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Interaction entre conductances synaptiques et
I'initiation du potentiel d’action dans les neurones
corticaux: modeles computationnels et analyse
d’enregistrements intracellulaires

Réesune de la these

Pendants les états naturels d’activitévivo, les neurones neocorticaux sont su-
jets a une conductance membranaire forte et fluctuanteerCeyt, les propriétés
intégratives des neurones ne sont pas connues pendatatedée “haute conduc-
tance” (HC). Nous avons (1) caractérisé le lien entre laatlyique des conduc-
tances et l'initiation du potentiel d’action (PA) dans lesurones corticaux dans
les états HC; (2) comparé differents modeles de répaesPA (PSTH) pendant
ces états. Nous distinguons deux modes de décharge,etdr PA est évoqué
par une augmentation d’excitation ou par une diminutiontdhition. Nous avons
proposé une nouvelle méthode pour calculer les “spikgrered average” (STA)
des conductances a partir dy,\testé cette méthode numériquemenneititro,
ainsi que appliqué cette méthode aux enregistrementiso. Nous démontrons
que les PAs inhibiteurs sont majoritaires chez le chatléyee qui révele un role
majeur de I'inhibition.

Mots clés correlation inverse, clamp dynamique, états de hauteluwcance,
modeles computationnels, in vitro, in vivo.

Summary of the thesis

During natural network state@s vivo, neocortical neurons are subject to a high and
fluctuating membrane conductance. However, the integrgtioperties of neu-
rons during such “high-conductance” (HC) states are stiinown. We have (1)
characterized the link between conductance dynamics ar@hgmtential (AP)
initiation in HC states; (2) compared different models of Ad3ponse (PSTH)
during such states. We distinguish two discharge modesgyrdiog to whether
the AP is evoked by an increase of excitation or by a decrebisdibition. We
have proposed a new method to calculate the “spike-trig@verage” (STA) of
conductances solely from thgnytested this method numerically amdvitro, as
well as applied this method ia vivo recordings. We demonstrate that inhibitory
APs are predominant in the awake cat, which reveals a mdm@fopinhibition.

Keywords: spike-triggered average, dynamic clamp, high-condwetatate, com-
putational models, in vitro, in vivo.






Contents

1 Introduction 1
1.1 Preface . ... .. . . . ... e 1
1.2 Computational neuroscience . . .. .. ... ... ... ..... 3
1.2.1 Models with a single state variable . . . . . ... .. ... 3
1.2.2 Models with multiple state variables . . . . .. .. .. .. 4
1.3 The point-conductancemodel . . . . . ... ... ... ...... 6
1.4 The dynamic-clamptechnique . ... ... ... ......... 8
1.41 OVerview . . . . . . o e e 8
142 TheAEC-method . . ... ... ... ... ........ 9
1.5 Spike-triggeredaverages . . . . .. . . .. . ... o 11
1.6 Outlineofthethesis. . . . ... ... .. ... .. ........ 12
2 Inhibitory conductance dynamics in cortical neurons during activated
states 17
21 Abstract . . . . . . ... e 19
2.2 Introduction . . . . . . ... 19
2.3 Spike-triggered averages during activated states . . . .. .. 21
2.4 DISCUSSION . . . . . . . e 21
25 References. . . . . . . . . . .. e 22

3 Calculating event-triggered average synaptic conductases from the

membrane potential 23

3.1 Abstract . . . . . . .. 25

3.2 Introduction . . . . . . . ... 25

3.3 MaterialandMethods . . . . ... ... ... ... ........ 26
3.31 Models . ... . . . . .. 26
3.3.2 Invitroexperiments . ... .. .. ... ......... 27

34 Results. . . .. . . . . e 28
3.4.1 Method to extract conductance STA . . . ... ... ... 29
3.4.2 Test of the accuracy of the method using numericalsimu

lations . . . . . . .. 30

3.4.3 Testofthe methodinrealneurons . . ... ... ... .. 35



CONTENTS

3.5 DIiSCUSSION . . . . . . . 39
3.6 Acknowledgments . . .. ... .. ... ... ... ... 42
3.7 References. . . . . . . . . . . ... e 42
4 Inhibition determines membrane potential dynamics and catrols ac-
tion potential generation in awake and sleeping cat cortex 3
41 Abstract . . . . . .. a7
4.2 Introduction . . . . . . ... 47
4.3 MaterialsandMethods . . . . .. ... ... oL 48
4.3.1 Intracellular recordings in awake and naturally sieg
animals . . . .. ... 48
4.3.2 Analysis and computationalmodels . . . . ... ... .. 49
44 Results. . . . . .. e 52
4.4.1 Intracellular recordings in awake and naturally sieg
animals . . . . ... 52

4.4.2 Synaptic conductances in wakefulness and natuep sle 56
4.4.3 Conductance time course during up and down state tran-

SitioNs . . . . . .. 61
4.4.4 Dynamics of spike initiation during activated states. . 63
45 DIisCusSION . . . . . .. e 67
4.5.1 Supplementary Information . . ... .. ......... 71
46 References. . . . . . . . . . . e 78
5 Characterizing synaptic conductance fluctuations in coiital neurons
and their influence on spike generation 81
5.1 Abstract . . . . . . ... . 83
5.2 Introduction . . . . . .. ... 83
53 Methods . . . . .. .. . .. . ... 85
5.3.1 Computationalmethods . . ... .. ... ........ 85
5.3.2 Biological preparation . . ... ... ... ........ 86
5.3.3 Electrophysiology . . ... ... ... ... .. ..., . 86
534 Dataanalysis . ... ... ... ... ... ... .. ... 87
54 Results. . . .. .. . . .. 88
5.4.1 The VmD method for extracting synaptic conductanee pa
rameters . . . . . . . ... e 89

5.4.2 Estimating time constants from,\power spectral density 95
5.4.3 Estimating spike-triggering conductance configarst. . 98
5.4.4 Estimating spike-triggered averages of synapticaon

tancesfromtheM . . . . . . . . ... . ... ... ... 104
5.5 DiscusSion . . . . . . . 110
56 References. . . . . . . . . . 116



CONTENTS

6 Which model best captures the spiking response of corticaleurons to

excitatory inputs? 121
6.1 Abstract . . . . . . .. .. 123
6.2 Introduction . . . . . . . ... 123
6.3 MaterialsandMethods . . . .. ... ... ... ... .. ..., 125
6.3.1 Invitroexperiments . .. .. ... ............ 125
6.3.2 Models . ... .. ... . . ... 126
6.3.3 Integrate-and-fremodels . . . . .. .. .. ... ... .. 127
6.3.4 The 2—-state—variablemodels . . . . . ... ... ... .. 128
6.3.5 The Hodgkin-Huxleymodel . . . .. ... ... ..... 129
6.3.6 Theprotocol ... ........ ... ... .. ....... 130
6.3.7 Theoptimisation . . .. ... ... ............ 131
6.4 Results. .. ... ... . . .. 132
6.5 DISCUSSION . . . . . . . . . 138
6.6 References. . . . . . . . . . . . . ... 140
7 General Conclusions 143
7.1 Summary ... e e e 143
7.2 Outlook . . . . . . . . . e 146
A Estimating conductance parameters from the membrane potetial time
course 149
Al SYNOPSIS. . . o o o e 150
A2 TheMethod . . .. . . . . . . . ... . . . 150
A.3 Applicationtomodeldata. . . . ... ... ... ......... 151
A.4 Applicationtoinvitrodata . . . ... ... ... ......... 154
A5 DISCUSSION. . . . . . . e 156
Bibliography 159



CONTENTS

Vi



Chapter 1

Introduction

1.1 Preface

The brain of vertebrates is a highly complex organ. It caes$ up to 100 bil-
lion processing units, the neurons, each being connectad to 60,000 others.
The connections are realized by synapses, directed cgsyhiat transmit signals
emitted by a presynaptic neuron to a postsynaptic one. Tmalkitself consists
in a brief voltage pulse termed “action potential” or simfépike”. There is a
plurality of neuron types. While all neurons consist of adi@ic tree (responsi-
ble for signal reception), an axon (forwarding signals teeotneurons) and a cell
body (the soma, connecting input and output signals), tifeargreatly in shape,
their pattern of sending action potentials and the type ohpge they establish
with postsynaptic neurons. Functional neurons displayltage difference across
their membrane, the so-called membrane potential. It i;tamied by perma-
nently active ion pumps that maintain concentration gratdief certain ion types
between the interior and exterior of the neuron. The comagah of sodium
ions (Na") e.g. is reduced inside the cell, while that of potassiuns i) is
increased. As a result, in the absence of input signals, #rabrane potential
saturates at a “leak-" or “resting-" potential. Besidesithrepumps, ion channels
are located in the membrane. They control the flux of a specifidype from
one side of the membrane to the other, depending on paraniigethe actual
membrane voltage or the presence of transmitter moled)ekie to flux of ions
or stimulation with an electrode, the membrane potentipbtiizes (rises) suffi-
ciently, an action potential will be emitted. It is subsegtlyeconducted along the
axon and eventually reaches a synapse.

The principle of a chemical synapse is depicted in Fig. 11e @xon termi-
nal, containing vesicles filled with some neurotransmittelocated very close to
the dendrite of the postsynaptic neuron. The space betweempd postsynaptic
neuron is called the synaptic cleft. The arrival of an acpotential triggers the
fusion of vesicles with the terminal membrane, thus reteagheir contents into
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1.1. PREFACE
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Figure 1.1:Scheme of a chemical synapse. Upon arrival of an action patea vesi-
cle fuses with the membrane and releases transmitter iet@ythaptic cleft. In some
synapses, enzymes keep the effect of transmitter local.tr@hemitter docks to the re-
ceptors on the postsynaptic side.

the synaptic cleft. The transmitter diffuses to the oppositie, where receptors
are located in the membrane. Once transmitter reachesdabgtoes, ion channels
in the membrane will open either directly or involving a sedonessenger, allow-
ing ions to cross the membrane thus evoking an electricabsigost-synaptic

potential, PSP) in the postsynaptic neuron.

Synapses either have a depolarizing or a hyperpolarisiegédsing) effect
on the membrane potential of the postsynaptic neuron. Aldogto their impact,
they are termed excitatory and inhibitory, respectivelpe@nd the same neuron
establishes only one type of synapse with its postsynaptiners. For most ex-
citatory synapses, glutamate takes the role of the tratesmlitbinds to two differ-
ent types of receptors, AMPAtamino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid) and NMDA (N-methyl-D-aspartate) receptors. In piphe, both receptor
types are activated by the same synaptic events. Howeeenutmber of AMPA
receptors is much higher than that of NMDA receptors. Funtoee, the activa-
tion of NMDA receptors depends on the membrane potentialigiompletely
inactivated at low £ -70 mV) voltage levels. It is thus a good approximation
to assume only AMPA receptors to be active at voltage levelslly reported
in neurons during active states. The most common inhibggnapse type uses
GABA (y-aminobutyric acid) as its neurotransmitter. The bindimghte respec-
tive receptors opens channels that allow the influx of cerons (Ct), whose
reversal potential is about -80 mV.
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Figure 1.2:The integrate-and-fire model. Synaptic input causes a juntipei membrane
potential, in between synaptic events the voltage decaysrentially. Upon hitting the
threshold V;, the model is said to emit a spike (i.e. at timgst}), and the membrane
potential is set to the reset voltage.V

1.2 Computational neuroscience

Since the beginning of the last century, neuroscientiste haade attempts to find
a formal description of the units involved in brain functiog. Predominantly,
they looked for mathematical representations of spikingroles and synapses,
that capture the way neurons collect (“integrate”) inpatdrpresynaptic cells and
pass on signals depending on the input history. A very comapleview of the
field is e.g. given in Dayan & Abbott (2001) or Gerstner & Kest(2002).

1.2.1 Models with a single state variable

There exists a class of models whose state is completelyideddy the mem-
brane potential. The simplest and most-used of such magittis linear integrate-
and-fire (IF) model (Lapicque 1907). It assumes that the rman@bacts as a leaky
capacitance, whose potential saturates to a resting vhkeideak reversal poten-
tial, in absence of inputs. Synaptic inputs induce jump$evoltage, which re-
laxes exponentially to its resting value. If the potentiffedlence exceeds a certain
threshold, the model is said to fire a spike, whereupon thegration starts again
from a reset voltage. Sometimes, a “refractory period’radfekes is included in
the model, during which synaptic input is disregarded. Bd\extensions to this
model have been suggested, e.g. the time constant (i.eedkebdbnductance) can

3



1.2. COMPUTATIONAL NEUROSCIENCE

be time or input dependent. Other suggestions include atibte, that depends
on the input history and/or the time of the last spike. Here,bsiefly describe
variants, so—called non-linear IF models, where the lealentiis no longer pro-
portional to the difference between voltage and the lea&rsal, but depends on
it in a non—linear way.

Two of such models are the quadratic and the exponential Iéfeiso In the
quadratic IF model (Ermentrout 1996, Latham et al. 200@,dlrrent—voltage
relation (also called |-V curve) is described by a parabélare, spiking is de-
fined in a different way. Due to the parabolic shape, if theroeus depolarized
sufficiently, it receives a positive feedback and can digagginfinity in a finite
time. This event is called a spike. Subsequently, the veltageset to negative
infinity, from where it will depolarize to the leak potential finite time. Using
an appropriate transformation, the voltage can be mappedpitase. Spiking
then corresponds to crossing the point where the phasesegqudhstead of a
guadratic nonlinearity, a popular model, termed exporéif model (Fourcaud
et al. 2003), uses an exponential supplement to the |-V curkies provides an
important step towards a physiological model, since th@pgptial term imitates
the behavior of biological neurons close to threshold, eatés the properties at
rest unaltered. As for the quadratic IF model, spiking israfias the divergence
of the membrane potential to infinity, the reset, howeves, thebe finite. In this
thesis, we suggest a hybrid model. It behaves as the leakytfehfor voltages
below a voltage ¥, and rises quadratically above (cf. Cahpter 6). It has prope
ties similar to the exponential IF model, but might prove éodetter manageable
in a mathematical analysis.

1.2.2 Models with multiple state variables

All the models described in the previous subsection haveinmon that they are
very limited in the type of firing pattern they can display.ceetly, models have
been suggested that are much richer in this respect, whilganang a relatively
low demand in computational effort for their simulation. dwxamples of such
models are the Izhikevich model (Izhikevich 2003) and theptige exponential
IF model (Brette & Gerstner 2005). Besides the membranageltthese models
comprise a second state variable which is not subject taaeatipical reset after
spikes, thus providing a memory of the cell’s state beyonkiesppme. They are
able to reproduce most, if not all types of firing patternsisadiological neurons.
An even more faithful model of biological neurons is the HkidgHuxley
(HH) model (Hodgkin & Huxley 1952). The two authors conducexperiments
on the giant axon of the squid and identified three differentdhannels. In ad-
dition to a leak current (which is mainly driven by chloridmg), their model de-
scribes the activation and inactivation of voltage-degendodium and potassium
channels, that are responsible for spike initiation. Tispeetive state variables

4



1.2. COMPUTATIONAL NEUROSCIENCE

controlling the activation of the sodium and potassium cledsare usually named
mandn, in addition the sodium channel inactivates according tae variablée.
m, handn decay in time towards a voltage-dependent equilibriuneststch with
a specific time constant. The maximal channel conductaneemaltiplied by
powers of the state variables. At relatively low voltagesthrer the sodium nor
the potassium channel are considerably activated, thyssonall currents flow
through these channels. Only above a certain voltagggtivates quickly and the
influx of sodium further depolarizes the membrane. Throudwh positive feed-
back the membrane potential rises very sharply and formernbket of the spike.
With a certain delay given by the respective time constaméssodium channel in-
activates, i.e. no more positive ions enter the cell and titage stops to rise. On
a similar time scale the potassium channels open ahibKs flow in the opposite
direction. This way, the membrane potential is brought backyperpolarized
values, for which the ion channels take on their defaulestaduring several mil-
liseconds after a spike, the high potassium conductansaad “shunt”, meaning
that presynaptic input has less effect on the membrane foaitefurthermore, the
sodium channels are still inactivated. As a consequencetipnsiveness of the
neuron is markedly reduced, it is in a refractory state. Wthe IF mechanism
is usually inserted into a single compartment model (i.eltage changes take
immediate effect in the whole cell), the spike initiatiorcaxding to Hodgkin and
Huxley is also used in detailed models of biological neuttbas take into account
the complex morphology of the axon and the dendrites, andfthet of synapses
situated on the latter.

For synapses as well, there exist different models. Théjntaltwo main cat-
egories: current-based and conductance-based modelscafmpée of a current-
based synapse is the instantaneous increase of the menvoltage by a fixed
amount upon arrival of a presynaptic input, as it was deedriin the context
of the IF model. In this case the current wave form is a deltaguAnother
widely used waveform is a current that jumps to a finite valog subsequently
decays exponentially. A similar shape can be obtained byetimagithe current
as an alpha-function or as the difference of two exponemtidhe same wave-
forms can be used to model a transient increase in membrawkeci@ance rather
than a current. In addition, there exist synapse modelgahkatinto account the
physiological functioning of synapses in a detailed maressuming forward and
backward rates for the transition between open and closgéelssdf the respective
ion channels in the presence or absence of transmitter mekewo—state ki-
netic model, see e.g. Destexhe et al. 1994). Such modelssarniloe a saturation
of the synapse, i.e. the amount of conductance per presgrsgite added to the
membrane becomes smaller when the synapse is activateghatites.

All current based models have in common that the impact ohastyc input
on the membrane potential does not depend on its preseat $tais is different
for conductance-based synapses. There, the current that dlcross the mem-
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1.3. THE POINT-CONDUCTANCE MODEL

brane is proportional to the conductance, but also to tHerdiice between the
membrane potential at the time and the reversal potentidleoion type used by
the synapse. The impact of an input to an excitatory synapisle & reversal po-
tential ey Of ~ 0 mV) e.g. is less during elevated voltage levels compared to
hyperpolarized states, while the opposite is true for aibitdry synapse (ky ~
-80 mV). For the latter, an inhibitory input can even have atitatory effect on
the membrane, if the voltage is below the respective reVpatantial. Kuhn et
al. (2004) describe another effect that comes with condeetdbased synapses.
They stimulate a model neuron with increasing excitatory iahibitory conduc-
tance inputs in a manner that the mean membrane potenyal&astant. Up to
a certain input rate they observe an increase in output fieitegy because the volt-
age fluctuations increase. However, with even increasingugtion the output
rate reaches a maximum and eventually drops. Due to the dangeint of mem-
brane conductance the effect of synaptic input is shunfettively reducing the
voltage fluctuations and thus decreasing the firing rateretibased synapses
cannot capture this effect.

1.3 The point-conductance model

Cortical neurons form connections with many thousand pragsiic neurons. Thus,
during activated network states where neurons dischargstes of several Hz,
postsynaptic neurons receive tens of thousands of synaptits per second. The
effect is a dramatic decrease in input resistance (5—@Q) &hd a membrane volt-
age that is depolarized compared to the resting state (dr€ahmV). Further-
more, the voltage is characterized by large fluctuatians=£ 2—6 mV) causing
the neuron to spike irregularly at rates of about 5-40 Hzefstexhe et al. 2003).
The integrative properties of neurons in these so—callegh“bonductance states”
(Destexhe & Paré 1999; Shelley et al. 2002) are likely to ifferént compared
to neurons recorded from in vitro preparations. In a study using tetrotodoxin
(TTX, a Na"-channel blocker) in order to suppress the effect of netvaatkyity
(Paré et al. 1998), it was possible to investigate the infteeof synaptic conduc-
tances on the membrane potential. After the applicationTof,the membrane
hyperpolarized, large fluctuations disappeared and thet mgsistance increased
by roughly a factor of five. From the same measurements it wasiple to esti-
mate the relative fraction of excitatory and inhibitory aptic conductances. Dur-
ing high-conductance states, the excitatory contributtes~ 0.7 times the leak
conductance, whereas the inhibitory conductance-was/ times higher than the
leak conductance. These states are thus dominated by th&omnhcontribution.
However, despite the electrophysiological necessity ¢tuate synaptic back-
ground conductance in model simulations, the computdtibneden is huge.
Given the computational power to date, it is impossible towate a detailed

6



1.3. THE POINT-CONDUCTANCE MODEL

neuron model in real-time. To simplify the model, the ide&oiseplace the spa-
tial structure of the dendrites as well as the synapsesddaa them by their
effect on the membrane conductance at the soma, i.e. cldbe ste of action
potential initiation in the axon. Destexhe et al. (2001)gmeed such a model,
where the distributed synaptic activity is representediay ¢hannels of fluctuat-
ing conductances situated in a single compartment. Theneffimtake the role of
excitatory (AMPA) and inhibitory (GABA) synapses, respectively, and are mod-
elled as Ornstein-Uhlenbeck stochastic processes. Toeps was defined for
the description of a particle undergoing Brownian motiohl@hbeck & Ornstein
1930). The time evolution of the velocity of that particlegigsen by a stochastic
first-order differential equation. A change in velocity isedto two components:
a deterministic deceleration due to friction and a stocbasiceleration through
collisions with other particles. Similarly, in the pointieductance model, the
change in synaptic conductance is decomposed into a deistimideactivation
of postsynaptic channels and the stochastic arrival ofypigstic spikes.

A comparison of a detailed biophysical model to a single cartmpent equipped
with the point-conductance model (Destexhe et al. 2001yvslibat the simple
model captures very well a variety of characteristics: Llingkat the conduc-
tances at the level of the soma, the power spectra of exaitaind inhibition in
the detailed model show a dependency proportional to thersevof the squared
frequency, which is exactly what has been derived for thes@in-Uhlenbeck
process (e.g. Gillespie 1996). Also, the shape of the cdaaduae distributions in
the detailed model was very close to Gaussian, which is tal/tn solution for
the point-conductance model. A fit of the simple to the dethihodel thus pro-
vided very good results. In a subsequent simulation, thexmelsage level as well
as the amount of voltage fluctuations were very similar irhbobdels. Although
there was a discrepancy in the average firing rate, its vamnias a function of the
conductance parameters was well captured by the pointucbaicice model. The
model was also applied to cortical pyramidal céflvitro using dynamic clamp.
Adjusting its free parameters according to earlier obdemma (Paré et al. 1998;
Destexhe & Paré 1999) it was possible to recreate intideeltonditions simi-
lar toin vivorecordings. Even the irregularity of discharges was higla(dified
using the coefficient of variation,\C defined as the ratio between the standard
deviation and the mean of the interspike intervals (ISIsy) eomparable to what
is observed in awake animals. Another study (Badoual etGdl5pshowed that a
fluctuating current can only account for this observationewthe time constant
of the synaptic input is chosen to be similar to that of the foeme. However,
in this situation the neurons tend to fire more than one spiketime (burst-like
behavior), and the distribution of the I1SIs departs front tizservedn vivo.

7



1.4. THE DYNAMIC-CLAMP TECHNIQUE

1.4 The dynamic-clamp technique

Many of the results presented in this thesis have also betedt@n recordings,
that were obtained fronm vitro preparations using dynamic clamp. Therefore
we briefly review the technique and highlight its advantagied mention some
achievements obtained by its use (cf. Prinz et al. 2004).

1.4.1 Overview

The dynamic-clamp technique has been introduced almcafiifyears ago (Robin-
son & Kawai 1993; Sharp et al. 1993a). The key idea is to cradiicial con-
ductance in the membrane of a neuron by injecting a currentdipends on its
membrane potential. The current is computed as the produbeaonductance
that is to be injected, and the difference of the actual mambpotential and the
reversal potential of the ions that are to be conducted.uls tequires recording
of the voltage at the same time. The conductance can depaid@and/or volt-
age, it can be determined as a purely mathematical processafmodel neuron,
or it can be derived from the behavior of another neuron inptleparation. The
only requirement is that the resulting current can be coegpatifficiently fast in
order to insure it can be injected in real-time. To date,dhsra multitude of
implementations of such systems that run under differestaipg systems, use
embedded processors or DSP boards, or analog circuitdisptgidesigned for
the conversion of conductances into currents.

Prinz et al. (2004) give examples for different applicasiaf dynamic clamp.
One of them is the injection of voltage-independent coralués. It can be used
to inject constant conductances to explore e.g. the coesegs of a different
leak conductance, or to inject a conductance waveform @mglaynaptic input.
In Sharp et al. (1993b), the effect of a GABA bath applicahas been simulated.
The voltage time course is reliably reproduced, and shareatipulses of fixed
amplitude, that are injected in addition, demonstrate tinatinput resistance of
the membrane changes. Rather than adding conductancesonie restrictions
it is also possible to subtract them using dynamic clamps Tdat has been used
e.g. to annihilate the effect of a leakage conductancedantred by entering a
sharp electrode into the cell (Cymbalyuk et al. 2002).

Furthermore, conductances that depend on the membrangipbtan be sim-
ulated as well. This opens the possibility to add intrinsenmbrane conductances
to the neuron or alter already existing ones, in order to @itble impact on the
neurons behavior. This kind of manipulation can be a, predlynrmore precise,
alternative to the use of pharmacological substances. I&N@ester (1996),
e.g., the effect of A—type and delayed-rectifiet Kn spike broadening iAplysia
R20 neurons has been successfully removed and restoregphafienacological
blocking, respectively.
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The technique can also be used to create or alter networksuobns, where
a “neuron” can just as well be a software model or an analagitirlf the presy-
naptic unit is a real neuron, it is necessary to record its brane potential in
order to control current injection. Then, it is possibletiady the impact of either
changing the strength of an existing synapse or of introdpai new connection
between the neurons. In a different kind of study (Le Masgal.e2002), a real
thalamocortical neuron was connected via dynamic clamp gof@avare model
neuron (representing a reticular interneuron) on the omel laad to an analog
circuit neuron (retinal ganglion cell) on the other hand.eTircuit reproduced
the type of spindle activity which is seen in the thalamusrdystates of sleep.

Finally, the dynamic-clamp technique can be used to comihie@dvantages
of in vitro andin vivo experiments. Preparatioims vitro are far easier to main-
tain and better accessible. It is e.g. possible to record widually guided patch
electrodes. Also, the application of pharmacological tarxses can be precisely
controlled. However, as mentioned before, during actiagestn vivo, the huge
amount of synaptic input drastically decreases the inpsist@ance anddepolar-
izess the membrane potential. Since the networkitro is rather silent, this
synaptic background is missing thus putting the neuron iiffardnt state. Us-
ing dynamic clampijn vivo conditions can be recreated by injecting computer-
generated conductances (Destexhe et a. 2001). This is fhieaon that was
used throughout this thesis. In particular, we used theidy®RF-NEURON en-
vironment developedd by G. Le Masson, Université de Barggawhich is a
modified version of NEURON (Hines & Carnevale 1997), augredry the ca-
pacity to conduct simulations in real-time. The injectedrent corresponded to
the point-conductance model described in the previoustehaphere the conduc-
tance time courses for excitation and inhibition are defeamesgtochastic processes
described by their means and standard deviations.

1.4.2 The AEC-method

Like every technique, the dynamic clamp also has its linatet. First of all, since
the injection with an electrode is local, only the effect @fdlized conductances
can be simulated. This is not a problem in our case, sincedhm-ponductance
model is designed in exactly this fashion — to create an #@ffeconductance
time course at the site of action potential generation, ihatfiltered version of
synaptic conductances arriving at the dendrites. Neviedbewith dendritic patch
recordings it is possible to inject conductances into diégglropening the possi-
bility to explore dendritic filtering in detail. However, W it is possible to inject
the appropriate amount of current that flows across the mamebaccording to
some conductance model, the intracellular concentratidhecion type in ques-
tion does not change. Again, this is not a constraining faitoour purposes,
since the concentration of ions involved in synaptic traissiman is assumed to
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1.4. THE DYNAMIC-CLAMP TECHNIQUE

vary little. Finally, the dynamic clamp has to cope with teidal difficulties that
come with the recording process, namely artefacts intreduny the resistance
and capacitance of the recording electrode. This is paatiguimportant due to
the feedback introduced by injecting a voltage-dependemntnt. Different ap-
proaches have been pursued to tackle this problem. One eadlowsesistance
electrodes, or employ different electrodes for currergdgtipn and voltage record-
ing. The latter option requires impaling the same cell witl electrodes at the
same time. Another possibility is to separate the inje¢temording process in
time (discontinuous current-clamp, DCC): the voltage orded only after the
membrane potential has reached its equilibrium value afteent injection. But
with this approach, the achievable sampling frequencyis(lo the order of 2—3
kHZz).

A different approach, termed “Active Electrode Comperma(AEC)”, has
been suggested recently (Brette et al. 2005, 2007). Whendiag with a single
high-resistance electrode in continuous mode, it is péstitpartially account for
electrode artefacts. To this end, the electrode is assumeehtave as a resistor—
capacitor (RC) circuit. Two adjustments are possible.tFihe capacitance can
be neutralized by injecting an appropriate, time—dependement. Second, in
modern amplifiers it is possible to subtract the part of tHeage from the record-
ing that is due to the electrode resistance (“bridge modetpading to Ohm'’s
law. However, in reality the electrode does not behave adeal RC—circuit, so
that the compensation is only approximate. This prevemsagplication during
dynamic-clamp, since, as mentioned above, due to the fekdha system can
become oscillatory unstable. Brette et al. (2005, 2007yssiga different elec-
trode model: instead of presuming a fixed number and wiringl@hents in the
equivalent circuit, the only assumption is that it be lin€lne voltage across the
electrode can then be computed as the convolution of thetagecurrent with
a kernel representing the electrode. The kernel repreggtite RC—circuit e.g.
would just be an exponential function. Once the contributbthe electrode is
known, the membrane voltage can be reliably determinedadbpthe application
during dynamic clamp. It remains to fix the electrode kernel.

This can be done injecting a known current into the cell. Sithe recording
is done in discrete time, extracting the kernel amounts kadrsggpa matrix equa-
tion, which corresponds to a least-squares fit of the kem#ié response. The
recorded response represents, however, the combined kéthe electrode and
the cell. The two contributions subsequently have to bers¢pd Fortunately
this is possible, because the response of the electrodeds faster than that of
the membrane, its kernel thus very short. For currents tieagraall enough (such
that the membrane responds linearly), a decaying exp@ieati therefore be fit-
ted to the tail of the combined kernel in order to approxintagecontribution of
the membrane, allowing to subsequently determine theretkekernel. In prin-
ciple, any current wave form can be used, but the partictilaice made in Brette
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1.5. SPIKE-TRIGGERED AVERAGES

et al. (2007) (uniformely distributed white noise) is opitzed to separate the two
kernels.

The method has been tested in a number of protocols. Fiestsuhthresh-
old voltage time course during white current noise injattias compared to the
theoretical prediction for a passive cell. The voltagerthstions and power spec-
tra obtained in both cases closely resembled each otheon8ethe application
to dynamic clamp was tested. There the response to squadeaance pulses,
which can be calculated analytically, was compared betwded, DCC and the
theoretical prediction. While the recording using AEC i#itly reproduced the
expectations, the DCC showed significant discrepanciesn®injection of col-
ored conductances according to the point-conductance Imibadevoltage dis-
tributions obtained both with AEC and DCC were compared tédkpressions
derived in Rudolph & Destexhe (2003a) and Rudolph et al. 42080th meth-
ods showed good agreement. The frequency aspects, howererreproduced
satisfactorily only by the AEC method. The DCC failed to eaptthe scaling
properties at high frequencies in the power spectral derfiSnally it was shown,
that dynamic clamp recordings using AEC could resolve tlapsiof spikes to an
extent as to recover the correlation between spiking tloldséind the preceding
rate of depolarization (e.g. Azouz & Gray 2000; de Polavetjal. 2005; Wilent
& Contreras 2005b).

1.5 Spike-triggered averages

Determining the optimal features of stimuli which are nektteobtain a given
response is of considerable interest, for example in sgmdysiology. Reverse-
correlation is one of the most-used methods to obtain sucha&gs and, in partic-
ular, the spike-triggered average (STA) is often used terdahe optimal features
linked to the genesis of action potentials (de Boer & Kuyd€88). An extensive
study is given in Bryant & Segundo (1976). The authors card@ghussian white-
noise stimuli inAplysianeurons and, among other questions, extract the stimulus
features correlated with spikes.

Recent contributions (Badel et al. 2006; Paninski 200686BD gave ana-
lytical expressions for the most likely voltage path, whiahthe low-noise limit
approximates the STA of the leaky integrate-and-fire (IF)roe. Here again,
Gaussian white noise current was considered as input. lelBddl. (2006), a
second state variable was added in order to obtain biopdlisimore realistic
behavior. In Paninski (2006a, 2006b), in addition the exattage STA for the
non-leaky IF neuron was computed, as well as the STA inputatin discrete
time. Here, a strong dependence of the STA shape on the tsptuti®ndt was
found without a stable limit adt — O.

In contrast to previous works, we use STAs in a differentexintin Chapter 3,
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1.6. OUTLINE OF THE THESIS

we assume that we do not have knowledge about the time cotitbe anput
injected into a cell. Also, rather than predicting the vgi& TA for a given model
subject to a certain stochastic stimulus, we want to go tipsie way: Given
the voltage STA, what can one say about the underlying, spik&ing stimulus?

In order to address this question, we consider IF—-neurodbjgsiuto conduc-
tance based excitatory and inhibitory synaptic noise. tygitracellular record-
ings, it is straightforward to calculate the STA of the meant& potential, which
yields the mean voltage trajectory preceding spikes. Irtrast) it is much harder
to determine the underlying synaptic conductance. One cditteynpts consisted
in using voltage recordings obtained during injection dfedent DC levels. The
idea was to calculate the voltage STA for two DC amplitudes subsequently
solve the passive membrane equation including the poimthactance model for
excitatory and inhibitory conductances. Basically, tkithie inverse procedure of
running a numerical simulation. This approach failed fdeast two reasons, we
will expose the first for the case of the estimation of theltoteductance using
Ohm’s law. It determines the conductance as the quotientohatant current and
the change in voltage due to it. This works well as long aswevoltage STAs
are clearly separated. But since in the IF model spiking fsxdé by crossing a
fixed voltage, at the time of the spike both STAs take on theeseaiue, namely
the threshold voltage. Since the difference in DC level®isstant, the estimated
conductance diverges to infinity, which is clearly unphimiical. Inverting the
membrane equation rather than using Ohm'’s law generateguavatent denom-
inator. The second reason for failure is slightly more subiBuring injection of
a constant current, the distance of the membrane poteatiatéshold changes.
For a reduced distance compared to a reference state, ¢candagatterns con-
sisting of slightly less excitation and slightly more iniibn will be able to trigger
spikes thus impacting on the average pattern. As a conseguin@ conductance
STAs are not the same for different DC input. This disturlesektimation with
the inverted membrane equation considerably, since imakgee of the DC level
is assumed. Thus, determining the conductance STAs frombmagra potential
activity is bound to major difficulties. One of the main cabtitions of this thesis
is to provide a way to resolve these complicacies.

1.6 Outline of the thesis

The topic of my thesis is the investigation of neuronal b&braguring different
states of synaptic input. An emphasis is put on the questi@pike initiation,
in particular what pattern of synaptic conductances triggpikes, and how this
pattern depends on the synaptic background. To this end mbioe model sim-
ulations, theoretical investigations as welliayitro andin vivo experiments. We
also explore to what extent different types of computationadels are able to
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1.6. OUTLINE OF THE THESIS

capture the response properties of cortical neurons durivigro recordings.

Chapter 2 gives a brief introduction into the kind of work seeted in the
thesis. The simulations | did are supposed to shed lightedifference in spike-
evoking conductance patterns depending on the synaptkgb@mmd. The proto-
col consisted in injecting conductances created by thetymainductance model
into a single compartment Hodgkin-Huxley model, where wat@st two ex-
treme cases of synaptic input. The one corresponds to thedoigductance (HC)
state of cortical neuronm vivo during activated states. It is characterized by
an inhibitory conductance that exceeds excitation sefeddaland the sum of
synaptic conductances is higher than the leak conductafice.other case is a
“low-conductance” (LC) state. Excitation and inhibitias well as the leak con-
ductance, are of approximately equal magnitude. The réspgarameters are
chosen such that the voltage distribution as well as the atmfuspontaneous
activity were about the same. However, a difference betwleetwo states in the
STA of the synaptic conductances is apparent. Spiking igralbed by an increase
of excitation during LC states on the one hand, but by a deeretinhibition dur-
ing HC states. The same protocol was repeated by a group ilalbwturingin
vitro experiments in ferret cortical neurons using dynamic clamyp analysis of
the data revealed the same pre-spike patterns as seen iodet study. This ob-
servation provides direct evidence for an influence of thewarmhand composition
of synaptic background on the integrative properties ofoest

The next logical step was to try to extract conductance STém fcortical
neuronsin vivo, preferably during activated states. While in models, al age
in dynamic clamp, one has direct access to the amount of ctemlce in the cell
at all times, the observable quantity during intracellelgperimentsn vivois the
membrane potential. Thus, a method is needed that can de&stine amount of
synaptic conductances, separated into excitation anditidn, from the mem-
brane potential. The derivation and subsequent testingabf &8 method in model
neurons and during dynamic clamp recordings is exposed apt€h 3. It re-
vealed very good agreement between the conductances dbodrgimulation or
experiment, respectively, and their estimation from themene potential. How-
ever, as mentioned before in the context of the point-cotashee model and the
dynamic clamp technique, conductances have to be unddrateffective con-
ductances at the level of the soma. By means of this methsdibti possible to
assess the amount of synaptic input distributed acrosseheritic tree. Never-
theless, we show in a simple model of dendritic filtering thatmethod faithfully
reproduces the conductance STAs as measured using a ichutdiage clamp at
the soma. Supposedly, this is owed to the fact that the cdadoe distributions
at the soma still have a near Gaussian shape, for which theoochét developed.
Destexhe et al. (2001) show that this observation also holdsdetailed model
neuron with synapses distributed across actice dendwlesave thus confidence
that the method can be readily applied to recordings frormicameuronsn vivo.

13



1.6. OUTLINE OF THE THESIS

This has been done recently and is part of Chapter 4.

The data used therein was obtained by one of the authors Tigurfeev)
using a novel recording technique, which enables the exywerier to conduct
recordings in awake or naturally sleeping animals. Afteefbyr showing the be-
havior of representative regular spiking and fast spikieldscthe chapter contin-
ues with an analyses of the conductance state of all recareléesi The VmD-
method, that was employed for this analysis, is describ&liolph & Destexhe
(2003a, 2005) and Rudolph et al. (2004). It provides a toat #xtracts the
means and standard deviations of the distributions of dimepnductances from
the voltage distributions obtained at two different DC levén summary, cells in
the awake state as well as during slow-wave sleep (SWS)aiessthow the typ-
ical signs of cells in high-conductance states: a dep@drimembrane potential,
sustained, irregular firing and an inhibitory synaptic aectdnce, that is larger
than excitation by roughly a factor of two. At the same tim#hibitory fluctu-
ations dominate over excitatory ones by about the samerfadigain applying
the VmD-method to short pieces of the voltage trace, the wciaghce time course
during transitions from up— to down-states or vice versddbe determined.
In the cell analyzed, the transition down—up was initiatgdilsise in excitation,
followed by a rise in inhibition about 20 ms later. The oppesiansition was in-
duced by a drop in inhibition, followed by a drop in excitat@onductance. My
contribution to the publication consists in an estimatibthe conductance STAs
using the results of Chapter 3. In model studies, a drop ai tainductance (due
to a pronounced drop in inhibition) a few tens of millisecetwfore spikes was
identified as an indication of inhibition dominated stalesaccordance with this,
the STA analysis of several regular spiking cells revealeshs drop in the ma-
jority (7/10 during awake states, 6/6 during SWS up-statels242 during REM
sleep) of cells. A quantification of the pre-spike patternsvged, that most of
the cells display an excess in inhibitory conductance anetarop in total con-
ductance at the same time. In addition, there was a cleatitptave correlation
between the relative conductance change and the differaramnductance fluc-
tuations.

Chapter 5 provides a summary of analysis tools along withesextensions,
based on the point-conductance model. It consists of thags.dn the first part,
the VmD-method (Rudolph & Destexhe 2003a, 2005; Rudolph.e@04) is
reviewed. Its principle idea of relating voltage and condace distributions as
well as the testing described in Rudolph et al. (2004) andk®&iveka et al. (2005)
is exposed. In addition, its application to intracellulacordings in anesthetized
(Rudolph et al. 2005b) and naturally sleeping and awakeRuad@lph et al. 2007,
cf. Chapter 4) is summarized. The second part presents anagbpto estimate
the correlation time constants of synaptic conductanbes,nhakes use of a the-
oretical expression for the power spectral density of thenbrane potential. Its
matching to dynamic-clamp recordings (injecting fluctngtconductances), up—
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statesn vitro and active states vivo is shown. For the latter two, the matching
is difficult due to a different scaling behavior for high freancies, the dynamic-
clamp data, however, is matched very well. In the third gasitetch an extension
of the STA—method. Since there is evidence, that excitaaadinhibitory con-
ductances are co—activated during responses to sensamylisti reformulate a
part of the model in order to allow for a cross—correlationnadl as a relative
shift between synaptic conductances. Subsequently, thigoshes it is described
in Chapter 3 is further tested on a poole60 dynamic-clamp recordings. | fitted
the recorded and estimated conductance STAs with an expahiemction and
compared the parameters. The accordance was surprisimggdyagross the whole
ensemble. Finally, an earlier STA analysisiivivo recordings is reviewed (cf.
Chapter 4).

In Chapter 6 we take a look at spike initiation from a diffe@rpaint of view.
We wanted to test the capacity of different computationatiet® to reproduce
the response of real neurons to excitatory input in a sitnatiat resembles ac-
tive network states. To this enah vitro dynamic clamp experiments were con-
ducted in our lab, where on top of an either LC or HC conduadrackground an
AMPA-stimulus of varying strength was injected. | computhd post-stimulus
time histogram (PSTH) of several cells and fitted a coupleoafgutational mod-
els of different degrees of complexity to it. The objectivadtion consisted in
the RMS (root mean square) of the difference between theasi@anodel PSTHs
corresponding to different amplitudes of the stimulus ame@ither one or both
background states. Among the various existing optiminadivategies, we chose
the simulated annealing algorithm. In a comparative stifdpier & Bower 1999)
it has been found to be superior to three other strategiemfartermediate num-
ber of parameters. | found that the most complex model (Hwdglkixley) best
reproduced the experimental PSTH, but not by far. The exptaldF model,
for example, came very close. This is surprising given tffferdince in complex-
ity between these models. | also tested the predictive poivarfit to either LC
or HC state to produce a PSTH adapted to the respective dtter sNo clear
dependence on a specific model was apparent, but in generptediction was
considerably worse than the respective fit. This is anotherfor different inte-
grative properties depending on the synaptic background.

After the general conclusions, | complete the thesis witpémulix A. | intro-
duce a novel method that, under certain weak constrairgghlegproperty to esti-
mate the mean synaptic conductances and, even more impaohtin respective
fluctuations, from the voltage time course at a single (zBx@)level. According
to a scan of the plane of mean excitatory and inhibitory cotahces, the method
is particularly well suited for neurons in high-conductastates, but interestingly
estimates the amount of excitatory fluctuations with higecmion, independent
of the mean synaptic conductances.
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Chapter 2

Inhibitory conductance dynamics in
cortical neurons during activated
states

Martin Pospischil, Zuzanna Piwkowska, Michelle Rudolphi€Fry Bal and Alain
Destexhe. Inhibitory conductance dynamics in corticalraes during activated
statesNeurocomputin@0(10-12):1602-1604, 2007.
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Résune

Introduction

Pendants les états naturels d’activit&ivo, les neurones neocorticaux regoivent
des entrées synaptiques provenant de milliers de neyromgsi impose une con-
ductance membranaire forte et fluctuante. Ces états dée'lsanductance” (HC)
sont aussi caractérisés par d'importantes fluctuatianpalentiel membranaire
(Vm). Cependant, la connaissance unique gicést pas suffisante pour conclure
sur les conductances sous-jacentes, car differents éeatonductance peuvent
correspondre a une méme dynamique apparente,duDé plus, les propriétés
intégratives des neurones, en particulier la dynamigsecdaductances associée
aux potentiels d’action (PA), peut étre tres differesgéon I'état de conductance
de la membrane. Dans cet article court, nous étudions fi&satices entre ces
deux états en utilisant les modeles computationnelsseexpériences de type
dynamic-clamp.

Résultats obtenus

Nous considérons deux types d’états, basse conductafjes{ haute conduc-
tance (HC), qui correspondent au méme type d’activité dienqtiel de mem-
brane, mais les conductance sous-jacentes sont tresetif€s. Nous utilisons
la technique de “spike-triggered average” pour calculetdeours temporel des
conductances relié aux PAs. Les modeles computatiopnedisent que dans les
états LC, le PA est en général précédé par une fortenantation d’excitation,
qui se traduit par une augmentation de la conductance meaibeguste avant
le PA. Par contre, dans les états HC, la dynamique estrelifté: les PAs sont
précédés en général d'une fodiminutionde la conductance inhibitrice, qui se
traduit par une diminution de la conductance membranaies. fZédictions sont
confirmées dans des neurones réels du cortex visuédro par la technique de
dynamic-clamp.

Conclusions

Cette étude révele deux types opposés de génese dar®Ales neurones cor-
ticaux. Soit le PA est généré par une augmentation dewstadce excitatrice,
ce qui constitue un mode classique. Soit le PA est généraipe diminution
d’inhibition (dis-inhibition), ce qui est moins classiqu&€es deux modes sont
également observés dans des neurones du cortex instigb.
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2.1. ABSTRACT

2.1 Abstract

During activated states vivo, neocortical neurons are subject to intense synaptic
activity and high-amplitude membrane potentialj\fluctuations. These "high-
conductance” states may strongly affect the integratiep@rties of cortical neu-
rons. We investigated the responsiveness of cortical mswudoring different states
using a combination of computational models and in vitrosgkpents (dynamic-
clamp) in the visual cortex of adult guinea-pigs. Spike oes@s were moni-
tored following stochastic conductance injection in botpeximents and models.
We found that cortical neurons can operate in a continuunvest two differ-
ent modes: during states with equal excitatory and inhipitmnductances, the
firing is mostly correlated with an increase in excitatorydoctance, which is
a rather classic scenario. In contrast, during states dasdrby inhibition, the
firing is mostly related to a decrease in inhibitory condoces (dis-inhibition).
This model prediction was tested experimentally using dyineclamp, and the
same modes of firing were identified. We also found that theadige of spikes
evoked by dis-inhibition is a transient drop of the total nbeame conductance
prior to the spike, which is typical of states with dominamhibitory conduc-
tances. Such a drop should be identifiable from intraceli@eordingsin vivo,
which would provide an important test for the presence oititilon-dominated
states. In conclusion, we show that in artificial activatedes, not only inhibition
can determine the conductance state of the membrane, bboitamp inputs may
also have a determinant influence on spiking. Future arabpsé models should
focus on verifying if such a determinant influence of inholoyt conductance dy-
namics is also preseitt vivo.

Supported by: CNRS, HFSP and the EU

2.2 Introduction

During activated states vivo, neocortical neurons are subject to intense synap-
tic activity and high-amplitude membrane potentiaj§\Mluctuations (Paré et al.
1998, Steriade et al. 2001). These "high-conductanceéstatay strongly af-
fect the integrative properties of cortical neurons (Ddsteet al. 2003). Models
show that there is an infinite number of combinations of exoity and inhibitory
conductances that can yield,\ynamics similar tan vivo recordings. Two ex-
treme regimes in this continuum are low-conductance (L&est where excita-
tory and inhibitory conductances are approximately egorahigh-conductance
(HC) states, in which inhibitory conductances are sevieddl{arger than exci-
tatory conductances (cf. Fig.2A4). In this contribution, our goal is to compare
these two states with respect to the conductance dynamieslyimg spike initi-
ation.
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Figure 2.1:0ptimal patterns of conductance related to spikes in @rtieurons. Com-
parison of low-conductance (left) and high-conductaneagest(right). A spike is evoked
att = 0ms.A. The voltage traces in the two states obtained in models muitasin terms

of Vi, mean and variance (modelB. Spike-triggered average of inhibitory, excitatory
and total conductance in the model. In the LC state, the dpikeeceded by a peak in
excitatory and total conductance, whereas in the HC state tis a marked drop of in-
hibitory and total conductance just before the spiReSame a® for guinea-pig cortical
neurons under dynamic-clamp. Conductance standard deviations (SD) from the same
experiment as iiC: in the LC state, only excitatory SD drops before the spikegrgas in

the HC state only inhibitory SD shows a significant decrease.
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2.3. SPIKE-TRIGGERED AVERAGES DURING ACTIVATED STATES

2.3 Spike-triggered averages during activated states

In order to determine the optimal pattern of conductancettiggers spikes, we
first compared LC and HC states using a Hodgkin-Huxley typeehdlhe predic-
tions of this model were then tested using dynamic-clamgexgents in guinea-
pig cortical slices.

Using a single-compartment model, we have calculated gpigered aver-
ages (STA) of the excitatory and inhibitory conductances. shAown in Fig.2.1
B, in LC states, excitatory conductances always increasaddfie spike, while
inhibitory conductances decrease. This is paralleled bpenease in total mem-
brane conductance just before the spike, suggesting thassare preferentially
evoked by an increase of excitatory conductance. In HCssthtavever, the total
conductance decreases before the spike, which is nedgssarsed by a decrease
in inhibitory conductance. Thus, in this case, spikes agéepentially evoked by a
drop of inhibition. Examination of single-trial conductantraces confirmed this
analysis (not shown).

This prediction was tested in real cortical neurons usingadyic-clamp. LC
and HC states were recreated by injecting fluctuating caadaes similar to the
model. The STAs showed the same behavior as in the modekadgesting that
spikes are evoked by a drop of inhibitory conductance in Hifest(cf. Fig.2.1
C). The spike-triggered variances showed that in LC staj@kes were corre-
lated with a decrease of variance of excitatory conductamaenot of inhibitory
conductance (Fig.2., left panel). In contrast, in HC states only the variance of
inhibitory conductance decreased shortly before spikeEi@.2.1D, right panel),
suggesting that the dynamics of inhibition has a deterntimdiluence on spiking
in HC states.

2.4 Discussion

We have examined two extreme cases taken from a continuurigy states,
which evoke similain vivo-like Vi, dynamics. With respect to the optimal con-
ductance pattern triggering spikes, we found that thedenpatare very different
in these two states. In LC states, spikes are preferengatiged by an increase of
excitation, associated with an increase of the total mengcanductance, which
is a rather classic mode of firing. In HC states, however,espéce preferentially
evoked by a decrease of inhibitory conductance, which is@a®d to a decrease
of the total membrane conductance. We predict that this mbtieng should be
foundin vivo, in high-conductance states where conductance measuiesteny
dominant inhibitory conductances (Destexhe et al. 2003)teNhat the present
study was limited to conductance standard deviations (8i2s)are proportional
to the respective mean conductances. Further investigadie needed to explore
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the effect of independently varying conductance SDs on thgyfmode.

In order to identify this mode of firing from intracellularaerdingsin vivo,
we need to design specific methods to extract spike-trigigea&terns of conduc-
tances from Y, activity. This task is not trivial, because of the presenicgami-
nant intrinsic voltage-dependent currents in proximitgpikes, and also because
conductances are related to thg through the cable equation, which is in gen-
eral not solvable analytically. So, in order to extract tbeductance traces prior
to the spike from Y, activity, one needs to use a series of approximations. We
are presently considering different approximations tddythis information with
the goal to characterize the role of inhibitory conductasiygeamics in modulat-
ing firing activity during active states vivo. Preliminary results from analyzing
intracellular data from cat parietal cortexvivoindeed suggest a drop of conduc-
tance prior to the spike (Pospischil et al. 2005).
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Résune

Introduction

Les résutats du chapitre précédent montrent deux maglggidese du PA dans
les neurones, soit par augmentation d’excitation, soitlpamution d’inhibition.
Afin de distinguer de tels modes dans les neurameis/o, il est nécessaire d’estimer
les “spike-triggered averages” (STA) a partir de 'advdu potentiel membranaire
(Vm). Aucune méthode ne permet actuellement de faire unegstilmation. Dans
cet article, nous proposons une telle méthode pour esteae3TAs des conduc-
tances a partir du ¥.

Résultats obtenus

Dans un premier temps, nous exposons la méthode d’estimdds STAS, qui est
basée sur une discrétisation de I'axe du temps. On ohtresysteme d’équations
algébriques dont la solution donne les conductances filesgrobables”.

Cette méthode est ensuite testée a I'aide de modelegutationnels (modele
integre-et-tire avec conductances stochastiques) gsésmontrent que la méthode
procure une estimation en excellent accord avec les coaaces réellement in-
jectées dans le modele.

Finalement, la méthode est testée sur des neurones dix sstielin vitro
par la technique de dynamic-clamp. Parce que les condedaunt injectées
par I'expérimentateur, il est également possible de @mpla méthode avec le
STA obtenu avec les conductances injectées, et un extatieard est également
obtenu.

Conclusions

En conclusion, nous proposons ici une méthode qui, pourdmigre fois, per-
mettra I'estimation de STA de conductances excitatricéshébitrices a partir du
potentiel de membrane seulement. L'application de ce tgpaé&thodén vivo est
désormais possible.
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3.1. ABSTRACT

3.1 Abstract

The optimal patterns of synaptic conductances for spikeiggion in central neu-
rons is a subject of considerable interest. Ideally, suctugotance time courses
should be extracted from membrane potentigh)ctivity, but this is difficult
because the nonlinear contribution of conductances to thesxders their esti-
mation from the membrane equation extremely sensitive. Wtkne here a solu-
tion to this problem based on a discretization of the time.akhis procedure can
extract the time course of excitatory and inhibitory cortdnces solely from the
analysis of \4, activity. We test this method by calculating spike-trigegtaver-
ages of synaptic conductances using numerical simulatibtise integrate-and-
fire model subject to colored conductance noise. The praeedas also tested
successfully in biological cortical neurons using conduace noise injected with
dynamic-clamp. This method should allow the extraction yofaptic conduc-
tances from }, recordings in vivo.

3.2 Introduction

Determining the optimal features of stimuli which are nektteobtain a given
response is of considerable interest, for example in sgmduysiology. Reverse-
correlation is one of the most-used methods to obtain suttim&tes (Agluera y
Arcas and Fairhall 2003; Badel et al. 2006) and, in partictie spike-triggered
average (STA) is often used to determine optimal featunéed to the genesis of
action potentials (de Boer and Kuypers 1968). The STA cansed to explore
which feature of stimulus space the neuron is sensitivertio, identify modes that
contribute either to spiking or to the period of silence befthe spike (Agueray
Arcas and Fairhall 2003). Using intracellular recordingss straightforward to
calculate the STA of the membrane potentiglj\Mwvhich yields the mean voltage
trajectory preceding spikes. In contrast, it is much hatdetetermine the un-
derlying synaptic conductance. Straightforward methdasrecording at several
different DC levels and estimating the total conductanemfthe raticAl /AV fail,
since the presence of a voltage threshold necessiites 0 at the time of the
spike, which, in turn, artificially suggests a divergenc¢haftotal conductance to
infinity. Similarly, solving the membrane equation for eatory and inhibitory
conductances separately suffers from an additional caapin: because the dis-
tance to threshold changes, the time courses of the aveyagpt& conductances
depend on the injected current.

Recent contributions (Badel et al. 2006; Paninski 200686B) gave ana-
lytical expressions for the most likely voltage path, whichhe low-noise limit
approximates the STA of the leaky integrate-and-fire (IR)rae. In those cases,
Gaussian white noise current was considered as input. lelBdadl. (2006), a
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3.3. MATERIAL AND METHODS

second state variable was added in order to obtain biopdliysizore realistic
behavior. In Paninski (2006a, 2006b), in addition the exattage STA for the
non-leaky IF neuron was computed, as well as the STA inputatiin discrete
time. Here, a strong dependence of the STA shape on the tsolitiondt was
found without a stable limit adt — 0. It was argued heuristically that this be-
havior results from the fact that increasing the bandwidtthe input current, a
point which was supported by numerical simulations (Pdaietsal. 2004; Pillow
and Simoncelli 2003), in which a pre-filtering of the whitageinput results in a
stable limit STA.

In this article, we focus on the problem of estimating thermopt conductance
patterns required for spike initiation, based solely onahalysis of \, activity.
We consider neurons subject to conductance-based symadie at both excita-
tory and inhibitory synapses. By discretizing the time aitis possible to obtain
the probability distribution of conductance time courdest tare compatible with
the observed voltage STA. Due to the symmetry propertieseptobability dis-
tribution, the STA time course of excitatory and inhibit@gnductances can then
be extracted by choosing the one with maximum likelihood. teét this method
in numerical simulations of the IF model, as well as in reatical neurons using
the dynamic-clamp technique, by comparing the estimaté@dv@th the real STA
deduced from the injected conductances.

3.3 Material and Methods
3.3.1 Models

We considered neurons driven by synaptic noise describesvbyndependent
sources of colored conductance noise (point-conductamchiDestexhe et al.
2001)). The membrane equation of this system is given by:

dv(t)

CT = —gL(V(t)—VL) (3.1)
—ge(t)(V(t) —Ve) —0i (t)(V(t) —Vi> +lpc,
GO = g0 -0+ Za) 32)

Here,g., ge(t) andg;(t) are the conductances of leak, excitatory and inhibitory
currents Vi, Ve, V; are their respective reversal potentidlsis the capacitance
andlpc a constant current. The subscripin Eg. (3.2) can take the valuesi,
which in turn indicate the respective excitatory or inhoiojt channel. We use

0w andas to indicate the mean and standard deviation (SD) of the atiadae
distributions,&s(t) are Gaussian white noise processes with zero mean and unit
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3.3. MATERIAL AND METHODS

standard deviation. Throughout this article we use thestation timege = 2.728
ms andtj = 10.49 ms.

This system was solved using numerical simulations of thkydF model,
which was adjusted to match recordings of cortical neurandices (threshold
—55 mV, refractory period 3 ms, reset75 mV). Simulations were done using
the NEURON simulation environment (Hines and Carnevale71990 calcu-
late STAs, approximately 1000 spikes occurring during smoeous activity were
used, each being preceded by a period of at least 100 msnésite avoid “con-
tamination” of the \,, STA by preceding spikes. The same analysis protocols (see
Results) were applied to the model and to experimental data.

In order to address the influence of a dendritic filter on thialvdity of our
method, we used a two-compartment model based on that bigyPamsl Rinzel
(1994). We removed all active channels and replaced themmbgtagrate-and-
fire mechanism at the soma. The geometry (L = 348 diam = 10um) as
well as the parameters not related to the spiking mechargsm: (LO~* S/cn¥,

Wi = —60 mV, capacitancen = 3 pF/cn?, axial resistanc®, = 5.87 x 10° Qcm)

are identical for the two compartments. In addition, we ehashreshold for
spiking \ = —55 mV at the soma. The parameters for leak conductance and
capacitance needed for the estimation of the STAs of symeptiductances from
the Vi, gi° andC®°, were obtained by current pulse injection into the soma at
the resting state. The supersciptindicates that these are effective values at the
level of the soma. The values used wegfé= 0.198 nS and®° = 5.86 pF. The
parameters describing the distributions of synaptic cotahces were chosen in a
way such that the mean inhibitory conductance was four titimaisof excitation,
and the latter was comparable to the leak conductagee0.15 nSgio = 0.6 nS).
Standard deviations were assumed to be one third of theatgpeneansde =
0.05nSg; =0.2nS).

3.3.2 Invitro experiments

In vitro experiments were performed on 0.4 mm thick coronal or sdgstices
from the lateral portions of guinea-pig occipital cortexuiea-pigs, 4-12 weeks
old (CPA, Olivet, France), were anesthetized with sodiunmt@earbital (30 mg/kg).
The slices were maintained in an interface style recordiragrber at 33-3%C.
Slices were prepared on a DSK microslicer (Ted Pella InadRey, CA) in a slice
solution in which the NaCl was replaced with sucrose whil@rtaning an osmo-
larity of 307 mOsm. During recording, the slices were indeban slice solution
containing (in mM): NaCl, 124; KCl, 2.5; MgS{1.2; NaHPQ, 1.25; Cadl, 2;
NaHCG;, 26; dextrose, 10, and aerated with 95% &% CO to a final pH of 7.4.
Intracellular recordings following two hours of recovergm performed in deep
layers (layer IV, V and VI) in electrophysiologically idefied regular spiking and
intrinsically bursting cells. Electrodes for intracelulrecordings were made on
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3.4. RESULTS

a Sutter Instruments P-87 micropipette puller from medivatled glass (WPI,
1BF100) and beveled on a Sutter Instruments beveler (BV)10MNtropipettes
were filled with 1.2 to 2 M potassium acetate and had resis&an€t80-100 M)
after beveling.

The dynamic-clamp technique (Robinson et al. 1993; Shaah €t993) was
used to inject computer-generated conductances in reebm&uDynamic-clamp
experiments were run using the hybrid RT-NEURON environnjeéeveloped by
G. Le Masson, Université de Bordeaux), which is a modifiedioe of NEURON
(Hines and Carnevale 1997) running under the Windows 20@@abipg system
(Microsoft Corp.). NEURON was augmented with the capacitysinulating
neuronal models in real time, synchronized with the intitatag recording. To
achieve real-time simulations as well as data transfered@ for further anal-
ysis, we used a PCI DSP board (Innovative Integration, Siatliey, USA) with
4 analog/digital (inputs) and 4 digital/analog (output6)Hits converters. The
DSP board constrains calculations of the models and dataféns to be made
with a high priority level by the PC processor. The DSP bodlaas input (for
instance the membrane potential of the real cell incorpdrat the equations of
the models) and output signals (the synaptic current to jeeted into the cell)
to be processed at regular intervals (time resolution = G A custom inter-
face was used to connect the digital and analog inputs/taigpgnals of the DSP
board with the intracellular amplifier (Axoclamp 2B, Axorstnuments) and the
data acquisition systems (PC-based acquisition softwalRtE, developed by G.
Sadoc, CNRS Gif-sur-Yvette, ANVAR and Biologic). The dyriaralamp proto-
col was used to insert the fluctuating conductances undegrkynaptic noise in
cortical neurons using the point-conductance model, amid a previous study
(Destexhe et al. 2001). According to Eq. (3.1) above, thecteld current is
determined from the fluctuating conductanerét) and gj(t) as well as from
the difference of the membrane voltage from the respectversal potentials,
Ipynclamp= _ge(V —Ve) —0i (V —Vi)-

All research procedures concerning the experimental dsiara their care
adhered to the American Physiological Society’s Guidinigpéples in the Care
and Use of Animals, to the European Council Directive 86/6E€ and to Euro-
pean Treaties series no. 123, and was also approved by #leetbacs committee
“lle-de-France Sud” (certificate no. 05-003).

3.4 Results

We first explain the method for extracting STAs from, ®ctivity, then we present
tests of this method using numerical simulations and ieftalar recordings in
dynamic-clamp.
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3.4. RESULTS

3.4.1 Method to extract conductance STA

The procedure we follow here to estimate STA of conductafroas V,, activity
is based on a discretization of the time axis. With this appiho a probability
distribution can be constructed whose maximum gives thet hi@dy conduc-
tance path compatible with the STA of the,VThis maximum is determined by
a system of linear equations which is solvable if the meadsvanances of con-
ductances are known (for a method to estimate conductanaa arel variance,
see Rudolph et al. 2004).

We start from the voltage STA, which is an average over anmehkgeof event-
triggered voltage traces. lIts relation to the conductari@es$s determined by the
ensemble average of Egs. (3.1) and (3.2). In general, therstrong correlation
(or anti-correlation) betweevi(t) andgs(t) in time. However, it is safe to assume
that there is no such correlation across the ensemble, #ieceoise processes
&s(t) corresponding to each realization are uncorrelated. Atgoensemble aver-
age is commutative with the time derivative. Thus, we carriteviegs. (3.1) and
(3.2) to obtain

d{V(t))x 1

e (L (3.3)
(Ge(l))x (Gi(t))x Inc
19l v 1~ ve) — 80 (v 1), + 2

GO _ L (10t)x—gu0) + 1] 2 (Eelt)n (3.4)

dt T Ts
wheret. = C/gL and(.)x denotes the ensemble average. In other words, the time
evolution Eqgs (3.1) and (3.2) also hold in terms of ensembérages. In the
following, we drop the bracket notation for legibility, bassume we are dealing
with ensemble averaged quantities unless otherwise stated

We discretize Eg. (3.3) in time with a step-sixeand solve fogk,

(3.5)

«_ C [Vvk—\v N as(VK—Ve) +vk+1—v'< Ipc
SRRV SRV Ry C At c
Since the serie¥k for the voltage STA is knowngr has become a function of

ok. In the same way, we solve Eq. (3.4) f&lf, which have become Gaussian
distributed random numbers,

1 /1 At At
k __ S k+1 k{1 _ _
Es - Os AL (gs gs<1 Ts> ngSO) . (3-6)

There is a continuum of combinatiofgk*?, ik“} that can advance the mem-
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brane potential fronvk+1 to V¥+2, each pair occurring with a probability

1 1.k <k 1 1k
Pi= pEe g g g = e B T = e e 3)
Aty At \?
K k1 k(q Ay At
Xt = (ge ge<1 Te> _l_egeO) (3.8)

- A\ A\
| k+1 _ N
0_ <g| gl < T ) Ti gIO) 5

where we have used Eq. (3.6). Note that because of Eq. (%.8)hd g{‘ are not
independent ang is, thus, a unidimensional distribution only. Given iniitan-
ductancegs, we can now write down the probabilityfor certain series of con-

ductanceigs}J —o,...,n to occur that reproduce a given voltage tr@dé}| 1..nels

-----

n—-1
= K. 3.9
p kELp (3.9)

Due to the symmetry of the distributign the average paths of the conductances
coincide with the most likely ones, so the cumbersome taskobfing nested
Gaussian integrals can be circumvented. Instead, in oodéetermine the con-
ductance series with extremal likelihood, we solve themaetisional system of

linear equations
{ oX O} , (3.10)
age k=1,...,n

-----

whereX = zk_lxk for the vector{gk}. This is equivalent to solving 5 ¢ ap =

O}k=1....n and involves the numerical inversion of arx n-matrix. Since the Sys-
tem of equations is linear, if there is a solution {cgk} plausibility arguments
suggest that it is the most likely (rather than the leastyikexcitatory conduc-
tance time course. The seriﬁlj(} is then obtained from Eq. (3.5).

3.4.2 Test of the accuracy of the method using numerical sim-
ulations

To test this method, we first considered numerical simutatiof the IF model
in four different situations. We distinguished high-contiunce states, where the
total conductance is dominated by inhibition, from low-dantance states, where
both synaptic conductances are of comparable magnitudeld&/earied the stan-
dard deviations of the conductances such that for both gti{ow-conductance
states we have the cases> 0. as well asoe > 0;. The results are summa-
rized in Fig. 3.1, where the STA traces of excitatory andbitbry conductances
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recorded from simulations are compared to the most likedyi¢@lent to the av-
erage) conductance traces obtained from solving Eq. (3lda®@eneral, the plots
demonstrate a very good agreement.

To quantify our results, we investigated the effect of thaistics as well as
of the broadness of the conductance distributions on thityjoathe estimation.
The latter is crucial, because the derivation of the mostyikonductance time
course allows for negative conductances, whereas in thdations negative con-
ductances lead to numerical instabilities, and condueace bound to positive
values. We thus expect an increasing error with increasitig 5D/mean of the
conductance distributions. We estimated the root-meaaregRMS) of the dif-
ference between the recorded and the estimated condu@dAse The results,
summarized in Fig. 3.2, are as expected. Increasing the @uofbpikes enhances
the match between theory and simulation (Fig. 3.2A show&M& deviation for
excitation, 3.2B for inhibition) up to the point where thdeet of negative con-
ductances becomes dominant. In this example, where tleSBtimean was fixed
at 01, the RMS deviation enters a plateau at about 7000 spikesplEteau val-
ues can also be recovered from the neighboring plots (e RMS deviations at
SD/mean= 0.1 in Fig. 3.2 C and D correspond to the plateau values in A and B)
On the other hand, a broadening of the conductance distibytelds a higher
deviation between simulation and estimation. However,Ring&an= 0.5, the
RMS deviation is still as low as' 2% of the mean conductance for excitation and
~ 4% for inhibition.

To assess the effect of dendritic filtering on the reliapitif the method, we
used a two-compartment model based on that of Pinsky anceRib294), from
which we removed all active channels and replaced them bgtagrate-and-fire
mechanism at the soma. We repeatedly injected the same Hifesof fluc-
tuating excitatory and inhibitory conductances in the diiecdcompartment and
performed two different recording protocols at the soma.(Bi.3A). First, we
recorded in current-clamp in order to obtain thg Wfme course as well as the
spike times. In this case, the leak conductagi®eand the capacitandgg> were
obtained from current pulse injection at rest. Second, waikited an “ideal”
voltage-clamp (no series resistance) at the soma usingifigosiht holding poten-
tials (we chose the reversal potentials of excitation amdbition, respectively).
Then, from the currents, andly, one can calculate the conductance time courses

s | ( ) (V V| )
Vie(t) —0L(Vie—WL
o (1) = = = ,

Vie— Vei

where the superscrigbindicates that these are the conductances seen at the soma
(in the following referred to as somatic conductances)nitoese, we determined

the parameterg3, gy, 0a° andc?®, the conductance means and standard devia-
tions. In contrast t@e(t) andg;(t), the distributions ofg%(t) andgi(t) are not
Gaussian (not shown), and have lower means and variancexoieared the

(3.11)
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Figure 3.1:Test of the STA analysis method using an IF neuron model sttgjeolored
conductance noise. A. Scheme of the procedure used. An lelnaath synaptic noise
was simulated numerically (bottom) and the procedure tionast¢ STA was applied to
the Vy, activity (top). The estimated conductance STAs from Were then compared
to the actual conductance STA in this model. Bottom panelgs &alysis for different
conditions, low-conductance states (B,C), high-condw#astates (D,E), with fluctua-
tions dominated by inhibition (B,D) or by excitation (C,Eor each panel, the upper
graph shows the voltage STA, the middle graph the STA of atary conductance, and
the lower graph the STA of inhibitory conductance. Solick#n(grey) show the average
conductance recorded from the simulation, while the dashedblack) represents the
conductance estimated from the,V Parameters in Bgey=6 nS,gip=6 nS,0.=0.5 nS,
0;=1.5 nS; C:ge=6 NS, gio=6 nS, 0,=1.5 nS,0;=0.5 nS; D:gexn=20 nS, gjp=60 nS,
0e=4 nS,0i=12 nS; E:gen=20 nS,gip=60 nS,0.=6 nS,0;=3 NS
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Figure 3.2: The root-mean-square (RMS) of the deviation of the estichétem the
recorded STAs. A: RMS deviation as a function of the numbespkes for the STA
of excitatory conductance, where the SD of the conductarstahdition was 10% of its
mean. The RMS deviation first decreases with the number &kspibut saturates at
~ 7000 spikes. This is due to the effect of negative conduesnwhich are excluded
in the simulation (cf. C). B: Same as A for inhibition. C: RM®&whtion for excita-
tion as a function of the ratio SD/mean of the conductanceildigion. The higher the
probability of negative conductances, the higher the dis@ncy between theory and sim-
ulation. However, at SD/mean 0.5, the mean deviation is as low as2% of the mean
conductance for excitation and4% for inhibition. D: Same as C for inhibition.
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Figure 3.3:Test of the method using dendritic conductances. A. Sinaulacheme: A
100 s sample of excitatory and inhibitory (frozen) condoctanoise was injected into the
dendrite of a 2-compartment model (1). Then, two differecbrding protocols were per-
formed at the soma. First, theg,\Mime course was recorded in current-clamp (2), second,
the currents corresponding to two different holding patgstwere recorded in voltage-
clamp (3). From the latter, the excitatory and inhibitoryndoctance time courses were
extracted using Eq. 3.11. B. STA of total conductance iesedt the dendrite (black),
compared with the estimate obtained in voltage-clamp {lighy) and with that obtained
from somatic \, activity using the method (dark gray). Due to dendritic mtigtion, the
total conductance values measured are lower than theedsenies, but the variations of
conductances preceding the spike are conserved. C. SamgaseBcitatory conduc-
tance. D. Same as B, for inhibitory conductance. Parameggss= 0.15 nS,gjp = 0.6
nS,0e = 0.05nS,0; = 0.2 nS,g35 = 0.113 nS giy = 0.45 nS,0¢° = 0.034 nS0° = 0.12
nS, where the superscripb denotes quantities as seen at the soma.
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STA of the injected (dendritic) conductance, the STA oladifrom the somatic
Vmusing our method and the STA obtained using a somatic “idediage-clamp

(see Fig. 3.3B-D), which demonstrated the following pai(i3 as expected, due
to dendritic attenuation, all somatic estimates were a#ted compared to the
actual conductances injected in dendrites (compare ligtitdark gray curves,
soma, with black curve, dendrite, in Fig. 3.3B-D); (2) théiraate obtained by
applying the present method to the somatjg (dark gray curves in Fig. 3.3B-D)
was very similar to that obtained using an “ideal” voltad@aap at the soma (light
gray curves). The difference close to the spike may be duegmon-Gaussian
shape of the somatic conductance distributions, whosetteeh become impor-
tant; (3) despite attenuation, the qualitative shape ofctireductance STA was
preserved. We conclude that the STA estimate froga¢tivity captures rather
well the conductances as seen by the spiking mechanism.

3.4.3 Test of the method in real neurons

We also tested the method on voltage STAs obtained from digrelaamp record-
ings of guinea-pig cortical neurons in slices. In real nesya problem is the
strong influence of spike-related voltage-dependent gonebly sodium) conduc-
tances on the voltage time course. Since we maximizglibleal probability of
ge(t) andgi(t), the voltage in the vicinity of the spike has an influence aneb-
timated conductances at all times. As a consequence, witeowoving the effect
of sodium, the estimation fails (see Fig. 3.4). Fortunaiely rather simple to cor-
rect for this effect by excluding the last 1-2 ms before thkesfyrom the analysis.
The corrected comparison between the recorded and theatstimonductance
traces is shown in Fig. 3.5.

Finally, to check for the applicability of this methoditovivo recordings, we
assessed the sensitivity of the estimates with respect tiffierent parameters by
varying the values describing passive properties and $ireqtivity. We assume
that the total conductance can be constrained by inputtaesis measurements,
and that time constants of the synaptic currents can be&stthivy power spectral
analyses (Destexhe and Rudolph 2004). This legve€, g, 0c andao; as the
main parameters. The impact of these parameters on STA ctarthe estimates
is shown in Fig. 3.6. Varying these parameters withis0% of their nominal
value led to various degrees of error in the STA estimates.didminant effect of
a variation in the mean conductances is a shift in the estnd@TAs, whereas a
variation in the SDs changes the curvature just before tike sp

To address this point further, we fitted the estimated cotashoe STAS with
an exponential function:

t—t
fo(t) = Go(1+Kee ™ ),
wheres again takes the valuesi for excitation and inhibition, respectivelt is
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Figure 3.4:The effect of the presence of additional voltage-dependentluctances on

the estimation of the synaptic conductances. Gray, sal@klindicate recorded conduc-
tances; black, dotted lines indicate estimated conduetanm this case, the estimation
fails. The sharp rise of the voltage in the last ms beforepileegequires very fast changes
in the synaptic conductances, which introduces a conditkerror in the analysis. Pa-
rameters usedjgn=32 nS,gip=96 nS,0.=8 nS,0{=24 nS.
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Figure 3.5:Test of the method in real neurons using dynamic-clamp ineaspig visual
cortical slices. A. Scheme of the procedure. Computerigeéee synaptic noise was in-
jected in the recorded neuron under dynamic-clamp (bottdrhg Vi, activity obtained

(top) was then used to extract the STA

of conductances, wiashcompared to the STA

directly obtained from the injected conductances. B. Reflthis analysis in a repre-

sentative neuron. Black lines show the

estimated STA of gaiaghces from Y activity,

grey lines show the STA of conductances that were actuglbgted into the neuron. The
analysis was made by excluding the data from the 1.2 ms b#ferspike to avoid con-
tamination by voltage-dependent conductances. Parasrfereconductance noise were

asin Fig. 3.4.
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Figure 3.6:Deviation in the estimated conductance STAs in real neunsimg dynamic-
clamp due to variations in the parameters. The black lingesent the conductance STA
estimates using the correct parameters, the gray areaanel by the estimates that
result from variation of a single parameter (indicated anright) by+ 50 %. Light gray
areas represent inhibition, dark gray areas representaggo. The total conductance
(leak plus synaptic conductances) was assumed to be fixedariation in the mean
values of the conductances evokes mostly a shift in the atimvhile a variation in the
SDs influences the curvature just before the spike.
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Figure 3.7:Detailed evaluation of the sensitivity to parameters. Ttredcictance STAs
were fitted with an exponential functiof(t) = Gs(1+ Ksexp((t —to)/Ts), S=€,i. tg is
chosen to be the time at which the analysis stops. Each pietssthe estimated value
of Gg, Gj, Te or T; from this experiment, each curve represents the variatiansingle
parameter (see legend).

chosen to be the time at which the analysis stops. Fig. 38sgn overview of
the dependence of the fitting parametégs G;, Te andT; on the relative change
of g1, 9en, Oe, 0j @andC. For example, a variation @ko has a strong effect 08¢
andG;, but affects to a lesser exteitandT;, while the opposite was seen when
varyingoe anda;.

3.5 Discussion

Understanding the transfer function of a neuron from syinapput to spike out-
put would ideally require the simultaneous monitoring offbthe synaptic con-
ductances and the cell’s firing. Current methods for extigctynaptic conduc-
tances rely on intracellular recordings performed at diifé holding potentials
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(in voltage-clamp) or different current levels (in currefémp; e.g. Borg-Graham
et al. 1998) and, as a consequence, they do not allow thelisktabnt of a di-
rect correspondence between synaptic conductances dws spilthough these
methods have been very useful, for example in establishiagynaptic structure
of sensory receptive fields in a variety of systems (Moniexl e2003; Wehr and
Zador 2003; Wilent and Contreras 2005), they do not disisigbetween trials
that effectively produce spikes at a given latency and ttiosedo not.

Here, we have presented a method to extract the averagatexgiand in-
hibitory conductance patterns directly related to spikiaition. As illustrated in
Fig. 3.8, this method can extract spike-related conduetsbased solely on the
knowledge of \4, activity. First, the STA of the }, is computed from the intra-
cellular recordings. Next, by discretizing the time axisga@stimates the “most
likely” conductance time courses that are compatible wih @bserved STA of
Vm. Due to the symmetry of their distribution, the average cmtance time
courses coincide with the most likely ones, so integratizer the entire stimulus
space (whose dimension depends on the STA interval as welh élse tempo-
ral resolution) can be replaced by a differentiation andseghent solution of a
system of linear equations. Solving this system gives amagt of the average
conductance time courses. We demonstrated that this éstimgives reason-
ably accurate estimates for the leaky IF model, as well asahmeurons under
dynamic-clamp.

Like any other method, this method suffers from several sgsiof error. Er-
rors can result from nonlinearities in the I-V curve of theiren, e.g. those due to
voltage-dependent conductances. In agreement with tlashave shown that
the subthreshold activation of spike-generating curretdse to threshold can
lead to severe misestimations of the conductances (Fiy. 3His problem can
be circumvented by excluding a short period (1-2 ms) precgethe spike. To
avoid contamination by voltage-dependent currents, tlathod should be com-
plemented by a check for I-V curve linearity in the range @f &nsidered. Note
that a linear I-V curve does not guarantee the absence @geltlependent con-
ductances. For example, if the mean interspike intervahefdell becomes too
short, spike-related potassium currents might be presemgla substantial frac-
tion of the STA interval and could affect the estimation. SThiight diminish the
applicability of the method to neurons spiking at high freqgey, in particular to
fast-spiking interneurons. Also, strong subthresholdddiéo conductances that
are very remote from the soma could influence the STA estinvdt®ut being
visible in the I-V curve. On the other hand, in cases whers fiassible to pa-
rameterize these nonlinearities, they can be included irBEq It should thus be
possible to extend the method in order to apply it to more dexmmodels, for
example the exponential integrate-and-fire model (Fourdancme et al. 2003).
Another possible extension would be to include voltageedéent terms such
as N-methyl-D-aspartate (NMDA) receptor-mediated syicaptrrents, although
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Figure 3.8:Scheme of the method to extract spike-triggered averagductances from
membrane potential activity. Starting from an intracaiutecording (top), the spike-
triggered average (STA) membrane potentia), V6 computed (leftmost panel). From
the STA of the \4, by discretizing the time axis, it is possible to estimat $TA of con-
ductances (bottom) by maximizing a probability distribati(see text). This step requires
knowledge of the values of the average conductances andsthedard deviationgf,
Jio, Oe, Ti, respectively), which must be extracted independentgh{most panel).
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such currents probably have a limited contribution at tmgesof \i,, considered
here (below -50 mV).

Another source of error may arise from “negative conduatahcrhe present
model of synaptic noise assumes that conductances arei@adssiributed, but
if the standard deviation becomes comparable to the meawe wdlthe conduc-
tances, the Gaussian distribution will include negativedttances, which are
unrealistic. This is an important limitation of represegtsynaptic conductances
by Gaussian-distributed noise (“diffusion approximatjoiiowever, this type of
approximation seems to apply well to cortical neuramsivo, which receive a
large number of inputs (Destexhe et al. 200h)vivo measurements so far indi-
cate that the standard deviation is much smaller than the foed&oth excitatory
and inhibitory conductances (Haider et al. 2006; Rudol@.e€2005), which also
indicates that the diffusion approximation is valid in these. Such a check for
consistency is a prerequisite for applying the present ateth

Previous work related to the question of spike-triggeréadt was mainly
focused on white noise current inputs, and showed that rdestaite input av-
erage exists in the limilt — O (Paninski 2006a). Other contributions shed light
on the question of membrane voltage STAs, for the leaky IFareas well as for
biophysically more plausible models. However, so far n@wpdure was proposed
to solve this problem of reverse correlation for conductanoise inputs. The
method we propose here attempts to fill this gap, and dirpctlyides a procedure
that can be applied to real neurons. To this end, the presethioth must be com-
plemented by measurements of the mean and standard dev&ascitatory and
inhibitory conductances. Such measurements can be obtaitier by voltage-
clamp (Haider et al. 2006), or by current-clamp, as recamtiyposed (Rudolph et
al. 2004, 2005). Combining the latter method with the presssthod, it should
now be possible to directly extract conductance patteirs v/, recordingsin
vivo, and thus obtain estimates of the conductance variatidagedeto spikes
during natural network states.
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action potential generation in awake
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Résune

Introduction

Les enregistrements intracellulaires chez le chat @&d#montrent une activité
intense et fluctuante, mais il n’est pas clair comment lesares traitent I'infor-
mation pendant ces états apparemment stochastiques. éfietérminer les
conductances sous-jacentes a cette activite, nousjappis plusieurs méthodes
d’estimation de conductances aux neurones du cortex asisoenregistrés chez
le chat éveillé.

Résultats obtenus

A partir d’enregistrements intracellulaires chez le ahagille et en sommeil na-
turel (sommeil lent et paradoxal), nous estimons les caiathge sous-jacentes par
la technique “YmD?”. Cette analyse révele une grande dit@ide conductances
dans les neurones, parfois dominés par I'excitation, tegius souvent dominés
par I'inhibition. En effet, les conductances inhibitrigesoyenne et variance) sont
en général plus fortes que leurs homologues excitatrices

Ensuite, nous analysons ces mémes neurones en utilisaétie@de STA ex-
posée au chapitre précédant. Cette analyse demordgriegjaeux modes de PAs
sont présents, mais les PAs évoqués par l'inhibitiort gaa dans la majorité des
neurones. Finalement, nous montrons que les deux estimsatmnt corrélées,
c’est-a-dire que les neurones montrant une inhibitiotef@atats de haute conduc-
tance) sont aussi ceux dont les PAs sont évoqués parHitidn. lls forment la
majorité des neurones analysés pendant I'éveil et larseifhent.

Conclusions

En conclusion, cette étude demontre que les états &&ticomme I'éveil, sont
définis au niveau de la conductance membranaire par (1) tarelg diversité
de combinaisons excitation-inhibition; (2) en génénak unhibition dominante
(états de haute conductance); (3) la variance de I'inbibiest presque toujours
plus grande que celle de I'excitation, ce qui suggere qusooe les fluctuations
d’inhibition qui générent les PAs.

En accord avec cette analyse, les STA des conductancesttemtadirecte-
ment que les PAs sont en général liés a une diminutiomhdition, comme
nous I'avons montré précedemment en dynamic-clampgiies2). Ces résultats
suggerent que les processus inhibiteurs jouent un rélggmdérant dans les états
activés du cortex cérébral associatif.
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4.1. ABSTRACT

4.1 Abstract

Intracellular recordings of cortical neurons in awake cat monkey show a de-
polarized state, sustained firing and intense subthresyoldptic activity. It is
not known what conductance dynamics underlies such agtaid how neurons
process information in such highly stochastic states. Heeecombine intracel-
lular recordings in awake and naturally sleeping cats watimjgutational models
to investigate subthreshold dynamics of conductances ewdcbnductance dy-
namics determine spiking activity. We show that during be#ikefulness and the
“up-states” of natural slow-wave sleep, membrane poteatigvity stems from a
diversity of combinations of excitatory and inhibitory sygtic conductances, with
dominant inhibition in most of the cases. Inhibition alsoydes the largest con-
tribution to membrane potential fluctuations. Computatlanodels predict that
in such inhibition-dominant states, spikes are prefeaflgtevoked by a drop of
inhibitory conductance, and that its signature is a trarisleop of membrane con-
ductance prior to the spike. This pattern of conductancegée indeed observed
in estimates of spike-triggered averages of synaptic cotadees during wakeful-
ness and slow-wave sleep up-states. These results shoacthatted states are
defined by diverse combinations of excitatory and inhilyitconductances with
pronounced inhibition, and that the dynamics of inhibiti@particularly effective
on spiking, suggesting an important role for inhibitorygeeses in both conscious
and unconscious cortical states.

4.2 Introduction

Intracellular recordings of cortical neurons in awake,smous cats and monkeys
show a depolarized membrane potential,fVsustained firing and intense sub-
threshold synaptic activity (Matsumara et al. 1988; Baramyl. 1993; Steriade
et al. 2001; Timofeev et al. 2001). It is presently uncleax lneurons process in-
formation in such active and irregular states. An impor&ep to investigate this
problem is to obtain a precise characterization of the cotahece variations dur-
ing activated electroencephalogram (EEG) states. Ingigteeice measurements
indicate that during such activated states, cortical nesioan experience periods
of high conductance, which may have significant consequeefacdaheir integra-
tive properties (Destexhe and Paré 1999; Kuhn et al. 2@¥ewed in Destexhe
et al. 2003). In anesthetized animals, several studiespgraveded measurements
of the excitatory and inhibitory conductance contribuiemthe state of the mem-
brane, using various paradigms (e.g., see Borg-Graham &088; Hirsch et al.
1998; Paré et al. 1998; Anderson et al. 2000; Wehr and Zabio8;2Priebe et
al. 2005; Haider et al. 2006). However, no such conductaressarements have
been made so far in awake and naturally sleeping animals.
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In the present paper, we provide such estimates using a oatidn of in-
tracellular recordings and computational models. Infialze recordings were
performed in the association cortex of non-anesthetizts] aaross wake or sleep
states, according to a technique described previouslyi@8teet al. 2001; Timo-
feev et al. 2001). Intracellularly-recorded neurons digg@ highly complex and
irregular subthreshold synaptic activity, from which wéreate the conductances
(and their variances) by matching stochastic models torttiadgellular data. We
also use the same approach to estimate the time course teetanductance
changes during the transition between depolarized andrpglagized phases (up
and down states), as seen intracellularly during slow-veteep (SWS). We next
introduce computational models with stochastic condwsarreproducing the
above measurements, in order to infer the type of conduetaadations that
underlie spiking activity in such states. Part of these Itesuere published as
conference abstracts (Destexhe et @QSYNE Conferenc@005; Pospischil et
al. 2005).

4.3 Materials and Methods

4.3.1 Intracellular recordings in awake and naturally sleging
animals

Intracellular recordings were performed in cat assoaiatmtex (areas 5, 7 and 21
of parietal cortex) using a technique described in detawiously (see Methods in
Steriade et al. 2001; Timofeev et al. 2001). Briefly, a chanspecially designed
for chronic intracellular recordings, local field potehijaFP), electromyogram
(EMG) and electrooculogram (EOG) electrodes as well as figaton screws,
were implanted under anesthesia. Electrodes for LFP remsdvere inserted in
cortical depth and their tips were located at a depth of 008yIm. The animals
were gradually habituated to the recording setup and the-fuead position. After
3-4 days of training the cats started to display normal sieaking cycles and
could move their limbs.

Intracellular recordings were performed under curreatng using standard
borosilicate glass micropipettes 1.5/0.84 mm (OD/ID) diligith 2.5 mM potas-
sium acetate. Initially, pipettes were pulled to a resistaof 120-150 M2 and
under visual guidance their tips were broken to obtain atasce of 50-70 2.
The pipettes descended in the recording chamber. Aftertiaeen the brain the
resistance of some of the pipettes further decreased. Titaed@hular electrodes
with resistance lower than 30 ®™were discarded because intracellular record-
ings obtained with these electrodes often revealed sigdstefioration appearing
as unstable membrane potential, which becomes progrsdipolarized, and
broadening of action potential duration. Typically theaeting sessions lasted up

48



4.3. MATERIALS AND METHODS

to 3 hours. Only recordings showing stablg {ho drift) and overshooting action
potentials were considered here. To correctly estimatmtrabrane potential, we
recorded the potential drop during penetration of the demeuron, and after
pulling out of the neuron. If the difference in the estimatad recorded membrane
potential at the beginning and at the end of recording exag@dmV, these data
were discarded. A total of 118 neurons were recorded dunieg/ake/sleep cycle,
including 96 presumed excitatory cells and 22 presumeditdny interneurons

(see Results).

To accumulate sufficient statistics for the analysis (sdevije recordings
needed to last typically more than 30 min, and be conducted)several lev-
els of injected DCs. A total of 15 neurons were obtained fSétig these criteria
and were used for conductance analysis. In some cases,cthrelirg was long
enough to span across several states of vigilance (quietfulakess, slow-wave
sleep and REM sleep). Experiments were conducted in agreemth ethics
guidelines of the Canadian Council on Animal Care and wepraed by the
committee for animal care of Laval University.

4.3.2 Analysis and computational models

The basis of the analysis was to match thg &f the intracellularly-recorded
neurons to a stochastic model of synaptic background #ctiihis model was
used for estimating synaptic conductances, to perfornesjpiggered averages of
synaptic conductance variations related to spikes, asagdthr simulating mem-
brane dynamics based on those estimates. The methodsireldlese different
approaches are described below.

The basis of the analysis wadlactuating conductance mode&hich approx-
imates the highly complex synaptic activity as a random @ss¢ using global
synaptic conductances described by the following stoghaquation (Destexhe

et al. 2001):
2
d%(” _ —%[gea)—geom/ Zti Eelt) (4.1)

wherege(t) is the global excitatory conductance, fluctuating arourel rifean
value ge and with varianceo?, te is the excitatory time constant, agd(t) is

a Gaussian white noise source with zero mean and unit stha@aration. The
global inhibitory conductancg;(t) is described by an equivalent equation with
parametersjo, Giz, T; and noise sourcg(t). These conductances determine the
subthreshold variations of the membrane poteid), according to the mem-
brane equation:

Cd\c/j—it) = —GL[V(t) —EL] = ge(t) [V(t) —E — Gi(t) V(1) —E] + lext , (4.2)
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whereC denotes the membrane capacitangg, a stimulation current, the
leak conductancd; the leak reversal potential, whike, andE; are the reversal
potentials ofge(t) andgi(t), respectively.

The advantage of this stochastic model is that differentyinaapproxima-
tions are available for the steady-statg Wistribution. The VmD method con-
sists in matching this analytic expression tg §istributions obtained experimen-
tally, leading to estimates of excitatory and inhibitoryndoctances, as well as
their variance, solely from current-clamp recordings @detailed discussion
and testing of this method, see Rudolph et al. 2004). The odehbased on
the assumption of Gaussian distribution for synaptic cotehces. The validity
of this approximation was tested in numerical simulatiddegtexhe et al. 2001;
Rudolph and Destexhe 2003, 2005), theoretical investigatiRudolph and Des-
texhe 2006) as well as experimental studies (Rudolph et @04,22005). W,
distributions must be obtained at different holding cutr@C) levels, and us-
ing multiple current levels allows one to identify the lingange of the voltage-
current (V-I) relations (see Fig. 4.3A). This is an impottaheck to limit the
possible contamination of subthreshold voltage-depencamductances. To in-
sure that only subthreshold activity is used for the ana)yettion potentials — if
present — were removed by excluding al}, ctivity within a window of 5 ms
before and 10 ms after the spike. To avoid the possible biasechby removing
compound EPSPs before spikes, the VmD estimates were pedoin hyper-
polarized segments with little spiking activity; the testiof this method using
dynamic-clamp experiments indicates that such a bias ikgilelg (see Rudolph
et al. 2004).

As two DC levels are necessary to estimate conductamces? levels pro-
vides multiple estimates corresponding to different rangeVy,. Up ton=8
current levels were used here, which leads up to 28 poss#tmgs. For each
pairing, the fitting of the W, distributions with the analytic expression (in partic-
ular its Gaussian approximation given in Rudolph et al. 200dlds estimates
of the synaptic conductances and their variances, pro\adagnber of other pa-
rameters are kept fixed. These parameters are the synamrsakpotentialsEe
= 0 mV andE; = -75 mV) and the decay time constantg € 3 ms andrt; =
10 ms) of synaptic conductances, as well as the leak conthei@, ; see Re-
sults) and reversal potentiak( = -80 mV). The values ofe = 3 ms andt; =
10 ms were obtained from the power spectra gfactivity (Rudolph et al. 2005).
The leak parameters were estimated based on previousdahttac experiments
realized on neurons of the same area of cat cortex (areadlaiving application
of tetrodotoxin (Paré et al. 1998): after suppression divoek activity, the mem-
brane conductance was reduced by approximately five tinmelsthee resting W,
was of -80 mV on average. The “optimal values” of conductgmesented here
(e.g., Fig. 4.3C) were based on the assumption that theatpssdf these experi-
ments (ketamine-xylazine anesthesia) have the sameveelatpact on the mem-
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brane as the up-states of natural slow-wave sleep analyred This assumption
is supported by the fact that the absolute values of inpusteexe during up-
states are similar in the two preparations (Paré et a. 1S&8jade et al. 2001).
We performed variations around this estimate (see Resuitsjder to check that
the results obtained do not qualitatively depend on thisragsion. Note that the
values of the conductance variances are not affected byatieydar choice of
the leak conductances (Rudolph et al. 2004; see Results).

We also performed a spike-triggered average (STA) condaetanalysis from
Vn activity. The average conductance time course related itespvas esti-
mated using a method outlined recently, and which was testedal neurons
with dynamic-clamp (Pospischil et al. 2007). The STA of tbéage is calculated
first, and the method searches for the “most likely” spikatezl conductance time
coursesde(t), gi(t)) that are compatible with the observed voltage STA. This es-
timation is made by discretizing the time axis in equatighid)and (4.2), which
leads to a discretized system from which one can evaluata tioability distribu-
tion for the spike-related conductance time courses. Shiselistribution is sym-
metric, the STAs of the synaptic conductances can be detethily maximizing
its probability distribution, which amounts to differesting the distribution and
subsequently solving a system of algebraic equations (&dspet al. 2007). The
system of algebraic equations is solved using standard mcathenethods (Press
et al. 1986).

To quantify the conductance STA, we fitted the conductamae tiourse using
the following exponential template:

Oe(t) = Qen(1+ keexp(%)) : (4.3)

for excitation, and an equivalent equation for inhibitiddere, ty stands for the
time of the spikeke quantifies the maximal increase/decrease of conductaiwe pr
to the spike, with time constafit (and similarly for inhibition). We also calcu-
lated therelative conductance chandpefore the spike:
o ke—Gioki

g0 +0io
Here, the termgeoke and gioki quantify the absolute excitatory and inhibitory
conductance change before the spike, respectively. Therelice between these
two contributions is normalized to the total synaptic cartdnce. A negative
value indicates an overall drop of total membrane condweetdoefore the spike
(asin Fig. 4.9A), while a positive value indicates an inseaf total conductance
(as in Supplementary Fig. 4).

To relate the STA analysis to the VmD analysis, we quantifiedrelative
excess conductandxy calculating the quantity:
Je0 — Gi0
Je0 +0i0

g (4.4)

& = (4.5)
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Here, a negative value indicates a membrane dominated hlyitoy conduc-
tance, while a positive value indicates dominant excitat@nductance.

Similarly, we calculated theelative excess conductance fluctuatidmyseval-
uating the quantity:

— Iy (4.6)

Finally, the fluctuating conductance model (Eq. 4.2) wasutted numeri-
cally together with voltage-dependent Nand K" conductances responsible for
generating action potentials (Hodgkin-Huxley type moddgth parameters iden-
tical as described in Destexhe et al. 2001, and refereneesitf). The conduc-
tance values obtained from intracellular data were intedran this model to ver-
ify that the Vi, activity and firing behavior obtained match the recordinfythe
corresponding cell. Simulations were performed on LINUXrka&bations using
the NEURON simulation environment (Hines and Carnevaler)1.99

4.4 Results

4.4.1 Intracellular recordings in awake and naturally sleging
animals

Intracellular recordings of cortical neurons were perfediin parietal cortex of
awake and naturally-sleeping cats (see Materials and Mejhintracellular record-
ings were done simultaneously with the local field poter(ti&lP), electromyo-
gram (EMG) and electrooculogram (EOG) to identify behasli@tates. With
pipettes filled with K -Acetate (KAc), we recorded and electrophysiologically
identified activities of 96 presumed excitatory neurondrauthe waking state.
Of them, 47 neurons revealed a regular-spiking (RS) firintyepa, with signif-
icant spike-frequency adaptation in response to depaiarizurrent pulses, and
spike width of 0.69+ 0.20 ms (range 0.4-1.5 ms). The,¥f RS neurons varied
in a range between -56 mV and -76 mV (mean -64.6.9 mV). 26 of these RS
neurons were “wake-active” cells, in which the firing wastairsed all through
the wake state, as described previously (Matsumara et &8;1Raranyi et al.
1993; Steriade et al. 2001; Timofeev et al. 2001). In thesk&ractive” neurons
(Fig. 4.1A), the \f, was depolarized (around -65 mV) and showed high-amplitude
fluctuations and sustained irregular firing (3.1 Hz on averagnge 1 to 11 Hz)
during wakefulness. During slow-wave sleep, all neurongagé showed up and
down states in the }{ activity in phase with the slow-waves (Fig. 4.1A, SWS), as
described previously (Steriade et al. 2001).

Almost half of the RS neurons recorded (21 out of 47), werekawvsilent”
cells, which systematically ceased firing during periodgugt wakefulness (cf.
Fig. 4.1B). Note that during the transition from slow-waleep to waking, these
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Figure 4.1: Activity of regular-spiking neurons during slow-wave gteand wakeful-
ness.A. “Wake active” regular-spiking neuron recorded simultargy with local field
potentials (LFP; see scheme) during slow-wave sleep (SW&wakefulness (Awake)
condition. B. “Wake-silent” regular-spiking neuron recorded simultangy with LFPs
and EMG during slow-wave sleep to wake transition. Slow-evsteep was characterized
by high-amplitude low-frequency field potentials, cycligplerpolarizations, and stable
muscle tone (expanded in upper left panel). Low-amplitudg lEgh-frequency fluctu-
ations of field potentials and muscle tone with periodic xttons characterized the
waking state. This neuron was depolarized and fired spikesglunitial 30 s of waking,
then hyperpolarized spontaneously and stopped firing. gxient of spontaneouspy\os-
cillations is expanded in the upper right panel. A periocdhwbiarrages of hyperpolarizing
potentials is further expanded as indicated by the arrow.
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wake-silent neurons continued to fire for 10-60 s, and alftet period, their \,
hyperpolarized by several mV and they stopped to fire actiergials as long as
the animal remained in the state of quiet wakefulness. EiguB illustrates one
example of a wake-silent cell which upon awakening hagh@¥%-53.0+ 4.9 mV
and fired with frequency 104 7.9 Hz for about 30 s. Thereafter, thgYyperpo-
larized to -62.5t+ 2.6 mV and the same neuron stopped firing. The hyperpolariza-
tion during waking state was not due td Koad because on 2 occasions, we were
able to obtain intracellular recordings from wake-sileatirons during waking
state that was preceded and followed by other states oawiggl (see Supplemen-
tary Fig. 1). In this case, the recorded neuron was relgtivepolarized and fired
action potentials during REM sleep. Upon awakening, thigoe was hyperpo-
larized by about 10 mV and stopped firing. After 3 min of waks#tgte the animal
went to slow-wave sleep state and the same neuron was depdland started
to fire action potentials. On one occasion (not shown) werdsab extracellu-
larly spikes from two units. One of the units stopped firingidg waking state
lasting about 10 min while another unit continued to emitaacpotentials. This
observation suggests that it is a particular set of neuradshat local networks
that stop firing during quiet wakefulness. The mean firingsdor RS neurons
were 6.1+ 6.7 Hz (silent neurons included; 104 5.6 Hz with silent neurons
excluded). No wake-silent cells were observed for otheromal classes than
RS cells, and all together, wake-silent neurons repredexiteut 25% of the total
number of recorded cells in the wake state. This large ptapoof wake-silent
neurons constitutes a first hint for an important role forbitbry conductances
during waking.

In contrast, no silent neuron was found for presumed inteores. Dur-
ing quiet wakefulness, 22 neurons were electrophysiofdlgicddentified as fast-
spiking (FS). They displayed virtually no adaptation andl la&tion potential
width of 0.27 +0.08 ms (range 0.15-0.45 ms). Upon awakening, FS neurons
tended to increase firing (Fig. 4.2A-B), and none of them veamd to cease
firing (n=9). Interestingly, the increase of firing of FS nes seems to follow
the steady hyperpolarization of RS “wake-silent” neurdfig.(4.2A). The mean
firing frequency of FS neurons was 28t820.4 Hz (Range 1-88 Hz; only 2 neu-
rons fired with frequency less than 2 Hz), which was signifilgahigher than
that of RS neurons §0.001; see Fig. 4.2C). The mean,\6f FS neurons was
-61.3+ 4.5 mV, which is not significantly different from thep\of RS neurons
(p=0.059).

To check for the contribution of K conductances during quiet wakefulness,
we recorded activities of 3 RS neurons with'Gidled pipettes (data not shown).
The presence of cesium greatly affected the repolarizirag@lof action poten-
tials, demonstrating that Cavas effective in blocking K conductances, but the
Vn, distribution was marginally affected by the presence ofuras The action
of intracellular C$ may overlap with the blocking action of neuromodulators
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Figure 4.2:Activity of fast-spiking interneurons upon awakeniy. Intracellular activ-

ity of a fast-spiking neuron recorded simultaneously witfPls, EMG and EOG during
the transition from slow-wave sleep to wake state. The oofstte waking state is indi-

cated by the arrow. Upon awakening, the mean firing ratealhitremained the same as
during sleep (for about 20 s), then slightly increased (sewfrate histogram at bottom).
B. Fragments of LFP and neuronal activities during slow-wdgesand waking states
are expanded as indicated in A by B1 and B2.Comparison of firing rates of regular-
spiking and fast-spiking neurons in wake states. Pooladtseshowing the mean firing

rate of RS (open circles) and FS (filled squares), repredergainst the meanpyduring
waking.
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on other K" conductances (McCormick 1992; Metherate and Ashe 1993§hwh
may explain the absence of effect of'Csn the \f,. This preliminary evidence
for a limited effect of cesium during wakefulness indicatest leak and K con-
ductances have no major effect on thg Mstribution, suggesting that it is mainly
determined by synaptic conductances.

4.4.2 Synaptic conductances in wakefulness and natural €p

To determine the relative contribution of excitatory anbilnitory conductances,
we have analyzed the intracellular recordings describest@hsing the recently
proposed VmD method (Rudolph et al. 2004). This method assuhat the ¥,
fluctuations are due to the combined action of two synaptiaotances, exci-
tatory @e) and inhibitory §;; see Materials and Methods). Instead of modeling
explicitly the activity of thousands of synapses, one ab&rs the \f, and synaptic
conductances as stochastic variables, which are destylqabability densities.
Using this formalism, it is possible to obtain an analytipesssion for the steady-
state probability distribution of the , which is expressed as a function of the
synaptic conductance parameters (Rudolph and Destextd& 2005). Because
the steady-state \ydistribution is observable experimentally, fitting the lgtia
expression to experimentalistributions provides estimates of the underlying
synaptic conductances. This method was tested using dgrdamp methods
and was shown to provide consistent estimates of synaptdumances and their
fluctuations (Rudolph et al. 2004).

We computed ¥, distributions for periods of stationary activity during kea
fulness and slow-wave sleep up-states. Fig. 4.3B (Awaka)shV, distributions
of two different but representative cells obtained fromiqgas of wakefulness, in
which the cat and the LFPs did not show any sign of drowsinEss Vi, distribu-
tion was approximately Gaussian, centered arard63.1 mV, and the standard
deviation of the \, (oy) was about 3.6 mV. During slow-wave sleep, we calcu-
lated the Y, distribution specifically during up-states (Fig. 4.3B, SyMShad an
approximately similar shape as during wakefuln&ss ¢62.7 mV;oy = 3.3 mV).
Similar distributions were also observed during rapid epe@ment (REM) sleep
(not shown). The ¥, distributions were computed using several pairs of DC lev-
els, which were selected in the linear portion of the V-I tiela (Fig. 4.3A). The
conductance estimates obtained for several of such pai{sge Materials and
Methods) are represented in Fig. 4.3C. In this example,nduboth wakeful-
ness and slow-wave sleep up-states, the inhibitory coadues were several-
fold larger than excitatory conductances. Variations fiedent parameters, such
as the leak conductances (Fig. 4.3D), or the parametersiapsig conductances
(see Materials and Methods), affected the absolute valtiesrauctance esti-
mates, but always pointed to the same qualitative effecioafidant inhibition.
The sole exception was when considering high leak condoetamarger than the
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Figure 4.3:Estimation of conductances from intracellular recordiimgawake and nat-
urally sleeping catsA. Voltage-current (V-1) relations obtained in two diffetarells dur-
ing wakefulness (Awake) and the up-states of slow-wavepq88V/S-Up). The average
subthreshold voltage (after removing spikes) is plotteairay the value of the holding
current.B. Examples of , distributionsp(V) obtained in the same neurons a\inThe
continuous lines show Gaussian fits of the experimentatiliigions. C. Conductance
values (mean and standard deviation) estimated by decamgpsgnaptic activity into
excitatory and inhibitory components using the VmD methegab(ied to 28 and 26 pair-
ings of Vi, recordings at different DC levels for Awake and SWS up-statespectively).
D. Variations of the value for conductance mean (top paneld)canductance fluctua-
tions (bottom panels) as a function of different choicestfar leak conductancesi, =
Rn(quiescentiR, (active); * indicates the region with high leak conductanedere exci-
tation is larger than inhibition; the gray area showsrth&alues used for the conductance
estimates irC.
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synaptic activity itself, in which case the excitatory andlibitory conductance
were of comparable magnitude (Fig. 4.3D, *).

The VmD method also provides estimates of the variance aigymconduc-
tances. Similar to absolute conductance estimates, ctarthe variances were
generally larger for inhibition (Fig. 4.3C). However, inrtoast to absolute con-
ductance estimates, the estimates of conductance varancet depend on the
particular choice of leak conductances (Fig. 4.3D, bott@mets; Fig. 4.5C for
population result). These results suggest that inhibpimvides a major partici-
pation to the V;, fluctuations.

This pattern was observed in the majority of cells analyadthough a di-
versity of conductance combinations was present when @ensg the different
states of vigilance, including periods of REM sleep. In ddr which synap-
tic conductances were estimated (n=11 for Awake, wakexacills only, n=7
for SWS up-states, n=2 for REM), the averagg ahd fluctuation amplitude was
comparable in all state¥/ (= -54.2+ 7.5 mV,oy = 2.4+0.7 mV for Awake;V
=-58.3+ 4.9 mV,oy = 2.7+£0.5 mV for SWS-UpV = -67.0+ 6.9 mV, oy =
1.940.6 mV for SWS-DownyV =-58.5+ 5.2 mV,oy =2.1+0.9 mV for REM;
see Fig. 4.4A). However, the total input resistance showggbrtant variations
(16.1+ 14.5 MQ for Awake; 12.3+ 19.6 MQ for SWS-Up; 22.4+ 31.7 MQ for
SWS-Down; 8.5+ 12.1 MQ for REM), possibly caused by differences in the pas-
sive properties and cellular morphologies. The estimayedstic conductances
spread over a large range of values for both mean (rangimg %t 70 nS and 5
to 170 nS for excitation and inhibition; Fig. 4.4B; media@4: nS and 55 nS for
excitation and inhibition during SWS-Up, 13 nS and 21 nS faitation and inhi-
bition for Awake; Fig. 4.4C) and standard deviation (raggmom 1.5 to 22 nS and
3.5 to 83 nS for excitation and inhibition; Fig. 4.5A) andrstard deviation (rang-
ing from 1.5 to 22 nS and 3.5 to 83 nS for excitation and infobit Fig. 4.5A;
medians: 7.6 nS and 9.3 nS for excitation and inhibition MfSUp, 4.3 nS and
7.7 nS for excitation and inhibition for Awake; Fig. 4.5Bh &ll states and for
reasonable assumptions for the leak conductance (Fig, 44§), dominant in-
hibition was found in more than half of the cells analyzed§rier Awake and
n=7 for SWS-Up had>40% larger mean inhibitory conductance; n=6 for Awake
and n=4 for SWS-Up had-40% larger inhibitory standard deviation). In the re-
maining cells, inhibitory and excitatory conductance esluvere of comparable
magnitude, with a tendency for a slight dominance of infobit{except for n=2
cells in Awake). Moreover, in all cells analyzed, inhibitivas more pronounced
during the up-states of SWS (estimated ratios betweenitidnband excitation
were 2.7+ 1.4 and 3.0+ 2.2 for conductance mean and standard deviation; me-
dians: 1.9 and 1.4, respectively) compared to wakefulnegmo$ of 1.8+ 1.1
and 1.9+ 0.9 for conductance mean and standard deviation; mediadsant
1.4, respectively; see Fig. 4.4C and Fig. 4.5B, respeghvdRenormalizing the
conductance values to the leak conductance for each cdileinveke state led
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Figure 4.4:Conductance estimates in cortical neurons during wake leeg statesA.
Average Vn, Vn, fluctuation amplitude and absolute input resistangedBring wakeful-
ness (Awake), slow-wave sleep up-states (SWS-Up) and RE®pgberiods, computed
from all cells for which synaptic conductances were estadaB. Spread of excitatory
(ge0) and inhibitory €io) conductance mean during wakefulness and slow-wave sfgep u
states. Estimated conductance values show a high vatyadnitiong the investigated cells,
but in almost all states, a dominance of inhibition was ole@rC. Box plots of mean ex-
citatory and inhibitory conductance estimates (left) anerage ratio between inhibitory
and excitatory mean (right) observed during wakefulnessshow-wave sleep up-states
for the population shown iB. In both states, dominant inhibition was observed, an ef-
fect which was more pronounced during SWS-Up. Variations of the ratio between
inhibitory and excitatory mean conductance values as diimof different choices for
the leak conductance, = Rin(quiescentfR, (active); the gray area indicates the values
used for conductance estimation plotted@iandC. E. Histograms of conductance values
relative to the leak conductance during the wake state.
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Figure 4.5: Estimates of conductance fluctuations from cortical nesirduring wake
and sleep statesA. Spread of excitatoryog) and inhibitory ¢;) conductance fluctua-
tions during wakefulness and slow-wave sleep up-statesm&®ed conductance values
show a high variability among the investigated cells, bulirstates, a dominance of in-
hibition was observedB. Box plots of excitatory and inhibitory conductance fludiom
amplitude (left) and average ratio between inhibitory arcitatory standard deviation
(right) observed during wakefulness (Awake) and slow-wsteep up-states (SWS-Up)
for population shown imA. In all cases, dominant inhibition was observed. In the
VmD method, estimated values for the ratio between inhipisind excitatory conduc-
tance fluctuations do not depend on different choices forlahk conductanceri, =

Rin(quiescentR;, (active).
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to values which were more homogeneous (Fig. 4.4E). In thée,cthe excitatory
conductance was of the order of the leak conductance (Hg, #eft; 0.814-0.26),
while inhibition was about 1.5 times larger (Fig. 4.4E, tigh26+0.31).

These results were also checked using the classic “Ohmiciwctance analy-
sis (see Supplementary Methods). By integrating thenéasurements in the var-
lous active states into the membrane equation (see Eg. 8.fplementary Meth-
ods), we obtained estimates for the ratio between meaniiaohjb(excitatory)
conductances and the leak conductance for each cell (Supptary Fig. 2A).
This and the pooled results for all available cells (Sup@etary Fig. 2B), also
indicate that the relative contribution of inhibition isveeal-fold larger than that
of excitation for both wakefulness and SWS up-states. Ayekalues arg; /0, =
3.2+ 1.3 for SWS-Up andj; /g, = 1.7+ 1.1 during wakefulness. Here also, these
values were relatively robust against the choice of the tsaiductance (Supple-
mentary Fig. 2C).

In a small subset of cells (h=3), the recording was long ehdagpan across
several wake and sleep states, so that SWS and wakefulnelsks e directly
compared. In agreement with the reduction of the averagefrate of RS neu-
rons during the transition from SWS to wakefulness, we okeska reduction
of the mean excitatory conductance (values during wakefidnvere between 40
and 93% of those during SWS-Up) and its fluctuation ampliiiog¢ween 45 and
85% of those observed during SWS-Up). In contrast to thergbddncrease of
the firing rate of interneurons during sleep-wake transgjdhe inhibitory con-
ductances also decreased markedly (values during walkskilnere between 35
and 60% for the mean conductance, and between 10 and 71%efstethdard
deviation compared to corresponding values during SWSseg;Discussion).

4.4.3 Conductance time course during up and down state tran-
sitions

We next estimated the time evolution of conductances duwmgnd down states
of slow-wave sleep. We performed a similar analysis as ghoith the differ-
ence that Y}, distributions were not calculated by accumulating stagsonly
over time, but also over repeated trials. Several up-statet, between 6 and
36 slow-wave oscillation cycles at 8 DC levels) were sekbeted aligned with
respect to the “down to up” transition as determined by thesihFP negativ-
ity (Fig. 4.6, left panels). The ¥ distributions were then calculated within small
(10 ms) windows before and after the transition. This praceted to estimates of
the time course of the conductances and their variancedpast@on of time dur-
ing “down-up” state transitions, and similarly for “up-doimransitions (Fig. 4.6,
right panels). It is important to note that conductance geanwere estimated
here relative to the down state, and not with respect to assabove. This anal-
ysis showed that, for this particular cell, the onset of tpestate is driven by
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Figure 4.6:Conductance time course during up and down states duringwsave sleep.
A. Superimposed intracellular traces during transitioosnfdown- to up-states (left pan-
els), and up- to down-states (right paneB).Time course of global synaptic conductances
during down-up and up-down transitions. Conductance atamgere evaluated relative
to the average conductance of the down state. Top: exgit@dgrgray) and inhibitory g;,
black) conductances; * indicates a drop of inhibitory castdace prior to the up-down
transition. Bottom: standard deviation of the conductarfoe excitation e, gray) and
inhibition (oj, black). Both are shown at the same time reference a&.for
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excitation, while inhibitory conductances activate wittieday of about 20 ms, af-
ter which they tend to dominate over excitation. Note thahis case, inhibition is
only slightly larger than excitation, presumably becabseréference state is here
the down state, which does not represent the true restitey $tethis cell, the end
of the up state was preceded by a drop of inhibition (Fig. 4BThe variance
of inhibitory conductances was always larger than that oitatory conductances
(see Fig. 4.6B, bottom).

4.4.4 Dynamics of spike initiation during activated states

To investigate how excitatory and inhibitory conductangaainics affect spike
initiation, we first simulated the above results using cotaponal models. We
used a spiking model with stochastic conductances (see.Ein Materials and
Methods) whose parameters are given by the above estimhttegrating the
particular values of conductances shown in Fig. 4.3C ledhibdel to generate
Vn activity in excellent agreement with the intracellularoetings (Fig. 4.7A,C,
Awake). All the present conductance measurements dureng/étking state were
simulated in a similar way and yieldedy\activity consistent with the recordings
(two more examples, with clearly dominant excitation orilxition are shown in
Supplementary Fig. 3). Similarly, integrating the con@dmncie variations, given
in Fig. 4.6B, generated ¥ activity consistent with the up-down state transitions
seen experimentally (Fig. 4.7B,C, SWS and SWS-Up). Thesdteesshow that the
conductance estimates obtained above are consistentwithtactivity recorded
experimentally.

We next evaluated the optimal conductance changes relatsdike initia-
tion in the simulated wake state. Fig. 4.8A shows that the SAdws opposite
variations for excitatory and inhibitory conductancescping the spike. As ex-
pected, spikes were correlated to an increase of excitéfign 4.8, Excitatory).
Less expected was that spikes were also correlated withraatec of inhibitory
conductance (Fig. 4.8, Inhibitory), so that the total sytitagpnductance decreases
before the spike (Fig. 4.8, Total). Such a drop of total caaluce was not present
in simulated states when inhibition was not dominant (Fi§BJ. These results
were checked using different combinations of parametersaalrop of total con-
ductance was always associated with inhibition-domingtés, except when the
variance of inhibition was very small (not shown). Such apdod total con-
ductance before the spike therefore constitutes a goodcpwedor inhibition-
dominant states, given that conductance fluctuations arghtgp proportional to
their means.

This prediction was tested using intracellular recordiofyslectrophysiologi-
cally identified RS cells. We performed STAs of thg, during wakefulness and
the up-states of SWS (Fig. 4.9A, AvgVm). The corresponding 8onductances
were estimated by discretizing the time axis and solvingnleenbrane equation
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Figure 4.7: Model of conductance interplay during wakefulness and thestates of
slow-wave sleepA. Simulated intracellular activity corresponding to measuents in
the wake state (based on conductance values shown in Fi@;l&& conductance of
13.4 nS).B. Simulated up and down states transitions (based on thesaliven in
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tively).
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waking state with dominant inhibition as in Fig. 4.7A (topeft: selection of 40 spikes;
middle: spike-triggered average (STA) of theg,\Right: STAs of excitatory, inhibitory
and total conductance. Spikes were correlated with a pncrease of excitation, a de-
crease of inhibition, and a decrease of the total conduetaBc Same STA procedure
from a state which displayed comparablg #Mictuations and spiking activity as i, but
where excitatory and inhibitory conductances had the sasenmalue. The latter state
was of lower overall conductance as compared t@nd spikes were correlated with an
increase of membrane conductance.
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Figure 4.9: Decrease of membrane conductance preceding spikes in vaaksleep
states. A. STA for the membrane potential (AvgnY as well as excitatory, inhibitory
and total conductances obtained from intracellular dategdlar-spiking neurons in an
awake (top) and sleeping (SWS-Up, bottom) cat. The estomaiaductance time courses
showed in both cases a drop of the total conductance causechagked drop of inhibitory
conductance within about 20 ms before the spiBeAverage value for the relative con-
ductance changéd andk;) triggering spikes during wakefulness (top) and up-stdtes
ing SWS (bottom) obtained from exponential fits of the STAdwctance time-course
(using Eg. 4.3), for all investigated cells. A decrease efttital membrane conductance
and of the inhibitory conductance is correlated with spikaeryation, similar to the model
(Fig. 4.8A). Estimated valuek = 0.41+ 0.23,k = -0.59+ 0.29, total change: -0.17
+ 0.18 for Awake;ke = 0.33+ 0.19,k =-0.40+ 0.13, total change: -0.2& 0.13 for
SWS-Up.C. Time constants of average excitatory and inhibitory catalce time course
ahead of a spike in SWS and wake states. Estimated valyes4.3+ 2.0 ms,T, = 26.3

4+ 19.0 ms for SWST. = 6.2+ 2.8,Ti = 22.3+ 7.9 ms for Awake.
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(see Materials and Methods). The STA conductances denatedia drop of total
membrane conductance preceding the spike (Fig. 4.9A,)Tethich occurred on
a similar time scale compared to the model (compare with £igA). The de-
composition of this conductance into excitatory and intioityi components shows
that the inhibitory conductance drops before the spikelenthie excitatory con-
ductance shows a steeper increase just prior to the spige4RA; note that the
latter increase is probably contaminated by voltage-dé@etcurrents associated
with spike generation). Such a pattern was observed in nidseaells tested (7
out of 10 cells in Awake, 6 out of 6 cells in SWS-Up and 2 out oefixin REM,;
see Fig. 4.9B-C). An example of a neuron which did not shova sudrop of total
conductance is given in Supplementary Fig. 4. Most of this debwever, yielded
STAs qualitatively equivalent to that of the model when bition is dominant
(Fig. 4.8A).

Finally, we investigated whether the dominance of inhdntjas deduced from
conductance analysis) and the drop of conductance (from &iBlysis) are re-
lated, by including all cells for which both analyses coutdmne (Fig. 4.10). The
total conductance change before the spike was clearlyecktatthe difference of
excitatory and inhibitory conductance deduced from VmDlygsia (gray area in
Fig. 4.10A), indicating that cells dominated by inhibitiganerally gave rise to a
drop of total conductance prior to the spike. However, theais no quantitative
relation between the amplitude of those changes. Such ditaiae relation was
obtained for conductance fluctuations (Fig. 4.10B), whiahigates that the mag-
nitude and sign of the conductance change prior to the spik&rongly related
to the relative amount of excitatory and inhibitory condunde fluctuations. The
clear correlation between the results of these two indegr@ahalyses therefore
confirms that most neurons have strong and highly fluctuatinidpitory conduc-
tances during wake and sleep states.

4.5 Discussion

We have presented here a combination of intracellular déegs and computa-
tional models of cortical neurons, which points to the faillog conclusions: (i)
Vm activity during wake and sleep states results from divemsahkinations of
excitatory and inhibitory conductances, with dominantiition in most of the
cases; (ii) inhibitory conductance fluctuations are gdhelager than for excita-
tion; (iv) spike initiation is in most cases correlated watldecrease of inhibition,
which appears as a transient drop of membrane conductaimmre@the spike.
We discuss below the significance of these findings.

It is important to note that the excitatory and inhibitoryndoctances were
estimated here from somatic recordings. The values olutdimerefore reflect
the overall conductances as seen from the soma, after tlendtegration, and
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Figure 4.10:Relation between conductance STA and the estimates of ctanthe and
variances. A. Relation between total membrane conductance changeebéferspike
(“relative conductance change”, Eq. 4.4) obtained from @malysis, and the difference
of excitatory and inhibitory conductance (“relative exxe&®nductance”; Eq. 4.5) esti-
mated using the VmD method. Most cells are situated in thetdeft quadrant (gray),
indicating a relation between inhibitory-dominant stadesl a drop of membrane con-
ductance prior to the spikd3. Relation between relative conductance change before the
spike and conductance fluctuations, expressed as theedifferbetween excitatory and
inhibitory fluctuations (“relative excess conductancetflations”; Eq. 4.6). Here, a clear
correlation (gray area) shows that the magnitude of the uctadce change before the
spike is related to the amplitude of conductance fluctuatioBymbols: wake = open
circles, SWS-Up = gray circles, REM = black circles. See Male and Methods for

definitions.
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are necessarily different than the “total” conductances@né in the soma and
dendrites of the neuron. However, these somatic estimatesl@se to the con-
ductance interplay underlying spike generation becausspike initiation zone
(presumably in the axon; see Stuart et al. 1997) is electicadtly close to the
soma.

Using such somatic estimates, dominant inhibition was sealh cells during
the up-states of slow-wave sleep (n=7 cells had more thanld@$ér inhibitory
conductance), and in the majority of neurons recorded imvtie state (n=6 cells
showed clear dominant inhibitory conductances). This kwien is robust to
a number of parameter variations, including different hjapses about the leak
conductance. A notable exception is when high leak condaoeta(larger than
synaptic activity) are assumed, in which case excitatodiahibitory conduc-
tances are of comparable magnitude. However, this pogiisivery unlikely in
cats, because high leak conductances would predict draefédcts of cesium on
the Vi, distribution, which is not what we observed (unpublishedestations).
Moreover, intracellular measurements in cats show thatadta conductance re-
sulting from intense synaptic activity is several-foldjar than the leak conduc-
tance (Borg-Graham et al. 1998; Paré et al. 1998). NeVedbesome neurons
were found to have roughly equal excitatory and inhibitaopductances during
waking for reasonable values of the leak conductance (FdP} These results
suggest that there exists a diversity of combinations oit&on and inhibition,
which varies from cell to cell in the same network, as alsanshpreviously for
visual responses in anesthetized cats (Monier et al. 2003).

On the other hand, with the exception of one cell, the vagasfcnhibition
was always larger than that of excitation, for all parangetested. In contrast to
conductance estimates, the VmD estimate of conductancneardoes not de-
pend on any hypothesis about the leak conductance. Thidénughof inhibitory
fluctuations is consistent with previous measurements iiticed neurons under
anesthesia (Rudolph et al. 2005; Hasenstaub et al. 20G&)gdfests that a major
part of Vi, fluctuations are due to variations of inhibitory conducesidBecause
variations of \f, are most effective on evoking spikes, rather than the abesolu
Vi level (Mainen and Sejnowski 1995), these results suggestitiibition is
particularly effective in evoking spikes (see below).

Interestingly, we also found that a significant proportidrercitatory neu-
rons cease firing during the wake state. Such wake-sileid wadre also ob-
served in motor cortex of young rats using whole-cell recagsl (Brecht et al.
2004). The high proportion of these wake-silent cells (%).6uggests that there
should be less excitatory conductance during wakefulraspared to slow-wave
sleep, which is indeed what we observed. Interneurons alswo diverse behav-
iors: the majority of FS cells recorded show an increase ofdgfin the wake
state, while a minority shows the opposite (not shown). Imtiast, all excitatory
cells analyzed in the sleep-wake transition (n=3) show aedse of inhibition
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at the transition to waking. This discrepancy can be explaiby bias in our
sampling of different populations of interneurons, which lenown to display op-
posite sensitivity to neuromodulators (Xiang et al. 1998)by a different state
of depression/potentiation at inhibitory synapses dejpgndn behavioral state.
In agreement with a previous study under anesthesia (Rodlal. 2005), these
differences also suggest that up-states and EEG-actistttxs stem from similar,
but non-identical network states.

In contrast with the present results, recent conductanesuanements showed
that, paradoxically, up and down states have a comparable resistance in rat
barrel cortexn vivo(Zou et al. 2005; Waters and Helmchen 2006). The difference
is not due to contamination by action-potential related Narrents, as suggested
by Waters and Helmchen (2006), because the spikes are renmoweir VmD
analysis and the V-1 relations were linear. Indeed, applyire VmD method to
barrel cortexin vivo also gave the same paradoxical results (Zou et al. 2005),
which were radically different than in association cortéxcats using the same
method (Rudolph et al. 2005; present results). High-cotathoe states have also
been observenh vivoin cat visual cortex (Borg-Graham et al. 1998; Hirsch et al.
1998; Anderson et al. 2000), in cat association cortexg(Bagel. 1998; Rudolph
et al. 2005), and in ferret visual cortex (Haider et al. 20Q@)ich suggests
fundamental differences of network dynamics in differemtical regions.

The present evidence for dominant inhibition also congrasth the roughly
equal conductances measured in voltage-clamp during @&peots up-states in
ferret cortical slices (Shu et al. 2003) iorvivo (Haider et al. 2006). Although
we also observed neurons with roughly equal conductanegsfor Wake, none
for SWS-Up), this does not explain the differences. A pdeslaplanation is that
those voltage-clamp measurements were performed in tisemre of Na and
K™ channel blockers (QX314 and cesium), and these drugs affetatodendritic
attenuation by reducing the resting conductance. Consdlgiuexcitatory events
located in dendrites have a more powerful impact on the samgared to the
intact neuron, which may explain the discrepancy. Anotlussgble explanation
is that, in voltage-clamp experiments, when the voltagengl is applied from the
soma, the more distal regions of the cell are unlikely to laenged, which may
result in errors in estimating conductances and reverdahgials. Moreover, in
this case, the presence of uncompensated electrode sgigtmince may worsen
the estimates or affect the ratio between excitation aniditidn (see simulations
in Supplementary Table 1). Further conductance measutsnsbould be per-
formed in non-anesthetized animals to address these isQrethe other hand,
our results are in agreement with conductance measuremperitgmed in cor-
tical neurondn vivo under anesthesia, which also show evidence for dominant
inhibitory conductances (Borg-Graham et al 1998; Hirschletl998; Destexhe
et al. 2003; Rudolph et al. 2005).

Not only inhibition seems to provide a major contributiorttte conductance
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state of the membrane, but also the conductance variatrenarger for inhibi-
tion compared to excitation. This suggests that inhibitemgely contributes to
setting the , fluctuations, and therefore it presumably has a strong infleie
on action potential firing. This hypothesis was tested in gotational models,
which predicted that when inhibition is dominant, spikes eorrelated with a
prior decrease of inhibition, rather than an increase oitatxan. This decrease
of inhibition should be visible as a membrane conductanceedse prior to the
spike, which is indeed what we observed in most neurons aedlyn wake and
sleep states (Fig. 4.9). A prominent role for inhibition iscasupported by pre-
vious intracellular recordings demonstrating a time lagkof inhibitory events
with action potentials in awake animals (Timofeev et al. PO@nd the powerful
role of inhibitory fluctuations on spiking in anesthetizedtes (Hasenstaub et al.
2005). Taken together, these results suggest that stroigtion is not a conse-
guence of anesthesia, but rather represents a propertsadjgrseen in awake and
natural sleep states, pleading for a powerful role for mt¢erons in determining
neuronal selectivity and information processing.

4.5.1 Supplementary Information
Supplementary Methods

The classic “Ohmic” method to estimate synaptic conduaarom intracellular
data is based on temporal averaging of the passive membgaagan (Eq. 4.2).
Under the assumption that the average membrane pot¥ntéhains stationary,
Eq. 4.2 yields

v EL1(Qe/CL)Eet (Gi/CGL)E
14+G/GL+Ti/GL
whereg, andg; denote the average excitatory and inhibitory conductamespec-
tively. Denoting the ratio between the total membrane impaistance in states
without network activity and in active states with = Rin(quiescentRin(active),
one obtains

, 4.7)

Oeiy  MinV —EL+Efje (1—rin)
GL Efeit —Efie '
This relation allows one to estimate the average relatiméritiution of inhibitory

excitatory synaptic inputs in activated states. The vafug,avas 3 for the wake
state, it wasi, = 4 for SWS up-states armgh = 5 for REM sleep.

(4.8)

Conductance estimates in morphologically-reconstructedeurons

To compare the conductance analysis using the VmD methddothier methods,
we have performed additional simulations using models @dmstructed pyrami-
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dal neurons. In a previous study (Rudolph et al., 2004), vesveld using mod-
els of pyramidal neurons that the VmD method provides cotaohoe estimates
which are identical to those obtained using a “perfect” §zseries resistance)
voltage-clamp in the soma. We extend here these simuldtypnemparing VmD
and voltage-clamp estimates for different parameter traria (see Supplemen-
tary Table 1). A Layer VI pyramidal cell from cat was simuldt&ith AMPA
and GABAa synapses distributed in soma and dendrites and which esleas-
domly such as to reprodude vivo-like activity (model from Destexhe and Paré,
1999). Different situations were considered: (a) the presef a 10 nS somatic
shunt to represent sharp-electrode impalement (same pteesas in Destexhe
and Paré, 1999); (b) Cesium recordings by reducing 95%solieik conductance
in soma and dendrites; (c) Different values of the seridstaasce of the electrode
(Rs). The presence of a somatic shunt had little effect on caiadhge estimates,
while cesium leads to larger conductances, but the lardfest evas that of series
resistance: not only the amplitude of the measured condcesabut also the con-
ductance variance, and the ratio between excitatory andiialy conductances.
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Supplementary table

geo (NS) Ge (NS) dio (NS) G; (NS) | Gio/Teo

Control,Rs=0 13.41 2.68 40.66 279 3.03
10 nS shuntRs=0 13.44 2.68 40.66 2.78| 3.03
10 nS shuntRs=3 MQ 11.3 2.05 30.0 2.02| 2.65
10 nS shuntRs=10 MQ 8.31 1.32 15.6 1.24| 1.87
10 nS shunt, CesiunRs=0 13.57 2.70 43.9 2.83| 3.23

10 nS shunt, CesiunRs=3 MQ 11.36 2.07 33.97 2.07, 2.99
10 nS shunt, CesiunRs=10 MQ 8.32 1.34 20.3 1.28| 2.44
10 nS shunt, CesiunRs=15 MQ 7.04 1.07 14.6 1.01| 2.07
10 nS shunt, CesiunRs=25 MQ 5.46 0.76 7.46 0.71] 1.36

Supplementary Table 1:

Table 4.1: Conductance estimates in voltage-clamp usingogpmologically-
reconstructed cortical pyramidal neuron. A model of baokgd activity in a spa-
tially distributed neuron (Layer VI pyramidal cell), withMPA/GABA A currents
in soma and dendrites, was used (same model parameterseasimgiestexhe
and Paré, 1999). The “Control” conditions correspond tediget voltage-clamp
(series resistand®s=0), which was used to estimate the excitatory and inhipitor
conductances visible from the somatic electrode. A 10 n®itsivas added in
the soma, and the series resistance was varied. To simelededings in the
presence of Cesium, the leak resistance was reduced by 95%ebshunt was
unaffected. The last column indicates the ratio betweeibittny and excitatory
conductances. Both the amplitude of the measured condigtand the ratio of
excitation/inhibition, were highly dependent on seriess&@ance.
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Supplementary figures
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Supplementary Figure 1:

Figure 4.11: Example of wake-silent neuron recorded thinalitferent behavioral
states. This neuron ceased firing during the REM to Wake itrangtop left
panel) and restarted firing as the animal drifted towards-siave sleep (top right
panel). The bottom panels indicate the membrane potentalL&Ps in those
different states at higher resolution.
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Supplementary Figure 2:

Figure 4.12: Estimation of relative conductances fromaicgtiular recordings
using the Ohmic method.A. Contribution of average excitatorgd) and in-
hibitory (g;) conductances relative to the leak conducta@gceduring wakeful-
ness (Awake), slow-wave sleep up-states (SWS-Up) and RE&pgeriods. Es-
timates were obtained by incorporating measurements cdtbeeage membrane
potential (spikes excluded) into the passive membranetiequgdhmic method,
see Supplementary Methods). Estimated relative condoetaalues show a
high variability among the investigated cells, but a gehdmaninance of inhi-
bition. B. Average ratio between inhibitory and excitatory mean cat@hces
observed during wakefulness (Awake) and slow-wave sleegtates (SWS-Up).
Dominant inhibition was observed in both states, and mooagqunced during
SWS. C. Variations of the ratio between average inhibitory anditexary con-
ductance values as a function of different choices for thk tnductance, =
Rin(quiescentfRi(active); the gray area indicates the values used for caadoe
estimation used iA andB.
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Supplementary Figure 3:

Figure 4.13: Computational models of two different condncte dynamics in the
wake state. Two examples similar to Fig. 4.7A are shown fordcgtance mea-
surements in two other cells. Left panel: neuron where tléabory conductance
was larger than the inhibitory conductance (“Excitatorynitzant”). Right panel:
neuron for which the inhibition was more pronounced (“Intuby dominant”;
this type of cell represented the majority of cells in the ingkstate). Same pa-
rameters as in Fig. 4.7A and Methods, exagpt= 14.6 nSgio = 12.1 nS,0e =
2.7 nS,0; = 2.8 nS (left panel)ge = 5.7 nS,gip = 22.8 nS,0e = 3.3 nS,0; =
10.0 nS (right panel).
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Supplementary Figure 4:
Figure 4.14: Example of cell showing an increase of total im@me conductance
preceding spikes during the wake state. For this partiewdaron recorded during

the wake state, the STA showed an increase of total membaoatictance prior
to the spike. Same description of panels and curves as B4, Awake.
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Résune

Introduction

Les neurones du cortex cérébral sont sujets a une &dtigg intense et irréguliere.
Une série de méthodes ont été introduites basées surepnésentation stochas-
tique de l'activité synaptique, le modele d’Ornsteinkehibeck (1930). Cet article

réalise une revue de ces differentes méthodes en lesazantpour la premiere

fois a partir des mémes données.

Résultats obtenus

La premiere méthode est I'estimation “YmD” de conductaa@artir de la distri-
bution du potentiel de membrane. Nous montrons I'applicetie cette méthode
a partir de modeles numeériques et a partir de neurone®dex visuelin vitro.
Des estimations sont également réaliséesvo (cfr Chapitre 4).

La deuxieme méthode est I'estimation des constanteswmgstsynaptiques par
la densité spectrale (PSD) du potentiel membranaire. Maas/sons I'applica-
bilité de cette méthode par simulation numérique, @stegments en dynamic-
clamp dans des neurones du cortex visaelitro et du cortex associatif du chat
in vivo.

La troiseme méthode analysée est la méthode STA egpaséChapitre 3.
Nous comparons les simulations numériques avec les ésrotiienues en dyna-
mic-clampin vitro et chez le chain vivo. Nous donnons également une nouvelle
version de cette méthode qui contient un parametre adeitde corrélation entre
excitation et inhibition.

En particulier, nous donnons une interprétation géaouet qui explique pour-
quoi la variance forte de I'inhibition implique d’observene diminution de con-
ductance liée aux PAs. Cette corrélation est observsallexpériences récentes
réalisées en dynamic-clanmpvitro.

Conclusions

En conclusion, cet article procure une revue des diffeseméthodes pour car-
actériser I'activité synaptique lors d’enregistrenseimtracellulaires, a partir du
seul Vin. Une analyse critique de ces méthodes est donnée, et ancisions que

ces méthodes procurent un ensemble d’analyse trés ptjissais qui connait

certaines limitations dont l'utilisateur doit étre coiest.
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5.1. ABSTRACT

5.1 Abstract

Cortical neurons are subject to sustained and irregulaapis activity which
causes important fluctuations of the membrane potentig).(WVe review here
different methods to characterize this activity and its attpon spike genera-
tion. The simplified, fluctuating point-conductance modekpnaptic activity
provides the starting point of a variety of methods for thalgsis of intracellular
Vrecordings. In this model, the synaptic excitatory andbitbry conductances
are described by Gaussian-distributed stochastic vasalar “colored conduc-
tance noise”. The matching of experimentally recordeg distributions to an
invertible theoretical expression derived from the modleMes the extraction of
parameters characterizing the synaptic conductancebdistms. This analysis
can be complemented by the matching of experimengab@wer spectral den-
sities (PSDs) to a theoretical template, even though thepewted scaling prop-
erties of experimental PSDs limit the precision of thisdatipproach. Building
on this stochastic characterization of synaptic activitg,also propose methods
to qualitatively and quantitatively evaluate spike-teged averages of synaptic
time-courses preceding spikes. This analysis points tesengial role for synap-
tic conductance variance in determining spike times. Tlesgmted methods are
evaluated using controlled conductance injection in cattheuronsn vitro with
the dynamic-clamp technique. We review their applicatimntghe analysis oin
vivo intracellular recordings in cat association cortex, wrsalggest a predomi-
nant role for inhibition in determining both sub- and sugreeshold dynamics of
cortical neurons embedded in active networks.

5.2 Introduction

Cerebral cortical networks can generate states of intenddreegular activity,

which are characterized by low-amplitude “desynchrorifedt activity in the

electroencephalogram (EEG), a defining feature of the awtke. Intracellu-
lar measurements in awake animals (Woody and Gruen, 197&uktara et al.,
1988; Baranyi et al., 1993; Steriade et al., 2001; Timoféal.e2001; Rudolph et
al., 2007) have shown that cortical neurons are depola(gsuolt -60 mV), have a
low input resistance, their membrane potential fluctuated,they fire irregularly
and sustainedly. During slow-wave sleep, or under sevegpast of anesthetics
(such as urethane or ketamine-xylazine), the membranefpatdisplays “up-

" (depolarized) and “down-" (hyperpolarized) states, whare paralleled with
EEG slow waves (Metherate and Ashe, 1993; Steriade et &3; Beriade et al.,
2001; Timofeev et al., 2001). During the up-state, the EE@&/nchronized and
the membrane potential of cortical neurons is depolarirethaghly fluctuating,

similar to the sustained activity found in awake animalsgierhe et al., 2007).
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5.2. INTRODUCTION

Up- and down-states have also been found in ferret cortiga@ssusing high-
potassium and low-calcium extracellular media (Sanchees/and McCormick,
2000) and in rat entorhinal slices as a function of the mdialstate (Cunning-
ham et al., 2006): these experiments indicate that intt@ebcircuits are able to
generate such states, presumably through recurrent gswitand inhibition. TTX
block of action potentials vivo (Paré et al., 1998) and CNQX block of excitatory
synapsesn vitro (Cunningham et al., 2006) abolish the depolarized, flustgat
states, which confirms their synaptic origin.

The recurrent activity of cortical networks has been ingeséd using com-
putational models at different levels and including vasialegrees of biological
detail. Large networks of formal (or simple spiking) newsaillow the analytic
derivation (or numerical confirmation) of conditions foffdrent classes of net-
work activity, such as oscillations or deterministic ch@éen Vreeswijk and Som-
polinsky, 1996; Roxin et al., 2005; Barak and Tsodyks, 200dgtwork models
incorporating a realistic diversity of cell types and distaif cortical connectiv-
ity allow quantitative predictions to be obtained throughmerical simulations
(Compte et al., 2003; Hill and Tononi, 2005). At the singleroa level, detailed
models can include the cell’s morphology, a variety of mgic ion channels and
distributed synaptic inputs: studies of such models agbessnpact of massive
input from the cortical network on dendritic processingkeprain statistics, neu-
ronal responsiveness and integrative properties (Besragtdal., 1991; Destexhe
and Paré, 1999; Rudolph and Destexhe 2003b,c; Destexhe20@8). However,
the parameterization of all those models requires a largeuatrof information
that cannot be obtained from any single experiment, whichpteates the com-
parison of simulation results with biological data.

A complementary approach consists in developing and stgdyiodels that
are relatively simple, but contain variables and pararseheat can all be related to
guantities directly measured in experiments. The poimdoatance model is one
such example (Destexhe et al., 2001): it describes the #oolaf the subthresh-
old Vi, of a single-compartment neuron by a passive membrane equatth
two additional stochastic conductance variabipé&) andg;(t). These variables,
modeled as Ornstein-Uhlenbeck (Brownian-motion-likejgasses, represent the
effective impact at the soma of thousands of single synapsggectively excita-
tory and inhibitory, activated by Poisson spike trains. \WWespnt here how this
model can be used in close combination with electrophygiofd experiments to
investigate the properties and the impact of cortical nesuractivity at the single
neuron level.

More specifically, we critically review, on the basis of nesweell as already
published data, applications of the point-conductanceahoflsynaptic activity
to the analysis of intracellular recordings in cortical rans: in each case, we
first briefly describe the method of analysis, then we showihoan be validated
experimentally by using controlled “conductance injectim biological neurons
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5.3. METHODS

with dynamic-clamp, and finally we present the applicatibthe method to the
analysis of real synaptic activity. We especially focus ecently developed ap-
proaches for determining which of the conductance conftgurs occurring in

the fluctuating synaptic activity trigger spikes.

5.3 Methods

5.3.1 Computational methods

Computational models were based on single-compartmemonguescribed by
the following membrane equation:
dv

Cqr = ~GL(V—E)—Ge(V—Ee) =G (V—E) + lex, (5.1)

whereC denotes the membrane capacitangg, a stimulation currentG, the
leak conductance arff| the leak reversal potentiade(t) andg;(t) are stochastic
excitatory and inhibitory conductances, with respectexgersal potentialge and
Ei.

These effective synaptic conductances were describecligltbwing Ornstein-
Uhlenbeck model (Destexhe et al., 2001):

2

del) 2 [0e(0)— Gl + ) 2 Eelt) (5.2)
2

—d%?) = —T—li[gi(t)—gio]+ Z%Ei(t% (5-3)

wheregey anda? are, respectively, the mean value and variance of the ¢ajta
conductanceie is the excitatory time constant, afglt) is a Gaussian white noise
source with zero mean and unit standard deviation. The iteinybconductance
gi(t) is described by an equivalent equation (Eq. 5.3) with patarsgio, 0i2, Ti
and noise sourcg(t).

In some simulations, the voltage-dependent conductaesgensible for ac-
tion potentialsgna andgkg (with respective reversals; andEg ), were included.
They were described by Hodgkin-Huxley type models (withatuns and pa-
rameters identical as described in Destexhe et al., 20@iLredarences therein),
resulting in the following equation:

C d_V = —G|_ (V—EL)—gNa(V—ENa)—ng (V—EK) (5.4)

dt
—0e(V—Ee)—Gi(V—E)+ lext -
Simulations were performed on LINUX workstations using eURON simu-
lation environment (Hines and Carnevale, 1997).
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5.3.2 Biological preparation

In vitro experiments were performed on 380-400thick coronal or sagittal slices
from the lateral portions of pentobarbital-anesthetizedltaferret (Marshall Eu-
rope, Lyon) and guinea-pig (CPA, Olivet, France) occiptaittex, as described
previously (Rudolph et al., 2004; Pospischil et al., 20@fices were maintained
in an interface style recording chamber at 33@5n slice solution containing
(in mM) 124 NaCl, 2.5 KCI, 1.2 MgS@Q 1.25 NaHPQ, 2 CaC}, 26 NaHCQ,
and 10 dextrose and aerated with 95%%9%0 CG, to a final pH of 7.4. In some
experiments on ferret cortical slices, after approxinyatehour, the solution was
modified to contain 1 mM MgS® 1 mM CaCp and 3.5 mM KCI (Sanchez-
Vives and McCormick, 2000) in order to obtain up-statesaecellular recordings
following two hours of recovery were performed in all codlitayers on electro-
physiologically identified regular spiking and intringiigebursting cells.

All research procedures concerning the experimental dsiara their care
adhered to the American Physiological Society’s Guidinigpéples in the Care
and Use of Animals, to the European Council Directive 86/6E€ and to Euro-
pean Treaties series no. 123, and was also approved by #ileetbacs committee
“lle-de-France Sud” (certificate no. 05-003).

We also review data from intracellular recordings in cabaggion cortexn
vivo, which were described in detail elsewhere (Rudolph et G052 Steriade et
al., 2001; Rudolph et al., 2007).

5.3.3 Electrophysiology

Sharp electrodes for intracellular recordings were mada Satter Instruments
P-87 micropipette puller from medium-walled glass (WPIF1BO0) and beveled
on a Sutter Instruments beveler (BV-10M). Micropipettesenvdled with 1.2-2
M potassium acetate - 4 mM potassium chloride and had resissaof 65-110
MQ after beveling. An Axoclamp 2B amplifier (Axon Instrument&gs used for
Vm recording and current injection. A Digidata 1322A card (AXastruments)
was used for data acquisition at 20 kHz.

The dynamic-clamp technique (Robinson et al., 1993; Shiaap,e1993) was
used to inject computer-generated conductances in reebmguDynamic-clamp
experiments were run as described previously (Rudolph. ef@d4, Pospischil
et al., 2007) using the hybrid RT-NEURON environment (deped by G. Le
Masson, INSERM 358, Université Bordeaux 2), which is a rfiediversion of
NEURON (Hines and Carnevale, 1997) running in real-timeeuitde Windows
2000 operating system (Microsoft Corp.). In these expemisighe injected cur-
rent IpynciampWwas determined from the fluctuating conductang&s) andg;(t)
modeled with Ornstein-Uhlenbeck processes (Egs. 5.2-88.3)ell as from the
difference between the recorded membrane voltagad the respective reversal
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potentials:
Ipynclamp = —0e(V —Ee) — Gi(V —E) . (5.5)

The contamination of measured membrane voltage by electaofacts was
avoided either through the use of the discontinuous cwakamp mode (in which
current injection and voltage recording alternate at feggpies of 2-3 kHz with
our electrodes) or with Active Electrode Compensation, eehdigh-resolution
digital on-line compensation technique we have recentieliped (Brette et al.,
2005; Rudolph et al., 2005).

5.3.4 Data analysis

The PC-based software ELPHY (developed by G. Sadoc, CNRSu&iY vette,
ANVAR and Biologic), Statview, Excel, custom-written Camand Neuron-code
were used for analyses. All values are given as avetagendard deviation.

VmD analysis

In dynamic-clamp experiments re-creating up-states wotidactance injection,
two approaches were used. In 3 cells, conductance estimatescomputed for
different, realistic values of leak conductance and celbc#tance, and were then
tested against the real up-states in dynamic-clamp. Inlg,debk conductance
and cell capacitance were estimated from the response tb @lmoent pulses,
and those values were then used for conductance estim#tierstimated con-
ductance parameters, when used for dynamic-clamp infecticoved to allow
successful matching of the real up-state in terms of Vmibigiions. In all cases,
conductance estimation was done during the recording EiRHY.

VmD analysis of then vivo data reviewed here is described in Rudolph et al.,
2005 and Rudolph et al., 2007.

PSD analysis

Power spectra of ) activity were fit to an analytic template (see Results) using
a simplex fitting algorithm (Press et al., 1986). Differemtial conditions (“first
guesses”) were given to the fitting procedure to ensure liesétwas no conver-
gence to local minima. Some fits were realized by fitting bbt amplitude of
excitatory and inhibitory component84 andA;; see Results), as well as the time
constantste andT;). In other cases, it was not possible to fit 4 parameters from
the experimental PSD. In such cases (typically fianaivo data), the fit was per-
formed with a single amplitude compone®: (= A;). In all cases, the effective
membrane time constarit) was fixed to the value estimated from the recordings.
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STA analysis

For each conductance injection, spikes were detected agimgshold at -30 mV.
Inter-spike-intervals (ISIs) were computed and for furtiiealysis, a stable region
in terms of ISl distribution was used (as assessed by a mmifisant Spearman
correlation test between ISI duration and time), includii§+ 493 spikes. When
investigating the impact of frequency on the accuracy ofa$temates, the same
number of spikes (52) was used for all analyzed injectionpikes following
ISIs of at least 100 ms were then selected. 50-ms-long piec¥s, ge and g
preceding each selected spike were averaged to obtain thestmed STAs”. We
checked that excluding spikes following ISIs shorter th@A fns did not affect
the STAs in an important way: the difference in measured gotahce variation
before the spike was of -0.1# 0.35 nS for excitation, and of 0% 0.7 nS for
inhibition. In order to compare with the STA extraction madibased on the Vm
STA, itis important to exclude short ISIs from the analysiatoid contamination
of the Vi, STA by preceding spikes or by their after-hyperpolarizagio

For conductance STAs extraction based on theSTA, parameters were ob-
tained in the following way: responses to depolarizingentrpulses were used to
estimate the membrane capacitance from the time constaxjpohential fits to
the decay of the ¥, and the leak conductance was obtained by dividing the aver-
age voltage during conductance injection, relative tag t®sthe average injected
current. When analyzing vivo recordings, the leak conductance obviously can-
not be obtained in this way. Howeven, vivo, the total membrane conductance
was estimated each time, which was not doneétro since most conductance in-
jections were performed at only one current level: the chgsecedure for leak
conductance estimation is meant to get as close as possithle situation where
the total conductance is constrained. More informatioruabte STA analysis of
thein vivo data reviewed here can be found in Rudolph et al. (2007).

To quantify both the measured and the extracted conductiigs, we fitted
the conductance time courses using the exponential teenplat

Qe(t) = g5

1+Ke exp(tT;TtX)] : (5.6)
Qe

for excitation, and an equivalent equation for inhibitiddere,ty stands for the
time of the spikeke quantifies the maximal increase/decrease of conductaiwe pr
to the spike fge = geo ke), With time constant3T*, andgg] s the average base-
line conductance (see Results).

5.4 Results

The point-conductance model of recurrent cortical actidéscribes the evolu-
tion of the subthreshold \/ of a point neuron based on two effective fluctuating
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conductancege andg; (Destexhe et al., 2001; see Methods for equations). The
basic assumption of this model is that the synaptic condeescan be described
as Gaussian-distributed stochastic variables. It was shbat the well-known
Ornstein-Uhlenbeck model of Brownian noise (Uhlenbeck @mndstein, 1930)
approximates very well the total synaptic conductanceslting from a large
number of conductance-based synaptic inputs (Destexhle, @081; Destexhe
and Rudolph, 2004). A fitting of this simple model to the réswf numerical
simulations using realistic cortical neuron morphologied distributed synaptic
inputs indicates the following correspondences betweeialvas: the time con-
stants €e, T;) are identical to the decay time constants of synaptic atsreThe
average conductancgef, gio) is related to the overall (integrated) conductance,
which depends on the release frequency of the correspodiisgon inputs, the
guantal conductance and the decay time of synaptic curr€hesvariance of the
conductancesog, oiz) is related to the same parameters, as well as to the syn-
chrony between inputs of the same type.

The theoretical and numerical analysis of the point-cotaehae model has led
to various useful derivations: an invertible expressiontfe steady-state distri-
bution of Vi, fluctuations (Rudolph and Destexhe, 2003, 2005), an expre&s
the power spectral density of\Mluctuations (Destexhe and Rudolph, 2004), a ge-
ometrical analysis of the configuration of conductancesatly preceding spikes,
and a probabilistic method for calculating the most likedpductance time course
preceding spikes given an averagg Wme course (Pospischil et al., 2007). We
now proceed to examine in more detail the applications asdhmmputational
results to the analysis of intracellular recordings inicaitneurons.

5.4.1 The VmD method for extracting synaptic conductance
parameters

Outline of the VmD method

The model described by Egs. 5.1-5.3 has been thoroughlyesttiteoretically
and numerically. This model describes the subthreshg|lituations of a neu-
ron subject to fluctuating conductanagsandg;. Different analytic approxima-
tions have been proposed to describe the steady-statéouligtn of these W,
fluctuations (Rudolph and Destexhe, 2003, 2005; Richarda®; Lindner and
Longtin, 2006; for a comparative study, see Rudolph anddéxést, 2006). One
of these expressions is invertible (Rudolph and Destexfi63,22005), which
enables one to directly estimate the parametgs @eo, Oe, 0i) from experimen-
tally calculated YV, distributions. This constitutes the basis of the VmD method
(Rudolph et al., 2004), which we outline below.

The essential idea behind the VmD method is to fit an analypcession to
the steady-state subthresholg, distribution obtained experimentally, and yield
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estimates of the parameters (mean, variance) of the umagiynaptic conduc-
tances. Among the different analytic expressions outlai@olve, we consider the
following Gaussian approximation of the steady-stagedistribution:

(V-V)?

V) ~ —
p(V) exp{ 202

: (5.7)

whereV is the average ¥ andoy its standard deviation. This expression pro-
vides an excellent approximation of the,\distributions obtained from models
and experiments (Rudolph et al., 2004), because thdistributions obtained ex-
perimentally show little asymmetry (for up-states andvetéid states; for specific
examples, see Figs. 5.1 and 5.2, and Rudolph et al., 2008, 2007).

One main advantage of this Gaussian approximation is tikahibe inverted,
which leads to expressions of the synaptic noise paramaseasfunction of the
Vi measurement¥, andoy. By fixing the values of andt;, which are related
to the decay time of synaptic currents and can be estimabed ¥oltage-clamp
data and/or current-clamp by using power spectral analyseSection 5.4.2), we
remain with four parameters to estimate: the meags ¢io) and standard devia-
tions (e, 0;) of excitatory and inhibitory synaptic conductances. Toamwt these
four conductance parameters from the membrane probathigitsibution, Eq. 5.7
is, however, insufficient because it is characterized by omb parameters\,
oy). To solve this problem, one possibility is to consider twg distributions ob-
tained at two different constant levels of injected curitggt andlexp. In this case,
the Gaussian approximation (Eq. 5.7) of the two distrimgigives two mean ¥
values )V, andV,, and two standard deviation values,; andoy». The resulting
system of four equations relatingn\parameters with conductance parameters can
now be solved for four unknowns:

(lexa —lexe) |03 (E) —V1)* — 0 (Eqr e —V2)?

Qeito = = = = - -
(Ee—V1)(Ei —V2) + (Ee—V2)(Ei —Vl)] (Efeiy —Ejigy) V1 —V2)
B (lexa — |ext2)(E{i,e} _\72> + [Ieth - GL(E{he} B E'—ﬂ (\71 _\72>
(Eteiy —Eigy) (V1 = V) ’
(5.8)
o, 2C (lexa — lex2) (031 (Eqiey —V2)” — 052 (Ejie) —V2)°]
e N — — — — - — 92"
Tiei) [(Ee—vl)(Ei —V2) + (Ee—V2)(Ei —Vlﬂ (Egeiy —Ejigy) M1 —\k)?
(5.9)
Here,T;, are effective time constants given by (Rudolph and DesteX0@5):
~ 20 (e Tm
Tei} Troi; + T (5.10)
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Figure 5.1: Conductance extraction frompydistributions: numerical and dynamic-
clamp test of the method. A. Simulation of the point-condace model (top trace) and
comparison between numerically computed Vm distributifotttom; blue) and the an-
alytic expression (red curves; conductance values showlreibbar graph). B. Dynamic-
clamp injection of the point-conductance model in a realraeu (Right) Conductance
parameters are re-estimated (back, colored; error barstamneard deviations obtained
when the same injected conductance parameters are reatetiin different cells) from
the V;,, distributions and compared to the known parameters of jeeted conductances
(front, grey). (Left) The experimentalydistributions are compared to the analytic dis-
tributions calculated using the re-estimated conductaacameters. C. Comparison of a
spontaneous up-state (Natural up-state) with an artifigiadtate recreated using conduc-
tance injection (Dynamic-clamp). Modified from Rudolph kf 2004.
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Figure 5.2:vmD estimation of conductances from intracellular recoggiin awake and
naturally sleeping cats. A. Intracellular recordings irea&and naturally sleeping (SWS)
cats. Recordings were made in association cortex (areaB-Examples of Vm distribu-
tions computed during wakefulness (Awake) and slow-wagefsup-states (SWS). The
continuous lines show Gaussian fits of the experimentafiloligions. Insets: current-
voltage relations obtained for these particular neuronCdhductance values estimated
using the VmD method. Results for the means,(gip) and standard deviationsd, o;)

of excitatory and inhibitory conductances, respectival/well as their ratios are shown
(error bars: standard deviations obtained by repeatingriaéysis using different pairs of
injected current levels). D. Grouped data showing the meaadsstandard deviations of
the conductances for different cells across different Wiehal states (REM = Rapid Eye
Movement sleep). Figure modified from Rudolph et al., 2007.
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wherel,, = C/(GL + geo + Gio) is the effective membrane time constant.

These relations enable us to estimate global charactsridtnetwork activity,
such as mean excitatorge) and inhibitory @io) synaptic conductances, as well
as their respective variancesg( Giz), from the sole knowledge of theMistribu-
tions obtained at two different levels of injected currehiis VmD method was
tested using computational models and dynamic-clamp arpats (Rudolph et
al., 2004) and was also used to extract conductances frderatit experimental
conditionsin vivo (Rudolph et al., 2005, 2007; Zou et al., 2005).

Testing the VmD method with dynamic-clamp

Taking advantage of the possibility, given by the dynani&vnp technique (see
Methods), to mimic in a finely controlled way the fluctuatingnductancegle
and g; in biological neurons, we performead vitro tests of the VmD method
(Rudolph et al., 2004; Piwkowska et al., 2004). In a first {@st5 neurons),
we computed ¥, distributions selectively during periods of subthreshaddiv-

ity collected within up-states recorded in ferret cortisites, we subsequently
extracted conductance parameters from Gaussian fits te thssibutions, and
finally we used the estimated parameters to inject fluctgatonductances in
dynamic-clamp in the same cell, during down-states. Figshows a typical
example of a real up-state and, shortly after, an up-stateeaed in dynamic-
clamp. We confirmed that thepydistributions are very similar in the two cases
(see Rudolph et al., 2004 for more details). This test shinasthe \f, distri-
butions observed experimentally vitro during recurrent cortical activity can be
accounted for by the proposed point-conductance model. I¥¢era-estimated
known parameters of synaptic conductanceg, @o, Oe, 0;) injected in dynamic-
clamp from the resulting ¥ distributions: the match between actual and esti-
mated values is shown in Fig. 5.1B. This second test indictitat the passive
approximation for the membrane behavior holds in the studese. In these
tests, we did not consider the issue of the estimatione@ndt; and assumed
these values are known.

Analysis of intracellular recordings of cortical neuronsin vivo

The VmD method was then applied to analyze intracellulaondiogs in anes-
thetized (Rudolph et al., 2005), as well as naturally sieg@nd awake cats
(Rudolph et al., 2007).

In the first study, recordings were performed in cat assiociatortex under
ketamine-xylazine anesthesia, during the slow osciltetypical of this anesthetic
and resembling slow-wave-sleep, as well as during proldmpgeiods of activity,
triggered by brain stem (PPT) stimulation, and with acggistmilar to that of
the aroused brain. The VmD method was used to extract synegiductance
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parameters underlying the,Mluctuations of the up-states of the slow oscillation,
as well as those underlying the continuous fluctuationsWatig PPT stimulation.
In both cases, the average estimated inhibitory conduetgigovas markedly
higher than the average estimated excitatory conductggcend similarly the
estimated variance of inhibitioo? was higher than the variance of excitatiof

The second study shows similar results across the natuka-slaep cycle of
the cat (Fig. 5.2): for a majority of cells, especially dgyislow-wave-sleep up-
states, inhibition dominated in terms of both mean and magaAt the population
level, the ratio of inhibition to excitation was higher dugislow-wave-sleep up-
states compared to the wake state. In 3 neurons that wenelegcacross several
states, both average conductances together with theanaes decreased in the
wake state compared to slow-wave-sleep up-states. Iniaadldé@specially dur-
ing the wake state, some cells displayed comparable excitahd inhibition or
even a dominant excitation (2 out of 11 cells in the wake ytal@e study also
reports an important diversity in the absolute values oettenated conductance
parameters.

An important concern in this type of studies is the estinratibthe leak pa-
rameters of the recorded neurons. The down-states of theaslaillation, when
the local network is presumably silent, are too short fopprty estimating these
parameters, since these brief periods immediately foligwarolonged up-states
are likely to include after-hyperpolarizing currents (Sagz-Vives et al., 2000)
that would bias the estimate of the leak. In both cases, salb&ined from pre-
vious work (Paré et al, 1998; Destexhe and Paré, 1999)uger@ for the up-states:
these studies evaluated that the ratio of input resistaiteeTal X block of synap-
tic activity to the total input resistance during up-stahess about 4 to 6-fold.
The total input resistance was estimated in all cells stufiem the linear portion
of the I-V curve obtained during up-states. During wake okevlke states, the
mean total input resistance, as compared to the mean tptéliesistance during
up-states, was taken into account to predict the ratio aftingsistance with and
without synaptic activity. The underlying hypothesis foese assumptions is that
the ratio of leak conductance to synaptic conductance igagim all cells dur-
ing comparable network states, implying that the leak cotahce and the total
synaptic conductance covary in a strong way across cellshdmatural wake-
sleep cycle study, the dependence of the conductance &ssimrathis important
ratio was systematically evaluated: this analysis showatithe estimated dom-
ination of inhibition was qualitatively robust, and thaistiprediction failed only
when the leak conductance and the total synaptic conduetarce assumed to
be approximately equal.

On the other hand, the variance estimates do not depend deatheonduc-
tance, provided that the total conductance is known, agisdbke in the cited stud-
ies. They are, however, dependent on the membrane capaigeee Eqs. 5.9
and 5.10). This value was assumed to be constant acrosdltharadyzedn vivo
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(supposing a specific membrane capacitancepf/én? and a membrane area of
around 3000@m?). In future studies, it could possibly be estimated usingrish
current pulse injection during the spontaneous activitygs the capacitance can
be extracted from the time constant of exponential fits tothelecay. Synaptic
conductance variances are useful parameters that carelbedred spike initiation
(see Sections 5.4.3 and 5.4.4). The VmD method providedrstepfiblished es-
timates for these parametarsvivo (for a different approach, see Monier et al.,
this issue).

5.4.2 Estimating time constants from \4, power spectral den-
Sity
Outline of the method

The point-conductance model given by Eqgs. 5.1-5.3 wasedudither, and re-
cently we showed that the power spectral density (PSD) oMtdluctuations
described by this model can be well approximated by the ioHg expression
(Destexhe and Rudolph, 2004):

4 1 03te (Ee—V)?  0%1j (E—V)?

- _ . (511
G2 1+w?1g 1+ o? 13 1+ T2 (5.11)

Sv ()

wherew = 2mtf, f is the frequencyGt = G + geo + Gio is the total membrane
conductancely, = C/Gr is the effective time constant, ald= (G| E| + geoEe +
gioEi)/Gr is the average membrane potential. The “effective leak'raxdma-
tion used to derive this equation consisted in incorpogatite average synaptic
conductances into the total leak conductance, and thendawimgy that fluctua-
tions around the obtained mean voltage are subjected tostasurdriving force
(Destexhe and Rudolph, 2004).

As mentioned above, the synaptic time constant parameteaadT;, need to
be estimated in order to extract precise values of the caadoe variances with
the VmD method. As those two parameters appear in the thealrekpression
of the V;,, PSD, we explored the possibility of evaluating them from dhalysis
of the PSD of experimentally recorded,¥luctuations. To this end, the following
simplified expression can be fitted:

1 AeTe AT

YO = 10w (1@ T 1red) (5.12)

whereAe andA; are amplitude parameters. This five parameter templatee$ us
to provide estimates of the parametessindt; (supposing that, has been mea-
sured). A further simplification consists in assuming that A;, which was used
for fitting in vivo data (see Methods).
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These analytic expressions were tested by comparing tklecpos to numer-
ical simulations of a single-compartment model subject wetélating synaptic
conductances (Egs. 5.1-5.3). The matching between thgtanapression and
the PSD obtained numerically was nearly perfect, as showign5.3A and as
reported in detail previously (Destexhe and Rudolph, 2004)

Testing synaptic time constants estimates with dynamic-amp

We applied the procedure described above to the PShdfuétuations obtained
by controlled, dynamic-clamp fluctuating conductancedtiga in cortical neu-
ronsin vitro (using a new, high resolution electrode compensation igaen
Brette et al., 2005; Rudolph et al., 2005). In this case, ttadirsy of the PSD
conforms to the prediction (Fig. 5.3B): the theoretical péamte (Eqg. 5.12) can
provide a very good fit of the experimentally obtained PSDtauground 400 Hz,
where recording noise becomes important. The template wasdaccording to
Eq. 5.11 or EqQ. 5.12, both of which provided equally good fitst shown). This
shows that the analytic expression for the PSD is consiatgranly with models,
but also with conductance injection in real neuransitro.

PSD Analysis of \f, fluctuations in vitro and in vivo

We have also attempted to apply the same procedurgntfiétuations result-
ing from real synaptic activity, during up-states recordeditro (Fig. 5.3C) and
during sustained network activity vivo (Fig. 5.3D). In this case, however, it is
apparent that the experimental PSDs cannot be fitted witthdaretical template
as nicely as for dynamic-clamp data (Fig. 5.3B). The PSDeamssa frequency
scaling region at high frequencies, and scales/d$§ With a different exponer

as predicted by the theory (see Figs. 5.3C-D). The analypoassion (Eq. 5.11)
predicts that the PSD should scale a$ atfhigh frequencies, but the experiments
show that the exponeut is obviously lower than that value (see Discussion for
possible reasons for such a difference). This differeno®ofse compromises the
accuracy of the method to estimateandT; in situations of real synaptic bom-
bardment. Nevertheless, including the values.ef 3 ms and;; = 10 ms provided
acceptable fits to the low-frequency 100 Hz) part of the spectrum (Fig. 5.3C-D,
red curves). However, in this case, small variations (add0¥30%) around these
values ofte andt; yielded equally good fits (not shown; see also Rudolph et al.,
2005). Thus, the method cannot be used to precisely estiimase parameters,
but can nevertheless be used to broadly estimate them wighranof the order

of 30 %.
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Figure 5.3:Fit of the synaptic time constants to the power spectrum @ftiembrane
potential. A. Comparison between the analytic predictigg.(5.11; red) and the PSD
of the Vm for a single-compartment model (Eqg. 5.1; black)jescibto excitatory and
inhibitory fluctuating conductances (Egs. 5.2-5t3;= 3 ms andt; = 10 ms). B. PSD
of the Vi, activity in a guinea-pig visual cortex neuron (black), wééne same model
of fluctuating conductances as in A was injected using dyoaiaimp. The red curve
shows the analytic prediction using the same parametetseasjécted conductances(
= 2.7 ms andr; = 10.5 ms). C. PSD of ¥ activity obtained in a ferret visual cortex
neuron (black) during spontaneously occurring up-stafBise PSD was computed by
averaging PSDs calculated for each up-state. The red chiowssthe best fit of the
analytic expression withlie = 3 ms andt; = 10 ms. D. PSD of }, activity recorded in
cat association cortex during activated statesivo. The red curve shows the best fit
obtained withte = 3 ms andrj = 10 ms. Panel A modified from Destexhe and Rudolph,
2004; Panel D modified from Rudolph et al., 2005.
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5.4.3 Estimating spike-triggering conductance configurabns
A preliminary investigation

The conductance measurements outlined above show thatithardiversity of
combinations ofje andg; that underlies the genesis of subthreshold activity in dif-
ferent preparations. We used a computational model basthe @oint-conductance
model, but including a spiking mechanism (see Eq. 5.5), pooduce those mea-
surements and try to infer what different properties suatestmay have in terms
of spike selectivity. Indeed, an infinite number of combimas$ of ge andg; can
give similar Vi, activity. Figure 5.4A illustrates two extreme examples aiuhis
continuum: first a state where both excitatory and inhilyitoonductances are
of comparable magnitude (Fig. 5.4A, left; “Equal conducest). In this state,
both conductances are lower than the resting conductarite akell and the ¥,

is fluctuating around -60 mV. Second, similap,Wuctuations can be obtained
when both conductances are of larger magnitude, but in #ss,dnhibition has
to be augmented several-fold to maintain thgaround -60 mV (Fig. 5.4A, right;
“Inhibition-dominated”). Such conductance values are entypical of what is
usually measureah vivo. Both conductances are larger than the resting conduc-
tance, a situation which can be described as a “high-coaduetstate”.

To determine how these two states differ in their spike $®igg we evaluated
the spike-triggering conductances by averaging the cdadue traces collected
in 50 ms windows preceding spikes. This average pattern mdwctance varia-
tions leading to spikes is shown in Fig. 5.4B. For equal-cmtahce states, there is
an increase of total conductance preceding spikes (puple an Fig. 5.4B, left),
as can be expected from the fact that excitation increagesufve in Fig. 5.4B,
left). In contrast, for inhibition-dominated states, tbéat conductance decreases
prior to the spike (purple curve in Fig. 5.4B, right), andstidecrease necessarily
comes from a similar decrease of inhibitory conductancechvis, in this case,
stronger than the increase of excitatory conductagoeufve in Fig. 5.4B, right).
Thus, in such states the spike seems primarily caused bypeofliiohibition.

This pattern was seen not only in the average, but also aetle of single
spikes. Using a vector representation to display the cdadae variation pre-
ceding spikes (each vector links the conductance state im@ow of 30-40 ms
before the spike with that in the 10 ms preceding the spikeystihat the major-
ity of spikes follow the average pattern (Fig. 5.4C). The sdeatures were also
present when the integrate-and-fire model was used (notrghawd thus do not
seem to depend on the spike generating mechanisms.

These patterns of conductance variations preceding spi&es also investi-
gated in real neurons by using dynamic-clamp experimenisjéct fluctuating
conductance# vitro. In this case, performing the same analysis as above re-
vealed similar features: spike-triggered averages (SoA#)e injected conduc-
tances displayed either increase or decrease in total ctartte, depending on
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Figure 5.4:Comparison between equal conductances and inhibitiorirdaed states in
a computational model. A. Equal conductance (lgf;= gio = 10 nS,0e = g; = 2.5 nS)
and inhibition-dominated states (riglgtp = 25 nS,gio = 100 NSOe = 7 NS andy; =28 nS)

in the point-conductance model. Excitatory and inhibitoonductances, and the mem-
brane potential, are shown from top to bottom. Action possitruncated here) were
described by Hodgkin-Huxley type models (Destexhe et 8012 Eq. 5.5). B. Average
conductance patterns triggering spikes. Spike-triggenestages (STAS) of excitatory,
inhibitory and total conductance were computed in a windéwloms before the spike.
C. Vector representation showing the variation of synagticductances preceding each
spike. The excitatory and inhibitory conductances wereaged in two windows of 30-

40 ms and 0-10 ms (circle) before the spike, and a vector veagrdbetween the obtained
values.
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the conductance parameters used (Fig. 5.5A), and the wegi@sentations were
also similar (Fig. 5.5B). It suggested that these featuresralependent of the
spike generating mechanism but rather are caused by sshtihde/m dynamics.

A geometrical interpretation based on the point-conductace model

The configuration of synaptic conductances just beforeespdan be explained
qualitatively by considering that the total current mustplositive at spike time,
i.e.,0e(Ee—M) +0i(Ei — M) + GL(EL — M) > 0, whereV; is the spike threshold
(using an integrate-and-fire approximation).

This inequality defines a half-plane in whi¢be,gi) must lie at spike time.
Fig. 5.6A shows graphically how this inequality affects siyeaptic conductances.
The variable(ge, gi) is normally distributed, so that isoprobability curves ale
lipses in the plane (plotted in red). In that plane, the §ge+ gi = geo + Gio}
going through the center of the ellipses defines the poimt&fiach the total con-
ductance equals the mean conductance, and the{gg&e —\t) + gi(Ei — W)
+GL(EL — V) = 0} defines the border of the half-plane in which conductances
lie at spike time. In the equal conductances regime (FigA Sedt), synaptic con-
ductances are small and have similar variances, so thaboisalpility curves are
circular; the intersection of the half-plane with thoseclgs is mostly above the
mean total conductance line, so that the total conductaniegher than average
at spike time.

In the inhibition-dominated regime (Fig. 5.6A, right), syptic conductances
are large and the variance gfis larger than the variance g, so that isoprob-
ability curves are vertically elongated ellipses; the riséetion of the half-plane
with those ellipses is essentially below the mean total aotahce line, so that
the total conductance is lower than average at spike time.

More precisely, when isoprobability curves are circulau@ variances), then
the expected total conductance is unchanged at spike tirae thie line§ ge(Ee — 1)
+0i(Ei —W) + GL(EL — W) = 0} and {ge + i = Jeo + Gio} are orthogonal, i.e.,
whenEs —\t + Ej —V; = 0. Spikes are associated with increases in conductance
when the first line has a higher slope, i.e., wignr-\; >\t — E; (which is typi-
cally the case).

When isoprobability curves are not circular, we can lookhat graph in the
space(®, 3) where isoprobability curves are circular. Then the orthnadity

_0e’ O .
condition between the lines

{%Ge(Ee—Vt) +=0i(E—W) +GL(EL—M) = 0}
Oe 0|

and
{%Oe"i— g'ﬁi =0e0 Tt gio}

Oe Oj
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Figure 5.5: Average conductance patterns triggering spikes in dynataimp experi-
ments. A. Spike-triggered averages of excitatory, inbilyitand total conductance in a
window of 50 ms before the spike in a cortical neuron subjedcfuctuating conductance
injection. The two states, equal conductances (left) anibition-dominated (right), were
recreated similar to the model of Fig. 5.4. Conductance Shsved qualitatively sim-
ilar patterns. B. Vector representation showing the viarabf synaptic conductances
preceding each spike (as in Fig. 5.4C).
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Figure 5.6: Geometrical interpretation of the average conductanctempat preceding
spikes and test in dynamic-clamp. A. Red ellipses: isoptegbeonductance configura-
tions. Green area: conductance configurations for whichotiaé synaptic current is pos-
itive at spike threshold. The vector representations o Fgd—5.5 are schematized here,
and compared to the lines defined pye(Ee — Vi) + 6i(Ei — M) + G (EL — V) = 0} and
{Ge+0i = geo + Tio}. The angle between the two lines determines whether spikgze-
ceded, on average, by total conductance increase (lef8avedse (right) (see text for fur-
ther explanations). B. Spike-triggered average condaetanbtained in dynamic-clamp,
illustrating that for the same average conductances, thanges determine whether
spikes are preceded by total conductance increase (lefi@@oease (right). C. Geomet-
rical prediction tested in dynamic-clamp (left): groupeatadshowing total conductance
change preceding spikes as a function of the ratitw;. The dashed lineg/c;=0.6)
visualizes the predicted value separating total condaetémcrease cases from total con-
ductance decrease cases. In addition (right), dynamiogcl#ata indicates that the ampli-
tude of change of each of the conductances before a spikeeally correlated with the
standard deviation parameter used for this conductance.
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reads
0a(Ee—W)+07(Ei—W) =0.

It follows that spikes are associated with increases in tmtaductance when the
following condition is met:

e M-Ei
Oj Ee — Vi

One can also recover this result by calculating the expeataf the conduc-
tance change conditionally to the fact that the currentiftegpreshold is positive
(implicitly, we are neglecting the correlation time comgtaof the synaptic con-
ductances). Using typical valueg; = —55 mV, Ec = 0 mV, E; = —75 mV),
we conclude that spikes are associated with increasesahcmbductance when
Oe > 0.60;. This inequality is indeed satisfied in the equal conduaanegime
and not in the inhibition-dominated regime investigatedvah

Testing the geometrical prediction with dynamic-clamp

The geometrical reasoning predicts that the sign of thé $gteptic conductance
change triggering spikes depends only on the ratio of symaatiances, and not
on the average conductances. We have systematically téssedrediction us-
ing dynamic-clamp injection of fluctuating conductancewitro. In 8 regular
spiking cortical neurons, we scanned different parameiginres in a total of 36
fluctuating conductance injections. Fig. 5.6B shows twargXas from the same
cell: both correspond to an average “high conductance’megidominated by
inhibition, but in one case it is the variance of excitationthe other case the
variance of inhibition, that is higher. We can see that thaltoonductance be-
fore the spike increases in the first case, but decreases isettond. Fig. 5.6C
(left) shows the average total conductance change pregsgikes as a function
of oe/aj, for all the 36 injections: the vertical dashed line repnése¢he predicted
value ofoe/0;=0.6, which indeed separates all the “conductance dropfigoma-
tions from the “conductance increase” configurations. Blengh the prediction
is based on a simple integrate-and-fire extension of the{ogoimductance model,
we can see that the ratio of synaptic variances can predicsitin of the total
conductance change triggering spikes in biological cakthi@urons subjected to
fluctuating excitatory and inhibitory conductances.

In addition (Fig. 5.6C, right), the dynamic-clamp data shdhat the average
amplitude of changege = geo ke, Se€ Methods) of each synaptic conductance
preceding a spike is related, in a linear way, to the standaxdation of this
conductance. For a fixed value of standard deviation, ther® mo significant
influence of the average conductance (not shown). This edsen is consistent
with the idea that in all the cases studied here, the firindpefcell was driven by
fluctuations in the ¥, rather than by a high mean,Walue (not shown).
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Taken together, these theoretical and experimental agmliyslicate that the
average total conductance drop preceding spikes, as sdée [high conduc-
tance” case we initially considered (Fig. 5.4), is not a dinsequence of the
“high conductance” state of the membrane, but is in facttedl@o the high in-
hibitory variance, which is indeed to be expected espgcialien the mean in-
hibitory conductance is also high (as confirmed by the stugresented in the
first part of this article).

5.4.4 Estimating spike-triggered averages of synaptic calc-
tances from the W,

In order to extend the analysis of spike-triggering condncé configurations to
real recurrent cortical activity observauvivo, we recently developed a procedure
to extract the spike-triggered averages (STAs) of conaheetsfrom recordings of
the Vi (Fig. 5.7; Pospischil et al., 2007). The STA of thg M calculated first, and
the method searches for the “most likely” spike-relateddtmbance time courses
(ge(t), gi(t)) that are compatible with the observed voltage STA. Thegutace is
based on a discretization of the time axis in Egs. 5.1-5.8&winearranged, lead
to the following relations:

C (VK—EL gK(VK—E,) VKLI_vk |

k [ — L e € o ext

J VK Ei { T * C T At C } (5.13)
1 Aty At

k _ = k+1 k(480 At

& = =\ (ge ~%(1-7) Tegeo) (5.14)
1 Aty At

k = k+1  kfq =24y =

&= (9. g(1-T) -3 g.o) : (5.15)

wheret. = C/G_ is the resting membrane time constant. Note &ét) and
&i(t) have become Gaussian—distributed random numifeamd&X. There is a
continuum of combinationggk*L, gik”} that can advance the membrane potential
from VK1 to VK2, each pair occurring with a probability

1 1k ke 1 1 yk
Pl PG g ge ) = e 2T = e m (5.16)
Aty At \?
k k+1 Ak I
Xt = (ge ge<1 Te> Tegeo) (5.17)

; A\ At \?
I k+1 Kk it
to2 (g, 9 <1 Ti> Tj g.o) '

Because of Eq. 5.13 andgf are not independent argf is, thus, a unidimen-
sional distribution only. Given initial conductancég, g}, one can write down
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Figure 5.7:Spike-triggered conductance extraction from intracatiukcordings of the
Vm and test in dynamic-clamp. A. Left: spike-triggered averé§TA) of the \f, in an
integrate-and-fire extension of the point-conductanceeh(dp trace). The numerically
obtained conductance STAs (orange, green) are comparéeé mhductance STAS ex-
tracted from the Vm (black) (bottom trace). Right: test & 8TA method using dynamic-
clamp. The STA of the ¥ is obtained following injection of fluctuating conductasce
(top trace). The measured conductance STAs (orange, gaeempmpared to the con-
ductance STAs extracted from the,\(black) (bottom trace). B. Grouped data comparing
conductance STAs extracted using the method with the céadce STAs measured fol-
lowing dynamic-clamp injection: amplitude of conductaratenge preceding the spike
(top graphs) and time constant of this change (bottom gjaptisboth excitation and
inhibition. C. Top: correlation between errors for exgégatand inhibition on the abso-
lute value of conductance variation. Bottom: total condoce change preceding spikes;
comparison between extracted and measured STAs. DaslkstMig- X.
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the probabilityp for certain series of conductanc{age gI }J —o,...n to occur that
reproduce a given voltage trafe'}|_ —1..ntl

n—1
k
p=[1p" (5.18)
I

Due to the symmetry of the distributign the average paths of the conductances
coincide with the most likely ones. It is thus sufficient taetenine the con-
ductance series with extremal likelihood by solving theimehsional system of

linear equations
{"’X o} , (5.19)
age k=1,...,n

-----

whereX = Y= éxk for the vector{gk}. This is equivalent to solvmga F =

O}k=1,...n and involves the numerical inversion of arx n-matrix, which can be
done using standard numeric methods (Press et al., 1986). sé'mes{g }is
subsequently obtained from Eq. 5.13. Details of this praceds well as an
evaluation of its performance can be found in Pospischil.e2807.

The method requires first an estimation of the parametersitexy the distri-
bution of each of the conductances, which can be obtaineddyimD method.
The leak parameters of the cell, or alternatively the eiffegbarameters during
Vn fluctuations (effective conductance and effective timestant), also have to
be estimated prior to this analysis. The method was suadbssésted using
computational models: conductance STAs extracted fronvthef an integrate-
and-fire point-conductance model are nearly identicaléantmerically obtained
conductance STAs (Fig. 5.7A, left; Pospischil et al., 2007)

During response to sensory stimuli, there can be a substdetjree of corre-
lation between excitatory and inhibitory synaptic inputdider et al., 2003; Wehr
and Zador, 2003; Wilent and Contreras, 2005). Since thisdn has not been
addressed in Pospischil et al., 2007, we would like to skatpbssible extension
of the method. To this end, we reformulate the discretizedioas of Egs. 5.2,
5.3 in the following way:

k+1 k k

Je' " —0e _ge_geO

T ™ +0e Te<1+c)(51+\[052) (5.20)
k+1

g -9 g 9 —Gio 20t k—d
TR SRR (et R VC RO Y

Here, instead of having one “private” white noise sourceliieg each con-
ductance channel, now the same two noise soufcesmd&, contribute to both
inhibition and excitation. The amount of correlation is édnby the parameter
c. Also, since there is evidence that the peak ofgkey—crosscorrelation is not
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always centered at 0 during stimulus-evoked responselaf/el@ inhibition”; see
Wehr and Zador, 2003; Wilent and Contreras, 2005), we allowra-zero delay

d: for a positive parametet, the inhibitory channel receives the input that the
excitatory channel receivatitime steps before. Egs. 5.20 and 5.21 can be solved
for E'{ andE'g, thus replacing Egs. 5.14 and 5.15. Itis then possible togao as in

the uncorrelated case, where now, due to the delay, thexalascribing Eq. 5.19
has additional subdiagonal entries.

However, the application of this extended method requinesestimation of
the usual leak parameters, of conductance distributicenpeters — for which the
VmD method cannot be directly used in its current form sineebased on uncor-
related noise sources — as well as knowledge of the paraseetedd. At present,
we can only speculate on hamandd could be evaluated in experiments: extra-
cellularly recorded spike trains could perhaps be usedisoetid, provided that
simultaneously recorded single units could be classifiekaisatory or inhibitory.
Alternatively, different plausible andd values could be scanned to examine how
they could potentially influence the conductance STAs extchfrom a given W,
STA.

Testing STA estimation with dynamic-clamp

The dynamic-clamp data presented above was used to evdileatecuracy of the
conductance STA estimation method (for the uncorrelated oaly): indeed, the
conductance STAs estimated from thg, 8TAs could be compared to conduc-
tance STAs obtained directly by averaging conductancestaince in dynamic-
clamp the injected conductances are perfectly controliethb experimentalist.
For the 36 injections analyzed, a good match was observedebatthe two (see
one example in Fig. 5.7A, right panel). Since we intendedviduate the STA
method specifically, we assumed that conductance disoibparameters were
known. In addition, we estimated the cell’s leak paramefseee Methods). To
quantify the comparison on a population basis, we did thieviehg analyses:
exponential functions (see Methods) were fitted to each wctadice STA (esti-
mated and directly measured) starting at 1 ms before the gkl decaying to
baseline backwards in time. We then compared the asymptalies (i.e., the
average baseline conductances) and the time constantssef fits, as well as the
amplitude of conductance change from the start of the fit éoakymptote (i.e.,
the amplitude of conductance change preceding the spikegll tases but one,
the exponential functions provided excellent fits to thedrartance STAs. It was
necessary to exclude the 1 ms time window preceding the $pikgoid severe
contamination of the analyses by intrinsic conductancesclugding a broader
time window did not improve the analyses for these neurons.

The average baseline conductances always matched vergewell of -0.1+
0.25 nS, or -0.8+ 2.6 %, for excitation; 0.8t 1.5 nS, or 0.6+ 4.5%, for inhi-

107



5.4. RESULTS

bition; not shown). More importantly, the estimates of therage conductance
patterns leading to spikes were also in good correspondeitbeghe measured
patterns, in terms of both the amplitude of conductance gddRig. 5.7C, top;
error of -1.2+ 3 nS, or -26+ 28.8 %, for excitatory amplitude change, and -2.0
+ 2.5 nS, or -10. 7 47%, for inhibitory amplitude change) and the time con-
stant (Fig. 5.7C, bottom; error of 0.390.48 ms, or 11.2+ 21.1% for excitatory
time constant, and 0.3& 1.71, or 2.6+ 18.8%, for inhibitory time constant).
For excitation, the error on the estimate of the amplitudeoiselated with the
error on the estimate of the time constant (not shown): tnggests that, in most
cases, a slightly too fast rise of the excitatory conduaarsults in a slightly too
high amplitude of conductance change. The lack of cormabetween the two
error measures in the case of the inhibitory conductancetptd a more com-
plex origin for the observed errors. Moreover, the errorsh@namplitude of the
two conductance changes are positively correlated (Fi,50p). This depen-
dency actually ensures that the error on the estimateddotaluctance change
(excitation-inhibition) remains small (-08 2.4 nS; Fig. 5.7D, bottom).

Finally, we have investigated the dependency of the estilgrabrs on a diver-
sity of variables, and found a correlation of amplitude eswith the average \
during the fluctuating conductance injection (not shownis tlependency points
to a possible contamination by intrinsic conductances/aigtd differentially at
different average ¥ levels. However, we found no dependency of the error on
average firing rate (for the rates up to around 30 Hz studieg) heuggesting no
important contamination by spike-dependent conductaliiathe ones underly-
ing the after-hyperpolarization (when care is taken to cat@i TAS using spikes
preceded by at least 100 ms of silence, see Methods).

We have also verified that conductance STA estimates canliee k@ to
investigate what factors determine the average conduetgagations preced-
ing spikes. Fig. 5.8 shows that the analyses performed qushlyi on dynamic-
clamp data (i.e., on STAs obtained directly by averagingctireductance traces,
Fig. 5.6B-C), can also be successfully performed using timelactance STAs es-
timated from the corresponding,STAs: Fig. 5.8A shows the estimated STAs in
the two different “high conductance” states, dominatedibiyee excitatory or in-
hibitory variance (compare to Fig. 5.6B). Fig. 5.8B shows the population data,
the (significant) correlations between total conductameage anae/o;, as well
as between the change of each of the conductances and tespmrding stan-
dard deviation. Note the similarity between Fig. 5.6B-C &gl 5.8A-B, even
though the correlations at the population level are moreywhen the estimated
STAs are used.
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Figure 5.8:Analysis of the average conductance patterns precedikgspmgame anal-
ysis as Fig. 5.6B-C, but using conductance STAs extractad the \,, instead of the
measured ones. A. Example conductance STAs extracted fr@v,{ STAs of the same
cell and the same conductance injections as Fig. 5.6B. B: teft of the geometrical
prediction (dashed line) using conductance STAs extrécted the Vi, and showing to-
tal conductance change preceding spikes as a function oatioas./o; (as in Fig. 5.6C,
left). Right: correlation between the amplitude of chanfyeaxh conductance preceding a

spike, as extracted from thg,yand the standard deviation parameter for this conductance

(compare to Fig. 5.6C, right).
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STA Analysis of intracellular recordings of cortical neuronsin vivo

The conductance STA estimation method was used to deteooimtkictance vari-
ations preceding spikes duringyMluctuationsin vivo (Rudolph et al., 2007).
Starting from \{, recordings of spontaneous spiking activity in awake or hatu
rally sleeping cats, we computed the spike-triggered aeod the \f, (Fig. 5.9).
Using values of), io, Te, 0; estimated using the VmD method (see above), we
computed the most likely conductance traces yielding tleeoked \4, averages.
Most of these analyses (7 out of 10 cells for awake, 6 out ofrGlow-wave-
sleep, 2 out of 2 for REM) revealed conductance dynamicsistamg with states
dominated by inhibitory variance: there was a drop of thaltobnductance pre-
ceding spikes, due to a strong decrease of the inhibitordwatance (Fig. 5.9,
right). However, a few cases, in the wake state (3 out of 18)alisplayed the
opposite configuration with the total synaptic conductanceeasing before the
spike (Fig. 5.9, left).

We also checked how the geometrical prediction relatingsige of total
conductance change preceding spikes and the @at@ performed for this data
(Fig. 5.9B). We have seen that the critical valuesgfo; for which the total con-
ductance change shifts from positive to negative dependieapike threshold.
This parameter was quite variable in the recorded cells,sand criticaloe/o;
value was calculated for each cell. Fig. 5.9B shows the loaed highest critical
values obtained (dashed lines), and also displays in wihéeells which do not
conform to the prediction based on their critical value.sTiithe case for only 4
out of 18 cells, for three of which the total conductance ¢eais close to zero.

The extraction of conductance STAs depends on the accufatye synap-
tic conductance parameters estimated with the VmD methbéshameans that
assumptions made about the leak conductance and the caditzape will influ-
ence the results (see Section 5.4.1). We have shown thaatibesg/o; should
determine whether, on average, the total conductanceaseseor decreases prior
to the spike. This ratio is independent of the leak condwaabut it depends on
the capacitanc€. However, it appears in both the numerator and the denomina-
tor of the ratio. Fig. 5.9C shows the dependencygb; on this parameter for
different values of total input resistance and two sets alisgc values for the ¥4
distribution parameters. This analysis indicates thabaaeable error o€ pro-
duces a limited error on the ratm/o;, and suggests that conclusions drawn from
thein vivo data about the respective contributions of excitation aidbition in
triggering spikes are valid.

5.5 Discussion

We presented how the simple point-conductance model atebsgynaptic activ-
ity can provide a basis for the analysis of experimental, ,degaentially through
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Figure 5.9:Spike-triggered conductance analyisiszivo. A. STA conductance analysis
from intracellular recordings in awake and sleeping catgo €&xample cells are shown
during wakefulness, and for each, thg 8TA (top) and the extracted conductance STAs
(bottom) are shown. In the first cell (left), the total con@dunce increases before the spike.
In the second example cell (right), the total conductanceedeses before the spike (black
traces are exponential fits to the extracted STAs). B. Taatlactance change preced-
ing spikes as a function of the ratm/o;. Given the cell-to-cell variability of observed
spike thresholds, each cell has a different predicted s&parating total conductance in-
crease cases from total conductance decrease cases. Thadhed linesdg/0;=0.48
and o./0;=1.07) visualize the two extreme predicted ratios. Cellw/lvite are the ones
not conforming to the prediction. C. Dependency of the ratiw; estimated by the VmD
method on the value of the membrane capacit&®icdwo sets of realistic ) distribu-
tion parameters were used as input for the estimation, auing too/o; > 0.6 (left),
another leading toe/o; < 0.6 (right). For each set, the total input resistance wagdar
from 10 MQ (bottom curves) to 50 I (top curves), in steps of 10 @I Panel A modified
from Rudolph et al., 2007.
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the matching of expressions derived from the model to iettalar V,, record-
ings of cortical neurons. This approach has been used foaatixtg different
parameters from the recurrent cortical activityivo: the averages and variances
of excitatory and inhibitory conductances, their decayetamd the optimal con-
ductance waveform underlying spike selectivity. Thesdysea were possible
because the point conductance model represents in a coamghstathematically
tractable way the activity resulting from several thousaydapses. In turn, the
analysis provides a characterization of synaptic activityimple terms (average
conductance, level of fluctuations). Such parameters catilyebe incorporated
in computational models to yield the membrane potential @mtuctance state
corresponding tan vivo activity with just a few variables. This approach has been
used for example in network simulations to obtain realisbaductance states
in neurons even with small networks (Haeusler and Maass;)200is also di-
rectly usable in dynamic-clamp experiments to investigiaampact of synaptic
background activity on signal processing by single corticathalamic neurons
(Fellous et al., 2003; Shu et al., 2003; Wolfart et al., 20DBsai and Walcott,
2006).

Beyond the matching of experimental\distributions to a theoretical expres-
sion (VmD method), we have also attempted to match the PSDs,dfuctua-
tions. This approach provides some validation for asswmnptmade about synap-
tic time constants on the basis of published studies (Dbstaxd Paré, 1999;
Destexhe et al., 2001). However, the fact that the poiniootance model does
not account for the scaling properties of experimental P@is 5.3C-D) limits
the accuracy of the method and yields only broad estimatésea$ynaptic time
constants (approximately 30% error). A parallel study @edand Destexhe,
2007) has shown that the frequency scaling observed exeetatly cannot be
accounted for by standard cable theory, and modificatiorslolie equations are
required to match those values. We hope to obtain a more atecfiiting tem-
plate, which would allow more precise PSD analyses in theréut

In the second part of the paper, we focused on a question thateently
started addressing, making use of the point-conductanceknehat are the pat-
terns of excitation and inhibition triggering spikes undéferent conditions of
network activity? A preliminary study pointed to the facathhese patterns de-
pend on the statistics of synaptic conductances, and thatsspould be preceded,
on average, either by increases in total synaptic condoetamdicating a predom-
inant role for excitation, or by decreases in total synapoicductance, indicating
a predominant role for inhibition. Other authors (Hasemstat al., 2005) have
recently suggested that drop of inhibition can play an irtgetrrole in determin-
ing spike timing in cortical neurons, based on dynamic-g@anjection of spe-
cific synaptic conductances with parameters matched to ith&ivo recordings.
Here we explored this issue further and showed, first by ardétieal reasoning,
and second by scanning different parameter regimes usingnaig-clamp con-
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ductance injection, that the sign of the total conductard@nge before a spike
does not directly depend on the average synaptic condwegabat is solely de-
termined by the ratio of synaptic conductance variances.vahiance of synaptic
conductances in the Ornstein-Uhlenbeck model is relat¢kdetalegree of corre-
lation between Poisson input trains of each type in a detdiiephysical model
(Destexhe et al., 2001): the level of synchrony among indifineurons could
thus be determining for spike timing whenever it signifitpetxceeds the level
of synchrony among excitatory neurons. This result steefise importance of
evaluating the variances of synaptic conductances, irtiaddo their averages,
when analyzing ¥, fluctuations recordeth vivo. To our knowledge, the two re-
viewed studies using the VmD method are the only ones (tegetith Monier
et al., 2007, in this issue) explicitely providing estingaté synaptic conductance
variances.

Other studies proposed synaptic conductance estinma@g derived from I-
V curves (in current-clamp) or V-I curves (in voltage-clanoptained at different
points in time following a stimulus (Borg-Graham et al.,89%nderson et al.,
2000; Monier et al., 2003; Wehr and Zador, 2003; Wilent andt@was, 2005)
or the onset of an up-state (Haider et al., 2006). An exhastomparison of
these studies is beyond the scope of the present articleiseeer et al., 2007
in this issue), but a few points can be stressed. The factttieamD method
applies to current-clamp data obtained at a few levels o$tzom injected current
circumvents technical problems with voltage-clamp dueigi Iseries resistance
of patch electrodeis vivo (but see Borg-Graham et al., 1998; Monier et al., 2003;
Wehr and Zador, 2005) or the need for discontinuous voltdgep with sharp
electrodes (Haider et al., 2006). The fact that it relies @irang assumption
about the stochasticity of synaptic inputs and the indepecel of excitation and
inhibition allows the analysis of spontaneous corticaivégtwith no “zero” time
point. However, this assumption also makes it unsuitedtsipiesent form, for
the analysis of stimulus-evoked activity with importamhfgoral structure.

The VmD method suffers from one common limitation with othpproaches
for synaptic conductance estimation: the need to sepayatpstc currents from
leak currents. The fact that it is used for the analysis ofjoimg, spontaneous
activity in cortical networks poses, however, an additla@mplication: indeed,
when synaptic inputs evoked by sensory stimulation areyaad] it is with ref-
erence to the pre-stimulus activity, which includes thé learrent and any other
baseline currents, including on-going synaptic actiBgrg-Graham et al.,1998;
Anderson et al., 2000; Monier et al., 2003; Wehr and Zadod32®Wilent and
Contreras, 2005). When we attempt to analyze the spontaresivity itself,
there is no straightforward reference that can be used. Astiomed above,
the short down-states do not seem a good candidate sinceritlege after-
hyperpolarizing currents consecutive to the up-statesqlszz-Vives et al., 2000),
although a down-state-referenced analysis (as in Haider, @006) could perhaps
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be compared to the analysis performed in the reviewed stuéiewever, in the
wake state, the continuous on-going activity does not evesgmt down-states.
The only precise approach to evaluate the leak conductan@ath studied cell
is to block all synaptic activity with TTX, but that also mearecording only
one or two cells per animal for this protocol, which is an ertely constraining
experimental situation. The compromise chosen in the weden vivo studies
consisted in using published average values obtained wique TTX experi-
ments in a similar preparation (Paré et al., 1998) and d¢hgdke robustness of
the estimates to the assumed leak conductance parameteesiimates should
be re-evaluated in the light of any future experimental gataviding informa-
tion about the leak parameters of cortical céllzivo in the absence of synaptic
activity. Optimally, such future studies would include #imple, classical proto-
col required for a subsequent VmD analysis: several-setmrglcurrent-clamp
recordings of the ¥, at different levels of steady injected current.

Building on the possibility to evaluate synaptic conductastatistics with the
VmD method, and in order to be able to study average spiggédring patterns
of conductancem vivo, we have developed a probabilistic method for extracting
the STAs of conductances from STAs of thg, WPospischil et al., 2007). We are
not aware of any other method currently allowing this analysr spontaneous
activity: in voltage-clamp, no spikes are recorded and boicusly, conductances
leading to spikes cannot be extracted directly. Voltagen@ can only be used for
extracting plausible conductance STAs when the precisestohspikes are known
and reproducible (for example, at a given delay after a sgrssionulation), so that
the estimated, stimulus-locked conductance dynamicseaadsonably expected
to lead to spikes in the current-clamp configuration (Moetal., 2003; Wehr and
Zador, 2003). The application of the probabilistic methmahtvivo recordings in
awake and naturally sleeping cats led to the observatiorottf types of firing
regimes described above - average total conductance s&ceead average total
conductance drop - with a majority of cases displaying tigbition-dominated,
conductance-drop pattern.

The result of the STA analysis is, however, dependent on shienates of
synaptic averages and variances, so that we may ask to wieat éxs result de-
pends on the accuracy of the VmD method. In general, the gedraseline con-
ductances will reflect the estimates of average synaptiduwttances (since both
analyses are constrained by the same total input resistaeasure and the same
leak conductance assumption), unless the total inputaesis changes markedly
between the current levels used for the VmD analysis anddieeaurrent level at
which STAs are extracted, due to activation of intrinsicawctances: in this case,
since the conductance§(, ge(t), gi(t)) have to be compatible with the voltage
Vm(t), the conductance STA baselines can be considerably shiftagl from the
mean conductance values tens of ms before the spike. Theefgntis seen
in in vitro dynamic-clamp experiments when a wrong leak conductanice va
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used (not shown). This distortion could be used as an indic&r important ac-
tivation of intrinsic conductances and suggest that theltrebould be discarded.

As to the estimation of the amplitudes of average conduetahange preced-
ing a spike, we have seen that this change seems to be matelynieed by the
variances of synaptic conductances. The estimation ofdineonductance vari-
ances is independent of the assumption made about the ladkadance, which
excludes this source of potential error. It is dependenhemtembrane capaci-
tanceC, which should be evaluated on a cell-by-cell basis whenpussible in
future studies. However, we have also shown that the ratgyoéptic conduc-
tance variances is only weakly dependent on the precise\@IC: this ratio
seems to determine the sign of total conductance changedingca spike, and
so the conclusion about a majority of cagsewivo displaying an important role
for inhibition in controlling spikes seems robust.

Finally, we illustrated how and to what extent the validitly different ap-
proaches for conductance analysis can be tested using ésabamp. This elec-
trophysiological technique is an attractive tool to evéduaethods of conductance
analysis, since it allows to mimic the activation of knowmdactances in a bio-
logical neuron: the results of an analysis method based,grevordings can be
directly compared to measures of the actual conductancegsotied by the exper-
imentalist. In all the dynamic-clamp applications preseélritere, we have used the
same description for the synaptic conductances - the Gnastadenbeck stochas-
tic model - as in the theoretical analyses. This means thaiowkl compare how
the analysis methods perform if the stochastic conductaace inserted at the
soma of a real cortical neuron, with a complex structure anariety of intrinsic
channels, instead of a passive single compartment. As we $&en, potential
dendritic effects solicited only during distributed sytiggtimulation, like, possi-
bly, the unexpected scaling of the,\PSDs during real synaptic activity (Bedard
and Destexhe, 2007), cannot be addressed with this sompation technique.
They could perhaps be investigated in the future using diéngdatch-clamp.

The comparison was performed most extensively for the cctadce STA es-
timation method: it indicates that if the window of analy@schosen properly
(by excluding a window of about 1 ms before the spike, and etstuding inter-
spike-intervals shorter than around 100 ms), the estimstperform well, and
that the estimation errors, correlated with the averageare presumably linked
to Vip-dependent intrinsic channels. However, we did not systieally compare
how the methods perform if the synaptic conductances defriat the Ornstein-
Uhlenbeck model: such an approach could constitute anagh@ication of the
dynamic-clamp tool to the evaluation of conductance amalyethods. We have
also not attempted yet to evaluate in dynamic-clamp thenebetd STA analysis
method sketched above, which incorporates a known caoelbetween excita-
tion and inhibition (Egs. 5.20-5.21).
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Chapter 6

Which model best captures the
spiking response of cortical neurons
to excitatory inputs?

Martin Pospischil, Zuzanna Piwkowska, Thierry Bal and AlBiestexhe. Which
model best captures the spiking response of cortical nsumexcitatory inputs?
submitted2007.
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Résune

Introduction

Une grande diversité de modeles ont été proposés ppuesenter les potentiels
d’actions (PAs) des neurones. Ces modeles sont les favetgtire (IF)”, et ses
variantes quadratique et exponentielle, le modele diabich (1Z) et le modele
de Hodgkin & Huxley (HH) par exemple. Ces modeles captudiférents as-
pects de I'excitabilité des neurones mais il n’existe pasdmparaison de leur
performance. Dans cet article nous réalisons une tellepaoaison a partir de
données expérimentales, en particulier pendant lés éeshaute conductance.

Résultats obtenus

Les expériences réalisées consistent en une injectamtrde excitatrice (EPSC)
en dynamic-clamp dans des neurones du cortex visuel du sathwle in vitro.
L'amplitude de la conductance est controlée, et la répotles PAs est enreg-
istrée et moyennée sur un grand nombre d’essais, ce qoedon“post-stimulus
time histogram” (PSTH). La famille de PSTH (pour differestamplitudes) est
obtenue, pour deux états de bruit synaptique, basse ctambec(LC) et haute
conductance (HC).

Ensuite les differents modeles sont ajustés a cesakmaxpérimentales et
sont comparés. La comparaison est réalisée soit end&rasit les deux états LC
et HC, ou bien en considérant un seul état et en utilisaotde comme test du
modele.

Conclusions

Ces résultats indiquent que le modele HH, le plus compldzane le meilleur
accord, de fagcon attendue. Par contre, des modeles hgaples simples, comme
le IF exponentiel, donnent un accord extremement prochelldeCe type de
modele devrait se révéler tres utile pour les simufetide réseaux de neurones.
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6.1. ABSTRACT

6.1 Abstract

A wide diversity of models have been proposed to accounhispiking response
of central neurons, such as the integrate-and-fire (IF) inadeé its quadratic
and exponential variants, to multiple-variable modelshsag the 1zhikevich (12)
model and the well-known Hodgkin-Huxley (HH) type modelscB models can
capture different aspects of the spiking response of nsytaut there is no ob-
jective comparison of their performance. In this paper, wavidle a comparison
of such models in the context of a well-defined stimulatioot@col consisting of
excitatory conductance injection, arising in the presesfcgynaptic background
activity. We use the dynamic-clamp technique to charazsetine response of
regular-spiking neurons from guinea-pig visual cortex bynputing families of
post-stimulus time histograms (PSTH), for different stinsuintensities, and for
two different background activities (low- and high-conthuce states). The data
obtained are then used to fit different classes of models asithe IF, 1Z or HH
types. This analysis shows that HH models are generally marerate to fit the
details of experimental PSTH, but their performance is alnegualed by much
simpler models, such as the exponential IF model. Similacksions were also
reached by performing partial fitting of the data, and examgithe ability of dif-
ferent models to “predict” responses that were not usedi®fitting. Although
such results must be qualified by more sophisticated sttioualg@rotocols, they
suggest that simple IF models capture surprisingly wellrésponse of cortical
regular-spiking neurons and should be useful candidatesefwork simulations.

6.2 Introduction

Since the early days of computational neuroscience, alfgjuoadifferent neuron

models have been proposed, among which the leaky integratdire (leaky IF,
Lapicque 1907) and the Hodgkin-Huxley (HH, Hodgkin and Hayx1952) mod-
els are probably the best known and most used ones. Theyaistitate a sort
of frame, with on the one hand the leaky IF model rather beisigeach of a spik-
ing model, compared to the detailed analogy between staigbles in the HH
model and ion channels in biological neurons on the othed hanmultitude of

other models have been developed over the years that falinvihis frame. The
extension of the leaky IF model has lead to a whole family aflim@ar IF models
(e.g. the quadratic or the exponential IF models, Ermentt6@6, Latham et al.
2000, Fourcaud et al. 2003), whereas the reduction of the ldtiefrgave rise to
a different type of models, where spikes result from therpigs of two coupled
state variables (e.g. the FitzHugh—Nagumo or the Morrisateodels, FitzHugh
1961, Nagumo et al. 1962, Morris and Lecar 1981). Recerft/two concepts
have been unified: in the Izhikevich model and the adaptip@eential IF model
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6.2. INTRODUCTION

(Izhikevich 2003, Brette and Gerstner 2005), subthrestiphdmics are described
by two coupled state variables, but spiking is realised imgeof thresholds and
reset values.

Clearly, the models differ in their capability to qualitaly reproduce firing
types seen in cortical neurons, and usually (though notyehare the more elab-
orate models also the ones that cover a broader range (¢keVzth 2004 for a
summary). A different question, however, is the followingven a, say, regu-
lar spiking neuron, how well do the models reproduce a padidfiring pattern
guantitatively? Different approaches have been followed in order to addiras
guestion. Some consist in assuming that a given detaileeghnegresents a good
candidate for biological behavior, which then serves asretmark in the at-
tempt to match one or several simpler models to it (cf. e.giréaud et al. 2003,
Jolivet et al. 2004, Brette and Gerstner 2005). Another@ggr consists in di-
rectly matching models to data obtained in experiments @dvet et al. 2006,
Clopath et al. 2007). Sometimes, one and the same model &hathto itself
for the purpose of exploring the underlying “parameter traghe” (Achard and
DeSchutter 2006) or comparing the capacity of differentrjsiation techniques
(Weaver and Wearne 2006). The protocols used in these casds/arse. They
comprise both current and conductance injections, whexendveforms range
from simple square pulses to stochastically fluctuatingetsa

But also the matching itself can be accomplished along uariimes. Besides
the widely used, straight forward “hand tuning”, more umsieid techniques have
been employed. In some cases it is possible to determinelpaeneters from
standard electrophysiological protocols. Itis e.g. comiamal to extract input re-
sistance and capacitance of a neuron from current pulseiojs. But while for
some models it is possible to obtain all parameter valueadh a direct way, for
others it is not and automated optimisation techniques twalie applied. A com-
parative study of four such techniques has been given inevamd Bower 1999.
For the problem treated therein, it clearly favours the $itea annealing algo-
rithm. However, the performance of an optimization techei@lso depends on
the objective function. While for a fit of subthreshold prapes it might be suf-
ficient of the membrane potential, in general this is not adgdwice for spiking
neurons. Here, shifts in spike times of the order of the spikith will introduce
large jumps in the assigned error. A different approach legs baken in Vanier
and Bower 1999, where the objective function is basicalmposed as a sum over
differences in spike time between model and target, nomedlby the time of the
respective spike in the model. In the cases, where a neurdelroonstitutes its
own target, it is possible to use more sophisticated objedtinctions by either
taking into account the spike shape (Weaver and Wearne 2006y using the
neurons probability density in the Q\~ dV/dt)—plane (Achard and DeSchutter
2006, LeMasson and Maex 2001). Itis not clear, however, hevetter performs
when model and data are based on different dynamical systems
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6.3. MATERIALS AND METHODS

In this article, we compare the capacity of seven differezuiron models,
spanning the complexity spectrum between the leaky IF aadHtd model, to
guantitatively reproduce the behavior of four differenttmal neurons, that were
recordedin vitro using dynamic clamp. Since the neurons are regular spiking
(RS), we include an adaptation channel in all models. Théopabd used is in-
tended to recreate conditions that are close to naturalanktstates. The neu-
ron (and the models) are injected with two channels of flugigaconductances
(point-conductance model, Destexhe et al. 2001) intende@present the in-
put of excitatory and inhibitory presynaptic neurons, extppely. In addition, an
AMPA-shaped stimulus is injected. The peri-stimulus tinngdgrams (PSTHS)
of the models are then compared to the ones of the targef egikre we con-
trast two different background states: The first is a “lowdwactance” (LC) state,
where the mean values of excitatory and inhibitory condum#a are approxi-
mately equal and comparable in magnitude to the leak coadoet The other
is a “high conductance” (HC) state, characterized by dontiizhibition and a
leak conductance that is small compared to the synapticumtadces. We fit the
models either to one state at a time and predict the PSTH éaretfpective other
state, or we fit the PSTHs obtained in both states simultasigou

6.3 Materials and Methods

6.3.1 Invitro experiments

In vitro experiments were performed on 0.4 mm thick coronal or sdgitices
from the lateral portions of guinea-pig occipital cortexuiea-pigs, 4-12 weeks
old (CPA, Olivet, France), were anesthetized with sodiunmt@earbital (30 mg/kg).
The slices were maintained in an interface style recordiaber at 33-3%C.
Slices were prepared on a DSK microslicer (Ted Pella Inadiey, CA) in aslice
solution in which the NaCl was replaced with sucrose whil@rtaning an osmo-
larity of 307 mOsm. During recording, the slices were indeban slice solution
containing (in mM): NaCl, 124; KCl, 2.5; MgS{1.2; NaHPQ, 1.25; Cadl, 2;
NaHCQs, 26; dextrose, 10, and aerated with 95% &% CO to a final pH of 7.4.
Intracellular recordings following two hours of recovergm performed in deep
layers (layer IV, V and VI) in electrophysiologically idefied regular spiking and
intrinsically bursting cells. Electrodes for intracellulrecordings were made on
a Sutter Instruments P-87 micropipette puller from medivatled glass (WPI,
1BF100) and beveled on a Sutter Instruments beveler (BV)10MNtropipettes
were filled with 1.2 to 2 M potassium acetate and had resis&n€80-100 M)
after beveling.

The dynamic-clamp technique (Robinson et al., 1993; Shiaap,e1993) was
used to inject computer-generated conductances in reabm&uDynamic-clamp

125



6.3. MATERIALS AND METHODS

experiments were run using the hybrid RT-NEURON environnjeéeveloped by
G. Le Masson, Université de Bordeaux), which is a modifieioa of NEU-
RON (Hines and Carnevale, 1997) running under the Windovi® 2fperating
system (Microsoft Corp.). NEURON was augmented with theacap of simu-
lating neuronal models in real time, synchronized with titesicellular recording.
To achieve real-time simulations as well as data transfégre®C for further anal-
ysis, we used a PCI DSP board (Innovative Integration, Siatliey, USA) with
4 analog/digital (inputs) and 4 digital/analog (output6)Hits converters. The
DSP board constrains calculations of the models and dataféns to be made
with a high priority level by the PC processor. The DSP bodlaas input (for
instance the membrane potential of the real cell incorpdrat the equations of
the models) and output signals (the synaptic current tojeetid into the cell) to
be processed at regular intervals (time resolution = 0.1 AA)ustom interface
was used to connect the digital and analog inputs/outpgisis of the DSP board
with the intracellular amplifier (Axoclamp 2B, Axon Instr@mts) and the data ac-
quisition systems (PC-based acquisition software ELPldYetbped by G. Sadoc,
CNRS Gif-sur-Yvette, ANVAR and Biologic). The dynamic-oi@ protocol was
used to insert the fluctuating conductances underlyingicmaoise in cortical
neurons using the point-conductance model, similar tovaque study (Destexhe
etal., 2001). The injected current is determined from thetdiating conductances
ge(t) andg;i(t) as well as from the difference of the membrane voltage froen th
respective reversal potentialgynciamp= —Je(V —Ve) — i (V — V).

All research procedures concerning the experimental dsiarad their care
adhered to the American Physiological Society’s Guidinigpé?ples in the Care
and Use of Animals, to the European Council Directive 86/6E€ and to Euro-
pean Treaties series no. 123, and was also approved by #ileetbacs committee
“lle-de-France Sud” (certificate no. 05-003).

6.3.2 Models

For the simulations, we use single compartment models girngcomplexity in

an attempt to reproduce the PSTHs obtained during expetan&uring some
simulations, a mechanism that accounts for spike rate atiaptwas included,
the details of which depend on the type of model. We assumehbacapaci-
tance of the cell as well as its leak conductance and leaksaMvgotential can be
deduced from the experiment, hence these parameters aréxXesgpduring the
optimisation. All other parameters are allowed to vary lireexcept for the HH

model, where only a subset of parameters was adjusted. Welikethe models
in the following in ascending order of complexity.
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6.3. MATERIALS AND METHODS

6.3.3 Integrate-and-fire models

We use four different integrate-and-fire (IF) models, that distinguished by
there I-V relation. First, we use the linear or leaky IF mofeipicque 1907).
It is described by the membrane equation

dv

Ca =—0L(V—-W)—0gk(V—=Vk)+ lext, (6.1)

which in addition to the classic definition contains a cortdncegk, that accounts
for spike rate adaptation. Further parameters are the akuctance and reversal
potentialg, andV, as well as the capacitan€ The model can be driven by an
additional input currenley. It is said to fire a spike whenever the voltage reaches
a fixed threshold;n, after which the integration restarts at the reset potevitia
Modifications to this model have been suggested, in ordebtaim biophysically
more plausible behavior. The most prominent among thesalkmaonlinear IF
models are maybe the quadratic (Ermentrout 1996, Latham 20@0) as well as
the exponential IF model (Fourcaud et al. 2003). We sligixigy the definition
given in Fourcaud et al. 2003:

dv

Ca =—0L(V —=VL) +U(V) =gk (V —Vk) + lex: (6.2)

The nonlinearityy(V) is given by

(6.3)

Dv) = 2 (V=Vr)2+9L(V —W) — It quadratic IF model
~\aar exp(Vg:/T) exponential IF model

In both cases, a spike is said to be fired when the membranatiabteiverges
to infinity, and it is subsequently set to the reset potenfial There are three
additional parameter¥/r is thethreshold voltagei.e. the largest voltage at which
the neuron can be maintained during constant current iojeetithout firing a
spike. At is thespike slope factqomwhich controls the rapidity of spike initiation;
for At — 0 the exponential IF model degenerates to its linear analogor the
quadratic IF modely is thethreshold currenti.e. a constant injected current of
amplitudelt depolarises the neuron voltagevp.

We also used a hybrid IF model that is identical to the lineanbdel for volt-
ages below a fixed valué:, and whose |-V curve rises quadratically whenever
the voltage exceedg:. This model was called the “linear-quadratic IF” (IqIF)
model in the following and is described by Eq. (6.2), where

o V<V
LU(V)_{Q%LT(V—VT)Z'FQL(V—VL)—H V>V (64

\c as well aslt are determined from the condition thitV) as well as its first
derivative be continuous f&f — V. They are given byc = Vr — At andlt =
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—gL(ATT +VL — V). Spiking is realised in the same way as for the other nonlinea
IF models.

6.3.4 The 2—state—variable models

We use two models of intermediate complexity, the Izhikewiwodel (I1zhikevich
2003) as well as the adaptive exponential IF (aEIF) modett(Brand Gerstner
2005). In addition to the membrane potential, both modetaprise a second
state variable that is responsible for subthreshold ancatiuigshold adaptation.
The defining equations of the Izhikevich model are

Cdd—\t/ = k(V—VL)(V—VT)—W+|ext, (6.5)
(zlj_\:v = alb(V-W)—w). (6.6)

A spike is released when the voltage exceeds 30 mV, afterhwihis reset to
VR and a fixed valual is added to the adaptation variable  w+d). The
aEIF model is defined in a similar way, except that the subtiotel I-\V-relation
contains an exponential nonlinearity rather than a quexdate:

dv V -V
Cq = —gL(V—VL)+gLATexp< T)—W'Hext (6.7)
TWC(I:I—Y[V = aV-Ww)—w (6.8)

If Vim > 20 mV a spike is released, after which the voltage is res&fktand
the adaptation variable augmented byw — w+ b). During the simulations
where no adaptation current was included, in both modelskipped the update
of the adaptation variable following a spike, i.e. we det 0O in the Izhikevich
model andb = 0 in the aEIF model. Again, we assumed that the capacitance
C as well as the leak conductance and reversal potegtiahdV, are extracted
from the experiment, all other parameters are adjustechguhe fit in order to
obtain optimal behaviour. However, while the parame@endV, in the models
directly represent the respective physiological quassijtthis is not the case for
the leak conductance: writing Egs. 6.5 and 6. Cab//dt = —f (V) + ley, the
physiological leak conductance is given by

gphysiol _ d f<V)

Thus for the Izhikevich model we obtain the relatgﬂji‘ySiO': b—k(VL—Vr), for
the aEIF model it reng{’hys"" =g (1—exp(tpT)) + a. For typical parameter
values the exponential term can be neglected, so duringrthdations we used

gEhysioI: g +a
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6.3.5 The Hodgkin-Huxley model

Finally, we use a Hodgkin-Huxley (HH) model consisting obtehannels, a fast
sodium channelgna) and a delayed rectifier potassium changel( details can
be found in Traub and Miles 1991), specified by the followingmbrane equa-
tion:
dv

Car = —0L(V —VL) —gna(V —WNa) = Ikd(V —Vk) —gm(V —Vk) +lext- (6.10)
Also, a muscarinic conductanaog() has been included, that accounts for adapta-
tion. The conductances, andggq are governed by the three state variables m,
h and n and respective maximal conductarges gk d:

Onva = Onah, (6.11)
Okd = Okan™. (6.12)
The state variables evolve according to the time evolutguagons

ds  sa(V)—s(t)

) s={mh,n}, (6.13)

where the functions. (V) andts(V) are composed of the respective forward- and
backward rates between open and closed statemdfs:

as(V)
1
R ) o

For the state variable no, andf3 are parameterized as

fa(V —Voa
am(V) = —— p(fvdzqg’)ll (6.16)
fo(V — Vo)
(V) = / 6.17
om & 6.17)

The muscarinic conductangg, is described by similar equations, details can be
found in Mainen and Sejnowski 1996. During optimisation,waey all parame-
ters describing the sodium activation curve, f£Vo a, da, fh, Vo anddy, as well

as a parameter introducing a relative voltage shift betveeeiium activation and
inactivation. The shape of the latter as well as the potassictivation curve are
kept fixed. In addition, we adjust the maximal conductandebkespike-related
sodium and potassium channalgs andgg, and of the muscarinic currerty.
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Figure 6.1:Experimental protocol and resulting PSTHSs. Left: Dynaiamp exper-
iment in which two fluctuating conductances (excitatioryebaind inhibition, red) were
injected to recreatim vivo-like activity states. In addition, AMPA-shaped excitgtoon-
ductance stimulus (green) with varying strength was ieganto the cell using dynamic
clamp. Simulus amplitudes were randomized, and colleate@dich stimulus strength
separately, to compute PSTHs. Right panels: PSTHs catcufat three different cells
(a fourth cell is shown in Fig. 6.2). The x-axis shows timegfitimulus onset, the y-axis
labels stimulus strength, and the z-axis the probabilitygienerating an action potential
(time bin of 1 ms).

6.3.6 The protocol

We applied the same stimulation protocol to cortical nesiarvitro and to the
models described above (cf. Fig. 6.1). It consisted of a dpaind stimula-
tion provided by the “point—conductance model” (Destexhale 2001), sup-
posed to simulate synaptic input. The model creates tworgharof fluctuating
conductances, one excitatoge(t)) and one inhibitoryd;(t)), that are described
by Ornstein-Uhlenbeck equations. For the excitatory ckhrthe time evolution

equation reads
dge(t 1 202
) — 2 (o) - go) + 1 et 618)
Te Te

We usege andae to indicate the mean and standard deviation (SD) of the exci-
tatory conductance distributioBg(t) is a Gaussian white noise process with zero
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mean and unit standard deviation aRds the excitatory correlation time constant.
The inhibitory channel is described by an equivalent equatiith parameterg;o,
i, &i(t) andt;. Throughout this article we use the correlation timgs 2.728 ms
andTt; = 10.49 ms. In particular, we consider two possible backgrouatest a
“low-conductance (LC) state”, where excitatory and intdby conductances have
roughly the same mean value and there sum is smaller or o&the srder as the
leak conductance, and a “high-conductance (HC) state’tiwisicharacterised by
a dominant inhibitory conductance and a leak conductaraecttnstitutes only
a fraction of the total conductance. In addition to the baclkugd conductance,
an AMPA-stimulus of varying strength is injected in intelszaf 100 ms, where
the strength can take one of the five values 1 nS and 1-4 timaseastrengtlys,
whose value depends on the cell under consideration. Suéstyg the stimulus-
triggered spiking response (post-stimulus time histogrB®TH) is calculated
with a bin width of 1 ms for each stimulus strength separafethe recording time
during the experiments was about 300 s for each backgroatel(sbrresponds to
about 600 repetitions per stimulus strength), in the maihelsimulated time was
100 s per background state and stimulus strength (1000ittepstper stimulus
strength).

6.3.7 The optimisation

The optimisation has been done using a NEURON (Hines ande€alri997)
implementation of the simulated annealing method basedsimalex algorithm
(Press et al. 1992, Davison 2004). The strategy consistsiofiglex (an assem-
bly of n points, wheren is the number of parameters) that moves in parameter
space, where uphill steps are accepted with a certain pitdpalepending on a
slowly decreasing variablg (the 'temperature’). For very low temperature, the
method becomes identical to the simplex algorithm, butrdudptimisation it is
less likely to be caught in local minima. A comparative syrsbowed (Vanier
and Bower 1999), that for an intermediate number of parametiee simulated
annealing procedure was superior to other methods. Forttimg fof the PSTH,
the error function consisted of the RMS (root mean squaré)eftlifference be-
tween the experimental and the simulated PSTHSs in the firsh2@aken across
all background states and stimulus strength under coraidar normalised by
the RMS of the experimental PSTH:

e— \/Zb,s,i(pStf]EXp_ pStI’fim)Z
Spsi(pstf®2

with the subscripb indicating the background statethe stimulus strength arid
the bin number. Simulations were performed on Linux PCsgudie NEURON
simulation environment (Hines and Carneval 1997) (for tierflodel) or custom
C** programs (for the other models).

(6.19)
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6.4 Results

Recordings were taken from four different cells. There prtps as well as stim-
ulation details are summarised in Tab. 6.1. The conductpacameters for the
LC state were chosen such that spontaneous activity wasilovo(6 Hz), for the
HC state they were chosen such that they roughly reprodineechean voltage
and its fluctuations. For each cell, the PSTH was calculateohgl either LC or
HC states for five different stimulus amplitudes (cf. Figd. &nd 6.2). In general,
during LC states PSTHSs are broader and their peaks occualée stimulus on-
set than during HC states. Also, the number of spikes peusiisns higher in the
LC state, though the stimulus strength was the same in batiésst Fig. 6.3 shows

Table 6.1: Cell parameters

C(nF) gL (nS) VL (mV) gs(nS) geo (NS) 0e (NS) gio (NS) ai (NS)
celll| 034 136 -931 50 & &% Q0 3% 1%
cell2| 039 109 990 90 & &3 39 3L, 25,
cel3| 033 249 817 70 & 2030 30 15
cell4| 0.412 208 860 120 he ip 2o 2% 1

the quality (cf. Eq. 6.19) of the fits to the four cells for av&n models in ascend-
ing order of model complexity. We first fitted the six PSTHs tt@respond to the
stimulus strengths 1 nS,d& and 4gs during LC as well as HC states. In all mod-
els, spike-related adaptation mechanisms were disabledtbyg the appropriate
parameters to zero (cf. Section “Materials and Methods'®.Wauld like to high-
light several points: First, the HH model, which is the cotagponally most costly
model, shows the best performance, both for each cell sehaes well as on av-
erage. This might not be too surprising given the large nurabparameters that
are adjusted. However, the model with the worst performgagain separately
for each cell and on average) is the quadratic IF model ratizer the linear one,
as one might have expected. But also the Izhikevich modeh spike-related
adaptation disabled, shows an unsatisfactory behavionrexplanation for this
observation might be the constraints we put on the modefsghato reflect the
experimental leak conductance and its reversal poteriilak fixes the shape of
the quadratic nonlinearity at the leak reversal, but duastinherent symmetry
also to a large extent in the spike initiation region. For glob@dratic IF model,
the only freedom left is the position of the second root of pheabola. For the
Izhikevich model, there are three free parameters left,isnperformance also
depends on the shape of the PSTH. Cell 3 shows a later ongake§dollowing
the stimulus, which better suits a quadratic |-V—curve Fddurcaudet al. 2003).
The latter exactly contrasts the preferences of the lifearddel, and in fact here
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Figure 6.2:Comparison between experimental PSTHs and best model fitgyduC and
HC states simultaneously, adaptation included. Upper edperimental PSTH obtained
for cell 4. Upper right: PSTH of the best-fitted HH model. Loveft: PSTH of the best-
fitted Izhikevich model. Lower right: PSTH of the best-fittediky IF model. For this
particular cell, all three models show acceptable to goesdeagent with the experiments
(cf. error values in Fig. 6.4).
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Figure 6.3:RMS error for the best fits of all models to all cells withoutkep-related
adaptation. The red line shows the average RMS of the belIr(tdH). The performance
of the leaky IF model strongly depended on the cell, the matthe quadratic IF and the
Izhikevich model with experiment was generally unsatisfac All other models showed
good performance.
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Figure 6.4:RMS error for the best fits of all models to all cells with spikelated adap-
tation. The red line shows the average RMS of the best modd).(Benerally, all fits

were better compared to Fig. 6.3, the increase in performanmost remarkable for the
Izhikevich model.

the order of goodness of fit for single cells is reversed cospto the I1zhikevich
model (no real order is apparent in the case of the quadfatizddel). In the ab-
sence of noise, the linear IF model can emit spikes only duhe rising phase of
the EPSP, whereas the nonlinear IF models are able to spékg/dime after the
stimulus (provided the Y is sufficiently depolarised, i.e. beyond the second root
of the I-V—curve). The presence of synaptic noise slightlydithis effect, but the
principal behaviour remains. Finally, the Ig and exporediik as well as the aEIF
model display a very homogenous performance in reprodutieg@xperimental
PSTHs. All three combine the advantages of the quadraticdBei(no sharp
spike initiation) and the linear IF model (separation of behaviour at rest and
at threshold). Apparently, the exact realisation of thelinearity (quadratic or
exponential) is not crucial here. Also, it seems that thegmee of an adaptation
state variable (with spike—related adaptation disablethe aEIF model does not
improve the match significantly in this particular context.

We repeated the fit, now allowing all models there own way desgrelated
adaptation (cf. Section “Materials and Methods”). The hssare displayed in
Fig. 6.4. The most apparent difference is clearly the faebebatch for the Izhike-
vich model. The fit of cell 3 even yields the best fit in the enskmSitill, the HH
model shows the best match, for each cell separately andevage. However,
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Figure 6.5:Comparison of different characteristics of the PSTH. TheSRéMror of the

difference between the experimental and the model PSTHgiaea. A: spontaneous
activity. B: PSTH peak positionC: relative peak heightD: PSTH decay time constant.
With exception of spontaneous activity, the model perfaroeafollowed the ranking of

Fig. 6.4.

the exponential IF model comes surprisingly close, andviorcells (cells 1 and
3) the advantage of the HH model is only marginal. On avertmgeexponential
IF model with adaptation even performs better than its mlatecgate counterpart,
the aEIF model. Roughly speaking, all models except thatinad the quadratic
IF models, show an acceptable match with the experimeniswdh each model
has its particular strengths and weaknesses depending aelth

For the latter fit, we looked at the results in more detail. Wanigd to see,
which features of the PSTHs were reproduced accurately dnchwvere not,
depending on the model. To this end, we fitted gamma distoibsitto both the
experimental and the simulated PSTHSs, from which we e)dthitte position and
the height of the peaks as well as the “decay time constarttieofalling flanks.
In addition we fitted a constant to the PSTH for lowest stirsidtrength (which
is basically flat) in order to get an idea of the spontaneotigigc

For the data, the spontaneous activity was around 0—6 Hz.6FgA shows
the RMS of the difference in spontaneous activity with respge the different
models. The difference is smallest for the HH and the linBanbdel. However,
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Figure 6.6:Quality of model predictions to data not used in the fittingftL all models
were fit to PSTHs only for the LC state, and the optimal fits wesed to predict the
responses obtained for the HC state. Each bar joins the RME&arthe fit (lower end
of the bar) to the RMS error of the prediction (higher end & Har). Different colors
correspond to different cells, as shown in the inset.

the contribution of this feature to the error function is Brirso one cannot really
expect a good match between simulation and experiment.6FgB shows the
RMS of the difference in the time of the PSTH peak after stimsunset. Here,
the plot more or less reproduces the order in performancegoii4. The only

exception is maybe the Izhikevich model, which fits sligtitter with the data
than would be expected from the previous plot. The same weésans hold for

the RMS of the difference in relative peak height (Fig. 6.5264 the decay time
constant (Fig. 6.5 D).

Finally, we tested whether fitting the model response to tGeahd HC back-
ground at the same time added constraints, or if a fit usinly background sepa-
rately would have yielded similar results. To this end, wet fian a fit (adaptation
included) of the PSTHs obtained during either LC or HC backgd (using the
same sequence of stimulus strengths as before). With thelpadameters ob-
tained in this manner, we subsequently computed the PSTiHdltlve respective
other background state. We termed the PSTHs obtained darli(@ state, but
using the parameters corresponding to a fit in the HC stage’;Lt prediction”
and vice versa. Fig. 6.6 summarises the results: The lowgoépach vertical
bar indicates the minimal error obtained during a fit duriiigex LC (left) or HC
(right) state, the upper end represents the error of theectisp prediction. The
length of the bar thus represents the discrepancy betwedrest fit and the pre-
diction. With only a few exceptions (e.g. the leaky IF, LCJ|I8f all fits to a
single background state have lower error values than thtoflisth states at the
same time. Note, that the exceptions are justified, sincetbel“mean” (roughly
speaking) should be lower or equal to the error from the fitdthstates at the
same time. The mismatch between a PSTH and its respectigdiefioa does not
seem to be related to a specific model or cell with the excemtighe two worst
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behaving models, the linear and the quadratic IF model. eSiinere is an upper
limit for the minimal error during the fit (no response at ati@sponds to an error
of 1), chances are high (although not unity) that as sooneas ik a response, the
corresponding error is lower than 1.

6.5 Discussion

We have presented a study that compares the ability of sexamom models to
reproducen vitro recordings in a quantitative way. The complexity of the nisde
span a range between very simple (leaky IF) and detailed.(kiH)hoosing the
protocol, we took care to reproduce a situation that is yikel be encountered
for neurons in natural networks. The specific setting shbeldble to assess the
sensitivity of neurons to “signals”, e.g. correlated syiamput, transmitted in
networks. We contrasted two different scenarios of sycapfiut, a LC and a HC
state. The analysis revealed that, in general, additiarapdexity yields a better
match with experiments, as expected. However, the surplascuracy can be
very costly computationally. This observation was valid thee fits to either LC
or HC state separately or to both at the same time. The HH mtmetxample,
performed best of all models, with and without adaptatiatuded. However, the
relatively simple exponential IF model came surprisindbse. We conclude that
the latter model constitutes a very good candidate for stians of networks of
RS neurons.

We also found that the best fit for a model does depend on the &t@ or
HC) that the neuron is in. Fitting the response to stimuliimyione state at a
time usually entailed a bad match during the respectiverga¢e. In Herrmann
and Gerstner 2001, 2002, an analytical derivation of theHPSHape has been
given during conditions that are comparable though nottekte same as here.
The authors used current-based inputs and an escape naisd. @ne of their
results is the description of the PSTH shape as a supegositithe stimulus
waveform and its first derivative, the relative importantéhe two depending on
the level of noise. Given the low level of spontaneous asgtivi our recordings,
the comparison to their results is difficult. However, canfong with their results
and our choice of noise parameters3(€ g/go < 0.5) the absence of secondary
peaks and a strong trough after the main peak indicates tinaeoordings were
done in a high-noise regime.

It must be stressed that the particular protocol that we shbere is just one
possibility among many others in order to characterizemreairbehavior. Another
very relevant approach is the exact reproduction of spikediin response to
noisy stimuli (Jolivet et al. 2006; Clopath et al. 2007). &léuture work should
consider not only responses to isolated excitatory infouiscomplex responses to
streams of several excitatory and inhibitory inputs. Tipigraach should provide
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much more severe constraints on models and is also closéetsituation of
input integration in real networks. However, for such coexpstimuli, there is
a combinatorial explosion of the number of possible comtimng, and realizing
them experimentally would necessitate several hours dlest@cording, which
certainly constitutes the most challenging aspect of thge bf experiments.
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Chapter 7

General Conclusions

7.1 Summary

Neurons, the central processing units of the brain, are iaricplar state dur-
ing periods of intense network activity, as it is the case éngthe awake state
or during slow—wave sleep up—states. In these conditiamsical neurons re-
ceive a barrage of excitatory and inhibitory synaptic iispufs an effect, their
membrane potential depolarizes and strongly fluctuatesgrise to irregular
firing activity at high discharge rates. Furthermore, tharstof inhibitory con-
ductance exceeds the excitatory one, and also the amouattfdtions is mainly
contributed by inhibition. Since in such states spikes aa triggered by volt-
age fluctuations, these observations suggest an impodiafor interneurons in
information processing. However, how information is ineggd, processed and
passed on in these states is still an open question, and maye# be different
during different behavioral states.

In the course of my thesis, the aim was to shed light on thegsoof signal
integration during states that were characterized by theuatof synaptic input
received. More concrete, we compared two states that ayesirailar on a level
of voltage means and fluctuations as well as spike rates esgligrity, but differ
markedly in the synaptic background activity. One of theages we called “low-
conductance state”, identified by an overall low synaptpuinwhere excitation
and inhibition were of about the same magnitude. This stai® set in contrast
with a “high-conductance state”, where synaptic condwsarmominate over the
leak conductance and inhibition provides the largest shéihe amount of con-
ductance fluctuations was assumed to be roughly propottiortae respective
mean. This resembles the situation of neurons in highlyactetworks.

The tool of choice for the analysis of such states was theesipiggered aver-
age (STA), applied to excitatory as well as inhibitory coctdimces. A primary in-
vestigation in computational models showed, that therpianeiple differences in
the STAs depending on the background. Not very surprisjmgijne last few tens
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of milliseconds before spikes, on average one observesxinlinhibitory and a
rise in excitatory conductance in both states. Howeveinduow-conductance
states the rise in excitation surpasses the drop in inbibguch that there is a
net rise in the sum of the two. This conforms to the idea th#tespare pri-
marily evoked by additional excitatory synaptic eventscamtrast, during high-
conductance states, the drop in inhibition is much more quoned, amounting
to a drop in total conductance. The same protocol has beeategpinin vitro
preparations using dynamic clamp, and the same prespilductance patterns
have been identified. This observation points to an importaa of inhibition in
signal integration during activated states.

It is difficult to conduct a similar analysis vivo. While in models and during
dynamic clamp the conductance time course is known and thec&ili thus be
readily calculated, only the membrane potential time o®isbservable during
intracellular recording#n vivo. At the beginning of my thesis, no method had
been reported in the literature, that could extract avegeluctances related
to spikes from the membrane potential. A complicacy witldittanal methods
used for conductance estimation is the fact that the coaduet STA shows a
dependency on an injected constant current. Thereforepdlsive membrane
equation can not be solved anymore, since assuming thatotisuctances be
the same at both current levels leads to erroneous resultsth®other hand,
there are infinitely many solutions for the conductance tooerses, when they
are constrained by only one voltage time course. Nonetheies possible to
assign a probability of occurrence to any one of these swisfibased on the
stochastic nature of the synaptic conductances. Makin@iusasic calculus, the
most likely conductance traces can then be extracted whiehio the symmetry
of the conductance distributions, at the same time are thimge traces. Knowing
the means and standard deviations of the synaptic condestéior the estimation
of which methods exist) the method can be applied to inthaleelrecordingsn
vivo.

Subsequently, we presented a conductance analysis ofinegefrom awake
and naturally sleeping cat. This kind of data is still vemeraand no such analysis
has been done before. It was interesting to observe, hoaicerlls change their
firing behavior upon awakening of the animal. Regular-sgkiells showed up—
down-state cycles during slow—wave sleep, but while soroe/eti pronounced
firing upon awakening, a considerable share45%) initially depolarized, but
hyperpolarized briefly afterwards and stopped firing. Intcast, most interneu-
rons increased their discharge activity when the animalengk A conductance
analysis using the VmD-method revealed diverse combingtad synaptic con-
ductances in regulat spiking neurons during these statiéd) Imost of the cases
inhibition was stronger than excitation. On average, iitbrlg conductances were
2-3 times larger than excitatory ones. This tendency was sw@e pronounced
during slow—wave sleep up—states than during the wake. sGteilar observa-
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tions hold for the respective conductance fluctuationsniytiiese conductance
estimates, model simulations of intracellular activityreven accordance with the
observations. Finally, we estimated the STA conductanseguhe method out-
lined before. We found, that most cells in the awake state0)j7and all cells in
slow—wave sleep up—states (6/6) and during REM sleep (A@yad a drop in
total conductance prior to spikes. In brief, the recorddts ahowed all charac-
teristics of neurons in high—conductance states.

In Chapter 5, we reviewed and partially extended analyststigues based on
the point-conductance model, that can be readily appliadttacellular record-
ingsin vivo. We first outlined the VmD-method, which has the capacityxtoaet
the mean values and the amount of fluctuations of excitateayirhibitory con-
ductances from the voltage distributions obtained at twol®€ls. The method
was successfully employed to re-estimate known injectealgctances as well
as to analyse and recreate spontaneous up—states auvii@ recordings using
dynamic clamp. The method depends on a couple of parametersf which
are hard to constrain: the correlation time constants ofgiia conductances.
We presented a method based on the power spectral densy (P&he mem-
brane potential, that can provide estimates for these tiomstants. While the
performance is very good in models and during dynamic clanspffers from an
unexpected scaling of the PSD for high frequencieminivo recordings. Nev-
ertheless, it can provide evidence that the assumed tinstaias are reasonable.
Eventually, the STA-method was reviewed, further testetlesttended in the con-
cluding section. The testing was done on a pool of 36 recgglithe estimated
conductance STAs were compared to the injected ones on e dlathe pa-
rameters of an exponential template that was fitted to tloesraThe agreement
was very good for all three parameters. The study also regiettat the change
in total conductance just before spikes is mainly deterdhioyg the ratio of the
standard deviations of excitation and inhibition, and thatstandard deviations
also largely control the change in their respective corehaz. It is thus through
a correlation between the means and fluctuations of a comdcetchannel, that
neurons in inhibition-dominated states display a drop @3AA of the total con-
ductance. Furthermore, the method was extended for theotaseon—vanishing
crosscorrelation between synaptic conductances as welbassible shift in their
timing in order to account for the situation reported duniegponse to sensory
stimuli.

Finally, we presented a comparison of the ability of differeomputational
models to reproduce the behavior of biological neurons. lése a protocol that
was intended to closely resemble the situation of cortiearons imbedded in ac-
tive networks. It consisted of a background of fluctuatingagytic conductances
(realized by means of the point-conductance model) and ditiaual AMPA—
shaped stimulus, intended to represent an excitatorylsigngosed of correlated
input. We tried to reproduce the experimental PSTH usingetsodf very differ-
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ent complexity, including the linear IF model, nonlinearrtodels, I1zhikevich—

type models with two state-variables and finally a model gisiit—type sodium

and potassium channels. Roughly speaking, the qualitypsboriction increased
with model complexity, and not too surprisingly the HH mogekformed best.
However, the rather simple exponential IF model came vesgechnd, given its
low computational demand, represents a sound model e.gnetarork simula-

tions. Again, we compared low— as well as high—conductatatesand fitted the
models either to each state separately or to both states aathe time. It turned
out that the models optimally adjusted to one state usubhbyved an unsatisfac-
tory behavior during the other. Both states thus add diffecenstraints to the
models.

7.2 Outlook

In this thesis we have shown how a simple model of synaptiwigctan be
used for the analysis of intracellular recordirigsvivo by matching observable
quantities to model parameters. Important insights haea lgained concerning
the structure of synaptic conductances in cortical neudomisg different behav-
ioral states, and their impact on the average spike-triggeonductance patterns.
Concerning the method to extract the latter, several imgmrmnts could be envis-
aged.

A source of ambiguity is the length of the prespike windowt thes to be cut
in order to avoid contamination through voltage dependend(sodium) chan-
nels. The mathematical structure is such that the voltage ¢ourse, milliseconds
before the spike, shapes the estimated conductance STégtiwat the whole in-
terval under consideration. Fortunately, in the case ofusnadontamination, the
estimated trace converges quickly to a rather stable diatat is impossible to
determine a precise cut. A way around could consist in thdicgtipn of the
exponential rather than the leaky IF model, since the expiadegerm is exactly
intended to model the increase in sodium conductance. Alsirekwvould be the
appearance of two more parameters @hdAr, cf. Chapter 6, Eq. 6.2) that have
to be estimated from the data, but this could be done usingcangielution of
the voltage trace (Richardson & Badel 2007). Using the egpbal IF model as
basis, it may be possible to drastically shorten or comyleimit the prespike
window.

Furthermore, it would be nice to acquire direct evidencettitmmethod works
well in vivo. For this to succeed, an independent and reliable estimatisynap-
tic conductances is necessary. A way to do this in models dyimamic clamp
would be to use “frozen noise”, i.e. to inject the exact saraetdlating con-
ductance time courses twice at different DC levels. The gotahces (during
inter-spike intervals) can then be estimated from the mam#potential using
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the inversion of a membrane equation; in order to minimizegérturbation due
to spike—related sodium conductances, the exponentiald&eimwould be the
model of choice. While it is probably impossible to realizé@en noise situ-
ation for periods of spontaneous spiking activityvivo, it was shown (Monier
et al. 2003; Wehr & Zador 2003; Wilent & Contreras 2005a) tthat voltage
response to sensory stimuli (and thus presumably the wmdgrsynaptic input)
can be very reliable. One could think of a protocol e.g. irbaatel cortex, where
recordings are taken from a neuron while it is excited viaead noise stimulation
applied to its principal whisker (or to several whiskers éin@ze). As mentioned
before, the synaptic input induced in a neuron in this waikedy to display cor-
relations between excitatory and inhibitory events. Thaswne of the reasons to
extend the STA analysis in the way described in Chapter 5ndJsiis protocol
would allow to compare the estimates obtained with the ST#okto the STAs
computed from the estimation of the conductance time csutkas validating (or
disproving) its application ta vivo recordings.

Another possible amelioration concerns the fact that thatisn is obtained
by the numerical inversion of a matrix, whose dimension degeon the number
of datapoints in the STA. Though this hardly puts practisalts on the duration
or resolution of the STA, it may be worth the effort to tratslgg. 3.7 (Chapter 3)
back to continuous time (cf. Badel et al. 2006) and attemraalytic solution
to the thereby emerging variational problem, which woulghtight the interplay
between voltage and conductance STA waveforms. Howevee $his amounts
to the solution of a second order differential equation withe—dependent co-
efficients, success is everything but guaranteed. Inst&a&l,could attempt to
represent the voltage STA by an exponential function (whishally seems to be
a good approximation) thus simplifying the analytical $imin. The conductance
STAs could then directly be expressed as a function of therarpeters, thus
considerably simplifying the application of the method.

However, the simplicity of the point-conductance modebadstails certain
limitations. As mentioned before, conductances are to lwkenstood as being
effective ones at the level of the soma. While it makes pedease to study
this situation, since the site of action potential generats assumed to be sit-
uated close to the soma (Stuart et al. 1997), the effect adiritenfiltering is
completely neglected and thus the link to input arriving atapses distributed
across the dendritic tree is hard to establish. The simpielstion in Chapter 3,
exploring the effect of dendritic filtering, shows that aldy in a passive two com-
partment model the somatic conductances can look veryréiftédrom the den-
dritic ones. The effect of a synaptic input on the conduataatache soma should
thus strongly depend on its electrotonic distance. On therdtand, it has been
shown in a detailed biophysical model (Rudolph & Destexh@32) that during
high-conductance states the efficacy of synaptic inputsa&eeaction potentials
is approximately location—independent, if the dendritespaise of active (Na)
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conductances. A way to assess distributed synaptic inphiiogical neurons

has been suggested recently (Huys et al. 2006). It reliesgbr-uality voltage—

sensitive imaging and in principle constitutes a way todrthe impact of synaptic
input in the dendrites on the voltage at the soma. Cleantihéu electrophysiolog-
ical investigation of dendritic channel densities andrtkéfiect on signal filtering

during different synaptic input scenarios is needed in iotdéetter understand
the input—output function of single neurons.
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A.1l. SYNOPSIS

A.1 Synopsis

The mathematical framework of Chapter 3 can also be used iffesesht con-
text. There, we mention that in order to extract the concheetaSTA from a
single voltage trace, one needs to know the parameters oéspective conduc-
tance distributions. We give reference to a method thatlis @bdo exactly this
(Rudolph and Destexhe 2003, Rudolph et al. 2005). Howeseordings at min-
imally two different current levels are necessary in oraeapply the technique.
Several drawbacks come with this requirement. First andomégast crucial, re-
peating a protocol at two or more DC levels requires that #iklbe stable for
a multiple of the time necessary to apply the protocol onaro8d and maybe
more importantly, injecting a constant current into a cellidg anin vivo record-
ing shifts the membrane potential away from its naturallleWis in turn may
affect the fraction of open channels for a particular ionetygmd thus influence
the conductance state of the cell. Last, and maybe mostatingpractice, it is
simply impossible to analyse data that has been recordededréier time with-
out anticipating the possibility of such an analysis, angstrecordings are only
available at a single (zero) current level. In this Appendie sketch and test a
method that can extract the mean and variance of synaptauctemces from a
single voltage trace. The method is based on a maximumHigetl estimation of
the respective parameters.

A.2 The Method

We use the model described in Chapter 3, i.e. Eqgs. 3.1 antl8like described in
the respective Section, for the current approach it is noésgary to formulate the
equations in terms of ensemble averaged quantities. Imedéstime and slightly
rearranged they read (cf. Egs. 3.5 and 3.6):

C  (VK—W  g&(VK—Ve) VKIL_vk

k L, 9 e DC

K = — - = Al

9 VK v.{ w ¢ T m C } A1
1 /1 Aty At

kK s k+1 kiq _

Es = 2“ (gs gs<1 Ts) Ts gsO) . (A.2)

We start from Eqs. 3.7 and 3.8 (they are repeated here foeoence), only that
this time no implicit average is assumed:
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A.3. APPLICATION TO MODEL DATA

As before,p* has the following meaning: at time+ 1, the membrane voltage
takes the valug’kt1 as a result of the synaptic conductances present akiife
Eq. 3.5 for the dependence 8f** on VK, g§ andgX). Going one step further in
time, a continuum of pair(sg‘é“, }(“) Is possible in order to reach the (known)
voltageVK2. The quantityp* assignes to all such pairs a probability of occur-
rence, depending on the previous pair and the voltage histditimately, it is
the probability of occurrence of the appropriate random bemﬁ,‘; andEF that
relate the respective conductances at subsequent time dteig then straight-
forward to write down the probability for certain conductance series to occur,
that reproduce the voltage time course. This is just theaibiby for successive
conductance steps to occur, namely the product of the pilétesbpX:

n—1
k
p=1[]pr, (A.5)
I

given initial conductanceg?, gio. However, again, there is a continuum of con-
ductance serieg:]'e, g! h=1,..nt+1, that are all compatible with the observed voltage
trace. We define a likelihood functiof(Vk,G), 6 = (90, Tio, Oe, Ti ), that takes
into account all of them with appropriate weight. We thuggrate Eq. A.5 over
the unconstrained conductangsand normalise by the volume of configuration
space:

K oy fﬂﬂ;&dox‘fp
= i raddgtp

where only in the nominatay}( has been replaced by Eq. A.1. This expression
reflects the likelihood that a specific voltage sef®&} occurs, normalized by
the probability, thaanytrace occurs. The most likely parametérgiving rise to
{VX} are obtained by maximising (or minimising the negative Ify*, 8) using
standard optimization schemes.

(A.6)

A.3 Application to model data

We tested the method in detail in its applicability to vokdgaces, that were cre-
ated using the same model (IF model). To this end, we peridremaulations
scanning thedgo, gio)—plane and subsequently tried to re-estimate the conduc-
tance parameters used. The method was applied to ten saoi@€90 data
points (corresponding to 250 ms each) and the average wes salbsequently.
The conductance standard deviations (SDs) were chosen aaé¢hird of the
respective mean values, other parameters were assumedkimwa during re-
estimationC =0.4 nF,g. =1344nSV. = -80 mV,1¢=2.728 ms;1; = 10.49

ms), the time step walt = 0.05 ms. Also, we assumed that the total conductance
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Figure A.1l: Test of the method for the IF model. Each panel presents aiscte
(9en, Gio)—plane. Color codes the relative deviation between modeirpeters and their
estimates using the method (note the different scales fansi€Ds) A: deviation in the
mean of excitatory conductancgs). B: Same a# for inhibition. C: deviation in the
SD of excitatory conductanBe Same a<C for inhibition. In general the method works
fine, except for a small band in the case of inhibitory SD.
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deviation (%)

VAl

Figure A.2: Relative deviation between the parametgin the simulations and its re-
estimated value depending on the ratio of the currents dimhiioitory and leak conduc-
tance. The estimation fails, when the inhibitory compormtomes too small.

Oot Was known, the likelihood function A.6 was thus only maxiedzwith re-
spect togen, 0c andao;. Fig. A.1 summarizes the results. The mean conductances
are well reproduced over the entire scan region. An excepsidhe estimation
of gip for a situation, where the mean excitation exceeds inbibisieveralfold, a
situation which is hardly found in real neurons. The sitoratior the SDs is dif-
ferent. While the excitatory SD is reproduced very well ia thhole area under
consideration, the situation is different for inhibitiddere, the estimation is good
for most parts of the scanned region, but shows a consigedaiation along
the left and lower boundaries. These are regions, whergahermembrane cur-
rent due to inhibition is weak, either because the inhigitlonductance is weak
(lower boundary) or because it is strong and excitation iaky@eft boundary),
such that the mean voltage is close to the inhibitory revgrstential and the
driving force is small. In these conditions it seems thateffiect of inhibition on
the membrane voltage cannot be distinguished from thateolielik conductance.
Fig. A.2 illustrates this point. It shows the relative deéwoa betweeno; in the
model and its re-estimation depending on the ratio of thestrembrane current
due to inhibitory (;) and leak [ ) conductance. All curves correspond to a fixed
excitatory and varying inhibitory conductance. Apart fréloctuations, there is
a clear tendency. The estimation is simply wrong when théitdry current is
smaller or comparable to the leak current, but it becomegnetiable as soon as
the ratiol; /I becomes larger than 1.5-2.
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A.4 Application to in vitro data

The unavoidable presence of recording noise presents a@rc@roblem in the
application of the method to recordings from real neurong. 4.3 shows, how
low amplitude white noise added to the voltage trace of an ddehimpairs the
reliability of the method. There, Gaussian-distributeati@m numbers have been
added to the voltage trace at every time step, scaled by tpétade given in the
abscissa. Different curves correspond to different pais €io). The noise has
an opposite effect on the estimation of the conductance malales. While the
estimate of excitation exceeds the real parameter valugHibition the situation
is inversed. However, one has too keep in mind that both peters are not
estimated independently, but there sum is kept fixed. Inrastitthe estimates
for the conductance SDs always exceed the real values, agd#m deviate by
almost 500% for a noise amplitude of id. Clearly, in order to apply the method
to recordings from real neurons, one needs to get rid of tieendVe chose to
preprocess the original voltage trace with a Gaussian fitdr a SD of 3 data
points.

We tested the method an vitro recordings using dynamic clamp (for details
on the experiments cf. the “Materials and Methods”-SestionChapters 3 and
6). As in the model, the stimulus consisted in two channel8uctuating con-
ductances representing excitation and inhibition. We elreo$igh-conductance
(HC, geo = 32.1 nS,gip = 96.2 nS,0e = 8.0 nS,0; = 24.0 nS) as well as a low-
conductance (LQgeo = 124, gip = 7.6,0¢ = 6.0, 0; = 3.6) stimulus. The method
was applied to subsequent inter-spike intervals (ISIs) wii@mum duration of
2000 datapoints (corresponding #0100 ms). For the HC stimulus, the result
was as follows: The estimates for the mean conductancesgisuiccessive I1SIs
fluctuated with low amplitude and close to the target val@@s.the other hand,
the estimates for the SDs showed a bimodal distributiony Eitber took a value
close to the target, or the result was far off. In the lattesecghe estimate for the
inhibitory SD was between 130 and 170 nS, whereas at the sara#te estimate
for the excitatory SD was zero. This bimodality made it easgdparate the suc-
cesful estimates from the clear failures. Fitting a cortstanhe succesful trials
gave the following parameter estimatgsg = 28.0 nS,gijo = 1001 nS,0. = 6.6
nS, o; = 25.9 nS, which is in good agreement with the real values. For fbe L
stimulus, the situation was different. On the one hand, new far the estimates
of the mean values there were outliers, positive ones fatan, negative ones
for inhibition. On the other hand, the outliers for the eatary SD now also were
positive. However, it was still possible to separate suctésals from failures.
The estimates for LC stimulus wergg = 10.7 nS,gio = 9.3 nS,0e = 6.8 nS,

o; = 7.4 nS. Except foo;, this might qualify as acceptable agreement. Regard-
ing the latter, for the parameters chosen the rhtip is ~ 0.15. So in view of
Fig. A.2 the bad performance is not surprising.
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rel. error (%)
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deviationin g,
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SDI ----- -
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Figure A.3: White noise in the voltage trace significantly impairs thiéatslity of the
method. The relative deviation in the estimatiorggf andgip (upper panel) as well ax

anda; is given as a function of the white noise amplitude. Différeurves correspond to
different pairs ¢, gio)- While the noise has an opposite effect on the estimatidhef

mean conductance values, the estimates of the SDs incréhsth&mnoise.
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A.5 Discussion

We have introduced a method that can extract conductaneengéers from the
voltage time course at a single current level. The method doérely on static
properties of the membrane voltage, like mean and standaidttbn, in order
to determine the shape of the conductance distributiorstedal, it exploits the
dynamical information hidden in thetime course. Not only the step sizes
are important, but also at which voltage level they occure Tikelihood func-
tion is highly sensitiv to the conductance fluctuations armhstraining the total
conductance, also to the conductance mean values. Tested®l data were en-
couraging, but also pointed to weaknesses of the method egieme where the
transmembrane current due to inhibitory conductances &l stompared to the
leak current. There, the inhibitory fluctuations are notigly resolved. A test of
the method on data obtain&d vitro using dynamic clamp confirmed the weak-
ness in this regime, but also displayed the good performdndeg a HC state.
Since in cortical neuronis vivothe membrane potential is usually well above the
inhibitory reversal potential and inhibitory conductasitend to dominate excita-
tory ones, this method should be applicablétweivo recordings.
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