A. Benuzzi and J. M. Zaldivar, Safety of chemical batch reactors and storage tanks, 1991.

J. Bezdek, J. Keller, R. Krisnapuram, and N. Pal, Fuzzy models and algorithms for pattern recognition and image processing, 2005.
DOI : 10.1007/b106267

J. Bezdek, Pattern recognition with fuzzy objective function, 1981.
DOI : 10.1007/978-1-4757-0450-1

[. James and C. , Some New Indexes of Cluster Validity, Pal Nikhil R. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, vol.28, issue.3, 1998.

C. Bishop, Neural Networks for Pattern Recognition, 1995.

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, Statistics/Probability Series, 2003.

S. Chen, C. Cowan, and P. Grant, Orthogonal least squares learning algorithm for radial basis function networks, IEEE Transactions on Neural Networks, vol.2, issue.2, 1991.
DOI : 10.1109/72.80341

URL : http://eprints.soton.ac.uk/251135/1/00080341.pdf

L. Chiang, E. Russell, and R. Bratz, Fault Detection and Diagnosis in Industrial Systems, 2001.
DOI : 10.1007/978-1-4471-0347-9

A. Devatine, L. Prat, P. Cognet, C. Michel, C. Gourdon et al., Process Intensification, performances evaluation of a new concept « Open Plate Reactor, 2003.

B. Dubuisson, Diagnostic, intelligence artificielle et reconnaissance des formes, Hermes science, 2001.

R. Duda, P. Hart, and D. Stork, Pattern Classification, Willey Interscience Second edition, 2001.

R. A. Fisher, E. Fix, and J. L. Hodges, The use of multiple measurements in taxonomic problems Discriminatory analysis. Non-parametric discrimination, Annals of Eugenics, issue.7 4, pp.179-188, 1936.

F. Claudia, . Silva-leonardo, and . Oliveira-adriano, A Validity Measure for Hard an Fuzzy clustering derived from Fisher's Linear Discriminant, International Conference on Fuzzy Systems, 1951.

M. Galindo and J. Aguilar-martin, Interpretación Secuencial de Encuestas con Aprendizaje LAMDA

M. Galvan, J. Zaldivar, H. Hernández, and E. Molga, The use of neural networks for fitting complex kinetic data, Computers & Chemical Engineering, vol.20, issue.12, pp.1451-1465, 1996.
DOI : 10.1016/0098-1354(95)00231-6

I. Gath and A. Geva, Unsupervised optimal fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, issue.7, 1989.
DOI : 10.1109/34.192473

H. L. Gordon and R. L. Somorjai, Fuzzy cluster analysis of molecular dynamics trajectories, Proteins: Structure, Function, and Genetics, vol.51, issue.2, 1992.
DOI : 10.1002/prot.340140211

H. Goushun and L. Yunsheng, New Subsethood Measures and Similarity Measures of Fuzzy Sets, IEEE International Conference on Communications, Circuits and Systems, 2005.

D. Gustafson and W. Kessel, Fuzzy Clustering with a Fuzzy Covariance Matrix. IEEE Fuzzy Models for Pattern Recognition, reprinted from Proc. IEEE CDC, 1979.

M. Halkidi, Y. Batistakis, and M. Vazirgiannis, Clustering validity checking methods, ACM SIGMOD Record, vol.31, issue.3, 2002.
DOI : 10.1145/601858.601862

J. Han and M. Kamber, Data Mining, 2001.
DOI : 10.1007/978-1-4899-7993-3_104-2

H. Hernandez, Supervision et diagnostic des procédés de production d'eau potable, Thèse de Doctorat, 2006.

[. Eyke, Fuzzy methods in machine learning and data mining: Status and prospects, Fuzzy Sets and Systems, pg, pp.387-406, 2005.

. Hysys and . Hysys, Manuels Get Started and Customization Guide versions 3.1, Hyprotech. disponibles sur: http://itll.colorado, 2002.

C. Isaza, T. Kempowsky, J. Aguilar-martin, and A. Gauthier, Qualitative data Classification Using LAMDA and other Soft-Computer Methods. Recent Advances in Artificial Intelligence Research and Development, 2004.

C. Isaza, J. Aguilar-martin, M. V. Lelann, J. Aguilar, and A. Rios, An Optimization Method for the Data Space Partition Obtained by Classification Techniques for the Monitoring of Dynamic Processes

C. Isaza, E. Diez-lledo, H. Hernández-de-leon, J. Aguilar-martin, and M. V. Lelann, Decision Method for Functional States Validation in a Drinking Water Plant, IFAC, 2007.

A. K. Jain, Handbook of Pattern Recognition and Image Processing, 1988.

. Kaufmann, Introduction to the theory fuzzy subsets, Academic, vol.1, 1975.

U. Kaymak and R. Babuska, Compatible cluster merging for fuzzy modelling, Proceedings of 1995 IEEE International Conference on Fuzzy Systems. The International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium, 1995.
DOI : 10.1109/FUZZY.1995.409789

U. Kaymak and M. Setnes, Fuzzy clustering with volume prototypes and adaptive cluster merging, IEEE Transactions on Fuzzy Systems, vol.10, issue.6
DOI : 10.1109/TFUZZ.2002.805901

URL : http://usir.salford.ac.uk/1819/1/2038.3.pdf

T. Kempowsky, J. Aguilar-martin, A. Subias, L. Lann, and M. V. , Classification tool based on interactivity between expertise and self-learning techniques, 5th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, 2003.

T. Kempowsky, SALSA user's manual, 2004.

A. Orantes, Méthodologie pour le placement des capteurs a base de méthodes de classification en vue du diagnostic, Thèse de Doctorat, 2005.

A. Orantes, T. Kempowsky, L. Lann, M. V. Aguilar-martin, and J. , A new support methodology for the placement of sensors used for fault detection and diagnosis, Chemical Engineering and Processing: Process Intensification, vol.47, issue.3, 2007.
DOI : 10.1016/j.cep.2007.01.024

A. Orantes, T. Kempowsky, M. V. Le-lann, L. Prat, S. Elgue et al., Selection of Sensors by a New Methodology Coupling a Classification Technique and Entropy Criteria, Chemical Engineering Research and Design, vol.85, issue.6, 2007.
DOI : 10.1205/cherd06072

N. R. Pal and S. K. Et-pal, Higher order fuzzy entropy and hybrid entropy of a set, Information Sciences, vol.61, issue.3, pp.211-231, 1992.
DOI : 10.1016/0020-0255(92)90051-9

N. Piera and J. Aguilar-martin, Controlling Selectivity in Non-Standard Pattern Recognition Algorithms, IEEE Transactions on systems, man and cybernetics, vol.21, 1991.

M. J. Powell, Radial Basis Functions for Multivariable Interpolation: A Review. Algorithms for Approximation, 1987.

J. R. Quinlan, Induction of decision trees, Machine Learning, vol.1, issue.1, pp.81-106, 1986.
DOI : 10.1007/BF00116251

J. M. Rivière, M. /. Bayart, J. M. Thiriet, A. Bouras, and M. Robert, Intelligent Instruments: Some Modelling Approaches, Measurement and Control, vol.29, issue.6, 1996.
DOI : 10.1177/002029409602900604

C. E. Shannon, A mathematical theory of communication

Y. Tang, F. Sun, and Z. Sun, Improved Validation Index for Fuzzy Clustering, 2005.

E. Trillas and T. Riera, Entropies in finite fuzzy sets, Information Sciences, vol.15, issue.2, pp.159-168, 1978.
DOI : 10.1016/0020-0255(78)90005-1

V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, A review of process fault detection and diagnosis. Computers and Chemical Engineering, 2003.

J. Waissman, Construction d'un modèle comportemental pour la supervision de procédés: Application a une station de traitement des eaux Thèse de Doctorat de l`Institut National, 2000.

X. Wang and V. Syrmos, Optimal Cluster Selection Based on Fisher Class Separability Measure, 2005.

L. Xie and B. Xuanli, A validity measure for fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.8, 1991.
DOI : 10.1109/34.85677

R. R. Yager, On measures of fuzziness and fuzzy complements, Int. J

G. Zadeh and L. A. , Probability measures of Fuzzy events, Journal of Mathematical Analysis and Applications, vol.23, issue.2, pp.421-427, 1968.
DOI : 10.1016/0022-247X(68)90078-4