C. Qui-est-notre-cas, Pour des bulles de la même taille, la force de Bjerknes secondaire crée une force attractive entre bulles Nous utilisons les forces de Bjerknes primaire pour développer un système de aiguillage de bulles. Dans un géométrie avec une jonction de type Y, nous pouvons diriger les bulles dans l'une ou l'autre des deux branches de sorties en modifiant les fréquences du son. Ce dispositif permetégalementpermetégalement la division des bulles en deux morceaux asymétriques bien contrôlés en variant l'amplitude du transducteur

A. Figure, Ultrasound. h = 100 µm, w or = 100 µm, l or ? 50 µm

]. M. Abkarian, M. Faivre, and H. A. Stone, High-speed microfluidic differential manometer for cellular-scale hydrodynamics, Proceedings of the National Academy of Sciences, vol.103, issue.3, pp.538-542, 2006.
DOI : 10.1073/pnas.0507171102

S. L. Anna, N. Bontoux, and H. A. Stone, Formation of dispersions using ???flow focusing??? in microchannels, Applied Physics Letters, vol.82, issue.3, pp.364-366, 2003.
DOI : 10.1063/1.1537519

V. Barbier, M. Tatoulian, H. Li, F. Arefi-khonsari, A. Ajdari et al., Stable Modification of PDMS Surface Properties by Plasma Polymerization:?? Application to the Formation of Double Emulsions in Microfluidic Systems, Langmuir, vol.22, issue.12, pp.225230-5232, 2006.
DOI : 10.1021/la053289c

V. Barbier, H. Willaime, P. Tabeling, and F. Jousse, Producing droplets in parallel microfluidic systems, Physical Review E, vol.74, issue.4, p.46306, 2006.
DOI : 10.1103/PhysRevE.74.046306

T. Beatus, T. Tlusty, and R. Bar-ziv, Phonons in a one-dimensional microfluidic crystal, Nature Physics, vol.2, issue.11, pp.743-748, 2006.
DOI : 10.1021/ac980656z

F. Bolton and D. Weaire, Rigidity loss transition in a disordered 2D froth, Physical Review Letters, vol.65, issue.27, pp.3449-3451, 1990.
DOI : 10.1103/PhysRevLett.65.3449

F. P. Bretherton, The motion of long bubbles in tubes, Journal of Fluid Mechanics, vol.194, issue.02, pp.166-188, 1961.
DOI : 10.1021/ie50601a051

I. Cantat and R. Delannay, Dissipative flows of 2D foams, The European Physical Journal E, vol.63, issue.1, pp.55-67, 2005.
DOI : 10.1140/epje/i2004-10154-5

URL : https://hal.archives-ouvertes.fr/hal-01127761

I. Cantat, N. Kern, and R. Delannay, Dissipation in foam flowing through narrow channels, Europhysics Letters (EPL), vol.65, issue.5, pp.726-732, 2004.
DOI : 10.1209/epl/i2003-10169-0

URL : https://hal.archives-ouvertes.fr/hal-01123933

G. F. Christopher and S. L. Anna, Microfluidic methods for generating continuous droplet streams, Journal of Physics D: Applied Physics, vol.40, issue.19
DOI : 10.1088/0022-3727/40/19/R01

C. Cramer, P. Fischer, and E. J. Windhab, Drop formation in a co-flowing ambient fluid, Chemical Engineering Science, vol.59, issue.15, pp.3045-3058, 2004.
DOI : 10.1016/j.ces.2004.04.006

N. D. Denkov, V. Subramanian, D. Gurovich, and A. Lips, Wall slip and viscous dissipation in sheared foams: Effect of surface mobility, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.263, issue.1-3, pp.129-145, 2005.
DOI : 10.1016/j.colsurfa.2005.02.038

N. D. Denkov, S. Tcholakova, K. Golemanov, V. Subramanian, and A. Lips, Foam???wall friction: Effect of air volume fraction for tangentially immobile bubble surface, Colloids and Surfaces A, pp.282-283329, 2005.
DOI : 10.1016/j.colsurfa.2006.04.028

B. Dollet, F. Elias, C. Quillet, A. Huillier, M. Aubouy et al., Twodimensional flows of foam: drag exerted on circular obstacles and dissipation, Colloids and Surfaces A, 2005.

B. Dollet and F. Graner, Two-dimensional flow of foam around a circular obstacle: local measurements of elasticity, plasticity and flow, Journal of Fluid Mechanics, vol.67, pp.181-211, 2007.
DOI : 10.1088/0953-8984/17/41/R01

B. Dollet, W. Van-hoeve, J. P. Raven, P. Marmottant, and M. Versluis, Role of the channel geometry on the bubble pinch-off in flow focusing devices. preprint, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00674374

B. Dollet, Ecoulements bidimensionnels de mousses autour d'obstacles, 2005.

B. Dollet, M. Aubouy, and F. Graner, Anti-Inertial Lift in Foams: A Signature of the Elasticity of Complex Fluids, Physical Review Letters, vol.95, issue.16, p.168303, 2005.
DOI : 10.1103/PhysRevLett.95.168303

W. Drenckhan, S. J. Cox, H. Holste, D. Weaire, and N. Kern, Rheology of ordered foams???on the way to Discrete Microfluidics, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.263, issue.1-3, pp.52-64, 2005.
DOI : 10.1016/j.colsurfa.2005.01.005

D. C. Duffy, J. C. Mcdonald, O. J. Schueller, and G. M. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Analytical Chemistry, vol.70, issue.23, pp.4974-4984, 1998.
DOI : 10.1021/ac980656z

M. Durand and H. A. Stone, Relaxation time of the topological t1 process in a two-dimensional foam, Phys. Rev. Lett, vol.97, p.2261010608426, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00089405

W. Engl, M. Roche, A. Colin, P. Panizza, and A. Ajdari, Droplet Traffic at a Simple Junction at Low Capillary Numbers, Physical Review Letters, vol.95, issue.20, p.208304, 2006.
DOI : 10.1103/PhysRevLett.95.208304

P. Garstecki, M. A. Fischbach, and G. M. Whitesides, Design for mixing using bubbles in branched microfluidic channels, Applied Physics Letters, vol.86, issue.24, p.244108, 2005.
DOI : 10.1063/1.1946902

P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, Mixing with bubbles: a practical technology for use with portable microfluidic devices, Lab Chip, vol.17, issue.2, pp.207-212, 2006.
DOI : 10.1039/B510843H

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction???scaling and mechanism of break-up, Lab on a Chip, vol.12, issue.3, pp.437-446, 2006.
DOI : 10.1039/b510841a

P. Garstecki, H. A. Stone, and G. M. Whitesides, Auxiliary material to: Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions, 2005.

P. Garstecki, M. J. Fuerstman, and G. M. Whitesides, Nonlinear Dynamics of a Flow-Focusing Bubble Generator: An Inverted Dripping Faucet, Physical Review Letters, vol.94, issue.23, p.234502, 2005.
DOI : 10.1103/PhysRevLett.94.234502

P. Garstecki, I. Gitlin, W. Diluzio, G. M. Whitesides, E. Kumacheva et al., Formation of monodisperse bubbles in a microfluidic flow-focusing device, Applied Physics Letters, vol.85, issue.13, pp.2649-2651, 2004.
DOI : 10.1063/1.1796526

P. Garstecki, H. A. Stone, and G. M. Whitesides, Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions, Physical Review Letters, vol.94, issue.16, p.164501, 2005.
DOI : 10.1103/PhysRevLett.94.164501

M. Alfonso and . Gañán-calvo, Perfectly monodisperse microbubbling by capillary flow focusing: An alternate physical description and universal scaling, Phys. Rev. E, vol.69, p.27301, 2004.

M. Alfonso, J. M. Gañán-calvo, and . Gordillo, Perfectly monodisperse microbubbling by capillary flow focusing, Phys. Rev. Lett, vol.87, p.274501, 2001.

F. Graner, La mousse, La Recherche, vol.345, pp.46-49, 2001.

P. Guillot and A. Colin, Stability of parallel flows in a microchannel after a T junction, Physical Review E, vol.72, issue.6, p.66301, 2005.
DOI : 10.1103/PhysRevE.72.066301

P. Guillot, A. Collin, A. S. Utada, and A. Ajdari, Stability of a Jet in Confined Pressure-Driven Biphasic Flows at Low Reynolds Numbers, Physical Review Letters, vol.99, issue.10, 2007.
DOI : 10.1103/PhysRevLett.99.104502

P. Guillot, P. Panizza, J. Salmon, M. Joanicot, A. Collin et al., Viscosimeter on a Microfluidic Chip, Langmuir, vol.22, issue.14, pp.6438-6455, 2006.
DOI : 10.1021/la060131z

URL : https://hal.archives-ouvertes.fr/hal-00282106

J. Husny and J. J. Cooper-white, The effect of elasticity on drop creation in T-shaped microchannels, Journal of Non-Newtonian Fluid Mechanics, vol.137, issue.1-3, pp.121-136, 2006.
DOI : 10.1016/j.jnnfm.2006.03.007

S. A. Koehler, S. Hilgenfeldt, and H. A. Stone, Liquid Flow through Aqueous Foams: The Node-Dominated Foam Drainage Equation, Physical Review Letters, vol.82, issue.21, p.4232, 1999.
DOI : 10.1103/PhysRevLett.82.4232

J. Lambert, I. Cantat, R. Delannay, G. L. Caër, A. Renault et al., Extraction of relevant physical parameters from 3D images of foams obtained by X-ray tomography, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.263, issue.1-3, pp.295-302, 2005.
DOI : 10.1016/j.colsurfa.2005.01.002

URL : https://hal.archives-ouvertes.fr/hal-01127655

T. Lauffenburger, Stage de m1: Drainage dans une micromousse, 2006.

P. Lenz, C. M. Ajo-franklin, and S. G. Boxer, Patterned Supported Lipid Bilayers and Monolayers on Poly(dimethylsiloxane), Langmuir, vol.20, issue.25, pp.11092-11099, 2004.
DOI : 10.1021/la048450i

D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone, Geometrically Mediated Breakup of Drops in Microfluidic Devices, Physical Review Letters, vol.92, issue.5, p.54503, 2004.
DOI : 10.1103/PhysRevLett.92.054503

E. Lorenceau, Y. Yip-cheung-sang, R. Höhler, and S. Cohen-addad, A high rate flow-focusing foam generator, Physics of Fluids, vol.18, issue.9, p.97103, 2006.
DOI : 10.1063/1.2353799

URL : https://hal.archives-ouvertes.fr/hal-00182489

J. , C. Mcdonald, D. C. Duffy, J. R. Anderson, D. T. Chiu et al., Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, vol.21, pp.27-40, 2000.

L. Ménétrier-deremble and P. Tabeling, Droplet breakup in microfluidic junctions of arbitrary angles, Physical Review E, vol.74, issue.3, p.35303, 2006.
DOI : 10.1103/PhysRevE.74.035303

M. Prakash and N. Gershenfeld, Microfluidic Bubble Logic, Science, vol.315, issue.5813, pp.832-835, 2007.
DOI : 10.1126/science.1136907

URL : http://cba.mit.edu/docs/theses/08.09.Prakash.pdf

H. M. Princen, Rheology of foams and highly concentrated emulsions, Journal of Colloid and Interface Science, vol.91, issue.1, pp.160-175, 1983.
DOI : 10.1016/0021-9797(83)90323-5

R. Stephen, A. Quake, and . Sherer, From micro-to nanofabrication with soft materials, Science, vol.290, pp.1536-1540, 2000.

C. Raufaste, Rheologie et imagerie des ecoulements 2D de mousse: approche experimentale, numerique et theorique, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00193248

C. Raufaste, B. Dollet, S. Cox, Y. Jiang, and F. Graner, Yield drag in a two-dimensional foam flow around a circular obstacle: Effect of liquid fraction, The European Physical Journal E, vol.73, issue.2, pp.217-228, 2007.
DOI : 10.1140/epje/i2006-10178-9

URL : https://hal.archives-ouvertes.fr/hal-00090531

A. Saugey, W. Drenckhan, and D. Weaire, Wall slip of bubbles in foams, Physics of Fluids, vol.18, issue.5, 2006.
DOI : 10.1063/1.2196912

I. Shestopalov, J. D. Tice, and R. F. Ismagilov, Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system, Lab on a Chip, vol.4, issue.4, pp.316-321, 2004.
DOI : 10.1039/b403378g

C. S. Smith, On blowig bubbles for bragg's dynamic crystal model, Appl. Phys. Lett, vol.20, p.631, 1949.

H. Song, J. D. Tice, and R. F. Ismagilov, A Microfluidic System for Controlling Reaction Networks in Time, Angewandte Chemie International Edition, vol.42, issue.7, pp.768-771, 2003.
DOI : 10.1002/anie.200390203

M. Todd, S. R. Squires, and . Quake, Microfluidics: Fluid physics at the nanoliter scale, Rev. Mod. Phys, vol.77, p.977, 2005.

H. A. Stone, A. D. Stroock, and A. Ajdari, ENGINEERING FLOWS IN SMALL DEVICES, Annual Review of Fluid Mechanics, vol.36, issue.1, pp.381-411, 2004.
DOI : 10.1146/annurev.fluid.36.050802.122124

S. Takeuchi, P. Garstecki, D. B. Weibel, and G. M. Whitesides, An Axisymmetric Flow-Focusing Microfluidic Device, Advanced Materials, vol.4, issue.8, pp.1067-1072, 2005.
DOI : 10.1002/adma.200401738

E. Terriac, J. Etrillard, and I. Cantat, Viscous force exerted on a foam at a solid boundary: Influence of the liquid fraction and of the bubble size, Europhysics Letters (EPL), vol.74, issue.5, pp.909-915, 2006.
DOI : 10.1209/epl/i2005-10583-2

URL : https://hal.archives-ouvertes.fr/hal-00096588

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device, Physical Review Letters, vol.86, issue.18, pp.4163-4166, 2001.
DOI : 10.1103/PhysRevLett.86.4163

M. A. Unger, H. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, issue.5463, pp.113-116, 2000.
DOI : 10.1126/science.288.5463.113

A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone et al., Monodisperse Double Emulsions Generated from a Microcapillary Device, Science, vol.308, issue.5721, pp.537-541, 2005.
DOI : 10.1126/science.1109164

A. Van-der-net, L. Blondel, A. Saugey, and W. Drenckhan, Simulating and interpretating images of foams with computational ray-tracing techniques, In press:xx, 2006.
DOI : 10.1016/j.colsurfa.2006.11.057

W. Van-hoeve, Monodisperse microbubble formation in microfluidic flow-focusing devices The Netherlands, 2006.

D. Weaire and S. Hutzler, Foam Physics, Advanced Engineering Materials, vol.4, issue.10, 1999.
DOI : 10.1002/1527-2648(20021014)4:10<723::AID-ADEM723>3.0.CO;2-9

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.309, issue.7101, pp.368-373, 2006.
DOI : 10.1038/nature05058