A. Dddnition, 1 Soit un groupe G ni Une reprrsentation linnaire de G dans V est un homomorphisme du groupe G dans le groupe GL(V), i.e

G. Une-application-de-g-dans, V) tel que pour tous s; t 2 G : (s; t) = (s)(t) : (A.1)

L. Formule, 1) implique en particulier que (1 G ) = Id V et (s ?1 ) = (s) ?1

T. Dans, T contient l''tiquette k mais pas k ?1 et par conssquent (@ T i+2 ( ~ L)) = 0, ce qui est contraire l'hypothhse

B. Remarque, 2 tant donnn un diagramme L et un tableau strictement croissant sur les lignes T 2 YT , nous avons que (T ; L) = 1 prrcissment quand on peut ddplacer les cases de L d'un pas vers le bas, en lisant T colonne par colonne

L. Corollaire and B. , 3 est quivalent la Proposition 3.14. En eeet, la seule faaon d'avoir que ((i 1 ; : : : ; i k );L) 6 = 0 correspond des cases i 1 ; : : : ; i k qui, p.156

E. Allen, The decomposition of a bigraded left regular representation of the diagonal action of Sn, Journal of Combinatorial Theory, Series A, vol.71, issue.1, pp.71-977111, 1995.
DOI : 10.1016/0097-3165(95)90018-7

J. Aval, Bases explicites et conjecture n!, Formal Power Series and Algebraic Combinatorics (Proceedings of FPSAC'00, 2000.
DOI : 10.1007/978-3-662-04166-6_9

URL : https://hal.archives-ouvertes.fr/hal-00185520

J. Aval, Monomial bases related to the n! conjecture, Discrete Math, p.15535, 2000.

J. Aval, F. Bergeron, and N. Bergeron, Lattice diagram polynomials in one set of variables, paraatre dans Adv, Appl. Math

J. Aval, On certain spaces of lattice diagram polynomials, Actes du Colloque LaCIM2000, p.43351, 2000.

J. Aval, On certain spaces of lattice diagram determinants, Discrete Mathematics, vol.256, issue.3
DOI : 10.1016/S0012-365X(02)00335-7

URL : https://hal.archives-ouvertes.fr/hal-00185527

J. Aval and N. Bergeron, Vanishing ideals of lattice diagram polynomials

J. Aval and N. Bergeron, Schur partial derivative operator on Lattice diagram determinants, soumis (ArXive : math

F. Bergeron, N. Bergeron, A. Garsia, M. Haiman, and G. Tesler, Lattice Diagram Polynomials and Extended Pieri Rules, Advances in Mathematics, vol.142, issue.2, pp.142-2444334, 1999.
DOI : 10.1006/aima.1998.1791

F. Bergeron, A. M. Garsia, and G. Tesler, Multiple left regular representations associated with alternants of the symmetric Groups

F. Bergeron and A. Garsia, Science ction and Macdonald polynomials, in Algebraic Methods and q-Special Functionss, CRM Proceedings & Lectures Notes 22, 1999.

F. Bergeron, A. Garsia, M. Haiman, and G. Tesler, Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions, Methods and Applications of Analysis, vol.6, issue.3, p.1158, 1999.
DOI : 10.4310/MAA.1999.v6.n3.a7

N. Bergeron and A. Garsia, On certain spaces of harmonic polynomials, Contemp. Math, vol.138, p.51186, 1992.
DOI : 10.1090/conm/138/1199120

F. Bergeron, Spaces of Lattice Diagram Polynomials, en prrparation

C. Chang, Geometric interpretation of the Macdonald polynomials and the n! conjecture, 1998.

C. De-concini and C. Procesi, Symmetric functions, conjugacy classes and the flag variety, Inventiones mathematicae, vol.36, issue.n. 2, p.2033219, 1981.
DOI : 10.1007/BF01389168

C. Dunkl and P. Hanlon, Integrals of polynomials associated with tableaux and the Garsia-Haiman conjecture, Mathematische Zeitschrift, vol.228, issue.3
DOI : 10.1007/PL00004633

P. I. Etingof and A. A. Jr, Macdonald Polynomials and representations of quantum groups, Math. Res. Lett, vol.1, issue.3, p.2799296, 1994.

J. Fogarty, Algebraic families on an algebraic surface, Amer, J. Math, pp.90-5111521, 1968.

H. Garnir, Thhorie de la reprsentation linnaire des groupes symmtriques, MMmoires de la Soc. Royale de Liige, p.10, 1950.

A. Garsia, Recent progress on the Macdonald q,t-Kostka conjecture, Actes du 4 e Colloque sur les SSries Formelles, p.2499255, 1992.

A. Garsia and M. Haiman, Some natural bigraded S n -modules and q; t- Kostka coeecients, Elec, J. Combin, vol.3, issue.2, 1996.
DOI : 10.1016/0001-8708(92)90034-i

URL : http://doi.org/10.1016/0001-8708(92)90034-i

A. M. Garsia and M. Haiman, A graded representation model for Macdonald's polynomials., Proc. Nat. Acad. Sci. USA, pp.90-360773610, 1993.
DOI : 10.1073/pnas.90.8.3607

A. Garsia and M. Haiman, Factorizations of Pieri rules for Macdonald polynomials, Discrete Mathematics, vol.139, issue.1-3, p.2199256, 1995.
DOI : 10.1016/0012-365X(94)00134-5

A. M. Garsia and J. , Plethystic formulas and positivity for q; t- Kostka polynomials, Mathematical Essays in Honor of Gian-Carlo Rota, pp.2455-262, 1996.

A. M. Garsia and G. Tesler, Plethystic formulas for Macdonald q; t-Kostka coeecients, Adv. Math, vol.123, p.1444222, 1996.
DOI : 10.1006/aima.1996.0071

URL : http://doi.org/10.1006/aima.1996.0071

A. Garsia and C. Procesi, On certain graded Sn-modules and the q-Kostka polynomials, Advances in Mathematics, vol.94, issue.1, p.822138, 1992.
DOI : 10.1016/0001-8708(92)90034-I

A. Garsia and M. Zabrocki, Polynomiality of the q,t-Kotska revisited

M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin, vol.3, issue.1, p.17776, 1994.

M. Haiman, Macdonald polynomials and geometry, in New Perspectives in geometric combinatorics, p.2077254, 1999.

M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane

G. D. James, The representation theory of symmetric group, 1981.

C. Jacobi, De functionibus alternantibus earumque divisione per productum e diierentiis elementorum connatum, J. de Crelle, vol.22, p.3600371, 1841.
DOI : 10.1017/cbo9781139567978.016

A. N. Kirillov and M. Noumi, AAne Hecke Algebras and raising operators for Macdonald Polynomials, Duke Math, J, vol.93, p.1139, 1998.

F. Knop, Integrality of two variable Kostka functions, J. Reine Angew. Math, vol.482, p.1777189, 1997.

L. Lapointe and L. Vinet, Operator construction of the Jack and Macdonald symmetric polynomials, Special functions and diierential operators, 1997.

I. G. Macdonald, Symmetric Functions and Hall Polynomials, 1995.

I. G. Macdonald, A new class of symmetric functions, Actes du 20 e SSminaire Lotharingien, Publ. I.R.M.A. Strasbourg, p.1311171, 1988.

E. Reiner, A Proof of the n! Conjecture for Generalized Hooks, J. Combin . Theory Ser. A, pp.75-1122, 1996.

J. B. Remmel and M. Shimozono, A simple proof of the Littlewood- Richardson rule and applications, Discrete Math, pp.1-3, 1998.

G. De-robinson, On the Representations of the Symmetric Group, American Journal of Mathematics, vol.60, issue.3, p.7455760, 1938.
DOI : 10.2307/2371609

B. Sagan, The symmetric group, 1991.
DOI : 10.1007/978-1-4757-6804-6

S. Sahi, Interpolation, integrality, and a generalization of Macdonald's polynomials, Internat. Math. Res. Notices, vol.10, p.4577471, 1996.

C. Schensted, Longest increasing and decreasing subsequences, Canad, J. Math, vol.13, p.1799191, 1961.

J. Serre, Reprsentations linnaires des groupes nis, 1967.

W. Specht, Die irreduciblen Darstellungen der Symmetrischen Gruppen, Math. Zeitschrift, vol.39, p.6966711, 1935.
DOI : 10.1007/bf01201387

URL : http://www.digizeitschriften.de/download/PPN266833020_0039/PPN266833020_0039___log71.pdf

R. Stanley, Some combinatorial properties of Jack symmetric functions, Advances in Mathematics, vol.77, issue.1, p.766117, 1989.
DOI : 10.1016/0001-8708(89)90015-7

R. Steinberg, Diierential equations invariant under nite reeection groups, Trans. Amer. Math. Soc, vol.112, p.3922400, 1964.
DOI : 10.1090/s0002-9947-1964-0167535-3

J. Stembridge, Some particular entries of the two-parameter Kotska matrix, Proc. Amer, p.3677373, 1994.

T. Tanisaki, Deening ideals of the closure of conjugacy classes and representations of the Weyl groups, Tohoku Math. J, vol.34, p.5755585, 1982.

A. Young, On quantitative substitutional analysis (sixth paper) The collected papers of A. Young, p.4344435, 1977.