Problèmes de Géométrie Algorithmique sur les Droites et les Quadriques en Trois Dimensions

Sylvain Lazard 1
1 VEGAS - Effective Geometric Algorithms for Surfaces and Visibility
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Résumé : Cette thèse présente un ensemble de travaux en géométrie algorithmique non linéaire portant d'une
part sur le développement d'algorithmes géométriques certifiés et efficaces traitant d'objets courbes et, en particulier, de quadriques et, d'autre part, sur les propriétés des droites de l'espace dans un contexte de visibilité tridimensionnelle.

Ma réalisation principale concernant les quadriques est le développement du premier algorithme exacte, complet, quasi optimal et efficace pour calculer une paramétrisation de l'intersection de deux quadriques en trois dimensions. Cette contribution est une avancée très importante sur un problème ancien et c'est la première solution complète et certifiée à l'un des problèmes les plus élémentaires de modélisation par surfaces courbes implicites. Je présente également un très joli résultat sur les diagrammes de Voronoï de trois droites qui sont des partitions de l'espace en cellules bornées par des morceaux de quadriques. Nous montrons que la topologie de tels diagrammes est invariante pour des droites en positions générales et nous obtenons une propriété de monotonie sur les arcs des diagrammes. Nous en déduisons un algorithme simple pour ordonner des points le long de ces arcs, ce qui est vraisemblablement une avancée substantielle pour le développement futur d'algorithmes efficaces pour calculer l'axe médian de polyèdres. La technique de preuve, qui utilise fortement les outils modernes de calcul formel, est également intéressante en elle même.

Concernant les propriétés des droites de l'espace dans un contexte de visibilité tridimensionnelle, je présente un ensemble de résultats cohérents sur différentes problématiques. En premier lieu, je présente des résultats sur les propriétés structurelles des droites tangentes ou transversales à quatre primitives. Précisément, je présente une caractérisation des configurations dégénérées de quatre sphères qui admettent un nombre infini de tangentes communes, une caractérisation de l'ensemble des droites transversales à quatre segments, et une étude du nombre maximum de tangentes à quatre triangles. Je présente ensuite plusieurs résultats sur les propriétés combinatoires de structures géométriques de visibilité tridimensionnelle. En particulier, je présente plusieurs résultats importants sur la complexité des silhouettes de polyèdres depuis un point de vu aléatoire et sur la complexité en moyenne et dans le cas le pire du complexe de visibilité, une structure de données encodant des informations de visibilité. Je présente également de nouvelles bornes étonnantes sur la complexité dans le cas le pire de l'ombre portée sur un plan par une source lumineuse polygonale en présence d'obstacles polyédriques convexes. En dernier lieu, je présente le premier algorithme non trivial et implantable pour calculer l'ensemble des segments tangents à quatre parmi $k$ polyèdres convexes non nécessairement disjoints, c'est-à-dire, essentiellement les sommets du complexe de visibilité.
Type de document :
HDR
Génie logiciel [cs.SE]. Université Nancy II, 2007
Liste complète des métadonnées

Littérature citée [148 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-00189033
Contributeur : Sylvain Lazard <>
Soumis le : vendredi 11 avril 2008 - 11:13:32
Dernière modification le : jeudi 11 janvier 2018 - 06:20:14
Document(s) archivé(s) le : lundi 12 avril 2010 - 02:44:27

Identifiants

  • HAL Id : tel-00189033, version 1

Collections

Citation

Sylvain Lazard. Problèmes de Géométrie Algorithmique sur les Droites et les Quadriques en Trois Dimensions. Génie logiciel [cs.SE]. Université Nancy II, 2007. 〈tel-00189033〉

Partager

Métriques

Consultations de la notice

374

Téléchargements de fichiers

534