A. Annexe and T. Egalité-des-valeurs-propres-dans-le-tableau, A.1, nous présentons un récapitulatif des cas pour lesquels deux valeurs propres peuventêtrépeuventêtré egales

T. Amari, J. F. Luciani, and P. Joly, A Preconditioned Semi-Implicit Method for Magnetohydrodynamics Equations, SIAM Journal on Scientific Computing, vol.21, issue.3, pp.970-986, 1999.
DOI : 10.1137/S1064827596304824

P. Arminjon and R. Touma, Central finite volume methods with constrained transport divergence treatment for ideal MHD, Journal of Computational Physics, vol.204, issue.2, pp.737-759, 2005.
DOI : 10.1016/j.jcp.2004.10.034

J. Balbás and E. Tadmor, Nonoscillatory central schemes for one-and twodimensional magnetohydrodynamics equations. ii : High-order semidiscrete schemes

J. Balbás, E. Tadmor, and C. C. Wu, Non-oscillatory central schemes for one- and two-dimensional MHD equations: I, Journal of Computational Physics, vol.201, issue.1, pp.261-285, 2004.
DOI : 10.1016/j.jcp.2004.05.020

D. Balsara, Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics, The Astrophysical Journal Supplement Series, vol.132, issue.1, pp.83-101, 2001.
DOI : 10.1086/318941

D. S. Balsara, Divergence-Free Adaptive Mesh Refinement for Magnetohydrodynamics, Journal of Computational Physics, vol.174, issue.2, p.614, 2001.
DOI : 10.1006/jcph.2001.6917

URL : http://arxiv.org/abs/astro-ph/0112150

D. S. Balsara, Second???Order???accurate Schemes for Magnetohydrodynamics with Divergence???free Reconstruction, The Astrophysical Journal Supplement Series, vol.151, issue.1, pp.149-184, 2004.
DOI : 10.1086/381377

URL : http://arxiv.org/abs/astro-ph/0308249

D. S. Balsara, D. S. Spicer, and . Erratum, A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations, Journal of Computational Physics, vol.149, issue.2, pp.270-292, 1999.
DOI : 10.1006/jcph.1998.6153

A. A. Barmin, A. G. Kulikovskiy, and N. V. Pogorelov, Shock-Capturing Approach and Nonevolutionary Solutions in Magnetohydrodynamics, Journal of Computational Physics, vol.126, issue.1, pp.77-90, 1996.
DOI : 10.1006/jcph.1996.0121

I. B. Bernstein, The variational principle for problems of ideal magnetohydrodynamic stability, Basic Plasma Physics : Selected Chapters, Handbook of Plasma Physics, p.199, 1983.

J. P. Boris and D. L. Book, Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works, Journal of Computational Physics, vol.11, issue.1, pp.38-69170, 1973.
DOI : 10.1016/0021-9991(73)90147-2

J. U. Brackbill and D. C. Barnes, The Effect of Nonzero ??? ?? B on the numerical solution of the magnetohydrodynamic equations, Journal of Computational Physics, vol.35, issue.3, pp.426-430, 1980.
DOI : 10.1016/0021-9991(80)90079-0

M. Brio and C. C. Wu, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, Journal of Computational Physics, vol.75, issue.2, pp.400-422, 1988.
DOI : 10.1016/0021-9991(88)90120-9

L. Cai, J. H. Feng, and W. X. Xie, A CWENO-type central-upwind scheme for ideal MHD equations, Applied Mathematics and Computation, vol.168, issue.1, pp.600-612, 2005.
DOI : 10.1016/j.amc.2004.09.032

P. Cargo and G. Gallice, Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws, Journal of Computational Physics, vol.136, issue.2, pp.446-466, 1997.
DOI : 10.1006/jcph.1997.5773

R. K. Crockett, P. Colella, R. T. Fisher, R. J. Klein, and C. I. Mckee, An unsplit, cell-centered Godunov method for ideal MHD, Journal of Computational Physics, vol.203, issue.2, pp.422-448, 2005.
DOI : 10.1016/j.jcp.2004.08.021

URL : http://arxiv.org/abs/astro-ph/0309307

W. Dai and P. R. Woodward, Extension of the Piecewise Parabolic Method to Multidimensional Ideal Magnetohydrodynamics, Journal of Computational Physics, vol.115, issue.2, pp.485-514, 1994.
DOI : 10.1006/jcph.1994.1212

W. Dai and P. R. Woodward, A Simple Riemann Solver and High-Order Godunov Schemes for Hyperbolic Systems of Conservation Laws, Journal of Computational Physics, vol.121, issue.1, pp.51-65, 1995.
DOI : 10.1006/jcph.1995.1178

W. Dai and P. R. Woodward, Numerical scheme for three-dimensional supersonic magnetohydrodynamical flows and implementation in a massively parallel multiprocessor environment, Advances in Engineering Software, vol.29, issue.3-6, pp.353-358, 1998.
DOI : 10.1016/S0965-9978(98)00041-6

W. Dai and P. R. Woodward, A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations, Journal of Computational Physics, vol.142, issue.2, pp.331-369, 1998.
DOI : 10.1006/jcph.1998.5944

P. A. Davidson, 11R45. Introduction to Magnetohydrodynamics. Cambridge Text in Applied Mathematics, Applied Mechanics Reviews, vol.55, issue.6, 2001.
DOI : 10.1115/1.1508153

S. F. Davis, Simplified Second-Order Godunov-Type Methods, SIAM Journal on Scientific and Statistical Computing, vol.9, issue.3, p.445, 1988.
DOI : 10.1137/0909030

H. and D. Sterck, Multi-dimensional Upwind Constrained Transport on Unstructured Grid for 'Shallow Water' Magnetohydrodynamics, 15th AIAA Computational Fluid Dynamics Conference, 2001.

A. Dedner, F. Kemm, D. Kröner, C. D. Munz, T. Schnitzer et al., Hyperbolic Divergence Cleaning for the MHD Equations, Journal of Computational Physics, vol.175, issue.2, pp.645-673, 2002.
DOI : 10.1006/jcph.2001.6961

C. Devore, Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics, Journal of Computational Physics, vol.92, issue.1, pp.142-160, 1991.
DOI : 10.1016/0021-9991(91)90295-V

B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjögreen, On Godunov-type methods near low densities, Journal of Computational Physics, vol.92, issue.2, p.273, 1991.
DOI : 10.1016/0021-9991(91)90211-3

C. R. Evans and J. F. Hawley, Simulation of magnetohydrodynamic flows - A constrained transport method, The Astrophysical Journal, vol.332, pp.659-677, 1988.
DOI : 10.1086/166684

T. A. Gardiner and J. M. Stone, Multidimensional MHD Algorithms in Athena, Numerical Modeling of Space Plasma Flows of Astronomical Society of the Pacific Conference Series, p.143, 2006.

T. A. Gardiner and J. M. Stone, An unsplit Godunov method for ideal MHD via constrained transport, Journal of Computational Physics, vol.205, issue.2, pp.509-539, 2005.
DOI : 10.1016/j.jcp.2004.11.016

URL : http://arxiv.org/abs/astro-ph/0501557

E. Godlewski and P. A. Raviart, Hyperbolic systems of conservation laws, of Mathématiques & Applications (Paris) [Mathematics and Applications]. Ellipses, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00113734

E. Godlewski and P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol.118, 1996.
DOI : 10.1007/978-1-4612-0713-9

K. F. Gurski, An HLLC-Type Approximate Riemann Solver for Ideal Magnetohydrodynamics, SIAM Journal on Scientific Computing, vol.25, issue.6, pp.2165-2187, 2004.
DOI : 10.1137/S1064827502407962

D. S. Harned and W. Kerner, Semi-implicit method for three-dimensional compressible magnetohydrodynamic simulation, Journal of Computational Physics, vol.60, issue.1, pp.62-75, 1985.
DOI : 10.1016/0021-9991(85)90017-8

A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics, vol.49, issue.3, pp.357-393, 1983.
DOI : 10.1016/0021-9991(83)90136-5

A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III, Journal of Computational Physics, vol.71, issue.2, pp.231-303, 1987.
DOI : 10.1016/0021-9991(87)90031-3

A. Harten, P. D. Lax, and B. Van-leer, On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws, SIAM Review, vol.25, issue.1, pp.35-61, 1983.
DOI : 10.1137/1025002

P. Janhunen, A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods, Journal of Computational Physics, vol.160, issue.2, pp.649-661, 2000.
DOI : 10.1006/jcph.2000.6479

A. Jeffrey and T. Taniuti, Non-linear wave propagation. With applications to physics and magnetohydrodynamics, 1964.

R. Jeltsch and M. Torrilhon, Solenoidal discrete initialization for localy divergencefree mhd simulations, Modeling, Simulation and Optimization of Complex Processes, Proc. Intl. Conference on High Performance Scientific Computing in Hanoi, 2003.
DOI : 10.1007/3-540-27170-8_19

G. S. Jiang and C. W. Shu, Efficient Implementation of Weighted ENO Schemes, Journal of Computational Physics, vol.126, issue.1, pp.202-228, 1996.
DOI : 10.1006/jcph.1996.0130

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.211.4324

G. S. Jiang and E. Tadmor, Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws, SIAM Journal on Scientific Computing, vol.19, issue.6, pp.1892-1917, 1998.
DOI : 10.1137/S106482759631041X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.110

G. S. Jiang and C. C. Wu, A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics, Journal of Computational Physics, vol.150, issue.2, pp.561-594, 1999.
DOI : 10.1006/jcph.1999.6207

R. Keppens, Nonlinear magnetohydrodynamics : numerical concepts, J. Comput. Phys, vol.45, pp.107-114, 2004.

R. Keppens, M. Nool, G. Toth, and J. P. Goedbloed, Adaptive Mesh Refinement for conservative systems: multi-dimensional efficiency evaluation, Computer Physics Communications, vol.153, issue.3, p.317, 2003.
DOI : 10.1016/S0010-4655(03)00139-5

URL : http://arxiv.org/abs/astro-ph/0403124

M. G. Kivelson and C. T. Russell, Introduction to space physics. Cambridge, 1995.
DOI : 10.1063/1.2807586

K. Lerbinger and J. F. Luciani, A new semi-implicit method for MHD computations, Journal of Computational Physics, vol.97, issue.2, pp.444-459, 1991.
DOI : 10.1016/0021-9991(91)90008-9

R. J. Leveque, Numerical methods for conservation laws, Lectures in Mathematics ETH Zürich, 1992.

F. Li and C. W. Shu, Locally Divergence-Free Discontinuous Galerkin Methods for MHD Equations, Journal of Scientific Computing, vol.14, issue.1-3, pp.413-442, 2005.
DOI : 10.1007/s10915-004-4146-4

S. Li, Note on Upwinding Constrained Transport Method for Ideal Magnetohydrodynamics

S. Li, An HLLC Riemann solver for magneto-hydrodynamics, Journal of Computational Physics, vol.203, issue.1, pp.344-357, 2005.
DOI : 10.1016/j.jcp.2004.08.020

X. D. Liu, S. Osher, and T. Chan, Weighted Essentially Non-oscillatory Schemes, Journal of Computational Physics, vol.115, issue.1, pp.200-212, 1994.
DOI : 10.1006/jcph.1994.1187

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.8744

P. Londrillo and L. D. Zanna, High???Order Upwind Schemes for Multidimensional Magnetohydrodynamics, The Astrophysical Journal, vol.530, issue.1, pp.508-524, 2000.
DOI : 10.1086/308344

URL : http://arxiv.org/abs/astro-ph/9910086

P. Londrillo and L. D. Zanna, On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method, Journal of Computational Physics, vol.195, issue.1, pp.17-48, 2004.
DOI : 10.1016/j.jcp.2003.09.016

K. Miyamoto, Plasma Physics And Controlled Nuclear Fusion, 2005.

T. Miyoshi and K. Kusano, A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics, Journal of Computational Physics, vol.208, issue.1
DOI : 10.1016/j.jcp.2005.02.017

H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, Journal of Computational Physics, vol.87, issue.2, pp.408-463, 1990.
DOI : 10.1016/0021-9991(90)90260-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.8830

G. Parks, Physics of space plasmas, 1991.

P. F. Peyrard and P. Villedieu, A Roe Scheme for Ideal MHD Equations on 2D Adaptively Refined Triangular Grids, Journal of Computational Physics, vol.150, issue.2, pp.373-393, 1999.
DOI : 10.1006/jcph.1999.6198

N. V. Pogorelov and A. Y. Semenov, Peculiarities of numerical modeling of discontinuous mhd flows, Numerical Methods in Engineering'96, pp.1022-1027, 1996.

K. G. Powell, An approximate riemann solver for magnetohydrodynamics (that works in more than one dimension), 1994.

K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De-zeeuw, A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics, Journal of Computational Physics, vol.154, issue.2, pp.284-309, 1999.
DOI : 10.1006/jcph.1999.6299

P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, vol.43, issue.2, pp.357-372, 1981.
DOI : 10.1016/0021-9991(81)90128-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.457.5978

P. L. Roe and D. S. Balsara, Notes on the Eigensystem of Magnetohydrodynamics, SIAM Journal on Applied Mathematics, vol.56, issue.1, pp.57-67, 1996.
DOI : 10.1137/S003613999427084X

D. Ryu and T. W. Jones, Numerical magetohydrodynamics in astrophysics: Algorithm and tests for one-dimensional flow`, The Astrophysical Journal, vol.442, pp.228-258, 1995.
DOI : 10.1086/175437

D. Ryu, T. W. Jones, and A. Frank, Numerical Magnetohydrodynamics in Astrophysics: Algorithm and Tests for Multidimensional Flow, The Astrophysical Journal, vol.452, pp.785-796, 1995.
DOI : 10.1086/176347

URL : http://arxiv.org/abs/astro-ph/9505073

D. Ryu, F. Miniati, T. W. Jones, and A. Frank, A Divergence???free Upwind Code for Multidimensional Magnetohydrodynamic Flows, The Astrophysical Journal, vol.509, issue.1, pp.244-255, 1998.
DOI : 10.1086/306481

URL : http://arxiv.org/abs/astro-ph/9807228

A. G. Sitenko and M. , Plasma Physics Theory, 1994.

E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, pp.451-512, 2006.

T. Tanaka, Finite Volume TVD Scheme on an Unstructured Grid System for Three-Dimensional MHD Simulation of Inhomogeneous Systems Including Strong Background Potential Fields, Journal of Computational Physics, vol.111, issue.2, pp.381-389, 1994.
DOI : 10.1006/jcph.1994.1071

G. Tonon, Résultats et perspectives des recherches sur la fusion par confinement magnétique

M. Torrilhon, Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamics, Journal of Computational Physics, vol.192, issue.1, pp.73-94, 2003.
DOI : 10.1016/S0021-9991(03)00347-4

M. Torrilhon, Uniqueness conditions for Riemann problems of ideal magnetohydrodynamics, Journal of Plasma Physics, vol.69, issue.3, pp.253-276, 2003.
DOI : 10.1017/S0022377803002186

M. Torrilhon, Locally Divergence-preserving Upwind Finite Volume Schemes for Magnetohydrodynamic Equations, SIAM Journal on Scientific Computing, vol.26, issue.4, pp.1166-1191, 2005.
DOI : 10.1137/S1064827503426401

M. Torrilhon and D. S. Balsara, High order WENO schemes: investigations on non-uniform convergence for MHD Riemann problems, Journal of Computational Physics, vol.201, issue.2, pp.586-600, 2004.
DOI : 10.1016/j.jcp.2004.06.015

M. Torrilhon and M. Fey, Constraint-Preserving Upwind Methods for Multidimensional Advection Equations, SIAM Journal on Numerical Analysis, vol.42, issue.4, pp.1694-1728, 2004.
DOI : 10.1137/S0036142903425033

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.8528

G. Tóth, Comparison of Some Flux Corrected Transport and Total Variation Diminishing Numerical Schemes for Hydrodynamic and Magnetohydrodynamic Problems, Journal of Computational Physics, vol.128, issue.1, pp.82-100, 1996.
DOI : 10.1006/jcph.1996.0197

G. Tóth, The ?????B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes, Journal of Computational Physics, vol.161, issue.2, pp.605-652, 2000.
DOI : 10.1006/jcph.2000.6519

B. Van-leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, Journal of Computational Physics, vol.32, issue.1, pp.101-136227, 1979.
DOI : 10.1016/0021-9991(79)90145-1

W. , W. Dai, and P. R. Woodward, An approximate riemann solver for ideal magnetohydrodynamics, J. Comput. Phys, vol.111, issue.2, pp.354-372, 1994.
DOI : 10.1006/jcph.1994.1069

A. L. Zachary, A. Malagoli, and P. Colella, A Higher-Order Godunov Method for Multidimensional Ideal Magnetohydrodynamics, SIAM Journal on Scientific Computing, vol.15, issue.2, pp.263-284, 1994.
DOI : 10.1137/0915019

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.392.8468

U. Ziegler, A central-constrained transport scheme for ideal magnetohydrodynamics, Journal of Computational Physics, vol.196, issue.2, pp.393-416, 2004.
DOI : 10.1016/j.jcp.2003.11.003

H. Alber, Existence of threedimensional, steady, inviscid, incompressible flows with nonvanishing vorticity, Mathematische Annalen, vol.19, issue.1, pp.493-528, 1992.
DOI : 10.1007/BF01444632

T. Amari, J. J. Aly, J. F. Luciani, T. Z. Boulmezaoud, and Z. Mikic, Reconstructing the solar coronal magnetic field as a force free magnetic field, Solar physics, pp.129-149, 1997.

T. Amari, T. Z. Boulmezaoud, and Y. Maday, A regularization method for the ill posed Cauchy problem encoutered in the Extrapolation of the photospheric magnetic field, Astronomy and Astrophysics, vol.339, pp.252-260, 1998.

T. Amari, T. Z. Boulmezaoud, and Z. Mikic, An iterative method for the reconstruction of the solar magnetic field, Astronomy and Astrophysics, vol.350, pp.1051-1059, 1999.

C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in threedimensional nonsmooth domains, R96001, 1996.

V. Arnold, Sur la topologie desécoulementsdesécoulements stationnaires des fluides parfaits, C. R. Acad. Sci, vol.261, issue.1, pp.17-20, 1965.
DOI : 10.1007/978-3-642-31031-7_3

D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates, ESAIM: Mathematical Modelling and Numerical Analysis, vol.19, issue.1, pp.7-32, 1985.
DOI : 10.1051/m2an/1985190100071

P. Azerad, Analyse deséquationsdeséquations de Navier-Stokes en bassin peu profond et de l'´ equation de transport, 1996.

I. Babuska, The finite element method with Lagrangian multipliers, Numerische Mathematik, vol.12, issue.3, pp.179-192, 1972.
DOI : 10.1007/BF01436561

H. Baty, Etude de l'´ evolution non linéaire du kink interne et de la reconnexion magnétique dans les tokamaks, Thèse de Doctorat de l'Université xParis VII, 1992.

C. Bardos, Probì emes aux limites pour leséquationsleséquations aux dérivées partielles du premier ordrè a coefficients réels, Ann. Scient. Ecol. Norm. Sup, pp.3-185, 1970.
DOI : 10.24033/asens.1190

URL : http://www.numdam.org/article/ASENS_1970_4_3_2_185_0.pdf

A. Bendali, N. Raynaud, and J. M. Thomas, New decomposition of shape functions spaces of mixed finite element methods, Applied Mathematics Letters, vol.9, issue.1, pp.33-38, 1996.
DOI : 10.1016/0893-9659(95)00098-4

I. M. Benn and J. Kress, Force-free fields from Hertz potentials, Journal of Physics A: Mathematical and General, vol.29, issue.19, pp.6295-6304, 1996.
DOI : 10.1088/0305-4470/29/19/014

M. A. Berger and G. B. Field, The topological properties of magnetic helicity, Journal of Fluid Mechanics, vol.91, issue.-1, pp.133-148, 1984.
DOI : 10.1063/1.1705884

M. Bineau, On the existence of force-free magnetic fields, Communications on Pure and Applied Mathematics, vol.2, issue.1, pp.77-84, 1972.
DOI : 10.1002/cpa.3160250107

J. Blum, Numerical simulation and optimal control in plasma physics

/. Wiley and . Gauthier, Villars Series in Modern Applied Mathematics, 1989.

T. Z. Boulmezaoud, On the existence of non-linear Beltrami fields, Comptes Rendus de l'Académie des Sciences, T. 328, Série I, pp.437-442, 1999.

T. Z. Boulmezaoud and T. Amari, On the existence of non-linear force-free fields in three-dimensional multiply-connected domains, Zeitschrift für Angewandte Mathematik und Physik (ZAMP)

T. Z. Boulmezaoud and T. Amari, Approximation of linear force-free fields in bounded 3-D domains, Mathematical and Computer Modelling, vol.31, issue.2-3, pp.109-129, 2000.
DOI : 10.1016/S0895-7177(99)00227-7

T. Z. Boulmezaoud, Y. Maday, and T. Amari, On the linear force-free fields in bounded and unbounded three-dimensional domains, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.2, pp.359-394, 1999.
DOI : 10.1051/m2an:1999121

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat, Recherche Opérationnelle Sér. Rouge, vol.8, issue.2, pp.129-151, 1974.

F. Brezzi, G. Hauke, L. D. Marini, and G. Sangalli, LINK-CUTTING BUBBLES FOR THE STABILIZATION OF CONVECTION-DIFFUSION-REACTION PROBLEMS, Mathematical Models and Methods in Applied Sciences, vol.13, issue.03, pp.445-461, 2003.
DOI : 10.1142/S0218202503002581

F. Brezzi and M. Fortin, A minimal stabilisation procedure for mixed finite element methods, Numerische Mathematik, vol.89, issue.3, pp.457-491, 2001.
DOI : 10.1007/PL00005475

H. M. Chang and R. Carovillano, Non Linear Force Free Magnetic Fields with Chosen Symmetry, BAAS, vol.13, p.909, 1981.

C. Boulbe, T. Z. Boulmezaoud, and T. Amari, Numerical simulation of non-linear force-free fields, 2007.

A. Brooks and T. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.32, issue.1-3, pp.199-259, 1982.
DOI : 10.1016/0045-7825(82)90071-8

O. P. Bruno and P. Laurence, Existence of three-dimensional toroidal MHD equilibria with nonconstant pressure, Communications on Pure and Applied Mathematics, vol.49, issue.7, pp.717-764, 1996.
DOI : 10.1002/(SICI)1097-0312(199607)49:7<717::AID-CPA3>3.0.CO;2-C

S. Childress, New Solutions of the Kinematic Dynamo Problem, Journal of Mathematical Physics, vol.11, issue.10, pp.3063-3076, 1970.
DOI : 10.1063/1.1665095

P. Ciarlet, The finite element method for elliptic problems, 1978.

A. J. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of Computational Physics, vol.2, issue.1, pp.12-26, 1967.
DOI : 10.1016/0021-9991(67)90037-X

T. Dombre, U. Frisch, J. M. Greene, M. Hénon, M. et al., Chaotic streamlines in the ABC flows, Journal of Fluid Mechanics, vol.23, issue.-1, pp.353-391, 1986.
DOI : 10.1063/1.525721

A. Ern and J. L. Guermond, Eléments finis : théorie, applications, mise en oeuvre, Mathématiques et Applications, p.36, 2002.

R. S. Falk and G. R. Richter, Local Error Estimates for a Finite Element Method for Hyperbolic and Convection-Diffusion Equations, SIAM Journal on Numerical Analysis, vol.29, issue.3, pp.730-754, 1992.
DOI : 10.1137/0729046

J. P. Friedberg, Ideal Magnetohydrodynamics, 1987.
DOI : 10.1007/978-1-4757-0836-3

V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, 1986.
DOI : 10.1007/978-3-642-61623-5

O. Glass, Existence of solutions for the two-dimensional stationary Euler system for ideal fluids with arbitrary forcre, Ann. I. H. Poincaré, vol.6, pp.921-946, 2003.

H. Grad and H. , RubinMHD Equilibrium in an Axisymmetric Toroid, Proceedings of the 2nd UN Conf. on the Peaceful Uses of Atomic Energy, p.31190, 1958.

P. Grisvard, Elliptic problems in nonsmooth domains, 1985.
DOI : 10.1137/1.9781611972030

N. M. Günter, Potential Theory, 1967.

M. Hénon, Sur la topologie des lignes de courant dans un cas particulier, C. R. Acad. Sci, vol.262, pp.312-314, 1966.

S. Hirshman, J. T. Hogan, and O. , ORMEC: A three-dimensional MHD spectral inverse equilibrium code, Journal of Computational Physics, vol.63, issue.2, pp.329-352, 1986.
DOI : 10.1016/0021-9991(86)90197-X

S. Hirshman, W. I. Van-rij, and P. , Three-dimensional free boundary calculations using a spectral Green's function method, Computer Physics Communications, vol.43, issue.1, pp.143-155, 1986.
DOI : 10.1016/0010-4655(86)90058-5

S. Hirshman and D. Leemomcon, MOMCON: A spectral code for obtaining three-dimensional magnetohydrodynamic equilibria, Computer Physics Communications, vol.39, issue.2, pp.161-172, 1986.
DOI : 10.1016/0010-4655(86)90127-X

G. Huysmans, P. Maget, and C. Cadarache, Magnétohydrodynamique des plasmas de tokamak

C. Johnson, U. Nävert, and J. Pitkäranta, Finite element methods for linear hyperbolic problems, Computer Methods in Applied Mechanics and Engineering, vol.45, issue.1-3, pp.285-312, 1984.
DOI : 10.1016/0045-7825(84)90158-0

R. Kress, The treatement of a Neumann boundary value problem for force-free fields by an integral equation method, Proceedings of the Royal Society of Edimburgh, pp.82-71, 1978.

R. Kress, A remark on a boundary value problem for force-free fields, Zeitschrift f??r angewandte Mathematik und Physik ZAMP, vol.27, issue.4, pp.715-722, 1977.
DOI : 10.1007/BF01601347

P. Laurence and M. Avellaneda, On Woltjer???s variational principle for force???free fields, Journal of Mathematical Physics, vol.32, issue.5, pp.1240-1253, 1991.
DOI : 10.1063/1.529321

P. Lesaint, Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d'´ eléments finis, Thése de Doctorat, 1975.

J. Li, J. Wang, and F. Wei, A Fluid Dynamics Approach for the Computation of Nonlinear Force-Free Magnetic Field, Chinese Journal of Astronomy and Astrophysics, vol.3, issue.3, pp.247-256, 2003.
DOI : 10.1088/1009-9271/3/3/247

B. C. Low and Y. Q. Lou, Modeling solar force-free magnetic fields, The Astrophysical Journal, vol.352, pp.343-352, 1991.
DOI : 10.1086/168541

B. C. Low, Magnetic field configurations associated with polarity intrusion in a solar active region, Solar Physics, vol.32, issue.1-2, pp.43-61, 1982.
DOI : 10.1007/BF00156094

B. C. Low, Magnetic field configurations associated with polarity intrusion in a solar active region, Solar Physics, vol.249, issue.2, pp.269-276, 1988.
DOI : 10.1007/BF00148728

H. Lütjens, A. Bondenson, and O. Sauter, The CHEASE code for toroidal MHD equilibria, Computer Physics Communications, vol.97, issue.3, pp.219-267, 1996.
DOI : 10.1016/0010-4655(96)00046-X

J. C. Nédélec, Mixed finite elements in ?3, Numerische Mathematik, vol.12, issue.3, pp.315-341, 1980.
DOI : 10.1007/BF01396415

T. Neukirch, Introduction to the theory of mhd equilibria

H. J. Oliver, A. H. Reiman, and D. , Solving the 3D MHD equilibrium equations in toroidal geometry by Newton???s method, Journal of Computational Physics, vol.211, issue.1, pp.99-128, 2006.
DOI : 10.1016/j.jcp.2005.05.007

E. N. Parker, Cosmical Magnetic Fields. Their origin and their Activity, 1979.

A. Reiman and H. S. , GreensideCalculation of three-dimensional MHD equilibria with islands and stochastic regions, Comput. Phys. Commun, pp.43-157, 1986.

P. H. Roberts, An introduction to Magnetohydrodynamics, 1967.

J. E. Roberts and J. M. Thomas, Mixed and hybrid methods, Handbook of numerical analysis, pp.523-639, 1991.

T. Sakurai, Computational modeling of magnetic fields in solar active regions, Space Science Reviews, vol.51, issue.1-2, pp.11-48, 1989.
DOI : 10.1007/BF00226267

V. D. Shafranov, Plasma equilibrium in a magnetic field, Reviews of Plasma Physics, Consultants Bureau, vol.2, p.103, 1966.

T. Takeda and S. Tokuda, Computation of MHD equilibrium of tokamak plasma, Journal of Computational Physics, vol.93, issue.1, pp.1-107, 1991.
DOI : 10.1016/0021-9991(91)90074-U

J. B. Taylor, Relaxation and magnetic reconnection in plasmas, Reviews of Modern Physics, vol.58, issue.3, pp.741-763, 1986.
DOI : 10.1103/RevModPhys.58.741

A. G. Sitenko and M. , Plasma Physics Theory, 1994.

L. Woltjer, A THEOREM ON FORCE-FREE MAGNETIC FIELDS, Proc. Nat. Acad. Sci, pp.489-491, 1958.
DOI : 10.1073/pnas.44.6.489