Abstract : In this work, we study how to take into account, from the convex analysis and optimization viewpoint, constraint sets of the following type : sets of vectors whose components are autocorrelations lags of finite discrete signals. A set of vectors with autocorrelated components turns out to be a convex cone, for which we etablish many basic properties such as : smoothness or not of the boundary, structure of faces, acuteness, expression of the polar cone, evaluation of the normal cone at a point, etc. Next, we propose some algorithms to solve optimization problems where this type of constraint set appears ; in particular we consider the problem of projecting a point on the convex cone of vectors with autocorrelated constraints. For these purposes, we study three different algorithms : an interior point method, one using alternating projections, and one via a non-convex relaxation of the original problem. Finally, we suggest extensions to the bi-dimensional signals case ; we outline the main difficulties which therefore appear : various possible new definitions, non-convexity of occuring problems, and increase in the computational complexity of the algorithmic procedures.
Résumé : Dans ce travail de thèse, nous étudions, dans un contexte d'analyse convexe et d'optimisation, la prise en compte des contraintes dites d'autocorrélation, c'est-à-dire : nous considérons les situations où les vecteurs représentant les variables à optimiser sont contraintes à être les coefficients d'autocorrélation d'un signal discret à support fini. Cet ensemble des vecteurs à composantes autocorrélées se trouve être un cône convexe ; nous essayons d'en établir le plus de propriétés possibles : concernant sa frontière (lisse/polyédrale), ses faces, l'acuité, l'expression du cône polaire, l'évaluation du cône normal en un point, etc. Ensuite, nous étudions divers algorithmes pour résoudre des problèmes d'optimisation où le cône des vecteurs à composantes autocorrélées entre en jeu. Notre principal objet d'étude est le problème de la projection sur ce cône, dont nous proposons la résolution par trois algorithmes différents : algorithmes dits de suivi de chemin, celui des projections alternées, et via une relaxation non-convexe. Enfin, nous abordons la généralisation de la situation d'autocorrélation au cas de signaux bi-dimensionnels, avec toute la complexité que cela engendre : multiples définitions possibles, non-convexité des problèmes résultants, et complexité calculatoire accrue pour les algorithmes.