D. Kleier, Phloem Mobility of Xenobiotics: I. Mathematical Model Unifying the Weak Acid and Intermediate Permeability Theories, PLANT PHYSIOLOGY, vol.86, issue.3, pp.803-810, 1988.
DOI : 10.1104/pp.86.3.803

D. Kleier, B. Grayson, and F. Hsu, The phloem mobility of pesticides, Pestic Outlook, vol.9, pp.26-30, 1998.

M. Tyree, C. Peterson, and L. Edgington, A Simple Theory Regarding Ambimobility of Xenobiotics with Special Reference to the Nematicide, Oxamyl, PLANT PHYSIOLOGY, vol.63, issue.2, pp.367-374, 1979.
DOI : 10.1104/pp.63.2.367

R. Bromilow and K. Chamberlain, Designing molecules for systemicity, in Mechanisms and regulation of transport process, British Plant Growth Regulator Group, vol.18, pp.113-128, 1989.

S. Delrot and J. Bonnemain, Absorption et migration des herbicides, in Les herbicides, mode d'action et principes d'utilisation, pp.51-77, 1991.

F. Kasai and D. Bayer, Quantitative evaluation of the weak acid hypothesis as the mechanism for 2,4-D absorption by corn root protoplasts, Nihon Noyaku Gakkaishi (J Pestic Sci), vol.16, pp.163-170, 1991.

L. Chen, A. Ortiz-lopez, A. Jung, and D. Bush, ANT1, an Aromatic and Neutral Amino Acid Transporter in Arabidopsis, PLANT PHYSIOLOGY, vol.125, issue.4, pp.1813-1820, 2001.
DOI : 10.1104/pp.125.4.1813

L. Edgington, Structural Requirements of Systemic Fungicides, Annual Review of Phytopathology, vol.19, issue.1, pp.107-214, 1981.
DOI : 10.1146/annurev.py.19.090181.000543

P. Leroux, R. Delorme, P. Gaillardon, and ´. , Evolution des produits phytosanitairesàphytosanitaires`phytosanitairesà usages agricoles II?Les fongicides, Phytoma, vol.545, pp.8-15, 2002.

D. Nevill, R. Nyfeler, and D. Sozzi, CGA 142 705: a novel fungicide for seed treatment, Proc Brighton Crop Prot Conf?Pests, pp.65-72, 1988.

R. Nyfeler and P. Ackermann, Phenylpyrroles, a new class of agricultural fungicides related to the natural antibiotic pyrrolnitrin, in Synthesis and chemistry of agrochemicals III, pp.395-404, 1992.

K. Gehmann, R. Nyfeler, A. Leadbeater, D. Nevill, and D. Sozzi, CGA 173 506: a new phenylpyrrole fungicide for broadspectrum disease control, Proc Brighton Crop Prot Conf?Pests, p.399, 1990.

D. Wollweber and W. Brandes, 1-Aminomethyl-3-(2-fluor-3- chlorphenyl)-4-cyano-pyrrol-Derivate, Eur Pat EP, vol.0, pp.327-977, 1989.

J. Froyd and D. Smith, Method of controlling phytopathogenic fungi, Eur Pat Appl EP, vol.0, pp.358-405, 1990.

G. Gribble, D. Keavy, D. Davis, M. Saulnier, B. Pelcman et al., Syntheses and Diels-Alder cycloaddition reactions of 4H-furo[3,4-b]indoles. A regiospecific Diels-Alder synthesis of ellipticine, The Journal of Organic Chemistry, vol.57, issue.22, pp.5878-5891, 1992.
DOI : 10.1021/jo00048a021

P. Dean, Halogenolysis of methyl glycyrrhetate with lithium iodide?dimethylformamide, J Chem Soc, vol.6655, 1965.

J. Mcmurry and G. Wong, An Improves Method for the Cleavage of Methyl Esters, Synthetic Communications, vol.30, issue.6, pp.389-394, 1972.
DOI : 10.1021/jo01050a010

G. Van-reet, J. Heeres, and L. Wals, 1-(ß-Aryl)-¨ athyl-1H-1,2,4- triazolketale und ihre Salze, Verfahren zu ihrer Herstellung und fungizide Mittel und pflanzenwuehsregulierende Mittel, Ger Offen DE, pp.551-560, 1976.

G. Mounoury, S. Delrot, and J. Bonnemain, Energetics of threonine uptake by pod wall tissues of Vicia faba L., Planta, vol.64, issue.2, pp.178-185, 1984.
DOI : 10.1007/BF00395479

J. Kallarackal, G. Orlich, C. Schobert, and E. Komor, Sucrose transport into the phloem of Ricinus communis L. seedlings as measured by the analysis of sieve-tube sap, Planta, vol.57, issue.3, pp.327-335, 1989.
DOI : 10.1007/BF00403590

C. Delétage-grandon, J. Chollet, M. Faucher, F. Rocher, E. Komor et al., Carrier-Mediated Uptake and Phloem Systemy of a 350-Dalton Chlorinated Xenobiotic with an alpha-Amino Acid Function, PLANT PHYSIOLOGY, vol.125, issue.4, pp.1620-1632, 2001.
DOI : 10.1104/pp.125.4.1620

B. 30-jespers-ad, L. Davidse, D. Waard, and M. , Interference of the phenylpyrrole fungicide fenpiclonil with membranes and membrane function, Pesticide Science, vol.36, issue.2, pp.133-140, 1994.
DOI : 10.1002/ps.2780400208

K. Wright and K. Oparka, Physicochemical properties alone do not predict the movement and compartmentation of fluorescent xenobiotics, Journal of Experimental Botany, vol.45, issue.1, pp.35-44, 1994.
DOI : 10.1093/jxb/45.1.35

G. Orlich and E. Komor, Phloem loading in Ricinus cotyledons: sucrose pathways via the mesophyll and the apoplasm, Planta, vol.187, issue.4, pp.460-474, 1992.
DOI : 10.1007/BF00199964

C. Schobert and E. Komor, The differential transport of amino acids into the phloem of Ricinus communis L. seedlings as shown by the analysis of sieve-tube sap, Planta, vol.76, issue.3, pp.342-349, 1989.
DOI : 10.1007/BF00403592

L. Edgington, Structural requirements of systemic fungicides. ization of plasma membrane H + -ATPase, Plant Physiol, vol.93, pp.1654-1658, 1990.

S. Bouché-pillon, P. Fleurat-lessard, J. Fromont, R. Serrano, and J. Bonnemain, Immunolocalization of the Plasma Membrane H+ -ATPase in Minor Veins of Vicia faba in Relation to Phloem Loading, Plant Physiology, vol.105, issue.2, pp.691-697, 1994.
DOI : 10.1104/pp.105.2.691

N. Dewitt and M. Sussman, Immunological localization of an epitope-tagged plasma membrane proton pump (H + - ATPase) in phloem companion cells, Plant Cell, vol.7, pp.185-186, 1995.

A. Noubhani, S. Sakr, M. Denis, and S. Delrot, Transcriptional and post-translational control of the plant plasma membrane H+-ATPase by mechanical treatments, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1281, issue.2, pp.213-219, 1996.
DOI : 10.1016/0005-2736(96)00017-X

S. Neumann, E. Grimm, and J. F. , Transport of Xenobiotics in Higher Plants I. Structural Prerequisites for Translocation in the Phloem, Biochemie und Physiologie der Pflanzen, vol.180, issue.4, pp.257-268, 1985.
DOI : 10.1016/S0015-3796(85)80001-9

R. Nyfeler and P. Ackermann, Phenylpyrroles, a new class of agricultural fungicides related to the natural antibiotic pyrrolnitrin, in Synthesis and chemistry of agrochemicals III, pp.395-404, 1992.

F. Antognoni, S. Fornalè, C. Grimmer, E. Komor, and N. Bagni, Long-distance translocation of polyamines in phloem and xylem of Ricinus communis L. plants, Planta, vol.204, issue.4, pp.520-527, 1998.
DOI : 10.1007/s004250050287

S. Assmann, Abscisic Acid Signal Transduction in Stomatal Responses, Signal Transduction, pp.391-412, 2004.
DOI : 10.1007/978-1-4020-2686-7_19

Y. Ben-tal and C. Cleland, Uptake and Metabolism of [14C]Salicylic Acid in Lemna gibba G3, PLANT PHYSIOLOGY, vol.70, issue.1, pp.291-296, 1982.
DOI : 10.1104/pp.70.1.291

M. Bö-s, A. Sleight, T. Godel, J. Martin, C. Riemer et al., 5-HT6 receptor antagonists: lead optimisation and biological evaluation of N-aryl and N-heteroaryl 4-amino-benzene sulfonamides, European Journal of Medicinal Chemistry, vol.36, issue.2, pp.165-178, 2001.
DOI : 10.1016/S0223-5234(00)01209-5

R. Bromilow, K. Chamberlain, A. Evans, . Delrot, and . Lucas, Molecular structure and properties of xenobiotics in relation to phloem translocation, Recent Advances in Phloem Transport and Assimilate Compartmentation. Ouest Editions, Presses Academiques, pp.332-340, 1991.

H. Chen and J. Kuc, Ca 21 -dependent excretion of salicylic acid in tobacco cell suspension culture, Bot Bull Acad Sin, vol.40, pp.267-273, 1999.

L. Chen, A. Ortiz-lopez, A. Jung, and D. Bush, ANT1, an Aromatic and Neutral Amino Acid Transporter in Arabidopsis, PLANT PHYSIOLOGY, vol.125, issue.4, pp.1813-1820, 2001.
DOI : 10.1104/pp.125.4.1813

K. Chester, The Problem of Acquired Physiological Immunity in Plants, The Quarterly Review of Biology, vol.8, issue.3, pp.275-324, 1933.
DOI : 10.1086/394440

J. Chollet, F. Rocher, C. Jousse, C. Delétage-grandon, G. Bashiardes et al., Synthesis and phloem mobility of acidic derivatives of the fungicide fenpiclonil, Pest Management Science, vol.177, issue.11, pp.1063-1072, 2004.
DOI : 10.1002/ps.906

URL : https://hal.archives-ouvertes.fr/hal-00107365

J. Chollet, F. Rocher, C. Jousse, C. Delétage-grandon, G. Bashiardes et al., -substituted chain on systemicity and fungicidal activity, Pest Management Science, vol.19, issue.4, pp.377-382, 2005.
DOI : 10.1002/ps.977

URL : https://hal.archives-ouvertes.fr/hal-00707799

P. Davies, The plant hormones: Their nature, occurrence, and functions, PJ Davies, pp.1-15, 2004.

J. Dean and J. Mills, Uptake of salicylic acid 2-O-beta-D-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism, Physiologia Plantarum, vol.269, issue.4, pp.603-612, 2004.
DOI : 10.1016/S0031-9422(99)00563-4

J. Dean, L. Mohammed, and T. Fitzpatrick, The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures, Planta, vol.269, issue.2, pp.287-296, 2005.
DOI : 10.1007/s00425-004-1430-3

C. Delétage-grandon, J. Chollet, M. Faucher, F. Rocher, E. Komor et al., Carrier-Mediated Uptake and Phloem Systemy of a 350-Dalton Chlorinated Xenobiotic with an alpha-Amino Acid Function, PLANT PHYSIOLOGY, vol.125, issue.4, pp.1620-1632, 2001.
DOI : 10.1104/pp.125.4.1620

S. Delrot, J. Despeghel, and J. Bonnemain, Phloem loading in Vicia faba leaves: Effect of N-ethylmaleimide and parachloromercuribenzenesulfonic acid on H+ extrusion, K+ and sucrose uptake, Planta, vol.3, issue.2, pp.144-148, 1980.
DOI : 10.1007/BF00380875

M. Denis and S. Delrot, Carrier-mediated uptake of glyphosate in broad bean (Vicia faba) via a phosphate transporter, Physiologia Plantarum, vol.23, issue.4, pp.569-575, 1993.
DOI : 10.1016/0003-9861(92)90719-D

J. Durner, J. Shah, and D. Klessig, Salicylic acid and disease resistance in plants, Trends in Plant Science, vol.2, issue.7, pp.266-274, 1997.
DOI : 10.1016/S1360-1385(97)86349-2

W. Durrant and X. Dong, SYSTEMIC ACQUIRED RESISTANCE, Annual Review of Phytopathology, vol.42, issue.1, pp.185-209, 2004.
DOI : 10.1146/annurev.phyto.42.040803.140421

B. Enerson and L. Drewes, Molecular Features, Regulation, and Function of Monocarboxylate Transporters: Implications for Drug Delivery, Journal of Pharmaceutical Sciences, vol.92, issue.8, 2003.
DOI : 10.1002/jps.10389

A. Enyedi, N. Yalpani, P. Silverman, and I. Raskin, Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus., Proceedings of the National Academy of Sciences, vol.89, issue.6, pp.2480-2484, 1992.
DOI : 10.1073/pnas.89.6.2480

T. Gaffney, L. Friedrich, B. Vernooij, D. Negrotto, G. Nye et al., Requirement of Salicylic Acid for the Induction of Systemic Acquired Resistance, Science, vol.261, issue.5122, pp.754-756, 1993.
DOI : 10.1126/science.261.5122.754

C. Garcia, J. Goldstein, R. Pathak, R. Anderson, and M. Brown, Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: Implications for the Cori cycle, Cell, vol.76, issue.5, pp.865-873, 1994.
DOI : 10.1016/0092-8674(94)90361-1

N. Guedes, R. S. Kuc, and J. , Induced systemic resistance to anthracnose in cucumber as influenced by the location of the inducer inoculation with Colletotrichum lagenarium and the onset of flowering and fruiting, Physiological Plant Pathology, vol.17, issue.2, pp.229-233, 1980.
DOI : 10.1016/0048-4059(80)90056-9

S. Hall and D. Baker, The chemical composition of Ricinus phloem exudate, Planta, vol.11, issue.2, pp.131-140, 1972.
DOI : 10.1007/BF00383992

C. Hansch and S. Anderson, The effect of intramolecular bydrophobic bonding on partition coefficients, The Journal of Organic Chemistry, vol.32, issue.8, pp.2583-2586, 1967.
DOI : 10.1021/jo01283a049

E. Jeannette, J. Rona, F. Bardat, D. Cornel, B. Sotta et al., Induction of RAB18 gene expression and activation of K+ outward rectifying channels depend on an extracellular perception of ABA in Arabidopsis thaliana suspension cells, The Plant Journal, vol.115, issue.1, pp.13-22, 1999.
DOI : 10.1105/tpc.7.7.833

A. Jenns and J. Kuc, and Tobacco Necrosis Virus, Phytopathology, vol.69, issue.7, pp.753-756, 1979.
DOI : 10.1094/Phyto-69-753

J. Kallarackal, G. Orlich, C. Schobert, and E. Komor, Sucrose transport into the phloem of Ricinus communis L. seedlings as measured by the analysis of sieve-tube sap, Planta, vol.57, issue.3, pp.327-335, 1989.
DOI : 10.1007/BF00403590

F. Kasai and D. Bayer, Quantitative evaluation of the weak acid hypothesis as the mechanism for 2,4-D absorption by corn root protoplasts, 1991.

I. Kiefer and A. Slusarenko, The Pattern of Systemic Acquired Resistance Induction within the Arabidopsis Rosette in Relation to the Pattern of Translocation, PLANT PHYSIOLOGY, vol.132, issue.2, pp.840-847, 2003.
DOI : 10.1104/pp.103.021709

D. Kleier, Phloem Mobility of Xenobiotics: I. Mathematical Model Unifying the Weak Acid and Intermediate Permeability Theories, PLANT PHYSIOLOGY, vol.86, issue.3, pp.803-810, 1988.
DOI : 10.1104/pp.86.3.803

D. Kleier, Phloem mobility of xenobiotics. V. Structural requirements for phloem-systemic pesticides, Pesticide Science, vol.34, issue.1, pp.1-11, 1994.
DOI : 10.1002/ps.2780420102

D. Kleier, B. Grayson, and F. Hsu, The phloem mobility of pesticides, Pestic Outlook, vol.9, pp.26-30, 1998.

R. Lemoine, Sucrose transporters in plants: update on function and structure, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1465, issue.1-2, pp.246-262, 2000.
DOI : 10.1016/S0005-2736(00)00142-5

A. Ludwig, J. Stolz, and N. Sauer, Plant sucrose-H 1 symporters mediate the transport of vitamin H, Plant J, vol.24, pp.503-509, 2000.

J. Malamy, J. Carr, D. Klessig, and I. Raskin, Salicylic Acid: A Likely Endogenous Signal in the Resistance Response of Tobacco to Viral Infection, Science, vol.250, issue.4983, pp.1002-1004, 1990.
DOI : 10.1126/science.250.4983.1002

A. Maldonado, P. Doerner, R. Dixon, C. Lamb, and R. Cameron, A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis, Nature, vol.53, issue.6905, pp.399-403, 2002.
DOI : 10.1016/S1360-1385(02)02284-7

J. Métraux, Systemic acquired resistance and salicylic acid: current rate of knowledge, European Journal of Plant Pathology, vol.107, issue.1, pp.13-18, 2001.
DOI : 10.1023/A:1008763817367

J. Métraux, H. Signer, J. Ryals, E. Ward, M. Wyss-benz et al., Increase in Salicylic Acid at the Onset of Systemic Acquired Resistance in Cucumber, Science, vol.250, issue.4983, pp.1004-1006, 1990.
DOI : 10.1126/science.250.4983.1004

P. Meuwly, W. Mö-lders, A. Buchala, and J. Mé-traux, Local and Systemic Biosynthesis of Salicylic Acid in Infected Cucumber Plants, Plant Physiology, vol.109, issue.3, pp.1107-1114, 1995.
DOI : 10.1104/pp.109.3.1107

L. Minnick and M. Kilpatrick, Acid???Base Equilibria in Aqueous and Non-aqueous Solutions., The Journal of Physical Chemistry, vol.43, issue.2, pp.259-268, 1939.
DOI : 10.1021/j150389a008

W. Mö-lders, A. Buchala, and J. Métraux, Transport of Salicylic Acid in Tobacco Necrosis Virus-Infected Cucumber Plants, Plant Physiology, vol.112, issue.2, pp.787-792, 1996.
DOI : 10.1104/pp.112.2.787

K. Oparka, Uptake and Compartmentation of Fluorescent Probes by Plant Cells, Journal of Experimental Botany, vol.42, issue.5, pp.565-579, 1991.
DOI : 10.1093/jxb/42.5.565

G. Orlich and E. Komor, Phloem loading in Ricinus cotyledons: sucrose pathways via the mesophyll and the apoplasm, Planta, vol.187, issue.4, pp.460-474, 1992.
DOI : 10.1007/BF00199964

J. Rasmussen, R. Hammerschmidt, and M. Zook, Systemic Induction of Salicylic Acid Accumulation in Cucumber after Inoculation with Pseudomonas syringae pv syringae, PLANT PHYSIOLOGY, vol.97, issue.4, pp.1342-1347, 1991.
DOI : 10.1104/pp.97.4.1342

F. Rocher, Lutte chimique contre les champignons pathogènes des plantes: e ´valuation de la systémie phloémienne de nouvelles molécules a ` effet fongicide et d'activateurs de réactions de défense des plantes Systemic effects of local lesion formation, pp.127-150, 1966.

J. Ryals, U. Neuenschwander, M. Willits, A. Molina, H. Steiner et al., Systemic Acquired Resistance, THE PLANT CELL ONLINE, vol.8, issue.10, pp.1809-1819, 1996.
DOI : 10.1105/tpc.8.10.1809

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC159270

C. Schobert, P. Großmann, M. Gottschalk, E. Komor, A. Pecsvaradi et al., Sieve-tube exudate from Ricinus communis L. seedlings contains ubiquitin and chaperones, Planta, vol.196, issue.2, pp.205-210, 1995.
DOI : 10.1007/BF00201375

C. Schobert and E. Komor, The differential transport of amino acids into the phloem of Ricinus communis L. seedlings as shown by the analysis of sieve-tube sap, Planta, vol.76, issue.3, pp.342-349, 1989.
DOI : 10.1007/BF00403592

N. Shettel and N. Balke, Plant growth response to several allelopathic chemicals, Weed Sci, vol.31, pp.293-298, 1983.

V. Shulaev, J. Leó-n, and I. Raskin, Is Salicylic Acid a Translocated Signal of Systemic Acquired Resistance in Tobacco?, THE PLANT CELL ONLINE, vol.7, issue.10, pp.1691-1701, 1995.
DOI : 10.1105/tpc.7.10.1691

H. Takanaga, I. Tamai, and A. Tsuji, pH-Dependent and Carrier-mediated Transport of Salicylic Acid Across Caco-2 Cells, Journal of Pharmacy and Pharmacology, vol.4, issue.7, pp.567-570, 1994.
DOI : 10.1111/j.2042-7158.1994.tb03858.x

C. Trejo, A. Clephan, and W. Davies, How Do Stomata Read Abscisic Acid Signals?, Plant Physiology, vol.109, issue.3, pp.803-811, 1995.
DOI : 10.1104/pp.109.3.803

A. Tsuji, H. Takanaga, I. Tamai, and T. Terasaki, Transcellular transport of benzoic acid across Caco-2 cells by a pH-dependent and carrier-mediated transport mechanism, Pharmaceutical Research, vol.11, issue.1, pp.30-37, 1994.
DOI : 10.1023/A:1018933324914

A. Tsuji and I. Tamai, Carrier-mediated intestinal transport of drugs, Pharmaceutical Research, vol.13, issue.7, pp.963-977, 1996.
DOI : 10.1023/A:1016086003070

L. Van-loon, Induced resistance in plants and the role of pathogenesis-related proteins, European Journal of Plant Pathology, vol.103, issue.9, pp.753-765, 1997.
DOI : 10.1023/A:1008638109140

B. Vernooij, L. Friedrich, A. Morse, R. Reist, R. Kolditz-jawhar et al., Salicylic Acid Is Not the Translocated Signal Responsible for Inducing Systemic Acquired Resistance but Is Required in Signal Transduction, THE PLANT CELL ONLINE, vol.6, issue.7, pp.959-965, 1994.
DOI : 10.1105/tpc.6.7.959

D. Vreugdenhil and E. Koot-gronsveld, Characterization of phloem exudation from castor-bean cotyledons, Planta, vol.57, issue.3, pp.380-384, 1988.
DOI : 10.1007/BF00959524

D. Vreugdenhil and E. Koot-gronsveld, Measurements of pH, sucrose and potassium ions in the phloem sap of castor bean (Ricinus communis) plants, Physiologia Plantarum, vol.32, issue.3, pp.385-388, 1989.
DOI : 10.1007/BF00385093

R. White, Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco, Virology, vol.99, issue.2, pp.410-412, 1979.
DOI : 10.1016/0042-6822(79)90019-9

R. White, E. Rybicki, V. Wechmar, M. Dekker, J. Antiniw et al., Detection of PR 1-type Proteins in Amaranthaceae, Chenopodiaceae, Graminae and Solanaceae by Immunoelectroblotting, Journal of General Virology, vol.68, issue.7, pp.2043-2048, 1987.
DOI : 10.1099/0022-1317-68-7-2043

K. Wright and K. Oparka, Physicochemical properties alone do not predict the movement and compartmentation of fluorescent xenobiotics, Journal of Experimental Botany, vol.45, issue.1, 1994.
DOI : 10.1093/jxb/45.1.35

N. Yalpani, P. Silverman, T. Wilson, D. Kleier, and I. Raskin, Salicylic Acid Is a Systemic Signal and an Inducer of Pathogenesis-Related Proteins in Virus-Infected Tobacco, THE PLANT CELL ONLINE, vol.3, issue.8, pp.809-818, 1991.
DOI : 10.1105/tpc.3.8.809

W. Zhong, W. Kaiser, J. Kö-hler, H. Bauer-ruckdeschel, and E. Komor, Phloem loading of inorganic cations and anions by the seedling of Ricinus communis L., Journal of Plant Physiology, vol.152, issue.2-3, pp.328-335, 1998.
DOI : 10.1016/S0176-1617(98)80147-8