L. K. Bjornson, The transport of alpha-tocopherol and beta-carotene in human blood, J Lipid Res, vol.17, issue.4, pp.343-52, 1976.

K. M. Kadish, The Porphyrin Handbook, 2000.

R. C. Krieg, Cell-type Specific Protoporphyrin IX Metabolism in Human Bladder Cancer in vitro??, Photochemistry and Photobiology, vol.112, issue.2, pp.226-259, 2000.
DOI : 10.1562/0031-8655(2000)072<0226:CTSPIM>2.0.CO;2

S. Sassa, Recent progress in heme synthesis and metabolism, Stem Cells, vol.364, issue.54, pp.1-10, 1994.
DOI : 10.1002/stem.5530120704

J. Moan, C. Rimington, and A. Western, The binding of dihematoporphyrin ether (photofrin II) to human serum albumin, Clinica Chimica Acta, vol.145, issue.3, pp.145-227, 1985.
DOI : 10.1016/0009-8981(85)90028-2

K. N. Rao, The significance of the cholesterol biosynthetic pathway in cell growth and carcinogenesis (review), Anticancer Res, vol.15, issue.2, pp.309-323, 1995.

C. J. Fielding, Lipoprotein receptors, plasma cholesterol metabolism, and the regulation of cellular free cholesterol concentration, Faseb J, issue.613, pp.3162-3170, 1992.

M. S. Brown, J. L. Goldstein, and M. D. Siperstein, Regulation of cholesterol synthesis in normal and malignant tissue, Fed Proc, issue.12, pp.32-2168, 1973.

D. Gal, Cholesterol metabolism in cancer cells in monolayer culture. III. Low-density lipoprotein metabolism, International Journal of Cancer, vol.63, issue.3, pp.315-324, 1981.
DOI : 10.1002/ijc.2910280310

S. Vitols, Elevated uptake of low density lipoproteins by human lung cancer tissue in vivo, Cancer Res, issue.22, pp.52-6244, 1992.

S. J. Singer and N. G. , The Fluid Mosaic Model of the Structure of Cell Membranes, Science, vol.175, issue.4023, pp.720-731, 1972.
DOI : 10.1126/science.175.4023.720

D. Brault, C. Vever-bizet, and T. L. Doan, Spectrofluorimetric study of porphyrin incorporation into membrane models - evidence for pH effects, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.857, issue.2, pp.238-250, 1986.
DOI : 10.1016/0005-2736(86)90352-4

D. Brault, Physical chemistry of porphyrins and their interactions with membranes: The importance of pH, Journal of Photochemistry and Photobiology B: Biology, vol.6, issue.1-2, pp.79-86, 1990.
DOI : 10.1016/1011-1344(90)85076-9

D. Brault and C. Vever-bizet, Protonation equilibria of haematoporphyrin as studied by fluorescence lifetime analysis, Journal of the Chemical Society, Faraday Transactions, vol.88, issue.11, pp.88-1519, 1992.
DOI : 10.1039/ft9928801519

D. Brault, C. Vever-bizet, and K. Kuzelova, Interactions of dicarboxylic porphyrins with membranes in relation to their ionization state, Journal of Photochemistry and Photobiology B: Biology, vol.20, issue.2-3, pp.191-196, 1993.
DOI : 10.1016/1011-1344(93)80150-8

A. J. Barrett, The effect of tissue and cellular pH on the selective biodistribution of porphyrin-type photochemotherapeutic agents: A volumetric titration study, Journal of Photochemistry and Photobiology B: Biology, vol.6, issue.3, pp.309-332, 1990.
DOI : 10.1016/1011-1344(90)85101-2

M. R. Eftink, [11] Fluorescence methods for studying equilibrium macromolecule-ligand interactions, Methods Enzymol, vol.278, pp.221-57, 1997.
DOI : 10.1016/S0076-6879(97)78013-3

L. Stryer, Fluorescence Energy Transfer as a Spectroscopic Ruler, Annual Review of Biochemistry, vol.47, issue.1, pp.819-865, 1978.
DOI : 10.1146/annurev.bi.47.070178.004131

R. H. Fairclough and C. R. Cantor, [17] The use of singlet-singlet energy transfer to study macromolecular assemblies, Methods Enzymol, vol.48, pp.347-79, 1978.
DOI : 10.1016/S0076-6879(78)48019-X

P. Wu and L. Brand, Resonance Energy Transfer: Methods and Applications, Analytical Biochemistry, vol.218, issue.1, pp.1-13, 1994.
DOI : 10.1006/abio.1994.1134

M. Coppey-moisan, Dynamical change of mitochondrial DNA induced in the living cell by perturbing the electrochemical gradient, Biophysical Journal, vol.71, issue.5, pp.71-2319, 1996.
DOI : 10.1016/S0006-3495(96)79472-9

J. B. Lepecq and C. Paoletti, A fluorescent complex between ethidium bromide and nucleic acids, Journal of Molecular Biology, vol.27, issue.1, pp.87-106, 1967.
DOI : 10.1016/0022-2836(67)90353-1

A. Blake and A. R. Peacocke, The interaction of aminoacridines with nucleic acids, Biopolymers, vol.70, issue.9, pp.1225-53, 1968.
DOI : 10.1002/bip.1968.360060902

H. Theorell, K. Tatemoto, J. M. Brewer, and G. Weber, Excitation transfer in complexes of horse liver alcohol dehydrogenase, Archives of Biochemistry and Biophysics, vol.142, issue.1, pp.69-82, 1966.
DOI : 10.1016/0003-9861(71)90260-8

S. S. Lehrer and G. D. Fasman, The fluorescence of lysozyme and lysozyme substrate complexes, Biochemical and Biophysical Research Communications, vol.23, issue.2, pp.133-141, 1966.
DOI : 10.1016/0006-291X(66)90517-1

C. J. Halfman and T. Nishida, Method for measuring the binding of small molecules to proteins from binding-induced alterations of physical-chemical properties, Biochemistry, issue.1118, pp.3493-3501, 1972.

H. Hartridge, F. J. Roughton-roughton, F. J. Proc, . Roy, . Soc et al., B115: p. 473. 39 Kinetics of reversibles Michaelis-Menten mechanism and the applicability of the steady-state approximation Rapid reactions and transient states. The enzymes The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen, Proc. Cambridge Phil. Soc, pp.549-53, 1926.

T. J. Dougherty, Photodynamic therapy, J. Natl. Cancer Inst, issue.12, pp.90-889, 1998.

R. Pottier and T. G. Truscott, The Photochemistry of Haematoporphyrin and Related Systems, International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, vol.20, issue.3, pp.421-52, 1986.
DOI : 10.1080/09553008614550851

H. Auler and G. Banzer, Untersuchungen ??ber die Rolle der Porphyrine bei geschwulstkranken Menschen und Tieren, Zeitschrift f??r Krebsforschung, vol.53, issue.2, pp.65-68, 1942.
DOI : 10.1007/BF01792783

T. J. Dougherty, Activated Dyes as Antitumor Agents, JNCI: Journal of the National Cancer Institute, vol.52, issue.4, pp.1333-1339, 1974.
DOI : 10.1093/jnci/52.4.1333

URL : http://jnci.oxfordjournals.org/cgi/content/short/52/4/1333

T. J. Dougherty, Photoradiation Therapy. II. Cure of Animal Tumors With Hematoporphyrin and Light 2 3, JNCI: Journal of the National Cancer Institute, vol.55, issue.1, pp.115-136, 1975.
DOI : 10.1093/jnci/55.1.115

T. J. Dougherty, Photoradiation therapy for the treatment of malignant tumors, Cancer Res, vol.38, issue.8, pp.2628-2663, 1978.

T. J. Dougherty, Photoradiation in the treatment of recurrent breast carcinoma, J Natl Cancer Inst, vol.62, issue.2, pp.231-238, 1979.

H. Kato, T. Okunaka, and H. Shimatani, Photodynamic therapy for early stage bronchogenic carcinoma, J. Clin. Laser Med. Surg, vol.14, issue.5, pp.235-243, 1996.

V. H. Fingar, Vascular effects of photodynamic therapy, J Clin Laser Med Surg, vol.14, issue.5, pp.323-331, 1996.

R. W. Boyle, D. Dolphin, S. J. , and V. Giovinazzo, Structure and Biodistribution Relationships of Photodynamic Sensitizers, Photochemistry and Photobiology, vol.57, issue.3, pp.469-85, 1996.
DOI : 10.1126/science.1411538

S. G. Bown, Science, medicine, and the future: New techniques in laser therapy, BMJ, vol.316, issue.7133, pp.316-754, 1998.
DOI : 10.1136/bmj.316.7133.754

L. S. Atmaca, F. Batioglu, and P. Atmaca, Evaluation of Choroidal Neovascularization in Age-Related Macular Degeneration with Fluorescein and Indocyanine Green Videoangiography, Ophthalmologica, vol.210, issue.3, pp.148-51, 1996.
DOI : 10.1159/000310695

U. Schmidt-erfurth, In vivo uptake of liposomal benzoporphyrin derivative and photothrombosis in experimental corneal neovascularization, Lasers in Surgery and Medicine, vol.99, issue.2, pp.178-88, 1995.
DOI : 10.1002/lsm.1900170207

L. J. Scott and K. L. Goa, Verteporfin, Drugs & Aging, vol.117, issue.1, pp.139-185, 2000.
DOI : 10.2165/00002512-200016020-00005

U. Schmidt-erfurth, Photodynamic therapy of subfoveal choroidal neovascularization: clinical and angiographic examples, Graefe's Archive for Clinical and Experimental Ophthalmology, vol.236, issue.5, pp.365-74, 1998.
DOI : 10.1007/s004170050092

U. Schmidt-erfurth, [Selective occlusion of subretinal neovascularization with photodynamic therapy, Ophthalmologe, vol.91, issue.6, pp.789-95, 1994.

M. Kramer, Liposomal Benzoporphyrin Derivative Verteporfin Photodynamic Therapy, Ophthalmology, vol.103, issue.3, pp.427-465, 1996.
DOI : 10.1016/S0161-6420(96)30675-1

G. Donati, A. D. Kapetanios, and C. J. Pournaras, Principles of Treatment of Choroidal Neovascularization with Photodynamic Therapy in Age-Related Macular Degeneration, Seminars in Ophthalmology, vol.111, issue.4, pp.2-10, 1999.
DOI : 10.1001/archopht.1996.01100130180013

P. C. De-smidt and T. J. Van-berkel, LDL-mediated drug targeting, Crit. Rev .Ther. Drug Carrier Syst, vol.7, issue.2, pp.99-120, 1990.

T. Tokui, Plasma lipoproteins as targeting carriers to tumour tissues after administraion of a lipophilic agent to mice, Biopharmaceutics & Drug Disposition, vol.255, issue.2, pp.91-103, 1995.
DOI : 10.1002/bdd.2510160204

B. A. Allison, THE PLASMA DISTRIBUTION OF BENZOPORPHYRIN DERIVATIVE and THE EFFECTS OF PLASMA LIPOPROTEINS ON ITS BIODISTRIBUTION, Photochemistry and Photobiology, vol.48, issue.3, pp.501-508, 1990.
DOI : 10.1016/1011-1344(90)80008-L

P. C. Rensen, Recombinant lipoproteins: lipoprotein-like lipid particles for drug targeting, Advanced Drug Delivery Reviews, vol.47, issue.2-3, pp.251-76, 2001.
DOI : 10.1016/S0169-409X(01)00109-0

J. C. Maziere, P. Morliere, R. Santus, P. C. , A. J. Versluis et al., The role of the low density lipoprotein receptor pathway in the delivery of lipophilic photosensitizers in the photodynamic therapy of tumours Properties of incorporation, redistribution, and integrity of porphyrin-low-density lipoprotein complexes, J Photochem Photobiol B Biochemistry, vol.8, issue.411, pp.32-2916, 1991.

A. Barel, Role of high-, low- and very low-density lipoproteins in the transport and tumor-delivery of hematoporphyrin in vivo, Cancer Letters, vol.32, issue.2, pp.145-50, 1986.
DOI : 10.1016/0304-3835(86)90112-6

D. Kessel, Porphyrin-lipoprotein association as a factor in porphyrin localization, Cancer Letters, vol.33, issue.2, pp.183-191, 1986.
DOI : 10.1016/0304-3835(86)90023-6

C. Candide, In vitro interaction of the photoactive anticancer porphyrin derivative photofrin II with low density lipoprotein, and its delivery to cultured human fibroblasts, FEBS Letters, vol.3, issue.1, pp.133-141, 1986.
DOI : 10.1016/0014-5793(86)80026-6

J. P. Reyftmann, INTERACTION OF HUMAN SERUM LOW DENSITY LIPOPROTEINS WITH PORPHYRINS: A SPECTROSCOPIC AND PHOTOCHEMICAL STUDY, Photochemistry and Photobiology, vol.28, issue.6, pp.40-721, 1984.
DOI : 10.1111/1523-1747.ep12674138

J. W. Miller, Photodynamic Therapy of Experimental Choroidal Neovascularization Using Lipoprotein-Delivered Benzoporphyrin, Archives of Ophthalmology, vol.113, issue.6, pp.810-818, 1995.
DOI : 10.1001/archopht.1995.01100060136048

B. M. Aveline and R. W. Redmond, Can Cellular Phototoxicity be Accurately Predicted on the Basis of Sensitizer Photophysics?, Photochemistry and Photobiology, vol.38, issue.3, pp.306-322, 1999.
DOI : 10.1111/j.1751-1097.1999.tb03291.x

G. Ouedraogo, Lysosomes are sites of fluoroquinolone photosensitization in human skin fibroblasts: a microspectrofluorometric approach, Photochem Photobiol, vol.70, issue.2, pp.123-132, 1999.

N. Rousset, Cellular distribution and phototoxicity of Benzoporphyrin derivative and Photofrin, Research in Experimental Medicine, vol.2, issue.6, pp.341-57, 2000.
DOI : 10.1007/s004339900044

F. Khanum and V. Jain, Cellular accumulation and biological activity of hematoporphyrin derivative(L) in comparison with photofrin II, Indian J Exp Biol, vol.35, issue.4, pp.348-55, 1997.

R. Pottier and J. C. Kennedy, New trends in photobiology, Journal of Photochemistry and Photobiology B: Biology, vol.8, issue.1, pp.1-16, 1990.
DOI : 10.1016/1011-1344(90)85183-W

B. W. Henderson and T. J. Dougherty, HOW DOES PHOTODYNAMIC THERAPY WORK?, Photochemistry and Photobiology, vol.42, issue.1, pp.145-57, 1992.
DOI : 10.1002/jcp.1040670207

V. Vonarx, Photodynamic therapy decreases cancer colonic cell adhesiveness and metastatic potential, Research in Experimental Medicine, vol.6, issue.1, pp.101-117, 1995.
DOI : 10.1007/BF02576780

N. Rousset, Effects of photodynamic therapy on adhesion molecules and metastasis, Journal of Photochemistry and Photobiology B: Biology, vol.52, issue.1-3, pp.65-73, 1999.
DOI : 10.1016/S1011-1344(99)00104-9

K. W. Woodburn, EVALUATION OF PORPHYRIN CHARACTERISTICS REQUIRED FOR PHOTODYNAMIC THERAPY, Photochemistry and Photobiology, vol.54, issue.5, pp.697-704, 1992.
DOI : 10.1111/j.1751-1097.1992.tb08513.x

M. Dellinger, Apoptosis or Necrosis Following Photofrin?? Photosensitization: Influence of the Incubation Protocol, Photochemistry and Photobiology, vol.59, issue.1, pp.182-189, 1996.
DOI : 10.1007/BF02087668

D. Kessel, The Role of Subcellular Localization in Initiation of Apoptosis by Photodynamic Therapy, Photochemistry and Photobiology, vol.64, issue.3, pp.422-428, 1997.
DOI : 10.1016/0040-4039(95)00569-X

Y. J. Hsieh, Subcellular localization of Photofrin?? determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: When plasma membranes are the main targets, Journal of Cellular Physiology, vol.246, issue.3, pp.363-75, 2003.
DOI : 10.1002/jcp.10273

K. Berg and J. Moan, Lysosomes and Microtubules as Targets for Photochemotherapy of Cancer, Photochemistry and Photobiology, vol.39, issue.3, pp.403-412, 1997.
DOI : 10.1016/1011-1344(95)07229-2

G. H. Rodal, Liposome-bound Zn(II)-phthalocyanine. Mechanisms for cellular uptake and photosensitization, Journal of Photochemistry and Photobiology B: Biology, vol.45, issue.2-3, pp.150-159, 1998.
DOI : 10.1016/S1011-1344(98)00175-4

D. J. Ball, A Comparative Study of the Cellular Uptake and Photodynamic Efficacy of Three Novel Zinc Phthalocyanines of Differing Charge, Photochemistry and Photobiology, vol.53, issue.3, pp.390-396, 1999.
DOI : 10.1111/j.1751-1097.1999.tb03303.x

M. R. Hamblin and E. L. Newman, New trends in photobiology, Journal of Photochemistry and Photobiology B: Biology, vol.23, issue.1, pp.3-8, 1994.
DOI : 10.1016/S1011-1344(94)80018-9

E. Shechter, Membranes biologiques. Structure, transports, bioénergétique, 1984.

W. D. Stein, Permeability for lipophilic molecules, in Membrane transport, pp.1-128, 1981.

M. Kepczynski and B. Ehrenberg, Interaction of Dicarboxylic Metalloporphyrins with Liposomes. The Effect of pH on Membrane Binding Revisited??, Photochemistry and Photobiology, vol.9, issue.5, pp.486-92, 2002.
DOI : 10.1562/0031-8655(2002)076<0486:IODMWL>2.0.CO;2

N. Maman and D. Brault, Kinetics of the interactions of a dicarboxylic porphyrin with unilamellar lipidic vesicles: Interplay between bilayer thickness and pH in rate control, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1414, issue.1-2, pp.31-42, 1998.
DOI : 10.1016/S0005-2736(98)00149-7

K. Kuzelova and D. Brault, Interactions of Dicarboxylic Porphyrins with Unilamellar Lipidic Vesicles: Drastic Effects of pH and Cholesterol on Kinetics, Biochemistry, vol.34, issue.35, pp.34-11245, 1995.
DOI : 10.1021/bi00035a034

M. Beltramini, Steady-state and time-resolved spectroscopic studies on the hematoporphyrin-lipoprotein complex, Biochemistry, vol.26, issue.21, pp.26-6852, 1987.
DOI : 10.1021/bi00395a040

R. Margalit and M. Rotenberg, Thermodynamics of porphyrin dimerization in aqueous solutions, Biochemical Journal, vol.219, issue.2, pp.445-450, 1984.
DOI : 10.1042/bj2190445

N. Maman, Kinetic and equilibrium studies of incorporation of di-sulfonated aluminum phthalocyanine into unilamellar vesicles, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1420, issue.1-2, pp.168-78, 1999.
DOI : 10.1016/S0005-2736(99)00093-0

C. Huang and L. Lee, Diffusion studies on phosphatidylcholine vesicles, Journal of the American Chemical Society, vol.95, issue.1, pp.234-243, 1973.
DOI : 10.1021/ja00782a042

E. Fattal, Pore-Forming Peptides Induce Rapid Phospholipid Flip-Flop in Membranes, Biochemistry, vol.33, issue.21, pp.6721-6752, 1994.
DOI : 10.1021/bi00187a044

C. Y. Yang, Sequence, structure, receptor-binding domains and internal repeats of human apolipoprotein B-100, Nature, vol.362, issue.6090, pp.323-738, 1986.
DOI : 10.1038/323738a0

J. P. Segrest, Structure of apolipoprotein B-100 in low density lipoproteins, J. Lipid Res, vol.42, issue.9, pp.1346-67, 2001.

V. N. Schumaker, M. L. Phillips, and J. E. Chatterton, Apolipoprotein B and Low-Density Lipoprotein Structure: Implications for Biosynthesis of Triglyceride-Rich Lipoproteins, Adv Protein Chem, issue.45, pp.205-253, 1994.
DOI : 10.1016/S0065-3233(08)60641-5

R. Van-antwerpen, Structural heterogeneity of apoB-containing serum lipoproteins visualized using cryo-electron microscopy, J Lipid Res, issue.10, pp.40-1827, 1999.

E. V. Orlova, Three-dimensional structure of low density lipoproteins by electron cryomicroscopy, Proceedings of the National Academy of Sciences, vol.96, issue.15, pp.96-8420, 1999.
DOI : 10.1073/pnas.96.15.8420

M. Ambroz, Preparative, analytical and fluorescence spectroscopic studies of sulphonated aluminium phthalocyanine photosensitizers, Journal of Photochemistry and Photobiology B: Biology, vol.9, issue.1, pp.87-95, 1991.
DOI : 10.1016/1011-1344(91)80006-4

S. M. Bishop, Characterisation of the photochemotherapeutic agent disulphonated aluminium phthalocyanine and its high-performance liquid chromatographic separated components, Journal of Chromatography A, vol.646, issue.2, pp.345-50, 1993.
DOI : 10.1016/0021-9673(93)83347-U

R. J. Havel, H. A. Eder, and J. H. Bragdon, THE DISTRIBUTION AND CHEMICAL COMPOSITION OF ULTRACENTRIFUGALLY SEPARATED LIPOPROTEINS IN HUMAN SERUM, Journal of Clinical Investigation, vol.34, issue.9, pp.1345-1353, 1955.
DOI : 10.1172/JCI103182

G. L. Peterson, A simplification of the protein assay method of Lowry et al. which is more generally applicable, Analytical Biochemistry, vol.83, issue.2, pp.346-356, 1977.
DOI : 10.1016/0003-2697(77)90043-4

A. C. Carr, Myeloperoxidase binds to low-density lipoprotein: potential implications for atherosclerosis, FEBS Letters, vol.37, issue.2, pp.176-180, 2000.
DOI : 10.1016/S0014-5793(00)02227-4

L. D. Mayer, M. J. Hope, and P. R. Cullis, Vesicles of variable sizes produced by a rapid extrusion procedure, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.858, issue.1, pp.161-169, 1986.
DOI : 10.1016/0005-2736(86)90302-0

S. Lesieur, Size analysis and stability study of lipid vesicles by high-performance gel exclusion chromatography, turbidity, and dynamic light scattering, Analytical Biochemistry, vol.192, issue.2, pp.334-377, 1991.
DOI : 10.1016/0003-2697(91)90545-5

G. Scatchard, THE ATTRACTIONS OF PROTEINS FOR SMALL MOLECULES AND IONS, Annals of the New York Academy of Sciences, vol.173, issue.3, pp.660-672, 1949.
DOI : 10.1111/j.1749-6632.1949.tb27297.x

K. Kuzelova and D. Brault, Kinetic and equilibrium studies of porphyrin interactions with unilamellar lipidic vesicles, Biochemistry, vol.33, issue.32, pp.9447-59, 1994.
DOI : 10.1021/bi00198a010

S. B. Brown, M. Shillcock, and P. Jones, Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution, Biochemical Journal, vol.153, issue.2, pp.279-285, 1976.
DOI : 10.1042/bj1530279

W. I. White, Aggregation of Porphyrins and Metalloporphyrins, pp.303-339, 1978.
DOI : 10.1016/B978-0-12-220105-9.50014-X

R. B. Gennis, Interaction of small molecules with membranes: Partitioning, permeability and electrical effects., in Biomembranes: Molecular structures and fonction, pp.235-69, 1989.

A. Lavi, The Depth of Porphyrin in a Membrane and the Membrane???s Physical Properties Affect the Photosensitizing Efficiency, Biophysical Journal, vol.82, issue.4, pp.2101-2111, 2002.
DOI : 10.1016/S0006-3495(02)75557-4

K. M. Smith, Porphyrins and metalloporphyrins, 1975.

M. Kasha, Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates, Radiation Research, vol.20, issue.1, pp.55-70, 1963.
DOI : 10.2307/3571331

J. Dairou, C. Vever-bizet, and D. Brault, Self-association of disulfonated deuteroporphyrin and its esters in aqueous solution and photosensitized production of singlet oxygen by the dimers, Photochem Photobiol, issue.3, pp.75-229, 2002.

P. W. Atkins, Physical chemistry, 1990.

C. Vever-bizet and D. Brault, Kinetics of incorporation of porphyrins into small unilamellar vesicles, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1153, issue.2, pp.170-174, 1993.
DOI : 10.1016/0005-2736(93)90402-L

M. Eigen, Rate constants of protolytic reactions in aqueous solutions, Progress in reaction kinetics, pp.287-318, 1964.

H. Morales-rojas and A. K. Yatsimirsky, Medium effects on the dimerization of coproporphyrin-I free base, Journal of Physical Organic Chemistry, vol.63, issue.5, pp.377-387, 1999.
DOI : 10.1002/(SICI)1099-1395(199905)12:5<377::AID-POC137>3.0.CO;2-0

M. Egret-charlier, A. Sanson, and M. Ptak, Ionization of fatty acids at the lipid-water interface, FEBS Letters, vol.4, issue.2, pp.313-319, 1978.
DOI : 10.1016/0014-5793(78)80244-0

G. Jori, Evidence for a major role of plasma lipoproteins as hematoporphyrin carriers in vivo, Cancer Letters, vol.24, issue.3, pp.291-298, 1984.
DOI : 10.1016/0304-3835(84)90025-9

D. Kessel, The role of low-density lipoprotein in the biodistribution of photosensitizing agents, Journal of Photochemistry and Photobiology B: Biology, vol.14, issue.3, pp.261-263, 1992.
DOI : 10.1016/1011-1344(92)85103-2

S. Biade, LOVASTATIN POTENTIATES THE PHOTOCYTOTOXIC EFFECT OF PHOTOFRIN II DELIVERED TO HT29 HUMAN COLONIC ADENOCARCINOMA CELLS BY LOW DENSITY LIPOPROTEIN, Photochemistry and Photobiology, vol.21, issue.2, pp.371-376, 1993.
DOI : 10.1016/0304-3835(89)90011-6

H. E. De-vries, Oxidized low-density lipoprotein as a delivery system for photosensitizers: implications for photodynamic therapy of atherosclerosis, J Pharmacol Exp Ther, vol.289, issue.1, pp.528-562, 1999.

R. W. Mahley, Plasma lipoproteins: apolipoprotein structure and function, J Lipid Res, vol.25, issue.12, pp.1277-94, 1984.

J. R. Lakowicz, Principles of fluorescence spectroscopy, 1983.
DOI : 10.1007/978-0-387-46312-4

C. H. Ho, D. W. Britt, and V. Hlady, Human low density lipoprotein and human serum albumin adsorption onto model surfaces studied by total internal reflection fluorescence and scanning force microscopy, Journal of Molecular Recognition, vol.4, issue.3, pp.5-6, 1996.
DOI : 10.1002/(SICI)1099-1352(199634/12)9:5/6<444::AID-JMR281>3.0.CO;2-I

R. Galantai and I. Bardos-nagy, The interaction of human serum albumin and model membranes, International Journal of Pharmaceutics, vol.195, issue.1-2, pp.207-225, 2000.
DOI : 10.1016/S0378-5173(99)00399-3

R. Galantai, Serum Albumin???Lipid Membrane Interaction Influencing the Uptake of Porphyrins, Archives of Biochemistry and Biophysics, vol.373, issue.1, pp.261-70, 2000.
DOI : 10.1006/abbi.1999.1522

K. A. Connors, Chemicals kinetics, 1990.

D. M. Lee and P. Alaupovic, Physicochemical properties of low-density lipoproteins of normal human plasma. Evidence for the occurrence of lipoprotein B in associated and free forms, Biochemical Journal, vol.137, issue.2, pp.155-67, 1974.
DOI : 10.1042/bj1370155

A. E. Santos, J. A. Laranjinha, and L. M. Almeida, Sulfonated Chloroaluminum Phthalocyanine Incorporates into Human Plasma Lipoproteins: Photooxidation of Low-Density Lipoproteins, Photochemistry and Photobiology, vol.44, issue.4, pp.378-85, 1998.
DOI : 10.1016/0014-5793(96)00546-7

L. Polo, Low-density lipoprotein receptors in the uptake of tumour photosensitizers by human and rat transformed fibroblasts, The International Journal of Biochemistry & Cell Biology, vol.34, issue.1, pp.10-23, 2002.
DOI : 10.1016/S1357-2725(01)00092-9

M. Reff and E. L. Schneider, Cell culture aging, Molecular and Cellular Biochemistry, vol.34, issue.3, pp.169-76, 1981.
DOI : 10.1007/BF02357034

A. Frolov, High Density Lipoprotein-mediated Cholesterol Uptake and Targeting to Lipid Droplets in Intact L-cell Fibroblasts. A SINGLE- AND MULTIPHOTON FLUORESCENCE APPROACH, Journal of Biological Chemistry, vol.275, issue.17, pp.275-12769, 2000.
DOI : 10.1074/jbc.275.17.12769

D. L. Brasaemle, Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein, J. Lipid Res, vol.38, pp.2249-63, 1997.

H. P. Jiang and G. Serrero, Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein., Proceedings of the National Academy of Sciences, vol.89, issue.17, pp.89-7856, 1992.
DOI : 10.1073/pnas.89.17.7856

J. Gao and G. Serrero, Adipose Differentiation Related Protein (ADRP) Expressed in Transfected COS-7 Cells Selectively Stimulates Long Chain Fatty Acid Uptake, Journal of Biological Chemistry, vol.274, issue.24, pp.274-16825, 1999.
DOI : 10.1074/jbc.274.24.16825

J. Moan, Sulfonated aluminium phthalocyanines as sensitizers for photochemotherapy. Effects of small light doses on localization, dye fluorescence and photosensitivity in V79 cells, International Journal of Cancer, vol.51, issue.6, pp.58-865, 1994.
DOI : 10.1002/ijc.2910580620

Y. N. Konan, R. Gurny, and E. Allemann, State of the art in the delivery of photosensitizers for photodynamic therapy, Journal of Photochemistry and Photobiology B: Biology, vol.66, issue.2, pp.89-106, 2002.
DOI : 10.1016/S1011-1344(01)00267-6

M. Kepczynski, Do Liposome-binding Constants of Porphyrins Correlate with Their Measured and Predicted Partitioning Between Octanol and Water???, Photochemistry and Photobiology, vol.34, issue.2, pp.127-161, 2002.
DOI : 10.1562/0031-8655(2002)076<0127:DLBCOP>2.0.CO;2

B. Cunderlikova, Increased binding of chlorin e(6) to lipoproteins at low pH values, Int. J. Biochem. Cell. Biol, issue.7, pp.32-759, 2000.

F. Ginevra, Delivery of the tumour photosensitizer zinc(II)-phthalocyanine to serum proteins by different liposomes: studies in vitro and in vivo, Cancer Letters, vol.49, issue.1, pp.59-65, 1990.
DOI : 10.1016/0304-3835(90)90139-O

G. Jori and E. Reddi, The role of lipoproteins in the delivery of tumour-targeting photosensitizers, International Journal of Biochemistry, vol.25, issue.10, pp.1369-75, 1993.
DOI : 10.1016/0020-711X(93)90684-7

K. Amin, LDL induced association of anionic liposomes with cells and delivery of contents as shown by the increase in potency of liposome dependent drugs, Pharm Res, issue.7, pp.18-914, 2001.

K. L. Proulx, S. I. Woodard, and H. A. Dailey, In situ conversion of coproporphyrinogen to heme by murine mitochondria: Terminal steps of the heme biosynthetic pathway, Protein Science, vol.255, issue.7, pp.1092-1100, 1993.
DOI : 10.1002/pro.5560020703

G. C. Ferreira, Organization of the terminal two enzymes of the heme biosynthetic pathway. Orientation of protoporphyrinogen oxidase and evidence for a membrane complex, J. Biol. Chem, issue.8, p.263, 1988.

K. Berg, Photochemical Internalization, Cancer Res, vol.59, issue.6, pp.1180-83, 1999.
DOI : 10.1201/b15582-42

URL : https://hal.archives-ouvertes.fr/hal-00129944

A. Hogset, Photochemical transfection: a new technology for lightinduced , site-directed gene delivery. Hum, Gene Ther, issue.116, pp.869-80, 2000.

P. K. Selbo, Photochemical Internalisation: A Novel Drug Delivery System, Tumor Biology, vol.23, issue.2, pp.103-115, 2002.
DOI : 10.1159/000059713

K. Berg, Photochemical internalization (PCI)--a novel technology for release of macromolecules from endocytic vesicles, Oftalmologia, vol.56, issue.1, pp.67-71, 2003.

L. Prasmickaite, Role of endosomes in gene transfection mediated by photochemical internalisation (PCI), The Journal of Gene Medicine, vol.56, issue.6, pp.477-88, 2000.
DOI : 10.1002/1521-2254(200011/12)2:6<477::AID-JGM137>3.0.CO;2-B

P. K. Selbo, Release of gelonin from endosomes and lysosomes to cytosol by photochemical internalization, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1475, issue.3, pp.1475-307, 2000.
DOI : 10.1016/S0304-4165(00)00082-9

P. K. Selbo, 5-Aminolevulinic acid-based photochemical internalization of the immunotoxin MOC31-gelonin generates synergistic cytotoxic effects in vitro, Photochem. Photobiol, vol.74, issue.2, pp.303-313, 2001.

A. Hogset, Light-induced adenovirus gene transfer, an efficient and specific gene delivery technology for cancer gene therapy, Cancer Gene Therapy, vol.9, issue.4, pp.365-71, 2002.
DOI : 10.1038/sj.cgt.7700447

A. Hogset, Photochemical transfection: a technology for efficient light-directed gene delivery, Somat. Cell. Mol. Genet, vol.27, pp.1-6, 2002.

M. Folini, Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase, Cancer Res, issue.13, pp.63-3490, 2003.

L. Prasmickaite, A. Hogset, and K. Berg, Evaluation of different photosensitizers for use in photochemical gene transfection, Photochem. Photobiol, vol.79, issue.4, pp.388-95, 2001.

L. Prasmickaite, A. Hogset, and K. Berg, The role of the cell cycle on the efficiency of photochemical gene transfection, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1570, issue.3, pp.1570-210, 2002.
DOI : 10.1016/S0304-4165(02)00202-7

B. Wahren and M. Brytting, DNA increases the potency of vaccination against infectious diseases, Current Opinion in Chemical Biology, vol.1, issue.2, pp.183-192, 1997.
DOI : 10.1016/S1367-5931(97)80008-7