component is accompanied 

by a concomitant decrease in the Noise component (cf. supplementary information chapter 

3.5.10). For natural-like environments, the trajectory of the membrane potential of single 

neurons become clamped across trials and varies in time in an almost deterministic way for 

several hundred of ms, even for periods when the cell is not spiking (see example in Figure 

3.5.2). A straightforward quantification, obtained by integrating the Noise power spectrum 

between 1 and 75 Hz, gives a divisive ratio of 4.1 +/- 3.6 for spike train and 1.9 +/- 1.2 for 

Vm, when comparing both conditions.  

In the « dense noise » condition, although responses display reliable subthreshold dynamics 

notably in the high frequency range, a high probability of spike failure observed across trials 

results in some cells in the almost complete suppression of spike activity and thus in an 

unreliable behaviour. The most likely interpretation is that « dense noise » does not produce 

enough synergic excitatory correlation to drive the network, and/or triggers dominant 

suppressive shunting effects between excitation and inhibition. This observation supports the 

hypothesis of a cortical filtering mechanism removing uncorrelated noise and preventing its 

accumulation across serial or recurrent processing stages (Deweese & Zador, 2004).  

From this descriptive analysis we reach already two conclusions: 1) V1 network processes 

and encodes visual information across a wider temporal bandwidth than classically admitted. 

2) Furthermore, our data show that Noise is not an independent additive neither a 

multiplicative component to the Signal. Rather, SNR appears to be modulated both transiently 
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over time and on average by the global input statistics: at the Vm level, the closer the input 

statistics to natural ones, the larger the Signal and the lower the Noise.  

 

 

 

Figure 3.5.3: Efficiency, temporal and spike count precision of the code in V1 as a function of 
visual input statistics. Classical information measures35,36 based on the spiking responses are 
averaged across the cells (n=10). A direct information measure is applied to quantify Total Entropy, 
Noise Entropy, Mutual Information and Efficiency, in the single letter word case, for different 
durations of time bins (Temporal precision, Δt), and for different spike count precision of the bin value 
content (ΔNbSpike). a, Efficiency values as a function of Δt and ΔNbSpike for the 4 different stimulus 
conditions. Areas surrounded by a green dotted contour represent domains where the efficiency value 
is significantly lower than that measured for the Natural Image condition (Wilcoxon paired test: 
p<0.05). b, Total Entropy, Noise Entropy and Mutual Information estimates, averaged across cells, 
for the 4 different stimulus conditions (for Δt=2ms and ΔNbSpike=1 (exact spike count value)). c, 
individual cell (dotted line and small symbols) and mean (bold line and large symbol) Efficiency 
values for Δt=2 ms and ΔNbSpike=1. d, mean Efficiency values are plotted as a function of spike 
count precision (left, Δt=60 ms) and of temporal precision (right, ΔNbSpike=1). 

 

To further quantify the precision of the neural spiking code and its efficiency, we have used 

direct classical measurements of information (Rieke & al, 1991, De Ruyter Von stevenink & 

al, 1997, Borst & Theunissen, 1999). Efficiency is computed here as the mutual information 
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normalised by the total entropy of the spike train (Rieke & al, 1991, Borst & Theunissen, 

1999), which differs from the Shannonian definition (mutual information normalised by the 

channel capacity), but rather quantifies the computational efficiency (cf. model and cf. 

supplementary information chapter 3.5.12.2). In our one-letter implementation, this measure, 

studied here as a function of the temporal and amplitude precision of the measure of spike 

activity, allows to estimate the temporal scale and fuzziness under which the code operates 

(Rieke & al, 1991). It represents the fraction of the overall information present in the spike 

train that is available for the system and can be used in the next processing stages. In this 

study, spike-based efficiency is expressed in Figure 3.5.3 as a matrix, function of the temporal 

precision of the sampling of the spike train (bin-width ranging from 2 ms to 60 ms) and of the 

amplitude precision of the spiking response (binned modulo 1 up to modulo 8 events, rather 

than keeping the ad hoc classical single spike event resolution). Entropy, ambiguity, mutual 

information are calculated considering the simplest assumption of a memoryless code, i.e. the 

single letter word case allowing measures on our very small data samples (see Methods). 

In the drifting grating condition, the efficiency is low (ranging from 0.25 to 0.29 for a spike 

precision of 1 as shown in Figure 3.5.3d) and decreases when both the temporal and 

amplitude precisions of the measure increase. This behaviour is expected from previous 

studies on visual cortical code (Kara & al, 2000) and reflects the noisiness associated with the 

rate code: neuronal responses have to be integrated over time and averaged over a population 

of cells coding for the same feature to obtain an efficient (reliable) code. In the natural-like 

condition, efficiency is found to be high (ranging from 0.41 to 0.44 for a spike precision of 1, 

Figure 3.5.3d) and is roughly constant across the different time and response amplitude 

precisions of the measure. This indicates that the precise arrival time of a single spike carries 

most of the information and that the code is almost binary. The grating with eye-Movement 

condition displays also high efficiency values but presents a slight decrease when the 

temporal precision becomes high. Reponses in the white dense noise condition present an 

opposite behaviour to that observed in the drifting grating condition. Efficiency increases with 

the temporal and response amplitude precision of the measure, which is supportive of a 

temporal binary code, somehow less efficient because of a lack of reliability than for the 

natural-like condition. 



 

 

121

3.5.4. From dense input to sparse output through coincidence detection 

The comparison of the Vm input and spiking output dynamic allows us to uncover the various 

mode of information propagation and dissipation imposed by our stimuli set, and by the way 

how the sparse reliable cortical code is generated. The analysis of the mean Vm trajectory 

preceding and following the spike (detailed in Figures 2 and 4) shows that in the natural-like 

condition, the emission of a spike is always correlated with a fast transient depolarizing 

subthreshold event (see <Vm> spike trigger averaging (STA), lower panel in Figure 3.5.4d) 

and an increase in the higher frequencies of the spectral content of SNR(Vm) values (Figure 

3.5.4c). In the natural-like and the drifting grating with eye-movement conditions, the neuron 

is acting like a temporally precise and reliable coincidence detector, whereas in the drifting 

grating condition the neuron works in a firing rate-based integration regime. This conclusion 

is strengthened when looking at a larger spatial scale of integration, as shown in the EcoG 

signal, simultaneously recorded in close vicinity or in the homotopic site in the ipsilateral 

cortex. The SNR(ECOG) is also modulated by the statistics of the visual stimulation and 

extends its significance peaks to higher frequencies for the natural-like condition (lower panel 

in Figure 3.5.2, see also similar evidence based on LFP recordings in the awake cat in Kayser 

& al, 2003). Its variations across conditions reflect mostly the influence of coherent 

synchronous activity in the network whereas uncorrelated activities sources cancel each other 

out (see also Fiser & al, 2004).  
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Figure 3.5.4: Output temporal sparseness vs. input temporal density, and neuronal redundancy 
removing process. a, frequency-dependent measure of temporal sparseness (or density) for each 
stimulus condition measured as the percentage of frame occurrences where a significant evoked SNR 
activation is observed (significance compared to a Rayleigh diffusion process, p<0.05) for Vm and 
spike responses and for each stimulus condition (population analysis, n=12). The bottom indicator 
shows the results of a non-parametric Wilcoxon paired test (significance level: p <0.05), applied for 
each frequency with same convention as figure 3.5.2. b, correlation removing of the cortical process 
measured as the ratio between SNR(spike) vs SNR(Vm) (population analysis). c, Spike trigger 
averaging (STA) on SNR(Vm) time-frequency analysis averaged across cells (n=12). d, Spike trigger 
averaging of the mean Vm profile (population analysis). 
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An important observation in the natural-like condition is that, whereas the spiking output 

response is sparse (meaning that a neuron responds selectively to a very low proportion of 

stimuli frames), neurons exhibit Vm responses to almost each movie frame. This finding 

corroborates previous results on orientation and direction selectivity demonstrating diverse 

and much broader synaptic tunings when compared to the spiking output (Monier et al, 2003). 

It can be generalised also to the domain of temporal frequency tuning as shown in the 

companion paper (Baudot al, 2006). This contrast between dense input (signalled by the 

evoked PSPs) and sparse output (spike), illustrated at the single cell level in Figures 1 & 2, is 

confirmed at the population level, as shown in Figure 3.5.4a : the temporal density or 

sparseness of the response was quantified both at the spiking and membrane potential level by 

the percent of frames eliciting a significant SNR response compared to a Rayleigh diffusion 

process which corresponds to a complete signal scattering (P<0.05, SI. 2). 

SNR reflects the amount of stimulus-driven correlations at the input (seen in the Vm 

recording) and the spike train output levels. The comparison of the cortical informational 

transfer between the different stimulation conditions is illustrated in Figure 3.5.4b, by 

measuring the ratio between the SNR(spike) vs. the SNR(Vm) spectra. Whereas, for the 

drifting grating condition, a synergetic (Schneidman & al, 2003) amplification is observed for 

harmonic frequencies from 3 to 13Hz, in contrast, for natural-like and even more for dense-

noise conditions, cortical processing is strongly acting as a nonlinear filter removing input 

higher-order redundancies, at least the second-order statistics (see companion paper, baudot & 

al, 2006). This redundancy removal process observed at the single neurone integration scale 

can be generalised to the global processing performed by a whole cortical area: since, apart 

for the grating conditions, the presented movie clips were the same for each cell, we cross-

correlated the activities between different cells. This calculus demonstrates that the 

correlations of the input dynamics between recorded cells is higher than the correlation 

between their spiking output in natural-like conditions (data not shown). 

3.5.5. Adaptation to external constraints reduces noise and redundancy  

In this section, we reexamine the implications of our observations in the wider framework of 

the computational literature by introducing a formal definition of ordered redundancies. Our 

results invalidate the view that neurons are independent channels with signal and noise 

considered as independent components, for two reasons. First, noise is an intracortical 

emergent component modulated by the input statistics. Second, the mutual information 

between the neuronal response and the input is equal or even lower in the natural-like 
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condition when compared with the drifting-grating condition, in spite of the fact that the 

information content is much higher in the former than in the latter. This paradox implies that 

cortical inter-neuronal redundancies change as a function of the stimulus context (Reich & al, 

2001).  

 

Let us consider V1 network activity as the state of a system S , defined by the sampling of 1n  

individual neuron responses during 2n  discrete time bins, hence the n  variables nSSS ,...,, 21  

(with 2*1 nnn = ) taking M  possible values (1 or 0 for a spike based code). The Shannonian 

entropy of the system (V1) is given by: 

 ∑
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The entropy of a system is less or equal to the sum of the entropies of its constitutive elements. 

Following Shannon and Weaver (1949) and Atlan (1979), we define: 

))(1)(()( 0 SRSHSH −=  (1), where MnLogSH 20 )( =  and )(SR  is the redundancy present 

in the system. )(0 SH , the system capacity, a constant which depends only on the intrinsic 

dimensions of the system S  and is the maximum possible entropy of the system. The 

development of equation (1) allows to decompose redundancy into first and higher order 

terms (see Atick, 1992): 
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where each )(1 SRi>  can be expressed independently of the total entropy as a renormalized 

sum of mutual information between i  elements of S  given the others (cf. supplementary 

information chapter 3.5.12.1 & 2 and figure 3.5.5b). Entropy can thus be intuitively 

understood as quantifying the whole world of possible microscopic states minus each 

constraints imposed by elementary interactions (elementary mutual informations, ponderated 

as a function of the level of sharing of this interaction in the whole population). For simplicity, 

those elementary interactions can be understood as elementary knowledge, monade or beliefs, 

whereas the rest is just uncertainty. A fundamental interest of this decomposition is to stress 

the microscopic nature of entropy under the reasonable discrete assumption, whereas it is 

classically considered as a macroscopic variable. 

 

This formalism can be applied to any system, physical or biological, that can be decomposed 

into elementary probabilistic quantized constituents. It allows to compare the photon flow 
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structure falling on the retina to the cortical activity structure. )(SH  quantifies the number of 

degrees of freedom of the system, its uncertainty, whereas RH 0  quantifies the constraints 

present in the system. The redundancy component HRH 0  accounts for the spatiotemporal 

statistical dependencies and the structure of the environment, and minimising this “contrast” 

function is the general aim of ICA algorithm (Jutten & Herault, 1991, Comon, 1994). It 

provides the only information available in order for the system to learn, to evolve and to « 

perceive ». HRH 0  is also equivalent to negentropy: to paraphrase Schrödinger’s adage (1944), 

“organism feeds upon environment redundancy”, which allows the system to dynamically 

maintain its inner order/structure in a homeostatic way. Furthermore, HRH 0  gives a formal 

definition of spatial and/or temporal memory (Ashby, 1967).  

Nevertheless the definition of entropy does not catch the intuitive concept of structural 

complexity, relevant in biology and perception, for which several complementary measures 

have been proposed (Chaitin, 1977, Bennett, 1985, 1988, Bialek & al, 2001). We propose in 

the supplementary results a statistical measure of structural complexity similar to Algorithmic 

Logical Depth (Bennett, 1985, 1988), which naturally arises from the redundancy 

decomposition and measures the dispersion of the redundancy across different orders (cf. 

supplementary information chapter 3.5.12.3 & 4).  

Mutual information );( SEI  characterizes the interaction between the system S  and its 

environment E , and is defined by: 

 )/()()/();( 0
1

00 ESHRHSHESHRHHSEI HSS

n

i
iSSS −−=−−= ∑

=

.  

The maximisation of Mutual information may provide a logical and general formal definition 

of adaptation, applicable to the interaction between biological systems and their environment. 

Indeed, this measure is a statistical approximation of the average mutual Algorithmic 

complexity ( );():( SEISEK
S

≈ , Adami & Cerf, 2000). When applied to the genomic code, 

this complexity measure increases while the genome of a given species adapts to its 

environment (Adami et al, 2000). Considering the present case of cortical systems, the 

maximisation of mutual information has already been proposed as a principle of unsupervised 

self-organisation and adaptation (Laughlin, 1981, Linsker, 1982, 1988, Atick, 1992, Nadal & 

Parga, 1994, Bell & Sejnowski 1995, 1996). We propose that this principle result in the 

progressive build-up of environmental memory by progressively maximizing the determinism 

or reproducibility of the system dynamics conditional to its environment (min( )/( ESH )). 
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The second direct signature of this process is the reduction in redundancy, which is 

synonymous of a specialisation of the constitutive entities and of genesis of functional 

diversity (e.g. maximally diverse and selective RFs). Both correlates are the core of our 

experimental findings.  

 

The redundancy reduction sustained by the adaptation to the sensory input implements a 

computation that can be described phenomenologically, on the basis of our empirical results, 

in two steps:  

- First, the sparse code observed in natural-like condition imposes that the 1R  component is 

huge, and thus suggests that the redundancy increase imposed by V1 overcompletness affects 

only the 1R  component. In contrast HR  which can be interpreted as the signature of cortical 

assemblies (see also Martignon & al (2000)) and for at least its second order statistic 

component, appears to be selectively reduced in natural-like conditions (figure 3.5.4). As 

originally proposed by Field (1987), this reduction reflects a simple dissipative computational 

mechanism, supported by the neuronal RFs function, that transfers HR  (analogous to free 

energy) into 1R  (analogous to internal energy). The companion paper (Baudot et al, 2006) 

details some of the neural RFs mechanisms responsible for this filtering process.  

- Second, the cortical transfer function filters out independent sources, and thus also the 1R  

component, by signalling only at the spiking output level the coincidences (notaby high-order) 

present in the input.. A correlate can be found in our data by the observation of quasi silent 

spiking states evoked by white-noise input. This 1R  component of the input becomes a lost 

information since it is no longer represented in the output. Consequently, this results in 

equivocation in the information transfer, and represents the entropic cost of observation or 

memory formation or erasing (Figure 3.5.5). It further point out the fundamental 

irreversibility of cortical sensory computation, and the apparent natural Maxwell-demon 

process operated by the cortex (Bennett, 1982, 2003, Adami and Cerf, 2000) 

We propose that this process, which can be seen as a dissipation of input constraints ( HRH 0 ), 

operates iteratively across successive cortical processing steps, and thus achieves a 

spatiotemporal progressive simplification (and abstraction) of the structural complexity of the 

visual scene representation (see conclusion and Figure 3.5.5c). Of course, given the colossal 

logical depth of natural environments, cortical representations always present some HR  

component or remaining correlations (Fiser & al, 2004), which may be reflected in the EcoG 
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signal and SNR increase notably in the Beta-Gamma range found for natural scenes (figure 

3.5.2, Kayser & al, 2003).  

Moreover, as already advocated by Olshausen & Field (1996), a representation of the input in 

an overcomplete basis using an individual low entropy code leads invariably to a 

minimization of HR . Since HR  depends on the low entropy individual code (sparseness) and 

is inversely proportional to the cortical capacity of V1. ( 0
1

/))()(( HSHSHR
n

i
iH ∑

=

−= ), we 

propose that cortical capacity 0H  is a HR  removing capacity, thus defining a computational 

capacity. This mean that in order to model reliably the real cortical processing, a 

computational power far over those currently used is probably necessary. This computation 

intrinsically implement a cognitive process as logically emphasised by G. Chaitin who 

proposed that “understanding is compressing”, or discovering the structure, that encompass 

Gestalt’s simplicity and Helmholtz’s likelihood principles of perception (Chater & Vitanyi, 

1996, Chater, 1996). In the field of perception, achieving through computation the less 

redundant and less noisy representation of our intrinsically probabilistic environment (which 

can be thought has a hard optimisation problem) could be the correlate of “percept” 

emergence. We emphasize that this adaptation framework encompasses the concept that 

functional redundancy confers noise resistance properties (Von Neumann, 1956), and 

stochastic resonance paradigm (Collins & al, 1995). Noise is not a nuisance; it’s a prerequisite 

for adaptation, and given the finite capacity of living systems, there is an apparent 

compromise between specialisation and adaptability. 
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Figure 3.5.5: Model of cortical computation and dissipation of input-driven complexity. a, 
Schematic interpretation using Venne diagrams of the entropies and mutual-information between the 
stimulus and V1 response for the different experimental conditions. V1 entropy, represented by the 
Yellow disk is arbitrarily maintained constant across conditions. The interpretative value of the 
diagram is limited to the variation across conditions of Noise, Mutual Information and stimulus 
Entropy (blue disk). Ambiguity (noise) or equivocation (representational failure) respectively arise if 
the dimension of the stimulus is lower (left, “grating”) or larger (right, “dense noise”) than the 
network capacity. b, Representation using Venne diagrams of the decomposition of entropy and 
ordered redundancies. Each iR  is a renormalized sum of mutual information between i  elements 
knowing the others. c, Model of cortical computation and dissipation of complexity along a hierarchy 
of visual cortical processing steps75. At each stage of integration, higher order redundancies are 
transferred into first order redundancies that, because of their statistical independency, do not 
propagate further to the next cortical area. This dissipation process represents the entropic cost of the 
cortical computation. Note the decrease in the logical depth of the environmental representation 
across cortical stages. 

3.5.6. Recurrent network model of cortical computation  

Our observations in natural-like conditions validate the prediction made by De Ruyter Von 

Steveninck & al (1997) based on the observation of low noise spiking responses to Brownian 

velocity stimulus in the fly H1 neuron. Further more, since reliable responses have already 

been observed in subcortical structures (Aertsen & al, 1979, Rieke & al, 1995, Reinagel & al, 

2000, Jones & al, 2004) as well as in the auditory primary cortex (Aertsen & al, 1979, 

Machens & al, 2004), we propose that a precise temporal code and highly reproducible 

constrained network dynamics may be the general signature of active adapted cortical states. 

This principle may generalise to motor cortex, since ultra-sparse reproducible code has been 

found for complex highly reproducible (logically deep) motor pattern in bird motor cortex 

(Hahnloser & al, 2002). This principle may generalise to motor structures in birds and 

mammals, since ultra-sparse reliable code has been found for complex (high logical depth) 

and highly reproducible patterns in motor and song production areas (Vaadia et al, 1995; 
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Hahnloser & al, 2002). Further more, this principle holds for macroscopic spatiotemporal 

scales of cortex activation observed using fMRI on Human, where complex natural scene 

induce reliable responses dynamics, distributed over the whole cortical visual and auditory 

cortical areas (Hasson & al, 2004).  

Applying the logic of Entropy maximisation under external constraint (Dewar, 2004, 2005), 

we interpret the highly reproducible dynamic states code we found in V1 as the result of 

evolution/adaptation in a highly structured environment. The only source of constraints and 

information is the environment itself, and the code operating in V1 can be considered as an 

external code. The novel interpretation that we give of Noise is that its contextual dependency 

should be taken as an indicator of the number of cortical states that are authorized by the 

external environmental constraints. In natural-like conditions, the cortex can only occupy a 

low number of states, and the fixed Vm trajectories observed here directly reflects reliable 

microscopic network states. Those reliable microscopic states are further probing the 

functional relevance of the highly specialised V1 microcircuits or "cortical songs" described 

in spontaneous activity in-vitro and in-vivo (Ikegaya & al, 2004). Attention and reward 

expectancy processes, which have been shown to promote the visibility of synfire chain 

patterns (Vaadia et al, 1995; Riehle et al, 1997), can be considered as a form of contextual 

constraints that may modulate the SNR and the information propagation (SI. 5).  

In contrast, in the case of low-dimension input such as drifting gratings, the variability 

observed in subthreshold dynamics and spiking activity reflects the large number of states 

made possible by the lack of constraints in regards with the computational capacity of the 

network. In the absence of external constraints, the ongoing activity pattern reflects the inner 

structural connectivity of the network. In the absence of external drive, the ongoing activity 

pattern will span the ensemble of microstate which averaging reflect the dominant relational 

recurrency in the network (i.e., the horizontal connectivity and orientational maps, Arieli et al; 

Kenet et al , Tsodyks & al, 1996). 

Several additional theoretical arguments can be made which strengthen the pivotal role of 

network recurrence in modulating ongoing activity and extracting progressively redundant 

components from the environmental input. First, our study demonstrates that internal ongoing 

activity is not an additive component to the signal, but is in competition with externally 

imposed states. The dependency of this balance on the level of previous adaptation to 

environment is a well known property of recurrent networks. Recurrent architectures 

(Hopfield, 1982), such as in Boltzmann nets (Hinton & Sejnowski, 1986) or Helmholtz 

machine (Dayan, Hinton, Neal, Zemel, 1996), implementing a distributed non-linear 
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dissipative memory, present the remarkable capacity of self-generating spontaneously learned 

states in absence of input or in presence of unlearned input. 

Second, recurrent architecture can account for the temporally dense Vm synaptic input 

activity that we have observed in natural-like conditions.  

Third, models of recurrent excitatory-inhibitory networks endowed with plastic Hebbian-

antiHebbian connections implement an input redundancy reduction leading to the emergence 

of realistic Gabor-like receptive fields (Foldiak 1990, Harpur & Prager, 1996, Deco & Para , 

1995, Amari & al, 1995).  

Fourth, the observed deterministic neural assemblies integrating input in coincidence 

detection mode and responding using a temporal code are directly predicted from a 

generalisation of the infomax principle to the temporal domain in recurrent network 

(Wennekers & Ay, 2005, with time dependent plasticity). 

Given the fact that inhibitory circuits remain intrinsic to a given area, the global topology of 

the visual cortical network (Felleman, Van Essen, 1991) offers multiple instantiations of 

recurrent E/I generic modules able to learn the input structure/code and deliver a less 

redundant simplified and more abstract representation available for the next processing step 

(Figure 3.5.5c). The information maximisation may provide a computational substrate to the 

language of though and modularity of mind hypothesis (Fodor 1987, Fodor & al, 1988), and 

overcome the old nature vs nurture debate. Indeed, the mechanisms of efficient dissipation 

exposed here suggest a unified unsupervised statistical framework for genetic adaptation and 

cognition ensuring living system’s stability and enduring. We’ll see in the last chapter, that 

this computation is compatible with (and probably intrinsically the result of) the quantum 

decoherence and einselection phenomena that is governing system/environment interactions 

(Zurek, 2003).  

3.5.7. Material & Methods 

3.5.7.1. Preparation and recordings.  

Cells in the primary visual cortex of anesthetized (Alfathesin) and paralyzed adult cats were 

recorded in vivo using sharp electrode recordings (n=12, average Vrest=-67mV, 0nA) as 

described in chapter 3.3. The electrocorticogram (EcoG) was simultaneously recorded using 

silver electrodes positioned homotopically or close to the recording site. Data processing and 

visual stimulation protocols used in-house software (G. Sadoc, Elphy, Biologic CNRS-

UNIC/ANVAR). 
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3.5.7.2. Visual stimulation.  

Stimuli were displayed on a 21” CRT monitor with a 1024*768 pixels definition and a 150 Hz 

refreshing rate, with a background luminance of 5 cd/m2. RFs were mapped using sparse 

noise reverse correlation analysis and classical tunings were determined by automated 

exploration. spikes. The mean luminance and contrast of each movies were equalized (so that 

each conditions only differ in their higher order statistics). Each full field movie was 

presented at least 10 times (except in 2 cells rejected for direct information measure) for a 10 

second duration and interleaved by 2 seconds. For natural-like condition we used a high 

definition natural image (2048*1536 pixels) animated virtual eye movement sequence 

(chapter 3.5.8). White noise consisted in a high rate sequence (13.3 ms refresh) of high 

definition full field (50*50 shaker board of 0.39° pixels) binary dense noise. To measure the 

first-order receptive field kernel, each trial lasted for 80 seconds.  

3.5.7.3. Stimulus-locked time-frequency analysis.  

Spike trains and Vm waveforms are convolved for each trial with an array of complex-valued 

normalized Gabor function (two period) ranging in frequency from 1 to 100 Hz (1 Hz steps). 

This time-frequency decomposition allows to extract relevant signal/noise measures: Noise 

power, Signal power, Total Signal power, Signal to Noise Ratio (SNR), Coherence, and a 

time-dependent local estimation of an upper bound of Mutual Information rate (chapter 3.5.9). 

For a given frequency (f) and a given time (t), the time-frequency signal spectra is defined as 

iiest ftSftS ),(),( = , noise spectra as 
iiii ftSftSftN ),(),(),( −= , and  SNR spectra 

as ),(/),(),( ftNftSftSNR est=  (angular brackets  indicate the average across all trials 

i, and straight brackets  indicate the modulus). Signal(f), Noise(f), and SNR(f) power 

spectra are obtained by integrating the respective squared functions over time.  

3.5.7.4. Direct information measures:  

Direct informational measures were computed using the classical estimation technique (Rieke 

& al, 1997, de Ruyter von Steveninck, 1997, Strong & al, 1998, Borst, A. & Theunissen, 1999, 

Vinje & Gallant, 2002). Spike trains were discretised with different bin temporal size 

(Δt=temporal precision) and with an additional new parameter, i.e. the spike count precision 

(ΔNbSpike). Classical finite data bias correction and extrapolation for an infinite number of 

repeats were applied to entropy computation (Strong & al, 1998, Vinje & Gallant, 2002), and 
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we checked resulting values against the Ma entropy lower bound estimate (Strong & al, 1998, 

Vinje & Gallant, 2002).  

3.5.8. Simulation of saccadic and fixational eye-movements scanpath 

3.5.8.1. The modeled scanpath spatiotemporal dynamic 

In order to simulate in a realistic way the continuous changes in the retinal flow imposed by 

eye-movements during a natural scanning of visual scenes, we built a model of the retinal 

image displacement whose kinematic parameters were fitted on the basis of measurements 

previously made in the freely behaving cat (Collewijn, 1977; Olivier & al, 1993, Eizenman & 

al, 1985). Eye-movements are classically decomposed in intermittent ballistic movements, 

saccades, of large but variable amplitudes, separated by fixation episodes (figure 3.5.6).  

During fixation, the eyes are not still, their mean position drift slowly in time with 

superimposed high frequency and very low amplitude tremors (in the 40-100hz range), as 

well as microsaccades (although the latter type of movement occurs rarely in the cat (Kording 

et al, 2001)). These micromovements avoid bleaching of photoreceptors, maintain visual 

perception from fading (Martinez-conde & al, 2004, 2006), and may even serve to increase 

visual acuity (Rucci et al, submitted). One characteristic of fixational drift and tremor 

dynamics is the 1/f² shape of the temporal power spectrum (Eizenman & al, 1985), which is 

reproduced by our model (Data not shown).  
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Figure 3.5.6: Spatial and temporal profile of the modeled eye-movement scanpath. a, Spatial 
trajectory of the modeled eye movement sequence with an enlargement presenting drifts and tremor 
fixational movements. b, Comparison of the modeled spatial scanpath with one eye-movement 
scanpath obtained in Human (taken from Rucci & Desbordes, 2003). c, Temporal profile of the 
modelised eye-movement sequence and the various eye-movement components temporal succession 
(bottom). 
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Figure 3.5.7: temporal profile, spectra and non-stationarity of the luminance falling on the retina 
in the four conditions of stimulation. a, Temporal profile of the luminance of one screen pixel 
representing roughtly the luminance waveform falling on one photoreceptor in our four conditions 
and their respective time-frequency spectra (1-75Hz). b, Stationarity of the luminance profile: the 
mean standard deviation of the autocorrelograms calculated at various multiple epochs of the 
luminance profile (window sliding every ms) as a function of the window duration used to calculate 
the autocorrelograms. Stationarity (of 2nd order statistics) is achieved when the graph reach the 0 
value. b, Power spectrum of the temporal profile of luminance obtained for the four condition of 
stimulation (calculated by time-frequency wavelet analysis for one example pixel).  
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The eye-movement animation of the natural environment have a drastic effect on the 

spatiotemporal statistics of the luminance profile falling on the retina, which, as a result, 

strongly departs from the ones classically imposed by experimentalist in neurophysiology 

(drifting grating and dense noise condition in figure 3.5.7a,b,c). The temporal statistic 

modulation by the eye-movements can be exemplified by two very global affected parameters: 

the temporal spectra of the luminance falling on one retinal photoreceptor (approximated to 

one image pixel figure 3.5.7) and the stationarity (or the level of fluctuations) of the spectra 

(figure 3.5.7b). The temporal spectrum of the luminance of eye-movement animated stimuli 

present a 1/fγ shape falling between the flat spectra of the white noise and the one impulsion 

spectra of the drifting grating. The γ values obtained for natural-like condition are around -1.8 

(-1.79 in figure 3.5.7b) which is close to a Brownian signal value, although, as detailed 

notably in the following chapter, this signal originate from a more structured mechanisms (or 

algorithm), and probe the existence of long-time correlations (or memory) in the visual 

natural-like input signal. The peculiar non-stationarity (wide-sense) of natural-like input 

signal, roughly demonstrated in figure 3.5.7b showing that autocorrelation function (or 

spectra) has to be measured on very long time windows (>3s) in order to be approximately 

reproducible, is further indicating the probable existence of inner fine structure (or higher 

order redundancies) in the signal. 

3.5.8.2. Model of saccades 

Saccade amplitudes: the amplitude AS was chosen randomly from the distribution 

established for saccadic and head gaze movements by Collewijn (1977) in the freely behaving 

cat (Figure 3.5.8a). 

Inter-saccadic intervals: The duration between two successive saccades was chosen 

randomly from the distribution of intersaccadic intervals reported by Collewijn (1977) (Figure 

3.5.8b). 
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Figure 3.5.8: Saccade and head movement amplitude and intersaccadic interval duration 
distributions. Redrawn from Collewijn (1977).  
 

Saccadic duration: an estimate of the duration of the saccade (Ds) was predicted on the basis 

of Collewijn’s observations, by using the best linear fit between saccadic amplitude and 

duration (Pearson correlation r = + 0.81): DS  = 1.9 * AS+ 63 (where D is expressed in ms and 

As in steradian degrees (°) of visual angle). 

Spatio-temporal profile: the temporal profile of saccadic speed is approximately Gaussian. 

We modelised the saccadic spatio-temporal profile by the following sygmoïdal function F(t): 

 ( ))2/*(/()2(1/)2()( tDD
SSS

SSeAAAtF −−−+++−= λλλ  (1), where λ  is a  constant threshold fixed 

at 5%. 

Saccadic direction: The direction of the movement was chosen randomly from a uniform 

[0°,360°] distribution. Since most saccadic paths present small drifts of directional angle 

during their execution (see Yarbus, 1967, Rucci & al, 2003). Since they are not well 

documented in the literature an adhoc sinusoidal variation of direction during the drift path 

was fitted visually to real recordings: )/*.2sin(*)( SDttf τπθΔ= (2), where the amplitude in 

direction change ( θΔ ) was chosen randomly between 0° and 4°, and the fraction of time 

during which it operated (τ ) was chosen randomly in between 0.5 and 1 (relative to the full 

saccade duration).  

3.5.8.3. Model of fixational movements: Drifts 

Drifts amplitude: the drift amplitude was chosen randomly from a Gaussian distribution with 

a mean of 1.21° and a standard deviation of 0.63°, corresponding to measures obtained in the 

cat by Grantyn & al (1993). 
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Drifts duration: the duration (DD) was derived from the best linear fit with the drift 

amplitude (AD), on the basis of Grantyn & al (1993) measurements: DD = 41,7 * AD + 53,7  , 

where DD is expressed in ms and AD in °. 

Spatiotemporal profile : We used the same sigmoïdal function (1) as previously. 

Drift direction: The direction of drift movement was chosen randomly from a uniform 

[0°,360°] distribution. Drift paths present smooth and very large variations of direction angle 

(see Yarbus, 1967, Rucci & al, 2003). Since they are not well documented in the literature the 

same adhoc sinusoidal variation of direction  during the drift path (2) was fitted visually to 

real recordings, but with direction change ( θΔ ) chosen randomly between 0° and 29°. 

3.5.8.4. Model of fixational movements: Tremors (during drifts) 

Tremors amplitude: Tremor eye-movements are typically of miniature amplitude, ranging 

from 0,005° to 0,017° (0,006° to 0,013° in (Yarbus, 1967); with a mean amplitude of 0.007° 

in the cat (Pritchard, 1960).The simulation of tremor is constrained by the spatial pixel 

discretization of the screen (1024*768 pixels) and the viewing distance imposed to the cat (57 

cm). In the present experiments, the smallest programmable distance between two 

neighbouring pixels was 0.039 °.  

Tremor modelisation and spectral characteristics: as a compromise, we chose to remove most 

of the tremor energy due to low amplitude micromovements while keeping its highest 

amplitude components. This was achieved by using a white noise signal and band-passing it 

through a Bessel filter, between 40 and 80 Hz (Eizenman & al, 1985). The obtained sequence 

movement was then discretised, using only 3 possible inter-pixel amplitude values (-1, 0, 1), 

and low-pass filtered at a frequency half the frame refreshment rate (75Hz) in order to avoid 

aliasing. One should note that the resulting impact of tremor on the full eye-movement 

sequence was underestimated when compared to realistic eye-movement trajectories. 

Direction of tremors movements: four possible direction values were chosen randomly: 0, 

90, 180, 270 °, according to the limiting pixel grid of the screen. 

3.5.8.5. Model of fixational movements: microsaccades 

Microsaccades amplitude: microsaccades are particularly rare in cats (Kording & al, 2001) 

and our modelised eye movement sample sequence contains only 3 of them. The 

microsaccade amplitude was chosen randomly from a Gaussian distribution with a mean and 
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standard deviation set both at 1°, thresholded for amplitudes less than 0,02°, as found in 

Humans (Ditchburn,1973). 

Inter-microsaccadic intervals: microsaccades were positioned at the end of a tremor.  

Microsaccadic duration: an estimate of their duration (Dms) was predicted on the basis of 

Ditchburn’s observations in humans (1973), by using the best linear fit between 

microsaccadic amplitude and duration: Dms = 2.25 * Ams + 20 , where Dms is expressed in ms 

and Ams in ° of visual angle. 

Spatiotemporal profile: the microsaccadic spatio-temporal profile was modelised by the 

same sigmoïdal function as previously (1). 

Microsaccades direction: The direction of saccadic movement was chosen randomly from a 

uniform [0°,360°] distribution. Variation of angle during the microsaccade was modelized as 

for saccades. 

3.5.9. Time-frequency estimation of Signal-to-Noise Ratio 

3.5.9.1.  General aims: atomic uncertainty decomposition and higher-order statistics 

revealing 

Time-frequency representation allows the analysis of non-stationary signal containing 

multiple elementary components, to which traditional Fourier transform is not adapted. Time 

information is in fact encoded in the phase component of the Fourier transform, which is 

ignored by the energy spectrum. For non-stationary signal, a time and frequency 

representation is necessary to preserve the signal information. Time-frequency estimations are 

inherently bounded by the Heisenberg principle, and Gabor function, thanks to its Gaussian 

attenuation, minimizes conjointly this spectral and temporal uncertainty (Gabor, 1946). 

Moreover, time-frequency decomposition by Gabor functions can be understood as a multi-

scale decomposition of the signal into a superposition of atomic signal elements, to which the 

ordered redundancies, entropies and complexity measurement previously introduced (and 

further detailed) can be applied. 

From the physiological point of view, organisms rarely have the opportunity to compute the 

input statistics on long-lasting data sample to build their belief and behaviour; perception and 

action are mainly “on-line” computation and based on much more transient and short term 

statistics than classically considered. This on-Line computation implies very rapid or short 

term adaptation of the cortical network to those transient input correlations, wich is probably 
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simpler and easier to describe as short-term or working memory. Further, it appears obviously 

that those transient correlations are an essential component of the outside world “pertinent” 

information, and many organisms behaviour, such as gaze exploration, vibrissae sweeping, 

sniffing, or going to the museum, can be interpreted as “strategies” to increase those transient 

input correlations (or the redundancies and the logical depth of the input). 

3.5.9.2. SNR, signal, noise and coherence time-frequency estimations 

We thus use a classical wavelet decomposition method to estimate the instantaneous spectrum 

(the local second order statistics or fluctuations of a signal). Uncertainty in this time-

frequency representation is related via the Heisenberg inequality and depends in this 

representation only on the frequency 1.2 ≥= cstefσ . The frequency uncertainty increases as 

the analysis frequency grows, and the temporal uncertainty decreases as the analysis 

frequency grows. Spike trains and subthreshold Vm waveforms are convolved for each trial 

(one repeat of the same movie presentation) with an array of complex-valued Gabors 

( ))(, τftΨ :  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
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,
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ττπτ ttfifft  

To improve the readability of the time-frequency representation, the Gabor decomposition 

presented here is largely oversampled: the Gabor filter bank is non-orthogonal with frequency 

ranging from 1 to 100 Hz with 1 Hz linear steps, and the temporal sampling is of 1 ms. To 

allow a good temporal resolution (important for spike precision estimation), the Gabor 

function used in this example study had a Gaussian variance window of two Gabor period 

( 2.2 =fσ ) and was normalized to an energy unity. The convolution of a signal )(τX  with 

this wavelet function is of the form:  

τττ dXftS ft∫
−∞

∞+

∗Ψ⋅= )()(),( ,   

, where ∗  denotes the complex conjugate.  
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Figure 3.5.9: Time-frequency Signal-to-Noise Ratio estimation. a, another simple cell example of 
spiking and Vm response (F1/F0 = 1.84, different from figure 1 and 2) to grating animated by eye 
movement, and a schematic principle of Wavelet decomposition (wavelet are complex Gabor 
normalised to energy unity). b, Schematic principle of the measure of total signal, evoked signal, noise 
and SNR from the time frequency analysis. The red points represent the trials results of the wavelet 
convolution in the complex plane for one particular time and frequency. The Blue point represents the 
average trials vector which modulus gives the estimated signal. Noise is measured as the average 
distance of trials to this mean. c, The results of those measure when applied to the Vm responses 
presented in a. 
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From this time-frequency decomposition we derive several time-frequency dependent 

measures, signal power, noise power, total signal power, Signal-to-Noise Ratio (SNR this 

paper will mostly focus on), instantaneous coherence (phase dependent), and global coherence 

(phase independent). This method can be understood as an extension to the time-frequency 

domain and multiple frequency domain of the signal and noise estimation proposed by Croner 

& al (1993). For a given frequency and a given time, we define ),( ftSi  as the complex result 

at time t  and frequency f  of the response and wavelet convolution for the trial i . The signal 

power estS  of the stimulus-locked waveforms is then measured as the squared modulus of the 

trials average vector of the wavelet transform in the complex domain (figure 3.5.9): 

iiest ftSftS ),(),( =  

Where angular brackets  indicate the average across all trials and straight brackets  

indicate the modulus. This measure when squared represent the energy of the stimulus related 

signal at a given frequency and time. The Noise power ),( ftN  is measured as the average 

distance between the trial vector and the trials average vector of the wavelet transform in the 

complex domain: 

iiii ftSftSftN ),(),(),( −=  

The total signal power ),( ftStot  is measured as the average modulus of the trials vector: 

iitot ftSftS ),(),( = . 

Signal to Noise Ratio ),( ftSNR  is measured as: 

),(/),(
),(),(

),(
),( ftNftS

ftSftS

ftS
ftSNR est

iiii

ii
=

−
=  

),(
),(

),(
ftN
ftS

ftSNR est=  

We made the important and reasonable assumption, only involved in the spike train 

decomposition, that in the case where no activity is evoked in all the trials at a given time and 

frequency ( 0),( =ftSi , i∀ ) the SNR value is nul. 

Signal, Noise, and SNR power spectra are obtained averaging the function over time (the 

squared function in the case of SNR). The different power spectra are defined by: 

( )∫ −= end

start

t

t startendSNR dtttftSNRfF )/(),()( 2 , 
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( )∫ −= end

start

t

t startendestSignal dtttftSfF )/(),()( 2 , 

( )∫ −= end

start

t

t startendNoise dtttftNfF )/(),()( 2 . 

Those measure represent the average energy of the signal, noise and SNR at a given 

frequency. 

A Phase dependent coherence between pairs of signals recorded simultaneously is given by: 

iyiyixixi

yixi

ftSftSftSftS

ftSftS
ftC

),().,().,().,(

),().,(
),(

**

*

=  

This measure close to what exposed in Lachaux & al (1999), quantifies the level of 

synchronous activity in the two traces.  

A two signal ( )(tX  and )(tY ) global coherence (phase independent) measure is given by: 

tyiyitxixi

tyixi

ftSftSftSftS

ftSftS
fC

),().,(.),().,(

),().,(
)(

**

*

=  

This measure, corresponding to the classical coherence function, but estimated using time 

frequency wavelet decomposition instead of a Whelch or other fixed time window Fourier 

decomposition, is measuring the level of similarity between two traces, as well as the level of 

linearity of the relation between the two traces. 

3.5.9.3. SNR response comparison to a Rayleigh diffusion process: significance test 

SNR measure significance is directly given by a comparison with a Rayleigh diffusion 

process, which corresponds to the most drastic signal fading process. The central limit 

theorem holds that, if there is sufficiently much scattering of the external input by the nervous 

system diffusion process, the channel impulse response will be pure noise (stochastic) and 

thus well-modelled as a Gaussian process. In this case without dominant component to the 

scatter, such a process will have zero mean and phase evenly distributed between 0 and 2π 

radians in the complex plane. The power, or envelope, of the channel response would 

therefore be Rayleigh distributed. The result of this process would have a cumulative 

Rayleigh distribution function, given by: 
⎟
⎠
⎞

⎜
⎝
⎛ −

−=
2).(

2
1

1)( σ
x

exf  that gives direct significant 

threshold values to our SNR power estimations.  
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3.5.9.4. Local time estimation of mutual-information 

We propose a mutual-information upper-bound and time dependent estimation based on the 

classical Shannonian Gaussian channels. To do so, we consider that the neuronal response and 

neuronal noise have Gaussian probability distributions in the frequency domain for each time 

and that neuronal noise is additive. The information rate is given by (Shannon, 1948, Borst & 

Theunissen, 1999): dfftSNRLogtI endf

fm ))²),((1()(
0

2 += ∫   (figure 3.5.9). The possible 

presence of statistical dependencies or redundancy between the various times implies that the 

integral over time of this measure gives an upper bound estimate of the mutual information 

(that may be rectified by a redundancy estimation).  

3.5.10. Evoked signal, noise, and total signal estimations as a function of the input 

complexity 

 
 

Figure 3.5.10: Evoked Signal, Noise and total Signal Power spectrum estimations for Vm, spiking 
and ECoG responses in the four conditions of stimulation. Each bar below abscissa expresses the 
result of a Wilcoxon paired test when comparing two stimulus conditions for each frequency (color 
code for “A” minus “B”, white : “A” significantly higher than “B”; grey : “A” not significantly 
different from “B”; black : “A” significantly lower than “B”, with p<0.05). 
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3.5.11. Constrained cortical state and high SNR processing: a potential correlate 

to attentional and behavioral states 

The internal ongoing states reflecting highly correlated cortical dynamic (Lampl & al, 1999), 

and probably produced by the cortical recurrence (Holcman & Tsodyks, 2006, Kenet & al, 

2003) is manifested in intracellular recordings through stereotypical bistable Up and Down 

state synaptic activity sequences (Cossart & al, 2003, Shu & al, 2003) notably during rest or 

sleep phases (Steriade & al, 2001 for review). Those reverberating activity waves punctuated 

by silence states have been proposed to implement working memory states (Cossart & al, 

2003). A common view considers that those internal reverberating activities reflecting “States 

of Mind” and expressing brain's autonomous internal context (Arieli, 2003, Fiser & al, 2004) 

are corrupting sensory responses and are further enhanced during vigilant states (Destexhe & 

Contreras, submitted). We recorded three cells presenting this peculiar spontaneous Up and 

down stereotyped dynamic during those particularly stimuli-irresponsible and highly-

correlated cortical states (figure 3.5.11, cells analysed in this study including cell c of the 

figure 3.5.11 were recorded in more responsive cortical states for most of them). In the three 

cells, natural image animated by eye-movement stimulation induced long lasting Up-state 

responses. In contrast, for those peculiar bistable cortical state recordings, under dense-noise 

stimulation, two of the three cells presented a persistent UP and Down state internal dynamic 

unaffected by the sensory stimulation. In natural-like condition, the ECoG simultaneously 

recorded presented also an enhancement of high frequencies (ranging from 10 to 80 Hz 

depending on the cell) and an increase of the stimulus-locked trial-to-trial reliability of the 

overall ECoG signal and thus its SNR. In dense-noise condition, the sensory input had low or 

inexistent impact on the ECoG dynamic. The local (intracellular recording) and global (ECoG) 

cortical dynamic induced by natural-like stimuli remain the sleep-awake transition observed 

by Steriade & al (2001, figure 3.5.11d). Moreover such stimulus induced cortical state 

transition has already been reported in auditory system and in whisker-related barrel cortex. 

Complex dynamical sound sequences have been shown to have an alerting impact by 

clamping cortical activity into awake-like state and removing spontaneous ongoing 

correlations and slow-oscillations in auditory thalamus and cortex (Miller & Schreiner, 2000). 

In awake mice barrel cortex, the transition from rest to whisking exploration behavior induces 

a shift from low to high frequency EEG and from large slow to fast fluctuations in the Vm 

input (Crochet & Petersen, 2006).  
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figure  3.5.11: Natural-like condition induces prolonged cortical upstates correlated with an ECoG 
Beta-Gamma frequency enhancement. a, b, c, present the three recorded cell with a spontaneous 
bistable activity (up and down states, a and b were not analysed in the present paper, because the four 
conditions could not be tested). 2 seconds of spontaneous activity followed by 4 seconds of stimulation 
are presented for, from top to bottom: single trial intracellular and simultaneous ECoG recordings in 
response to natural-like condition, superimposed Vm and ECoG trials (with their average in red), the 
total time-frequency spectrum (Phase independent) and SNR of the ECoG trials expressed as a z-score 
of the spontaneous activity. The bottom panels present the Vm, EcoG, signaltot(ECoG) and 
SNR(ECoG) responses obtained in dense-noise condition for those 3 cells. Only 8 and 4 trials could 
be recorded for cell a and b respectively, invalidating the time-frequency analysis for b. d, 
intracellular and EEG changes during sleep to awake transition recorded in the cat (taken from 
Steriade & al, 2001). e, EEG, whisker position and intracellular rest to whisking-behaviour transition 
in the awake mice barrel cortex (taken from Crochet & Petersen, 2006).  
 

The cortical states recorded in response to natural-like stimuli may be interpreted as 

approaching the awake state since they present: 

- 1. sustained evoked up-state for the cells presenting a bistable during spontaneous activity 

(figure 3.5.11)  

- 2. desynchronised ECoG in some cases  

- 3. increase in beta-gamma range of the population response either observed in Vm or ECoG 

and notably at the time of the spike (figure 3.5.2 & 3.5.4)  

- 4. a global desynchronisation during eye-movement period compared to on-going resting 

state and to saccadic period.  

Those observation further sustain the vast literature on the implication of precise synchrony 

and high frequency oscillation mechanisms in the binding problem, visual feature integration, 

working memory activation (Singer, 2001, Engel & Singer, 2001, Singer & Gray, 1995, Gray 

1999 for review) and studies relating large-scale transient desynchronisation to phenomenal 

perception (Rodriguez & al 1999). Moreover, SNR gain modulation or playing on the 1R / HR  

cortical transfer, appear as a very simple mechanism to obtain attentional effects, either 

automatic (stimuli driven like in the pop-out effect) or supervised by feed-back or 

neuromodulation. In agreement, V1 receptive fields structure has been found to depend on the 

level of synchronisation of cortical states, leading to high resolution RFs in desynchronised 

states (with low spatial noise maps, Wörgötter & al, 1998). In psychophysics, Lu & Dosher 

(1998, 1998) have shown that attentional and learning mechanisms are consistent with a 

signal to noise ratio modulation of the cortical processing. At last, in the visual system visual 

imagery seems to be systematically correlated to eye-movement and “decorrelated” EEG 

states since those two criteria are the most obvious markers of the oniric REM sleep period. A 

complete and beautiful review on the possible link between phenomenological consciousness 



 

 

147

and nervous system nonlinear dynamic can be found in (Cosmelli, Lachaux & Thompson, 

2007). 

3.5.12. Ordered redundancies, computational capacity and structural complexity 

definition 

3.5.12.1. Ordered Redundancies and Entropies definition: Whole is less than the sum of 

its parts 

Let consider a system S  that can be decomposed or sampled into n  variables nSSS ,...,, 21  

possibly taking N  values. We emphasize that S  has no predefined dimensions and can be 

considered in the general form of a spatio-temporal system (system with spatial memory of 

dimension n, and with temporal memory of dimension m, 

tmtmtmtttttt SnSSSnSSSnSS ,...,2,1,...,,...,2,1,,...,2,1 222111 , or a m ordered Markov chain). In 

the case of cortex, the system is for example an area, the variables are the 1n  neurons and 

their two possible state values during 2n  discrete time bins (with 2*1 nnn = ), defining the 

cortical state and the ensemble is given by the several response trials. In genetic, the system is, 

for example, the DNA sequence, the variables are the n nucleotides and their four possible 

state values defining the genomic state and the ensemble is given by the several individuals of 

a generation (that share the same environment and initial conditions). The formalism is of 

course far more general. The entropy of S  is given by:  

∑
=

==
nN

i
iin SPLogSPSSSHSH

1
21 ))(/1()(),...,,()( (1). 

Our aim of this chapter is to define rigorously redundancy, remarking that the information 

(entropy) of the system is less then the sum of its constitutive element, and quantifying the 

information between those elements that account for this difference (redundancy). This 

property, that we consider as a main characteristic of the world at our scale, is an important 

difference with the classical statistical physic framework. It implies that the system cannot be 

decomposed in sub-systems, or equivalently that the sub-systems are not a kind of absolute 

statistical equilibrium. It reflects the global out of equilibrium state of, at least, living 

organism world. Inspiring from Shannon and Weaver (1948) and Atlan (1979), we can define: 

))(1)(()( 0 SRSHSH −= , (2). 

Where nLogNSH =)(0  (3), with N being the different possible values or state of iS  and 

where )(SR  is the redundancy present in the system. )(0 SH  is only defined by the intrinsic 
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dimensions of the system S  (usually space and time), and is the system capacity. )(0 SH  is a 

constant of the system in the case of the nervous system, and is also the highest possible 

entropy, that can only be reached in the case where every component iS  are statistically 

independent (case where the iS  present random behaviour). Developing (1), redundancy R 

can be formulated into first and higher order redundancies:  

nH
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 We can express ordered redundancies and ordered entropies as following: ∑
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iH  decreases with i: 1+≥ ii HH . It appears that nHSH =)(  or equivalently for large n 
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. nR  can be expressed in term of Mutual information between the n variables. 

An expression of ordered redundancies can be proposed as: 
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etc… until );...;;(
1 21

0
n

n SSSI
n

RH
=

−
 

A simple representation of this redundancy decomposition is given using Venne diagrams: 

 
 

This paradigm, sharing many similarities with the holographic theory, notably its entropic 

bound (Bekenstein, 2003), can be applied to any system that can be decomposed into 

elementary probabilistic constituents. Moreover, this decomposition shares, at least in the 

spirit, an interesting similarity with the information geometry framework developed by Amari 

(1999, 2001) and the connected information measure proposed by Schneidman & al (2003), 

which may give a pragmatic way to estimate HRH 0  using maximum entropy principle). As 

reviewed recently (Amari & Nakahara, 2006), studies on nervous system correlations are 

embedded in a coding/decoding framework. In contrast, the framework proposed here, in 

agreement with the phenomenological point of view (Varela, 1989, 1999, O’Regan & Noe, 

2001), only considers a single unsupervised and “non-representational” process. Coding-

decoding paradigm implies intrinsically a Homoncullus or dualistic paradigm: an 

autonomically predefined or self-generated code-language. Instead, our approach considers 

only the dynamic of the system states which holds at the same time the code and the meaning 

of the code.  

3.5.12.2. Mutual information between systems 

We can now consider the case of two systems exchanging information, and the focus on 1R  

and HR  distinction is sufficient for our purpose here. Let’s define an input system A, with an 

information )(AH , that exchanges information to a system B represented by an 

information )(BH , and consider the channel between A and B. Mutual information in 

between A and B is given by: )/()()/()(),( ABHBHBAHAHBAI −=−= , (9), where 
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)/( BAH  represent the equivocation and )/( ABH  represents the ambiguity. This relations is 

far more general than the classical application to channel with noise case (Shannon, 1948), 

and holds for the mutual information between objects case (Kolmogorov, 1968). )/( ABH  

represents whatever entropy the system B has that did not come from the system A. In the 

case here the systems A and B can be considered as isolated, )/( ABH  represent the 

probabilistic behaviour of information transmission in between A and B corresponds to the 

entropy of noise noiseH . Considering the relation expressed in (5), );( BAI  can be expressed as: 

)/())(/1()()/()();( 0
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0
1
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This relation points out that noise or ambiguity and higher order redundancies are acting on 

mutual information in the same way. In fact, mutual information in between the two systems 

is already a redundancy. It gives also an interesting and intuitively satisfying definition of the 

efficiency of B to represent A: 
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)/( ABH , ambiguity or noise, is participating to efficiency and mutual information exactly in 

the same way as redundancies. The efficiency measure classically used in neurophysiology 

(and we’ve been using in associated study, Rieke & al, 1997) is slightly different, but is also 

pertinent. Its expression in this framework is given by: 
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the total redundancy with the first order redundancy ( 01 →ε  when 
BH
ABHRR

0
1

)/(
+<<  and 

11 →ε  when RR =1  and 0)/(

0

=
BH
ABH ). 

3.5.12.3. Logical depth measure or organisational complexity 

Complementing the notion of Algorithmic Complexity, Bennett proposed the Logical Depth 

(Chaitin, 1977, Bennett, 1985, 1988) a measure of the time required by a universal Turing 

machine to generate the string or system from a random input (in number of computational 

steps, that is equivalent to a computational distance in between the uncompressed string or 

object and its maximally compressed form), to quantify the degree of organisation of a system. 

We propose to derive a related measure from the ordered redundancy expression. One could 

find in the simple measure RH 0  an expression of the logical depth, but it do not catch the 

intuitive fact that repetitive systems (uniform, highly low order redundant system) are less 

organised or easier to compute compared to living systems which present a wide variety from 

local to long scale correlations and thus has a considerable logical depth (Bennett, 1988, Li & 

Vitanyi, 1997). Thus, logical depth would intuitively rather correspond to a diversity or 

disparity of the redundancy along the different orders. We propose a quantification of the 

organisational complexity that intuitively corresponds to Logical Depth. The proposed 

measure corresponds to the entropy of the iR , and quantifies the dispersion of the structure 

among the different orders.  
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This measure is on our opinion important, since it considers that there is an “information” in 

the redundant part of a system (object etc…), and that this information is probably the one 

biologists and any observer are mostly interested in, since it quantifies organisation.  

3.5.12.4. Proposition of Logical Depth measure 

We propose the measure of logical depth introduced by Bennett to be a continuous function of 

the iR . Using Shannon reasoning (1948), we propose a measure of LD to require the 3 

following properties (monotonicity, independence, and branching): 

1. If the n order redundancies are equal (
n
RRi = ) then LD is a monotonically increasing 

function of n. 

 
2. If the system, object or string is composed of two independent parts then the total LD 

of the string is equal to the sum of the two independent part LD’s. 

 
3. If redundancy is broken down into higher redundancies, the original LD should be the 

weighted sum of the individual values of LD.. 
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The only function satisfying the 3 above assumptions is (Shannon, 1948): 

∑
−

=

−=
1

1
)(

n

i
ii LogRRkSLD  

 

From the everyday semantic point of view, the measure of logical depth appears more related 

to the intuitive and common notion of complexity (or biological complexity at least) that is 

neither maximal order nor disorder but something lying in between, whereas Descriptive 

complexity appear to us more closely related to the common notion of randomness. Logical 

depth is a measure of the level of organisation of a system, uniform or fully random systems 

are presenting low values of logical depth. Scale free systems are a class of systems that 

display obviously a large logical depth. It has to be noted the particularity of the redundancies 

compared to probabilities is residing in the fact that their sum can be less than one. However a 

sum equal to one is not required for the demonstration of the entropy as the only function 

satifying the 3 exposed assumptions (Shannon, 1948 Appendix 2).  

This measure is invariant to any transformation that conserves distance or mutual information. 

The fact that two systems present the same entropy is not sufficient to decide if the two 

systems are isomorphic (Falcioni & al, 2003). In this context it can be expressed by the fact 

that two systems presenting the same global amount of redundancy are not equivalent 

computationally or Algorithmically since their redundancy organisation or the computational 

work to generate them are not the same. An interesting idea, our intuition supports, would be 

that entropy combined with Logical Depth are sufficient to reveal isomorphism.  
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3.5.12.5. Logical depth increase ? 

We can now ask what kind of behaviour Logical Depth is displaying across time. Let 1+tS  and 

tS  included in a Markov chain 1+→ tt SS  : 

∑∑
−

=
++

−

=
+ −=−

1

1
11

1

1
1 )()()()()()(

n

i
titi

n

i
tititt SLogRSRkSLogRSRkSLDSLD  

)()()()( 11

1

1
++

−

=

−= ∑ titi

n

i
titi SLogRSRSLogRSRk  

We can only consider the sign of )()( 1+− titi SRSR  whatever n. nR  are sums of various 

mutual information terms multiplied by a positive constant. Since relative entropy and Mutual 

information always decrease (to verify): ),(),( 11 ++≥ tttt YXIYXI  (Cover & Thomas, 1991 

show it for relative entropy), we can write for any Markov chain: 

0)()( 1 ≥−+ tt SLDSLD  

It would mean that the level of organisation of a system always increases. In fact, looking at 

the evolution of living systems on earth, it may appear plausible. If true, it is a justification of 

self-organising processes. In other word, the structure of a system is naturally getting more 

and more complex. Although it appears plausible from a global observation of the evolution 

of our world, and even tautological if this measure really corresponds to Bennet’s logical 

depth (which is a measure of “time”), a simple experience of thought intuitively prones to the 

opposite conclusion, that this rule is false. The problem comes from the fact that redundancies 

sum is not equal to one and is decreasing as the entropy increases. In fact, this increase holds 

at least in the very specific case where the redundancy is conserved (equilibrium case). It 

would be interesting to know precisely under which condition such increase is observable. For 

example, one could expect a highly redundant homogeneous (redundancy represented in the 

highest orders) system to necessarily undergo a preliminary first phase of LD increase. 
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3.6. Non-linear control of the temporal precision of the neural code by eye-

movements dynamics in visual cortex 

(to be Submited, Baudot, P., Levy, M., Marre, O., and Frégnac, Y.) 

3.6.1. Summary 

The stereotyped dynamics imposed on the retinal flow by eye movements, both during 

saccades and fixation, are a prerequisite for visual perception. However, their impact on the 

processing of visual information in primary visual cortex (V1) remains unclear. By recording 

intracellularly V1 neuron responses to various simplifications of the natural optic flow, we 

show that eye movements recruit nonlinearities which increase the temporal precision and 

reliability of membrane potential and spiking responses. Nonlinearities and gain control 

expression, involving center-surround interactions leaded to a temporal modulation of the 

natural input encoding. In eye-movements-like cases, cortical interactions strongly dominate 

the intracellular responses, and linear predictions greatly underestimate the measured response. 

This enhanced selectivity to natural statistics, which was associated with the recruitment of 

delayed inhibition and an amplification of the beta-gamma range frequencies, is further 

amplified by the spike threshold and translated into sparser, more precise spikes. Our results 

suggest that V1 nonlinearities, both facilitatory and suppressive, such as centre-surround 

interactions or contrast gain controls are adapted to the temporal and reliable encoding the 

saccadic and fixational eye-movement exploration of natural scenes. 

3.6.2. Introduction  

In recent years, natural stimuli have become a tool of choice for the characterization of 

sensory processing (Theunissen & al, 2001). The relative contribution of linear and non-linear 

processes in the response of V1 cells and notably in the integration of its synaptic input is still 

a matter of debate (Anderson et al. 2000; Jagadeesh et al. 1993, 1997; Lampl et al. 2001, 

Carandini & al. 2005). Discrepancies in the estimates of Receptive Fields (RFs) obtained 

under natural vs. artificial stimulation (David & al, 2004, Sharpee & al, 2006), and failures of 

linear or even elaborate static L-N-P models to correctly predict the actual response to natural 

images (Smyth & al, 2003, Felsen & al. 2005), suggest that even without eye movement 

dynamics, natural stimuli recruit V1 integrative non-linearities in some specific way, yet to be 

identified (see Felsen & Dan 2005 for a review). The concomitant stimulation of the “silent” 

surround and active visuomotor exploration seem to increase the sparseness of the cortical 
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representation and reduce activity correlation across neurons (Vinje & Gallant, 2000). 

Theoretical studies further suggest that efficient encoding of natural spatial statistics can 

account for V1 nonlinearities such as gain controls and surround suppression (Schwartz and 

Simoncelli 2001, Rao and Ballard 1999), even though the suppressive or facilitatory nature of 

centre-surround interactions remains controversial (Series & al, 2004). The processing of 

natural temporal statistics however has received less attention, since most thalamic and 

cortical studies on the functional impact of natural scenes have used randomized sequences of 

static scenes (but see Vinje and Gallant, 2000).  

During natural vision, the retinal flow dynamics is dominated by eye-movements, whose 

abrogation leads to a rapid perceptual fading (Ditchburn & al, 1952). Microsaccades for 

instance, whose speeds are ideally suited to activate the early visual pathways, prevent 

Troxler fading (Martinez-Conde 2006) and elicit bursts of spikes in Macaque LGN and V1 

cells (Martinez-Conde 2004). These fixational eye movements can remove a part of the 

correlation imposed by the spatial statistics of natural images on the response of linear 

spatiotemporal models of LGN cells (Rucci et al., 2000). Clues of a fit between eye 

movement dynamics and V1 processing are not limited to linear properties. The rapid 

adaptation observed in V1 complex cells (Muller et al. 1999), may enhance feature 

discrimination and encoding during saccadic exploration of a natural scene (Dragoi et al. 

2002). Moreover, transient high-contrast stimuli induce quick, brisk (Gawne & al, 1996) and 

temporally coded spike responses (Mechler et al. 1998), presumably through the recruitment 

of a specific intracortical dynamic contrast gain control process (Albrecht and Geisler 1991, 

Bonds 1991).  

In the previous chapter (Chapter 3.5), we presented evidence showing that the reliability and 

temporal precision of the response of any given cortical cell depend on the complexity and 

ecological relevancy of the input statistics present in the visual field and its similarity with the 

every-day experienced environment. Since the various visual input contexts we explored, i.e. 

luminance gratings (drifting or animated by eye movements), dense noise and natural movies, 

differ primarily by their spatiotemporal higher order statistics, nonlinearities in network-

driven interactions appear as a likely substrate for the contextual-dependent modulation of the 

neural code we observed. The aim of the present study is to identify such non-linearities and 

their role in the control of the temporal precision of the neural response, and to precise their 

recruitment requirements in relation with the various classes of eye-movements which are 

used to explore our sensory environment. 
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3.6.3. Results  

 

Figure 3.6.1: Nonlinearities induced by stimuli animated by eye-movements drastically reshape the 
Vm temporal waveform. a, Example of a simple cell subthreshold receptive field spatial map (X,Y) 
and spatiotemporal map (X,T), obtained using dense white noise stimulus and used to measure the 
linear prediction to the various stimulus movies (colour scale in z-score value against spontaneous 
activity). b, Example for the simple cell (a) of average Vm and linear prediction subthreshold (Vm) 
responses to four classes of stimuli of increasing complexity: a grating of optimal orientation and 
spatial frequency drifting at the optimal temporal frequency (here 2Hz), the same grating animated by 
a sequence of modelled eye-movement including saccade and fixational eye-movement, a natural 
image animated by the same eye-movements sequence, and a sequence of dense binary white-noise. c, 
Maximum of the cross-correlation and static gain factor (see Methods) between averaged Vm and the 
linear prediction of the response for the 9 simple cells (mean in bold). They quantify respectively the 
similitude of the waveforms shapes and the modulation of the average energy of the waveforms by the 
nonlinearities. d, Coherence between the linear prediction and the recorded average Vm averaged 
across cells, quantifying the waveform shape similitude and the consistency of the linear fit as a 
function of the frequencies. e, Nonlinearities suppress the low frequencies and increase the high 
frequency responses component: comparison of the temporal spectra of average Vm and the linear 
prediction averaged across cells (dashed line represents the P=0.005 significance threshold value 
given by the Rayleigh distribution). The bottom bars show in white the frequency range for which 
linear prediction is significantly higher than the observed average Vm and in black the opposite 
significant relation (Wilcoxon population cell paired test (P<0.005) on significant spectral values of 
individual cells (P<0.005, Rayleigh statistics)). 
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To do so, we predicted the intracellular response of Simple cells to the stimuli presented in the 

companion paper (drifting gratings, DG, gratings animated with eye movements, GEM, 

natural image animated with eye movements, NI and dense noise DN), from the 

spatiotemporal subthreshold receptive field obtained with DN stimulation (figure 3.6.1A, see 

methods). As could be expected from earlier studies, the recorded traces show deviations from 

linearity in all 4 conditions (figure 3.6.1bcd). However, the pattern and amplitude of these 

failures depend on the stimulus statistics: in the DG and DN conditions, nonlinearities affect 

the amplitude but preserve the time course of the predicted traces, whereas in the more natural 

conditions (NI and GEM), they drastically reshape the intracellular responses. Across the 

population, the peak of the cross-correlation between the observed and the predicted 

membrane potential confirms the greater impact of V1 nonlinearities on the dynamic of the 

responses to natural stimuli: it is minimal for the NI and the GEM, and maximal for the DG 

and DN. The coherence between the predicted and measured signals, which is an index of 

how linear is the transformation between the two signals, indicates that for stimuli animated 

by eye-movements, high temporal frequencies in the linear prediction undergo a strongly 

dynamic nonlinear processing (figure 3.6.1c, compare to DN condition).  

To evaluate the contribution of these nonlinearities to the subthrehold response Signal to 

Noise Ratio (SNR(Vm)), we repeated the time-frequency analysis using the linear prediction 

as signal (SLPNR(Vm), see methods). Figure 3.6.1e shows that the SLPNR(Vm) spectra cross 

the measured SNR(Vm) spectra around 10-15Hz for the NI and GEM conditions, whereas 

such frequency dependency is less present for the stimuli having stationary statistics. We 

conclude that the nonlinear processing of natural statistics reduces the SNR at low temporal 

frequency, and increases it at high temporal frequencies. 

Figure 3.6.2 : Center-surround directional selectivity for saccadic-like apparent motion and the 
temporal and SNR modulation of the response. a, Schematic representation of a visuo-oculomotor 
model of V1 processing, sequentially integrating visual information along spatial long range (saccade) 
and short range (fixational movement) eye-movements. During saccadic high speed long range 
movement, V1 neurons by the mean of their spatiotemporal association field integrate selectively the 
visual information iso-oriented to the saccadic motion along their collinear axis(co-aligned with the 
motion path), whereas during fixation they integrate the visual information on low spatial scales and 
low speed corresponding to their classical direction selectivity (classical direction preference axis 
across the discharge field width). Furthermore, the eye-movement scanpath is correlated to the image 
features, notably the contours for saccades path in this image exploration. The bottom cartoon, taken 
from Yarbus (1967), illustrates the eye-movement pattern of a Human observer (right panel) and the 
corresponding photograph (left panel). b, example of a simple cell response to apparent motion 
stimuli (blue colour) and center only control (green colour), for the low contrast center condition, 
exemplifying a collinear surround facilitation. Picture in the middle represent the four tested axis of 
apparent motion superimposed with the RF map obtained with sparse noise (ON responses in red 
scale colour, OFF responses in blue scale, depolarising field extent white line). Gabor patches were 
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sequentially flashed from the surround to the center. c, The biphasic temporal profile of center-
surround apparent motion nonlinearity, and its directional collinear selectivity and modulation by the 
contrast (population analysis n = 23). The temporal waveforms of the nonlinearity are calculated for 
each cell by subtracting the linear predictor (Center alone + surround alone responses) to the real 
response observed to the full apparent motion sequence, both at the spiking levels (top panels) and at 
the Vm level (bottom panels). Here, we present the averaged across cells temporal waveforms of the 
nonlinearity expressed as a z-score of the spontaneous activity. The temporal profile of the 
nonlinearity is given for the low contrast center (grey colour) and the high contrast center (black 
colour). d, apparent motion nonlinear modulation of the SNR the responses. To measure the center-
surround SNR modulation gain, each trials of the center alone condition are summed with those of the 
surround alone condition to obtain a pool of linear predictor trials, on which we could apply the SNR 
time-frequency analysis. The time-frequency apparent motion nonlinear SNR gain is then obtained by 
subtracting the apparent motion SNR to the linear predictor SNR, expressed as a z-score of the 
spontaneous activity (significant threshold calculated independently for each frequency z-score 
p>0.001), and averaged across cells. 
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Taking into account the low-pass filtering occurring at the retina, the motion flow during 

saccade selectively and precisely preserves the spectrum of the image components which are 

iso-oriented with the motion path, whereas all the other orientation components are blurred 

(Geisler, 1999, 2001, Barlow & Olshausen, 2004). The correlation of the saccadic path with 

the image contours suggests that this selective blurring may be used as a strategy by the visual 

system to analyse and explore spatiotemporally the environmental scene (Yarbus, 1967, figure 

3.6.2a). Moreover, saccadic displacements in the Cat (Collewijn, 1977), when projected in 

cortical coordinate space, have a speed similar to that of horizontal intracortical propagation 

as measured by intracellular (Bringuier et al. 1999) or imaging techniques (Grinvald et al, 

1994).  

We therefore elaborated an experimental protocol aiming specifically at demonstrating 

whether the apparent motion of an elementary oriented stimulus during a simulated saccade 

could indeed recruit centre-surround interactions in V1 cells along the unblurred collinear axis 

of the cell. Our prediction was that a facilitatory effect was likely to occur when the saccadic 

motion path was aligned with the orientation preference axis of the recorded receptive field. 

Three identical Gabor patches, with orientation, spatial frequency and phase optimized for the 

recorded cell, were flashed sequentially with their location progressively displaced from the 

“silent” surround of the receptive field towards its centre (apparent speed ranging from 175 to 

475 °/s, mean 329°/s). The four polar axis of the cell RF (along the orientation and width axis 

defined by the discharge field) were explored, and the contrast of the centre patch was also 

varied (“low” or “high” contrast conditions in figure 3.6.2).  

The center-surround interaction observed was found to be selective to the axis collinear with 

the receptive field orientation preference, and more particularly to one polar end-zone. This 

centre-surround nonlinearity presented a stereotyped biphasic temporal profile with an initial 

facilitation followed by a suppression. This effect can be visualized by subtracting the 

observed responses to the full sequence of apparent motion and the linear predictor given by 

the sum of the surround-only and the centre-only responses (figure 3.6.2bc). This nonlinear 

biphasic modulation, is contrast dependent both in its timing and amplitude, and leads to both 

a net time-average facilitation (example figure 3.6.2b, 41%) and suppression (59%) for of the 

center response when at low contrast, and to a net suppression when at high contrast. 

The intracortical horizontal origin of this effect is further attested by the fact that it is selective 

to the iso-oriented surround condition (cf. chapter 3.3) which corresponds to the anatomical 

bias in the connectivity pattern between orientation-selective columns and the timing 
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requirements fit with that required by an in-phase relation between feedforward and 

horizontal activation (Series et al, 2002): the boosting of the center patch response is 

expressed only for centripetal (surround to center) but not for centrifugal (center to surround) 

conditions. Another important feature is that this effect is accompanied by a transient 

nonlinear increase of the Vm and spike SNRs expressed mostly in the beta-gamma frequency 

range. Thus, our results demonstrate a new form of directional selectivity of the cortical RF 

for high speed motion, mostly expressed along the collinear axis defined by the orientation 

preference of V1 RFs. The recruitment of such interactions during virtual saccades would 

notably increase the temporal frequency bandwidth of subthreshold dynamics and the 

reliability modulation of the evoked responses. Such a kind of center-surround dynamic 

nonlinearity is likely to generate in V1 an elementary form of temporal encoding of saccadic-

induced motion, which may be used or futher transformed at a higher stage of coordinate 

transformation and visuo-motor integration (Gawne & al, 1996, Victor & Pupura, 1996, 

Mechler & al, 1998, Reich & al, 2001). 
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Figure 3.6.3 : Centre surround interactions and contrast gain control increase the trial-to-trial reproducibility 
and temporal precision of spiking responses and Vm trajectories. a, The stimulus (3s-long example) was a 
sinusoidal grating (of orientation, spatial frequency and phase optimized to fit precisely the spatial organization 
of the recorded Simple discharge field) whose contrast varied in time (black) such as to simulate the dynamics of 
the retinal flow produced by a realistic eye-movement trajectory (green, see Methods). In the centre-only 
condition, the stimulus was limited to the classical receptive field, whereas in the centre+surround condition, it 
extended over the non classical “silent” RF. b, The Vm and spiking responses for Center-only and 
center+surround responses (respectively shown in the 1st & 3rd rows vs. 2nd and 4th rows) are displayed for one 
simple cell (F1/F0=1.26) using three quantifications: individual trials, average (black) and prediction (red, 
Linear and L-N models for Vm and spike predictions respectively), and SNR time-frequency analysis (ordinates 
in Hz). c, Temporal frequency spectra of the integral over time of the SNR for the centre-only (green) and 
center+surround (blue) conditions, calculated from the observed and linearly predicted (red, see methods) 
spiking and Vm responses.  
 

In order to further investigate the cellular mechanisms involved in the dynamic contrast gain 

control (CGC) during natural eye-movements and its centre surround dependency, we took 

advantage of the fact that a moving grating, can always be decomposed into the sum of two 

static, but contrast-modulated, gratings whose spatial and temporal phases are in quadrature 

(see Methods). We thus devised a new protocol, where a static grating corresponding to the 

cell preferred spatial phase was presented, and where its contrast was modulated in time such 
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as to simulate the local changes of contrast in the receptive field center produced by our 

virtual eye-movement sequences. 

This new protocol was applied to one Simple cells, in two spatial contexts, either restricted to 

the classical discharge field or extending across both the centre and the “silent” surround of 

the RF. In the centre-only condition, the reliability and temporal precision of both intra- and 

extracellular responses depended on the stimulus history and were higher than those expected 

from the linear predictions. The recruitment of CGC by fast contrast dynamics (Mechler & al, 

1998, Reid & al, 1992) was amplified when the surround of the receptive field was 

concomitantly stimulated: the membrane potential exhibited many more stimulus-locked 

events in the gamma temporal frequency range; most spike events became more precise (up to 

a few ms) while others, which were elicited in the center-only condition, were completely 

suppressed when costimulating the periphery, leading to sparser responses. The comparison 

with the linear predictions of the SNR, shown in Figure 3.6.3c, confirm that centre surround 

interactions nonlinearly increase the signal in the high temporal frequency range.  
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Figure 3.6.4 : Neuronal nonlinearity and delayed suppression-inhibition control the spike response 
timing and reliability of V1 responses, and the saccadic correlations removal of V1 resulting 
processing. .abcd, Characterisation of the spike timing dependent nonlinearity expression and 
dependency on the stimulus statistics and eye-movement dynamics, for the 9 simple cells presented in 
figure 3.6.1. a, Spike trigger averaging (STA) of the Vm time-locked averaged responses (plain lines) 
and of their respective linear prediction (figure 3.6.1, dashed lines)), averaged across cells, for the 
drifting grating (red), grating+eye-movement (green), Natural image+eye-movement (black), and 
dense noise (blue) conditions. b, STA of the difference between the Vm response and its linear 
prediction averaged across cells for the four conditions. Note that the temporal biphasic profile with 
an initial enhancement and a consecutive suppression is expressed only for condition, namely during 
animation by virtual eye-movements. c, Spike timing dependent nonlinear enhancement of the SNR(Vm) 
in the Beta-Gamma frequency range. We calculated the STA of the difference between the SNR(Vm) 
and the SLNR(Vm) (obtained using the signal linear prediction of Vm) time-frequency matrices. d, To 
increase the visibility of the inhibition recruitement relative to the spike timing, we recorded the 
response of a cell while artificially depolarising it above the spike initiation threshold by the 
intracellular application of a constant current (Vm spike-inactivated = -40mV. The STA on average 
Vm across trials is represented for the four conditions. The quasi absence of spiking response may 
explain the flat STA in dense noise condition. efgh, Characterisation of the spike timing dependent 
nonlinearity expression and dependency on the contrast gain control and center-surround interaction, 
on the simple cell presented in figure 3.6.3. For efg the same measures are applied as in abc 
respectively but replacing the Vm linear prediction by the center only observed response. h, Surround 
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stimulation removes delayed spikes by a net hyperpolarising effect. STA of the spike of the center only 
stimulation on the subtract of the Vm in the centre only and centre + surround conditions (red), 
revealing a surround-specific, delayed post-spike hyperpolarization, which yields to the asymmetric 
STA between centre-only and centre+surround spike trains (black), presumably by suppressing the 
later spikes of each event when the surround is stimulated. i, An example of spiking, Vm and 
simultaneously recorded ECoG responses to fixational eye movements and saccades. The periods 
corresponding to the saccadic movements are presented in grey shaded regions. j, Decorrelation of 
the saccadic imposed correlations in the input by cortical processing in natural-like condition. The 
comparison of the spiking with the Vm responses and their correlation imposed by the saccade is 
assessed by a saccade trigger averaging (on the saccade onset t=0) on, from top to bottom: the 
average response (black), its linear prediction (red) and the nonlinearity (observed-predicted, blue) 
waveforms, the time-frequency SNR, the time-sliding normalised cross-correlogram (jPST) between 
each cells responses, and the time-sliding cross-correlogram (jPST) between each cells responses and 
the EEG (cf. methods). The result are averaged across the 9 simple cells recorded in this condition, 
and the Saccade TA Vm response recorded in one inactivated cell (Vm=-40mV, same cell as in d) is 
presented in green. 

 

We could identify some obvious mechanisms sustaining the nonlinear processing common to 

the protocols studied here. The first one consist in an interplay between the spike nonlinearity 

and delayed inhibition. The large and fast depolarisations kinetics observed with eye-

movement stimuli originate preferentially from a nonlinear processing. CGCs promote 

coincidence detection under centre only stimulation (compared to linear prediction), and this 

effect is further amplified by centre surround interactions (figure 3.6.4e). As a result, spikes 

evoked by eye-movement combined with surround stimulation specifically detect nonlinear 

amplifications of the input (figure 3.6.4b,f). The consecutive suppressive interaction, which is 

associated with a specific recruitment of inhibition by eye-movement (figure 3.6.4d,h), further 

shortened the linear prediction (4a), the center only (4e) depolarisation, and the spiking 

response (4h, black), constraining the spikes in a few ms window. The similar biphasic 

mechanism constraining the time course of the responses is observed in the center-surround 

apparent motion study (figure 3.6.2c). The resulting delayed inhibition control of the spike 

timing precision is reminiscent of what is observed in auditory cortex (Wehr & Zador, 2003), 

although it is governed here by interactions. The nonlinear control of the temporal precision 

of the synaptic excitation and inhibition sequence by the eye movement dynamic, leads in 

natural conditions to an increase in strength and reliability of beta gamma range frequencies. 

These nonlinear interactions are selectively represented in the spiking output (figure 3.6.4c,g).  

Second, the neuronal nonlinearity is also modulated by the input statistics: it can improve the 

SNR not only by selectively amplifying the fast, reproducible, nonlinear events in the signal, 

but also by filtering out a proportionately greater amount of noise when the stimuli are 

animated by eye movements (figure 3.6.5). This is because Vm trajectories show less 
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dispersion in natural conditions (chapter 3.5), therefore decreasing the probability of spurious 

spikes, and yielding sparser, more precise and selective spiking responses. This result further 

point out that neuronal integration is intrinsically probabilistic and that this probabilistic 

component is stimulus dependent.  

In agreement with the efficient coding and redundancy reduction (Barlow, 1961, Field, 1987, 

Atick, 1992, Nadal & Parga, 1994, Olshausen & Field, 1996, Bell & Sejnowski, 1996, Vinje 

& Gallant, 2000) general principle for sensory processing, the V1 RFs (both linear and 

nonlinear including the various gains controls previously described) appear specially suited to 

remove the redundancies imposed by eye-movements. First, the neuronal integration specially 

behaves as a nonlinear filter in natural conditions with eye-movements (figure 3.6.6): whereas, 

in drifting grating and grating with eye-movement condition, an important part of the 

information-fluctuations present in each Vm trials is transferred in the spike train, in natural 

and dense noise condition a predominant part of the input is filtered out. Saccades constitute 

the major source of common input to V1 in natural condition and all cells recorded responded 

to saccadic movement at the Vm level (figure 3.6.4j). This strong input correlations imposed 

by the saccadic movement (and probably related to the predominant blurring of the input) is 

detected in our recordings as an increase of the SNR(Vm) and of the average correlation 

between the Vm of each cell as well as between the Vm of each cell and the simultaneously 

recorded EEG in ipsilateral V1. In agreement with the efficient coding hypothesis, the average 

spiking response to saccades across cells as well as their SNR are almost flat, and the 

probability for a cell to respond to a given saccade at the spiking level is much lowered 

compared to the Vm level. The correlation of spike trains between neurons and with the EEG 

is also reduced. Suppressive nonlinearities, active at the time of the saccade, participate to the 

spike output removal of the saccadic input correlations and include supposingly the apparent 

motion high speed specific interaction previously described which only transfers the higher 

order “unexpected” correlations. The low correlation observed between spike trains confirms 

that the centre surround interactions examplified in figure 3.6.2c are selective for the stimulus 

configuration. This temporal redundancy normalisation of the optic flow or informational 

flow constancy holding (figure 3.5.7) operated by the cortical processing is in agreement with 

the idea, originally proposed by Dong & al (2003) in the thalamus, that RF and its fast 

adaptation can account for eye-movement, notably saccadic, information removing, and thus 

to act as a alternative or synergetic mechanisms to the classical motor efferent copy 

suppression (Ross & al, 2001, Burr, 2004). 
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3.6.4. Conclusion  

The main result of this study is that V1 nonlinearities participate to the temporal encoding of 

natural inputs. Centre surround interactions and dynamic contrast gain controls in particular, 

improve the reliability, the temporal precision, and, at the spike level, the sparseness of the 

responses. Our results also suggest that natural statistics nonlinearly improve the SNR(Vm) in 

the Beta-Gamma range by eliciting a strong synaptic inhibition just after the initial excitatory 

input (Wehr & Zador, 2003). This effect is further amplified by the neuronal integration 

function (Hirsch & al, 1991), and notably the spike threshold nonlinearity (Azouz & Gray, 

2003). Both mechanisms remove V1 input redundancies and decrease noise in the output, 

yielding to an efficient encoding of natural stimuli in accordance with the companion paper.  

Given its singular temporal biphasic shape, such kind of nonlinearities define a spike timing 

dependent associative short term adaptation or plasticity, and behave as a coincidence detector 

removing spatiotemporal correlations of the optic flow (and transmitting only unlikely 

correlations), as well as sustain a temporal coding in V1 (Gawne & al, 1996, Victor & Pupura, 

1996, Mechler & al, 1998, Reich & al, 2001, Van Rullen & al, 2005) shortening responses 

latencies and duration. Moreover, the spatiotemporal specificity of center-surround interaction 

expression demonstrates the existence of a non-classical directional selectivity of the RF for 

high speed motion in the collinear axis of V1 cells. The remarkable fit of the spatiotemporal 

statistics of the ubiquitous saccadic and fixational eye-movements, and the two motion 

selectivities in V1, respectively the spatial long range and high speed demonstrated here and 

the short range and low speed of the classical RF, lead us to propose a simple visuo-

oculomotor model of V1 cortical processing and function. According to this model, V1 

operates a sequential and multiscale (local short range and global long range) analysis of the 

visual scene thanks to the convolution of environmental features with the various ballistic 

eye-movement exploration (figure 3.6.2a). Gain controls and adaptative decorrelation 

allowing an efficient coding (Laughlin, 1981, Barlow & Foldiak, 1989, Ruderman & Bialek, 

1994, Bell & sejnowski, 1995, Schwartz & Simoncelli, 2001) are a well known computational 

principle for coordinate transformation (Salinas & Their, 2000). According to our result, it 

appears highly plausible that a preliminary form of eye-movement invariance could result 

from V1 process. Finally, since the increase of dynamic reliability by interactions is not a 

specific feature of the nervous systems (Becskei & Serrano, 2000), reproducibility of self-

organised dynamic systems can be used as an heuristic to discover the full function and the 

pertinent dimensions the system is adapted to. 
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3.6.5. Methods 

3.6.5.1. Preparation and recordings.  

Cells in the primary visual cortex of anesthetized (Alfathesin) and paralyzed adult cats were 

recorded in vivo using sharp electrode recordings (n=12, average Vrest=-67mV, 0nA) as 

described elsewhere32. The electrocorticogram (EcoG) was simultaneously recorded using 

silver electrodes positioned homotopically or close to the recording site. Data processing and 

visual stimulation protocols used in-house software (G. Sadoc, Elphy, Biologic CNRS-

UNIC/ANVAR). 

3.6.5.2. Visual stimulation.  

The stimuli presented in this study included the four presented in the accompanying paper 

(chapter 3.5) as well as two protocols designed to probe specifically the impact of V1 

nonlinearities on the processing of eye movements.  

Apparent motion stimuli are composed of 3 optimal Gabor patches successively flashed with 

0.9 contrast in the surround and either a contrast eliciting the 1/3 of the maximum amplitude 

of the contrast response tuning (low contrast, mean=0.25) or the first maximum amplitude 

value of the contrast response tuning (high contrast, mean=0.75). The size of the patches was 

adjusted to the spiking RF measured using sparse noise. The distances between patches is set 

at 120% of the spiking RF length (5.9°) and the duration of the onset of each patch was 16 ms.  

Center-surround stimuli animated by eye-movement contrast dynamic consisted in contrast-

modulated gratings whose spatial and temporal phases are in quadrature: 

)..2.sin().(.)..2.cos().(.))(.(.2.cos(. sinmaxcosmax0max xSFtCCxSFtCCtxxSFC πππ −=+ , where 

maxC  is the contrast of the original moving grating, SF  its spatial frequency, x  the spatial 

position along the axis orthogonal to the grating orientation, )(0 tx  the spatial position across 

time of the grating centre, )(cos tC  and )(sin tC  the time-varying contrasts of the cosine and the 

sine components, respectively equal to ))(..2.cos( 0 txSF π  and ))(..2.sin( 0 txSF π . We 

presented one of these components to a simple cell: the stimulus was a sinusoidal grating of 

optimal orientation, spatial frequency and spatial phase, whose contrast was varied in time as 

the cosine of the eye position (along the x axis) during a simulated occulomotor path. The 

grating presentation was either restricted to the classical (minimal) discharge field (mapped 

with sparse noise, “centre-only” configuration) or spatially extended such as to cover the 

“silent” surround part of the receptive field (“centre + surround” configuration).  
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3.6.5.3. Analysis.  

Receptive field Vm first order kernel is estimated using the averaged across trials responses 

( )(tr , DC filtered) to dense white noise stimuli (50*50 shaker board of 0.39° pixels refreshed 

every 13.3 ms, 70 s long), with a multidimensional least square regression technique 

(Theunissen & al, 2001). This method minimises the estimation error 2ˆ rr − , where 
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K(i)S(i))(ˆ  is the linear response estimation, K(i)  and S(i) represent the spatial and 

temporal dimensions of the kernel and the stimulus respectively. To avoid overfitting effects, 

the spatial and temporal dimensions of the RF estimation are limited to the minimum size 

covering the full RF (typically yx nn * =8*8 pixel definition). Prediction of the responses is 

achieved by resampling the stimulus movie at the kernel definition and convolving it with the 

linear kernel. Dense-noise linear prediction is based on a sequence of 10s stimuli consecutive 

to the one used for kernel estimation.  

The resulting prediction present difference when compared to the observed waveform in the 

average energy and time course, respectively quantified by the Static-Gain-Factor: 

)(Vmσ / )(VmσSGF obs
2

pred
2= , and the maximum of the cross-correlation function. We also 

used a global wavelet coherence estimation to assess the level of similarity and linearity of the 

prediction as a function of the frequency (chapter 3.5.8, Theunissen & al, 2001).  

In order to quantify the dependence of the response reproducibility on linear and nonlinear 

mechanisms, we computed the time-frequency wavelet transform of the linear (and LN for the 

spike of figure 3.6.3) model predictions Slin(t,f). This predicted signal matrix was divided by 

the observed noise matrix to yield SNRl(t,f). Average SNR vs. temporal frequency curves 

(SNR spectra) were obtained by averaging the SNR matrices over time. Significance of the 

result is assessed by testing SNR values against Rayleigh statistics (chapter 3.5.8).  

The nonlinearity of center-surround interactions evoked by apparent motion stimulus is 

measured by adding the center-alone and surround-alone controls PSTHs and PSTWs, and 

then subtracting this linear prediction to the observed PSTHs and PSTWs. The resulting 

nonlinear waveform is expressed as a z-score of the spontaneous activity and then averaged 

across cells. For SNR non-linearity, the SNR linear predictor was obtained by summing all 

combinatory of trials responses to center-only and surround-only conditions, and the same 
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procedure as previous was then applied (Z-score values are calculated independently for each 

frequency).  

Linear predictions of the Vm and spike responses of figure 3.6.3 cell were obtained by first 

convolving the contrast varying stimulus with the impulse response, and then by passing the 

predicted Vm to a static point nonlinearity. Both the impulse response and the static 

nonlinearity were fitted (least square regression) in the centre only condition, on a data set 

different from the one used for the predictions.  
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3.6.6.  Supplementary figures 

 

 
 

Figure 3.6.5: Modulation by the stimulus statistics of the neuronal integration filter function and of 
the input-output reliability relation: selective Vm input fluctuations-correlations removing and 
deterministic behaviour in natural-like condition. a, example of input correlation filtering for the 
four stimulus condition for the same simple cell as in figure 3.6.1. The neuronal filtering function is 
measured by the “instantaneous” coherence between the Vm and spike train of each trial and then 
integrated over trials. This measure quantifies the level of similarity between Vm and spike signals as 
well as the linearity of their temporally local relation. Note that in Drifting-grating condition (drifting 
at 2 Hz), an important fraction of the high-frequency components of single trials input signal is 
transferred to the output. b, population averaging of the time averaged trial local vm*spike coherence 
(n=12). c, The probabilistic component of the neuronal integration and its dependency to the stimulus 
condition are assessed by comparing the level noise in input to the level of noise in the output. To do 
so we divided the time-frequency measure of noise obtained for the spike trains to the one obtained for 
the Vm, and averaged across time and then across the whole pool of simple and complex cells (n=12), 
to obtain the frequency dependent function of this ratio. Note the power law frequency dependency of 
the ratio, which is also find for single neuron measure and for the time-frequency signal(spike) to 
signal(Vm) ratio.  
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Figure 3.6.6: Comparison of Vm and spiking responses between natural image either animated by a 
saccade and fixational eye-movement sequence or by a saccade only sequence. a, example of 
responses recorded for a cell to a natural image animated by saccade interleaved by static periods. 
From top to bottom are represented the raster of spike trains, the PSTH, time-frequency SNR(spike), 
Vm trials (black) with their average (red), and SNR(Vm). The saccades are symbolised by the grey 
shaded period. b & c, Saccade trigger averaging for the saccade only condition (b, n=6) and for the 
saccade with fixational eye movement (c, same as figure 3.6.4, but for 22 cells, including cells only 
recorded for natural-like condition), average across cells. The dashed line marks the saccade onset. 
From top to bottom are represented the PSTH, time-frequency SNR(spike), Vm trials (black) with their 
average (red), and SNR(Vm) averaged across cells. For the saccade with fixational movement, the 
saccade trigger average Vm response recorded in inactivated state (Vinact =-40mV) is presented in 
green.  
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Figure 3.6.7: Temporal modulation of the informational flow of Vm and spiking responses. 
Comparison of the temporal profile of the estimated mutual-information rate between Vm and spiking 
responses averaged across cells for, from top to bottom: Drifting-grating (a), Grating with eye-
movement (b), Natural Image with eye-movement (including fixational movement, c), dense-noise 
(n=12, d), natural image animated by saccade only (n=6, e), and a comparison of natural image vs 
grating both animated by the same eye-movement sequence for Vm responses (f).  
 

The average mutual-information estimation using time-frequency method of spiking 

responses gives qualitatively the same result as the direct estimation presented in associated 

paper (Baudot & al, 2006, figure 3.6.3): drifting-grating, natural-like and dense-noise 

conditions present close mutual-information rate, whereas higher values are found for grating 
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with eye-movement condition. As expected also from the associated paper, Information rates 

are lower in the Vm response compared to the spiking response in natural-like condition and 

dense-noise condition, whereas they are approximately equivalent for the grating conditions. 

The information about the drifting is mainly concentrated in the transient initial increase 

corresponding to the non-stationary turning-on of the stimulus (recalling Mechler & al, 1998, 

results). In natural-like condition with fixational eye-movement, whereas the Vm mutual-

information present large increases consecutive to saccades, at the spiking level the inforate 

remains approximately constant, probing the temporal informational flow normalisation by 

the cortical processing. This is neither observed in the grating with eye-movement nor in the 

saccade only condition, which shows saccade related information increase in the spiking 

response. The remarkable fit of the temporal profile and high values observed in the Vm 

responses to drifting and natural image with eye-movement further shows the importance of 

the information conveyed by the eye-movement dynamic on V1 input. The high DC values 

observed in both condition also probes the cortical responsiveness and the computational 

relevancy of the fixational eye-movements.  
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4. Conclusion 

4.1. Much ado about nothing, still on the way of a thermodynamical theory 

of evolution and cognition: Knowledge is energy 

4.1.1. Introduction 

The aim of this chapter is to develop the previous model in detail and to give some physical 

and biological argumentation about its possible relevancy. The redundancy, entropy, logical 

depth (structural complexity) measures and natural dynamic of systems either isolated or in 

interaction, is examplified in the semi-classical “minimal-scale” framework (for which 

quantum properties are considered roughly but simply in a classical representation), but is 

available for any scale and system definition (for any coarse grained precision). This minimal 

grained framework allows to define entropy and logical depth (structural complexity) as 

microscopic and non-relative variables, and compelling macroscopic “emergence” to a result 

of the Higher redundancy organisation.  

4.1.2. Systems information and complexity 

4.1.2.1. Ordered redundancies, entropies and absolute capacity definition 

This chapter describes the general principle of redundancy and entropy decomposition, 

without defining the system and the probability laws associated, for which some example will 

be presented in the next chapters.  

Let us consider a system S  that can be decomposed or sampled into n  probabilistic variables 

nSSS ,...,, 21  possibly taking N  values. We emphasize that S  has no predefined dimensions 

and can be considered in the general form of a spatio-temporal system (system with spatial 

memory of dimension n, and with temporal memory of dimension m, 

tmtmtmtttttt SnSSSnSSSnSS ,...,2,1,...,,...,2,1,,...,2,1 222111 , or a m ordered Markov chain). Let 

us imagine in fact that we have a large number of copies of the system S , a so called 

ensemble ( M ), on which the probabilities can be estimated. The entropy of S  is given by:  

∑
=

==
nN

i
iin PLogPSSSHSH

1
21 )/1(),...,,()( (1), where iP  denotes the probability of the system 

to be in the thi  state in the ensemble M . 
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Our aim of this chapter is to define redundancy, remarking that the information (entropy) of 

the system is equal or less then the sum of its constitutive elements. Inspiring from Shannon 

and Weaver (1948) and Atlan (1979), we can define: 

))(1)(()( 0 SRSHSH −= , (2). 

Where nLogNSH =)(0  (3), with N being the different possible values or state of iS  and 

where )(SR  is the redundancy present in the system. )(0 SH  is only defined by the intrinsic 

dimensions of the system S  (usually space and time), it’s the system capacity. )(0 SH  is as a 

constant of the system and is also the highest possible entropy, that can only be reached in the 

case where every component iS  are statistically independent and each state equiprobable 

(case where the iS  present random behaviour). Developing (1), redundancy R can be 

formulated into first and higher order redundancies (see Atick, 1992), and further into n 

ordered redundancies:  
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It appears that : H
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))(/1()())(/1()()( , Where )( ij SP  represents 

the probability of the elementary constituents i  to be in the state j  in the ensemble M . 

 

We can express ordered redundancies and ordered entropies as following:  

∑
=

=
n

i
iSHSH

1
1 )()( , (6) the first order entropy of )(SH , 
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and the general form: iii RHHH 01 −= −  and 
0

1

H
HH

R ii
i

−
= −   (8) 

iH  decreases with i: 1+≥ ii HH . We can remark that nHSH =)( . 

10 RH  quantifies the distance to equiprobability of all the elementary constituents, whereas 

HRH 0  quantifies the statistical dependency between the constituents. 

Intuitively, quantifying the information in between the elementary constituents accounts for 

the system redundancy. In fact, as the information between the elementary constituents can be 
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shared between pairs, triplets (etc…), a precise counting have to be applied (figure 3.7.1). nR  

can be expressed in term of Mutual information in between the n variables. An expression of 

ordered redundancies can be proposed as: 

∑
=

−=
n

i
iSHHRH

1
010 )(   
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=
n

i
njiaiji

n

j
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1
20 ),...,,...,,;(  (sum of the mutual information between all 

pairs of variables knowing the other variable). 
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A simple representation of this redundancy decomposition is given using Venne diagrams: 

 

 
 

Figure 4.1.1: Schematic representation of the ordered redundancy and entropies decomposition 
using Venne diagrams. This drawing represent the various order of entropy (top panel) and 
redundancy (bottom panel), for a very small system composed of five elementary constituents (noted 
S1,…, S5). H5  is equal to the classical entropy of the system. 
 

A way to estimate )(SH  and )(SRH , forgetting the decomposition into redundancy order is 

given by the following relation: 
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ji SSSSISSSISSI , )(SH  is converging to its real 

value as the order of I increases. 

 

In conclusion and to introduce the next chapter, Entropy can thus be intuitively understood as 

quantifying the whole world of possible microscopic states minus each constraints imposed 

by elementary interactions (elementary mutual informations, ponderated as a function of the 

level of sharing of this interaction in the whole population). For simplicity in a cognitive 

framework, those elementary interactions can be understood as elementary knowledge, 

monade or beliefs, whereas the rest is just uncertainty. They also can be considered 

geometrically as elementary distance between constituents and quantified by their Kullback-

Leibler divergence (Cover and Thomas, 1991, Amari, 1999, although KL-divergence is not a 

symmetric measure and thus not directly assimilable to a distance). An important interest of 

this decomposition is to stress that entropy binds microscopic and macroscopic properties and 

accounts for emergent or mascropic properties of systems. 

4.1.2.2. Expression of redundancies in classical statistical physic 

We now apply the previous definitions in the context of classical physics (figure 6.2.1). The 

system S  is considered at a fixed time t without temporal dimension (as imposed by 

“classical” physics), and is composed or sampled of probabilistic constituents nSSS ,...,, 21 , 

possibly taking N discrete state values. We further consider the ensemble of m copies of the 

system on which we define the probabilities. As usually, the entropy quantifies the uncertainty 

and the number of effective degrees of freedom the system displays. The component RH 0  

quantifies the constraints present in the system (suppressing some of the possible degrees of 

freedom). Moreover, Mutual-information between elementary constituents quantifies the 

entropic contribution of elementary interactions whatever their origin (gravitational, 
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electromagnetic, strong and weak). HRH 0  quantifies the renormalized impact of those 

elementary interactions on the entropy of the system.  

 

 
 

Figure 4.1.2: Schematic representation of the discrete system definition and fine-grained phase 
diagram: a, Schematic representation of our system definition in the classical statistical physic 
framework : The system S is composed of n elementary constituents possibly taking N states (for 

simplicity, here N=2, black or white). Classical entropy measure ( ∑
=

=
nN

i
ii PLogPSH

1
)/1()( ) is based 

on the probability iP  of each possible global configuration in the ensemble (classically named 
microstate) illustrated here in each raw of the ensemble of m copy. The proposed entropy estimation 

( H

n

i
i RHSHSH 0

1
)()( −= ∑

=

) is based on the sum of each elementary constituents entropies minus 

the ordered redundancies component representing the statistical dependencies between each 
constituents. b, Schematic representation of the minimum grained phase diagram (reproduced from 
Ruelle, 1991). For simplicity, it is presented as two dimensional (X, mvx), whereas a six dimensional 
space has to be considered (the 3 spatial dimensions and their associated impulsions). ΔX and Δmv 
represent the fundamental quantum incertitude given by Heisenberg relations and the hatched square 
has a surface equal to the Plank constant h. mvmax is the maximum possible speed (at most c) and L is 
the interval of length under consideration.. Considering this example, the number of states each 

elementary constituent can take would be 
h

Lmv
Xmv
Lmv

N
.2

.
.2 maxmax =

ΔΔ
=  (See Ruelle, 1991). Entropy 

quantifies the dispersion of the system states in the phase diagram. 
 

Whereas entropy quantifies the dispersion of the system states in the phase diagram 

(dispersion of its energy), HRH 0  is quantifying its level of compactness, of compression. We 

will base the quasi-classical statistical framework of entropy (a nice presentation can be found 

in Falcioni, Loreto & Vulpiani, 2003 and Landau, 1967). We can try to find the expression 
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0H  and redundancy R  using the general expression given by the quasi-classical case (Landau, 

1967): 

nh
pxLogH ΔΔ

=   (4.11) 

Where n  is the number of degrees of freedom of the system and h  is the Planck constant, 

pxΔΔ  is the volume the system occupies in the phase diagram, xΔ  is the variation of spatial 

coordinate of the system, and pΔ  is the variation of momentum coordinate of the system. The 

quantum constant can be understood as the minimal volume (spatio-temporal) of incertitude 

and is imposed by the quantum nature of mater (figure 3.7.1). In contrast with the mutual 

information that we imaged as an atomic knowledge, this in our paradigm the quantum of 

action is the minimal resolution of the system capacity, and if we aim at measuring a kind of 

absolute capacity it appears as the good and natural system resolution. This particular 

expression of entropy introducing the quantum constant is important, since it allows a non-

relative expression of entropy (Landau, 1967). By identification (the precise framework has to 

be done rigorously, the following is just a logical trail to give ideas):  

)1()
2
1()( 0

1 px
Log

h
nLogRHSHH H

n

i
i ΔΔ

−=−= ∑
=

 (4.12) 

The first member of the equation (4.12) depends only on constitutive variables of the system, 

the number of degrees of freedom of the system. We propose that: 

)1()(
1 h

nLogSH
n

i
i =∑

=

, and thus that, )1(0 px
LogRH H ΔΔ

=  

It gives the following definition of redundancy: 

)(
)(

hnLog
pxLogRH

ΔΔ
=  

And the generalised uncertainty relation (that remind Heisenberg, 1927): 

 
nRHhpx )(=ΔΔ  

 

One can translate this relation by the fact that a system presenting some redundancy (structure) 

is more certain than if it was built of independent constituents. R  is bounded between 0 and 1. 

When 1=HR , nhpx )(=Δ⋅Δ  and gives the lower bound of uncertainty. When 0=HR , 

1=ΔΔ px  and it is an upper bound to uncertainty (given by the finite system definition). This 
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upper bound, although obvious, is on our opinion very interesting since it gives an absolute 

limit to both momentum and position precision.  

4.1.2.3. System absolute capacity and Bekenstein Upper bound. 

Intuitively, the lower limit of entropy given by 1=R , gives an equivalence with the third 

thermodynamical principle stating that the entropy of each pure element or substance in a 

perfect crystalline form is zero at absolute temperature zero (Plank, 1913). This state 

corresponds to the maximal order of the system, and to a minimum of uncertainty. We can 

now focus on the other side upper bound given by 1=R . When 1=R , the system occupies 

the whole phase space. This corresponds to a maximal disorder and uncertainty state. We are 

referring to this state as the absolute statistical equilibrium (which is not the “classical” 

definition of equilibrium, an equilibrium state in classical thermodynamic can still present 

some redundancy, but which seems to find its physical implementation in black holes).  

Since my knowledge is very limited in this following science field, the next parapgraph tries 

to resume a paper of Bekenstein 2004. This upper bound may be related to the Bekenstein 

upper bound (1981, 2004), stating an absolute limit on how much information a region of 

space, or a quantity of matter and energy, can hold. This upper bound finding is coming from 

cosmological studies on black-holes which have been shown to reach the upper bound, and 

which dynamic has been found to follow a general form of the second law principle. The 

generalisation of this bound to any isolated physical gave rise to the so-called “Holographic” 

bound. The interesting nature of this informational capacity is that it depends on the surface, 

not the volume of the physical space under consideration, which is in deep agreement with the 

Holographic theory (which states that the 3-D physic of a space region is completely 

described by its 2-D boundary). In ergodic theory, probabilities and areas behave in the same 

way (“they have the same nature”, Arnoux & Chemla, 1992). It further argues about the 

intuition that the pertinent dimensions of our world is may be the probability or uncertainty 

(or h). 

A second point of discussion can be proposed: as we will see further, the redundancy 

definition considered here for the space domain can be broadened to time dimension defining 

temporal redundancies. The redundancies defined previously have the form of energy (as 

discussed further), and in the cosmological field theory, energy imposes (is) the curvature of 

space and time. It is appealing, even at the sensory process level, to consider redundancies in 

the general geometrical form of space and time curvature (for DB). 
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4.1.2.4.Energy 

In general, the concept of energy refers to "the potential for causing changes", and 

etymologically means “in work”. In the context of natural sciences, all forms of energy: 

thermal, chemical, electrical, radiant, nuclear etc. can be in fact reduced to kinetic energy or 

potential energy. In physic, the strength of the link or interactions that bond physical systems 

(…molecules, atoms, nucleus, nucleons…) is measured in energy units. The previous 

definition of entropy/information ( H

n

i
i RHSHSH 0

1

)()( −= ∑
=

), which reminds Helmholtz Free 

energy definition ( TH-UF = , where U is the internal energy, T the temperature), is explicit 

in energy terms, all the more when represented in the a phase diagram as in figure 3.7.2:  

-  ∑
=

n

i
iSH

1
)(  is the entropic component of the “internal” energy of the system 

 - HRH 0  is the entropic component of the energy devoted to interactions (potential or free 

energy) 

- )(SH  measure the energy of the system not involved into interactions. 

Temperature is may be to be redefined, notably in non-equilibrium complex systems which, 

as examplified in the paradigmatic studies of glasses present multiple temperatures on 

multiple time scales (Kurchan, 2005). Temperature is likely to be represented in the higher 

order redundancy component in this framework. 

Moreover, the identification of h as the minimum grain may help to define the lowest level of 

elementary particle accessible to our knowledge (there is obviously one physical horizon here, 

but it is probably not new). 

The probably most important point of all this: HRH 0  represent a general definition of 

“driving-force”, encompassing the motion related Newtonian concept of force, and the 

concept of free energy in chemistry.  

Until now we have only measured entropy in the minimum grained phase diagram, which 

comes somehow to measure the uncertainty of the uncertainty. One would prefer, and this was 

my basic original idea, to quantify directly uncertainty and energy, but it appears a hard task, 

necessarily modifying the informational framework developed previously. At last, to make all 

the previous entropies correspond directly to energy-like and physical uncertainty a change of 

the basis of the logarithm of the algorithm: 
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Entropies previously defined in base 2 ∑
=

=
nN

i
ii PLnPKSH

1
2 )/1()(  with 2/1 LnK = , is 

converted into ∑
=

=
nN

i
iiP PLnPKSH

1
)/1()(  with LnNhK m /)(=  where m  is the physical 

dimensions under consideration (3 for classical physical space) and N  is the number of 

possible states as before (cf. figure 3.7.2). It defines entropy as a physical information 

measure and knowledge or higher order redundancy as energy. However, the energy and 

uncertainty quantified this way do not correspond to the classical, but instead are measured on 

logarithmic scales. One can remark that the introduced constant LnNhK n /)(=  resembles to 

Boltzmann constant but in time unit instead of temperature unit. This unit change could fit 

well with the idea further developed of the quantum of action as a quantum of dissipation, and 

as a kind of unit of “relative or subjective” time.  

The important point is that finding this direct expression of uncertainty and energy from the 

model proposed here (which is probably not correctly achieved here, but not so far) should 

logically lead to redefinition of the Boltzmann constant in term of other fundamental constant. 

The reason of this is that all the framework is only based on a pure informational paradigm 

(purely logical) and on microscopic states (the macroscopic emergence is a result of the 

Higher redundancy organisation), the Boltzmann constant is thus likely to be inside the 

formalism.  

4.1.2.5. The wave side 

The previous definition focus on the particle discrete aspect of systems. To investigate system 

as continuous wave, in the framework of undulating physique, the instantaneous spectra can 

be considered, as proposed in the Gabor wavelet analysis presented in the chapter 3.5.9. 

However, the rigorous framework has to be developed, and is more complicated than the 

simple SNR method exposed.  

4.1.2.6.Gibbs paradox, elementary un-discernability, and non locality 

The Gibbs paradox origins on the indistinguishability of particles of the same specie. For 

example, the entropy increase of the mixing of two gases (of same specie, volume, pressure 

and temperature) is null in reality whereas thermodynamical classical estimation leads to the 

false value of 2...2 LnRnHmix =Δ  (where n is the number of particles and R the perfect gaz 

constant). The indistinguishability of particles is a peculiar property of quantum mechanic. 
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The paradigm proposed here intrinsically considers elementary constituents as 

indistinguishable (which are in fact elementary uncertainty) and is not affected by the Gibbs 

paradox: the system elementary constituents are interchangeable (they have not assigned 

number) without affecting the entropy or redundancy estimation. 

Moreover, the paradigm proposed here also satisfies, in some way, the astonishing non-

locality property of quantum mechanic: each minimal possible state grain of the phase 

diagram are interchangeable (they have not assigned number) without affecting the entropy or 

redundancy estimation.  

In other words, the relevant and sufficient space for physical systems description (presenting 

all its information) may not be the classical, but the correlation or statistical space.  

4.1.2.7. Relation to the Maxent inference and Minimum Description Length (MDL) 

To obtain the probability distribution and the entropy of a system either in equilibrium or in 

non equilibrium with its environment, a general method consisting in maximising the 

Shannon information entropy under constraints is classically used (Maxent, Jaynes, 

1957 ,1957 ,1979, Dewar, 2003, 2004, 2005). This method, prolonging Boltzmann and Gibbs 

work in the Shannonian information framework, is a statistical inference tool that reside 

naturally in the framework of Bayesian probability theory (Dewar, 2005). It can simply be 

understood as the inferring the system state and entropy taking into account the all the prior 

constraints applying to the system. It consists in maximising, using Lagrange multipliers kλ  

for each m constraints ∑
=

=
nN

j
kjjk SfSPf

1

)()( , the function ∑ ∑
= =

−−
nN

j

m

k
kkjj fSLogPSP

1 1

)()( λ  

(with an additive normalisation constraint). In fact, our formalisation, considering all the 

possible constraints expressions, can be found to justify the Maxent approach: there’s nothing 

but constraints and “incertitude” in a system, and if you know all the relevant constraints 

applying to the system you automatically get the probability density and entropy by filling the 

remaining possibilities with incertitude.  

It is also appealing to draw the correspondence between the entropy definition 

))(1)(()( 0 SRSHSH −=  with the Minimum Description Length (MDL, Rissanen, 1978). 

MDL, following the Occam’s razor principle and Bayes rule, aim at minimising both the size 

of the hypothesis and the size of the data when expressed in this latest basis. The definition of 

entropy ))(1)(()( 0 SRSHSH −= , is a special case of the MDL principle and measures the 

minimum size of the data without making hypothesis (in fact making the minimal hypothesis 
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of the minimum quantum graining of the phase diagram). Another way to express this is that 

from the physical theory developed here, the distinction between data and hypothesis do not 

appear relevant.  

Moreover, the correspondence in between MDL and Maxent principles has already been 

established formally (Li and Vitanyi, 1997). 

4.1.2.8. Relation to Kolmogorov-Chaitin complexity (or Algorithmic information) 

Algorithmic information is the most formal definition of information and overcome the 

statistical probabilistic point of view. The algorithmic information is directly linked to 

mathematical foundations (Chaitin, 1977, Gödel, 1931) and to deductive logic. Algorithmic 

information quantifies roughly the level of randomness of a sting, and by extension “the 

intrinsic information” of an “object”. It is rooted in automata theory notably universal Turing 

machines, and a brief paragraph is necessary to remind the Turing machine definition.  

Turing (1937) reduced the formulation of theorem-proving problem to the problem of 

deciding whether or not a certain computing automaton can compute any given number or 

formula. The so-called Turing machine is defined formally as a “black-box”, used as formal 

biological system and brain model (McCulloch & Pitts, 1943) as well as the logical 

architecture for computers, having the following attributes:  

i) it possesses a finite number of states, 1, 2, …,n 

ii) its operating characteristic comprises a description (program, short-code, “function”) of 

possible state transition 

iii) its environment consist of a potentially infinite tape divided into discrete fields that can be 

marked with 0 or 1 symbols, forming a sequence or pattern called configuration or string (or 

memory).  

iv) The automaton can inspect one field at a time and can move forward or backward one field 

at a time 

v) let the automaton be in the state i(i=1,…,n) and let it see on the tape an input e(=0,1). It 

will then print on to the tape an output f(=0,1), move to the tape by p fields (p=0,+1,-1) and 

go over into the state j(j=1,…,n). The specification of j, p, and f as a function of i and e 

comprises the program and is a complete definition of the functioning of such automaton. 

Turing further defined the important concept of Universal automaton, as an automaton which 

can produce any configuration that can be produced by any automaton (which is 
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pragmatically an automaton with unspecified program, thus totipotent, and for which the 

program has to be added on the data tape).  

Kolmogorov then defined the Algorithmic information (complexity, )(SK ) of an object 

(string S ) to be the length of the shortest program that produce (print) the object and halts on 

a given universal Turing machine T : 

{ })(:min)( pCSpSK T==  

Where, p  denotes the length of the program in bits, and )( pCT  is the result of running 

program p  on Turing machine T . 

A simple consequence is that regular string like 00000…0000 have a vanishing complexity 

(in the infinite string limit) and irregular or random strings such as the one produced by coin 

flip have a maximum complexity (for which SSK ≈)( ).  

Nonetheless, randomness like any general deductive or theorem proving problem must be 

indecidable (Gödel, 1931). The measure of complexity or “absolute” information of object is 

non-computable: no halting computation can possibly determine if a string is random simply 

because such a computation would render the string non-random (Chaitin, 1985). This is the 

counterpart for absolute things (pure object-subject or abstract).  

However, in our physical world (which has an intrinsic probabilistic dimension), complexity 

of object may be statistically estimated under the copy ensemble framework previously 

exposed. Indeed the link between automata theory and information theory has been proven for 

a long while (Zvontin & Levin, 1970, Li & Vitanyi, 1997, and see the closely related 

reasoning in Adami & Cerf, 2000): in the limit of infinitely long strings, the average 

complexity K  tends to the entropy of the copy ensemble M of the string or system S: 

∑ ∑−=≈=
M M

M
SLogPSPSHSKSPSK )()()()()()( , 

Where the string S  appears in the ensemble M  with probability )(SP . This relation is 

further made obvious by the entropy formulation ))(1)(()( 0 SRSHSH −= . Estimating the 

algorithmic information in physical systems is somehow leading to the consideration of a 

probabilistic automata framework, where the tape is replaced by an ensemble of tape and for 

which the computation is based on probability density and on statistical dependencies (Figure 

3.7.1, in other word: probabilistic memory).  
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Turing machines have also allowed to define the important notion of efficiency or 

Algorithmic Complexity (AC or also dynamic complexity, or time complexity) of a program 

or algorithm. Essentially, the efficiency or AC is assessed by comparing the length of the 

input data (string, message…) with the time T in computational steps (cycle of the Turing 

machine) necessary for an universal Turing machine to produce the output (results…) and halt.  

The P class, which correspond to efficient or feasible algorithms (realistically computable) is 

then defined as the ensemble of algorithm requiring a time which is a polynomial function of 

the data length L : nLCT )1( +≤  where C and n are constants. A similar definition but in 

space instead of time (in number string boxes or tape cells) is used to define the P-SPACE 

class of complexity (or space complexity).  

The NP class, which correspond to inefficient or unfeasible algorithms (non realistically 

computable) is then defined as the ensemble of algorithm requiring a time which is a 

exponential function of the data length L : LT 2≥ . An example NP hard problems (which are 

a special class of algorithm that do not necessities a yes or no output) is given by the spin 

glasses model energy optimisation.  

In conclusion, and it is an already well established fact, the intrinsic information or 

complexity of an object or system can be well estimated by the entropy of the classical 

physical system previously proposed. However, this complexity measure is not reflecting the 

common conception of complexity, for which a complementing measure can be proposed. 

4.1.2.9. Logical depth statistical measure or structural complexity 

There has been many attempts to define organisation and its complexity (see Collier, 1999, 

Atlan, 1979, for review, Bialek & al, 2001, Adami & Cerf, 2000, Atlan & Koppel, 1990) each 

dealing with the same root problem clearly expressed in Bennett’s definition of Logical depth 

that points out the insufficiency of the algorithmic information to uncover the notion of 

complexity, which one would like to be maximum for structures “in between crystal and 

smoke” (ie neither totally regular nor totally random, as our environment seems to be).  

Complementing the notion of Algorithmic information, Bennett proposed the Logical Depth 

(Chaitin, 1977, Bennett, 1985, 1988) a measure of the time required by a universal Turing 

machine to generate the string or system from a random input (in number of computational 

steps, that is equivalent to a computational distance in between the uncompressed string or 

object and its maximally compressed form), to quantify the degree of organisation of a system. 

A related measure arise naturally from the ordered redundancy expression. One could find in 
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the simple measure RH 0  an expression of the logical depth, but it do not catch the intuitive 

fact that repetitive systems (regular, highly redundant system, with all the redundancy at the 

same order i.e. in the nR ) are less organised or easier to compute compared to living systems 

which present a wide variety from local to long scale correlations and thus has a considerable 

logical depth (Bennett, 1988, Li & Vitanyi, 1997). Thus, logical depth would intuitively rather 

correspond to a diversity or disparity of the redundancy along the different orders. We can 

make this intuition more rigorous and propose the structural complexity to be measured as the 

dispersion of the redundancy across the various order. The proposed measure corresponds to 

the entropy of the iR , and quantifies the dispersion of the structure among the different orders.  

 

 
 

Figure 4.1.3: Schematic representation of the logical depth or structural complexity principle. 
Various level of structural complexity of systems (a, uniform, b, complex, c, independent) are 
exemplified using Venne diagrams. d, the proposed relationship between informational and structural 
complexity (inspired from Collier, 1999) represented here as a logarithmic function according to our 
proposition.  
 

This measure is important, since it advances that there is an “information” in the redundant 

part of a system (object etc…), and since this information is the one biologists and more 

generally any observer are mostly interested in, as it quantifies organisation.  

We propose that a measure of logical depth proposed by Bennett to be a continuous function 

of the iR . The logical depth from its previous intuitive require the same properties as 
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information. Using Shannon reasoning (1948), we propose a measure of LD to require the 3 

following properties (continuity & monotonicity, independence, and branching): 

4. If the n order redundancies are equal (
n
RRi = ) then LD is a monotonically increasing 

function of n and LD should be continuous in the iR .  

 

 
 

Figure 4.1.4: First postulate: LD is a monotonically increasing function of the order n.  

 

5. If the system, object or string is composed of two independent parts then the total LD 

of the string is equal to the sum of the two independent part LD’s. 

 

 
 

Figure 4.1.5: Second postulate: additivity of the LD for independent systems.  

 

6. If redundancy is broken down into higher redundancies, the original LD should be the 

weighted sum of the individual values of LD.. 
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Figure 4.1.6: Third postulate: branching. a, schematic principle of redundancy branching 
(inspired from Shannon 1948). Each branch represent an ordered redundancy of the system under 
consideration (left: the full system, middle the same system with the fourth order redundancy 
omitted, right: the previous. b, schematic principle of redundancy branching represented using 
Venne diagram. c, The LD branching equality for this special case. 

 
The only function satisfying the 3 above assumptions is (Shannon, 1948): 

∑
−

=

−=
1

1

)(
n

i
ii LogRRkSLD  

 

Logical depth is a measure of the level of organisation of a system, uniform or fully random 

systems are presenting low values of logical depth. Scale free system is a class of system that 

display obviously a large logical depth. It has to be noted the particularity of the redundancies 

compared to probabilities is residing in the fact that their sum can be less than one. However a 

sum equal to one is not required for the demonstration of the entropy as the only function 

satisfying the 3 exposed assumptions (Shannon, 1948 Appendix 2).  

This measure by definition is invariant to any transformation that conserve distance or mutual 

information. The fact that two system present the same entropy is not sufficient to decide if 

the two systems are isomorphic (Falcioni & al, 2003). In this context it can be expressed by 

the fact that two systems presenting the same global amount of redundancy are not equivalent 

computationally or Algorithmically since their redundancy organisation or the computational 
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work to generate them are not the same. An interesting idea, our intuition supports, would be 

that entropy combined with Logical Depth are sufficient to reveal isomorphism (this property 

may be hold by the microscopic indistinguishability previously described).  

4.1.3. Systems dynamic: Global “self-organisation” and local learning  

Until now we only investigated the description of a system “statically”, at some fixed time. 

We have seen that whatever its past or future, its equilibrium or non-equilibrium state, it can 

be assigned an entropy function, statistically approximating its automata genesis complexity, 

and a structural complexity function, supposed to reflect the algorithmic Logical Depth. The 

aim of this chapter is to describe the temporal evolution of system (or dynamic), either 

isolated or in interaction with other system, in term of the previously defined redundancy. In 

other words, we saw in the previous chapter that it may possible to investigate systems in a 

geometrical way as surfaces, we will now try to investigate temporal carving, inflation or 

deployment of the surfaces, their natural evolution.  

4.1.3.1. Isolated system evolution: entropy increase and energy conservation 

According to Boltzmann second principle, which govern temporal evolution of physical 

systems, the entropy of an isolated system is always increasing or constant across time: 

0)(
≥

dt
SdH . There is intrinsically a notion of evolution in the 2nd thermodynamical principle 

proposed by Boltzmann: its basic statement is “The system of bodies goes always from a 

more improbable to a more probable state” (Boltzmann, 1877). This nature rule is intrinsically 

statistical, meaning that it is only based on a probabilistic assumption and suppose initial 

states to be very improbable. Indeed, the fact that “the early Universe was in a state of 

incredibly low entropy” is widely accepted (see “is our universe natural?” review in Nature on 

universe entropic and energetic evolution, Carroll, 2006). One has to note that the 

interpretation of entropy proposed here does not rely as classically on the ontological 

dichotomy between microscopic and macroscopic states: there are only microscopic states.  

The first law of thermodynamic states that the energy is conserved. This natural rule is also 

deeply inscribed as a mathematical property of continuity or conservation. Noether's theorem 

relates the conservation of energy to the time invariance of physical laws, and is found in 

statistical physic in the Liouville theorem. Thus, energy cannot be made or destroyed; it can 

only be converted from one form to another, that is, transformed. 

In the formalisation proposed here those two natural laws can be translated respectively in: 
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0
)(

11 ==
∑

=

dt
dR

dt

SHd
n

i
i

  for the first principle. 

And 0≤
dt

dRH   for the second principle. 

 
Figure 4.1.8: Schematic representation of an isolated system temporal evolution and complexity 
selforganisation. For this example the initial condition (b, red circle on the left) is arbitrarily set as 
totally redundant in the nth order (the five circles are completely superposed). Given the low entropy 
initial condition, the system undergoes a preliminary phase of self-organisation denoted by its 
increase of Logical depth (a), and a consecutive phase of self-disorganisation. First principle is 
depicted by the fact that the sum of the area of five circles is constant across time, whereas 2nd 
principle is depicted by the decrease of the overall superposed area. c, schematic representation of the 
system dynamic as a tree (each line represent for example the center of each circle depicting the 
elementary Hi). This schema is proposed just to underline that the presented dynamic in a and b may 
be understood in the general framework of spatio-temporal singularities and symmetry breaking. d, 
the pyramid of complexity proposed by Reeves (1986) representing the temporal evolution and cooling 
of our universe and the relying structural complexity increase of the organisation levels. e, similar 
representation of isolated dynamic as in a, but schematized as a balloon inflation to emphasize the 
statistical inflation. As proposed in the next chapters the rate of entropy production may be non-
homogenous and depend on the local redundancy (constraints) density, thus imposing a non-isotropic 
inflation. This representation is over-simplistic and more complex shapes than a sphere may have to 
be considered (it further argues about a potential link to physical relativity). 
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Under the plausible “realistic” assumption of highly redundant or very low entropy initial 

state, systems governed only by those two laws unavoidably undergo an initial phase of 

structural organisation with an increase of LD and a consecutive phase of disorganisation with 

an LD decrease (cf. Figure 4.1.8). This dynamic resume what can be predicted for the 

evolution of the universe organisation evolution from the state of knowledge in 

thermodynamic and complexity, however new undiscovered law, for example relating the 

HRH 0  component to the 10RH  (which seems intuitively and logically plausible) may change 

or impose unexpected constraints on this predicted dynamic. 

We can ask more rigorously what kind of dynamic Logical Depth is displaying across time in 

a general case without constraint on the initial conditions. Let 1+tS  and tS  included in a 

Markov chain 1+→ tt SS  (Simple Markov chains are probably non pertinent in dissipative 

systems or systems with memory, the following is just to understand better LD properties) : 

∑∑
−

=
++

−

=
+ −=−

1

1
11

1

1
1 )()()()()()(

n

i
titi

n

i
tititt SLogRSRkSLogRSRkSLDSLD  

)()()()( 11

1

1
++

−

=

−= ∑ titi

n

i
titi SLogRSRSLogRSRk  

We can only consider the sign of )()( 1+− titi SRSR  whatever n. nR  are sums of various 

mutual information terms multiplied by a positive constant. Since relative entropy and Mutual 

information always decrease: ),(),( 11 ++≥ tttt YXIYXI  (Cover & Thomas, 1991), we can write 

for any Markov chain : 

0)()( 1 ≥−+ tt SLDSLD  

It would mean that the level of organisation of a system always increases. It appears plausible 

from a global observation of the evolution of our world, but contradicts the 2nd principle (the 

maximum entropy state have necessarily the lowest LD). The above equation failure come 

from the fact redundancies sum is not equal to one and is decreasing as the entropy increase. 

There is thus no systemetic increase of LD, as encountered with Mutual information, and 

initial conditions have to be considered to obtain some rule on the LD dynamic.  

Interestingly, this framework may have a simple interpretation in term of symmetry breaking 

and singularity. As roughly schematized in figure 3.7.8.c, the natural system dynamic can 

give rise to singularity or bifurcation in the phase diagram (just a suggestion since i do not 

know those fields). Moreover, a tree, for biologist, is meaningful (and beautiful). 
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a 

 

b 

 
 

Figure 4.1.10: Actual evolution of Human energy consumption and earth biodiversity. a, The 
graphic represent the world industrial energy consummation since 1860. At the organisation level of 
Human societies, including an important part of its ecosystem, the equilibrium state is probably not so 
far. Y axis in million tonnes of oil equivalent (Mtoe) the upper value is equivalent to 7 million H bomb 
or 13 Hbomb.mn-1. (Source: http://www.manicore.com/ , From Schilling & Al. 1977, International 
Energy Agency, Observatoire de l'Energie). b, Evolution biodiversity on earth from 1970 to 2000. The 
Living Planet Index is a measure of the state of the world's biodiversity. It measures trends of 
vertebrate populations in terrestrial, freshwater and marine environments (Source WWF, UNEP-
WCMC). This graphic does not account for vegetal diversity and biomass. 
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As stressed by the figure 3.7.8, isolated systems with low entropy initial condition necessarily 

undergo an initial phase of self-organisation and a consecutive phase of self-disorganisation. 

Cosmological studies in general seem to indicate that, at the scale of the universe, entropic 

potential is far from being consummed (for review, Carroll, 2006). However, at the scale of 

our planet, although the energy and the diversity (structural complexity, notably biodiversity) 

resources and circulation are hard to quantify, a colossal amount of scientifical evidence (and 

even just the good sense of everyday observation) points out the extremely preoccupying and 

emergency of our actual state and dynamic (figure 3.7.10). 

 

It is possible to try to examplify intuitively such organisation process more locally and with a 

more common systems. When there’s too much energy in a region of the phase space (high 

energy density, for example the sun), the only way to increase entropy is to radiate, to emit 

energy (usually photons) in the other region of the phase space. Organisation complexity 

development, or logical depth structural increase (and lastly life) requires a compromise in the 

energy density: enough energy-density to have structure and not too much energy-density to 

be complex (this is the energetical side of the “in between cristal and smoke” paradigm).  

4.1.3.2. Maximum Entropy Production, Energy minimisation, constraint satisfaction, 

and hard problems 

A central question arise from the previous description is “what is controlling the speed of 

evolution, the dissipation rate? Or equivalently how to predict future in complex non 

equilibrium systems?”. As always several trails given by literature can be followed. 

Obviously, in our environment, a whole range of system temporal dynamics can be 

encountered, from the extremely rapid to the very slow. Living systems dynamic seems on 

both slow and rapid temporal scales, they are very long-term and short-term memories. 

According to the previous chapter, an isolated system natural evolution can be presented as an 

energy (interaction) or constraint minimisation problem, submitted to total energy 

conservation rule. Energy (interaction) or constraint minimisation problems have been long 

studied in physics and artificial intelligence and in some case has been proved to be NP hard, 

and a little reminder paragraph is needed.  

A well known example of intractable energy optimisation problem is given by the 

paradigmatic spin glasses model. A Hebbian recurrent neuronal network model has been 

shown to present a dynamic isomorphic to those spin models (Hopfield, 1992). It consists in 

lattice (or matrix) of totally interconnected elementary constituents (n constituents iX ) that 
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can take two states -1 or +1. The values of the coupling interactions ijT , which can be 

represented as a matrix of n*n, can only take +1 or -1 values in a simple case (ising, ijT  

symmetric). The energy of such a system is given by: ji

n

i

n

ij
ij XXTE ∑ ∑

= ≠=

−=
1 12

1 . Finding the 

minimum of this function requires considering case by case the n2  possible configuration: no 

efficient polynomial time algorithm has been found for this task. In fact such kind of system 

posseses numerous local metastable (local minimal energy states) that brake considerably the 

evolution dynamic; and that explain the very long relaxation (dissipation) or very slow aging-

evolution of glasses systems. In our terms, the obvious high HR  states of glasses systems 

present low rate dissipative dynamic. Interestingly, this type of dynamic appears closely 

related to Prigogine work in non-isolated systems, that have shown that in far from 

equilibrium conditions (in our framework high HR  states) the production of entropy is 

minimum. 

Moreover, this problem has been found to have an equivalence in computer science under the 

very general constraint satisfying problem, more precisely to correspond to the “hard” phase 

of SAT problems where solutions clusters are splitting. The SAT problem formalisation has 

been shown to encompass many problems arising in a widespread range of scientific 

disciplines. Problems that can be expressed as constraint satisfaction problems are among 

others, the salesman travelling problem, the Boolean satisfiability problem, scheduling 

problems and the graph colouring problem (Mezard, 2003). Solving a constraint satisfaction 

problem on a finite domain is an NP complete problem, but researches have shown a number 

of tractable subcases. The major interest of this problem is that it presents a “phase transition” 

discontinuity: when the ratio of the number of constraints over the number of variables 

increases the solution landscape (at a precise given value of the ratio) splits into several local 

minima. I did not find yet the precise and relevant expression of the constraint to variable 

ratio in the present framework. It could be the absolute efficiency of a system: 

)(
)()(1)(

0 SH
SHSRS =−=Ε  or something like a ratio between free-energy and internal energy: 

)(
)(

1 SR
SRH  

In any cases, constraints, in the framework we presented, are given by the elementary 

dependencies between the elementary constituants. Any regularity in the organisation of the 

constraints (that is measured by the LD of the system) may be used to solve efficiently the 
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SAT problem (this is in essence the principle of renormalisation, but much would have to be 

developped to make it formally clear). 

For preliminary conclusion, it is appealing to draw the following rule: the evolution rate of a 

physical system is a function to the ratio of the number constraints over the number of degrees 

of freedom of the system. In other term the entropy production rate should be a function of the 

probability to find a microstate satisfying the constraints among all possible microstates. This, 

on my opinion, gives a general justification of space and time inseparability. 

It is also appealing to consider the whole world as isomorphic to a glass system (at least 

partly), or equivalently to consider the initial conditions as a computational problem of energy 

minimisation. The evolution of the global system would give rise locally to a full range of 

problems ranging from simple problems rapidly solved, hard problems “still” present or may 

appear, and close to hard problems still converging where living systems lies. 

But, let us come to what we think to be the best solution to this problem proposed in the 

litterature. As previously for space, the entropy maximisation under constraint have 

successfully formalised and solved the problem of temporal evolution for system either in 

equilibrium or in non equilibrium with its environment (Maxent, Jaynes, 1957 ,1957 ,1979, 

Dewar, 2005). Indeed, Dewar (2003, 2004, 2005) has extended the Maxent principle in the 

temporal dimension and by the way to non equilibrium systems, and thus established a new 

thermodynamical law that state that a system maximises its entropy at a maximal rate 

(Maximum Entropy Production). By the way, Dewar has shown that Fluctuation Theorem, 

emergence of Self-organised critically system, and Prigogine’s Minimum Entropy Production 

in far from equilibrium system, naturally follows from this principle. Those latest equivalence 

further prove the relevancy of the temporal Maxent paradigm. The idea is quite simple and 

consists in a generalisation of Jaynes maximum caliber principle: Dewar idea is that in order 

to take into account the history of the system and thus to predict the dynamic of any kind of 

system (in fact, systems with Gibbs distribution, but this may be generalised using our 

framework), the probability of the system paths in the phase diagram has to computed instead 

of the classical microstate probability (probabilities calculated on the dynamics instead of on 

the state). The maximisation of the entropy of the paths gives a direct and the best prediction 

of the future paths. This is the Boltzmann spatio-temporal generalisation to any system, and 

probably the physical horizon to our knowledge of the future. It consists in maximising the 

function ∑ ∑
Γ =

ΓΓ −−
m

k
kk fLogPP

1
λ , where ΓP  are the probability of phase space path Γ  (the 



 

 

199

entropy is measured on the ensemble of possible paths) and kλ the Lagrange multipliers for 

each m spatio-temporal constraints ∑
Γ

Γ= )(SfPf kjk  (with an additive normalisation 

constraint).  

We can inspire from this “dynamic Maxent” principle to develop the notion of spatio-

temporal redundancy in the proposed framework, in order to describe the temporal evolution 

of any system (isolated or not and driven by any kind of force or energy). The consideration 

of time and space linked together is not classical in physic and imply a loss of correspondence 

with it. The ensemble on which we will compute the probabilities is now the ensemble of 

trajectories of the m copies of the systems trajectories in the phase space (figure 3.7.11). In 

fact, the consideration of spatio-temporal redundancies is particularly relevant for non-

isolated interacting systems.  

 
Figure 4.1.12: Proposition of a principle of measure of the entropy of the paths in the phase 
diagram (entropy of the dynamic). The convention of this graphic are the same as figure 3.7.2 but 
with system presenting a temporal dimension, and a measure of redundancy extended to spatio-
temporal domain. Simply presented as here, this framework is only available for ergodic stationary 
systems, for which the temporal evolution is symmetric in time. To account for non stationary dynamic, 
a more complicated framework has to be considered that distinguishes and “numerates” each 
temporal slices. This development appears to be difficult and more time is necessary to investigate 
those problems correctly (since even the classical definition of time do not seem relevant). 
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4.1.3.3. Chaotic dynamic and deterministic quantum uncertainty amplification 

As already suggested and proposed in various work (Ruelle, 1991, Zurek, 2003), our 

framework considers that various level of chaotic dynamic amplifies quantum uncertainty. 

This point of view has its deep roots in the Copenhagen school interpretation (on the 

irreducible non-deterministic/probabilistic dimension of the elementary constitutents of our 

world), and states that the irreducible quantum non-determinism is amplified during system 

evolution by chaotic dynamic of various intensity (Zurek, 2003) that encompass the classical 

physic deterministic evolution equations. Chaotic systems are defined by the fact that the 

incertitude is exponentially increasing as a function of time, leading to a rapidly diluted 

determinism and thus to a deterministic limit to prediction and certainty. Chaotic dynamic can 

be understood as a dynamic that amplify uncertainty. The classical definition considers a 

dynamical system, represented by a n dimensional vector and defined by a deterministic 

function such as ))(( tXf
dt
dX

= . The system is said chaotic if the evolution of the precision 

on X  is a function of the type: tetXtX 1).()( 0
λΔ≈Δ  when ∞→t  and where 

)(')()( tXtXtX −=Δ  is the divergence of two trajectories initially separated by a small 

imprecision ( 0)( 0 →Δ tX ), and 1λ  is the first Lyapounov exponent (the dynamic is said to be 

chaotic if 01 >λ . In fact, to fully describe the dynamic, n Lyapounov exponent have to be 

considered for a system. Considering a ball of dimension n, of radius ε  and center )( 0tX , 

according to function of evolution of X, the ball will be deformed into a n-dimensional ellipse 

with n axis )(...)()( 21 tltltl n≥≥≥ . The different Lyapounov coefficients iλ  are then defined 

by: )
)(

(limlim
0 ε

λ
ε

tl
Ln i

ti →∞→
= . (See Falcioni & al, 2003 for review).  

The dynamic of uncertainty has a simple expression in term of higher order redundancy 

(considering the precision nRHhpx )(=ΔΔ ): 
))()((

0
0.).()( tRtRn HHehtpxtpx −ΔΔ=ΔΔ  

Considering a system with initial condition 0)( 0 →ΔΔ tpx  (in fact the minimum of 

nhtpx =ΔΔ )( 0 and thus )1)( 0 =tRH ), which appears reasonable considering the physical 

history of our world (cf Carroll, 2006 and previous discussion), we can propose: 
tehtpxtpx λ.).()( 0ΔΔ=ΔΔ  with ))()(( 0tRtRnt HH −=λ  
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In other term, the ordered redundancy are the opposite of the Lyapounov exponents (for an 

isolated system of very low initial entropy), and quantify the dissipation “rate” of the system.  

4.1.3.4. Interacting Systems : learning-adaptation 

We can now consider the case of two systems exchanging information or energy, and we will 

focus on the simple particular case sufficient for our purpose, of a system S  in its 

environment E  considered as a reservoir. Let’s define a system S  represented by an 

information )(SH  which receives information or energy from the environmental system E  

with an information )(EH . This interaction or energy imposed by the environment to the 

system constitutes supplementary constraints that are added to the system evolution, and the 

two principles (energy conservation and entropy increase) still govern the temporal system 

evolution.  

According to the previously exposed temporal Maxent principle (Dewar, 2003, 2004, 2005), 

the system in time will develop the maximum entropy dynamic compatible with the spatio-

temporal constraints imposed by the environment. It is possible to express this dynamic in the 

framework of information theory, by considering the information channel between E  and S  

and remarking that the maximum entropy under constraint principle is isomorphic to the 

maximisation of mutual information principle. This isomorphism has been several times 

underlined in computational sciences, where various Infomax principle implementations were 

shown to be equivalent to maximum likelihood density estimation algorithm (MLE, 

Pearlmutter and Parra 1996, Cardoso 1997, Mackay 1996). This correspondence can be 

expressed as the following: the maximisation of the mutual information between E  and S  

comes to maximise the entropy of S  and to minimise any other entropy source of S  that do 

not come from E , since E  constitute the only input to S  in the channel framework and since 

all the constraints imposed by E  have to be considered to make a valid Maxent inference, 

both come pragmatically to the same computation. 

Mutual information in between E  and S  is given by: 

)/()()/()(),( ESHSHSEHEHSEI −=−= , where )/( SEH  represents the equivocation 

and )/( ESH  represents the ambiguity. )/( ESH  represents whatever entropy the system S  

has that did not come from the environment E . In classical interpretations, )/( ESH  

represent the probabilistic behaviour of information transmission in between E  and S , and 
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corresponds to what is classically named noise ( noiseH ). Considering the relation expressed in 

(5), );( SEI  can be expressed as:  

)/()/()();( 01000
1

ABHRHRHHABHRHSHSEI HBBBBSHSS

n

i
i −−−=−−= ∑

=

, 

This relation points out that noise or ambiguity and higher order redundancies are acting on 

mutual information in the same way. In fact, mutual information in between the two systems 

is already a redundancy and energy.  

 

 
Figure 4.1.13: Schematic representation of the environmental system interaction formalisation 
from the informational point of view. a, Simplified representation of the system (S) interaction with 
its environment (representing all the sources of information-energy and all the output destination 
possible) The capacity of the system ( SH 0 ) imposes a bound to the interaction. b, Representation of 
the information transmission from a more classical channel point of view. c, the mutual information 
formula in the proposed paradigm. Higher redundancy and ambiguity have the same reducing  impact 
on the mutual information between E  and S . 
 

This relation is far more general than the classical application case of channel with noise 

(Shannon, 1948), and holds in the case of mutual Algorithmic Information between objects 

(or strings), or “shared complexity”: )/()():( ESKSKSEK −=  (Kolmogorov, 1968).  

As previously for the information-entropy, the Shannonian Mutual information is a statistical 

estimation of the Mutual Algorithmic Information, as demonstrated by Adami & Cerf (2000). 

According to their appellation, the mutual information of the system with its environment 

presented here is the “physical complexity” of the system, and )(0 SH  is the unconditional 

complexity of the system ( )(0 SK the Kolmogorov complexity in absence of any environment), 

and the measure of information presented above is the statistical analogue of mutual 

Kolmogorov-Chaitin complexity )/()(),( ESKSKSEK −=  which statistical quantification 
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is given by: ),()/()():()():( MmmMM
S

S
SEIESHSHSEKSpSEK

M
M

≡−≈= ∑ , where MS  

denotes the ensemble M of copies or trials of the system and mE  the ensemble m of copies or 

of the environment (our framework slightly differ from the one of Adami and Cerf and allows 

a definition of the environment ensemble).  

In fact, Infomax is directly consistent with Bayes rule and is a little bit more sophisticated 

than the Maximum likelihood principle. It is possible to understand it intuitively by 

considering the Bayes rule:
)(

)()/()/(
EP

SPSEPESP = . Maximum Likelihood principle consists 

in selecting the most probable hypothesis (or system S ) generating the data (environment E ) 

and thus in searching S  such as )/( ESP  is maximal. Developing Bayes rule into 

informational term, we obtain: ))(())(())/(())/(( EPLogSPLogSEPLogESPLog +−−=−  

and thus )
)/(

1()
)(

1()
)/(

1()
)(

1(
SEP

Log
EP

Log
ESP

Log
SP

Log −=− . Roughly information 

maximisation can be understood as both minimising the length S  (optimal code) and as 

selecting the most probable hypothesis (system S ) generating the data (the environment E ).  

From the automata point of view, and as stressed by Bennett, some type of computation can 

theoretically be made reversibly, instructions like write, copy (on a blank tape), NOT are 

conservative. However, the instructions erase, overwrite which correspond to the forgetting of 

the previous logical state are intrinsically dissipative (Bennett, 1982). In fact, the proportion 

of reversible compared to irreversible processes, in the physical world is not easy to evaluate 

and is directly assessed by the entropy production and chaotic coefficients previously 

discussed (and as always living systems seem to fall in between highly conservative and 

highly dissipative dynamic). This paradoxal state seems to be a direct consequence of the 

information maximisation process which signature is at the same time a redundancy 

minimisation and a maximisation of the environmental interaction. 

 

It gives also an interesting and intuitively satisfying definition of the efficiency of S to 

“represent” E: 
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)/( ESH , ambiguity or noise, is participating to efficiency and mutual information exactly in 

the same way as redundancies. The efficiency measure classically used in neurophysiology 

(and that we have been using in associated study, Rieke & al, 1997) is slightly different, but is 

also pertinent. Its expression in this framework is given by: 

BB

BB
n

i
i
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HABHR

BH

BAI

11

0

1

1 11
/)/(1
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);(
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εε   and thus represents a ratio in between the 

total redundancy with the first order redundancy ( 01 →ε  when 
BH
ABHRR

0
1

)/(
+<<  and 

11 →ε  when RR =1 .and 0)/(

0

=
BH
ABH ). 

 

It is possible to give some preliminary biological and cognitive interpretation of this 

phenomenon that will be further developed in conclusion. The maximisation of mutual 

information between a system and its environment, which can be also expressed in the fact 

that a system takes one of the most likely states compatible with the constraints imposed by 

its environment, can be considered as the driving force of system adaptation and evolution (in 

the Darwinian sense this time, and of course as in field physic force does not really exist). It 

may give a thermodynamical foundation for the adaptation and learning of systems to their 

environment. This adaptative dynamic is the same mechanism of self-organisation as the one 

exposed previously for a whole isolated system, but tackled relatively and locally from one 

system component taken as a referential in the whole system. It also gives some trail to 

understand how knowledge-energy is spreading in our environment (everyday examples are 

legion, and in fact everywhere, from ecosystem to human societies and cognition). Whenever 

energy or knowledge is more concentrated in some part of the system, it spreads and diffuse 

to the surrounding. This spread goes in hand with dissipation of a part of the energy-

knowledge (that is the HR ), and in some case to a complexification of the structure. This 

dynamic can also be understood as a free-energy minimisation problem involving a 

widespread network at different resolution scale.  
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4.1.3.5. Discussion: space and time as product of dissipation 

A proposition, far from being proved here, but appearing through this work is that time and 

space could be the result of energy consuming (at least, it seems to make sens at the 

psychophysical level). We saw in first chapters that the relevant spatial distances are probably 

statistical distances (mutual-information or KL-divergence), the creation of this space or 

distance implies dissipation. Fluctuation may not be the exception in our world but the 

generating rule. In more simple terms, the investigation of our world from the statistical 

dynamic point of view directly leads to the hypothesis of creative noise.  
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4.2. Global conclusion: convergence and principles of cortical computation 

The results and model exposed in this thesis combined with neuroscience and computational 

literature, allows a convergence of the mains theories of brain computation: 

- Receptive field functional theory 

- Neural assembly theory and temporal binding 

- Learning and adaptation theory 

- Efficient coding, informational theory and fluctuation-dissipation 

- Algorithmic and cybernetical theory 

- Physical & thermodynamical theory of information and of cortical processing 

- Active sensing theory. 

 

4.2.1 Receptive field functional theory  

Linear and nonlinear RFs are gain controls resulting from adaptative mechanisms. They 

operate a computation that can be resumed to two statistical processes, namely redundancy 

and noise removal (see Figure 3.6.5.c for empirical probe of the preferential noise removing 

regime of the neuronal integration process in natural condition). Those functions are 

generated by a wide range of physiological mechanisms, neuronal intrinsic non-linearity 

(including spike generation: Action Potential with its biphasic Na+ depolarising/K+ 

hyperpolarising voltage dependent dynamic is a generic primitive and widespread 

(evolutively the oldest) redundancy/noise reduction mechanism), and network dynamic 

(including excitatory inhibitory balance). The temporal biphasic nonlinearity observed for 

natural-like conditions can be considered as the generic cortical nonlinearity generating β−γ   

rythms, emerging from STDP-like mechanisms (excitatory Hebbian-inhibitory antiHebbian 

STDP) and that increases the temporal precision and sparsness-selectivity of the code. 

Moreover, the temporal dependence and assymetry of the STDP rule provide to the cortical 

function the property of input temporal compression, a property often referred as predictive 

coding. In mature subjects, RFs refelect the highly specialised cortical memory, and even 

cells classically considered as “simple and linear cells” are found mostly non-linear in a 

natural context (“complex” and specific high dimensional feature). In natural condition and 

for cells that are considered classically as simple cells, the linear component could hardly 

explain 30% of the synaptic input response (figure 3.6.1), and the synaptic to spike output was 

further found to be specifically nonlinear in this condition (Vm*spike coherence is revealing 
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that at most 30% of the input-output process can be assigned to a linear process, cf figure 

3.6.5 b). This specificity attests for the existence of specialised cortical microcircuits and 

neuronal properties, refelecting the wide diversity and variability of connectivity patterns, RF 

functions (eg. Center-Surround NL), neuronal morphology and phenotypes 

(depressing/facilitating synapses, fast-spiking/regular/bursting etc.) observed in the neocortex. 

A simple organisational rule can be proposed: cortical process maximises the RFs diversity 

(RFs are maximally different memories of the input). The cortical structural complexity 

corresponds to its functional diversity, and both are imposed by (or corresponds to) the 

structural diversity or complexity of the external environment. An important conclusion 

follows from this: the full description of RFs functions or equivalently of the whole cortical 

responses cannot be fully caught by one or few generic simple N-NL models as classically 

proposed (or equivalently, the enormous biological capacity and mechanism diversity of the 

cortex is irreducible to simple or small capacity model, thus imposing the allocation of an 

enormous computational power to faithfully simulate the neocortex corresponding to the 

enormous Logical depth of the environment and therfor of the cortical computation). Instead, 

to account entirely for cortical dynamic and responses, complex space and time NL functions 

and not monodimensional average contrast or luminance NL functions have to be considered 

(see for example the model presented in figure 3.3.9.2). Moreover, the content of the boxes 

should be different functions from one neuron to another in the same area, and reflects 

statistical biais of the environment (the most likely ones as we are in the first processing 

stages). In other terms, RF studies are a descriptive not a theoretical framework: a complete 

cortical function caracterisation requires as many functions as the number of neurons and no 

simpler/shorter function can be found. Instead, and as further proposed (and already exposed 

in computational litterature), informational theory provides simple general generative rule 

(algorithm improperly named “self-organising”, instead of “co-evolutive” dynamic), that 

given the environment carateristics (in fact, the organism complexity shall tend to be equal to 

the environment complexity (LD)), that shall be sufficient to modelise, simulate or predict the 

whole cortical function and dynamic. 

An important conclusion concerning RFs and cortical selectivity (but which may be broaden 

to any physiological function), is that selectivity is expressed in the precision, reliability 

and sparsness of the response rather than in the rate of discharge of the neurons (see 

figure 4.2.1). Our thesis provide informational tool, notably time-frequency SNR measure, 

that can be used for a widespread range of signal analysis, and that allow to uncover 
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selectivity by taking into account the signal reliability and precision. Using the variability of 

the response (intersubject variability) to uncover cortical function has already been applied 

successfully at the macroscopic scale of cortical areas activation in fMRI (Hasson & al, 2004). 

 
Figure 4.2.1: What if Hubel had a turnip in this hand instead of a slide with straight edges when V1 
selectivity was discovered?  
 

This new definition of selectivity is also supported, first in spirit by Vinje & Gallant study 

(2002) who have shown that some selectivity criterion is correlated with a sparsness criterion, 

and second, more precisely by Machens & al (2005), who have defined an “optimal stimulus 

ensemble” based on information criterion in the grasshoopers auditory receptor neuron. 

Defining selectivity and function as depending on the reproducibility is in deep rooted in the 

proposition of this thesis that learning-adapting unavoidably increase the determinism of the 

adapting system to its environment and reflects a causality axiom in physic (see also Dewar, 

2004, for similar reasoning). If this new definition of selectivity is recognised as being more 

physically pertinent than the number of spikes (or rate of discharge), it would mean that a far 

predominant component of neuronal function in the cortex is still unknown since most of the 

studies base the function measure on the rate (such depicted in the figure 4.2.1) and that the 

cortical RFs complexity has been widely underestimated in most of the studies which have 

just uncovered a very partial and averaged approximation of the real function. Therefore, one 

would prefer, as proposed before, to forget about an exhaustive description of the cortical RFs 

and to focus on generative, dynamic, or adaptative rules. 
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As a leitmotiv appearing in all the chapters of this thesis, this selectivity and RFs function of 

the neuron is shown to be generated by the Excitatory and Inhibitory balance provided 

notably by the intracortical recurrence (carved/modulated by the cortical plastic 

mechanisms, as discussed in two chapters). This Excitatory-inhibitory balance was in fact 

shown to shape: 

1. the spatiotemporal characteristics of the linear subthrehold RF 

2. the orientation and direction selectivity of the neurons spiking output  

3. the modulation notably temporal imposed by the center-surround interactions and their 

selectivity and their contrast dependence. 

4. the sparsness and temporal precision of the spiking output in natural condition with eye-

movement. 

4.2.2 Neural assembly theory and temporal binding (synchrony, β−γ oscilations) 

At the mature stage, and when immersed in its natural rearing environment, the cortical 

network presents a precise and sharp neural assembly dynamic (for the cortical systems 

involved in the the analysis of the precise carateristics of the input at this time, other cortical 

areas non relevant for this peculiar context display a spontaneous internal dynamic without 

coherence with the “active” areas). In this condition, neurons work in a synchronous input or 

“coincidence” detection mode (the rate/temporal code, or frequency/coincidence integrator 

modes appear to form a continuum, see for example Theunissen & Miller, 1995). The 

information maximisation principle states that the number of neurons activated by a given 

input shall be the smallest possible, or equivalently that the neural assembly corresponding to 

a given cognitive task shall become as small as possible with learning-adaptation (this “sharp” 

assembly argument with the ultra-specialised functional microcircuit argument exposed in the 

previous paragraph, see also Deweese and Zador, 2006 for compatible empirical results). This 

optimal processing or neuronal assembly sharpening corresponds algorithmically to the 

Occam razor principle implementation (Schmidhuber, 1992), that is implemented by the 

mutual information maximisation process. Moreover, β−γ oscillations are often considered as 

carrier waves that sustain synchrony (W. Freeman, 1991) that depend crucialy on GABAa 

inhibition (in the olfactory system, see MacLeod and Laurent, 1996). Our results confirm and 

pursue these observations by further pointing out the origin of β−γ  fast oscilations in the 

plastic STDP mechanisms (Hebbian excitatory and antiHebbian inhibitory, figure 3.6.4 b d & 

f).  
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The ordered redundancy formalism proposed in this thesis can be considered as a 

quantification-description-definition of neural assemblies in its largest definition, accounting 

for synchronous activity (or synfire chains), correlations among various number of neurons, 

and when applied in time, phase relashionhips and higher order temporal patterns (see 

Martignon & al, 2000, for an alternative definition).  

 

4.2.3 Learning and adaptation theory 

Learning-adapting reduces noise and redundancy (and therefore increases the precision of 

the code). This rule is proposed to be a universal property of learning in living systems (see 

Adami & Cerf, 2000 for the genomic adaptation) and is probaly the most important empirical 

conclusion of this work. The resulting redundancy reduction can be understood as a 

fundamental and elementary cognitive or “intelligent” process. The biphasic nonlinearity 

profile presented in Figure 3.6.4 further argues about the relevance of Hebbian excitatory 

and anti-Hebbian inhibitory (the inverse of the classical STDP rule) Spike Timing 

Dependent Plasticity (STDP) as the generic cortical adaptative function (but which probably 

encompass much more physiological mechanisms than the simple synaptic plasticity process). 

Moereover, we propose mutual information maximisation to be a formal definition of 

adaptation and learning. 

 

4.2.4 Efficient coding, informational theory and fluctuation-dissipation 

The interpretation of our empirical results and formalism proposed in this thesis is directly 

included into the mutual information maximisation principle (between the sensory input and 

the output of the cortical network) proposed in computational litterature since the work of 

Barlow, Linsker, Bialek, Nadal & Parra, Bell & Sejnowski… However, the proposed 

formalism precise this computation in a physical framework and generalise it as an intrinsic 

computational/cognitive process. In the framework proposed, mutual information 

maximisation is an intrinsically irreversible and dissipative process rather than a conservative 

information transmission process. This holds on a central mechanisms: the resistance to 

fluctuations, and our formulation of the infomax process corresponds to the fluctuation-

dissipation theorem in the non equilibrium case. This non-equilibrium case does not seem to 

be yet well formalised in Physic where the fluctuation-dissipation theorem has only derived 

for the general linear case. Application of the fluctuation-dissipation to out of equilibrium 
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system require the introduction of a still debated effective temperature, and therefore more 

work may have to be done on this topic notably using the model proposed here that in fact 

avoid the introduction of temperature.  

In the cortical context, the sensory input imposes a complex energy flow, and information 

maximisation (or adaptation) process dissipates the energy. It corresponds to the receptive 

field function and “dynamic” that can be also viewed as an impulsional nonlinear system 

relaxation. On a more integrated scale, and to our opinion, it may correspond also to fMRI 

cortical activation that is well known to represent the metabolism (notably dioxygen 

consommation) and therefore energy consumption. A view inspired from Schrodinger could 

be that “living systems absorb environmental fluctuations and this plastic dynamic allows 

them to maintain their order from decaying (death)”.  

We could identify empirically two neural mechanisms underlying this computation: on the 

one hand the cortical system, from the neuronal (figure 3.6.5) to the network level (dense 

noise input condition: figure 3.5.4 a & b, figure 3.5.2 b –spike, figure 3.5.1 d) resists to noise 

(or equivalently filters uncorrelated inputs), and on the other hand it transfers higher order 

redundancies into uncorrelated first order redundancies (figure 3.5.4 b, 3.6.2, and 3.6.4 j). The 

first mechanism corresponds to the previously exposed universal property that irregular or 

purely stochastic components are useless and wasted. The global function following from 

these 2 principles is a general fluctuation resistance and is a very general property of memory, 

an antichaotic or homeostatic principle (Ruelle, 1991), but also at the same time a chaotic 

principle. This is the essence of fluctuation-dissipation principle: a balance between two 

inseparable forces, one conservative and one dissipative.  

This dissipative natural mechanism is proposed to generate the two classical notions of 

consciouness (Chalmers, 1995): 

_ The reflexive consciousness: The mutual information maximisation principle encompasses 

the reflexive aspects of consciousness such as the ability to represent environmental 

information (which is in fact more a processing than a passive representation) as well as the 

ability to access to its own internal state (meta-representation). Moreover, because of its 

disspative aspect, mutual information maximisation can be proposed as a generic mechanism 

for any cortical area computation whatever its distance from the sensory input or motor output. 

Furthermore, as this mechanism intrinsically implies a loss of information (dissipated) and a 

simplification, it gives a very straightforward explication of the progressive abstraction of the 

cortical areas maps and cognitive associated function. 
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_ The qualitative consciousness (or the hard problem). It is appealing to propose, althought 

probably not provable, that this dissipative process is giving rise to our qualitative perception, 

notably to our subjective time. Physiologically, this dissipative process is correlated with 

the main physiological markers of conscious or attentive states such as β−γ activity, cortical 

upstates and decorrelated cortical activity and EEG (cf. figure 3.5.11). Moreover, as probed 

with the apparent motion protocol (chapter 3.3), the cortical dissipation (redundancy reduction 

and SNR increase in the colinear condition) is correlated with an overestimation of the 

perceived speed in psychophysics (Georges & al, 2002). The proposition that redundancy 

dissipation is a qualitative process is directly inscribded in the monadic or panpsychic 

philosophical position briefely exposed in the next paragraph (semantic). I think this monist 

position is the only position compatible with theoretical physic axiomatic, and it makes the 

Hard problem of qualitative perception trivial. For   

 

4.2.5 Physical/thermodynamical theory of information and of cortical processing 

One of the aims of this work is to clarify the still widely debated notion of 

information/entropy and its application to cognition and the physical world. The information 

formalism proposed here differs from the classical Shannon point of view in three interelated 

points: 

_ Inspiring from Kolmogorov complexity, the information is defined not as an average 

measure but as an intrinsic object measure (a state function of the object). It considers any 

object as probabilistic by nature, and thus is directly inscribded into quantum physic 

(moreover our formalism relies on the smallest scale elementary and indinstiguishable 

components of physical systems). It may inscribe perception as a quantum phenomon, and the 

striking correspondence between quantum physic peculiarities such as indeterminacy, 

indistinguishability, non-locality, decoherence and this statistical/cognitive formalisation will 

be the subject of future investigation. Moreover, the formalism proposed does not consider 

any ontological distinction between microscopic and macroscopic scales or states, as 

classically done in statistical physic: a system is microscopic and the macroscopic scale is 

reduced to the microspic constituent level and the microscopic interactions. In other word, 

emergent properties of a system (which are still in the scientific fashion, notably in the 

context of phase transition and renormalisation) are fully encompassed by the interaction 

component of the system (Higher order redundancy). As proposed further, this formalism 

avoids the ergodic and stationary hypothesis, and thus defines a physic with a direct concept 
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of time and an intrinsic concept of systems evolution and memory. Moreover, this formalism 

relies intrinsically on non-extensivity, and therefore offers a new paradigm for 

thermodynamic that still consider extensivity as an essential condition. It is also avoiding the 

important and restricting axioms of the classical thermodynamic that followed Gibbs work: 

the derivation of ensemble at the thermodynamic limit (infinitetly many particles in the 

system) and homogenous system consideration. Instead our formalism considers a finite 

number of “particles” and nonhomogenous “complex” systems. This formalism should be 

particulary relevant for hard physical problems such as phase transition and out-of 

equilibrium systems, and shall give, considering the structure of the Rh, an interesting 

formulation of the renormalisation problem. 

_ In opposition to the original philosophy of Shannon, we are stating that information is 

directly linked to semantic: what makes sense is the redundancy (see also the work of Atlan 

for related reasoning). Consistently with Gestalt theory, atoms of sens are proposed to be the 

elementary interdepencies or interactions (they contain all contextual effects). More deeply, 

this philosophical position is directly rooted to the monadic concept of Leibnitz and avoids 

the subject-object duality (and thus is consistent with the axiomatic of Physic). 

_ We have tried to go one step further the Landauer’s principle that states that “information is 

physical” by trying to show that information, in a physical context, is a very general form of 

energy (more precisely a dissipated energy, in joule.s) and higher redundancy is a very 

general form of free/potential energy. From this follows some potentially critically important 

results (if verified), that the Boltzmann constant can be expressed as depending on the Plank 

constant ( LnNhK n /)(= ), and thus that temperature is the inverse of time. Moreover, this 

formalisation allows describing cognition in term of energy propagation and dissipation. It 

allows investigating the cortical computation by the estimation and comparaison of the 

complex spatiotemporal wave energy (in the various high order redundancy) of the stimulus, 

of the cortical input (estimated by the Vm in our experiments) and the cortical output (cf. 

chapter 3.5). In other word, cortical areas are considered as closed non-isolated systems 

submited to the energy flow of the input (and thus in non-equilibrium) According to our 

empirical results, the cortical computation was proposed to optimally and reliably dissipate 

the inputs energy for complex natural stimulus waveforms the cortex has been adapted to, and 

transmit only the higher redundancies which are left. The formalism we propose states that the 

efficiency of the dissipative process can be quantified by both the Rh/R1 ratio, which 

measures the higher order redundancy transfer to the purely stochastic first order redundancy 

component, and by the SNR measure that notably account for the reproducibility of the 
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process. Moreover, the formalism we propose allows to describe this process under well 

known physical principles such as belief propagation, which is a method to found factorial 

codes and to minimise free energy (elementary mutual information between elementary 

components are “beliefs”), and constraint propagation or entropy maximisation under 

constraints (elementary mutual information between elementary components are 

“constraints”). It also gives a very simple explanation of the sparse code observed in cortical 

systems in terms of energy: sparsity is the direct the consequence of the application energy 

conservation law to the overcomplete (High H0) cortical system receiving an “energy-dense” 

but “undercomplete” (low R1, low H0) sensory input (eg. thalamic input). In other words, this 

energy conservation universal constraint is necessary to generate a code of the input which is 

informationally optimal (minimum redundancy) but sparse (high R1). This sparse code can be 

observed at all scales, from the level of the neuronal activation in the cortical area network as 

observed in our data, to the level of cortical area activation which has been found to be sparse 

in fMRI studies (see for example Hasson & al, 2004).  

The information defined by Shannon semantically and physically corresponds to the 

uncertainty an observer have on the system state as already stressed by Jaynes (1957), and the 

concept of information in the common language and sometime in Physic, that we are referring 

as knowledge, is quantified by the mutual information. In everyday words and 

philosophically, it means that the only certainty (knowledge, truth) in our world is the 

shared uncertainty (mutual information). This “law” appears to be transversal to all levels 

of organisation and to apply from the elementary physical level to individual or even social 

knowledge/”truths”, and reflects the subject’s physical Horizon of knowledge. Unshared 

uncertainty is not-understandable, useless, wasted uncertainty or lost heat/energy (cf. Bennett, 

1982 for similar reasoning). It further states thar any system (closed) operates as a natural 

Maxwell daemon and follows the logical/computational framework described by Bennett 

(1987, see also Cerf and Adami, 2000, for the genomic system analogy to Maxwell daemon). 

The diversity or complexity of this knowledge is quantified by the Logical Depth or structural 

complexity. In order to apply information/entropy to physical systems, notably living systems 

which are obviously evolutive systems (long term memory, or historical systems) the ergodic 

hypothesis has to be rejected: the temporal averages or probability densities are different from 

the averages and probability densities across an ensemble of copies of the system. Instead, 

only probability densities across a copy ensemble should be considered. We insist that the 

proposition that perception is based on non-ergodic instantaneous statistics constitute an 

important conceptual change, and that it embeds perception in a physical framework 
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surprisingly compatible to quantum physic (and its singular peculiarity). Moreover, Figure 

3.5.7 shows that the stationarity hypothesis of the visual input signal, when considered for 

time scales encompassing perceptual phenomena (few seconds), is not verified in natural-like 

condition. This argues for the principle that perceptual phenomena are based on the analysis 

of probabilistic trajectories instead of states (propability densities have to be computed on 

trajectories in the phase space instead of states), since a system can only have access to one 

realisation of the copy ensemble and since there are strong temporal redundancy/correlations 

in the input (presence of a temporal memory in the input that carries the perceptual 

“information”).  

A little disgression can be done here on active-sensing: action can be understood as a way to 

increase the information flow, and by the way as an adaptative mechanism that maximise the 

cortex-environment mutual information and thus the understanding of the environment, the 

“fitness” of the organism to the environment (cf. conclusion 3.3.9.3 on active sensing). The 

inseparability of space and time redundancy-correlations may raise an important paradigmatic 

change in statistical Physic that classically consider an objective Newtonian linear time metric 

imposed by an absolute external referential, that assign to each system state a given fixed time. 

In classical terms, adaptation is a way for a system to maintain its dynamic in the 

environmental time; living systems are a kind of fashion victims☺.  

 

4.2.6 Algorithmic and cybernetical theory 

The statistical model of the cortical computation proposed in the previous chapter, as well as 

some work on neural encoders (Hinton & Zemel, 1994) state that the algorithm implemented 

by the cortex comes to a Minimum Description Length (MDL) algorithm, that both 

maximises the likelihood of the cortical states given the environment as well as minimises the 

resulting code length. Therefore, it encompasses the Baysian and the entropy maximisation 

under constraints paradigms (see also Li & Vitanyi, 1991). This algorithm can be understood 

as computing a statistical approximation of the Kolmogorov-Chaitin complexity that was 

developped in the universal Turing machine paradigm. This compressive computation is the 

basis of the thermodynamical theory of computation reviewed by Bennett (1982), which 

proposed that the regularity of strings “can be used as fuel for computation. This regularity is 

caught according to the proposed statistical model in the higher order redundancy component 

or Free/potential energy of the input. Moreover, this computation is intrinsically an intelligent 

or cognitive computation that encompasses the whole Gestalt theory (simplicity goals) and the 
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Helmholtz likelihood principle (Chater & Vitanyi, 2003). The cognitive aspect of 

compression was originally proposed by Barlow (1961) in the field of neuroscience and 

Chaitin in the algorithmic field (“understanding is compression”). The spatio-temporal 

compression of the visual input demonstrated empirically in our thesis (implemented by gain 

controls/ nonlinearity) is consistent with the principle of gestalt spatiotemporal continuity 

(both electrophysiologically and perceptualy as shown in the chapter 3.3.9 on apparent motion) 

and implement some preleminary cognitive computations such as (among others) the eye-

movement invariance of the cortical responses (cf. chapter 3.6.4).  

For the matter of the model implementation of this computation, our thesis strongly argues 

about the pertinence of fully recurrent Excitatory/Inhibitory models such as the Boltzmann or 

Helmholtz nets (derived from the Hopfield net, but with hidden layer). First, all our empirical 

results (Excitatory/inhibitory fields, orientation and direction selectivity genesis, center-

surround interaction, and dense input/sparse output computation in natural conditions) point 

out the critical role of cortical recurrence and E/I balance in the cortical process (see the 

discussion of chapter 3.5.6). Second such networks automatically perform a free-energy 

minimisation (or energy descent) task: they are Rh removers, and are isomorphic to n-

dimensional spin glasses model (Hopfield, 1982). Those fully recurrent nets can be 

understood as generic (totipotent-unspecialised) and universal data compressors (Amari & al, 

1995). Combined with excitatory hebbian/ inhibitory antihebbian plasticity time dependent 

rules (STDP), such nets should be able to act as universal spatio-temporal compressors, and 

thus to present some predictive/anticipative properties (time anisotropy implies a temporal 

anisotropy of the redundancy reduction mechanism, as found for STDP rule). No doubt that 

those nets, when they will be implemented with sufficient computational power (Ho), will 

mark the beginning of the Artificial Intelligence age. However, some precise feature of those 

networks, such as for example the symetric connectivity constraint, may have to be modified 

to be fully general, and some predefined constraints, such as for example free-scale (or small-

world) connectivity (instead of fully recurrent), corresponding to the data/input structure may 

be added to improve the convergence rate of the network. The peculiar structure we observe 

for V1 can be simply understood as the result of the specialisation of those universal networks 

under the input environmental constraints.  

From the cybernetic historical point of view, the Mutual information maximisation principle 

reconciles the two old-age antagonistic schools considering either that living systems “feed 

upon noise/disorder” (see Von Foerster, 1960, stochastic resonnance paradigm, Gammaitoni 

& al, 1998, Heneghan & al, 1996 and see Atlan 1979 for review) or that living systems “feed 
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upon order/negentropy” and resist to noise/fluctuations (Schrodinger, 1944, Von Neumann, 

1956, see Atlan 1979 for review). Moreover, this algorithmic point of view summarizes 

cognition and evolution to an optimisation process (a landscape minimum energy search, the 

evidence that genetic Darwinian adaptation and epignetic cortical learning perform analogous 

computation is discussed in the next chapters) that is unsupervised and that is inscribded 

naturally in our world self-organisation. In other word, this paradigm presents the interesting 

adavantages of not requiring the intervention of external goal, predifined function, notions 

such as pertinent or relevant information, and homonculi of any kind. The fact that external 

goal has to be evoked to explain the dynamic of the system only signifies that the system 

under consideration is not sufficiently large (but it is likely that in order to fully explain 

dynamic of complex systems such as Human, the whole world and its history has to be taken 

into account).  

The other important concepts of cybernetic and biological system theory that are 

encompassed by the infomax principle are that it imposes a maximum diversity rule and a 

specialisation-differentiation process (see next chapters). It avoids the old dualism structure-

function, and further state that organisms can be described as a wide diversity of gain control 

that are imbricated in different level of organisation (for example: molecular/cellular/organe 

(cortical area)/organism/society, see next chapters). 

 

4.2.7 Active sensing theory 

Active sensing theory states that the basis of sensory experience and of the notion of “self” 

consists in extracting and exercising laws of sensorimotor dependencies (O’Regan & Noë, 

2001). It can be summarized by the original formulation of Merleau-Ponty (1960): "Mon 

corps mobile compte au monde visible, en fait partie, et c'est pourquoi je peux le diriger dans 

le visible. Par ailleurs il est vrai aussi que la vision est suspendue au mouvement. On voit que 

ce qu'on regarde. Que serait la vision sans aucun mouvement des yeux, et comment leur 

mouvement ne brouillerait-il pas les choses s'il était lui-même réflexe ou aveugle, s'il n'avait 

pas ses antennes, sa clairvoyance, si la vision ne se précédait en lui? Tous mes déplacements 

par principe figurent dans un coin de mon paysage, sont reportés sur la carte du visible. Tout 

ce que je vois par principe est à ma portée, au moins à la portée de mon regard, relevé sur la 

carte du "je peux". Chacune des deux cartes est complète. Le monde visible et celui de mes 

projets moteurs sont des parties totales du même être. Cet Extraordinaire empiètement, auquel 

on ne songe pas assez, interdit de concevoir la vision comme une opération de pensée qui 
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dresserait devant l'esprit un tableau ou une représentation du monde, un monde de 

l'immanence et de l'idéalité."  

Our empirical data supports that the primary visual cortex is operating a visuo-motor 

dependent transformation and removes correlations imposed by eye-movements (that carry 

the environmental information, see conclusions in chapter 3.3.9.3). It thus operates a 

preliminary form of eye-movement invariant representation (activity or dynamic would have 

more faithfull meaning, cf figure 3.6.4 & 3.6.6 & 3.6.7 and chapter 3.6.4). This invariance 

property is just the functional correlate of the central physical property of the cortex of 

fluctuation resistance previously discussed. Those results allow us to propose that V1 RFs, 

including linear and nonlinear components, are strongly shaped by the various Eye-

movements kinematics. We have notably identified a striking spatiotemporal correspondence 

between the main and omnipresent two classes of eye-movements, saccadic and fixational, 

with the two cortical direction selectivities, respectively the center-surround/high-

speed/collinear-axis motion selectivity demonstrated with apparent motion, and the classical 

short-range/low-speed/parallel-axis motion selectivity. Moreover, as V1 is directly projecting 

to the Superior Colliculus (eye-movement motor nucleus) and as evidence for motor activity 

in V1 is growing (Tehovnick & al, 2004 for review), we propose V1 to implement a 

preliminary visuo-motor transformation (a first stage visuo-motor loop, see conclusion of 

chapter 3.3.9.3). 

Most of physiological studies base their logic on the principle that eye-movements (fixational, 

Murakami & al, 1998, or saccadic, Ross & al, 2001) have to be compensated by neuronal 

mechanisms (gain control or fast adaptation) to maintain perception stable. The other 

interpretation, more restricted to fixational eye-movement, is that their function is to avoid the 

neuronal mechanisms of adaptation (Martinez-Conde & al, 2004 for review). The point of 

view defended here is somehow the opposite and follows the phenomenological concept of 

action-perception inseparability: neural computation through gain controls is strongly adapted 

to eye movement statistics even at the first visual stages (either trough a corollary efferent 

motor copy or through their impact on retinal spatio-temporal dynamic) and the resulting 

reduction of the spatiotemporal redundancy (that are eye-movement dependent) intrinsically 

constitutes the perceptual phenomena.  
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4.2.8 Conclusion 

To summarize, the definition of the algorithmic information of a message or objects, has 

leaded G. Chaitin to the logical statement that “understanding is compression”, or in other 

words discovering the structure. We are claiming it in visual terms, finding the less redundant 

and noisy representation of visual input is what we call seeing. The world at our scale present 

a highly structured and diverse morphology, for example objects, concepts, words like Dog 

consist in a collection of “suspicious coincidence” of properties (bark, long tail, furry …) that 

are also lower order highly correlated features (Barlow, 1985, Foldiak 1990). Given this 

structural diversity and enormous amount of redundancy of the photon flow falling on the 

retina or equivalently the huge Logical Depth of the visual input, finding such an efficient 

representation, can be considered as a Hard or close to Hard optimisation problem (probably 

NP according to Schmidhuber, 1992, but I would guess the opposite: the brain is not so huge) 

that is achieved in real time by the neo-cortical network. We would like to emptasize hat in 

this context redundancy reduction is not just a matter of retinal, thalamic, or primary visual 

cortex network task nor to maximise a channel bandwidth, but the removing process of 

structural redundancy may appear as the general computational task of the whole sensory neo-

cortex, and an intrinsic sensory perceptive computation. As argued in chapter 3.7, leaving the 

functional description, this computation is embedded in a natural dynamic process, which is 

unsupervised and does not require to appeal to goal function, finalism or aim. The relevant 

biological question is to ask how this process is implemented efficiently, what conditions and 

mechanisms are leading to efficient adaptation, and litterature combined with our results 

already offers a wide palette of physioligical implementation.  

We can propose a simple neo-cortical implementation of the redundancy reduction occurring 

in neocortex that tries to point out the crucial required biological properties to achieve this 

computation efficiently. This model, voluntarily over-simplistic, is based on a huge literature 

of network models and empirical data, including ours, and is more fully detailed and justified 

in the associated paper. 

4.3 Redundancy and noise removing mechanisms in cortical areas  

In this section we will present in more details the physiological basis of the cortical 

redundancy and noise removing process. Therefor, we propose to define the neuron and the 

cortical area as the two pertinent cortical modules of information processing which defines 

two relevant structural/functional scale. It is a widespread belief in neuroscience field that one 
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or several intermediate processing modular level can be found in the neocortex, such as 

columns, minicolumns or hypercolumns (see Mountcasle, 1997 for review). However those 

modul identification mostly rely on functional caracterisation with harsh thresholding rather 

than on direct anatomical evidence, and all the works on the cortical areas subtructures 

convinced me of their physical irrelevance rather than the opposite. Opposingly, those 

publications, together with our results on the functional generative role of the intracortical 

reccurency, convinced me that cortical areas are continouous tissues or structuraly/functionaly 

indivisible organ. Therefor, we’ll only consider as relevant the neuronal modules and the 

cortical areas modules with their layered organisation (but one as to keep in mind that even 

this minimum processing unit decomposition is an artefactual simplification). 

 

4.3.1 A generic neo-cortical code 

The results and model presented in this thesis state that the cortical code at mature adapted 

stage shall be the most reliable (high precision in the spike timing) and the less redundant 

possible. Neo-cortical optimal code is a binary reliable temporal code. Considering spatio-

temporal statistics of our environment and cortical code, rate codes and pattern codes are 

unavoidably redundant codes (see Wennekers & Ay, 2005, for related reasoning). Patterns are 

necessarily present in the cortical code, they are the redundancy left by the cortical processing 

(and the neural assembly signature) that are removed by further cortical steps if already 

learned.  

 

4.3.2 Cortical areas as redundancy reduction modules 

Inhibitory connections present the ubiquitous particularity to be intra-area connections, inter-

area connections being uniquely excitatory. This ubiquitous connectivity rules leads to the 

idea that cortical area behave as higher order redundancy reduction module. Another 

argument in favour of the redundancy reduction function of neo-cortical areas is the 

observation that the number of areas devoted to a given sensory modality appears roughly 

proportional to the Logical depth of the input. The olfactory system (which is philogenetically 

the oldest sensory system) that deals with very simple low redundancy external signals (an 

olfactory perceptive entity is due to a few molecule combinatory) presents only one devoted 

cortical area the pyriform cortex (and we’re not even sure it is included in neo-cortex). 

Olfactory bulb acts as a first simple cortical structure that projects directly to pyriform cortex, 
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limbic system, amygdale and hippocampus paleo-cortex. Moreover, the results of Laurent’s 

team on the olfactory code, oscilations genesis, sparsness and dynamic are deeply consistent 

with our own observation in the visual cortex. 

Fodor (1987, 1988) has proposed that thoughts and thinking take place in a mental language 

thus defining the "language of thoughts hypothesis", and further proposed the modularity of 

mind hypothesis. We are precising this view: the language that is used in the sensory cortex 

(at least) is the input language, a natural or environmental language. A simple model of 

cortical areas "self-organising" according to its input constraint can be proposed (figure 4.3.1). 

Each cortical area code or language consists in a simplification of the input code or language, 

leading to more and more abstract and simple representation (code or language).  

 

 
 

Figure 4.3.1: Canonical model of cortical computation and dissipation of input-driven complexity 
(cf. figure 3.5.5). Simplified model of cortical computation and dissipation of complexity along a 
hierarchy of visual cortical processing steps. At each stage of integration, higher order redundancies 
are transferred into first order redundancies that, because of their statistical independency, do not 
propagate further to the next cortical area (noise resistance property). This dissipation process 
represents the entropic cost of the cortical computation. Note the decrease in the logical depth of the 
environmental representation across cortical stages. The hierarchical feedforward schema presented 
here is of course an oversimplification: the redundancy minimisation and energy conservation 
principles applied to the cortical area level (Ù specialisation) should give rise to a complex inter-
area wiring diagram (with divergent and convergent, parallel and serial pathways) such as the 
cortical visual arganisation found by Felleman and Van Essen (1991). 
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The very simplified following schema is emphasising the apparent cortical area informative 

filter function that transfers part of the remaining higher order redundancies in the input into 

first order redundancy in the output and remove uncorrelated (independent) activity present in 

the input. To simplify our purpose, it considers that redundancies are removed sequentially 

according to their order, which is not obligatory the case. 

Cortical areas are presented here serially, but one can imagine an organisation with parallel 

modules (and convergence and divergence). A general and natural problem is to explicit the 

constraint that impose the cortical system to divide the redundancy reduction task into 

different specialised modules presenting a complex interconnectivity relashionship (Felleman 

& Van Essen, 1991) instead of removing it at once with a single undifferentiated huge area. 

The same logic we have been applying to single neuron in a cortical area (specialisation 

increase computational efficiency) may apply to the functional organisation of cortical areas 

in the brain, at a higher population scale. Adaptation of brain structure to global macro 

structure of environment shall predict the functional specialisation of area (see Weber & 

Obermayer, 2000). Ultimately, this specialisation of areas is the direct consequence of both 

redundancy reduction and sensory input energy conservation at the macroscopic level of 

cortical areas. At some level of redundancy environment may split into general more or less 

independent class of feature (for example faces and buildings for vision) leading to distinct 

areas and divergence in the sensory stream. Reciprocally, for example in context of 

multimodal integration, at some level of redundancy removing, redundancy in between 

different sensory input may be represented sufficiently apparently to allow convergence in the 

sensory streams. This kind of macro-adaptation corresponds to the minimizing connection 

wiring length criterion observable in the inter-area connection biased scheme (Chklovskii & 

al, 2002), and is likely to be implemented genetically rather than epigenetically. This model is 

of course in direct affiliation with the general idea that evolution plays “Lego” by adding 

sequentially generic boxes that are progressively specified through adaptive process. 

Consistently with this point of view, 30% of the cortical surface, mainly corresponding to 

auditive and visual areas, has been found to present a reliable response activity in fMRI, even 

from one subject to another, during the presentation of a same natural complex movie (Hasson 

& al, 2003).  

Moreover, the internal representation of cortical area in such a schema is oversimplified, 

notably it ocults the layer organisation which as undoubtly some processing relevance. 

However, small and non substantial modifications have to be introduced to account for a more 

realistic layered anatomo-functional model, as proposed in the following schema (figure 
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4.3.2). As reviewed by Martin (2002, a), a canonical cortical circuit can be proposed on the 

basis of anatomical and functional studies as severall recurrent E/I networks organised in 

serially in layers. As those E/I circuit (as further developed) act as a dissipative medium, an 

interesting analogy can be done with dissipative structures or patterns created by an 

anisotropic energy flow in various media.  

 

 
Figure 4.3.2: Canonical model of anatomo-functional cortical microcircuit and its proposed 
equivalent dissipative convection circuit. a, The layered canonical cortical circuit proposed by 
Martin (2002) on the basis of anatomic and functional literature. It represents layer 4 and layers 2-3 
as excitatary-inhibitory recurrent circuits combined in series. Layer 5 and 6 are output layers not 
represented here and could be schematised by the same recurrent circuit. b, we propose an equivalent 
diagram from the thermodynamic computational point of view. It states that E/I reccurent circuit can 
be modelised as convection circuit that reduces the input redundancy (temperature), in two serial 
stages corresponding to the preceeding layers (more complex and realistic convection scheme can be 
considered). c, the picture represent cells patterns produced by the Benard convection cells at the 
surface of the heated medium. 
 

In fact we propose that E/I recurrent circuit to implement convection cells in which the input 

redundancy is partly dissipated. The resulting dissipative patterns could correspond to the 

cortical surface functional structures such as orientation domains and pinwheels observed 

notably with optical imaging technic. A preliminary speculative interpretation of our result 

can be proposed: on the one hand, the grating condition, for which we have shown that the 

cortical computation is in a low dissipative regime (cf. figure 3.5.4 b) and which give rise to 

orientation domains macrostructure activation at the cortial surface, could correspond to the 

low turbulent regime observed notably in the paradigmatic disspative Benard convection cells 

example. On the other hand, the natural condition, for which we have shown that the cortical 

computation is in a high dissipative regime, could correspond to a fully developed turbulence 

regime with energy casacade at all scales (which would correspond to the existence of cortical 
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specialised microcircuit we inferred from our results, and shown notably empirically by 

Ikegaya & al, 2004, and may be also correspond to a scale-free organisation of the horizontal 

cortical connectivity). 

 

4.3.3 Cortical implementation of redundancy and noise reduction 

4.3.3.1 Recurrent E/I network 

Most of the theoretical studies focusing on mutual information maximisation and by extension 

to independent component analysis using neural networks, have restricted their investigation 

to simple “perceptron” like feed forward models.  

In physiological domains lateral inhibition appears as a leitmotive paradigm as a mechanism 

achieving contrast gain control, whitening or more generally redundancy reduction and 

selectivity sharpening (Barlow 1961, 1989, 1992, Laughlin, 1981, Srinivassan 1982, Foldiack 

1990, Harpur & Prager, 1996, Olshausen and Field 1996, Schwartz & Simoncelli, 2001). Our 

results, showing that the V1 neurons in natural condition receive constantly reliable and 

silenced input trains that constrain the spiking output to very specific and rare time response, 

is strongly supporting this point of view. Inhibition in a network can be understood as the 

implementation of a competition in between the entities in the network, which is a strong 

motor of specialisation (dedifferentiation) of the entities. Competitive mechanism leading to 

higher order redundancy reduction or equivalently sparse population dynamic appears a 

widespread and already well documented phenomenon in Nature. For example, demographic 

dynamic of large number of interacting populations (predator prey dynamic that is governed 

by Volterra’s formalism, generalised to large number of populations using Gibbsian statistical 

development) is leading to sparse synchronous assemblies in the case complex (diverse) 

interactions (“the higher the complexity of interaction, the more spike-like do the oscillations 

become”, Cowan 1965). In previous study, we have shown a wide diversity of E/I micro-

architecture and temporal phase between excitation and inhibition give rise to orientation and 

direction selectivity (Monier & al 2003). Studies in auditory cortex (Wehr & Zador, 2003), 

and in barrel cortex (Wilent & Contreras, 2005) show that either precise spike timing or 

selectivity emerge from a temporal shift of excitation relative to inhibition. The present study 

aims at generalising those results in the visual cortex to higher dimensional selectivity. 

Furthermore, the primary visual cortex capacity to remove environmental redundancy further 
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than the low order orientation or direction statistics, potentially explains the observed 

diversity of E/I micro-architecture for orientation selectivity (Monier & al 2003). 

Foldiak (1990) with a pure inhibitory recurrent model with Hebbian excitatory and anti-

Hebbian inhibitory connection, and Harpur & Prager (1996) with an excitatory-inhibitory two 

layer recurrent model have shown that recurrent inhibitory networks behave like redundancy 

removers which “self”-organisation in natural condition give rise to local band-passed 

oriented Gabor like filters. Further more, recurrent excitatory inhibitory network learning 

through simple Hebbian process develops topographic maps similar to those observed in 

optical imagery recording (ocular dominance, orientation, direction, and realistic patterned 

lateral connections between them, Bednar & al, 2003, Miikkulainen & al, 1997). Amari & al 

(1995), showed that a recurrent network with inhibition ruled by a generalised Hebbian/anti-

Hebbian learning can achieve blind source separation, and Deco and Parra (1995) found that 

implementing information maximisation principle to Boltzmann Machine (generalised 

Hopfield recurrent network) is achieving optimal non-linear data compression an generate 

realistic Gabor-like receptive field. Even closer to the result presented here, Wennekers & Ay 

(2003,2005) extended the information maximisation principle to temporal domain in recurrent 

network (leading to time dependent learning rule) and observed reproducible functional cell 

assemblies. According to those studies, and our results, an E/I recurrent plastic network can 

be proposed to be a canonical self-organising circuit, or from the computational point of view 

a universal input encoder that learns input statistics and reduce higher order redundancy 

(Figure 5). This model can be understood as the simplest model giving rise to cortical 

function or reproducing cortical computation. It does not take into account layer structure and 

superior area feed-back connection etc. Layer structure appears to reflect a canonical inter-

modules or inter area communication specialisation with specific feedforward input layer, 

feed-back input layer and output layer (see also figure 4.3.2). To develop functional maps 

such as observed in V1, local connectivity bias of feed-forward and recurrent connection must 

be added to the model (Ernst & al, 2001, Bednar & al, 2003, Miikkulainen & al, 1997), and 

that represent presumably a combination of epigenetical and genetical adaptation to external 

redundancy. 
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This model is also a generalisation of the simplex model (Debanne & al, 1998, Shulz & al, 

1999), that allows to derive simple and complex receptive field from a single canonical 

connectivity scheme under Hebbian learning, and that explain the complexity of simple cells 

subthreshold depolarizing field observed in V1 (Chavane & al, 1998, Shulz & al, 1999, Priebe 

& al, 2004).  

4.3.3.2 Neuronal non-linearity:  

We‘ve been focusing on the architectural E/I of neocortical that is carved by long term 

plasticity as an optimised structure for removing the environmental redundancy the organism 

has evolved in. This is of course a partial and simplified point of view. In fact, the neuronal 

unit individually behaves like a higher order redundancy remover, and its integration 

properties as well as the short term dynamic of its synapse appear widely optimised for this 

task. In this study we show that in natural condition, the neuron integrates input in a 

coincidence detection mode (Abeles, 1991), and thus acts as a higher order redundancy 

remover. This can be already found in Nadal’s work (1994) that showed that the introduction 

of the spike threshold non-linearity in a perceptron infomax model shifts the statistical 

computation of the network from PCA like to ICA like. This neuronal informational 

compression is further more obvious when one consider that “neurons integrate thousands of 

inputs, each firing over a range of about 1-100 Hz” while keeping “their output firing rate 

within the same range” (Abbott & Regehr, 2004).  

In fact, any mechanisms of adaptation or gain control (or homeostatic) implemented at the 

cellular level can be also invoked. Neuroscience literature already reveals such important 

mechanisms, non exhaustively: 
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_ Neuronal intrinsic non-linearity such as dynamic spike threshold (Azouz & Gray, 2000, 

2003), activity dependent suppressive intrinsic K+ current (Wang & al, 2003, although they 

do not appear to be revealed in the sparse dynamic regime obtained with natural image 

opposingly to the drifting grating correlated regime or resting regime (in higher time scale 

correlation that are not present in our natural film, see also Castro-Alamancos 2004, for 

similar observation), or voltage dependent enhancement of recurrent lateral excitatory 

connections (Hirsch & Gilbert, 1991).  

_ Short term synaptic plasticity (Koch & Segev, 2000, Destexhe & Marder, 2004, Abbott & 

Regehr, 2004 for review, Tsodyks & Markram, 1997) allows synapses to act like active filters 

at different time scales depending on its facilitating or depressing nature. For example, 

Goldman & al (2002) have shown that depressing synapse can remove redundancy in realistic 

natural activity regime. Short term plasticity concerns most of central synapses and thus our 

results show that amplitude and time course of those rapid plastic mechanisms if really 

present are widely reliable. 

_ Shunting inhibition is narrowing the temporal filtering of the cell, by increasing the 

membrane time constant. Further more, Chance & Abbott (2000) show that divisive inhibition 

in a model with recurrently amplified feedforward responses can stabilize network activity for 

arbitrarily large excitatory coupling, and can eliminate the critical slowing down of a high-

gain network without modifying its selectivity. 

_ Input dynamic have strong influence on neuronal integration properties. Regime of high 

input conductance promoted by high synaptic bombardment that is observed in vivo and that 

are related to awake states, have been shown to enhance correlation detection, and to sharpen 

the temporal resolution of those coincidence detection up to the millisecond time scale by 

stochastic resonance like mechanism (Softky, 1994, Rudolph & al, 2001, Destexhe & al, 2003) 

and to generate a gain control (Chance, Abbott & Reyes, 2002).  

4.3.4 Sharp neuronal assembly and redundancy reduction  

The definition of redundancy we gave, when applied to central nervous system, can be 

understood as a quantification of neural assembly. A closed formalisation can be found in 

Martignon & al, 2000, taking the general form of correlation constraints on the joint 

distribution of the system (first and higher order constraint). Neural assemblies are defined by 

coherent patterns of activity, often considered as specific synchronisation of neuronal activity 

(or second order spatial correlations) or spatio-temporal patterns (higher order correlation) 

and intuitively represent a kind of redundancy of the code (or representation) in the network. 
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Martignon & al, 2000 proposed that the joint distribution of the system can be formulated 

according to entropy maximisation under constraint method as:  
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because of the additional constraint on the sum of all probabilities normalised to 1 witch gives 

0λ , that is not present in the redundancy method) correlation or neural assembly patterns are 

expressing redundancy in the code. 

The aim of this chapter is to reveal the striking correspondence in between neural assembly 

theory and redundancy reduction computation, and by this way that the temporally precise 

and sparse code obtained in this study can be as well understood as the signature of precise 

and sharpened “synfire chains”. Neural assembly theory have its roots in Hebb work, and has 

find its formalisation in Abeles “synfire chains” and many experimental correlates in various 

investigation methods (Singer, Aertsen, Vaadia, Varela etc…). It can be understood as a study 

of activity propagation and clustering under associative learning rules in neural networks. 

Basing its thought on the observation that neuronal integration can behave in two 

stereotypical regimes, either as coincidence detector or input frequency integrator, it states 

that neuron at the same stage of information processing and coding for the same “perceptual” 

or “behavioural” entity shall synchronize their activity. Neural assemblies are the logical 

signature of the internal constitutive and unavoidable redundancy defining a cortical system, 

of cortical structure. They are also the indispensable redundancy for a system to generate a 

structured output or action. Imagine a cortical structure which output would be truly 

statistically independent (factorial), this activity would be stochastic (what we call noise in 

this paper) and would not propagate; statistical independence is a dead end: even more, true 

statistical independence implies a division of the system into independent systems, a split 

brain. 

Our experiments present various scales of neural assembly, ranging from raw rate coding 

presenting high redundancy, expressed in the frequency integration regime (noisy or 

unreliable frequency codes are redundant codes, see Shalden & Newsome, 1998, for 

development), and the high level of correlation in the cortical state, to temporal code 

exhibiting low redundancy and precise correlation detection regime. More precisely, 

frequency vs temporal code, noisy vs reliable activity, redundant population code vs sparse 
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individual cell coding are just the expression (and can be summarized as) of different 

informational redundancy regimes (cf. the new definition of efficiency). Using this 

discontinuous fashion of describing neural activity, we are stating that the cortical network 

aims at finding the smallest (in term of number of neuron) or finest (taking into account 

temporal precision) neural assembly for a given input pattern. This is the direct consequence 

of the Occam’s razor, automatically implemented by neural network aiming at removing 

statistical dependencies in the input (Schmidhuber, 1992). In this case of course the simplicity 

of the hypothesis is represented by the number of active neuron. Using the more general 

formalism and definition of neural assembly (Martignon & al, 2000), the cortical system aims 

at removing spatio-temporal patterns in the input, that is equivalent to find the spatio-temporal 

representation containing the less possible correlations (even at high order). It is easily 

understandable in this context that the temporal and spatial scale of the correlation removed 

by the brain is increasing with the stage of analysis. Going to higher stage of cortical 

processing shall increase the time and spatial constant of the engaged neuronal memories and 

increase the abstraction or simplicity of the environmental representation. 

4.3.5 Information, redundancy reduction and qualitative perception or attention 

Synchrony, and mechanisms potentially allowing the synchronisation such as transient high 

frequency oscillation (career waves, Singer 1993 for review) have often been invoked as a 

solution for the binding problem, and to be a signature of visual feature integration (Singer& 

Gray, 1995, example of Gestalt grouping, Gray 1999), a working memory activation or 

reactivation (Damasio, 1990, gamma oscillations, Howard & al, theta oscillation Lee & al, 

2005), or more generally conscious process. This study, for condition approaching to natural 

stimulation, presents: 

- A high synaptic bombardement that approaches awake state (long lasting stimulus induced 

upstate, see complementary figure).  

- A global desynchronisation during eye-movement fixational period compared to on-going 

resting state and to saccadic period (that correspond to low perceptive state (Morrone & al, 

2005)) 

- An SNR increase in the Beta-Gamma range in the ECG as well as in the input population of 

the cell. 

- A sparse temporally precise spike timing that coincide with transient reliable high frequency 

input population activity. 
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Those result agrees with the point of view that desynchronisation of cortical activity is linked 

to phenomenal perceptive state (Rodriguez & al 1999) and to general cognitive process such 

as memory activation. This desynchronisation is a simple reflect of the input redundancy 

reduction occurring in the area. Of course, this is not in contradiction with role of temporal 

correlation in binding. Correlations that are left in the area output are removed at a higher 

level of processing, or learned if not already known by the network and repeatedly presented 

(and thus removed). Attention has been proposed as a global (arousal state) or more spatio-

temporally local modulation (focal attention) of cortical activity. SNR modulation of cortical 

response implement rigorously a mechanism of gain control, and our results show that it is 

accompanied by a selectivity (or filtering) modulation. Thus playing on SNR appears a very 

simple mechanism to obtain attentional effects, either automatic (stimuli driven like pop-out) 

or supervised by feed-back or neuromodulation. In psychophysics, Lu & Dosher (1998, 1998) 

have shown that attentional mechanism (and even learning) are consistent with a signal to 

noise ratio modulation paradigm. We propose attention to reflect the level of computation 

occurring in an area and thus to result of simple work on R1 over Rh balance (computational 

efficiency). Simple mechanisms playing either on integration properties of neuron 

(excitability for example) or on E/I balance can be proposed as a target for neuromodulation, 

in the case of externally supervised attention or learning. 

4.4 Natural computation: general self-organisation and adaptation physical 

laws 

4.4.1 Redundancy, structure and organisational complexity (Logical Depth) 

From the biological point of view, in the redundancy component RH 0  lies all the structural 

and potentially “semantic” information of the environmental world. In other word, it is the 

only information available for a living system to learn (to evolve) and to perceive. 

Reciprocally, what is random or statistically independent is uncertain and non-understandable 

for any kind of observer either a human, a cortical area, or a genome. For example, although 

two sequences of random dense noise are the less correlated stimuli, any observer cannot 

distinguish one sequence from another (except if the noise is repeated, but it’s no more noise). 

Obviously, the world we are living in is highly structured, or equivalently is highly redundant 

and appear to strongly deviate from a pure chaotic dynamic.  

In his essay “what is life” (1944), Schrodinger has proposed that living organism remarkable 

properties of non periodic but reproducible order (“aperiodic crystal”) could be measured as 
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the entropy with a negative sign. He also proposed that to maintain this order from decaying 

to the maximum disorder (entropic) equilibrium state (that is death), what biologist call 

homeostasis, organism has to “feed upon negative entropy” (order from order paradigm). A 

remarkable feature of (2) is that it shows that negentropy in its wide sense is equivalent to 

redundancy: RH 0 , allowing to reformulate Schrödinger’s adage into “organism feed upon 

environment redundancy”, that seems also to particularly fit to the neo-cortical function. 

Chaitin in 1970, consistently with the definition and reasoning proposed here, gave a first 

general mathematical definition of “life” based on complexity measure, remarking that “a 

living being a unity” and that “it is simpler to view a living organism as a whole than as sum 

of its parts”.  

Moreover, high order redundancies are reflecting what complex studies are calling emergent 

properties macroscopic or collective behaviour. Phenomena of phase transition often 

described in physic correspond to drastic rehandling of the ordered redundancy distribution.  

4.4.2 Toward a formal theory of evolution and cognition: reproducibility, 

differentiation, efficiency and diversity of living systems as a natural Maxent or 

Infomax process result 

”God has chosen that which is the most simple in hypotheses and the most rich in 

phenomena” (Leibniz, Discours de métaphysique, VI, 1686). 

 

The idea, supported in this thesis, that the 2nd principle drives evolution, is far from being new. 

In 1922, Lotka referred to Boltzmann as one of the first proponents of the proposition that 

available energy (also called exergy) can be understood as the fundamental object under 

contention in the biological, or life-struggle and therefore also in the evolution of the organic 

world. Lotka interpreted Boltzmann's view to imply that available energy could be the central 

concept that unified physics and biology as a quantitative physical principle of evolution. The 

work of Prigogine aimed at showing how in far from equilibrium systems dissipation could 

lead to the mergence of structure (minimum entropy production theorem). 

This idea is further extended here to cognition: Darwinian evolution and cognition may result 

from a common and elementary process or computation, occurring at different spatial and 

temporal scales and on different system definition. They result from the adaptative capacity of 

respectively the species genome and the brain of individual to the environment.  
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Recent computational studies already exemplify this principle. In computational neuroscience, 

Laughlin (1981), Bell & Sejnowski (1995); Brenner, (2000) and Bialek (2002), and Sharpee 

& al (2006) have proposed that adaptation can be implemented by a simple mutual 

information maximisation in between the environment and the neuronal response (either an 

isolated neuron or the whole network). In fact, for organism, nervous system or at least neo-

cortex can be considered as a powerful (huge capacity) extra genome adapting on multiple 

time scales. Genomic adaptation and natural selection can also be resumed by this simple 

information maximisation procedure. It can be understood from Adami and colleagues work 

(2000, 2000), that identifies genomic information with the amount of information a sequence 

stores about its environment. Adami and colleagues have further shown that this mutual 

information with the environment, or “physical complexity”, is increasing.  

More simply, mutual information maximisation or entropy maximisation under constraint 

appears as logical and general formal definition of adaptation, and defines a simple and global 

knowledge homeostatic process.  

We can now show the consequences of the mutual-information maximisation in term of the 

important and defining biological properties of efficiency, reliabilility and 

diversity/specialisation. 

From equation, )/();( 00 ESHRHHSEI SSS −−= , it appears that maximising mutual 

information in between the system and its environment comes to minimising the redundancy 

and the ambiguity of the system (since as we showed before SH 0  is a constant). Maximising 

mutual information in between the system and its environment by definition comes to 

optimise the efficiency of the system.  

The alternative definition of mutual information is )/();( 00 SEHRHHSEI EEE −−= . Thus, 

maximising mutual information comes also to minimizing the equivocation )/( SEH . Several 

interpretations can be given to this equivocation minimisation: it can be considered as an error 

or representational failure minimisation, as well as the behavioural active quest of external 

information (active-sensing paradigm developed in chapter 3.3 and 3.6, Philipona & al, 2003). 

Reproducibility-Reliability: Minimising the ambiguity is equivalent to increasing the 

reliability of the system in its environment. The reliability has been pointed out to be a 

singular particularity of living organism (Schrodinger, 1944, Cowan, 1965), and either the 

genetic code (genetic sequence is highly conserved from one Human to another for example) 

or the cortical code (that demonstrated empirically in chapter 3.5) are reliable code when 
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exposed to the environment it has been adapted to. Organism reliability is a consequence of, 

or maintained by, the environmental constraints (redundancies). This conclusion is already 

present in essence in Adami and Cerf (2000). 

Redundancy reduction and differentiation: a system by adaptation to its environment tends 

to optimise its encoding or “representation” of its environment. We can directly derive, from 

the previous formulation of mutual-information, the conclusions of Nadal & Parga (1994), 

Bell & Sejnowski (1995, 1996), Deco & Obradovic (1998), obtained in the particular 

perceptron network case, that maximising mutual information in between the system and its 

environment comes to remove redundancy in the system (or partially tend to achieve ICA). 

This result is in fact, much more general than the perceptron case (Amari & al, 1995 for 

recurrent network generalisation). As explained before, information maximisation is closely 

related to the entropy maximisation under the constraints. The numerical simulation of Bell & 

Sejnowski (1995, 1996) is a maximisation of the network entropy considering the constraints 

imposed by the input. In fact, this Infomax principle is also closely related to maximum 

likelihood density estimation (MLE, Jaynes, 1988, Pearlmutter and Parra 1996, Cardoso 1997, 

Mackay 1996), reconciling two schools of thinking, and leading to the rough idea that 

predictive or generative coding (temporal or spatial) is equivalent to efficient coding. It 

follows from a very general rule: the most likely solution is also the simplest or shortest 

(Solomonoff, 1964, 1978, Vitanyi & Li, 1996, Chater & Vitanyi, 2003, Schmidhuber, 1997).  

In evolutionary genetic, this redundancy reduction is also well described under the explicit 

term of compression selection. The work of Adami and colleagues on digital organisms may 

examplify this redundancy minimisation principle (Edlund & Adami, 2004), although their 

theoretical context is much more sophisticated than the one presented here. For organisms 

evolving in a high mutation rate environment, they report a phenomenon of maximisation of 

independence in between the instructions composing the genomes (antagonistic epistasis 

removing, which is a particular kind of redundancy removing) which comes along in their 

context with an increase of ambiguity (or equivalently neutral fraction of the genome).  

This redundancy minimisation can also be observed in other higher level systems such as 

human societies or ecosystems (interestingly, neo-cortex can be understood as a social 

genome). Individuals in societies are specialised into diverse tasks, such as farmer or 

researcher, herbivore and carnivore, and the redundancy in between a researcher brain and a 

farmer brain may be lowered by a social information maximisation process.  
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In artificial genetic, some results already exemplify such ecosystem influence on genome 

dynamic (Johnson & Wilke, 2004). Digital organism genome adapting to a single rich 

environment composed of two independent niches, nonetheless absorb environmental 

constraints, but irreversibly bifurcate into two distinct genome population each adapted to a 

given niche (White & Adami, 2004). Moreover, Johnson & Wilke (2004) have shown that 

two competing species evolve to a stable state that avoid synchronisation and by the way 

make maximal use of the available resources. Competitive mechanisms leading to higher 

order redundancy reduction or equivalently sparse population dynamic appears a widespread 

and already well documented phenomenon in Nature. For example, demographic dynamic of 

large number of interacting population (predator prey dynamic that is governed by Volterra’s 

formalism, generalised to large number of populations using Gibbsian statistical development) 

is leading to sparse assemblies in the case complex (diverse) interactions (“the higher the 

complexity of interaction, the more spike-like do the oscillations become”, Cowan 1965). 

In the section dedicated to neo-cortical organisation, we propose that the specialisation of 

cortical areas is resulting from such a process. In fact constraints are present at many scales 

and their definitions depend on what is approximated as a system. And obviously, an “entity” 

like a human is participating to several systems (or networks) at various temporal and spatial 

scales. As we said before the Logical Depth is huge. In other word, “I” is a result of Human 

specie biological historical network that contain evolution and ecosystem, and of social 

network that contain family, schools and society etc… This is the essence of the holist 

physical view, when one considers pragmatically the various energy flows and exchange, the 

various interdependencies on all spatial and time scales, the notion of system (formally in 

statistical and mechanical physic), entity, or individual fades and a global system or holist 

network of elementary entities has to be considered. 

The redundancy minimisation, imposed by the information maximisation process, is 

synonymous of specialisation (or differentiation) of the entity composing the system. It is 

intrinsically a rule that maximise diversity, that lead to maximally specialized entities. Two 

genes or two neurons have rarely the same structure and function. The introduction of the 

system capacity in the definition of mutual information ( )/();( 00 ESHRHHSEI SSS −−= ) 

shows that the amount of redundancy that can removed by adaptation is increasing with the 

system capacity. In other terms, increasing the number of entities of a system, in a given non-

limiting energy (and structurally complex) environment is leading to an increase of the level 

differentiation, selectivity or specificity of the entities. As exposed further in the cortical 
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context which “strategy” is clearly to have a huge capacity, 0H  is a redundancy removing 

capacity, a computational capacity.  

We can conclude simply that living systems, through their genetic patrimony and-or their 

nervous system, are dynamic memories optimising their fitness to the environmental context 

and modifying it the way. 

4.4.3 System computational capacity increase 

The absolute capacity of a system 0H , is a computational capacity. Both Genomic (Cavalier-

Smith, 1985) and neocortical capacity have been increasing on average along evolution. In the 

framework presented here, this increase may correspond to the increase in the structural 

complexity (LD) of the environment. However, the system capacity is not an absolute 

indicator of the system information or complexity, as number of exception, at least apparent, 

have been reported. Onion DNA contains for example 3 times more bases pair than Human 

one, and Dolphins relative brain size being superior to Human one (Jerison, 1973; Marino, 

1996). In genetic, the absence of strict correlation between genome length and organismic 

complexity, due to various proportion of ambiguous neutral code, as leaded to the so-called 

C-value paradox. However, mean social group size is directly related to relative neocortical 

volume in primates (Sawaguchi & Kudo 1990, Dunbar 1992), carnivores (Dunbar & Bever 

1998) and cetaceans (Marino, 1996), reinforcing the idea that neocortex act as a social 

genome, and that neocortical capacity is linked to a cognitive complexity. 

4.4.4 Complex system modelisation and prediction 

The model presented above have obviously a very simple analogue in cybernetics, in term of 

Turing machine. The algorithm of nature just looks like an entropy maximisation or 

redundancy minimisation process (which may be hard or close to hard problem). If so, there 

may be no simpler rule that can be used to explain or predict system dynamic. It would imply 

that, in order to predict complex system dynamic, an enormous amount of data and a huge 

computational capacity have to be employed. From the thermodynamical point of view, as 

noted by Bennett (1987) and Adami and Cerf (2000), this process defining a memory 

corresponds to the operation of a natural Maxwell daemon, “the population performs random 

measurements on its environment, and stores those “results” that decrease the entropy, but 

rejects all others. Thus, the process acts as a “semi-permeable membrane for information” 

(Adami & Cerf 2000). 
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4.4.5 Living systems as a function: gain controls diversity and non-linear systems. 

So far from the line.  

“The straight line leads to the downfall of mankind” Hundertwasser F., 1953. 

According to the model presented here, the dynamic of living systems is not a singular 

dynamic and is common to any system dynamic. From the functional point of view, 

information maximisation can be achieved by gain control (Laughlin, 1981, Bell & Sejnowski, 

1995). Furthermore, as shown in chapter 3.6, non-linear interaction, or gain control, increase 

the reliability of the cortical response. Similar results have also been obtained considering 

gene expression, showing that negative feedback loop increases the reliability of genetic 

expression (Becskei & Serrano, 2000, Gardner & Collins, 2000). Living systems can be 

viewed as a collection of gain controls (at mature adapted stage): they’re intrinsically non-

linear systems. Consistently, the response observed in primary visual cortex to natural movie 

(with eye-movement) is poorly explained by the linear classical receptive field (chapter 3.6). 

This wide and compact superposition of gain controls, corresponding physically to a complex 

network structure, explains the striking difficulty of the functional characterisation of 

organisms (just look at the diversity of result on the center-surround interaction in the cortex 

or on the control of protein expression or intracellular signalisation in cell-biology). This 

complexity also explains the omnipresence of large variability in experimental results when 

the system is dissected into isolated elementary mechanisms or function.  

In such complex systems, computational models can have critical role not only in reproducing 

or validating empirical results, but in predicting them. Artificial life and intelligence should 

even abstract from the function, and increase the still widely underestimated computational 

capacity (Ho) of their model and environmental informational richness of the input (LD, cf. 

chapter cybernetic).  

Reciprocally, reproducibility of the results shall be used by experimentalists as an heuristic to 

discover the full function and the pertinent dimensions the system responds to. 

Philosophically, adaptative process may be sufficient to explain the antagonistic apparent role 

of “hazard” and the apparent purpose, functionality or “necessity” of the living dynamic 

(Democrite, Monod, 1970). In other terms, apparent function or goals naturally arise from 

adaptive processes. This is on our opinion why “anthropic principles” widespread from 

biology to physic, although hardly justified logically, may appear pragmatically relevant.  
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4.4.6 Natural language and Human language: linguistic generalisation 

Another important point can be proposed from this model. Many theories stress that Human 

specificity is due to his peculiar linguistic competence. It seems to us that this definition that 

most nowdays ethologist would laugh about has to be discussed. We can give a very intuitive 

and simple expression of the model presented above (that most of the poets already claimed): 

nature is a language (or a code, see Reeves, 1986, for a simple physical and general 

argumentation), and organisms learn this language and speak or express themselves in this 

language (it’s not restricted to organisms, anything learns or evolves). Human languages are 

just very compact natural language allowed by the high human brain computational capacity 

(neo-cortex). As Barlow already noticed, Human languages are probably one of the highest 

ordered (abstract) and less redundant representation of the world. The simple fact that all 

human languages are approximately equivalent, meaning they can be translated in one another 

with very low "information" loss, can be interpreted as a signature of this natural origin of 

Human languages, world being essentially the same for any-culture, and language translation 

fails mainly where the environmental content differs. This consideration in turn moderate 

Chomsky proposal, with all the respect and admiration we have for his work on generative 

grammars, that "linguistic competence", the unconscious knowledge of grammatical rules, are 

innate features of the human mind (Chomsky, 1965). This idea that grammatical rules are 

genetically encoded is still supported in psycholinguistic (Sakai, language acquisition review, 

2005). Hidden laws can be understood as processes that generate or explain redundancy or 

structure, learning the outside or internalising external constraints leads to a hidden or non-

representative internalisation of this law. A more obvious example of hidden law is gravity, 

most organism implicitly know this rule and even play with it without having the explicit or 

representative expression that culminated with Newton and which necessities a high level of 

generalisation of integration to be formulated. More generally, the debate innate vs. acquired 

information appears obsolete since both are experience learned competence either genetically 

or epigenetically. Furthermore, both genetic and epigenetic learning implement the same 

algorithm at different scale. Some studies in psychology are already probing that subject can 

learn implicitly simple rules and that this ability can simply be explained by a powerful 

associative memory capacity, globally leading to a more and more founded critic of 

Chomsky's genetical proposition (Richardson & al, 1990, Perruchet & al, 1997, Redington & 

Chater, 1998). Furthermore, recent modelisation studies show that prototypic languages can 

emerge in population of interacting adaptative agents (Steels, 2003 for review). In genetic 
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field, universal genetical code can be understood in this context as hidden rules (grammatical 

rules, not code), that are simply represented by associative memory like tARN (more 

precisely, amino-acyl ARNt synthétase). 

4.4.7 Evolutionary Epistemology, history, and intelligence 

Redundancy is an elementary definition of knowledge. Intelligence, when considered as the 

amount of knowledge a system display can be quantified by its Logical depth; intelligence, 

when considered as the process that generate the knowledge, can be quantified by its 

Algorithmic information (unfortunately noncomputable). As already emphasized in 

algorithmic and statistical literature, it also gives a formal framework for epistemology and 

scientific production, a good theory being defined by the shortest possible expression (low 

complexity) and the largest possible amount of data explanation (large logical depth) (Parisi, 

2003, for review).  

The mutual information maximisation or maxent  pragmatically corresponds to the most 

classical empirical principle in science. This paradigm can be understood as a pragmatical 

formalisation of observation. 

Interestingly, RH 0  is also the elementary logical definition of the system memory, since the 

presence of mutual information in between two entities of the system notably in time implies 

the presence of a memory (Ashby, 1967).  

4.4.8 Philosophical and epistemological debates 

We can also investigate how this model may participate to philosophical and epistemological 

debates (but a whole book would be necessary). Of course, one of the main consequences of 

this work is a re-naturalisation of the conception we have of Humans, of their thoughts and 

beliefs, culture and societies. It is also a criticism of Cartesianism, and we are opposing to 

Descartes’ (1644) “I think therefore I am”, Rimbaud’s (among others, and they are many) 

point view: “It is wrong to say: I think. One ought to say i am thought. Pardon the pun. I is 

someone else. No matter for the wood that find itself a Violin, and scoff at thoughtless, who 

argue about something they completely ignore!”. 

A first remark concerning the philosophical aim of biological definition (Canguilhem, 1968) 

follows from this: any rigorous definition of Human or Life is probably doomed to fail. 

Secondly, any science field studying structure and its dynamic or the following apparent 

function can be translated into physical terms: there’s no hard or weak/soft science: Human 

sciences are hard sciences just classically expressed in less formal ways than physics. 
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Coherently, an example of the economical sciences attempt of formalisation in mathematical 

terms, the gambling theory, is leading to an equivalent formalism to the informational one, the 

best gambler being also the best data compressor (Cover & Thomas, 1991). We can even go a 

step forward, considering that scientifical concepts are just beliefs generated by the same 

brain and the same process as any other beliefs like artistic or religious ones. From this point 

of view, those three families of beliefs are just natural sciences (or natural arts, or natural 

religions) sharing many similarities (further more philogenetically, those knowledge are 

parents) and expressed in different specialised languages, none of them being more legitimate 

than another, and all of them having to be considered concerning the conception we have of 

the world. This can be related to the basement of anthropological and ethnological studies 

(Lévi-Strauss, 1972, Latour, 1979), and many principles developed here are consistent with 

those science field conclusions. It has to be emphasized that what is defended here is not a 

pure relativism or idealism (nor of course pure objectivism), brain beliefs are legitimated, and 

if our beliefs and percept may be just illusions, the whole world is intrinsically included in 

this same illusion (i think therefore the world is). In other terms, the paradigm proposed in 

this thesis, in the direct affiliation with Leibnitz, avoid the subject-object dualism. There are 

many ways of interpreting this work; at least, to finish on an optimistic considerations, it 

appears as a natural conclusion that Life, Time, and Energy are precious, that a realistic 

definition of a system is in fact a great-widespread family and history, and one can interpret 

the minimisation of constraint ongoing in the world and systems both as a freedom, a 

creativity and a consciousness quest. 

 

“Peacock makes the wheel      “Le paon fait la roue 

Chance makes the rest         Le hasard fait le reste 

God sit inside        Dieu s’assoit dedans 

And Man pushes it”       Et l’homme le pousse. » 

 

The wheelbarrow or the great inventions,     

La brouette ou les grandes ineventions 

Prevert (Paroles, 1946) 
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Vers dorés 

  

« Eh quoi tout est sensible! » 

Pythagore 

 

Homme, libre penseur! Te crois-tu seul pensant  

Dans ce monde où la vie éclate en toutes choses?  

Des forces que tu tiens ta liberté dispose,  

Mais de tous tes conseils l'univers est absent.  

Respecte dans la bête un esprit agissant:  

Chaque fleur est une âme à la Nature éclose;  

Un mystère d'amour dans le métal repose;  

"Tout est sensible!" Et tout sur ton être est puissant.  

Crains, dans le mur aveugle, un regard qui t'épie:  

A la matière même un verbe est attaché...  

Ne la fait pas servir à quelque usage impie!  

Souvent dans l'être obscur habite un Dieu caché;  

Et comme un oeil naissant couvert par ses paupières,  

Un pur  esprit s'accroît sous l'écorce des pierres.  

Gérard de Nerval 
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