D. Applebaum, L??vy Processes in Euclidean Spaces and Groups, Lecture Notes in Mathematics, vol.1865, pp.1-99, 2005.
DOI : 10.1007/11376569_1

M. Anshelevich, Free martingale polynomials, Journal of Functional Analysis, vol.201, issue.1, pp.228-261, 2003.
DOI : 10.1016/S0022-1236(03)00061-2

URL : http://doi.org/10.1016/s0022-1236(03)00061-2

G. E. Andrews, R. Askey, and R. Roy, Special functions, 1999.

Z. D. Bai, Methodologies in spectral analysis of large dimensional random matrices, review. Statistica Sinica, pp.611-677, 1999.

T. H. Baker and P. J. Forrester, The Calogero-Sutherland Model and Generalized Classical Polynomials, Communications in Mathematical Physics, vol.188, issue.1, pp.175-216, 1997.
DOI : 10.1007/s002200050161

D. Bakry and O. Mazet, Characterization of Markov Semi-groups on R Associated to Some Families of Orthogonal Polynomials, Sem. Proba. XXXVI. Lecture Notes in Maths, pp.60-80, 1832.

C. Balderrama, P. Graczyk, and W. O. Urbina, A formula for polynomials with Hermitian matrix argument, Bulletin des Sciences Math??matiques, vol.129, issue.6, pp.486-500, 2005.
DOI : 10.1016/j.bulsci.2005.01.002

R. J. Beerends and E. M. Opdam, Certain hypergeometric series related to the root system BC, Trans. Amer. Math. Soc, vol.339, issue.2, pp.581-607, 1993.

G. B. Arous and A. Guionnet, Large deviations for Wigner's law and Voiculescu's noncommutative entropy, P. T. R. F, vol.108, issue.4, pp.517-542, 1997.

G. B. Arous, A. Dembo, and A. Guionnet, Aging of spherical spin glasses, Probability Theory and Related Fields, vol.120, issue.1, pp.1-67, 2001.
DOI : 10.1007/PL00008774

H. Bercovicci and D. Voiculescu, L??vy-Hin??in type theorems for multiplicative and additive free convolution, Pacific Journal of Mathematics, vol.153, issue.2, pp.217-248, 1992.
DOI : 10.2140/pjm.1992.153.217

P. Biane, Free Brownian motion, free stochastic calculus, and random matrices, Fie. Inst. Comm. Amer. Math. Soc. Providence, RI, vol.12, 1997.
DOI : 10.1090/fic/012/01

P. Biane and R. Speicher, Stochastic calculus with respect to free Brownian motion and analysis on Wigner space, Probability Theory and Related Fields, vol.112, issue.3, pp.373-409, 1998.
DOI : 10.1007/s004400050194

P. Biane, M. Capitaine, and A. Guionnet, Large deviation bounds for matrix Brownian motion, Inventiones Mathematicae, vol.152, issue.2, pp.433-459, 2003.
DOI : 10.1007/s00222-002-0281-4

P. Biane, Processes with free increments, Mathematische Zeitschrift, vol.227, issue.1, pp.143-174, 1998.
DOI : 10.1007/PL00004363

P. Biane, J. Pitman, and M. Yor, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bulletin of the American Mathematical Society, vol.38, issue.04, pp.435-465, 2001.
DOI : 10.1090/S0273-0979-01-00912-0

S. Bochner, Sturm-Liouville and heat equations whose eigenfunctions are ultraspherical polynomials or associated Bessel functions, Proc. Conf. Diff. Eq, pp.23-48, 1955.

O. Bohigas, Compound nucleus resonances, random matrices, quantum chaos In Recent Perspectives in Random Matrix Theory and Number Theory, Mezzadri et N. Snaith. Cambridge Univ. Press. Bru Wishart Process. J. Theoretical Probability, vol.4, issue.4, pp.725-751, 1991.

M. F. Bru, Diffusions of perturbed principal component analysis, Journal of Multivariate Analysis, vol.29, issue.1, pp.127-136, 1989.
DOI : 10.1016/0047-259X(89)90080-8

M. Capitaine and M. Casalis, Asymptotic freeness by generalized moments for Gaussian and Wishart matrices. Application to beta random matrices, Indiana University Mathematics Journal, vol.53, issue.2, pp.397-431, 2004.
DOI : 10.1512/iumj.2004.53.2325

M. Capitaine and C. Donati-martin, Free Wishart Processes, Journal of Theoretical Probability, vol.1738, issue.2, pp.413-438, 2005.
DOI : 10.1007/s10959-005-3511-z

URL : https://hal.archives-ouvertes.fr/hal-00101960

R. Carter, Lie Algebras of Finite and Affine Type, 2005.
DOI : 10.1017/CBO9780511614910

M. Caselle and U. Magnea, Random matrix theory and symmetric spaces. available on arXiv : cond-mat/0304363v2, 2004.
DOI : 10.1016/j.physrep.2003.12.004

URL : http://arxiv.org/abs/cond-mat/0304363

E. Cépa and D. Lépingle, Brownian particles with electrostatic repulsion on the circle : Dyson's model for unitary random matrices revisited, E. S. A. I. M : Probability and Statistics, vol.5, pp.203-224, 2001.

E. Cépa and D. Lépingle, Diffusing particles with electrostatic repulsions, P. T. R. F, vol.107, pp.429-449, 1997.

E. Cépa, Equations différentielles stochastiques multivoques, Sém. Proba. XXIX, pp.86-107, 1995.

I. Cherednik, P. J. Forrester, and D. Uglov, Random matrices, Log-gases and the Calogero- Sutherland model. Quantum Many-body Problems and Representation Theory, pp.97-181, 1998.

Y. Chikuze, Partial differential equations for hypergeometric functions of complex argument matrices and their applications, Annals of the Institute of Statistical Mathematics, vol.24, issue.1, pp.187-199, 1976.
DOI : 10.1007/BF02504739

S. I. Choi and J. W. Silverstein, Analysis of the limiting spectral distribution of large random matrices, J. Mult. Anal, vol.54, issue.2, pp.295-309, 1995.

O. Chybiryakov, Processus de Dunkl et Relation de Lamperti, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00082603

B. Collins, Intégrales Matricelles et Probabilités Non-commutatives, 2003.

F. Delbaen and H. Shirakawa, An interest rate model with upper and lower bound, Asia-Pacific Financial Markets, vol.9, issue.3/4, pp.191-209, 2002.
DOI : 10.1023/A:1024125430287

N. Demni, The Laguerre process and generalized Hartman???Watson law, Bernoulli, vol.13, issue.2
DOI : 10.3150/07-BEJ6048

URL : https://hal.archives-ouvertes.fr/hal-00160549

J. Dixmier, Les Algèbres D'opérateurs Dans L'espace Hilbertien (Algèbres de Von Neumann ) Paris Gauthier-Villars, 1957.

C. Donati-martin, Y. Doumerc, H. Matsumoto, and M. Yor, Some properties of the Wishart processes and a matrix extension of the Hartman-Watson laws, Publications of the Research Institute for Mathematical Sciences, vol.40, issue.4, pp.1385-1412, 2004.
DOI : 10.2977/prims/1145475450

J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, 1984.
DOI : 10.1007/978-1-4612-5208-5

H. Doss and E. Lenglart, Sur l'existence, l'unicité et le comportement asymptotique des solutions d'´ equations différentielles stochastiques, Ann. Inst. H. Poincaré, vol.14, issue.2, pp.189-214, 1978.

Y. Doumerc, matrices aléatoires, processus stochastiques et groupes de réfléxions, 2005.

Y. Doumerc, Quelques aspects du spectre des grandes matrices aléatoires

I. Dumitriu and A. Edelman, Matrix models for beta ensembles, Journal of Mathematical Physics, vol.43, issue.11, pp.5830-5847, 2002.
DOI : 10.1063/1.1507823

F. J. Dyson, A Brownian???Motion Model for the Eigenvalues of a Random Matrix, Journal of Mathematical Physics, vol.3, issue.6, pp.1191-1198, 1962.
DOI : 10.1063/1.1703862

S. Ethier and T. G. Kurtz, Markov Processes : Characterization and Convergence, 1986.
DOI : 10.1002/9780470316658

H. Exton, Multiple Hypergeometric Functions And Applications, 1976.

J. Faraut, Infinite dimensional harmonic analysis and probability. Prob. Meas. on Groups : Recent Directions and Trends.Tata Institute of Fundamental Research, pp.179-254, 2006.

J. Faraut and A. Koryani, Analysis on symmetric Cones, 1994.

. R. Farrell, Multivariate Calculation. Use of Continuous Group, 1985.
DOI : 10.1007/978-1-4613-8528-8

L. Gallardo and M. Yor, A chaotic representation property of the multidimensional Dunkl processes, The Annals of Probability, vol.34, issue.4, pp.1530-1549, 2006.
DOI : 10.1214/009117906000000133

URL : https://hal.archives-ouvertes.fr/hal-00109967

L. Gallardo and M. Yor, Some remarkable properties of the Dunkl martingales Séminaire de Probabilités XXXIX, dedicated to Paul-André Meyer. Lecture notes in Math, 2005.

G. Gasper, Banach Algebras for Jacobi Series and Positivity of a Kernel, The Annals of Mathematics, vol.95, issue.2, pp.261-280, 1972.
DOI : 10.2307/1970800

D. J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and random matrices, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.35, issue.2, pp.177-204, 1999.
DOI : 10.1016/S0246-0203(99)80010-7

P. Graczyk, G. Letac, and H. Massam, The complex Wishart distribution and the symmetric group, Ann. Statist, vol.31, issue.1, pp.287-309, 2003.

P. Graczyk, G. Letac, and H. Massam, The Hyperoctahedral Group, Symmetric Group Representations and the Moments of the Real Wishart Distribution, Journal of Theoretical Probability, vol.74, issue.1, pp.1-42, 2005.
DOI : 10.1007/s10959-004-0579-9

P. Graczyk and L. Vostrikova, Moments of real Wishart processes via Itô calculus

K. I. Gross, . P. St, and . Richards, Hypergeometric functions on complex matrix space, Bulletin of the American Mathematical Society, vol.24, issue.2, pp.349-355, 1991.
DOI : 10.1090/S0273-0979-1991-16031-3

K. I. Gross, Total positivity, spherical series, and hypergeometric functions of matrix argument, Journal of Approximation Theory, vol.59, issue.2, pp.224-246, 1989.
DOI : 10.1016/0021-9045(89)90153-6

G. J. Heckman and E. M. Opdam, Root systems and Hypergeometric functions I, Comp. Math, vol.64, pp.329-352, 1987.

F. Hiai and D. Petz, The Semicircle Law, Free Random Variables and Entropy, Mathematical Surveys and Monographs. A. M. S, vol.77
DOI : 10.1090/surv/077

D. Hobson and W. Werner, Non-Colliding Brownian Motions on the Circle, Bulletin of the London Mathematical Society, vol.28, issue.6, pp.643-650, 1996.
DOI : 10.1112/blms/28.6.643

J. E. Humphreys, Reflections Groups and Coxeter Groups, 2000.
DOI : 10.1017/CBO9780511623646

N. Ikeda and S. Watanabe, Stochastic Differential Equations

A. T. James, Distributions of Matrix Variates and Latent Roots Derived from Normal Samples, The Annals of Mathematical Statistics, vol.35, issue.2, pp.475-501, 1964.
DOI : 10.1214/aoms/1177703550

J. Kaneko, Selberg Integrals and Hypergeometric Functions Associated with Jack Polynomials, SIAM Journal on Mathematical Analysis, vol.24, issue.4, pp.1086-1110, 1993.
DOI : 10.1137/0524064

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 1991.

S. P. Karlin and G. Mcgregor, Coincidence probabilities, Pacific Journal of Mathematics, vol.9, issue.4, pp.1141-1164, 1959.
DOI : 10.2140/pjm.1959.9.1141

S. P. Karlin and G. Mcgregor, Classical diffusion processes and total positivity, Journal of Mathematical Analysis and Applications, vol.1, issue.2, pp.163-183, 1960.
DOI : 10.1016/0022-247X(60)90020-2

URL : http://doi.org/10.1016/0022-247x(60)90020-2

M. Katori and H. Tanemura, Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems, Journal of Mathematical Physics, vol.45, issue.8, pp.3058-3085, 2004.
DOI : 10.1063/1.1765215

M. Katori and H. Tanemura, Noncolliding Brownian motions and Harish-Chandra formula, Electronic Communications in Probability, vol.8, issue.0, pp.112-121, 2003.
DOI : 10.1214/ECP.v8-1076

URL : http://arxiv.org/abs/math/0306386

C. G. Khatri, On the moments of traces of two matrices in three situations for complex multivariate normal populations, Sankhya Ser, vol.32, pp.65-80, 1970.

R. Killip and I. Nenciu, Matrix models for circular ensembles, Int. Math. Res. Not, vol.50, pp.2665-2701, 2004.

W. König and N. O. Connell, Eigenvalues of the Laguerre Process as Non-Colliding Squared Bessel Processes, Electronic Communications in Probability, vol.6, issue.0, pp.107-114, 2001.
DOI : 10.1214/ECP.v6-1040

B. Kümmerer and R. Speicher, Stochastic integration on the Cuntz algebra O???, Journal of Functional Analysis, vol.103, issue.2, pp.372-408, 1992.
DOI : 10.1016/0022-1236(92)90126-4

J. Lamperti, Semi-stable Markov processes. I, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.111, issue.3, pp.205-225, 1972.
DOI : 10.1007/BF00536091

M. Lassalle, Polynômes de Jacobi généralisés, C. R. A. S. Paris. 312. Série I, pp.425-428, 1991.

M. Lassalle, Polynômes de Laguerre généralisés, C. R. A. S. Paris. 312. Série I, pp.725-728, 1991.

M. Lassalle, Polynômes de Hermite généralisés, C. R. A. S. Paris. 313. Série I, pp.579-582, 1991.

. S. Lawi, Matrix-valued stochastic processes and orthogonal polynomials

L. G. Macdonald, Symmetric Functions and Hall Polynomials, 1995.

W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas And Theorems for the Special Functions of Mathematical Physics, 1996.

M. L. Mehta, Random Matrices

R. J. Muirhead, Aspects of Multivariate Statistical Theory, 1982.
DOI : 10.1002/9780470316559

A. Nica and R. Speicher, On the multiplication of free n-tuples of non-commutative random variables, Amer. J. Math, vol.118, pp.799-837, 1996.

J. R. Norris, L. C. Rogers, and D. Williams, Brownian motions of ellipsoids, Transactions of the American Mathematical Society, vol.294, issue.2, pp.757-765, 1986.
DOI : 10.1090/S0002-9947-1986-0825735-5

L. Overbeck, Estimation for Continuous Branching Processes, Scandinavian Journal of Statistics, vol.25, issue.1, pp.111-126, 1998.
DOI : 10.1111/1467-9469.00092

S. Péché, Universality of local eigenvalue statistics for random sample covariance matrices, 2003.

G. Pisier and Q. Xu, Non-Commutative Martingale Inequalities, Communications in Mathematical Physics, vol.189, issue.3, pp.667-698, 1997.
DOI : 10.1007/s002200050224

URL : http://arxiv.org/abs/math/9704209

J. Pitman and M. Yor, Infinitely Divisible Laws Associated With Hyperbolic Functions. Canad, J. Math, vol.55, issue.2, pp.292-330, 2003.
DOI : 10.4153/cjm-2003-014-x

URL : https://hal.archives-ouvertes.fr/hal-00104738

D. Revuz and M. Yor, Continuous Martingales And Brownian Motion, 1999.

I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products. Fifth Edition, 1994.

B. Schapira, The Heckman-Opdam Markov processes. To appear in P, T. R. F
URL : https://hal.archives-ouvertes.fr/hal-00023562

W. Schoutens, Stochastic Processes and Orthogonal Polynomials, Lecture Notes in Statistics, vol.146, 2000.
DOI : 10.1007/978-1-4612-1170-9

D. Revuz and M. Yor, Continuous Martingales And Brownian Motion, 1999.

L. C. Rogers and D. , Itô Calculus, Williams. Diffusions, Markov Processes and Martingales, vol.2, 1987.

M. Rösler, Dunkl Operators: Theory and Applications, Lecture Notes in Math, vol.1817, pp.93-135, 2002.
DOI : 10.1007/3-540-44945-0_3

M. Rösler and M. Voit, Markov Processes Related with Dunkl Operators, Advances in Applied Mathematics, vol.21, issue.4, pp.575-643, 1998.
DOI : 10.1006/aama.1998.0609

M. Rösler, Generalized Hermite Polynomials and the Heat Equation for Dunkl Operators, Communications in Mathematical Physics, vol.192, issue.3, pp.519-542, 1998.
DOI : 10.1007/s002200050307

A. Rouault, Pathwise asymptotic behavior of random determinants in the Jacobi ensemble

R. Speicher, Combinatorics of Free Probability Theory, Lectures. I. H. P. Paris, 1999.

C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Communications in Mathematical Physics, vol.21, issue.1, pp.151-174, 1994.
DOI : 10.1007/BF02100489

URL : http://arxiv.org/abs/hep-th/9210074

C. A. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles, Communications in Mathematical Physics, vol.163, issue.3, pp.727-754, 1996.
DOI : 10.1007/BF02099545

URL : http://arxiv.org/abs/solv-int/9509007

D. V. Voiculescu, Limit laws for Random matrices and free products, Inventiones mathematicae, vol.67, issue.3, pp.201-220, 1991.
DOI : 10.1007/BF01245072

J. Warren and M. Yor, The Brownian Burglar: conditioning Brownian motion by its local time process, Sém. Proba. XXXII, vol.49, pp.328-342, 1998.
DOI : 10.1090/trans2/049/09

J. Wishart, The generalized product moment distribution in samples from normal multivariate population, Biometrika, vol.20, pp.32-43, 1928.

E. Wong, The construction of a class of stationary Markov. Proceedings. The 16 th Symposium, Applied Math. AMS. Providence. RI, pp.264-276, 1964.

M. Yor, Loi de l'indice du lacet Brownien, et distribution de Hartman-Watson, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.91, issue.1, pp.71-95, 1980.
DOI : 10.1007/BF00531612

M. Yor, Some Aspects of Brownian Motion. Part I : Some Special Functionals, 1992.

M. Zani, Large deviations for squared radial Ornestein-Uhlenbeck processes. Stoch, Proc. App, pp.25-42, 2002.
DOI : 10.1016/s0304-4149(02)00156-4

URL : http://doi.org/10.1016/s0304-4149(02)00156-4