Skip to Main content Skip to Navigation
Theses

Modèles bayésiens hiérarchiques pour le traitement multi-capteur

Nicolas Dobigeon 1
1 IRIT-SC - Signal et Communications
IRIT - Institut de recherche en informatique de Toulouse
Abstract : In order to process the mass of information collected in many applications, it is necessary to propose new processing methods to exploit the « multi-sensor » feature of the observed data. The subject of this thesis consists in studying algorithms of estimation in a multi-sensor context where several signals or images resulting from the same application are available. This problem is of great interest since it makes it possible to improve the estimation performances compared to an analysis that would be carried out on each signal independently of the others. In this context, we have developed methods of hierarchical Bayesian inference to perform segmentation of multiple signals and to analyze hyperspectral images. The use of Markov Chain Monte Carlo methods allows one to overcome the difficulties related to the computational complexity of these inference methods.
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-00189738
Contributor : Nicolas Dobigeon <>
Submitted on : Wednesday, November 21, 2007 - 11:32:00 PM
Last modification on : Friday, November 27, 2020 - 9:36:04 AM
Long-term archiving on: : Monday, April 12, 2010 - 3:11:38 AM

Identifiers

  • HAL Id : tel-00189738, version 1

Citation

Nicolas Dobigeon. Modèles bayésiens hiérarchiques pour le traitement multi-capteur. Traitement du signal et de l'image [eess.SP]. Institut National Polytechnique de Toulouse - INPT, 2007. Français. ⟨tel-00189738⟩

Share

Metrics

Record views

228

Files downloads

1059